
Public Accountability vs. Secret Laws: Can They Coexist?
A Cryptographic Proposal

Shafi Goldwasser
MIT and Weizmann

Sunoo Park
MIT

ABSTRACT
“Our Laws are not generally known; they are kept se-
cret by the small group of nobles who rule us. We are
convinced that these ancient laws are scrupulously ad-
ministered; nevertheless it is an extremely painful thing
to be ruled by laws that one does not know.”
—Franz Kafka, Parables and Paradoxes.

Post 9/11, journalists, scholars and activists have pointed out
that secret laws — a body of law whose details and sometime mere
existence is classified as top secret — were on the rise in all three
branches of the US government due to growing national security
concerns. Amid heated current debates on governmental wishes
for exceptional access to encrypted digital data, one of the key
issues is: which mechanisms can be put in place to ensure that
government agencies follow agreed-upon rules in a manner which
does not compromise national security objectives? This promises
to be especially challenging when the rules, according to which
access to encrypted data is granted, may themselves be secret.

In this work we show how the use of cryptographic protocols,
and in particular, the use of zero-knowledge proofs can ensure ac-
countability and transparency of the government in this extraordi-
nary, seemingly deadlocked, setting. We propose an efficient record-
keeping infrastructure with versatile publicly verifiable audits that
preserve perfect (information-theoretic) secrecy of record contents
as well as of the rules by which the records are attested to abide.
Our protocol is based on existing blockchain and cryptographic
tools including commitments and zero-knowledge SNARKs, and
satisfies the properties of indelibility (i.e., no back-dating), perfect
data secrecy, public auditability of secret data with secret laws,
accountable deletion, and succinctness. We also propose a variant
scheme where entities can be required to pay fees based on record
contents (e.g., for violating regulations) while still preserving data
secrecy. Our scheme can be directly instantiated on the Ethereum
blockchain (and a simplified version with weaker guarantees can
be instantiated with Bitcoin).

1 INTRODUCTION
Twenty years ago, the clipper chip project which advocated that
cryptographic keys for encrypted voice communications should be
held in escrow by government agencies was discontinued. Today,
brought to public attention by polarizing recent events such as the
San Bernardino terrorist attack, the question of how (and if) access
to plaintext should be made available to law enforcement agencies
for encrypted digital information is back on.1 Regardless of an

1 Technological development has wrought many important changes since twenty
years ago: digital communication – encrypted or otherwise – has become prevalent
and widely considered necessary to lead a normal life in the developed world; and
alongside, government practices ofmonitoring, storing, and accessing ordinary citizens’
digital data have expanded dramatically, overreaching what many thought acceptable
constitutionally or from a civil liberties perspective [22]. Note that we refer to US

eventual solution, it seems clear that a key factor in any workable
solution will be the ability to trust government agencies to be
transparent about their practices to the maximum extent possible
consistent with their ability to enforce laws and national security.
Secondly, and relatedly, it is important that formal procedures exist
that ensure that government agencies can be held accountable under
the law for their requests to access plaintext if required, so as to
provide the guarantee that abuse of power can be detected even in
principle.

These basic, natural requirements are further complicated by the
increasing governance (or lack thereof) of intelligence operations by
secret laws: that is, where even the details of law itself are classified as
top secret information.2 The very concept of secret law seems to go
against the principles of accountability and transparency. Today’s
abundant use of secret law can render entirely indistinguishable
to the public a lawfully behaving government from one that wan-
tonly abuses power. Indeed, recent heated discussion among legal
scholars challenges whether secret law is reasonable or even con-
stitutional in the U.S.: for example, the American Civil Liberties
Union (ACLU) recently filed a motion challenging the constitu-
tionality of the secrecy of FISA court’s secret rulings [21].3 Our
present purpose is not to delve into discussion of whether secret
law is reasonable, but to consider the challenge of accountability
and transparency in a world where secret law exists.4 Recent work
in the legal literature has begun to consider “rules of the road for
governing secret law,” and put forth pertinent accountability and
transparency considerations: e.g., [20] refers to the importance of
“public notification of secret law’s creation, presumptive sunset and
publication dates.” The House of Representatives recently held a
hearing on “Deciphering the Debate Over Encryption: Industry
and Law Enforcement Perspective” [13] in which similar and more
concerns were highlighted, e.g., [26].

government practices in this paper, while noting that evidence indicates that many
other countries engage in similar behavior [22].
2Those not interested in legal subtleties may wish to skip this footnote, which provides
clarification on the usage of the term “secret law” herein. In the U.S., laws themselves
may not be secret. However, in the U.S. system of common law, the details of the way
that a law shall be applied are often left ambiguous by the letter of the law, and are
determined instead by the opinions and decisions issued by courts as cases arise. It
is these opinions and decisions that may be classified as secret—but in such cases, it
is effectively the way the law is applied that is kept secret. In this paper, we refer to
this phenomenon as secret law even though it is not technically the law itself that is
secret, because (a) writing “laws whose application is determined by classified court
proceedings” every time would be confusing and cumbersome, and (b) in alternative
legal systems where the application of the law is much closer to fully specified in the
law itself, such as civil law systems that are predominant in much of the world, the
closest equivalent might well be a secret law.
3The FISA Court is a U.S. federal court originally created in 1978 to oversee surveillance
warrants against foreign spies, but whose oversight has since expanded to much more
general intelligence operations, and by today “has created a secret body of law giving
the National Security Agency the power to amass vast collections of data on Americans”
[17]. Their operations are classified, and the court typically hears arguments only from
the government [14].
4We refer to [20] for an examination of the evidence that secret law exists (it concludes
that allegations of secret law in all three federal branches are well-founded).

The time-tested old method of reliable record-keeping and pe-
riodic audits is likely the most important and practical tool for
accountability and transparency. This is true for individuals and
businesses as well as for governments, and international organi-
zations. The working assumption is that when record keeping is
mandated by law or regulations, it will be followed.

However, there is only so much that traditional in-house record-
keeping and audits can achieve. A main limitation is that much of
the data kept in records is sensitive information that is not appro-
priate for routine disclosure, whether it be trade secrets, personal
details of employees or clients or patients, or classified informa-
tion pertaining to criminal investigations or national security. This
means that irresponsible record-keeping tends to be revealed only
in special cases where the disclosure of records are compelled (e.g.,
audits or court-ordered requests) rather than as a matter of routine.
Public verifiability, which is desirable to achieve the goal of trans-
parency, is usually out of the question in those special cases where
records are checked. Another related limitation is that of timing and
back-dating: even for those records which are later revealed (e.g., to
some appropriate authority such as a judge), it is often impossible
to be certain that the presented records are indeed the correct ones
that were generated at the appropriate point in the past.

A naive approach to this problem might be to require organi-
zations to hand over all their records as they are produced, e.g.,
each week or month. An immediate question is: to whom? An
enormous—and, possibly misplaced—amount of trust and power
would be placed in the hypothetical guardian of the sensitive inter-
nal records of all these countless organizations. Where would this
vast and perpetually growing quantity of information be stored (and
whowould pay for it)?What if there were a hack or a leak? A breach
of these records could be devastating to individuals’ privacy na-
tionwide (and likely internationally), and could cause far-reaching
damage to businesses and economies. Aside from security concerns,
integrity remains an issue: would there be any way for the public
to be confident that the records used in future—e.g., for audits or
released under freedom of information laws—really are the same
as the data that was handed over by the company to the trusted
party at the appropriate point in the past? This last question is
particularly concerning in the case of the records of the record-
keeping organization itself: quis custodiet ipsos custodes? And yet,
naturally, in matters related to national security, the government
may reasonably argue that transparency along these lines would
be unacceptable.

1.1 Our contribution: publicly auditable
records on secret data and secret laws

The focus of this work is to devise a solution that enables publicly
auditable record-keeping while maintaining secrecy of recorded
data and the secret laws that may govern it, without a trusted third
party, which is compatible with the interests of all parties, whether
governmental, corporate, or otherwise.

We propose a solution that makes use of a blockchain and other
cryptographic methods to simultaneously achieve the following
desiderata: indelibility, secrecy, public auditability of secret data
with secret laws, accountable deletion and succinctness. A natural
additional desirable feature of a record-keeping scheme (which we

achieve but is of secondary importance) is to impose penalties for
violations. Our construction can support penalties as well as versa-
tile, secrecy-preserving “pricing schemes” based on record contents.
This scheme can be instantiated on the Ethereum blockchain with
no modification to the Ethereum protocol.

We now elaborate, informally, on each of the goals addressed.

Timestamping and indelibility. The creation time of a record
should be public knowledge, agreed upon by all honest parties
in the system.5 Moreover, once records are created, it should be
impossible to alter them without detection at a later date (that is,
back-dating records should not be feasible).

Secrecy. Records kept by organizations contain sensitive informa-
tion. Thus, any solution for the record-keeping problem must guar-
antee the strongest possible secrecy of the contents of records. In
the best of worlds, a perfect (information-theoretic) secrecy guarantee
should be sought, which would ensure secrecy of data even against
arbitrarily powerful, computationally unbounded adversaries. In-
deed, one instantiation of our construction efficiently achieves
perfect (information-theoretic) secrecy of sensitive data.

The secrecy requirement is of paramount importance especially
in the context of national security, where the cost of failures can be
catastrophic. However, it is also very important in the context of
businesses which hold secret information about business practices
(this is desirable since the ability to keep trade secrets can benefit the
economy), and sensitive information about employees, clients, and
other individuals. Release of individuals’ private information is not
only an ethical issue, but also of legal significance as organizations
are subject to complex regulations on handling of individuals’ data,
and in particular the sharing of such data with other parties. In
some (though arguably, too few) cases, explicit consent from the
individuals is a prerequisite to use of their data in certain ways; an
effective accountability/auditing system must moreover be robust
against reasonable individual exercise of privacy rights.

Public auditability of secret data with secret laws. In high-stakes
settings like surveillance for national security, it is important for
the public to be confident that governmental agencies are abiding
by the law in their investigations. This holds even for secret law:
the government should be able to assure the public, at the very least,
of the fact that it is adhering to well-defined laws. This assertion in
itself—that the government is behaving lawfully—is of great public
interest and does not seem to pose a credible threat to national
security in any circumstance. The interesting challenge that our
work addresses is to devise a system allowing credible assertion by
record-keepers that their recorded data adheres to specific regula-
tions, while revealing nothing else about the data contents or the
content of the regulations, in a provable (and information-theoretic)
way.

Accountable deletion. Certain regulations (or an organization’s
internal policies) may require that recorded data be deleted, e.g.,
if a user closes their account, or simply because a certain amount
of time has elapsed. Deletion of data is important for privacy and

5We acknowledge that there may be certain situations in which even the creation
time of a record, i.e., the time of occurrence of an unknown event, might be sensitive
information that is not considered suitable to be publicly known; in such (rare) cases,
our system would not be an appropriate solution and alternatives should be sought.

2

security. Data deletion events must be logged in any organization’s
records, and the public audits mentioned above can be used to attest
that organizations’ records show compliance with regulations about
data deletion (without, of course, revealing any further details about
the data). Sometimes, deleted data could include the contents of
past records: accordingly, we require that upon being served with a
request to reveal a particular record, an organization must always
be able to either verifiably reveal the requested data, or reveal the
fact that it has been legitimately deleted (as evidenced by a later
record).

Succinctness. The volume of data that is generated by organiza-
tions is growing every day, and the amount of data that is stored
for record-keeping purposes is growing alongside. While record-
keeping organizations themselves must find solutions to archive
their own growing quantities of data, a system for accountable
record-keeping which allows auditors, and ideally also the public,
to verify compliant record-keeping, must process orders of magni-
tude less data. The importance of this requirement is compounded
due to the number of record-keeping organizations. It would be
unmanageable to process data in volumes comparable to the raw
records.

Pricing schemes. It may be desirable to enforce fees based on
the content of records. A simple example is to enforce a fine for
violation of certain regulations, but payments need not necessarily
be based on violations. For example, a local police department might
be required to pay some fees depending on how much surveillance
technology they deploy (e.g., over the course of a month), a quantity
that should be logged in their records. As above, secrecy must be
preserved: no information beyond the fact that the correct fee
has been paid should be revealed by a secrecy-preserving pricing
scheme. (In certain settings, it may be acceptable to reveal the fee
amount too.)

1.1.1 Overview of the proposal. We propose an infrastructure
for timestamped record-keeping on a blockchain integrated with a
system for routine, publicly verifiable audits that satisfies all the
above desiderata. We consider the regulatory framework together
with the technical component to comprise a full record-keeping
scheme.

Participating organizations are required to keep data records
by publishing cryptographic commitments to the records in the
blockchain at regular intervals. When a participating organization
is later required to reveal a record—e.g., at regular intervals ac-
cording to their business practice, or during an audit—they can
verifiably open the commitment to the record in question. The
cryptographic commitments published on the blockchain will hide
the record contents, but make it impossible for the organization
which published the commitment to reveal anything different from
the original record committed to. Refusal to open the record, if
presented with a request from appropriate authorities, will result
in legal or contractual consequences (as applicable in the circum-
stances). Thus, the only choices for a government or a business
using the infrastructure would be: reveal the record (i.e., reveal its
contents or attest to its legitimate deletion) or publicly refuse to
open the commitment and face consequences.

Different types of cryptographic commitments could be used
depending on the application, including ones which achieve per-
fect (information-theoretic) hiding. The latter would likely be the
method of choice for high-stakes settings such as national security.
With perfectly hiding cryptographic commitments, a commitment
mathematically contains no information about the contents of the
record, thus posting it on a blockchain reveals no information to an
adversary regardless of computational power (except for the fact
of the record’s existence). At the same time, it will be impossible
for a business, government, or organization to falsify a record (i.e.,
reveal a different record which is consistent with the commitment)
under standard cryptographic hardness assumptions. Moreover,
using standard techniques, the size of the commitment to a record
does not grow with the size of the record.

So far, the technical component of the scheme bears substantial
similarity to existing Bitcoin-based time-stamping services (see
Section 1.2 for more discussion of related work). Next, we discuss
how to achieve the novel and richer functionality of public au-
ditability of secret data with secret laws and pricing schemes. To
achieve these, we leverage additional cryptographic tools: notably,
zero-knowledge arguments.

Secrecy-preserving audits. In a system where commitments to
records are routinely published, publicly verifiable and secrecy-
preserving audits can be implemented elegantlywith zero-knowledge
arguments. We propose a system for routine secrecy-preserving
audits based on zk-SNARKs, a particularly efficient type of zero-
knowledge argument which is also publicly verifiable. zk-SNARKs
have already been useful in blockchain-based systems: they are
used to achieve anonymity in recently launched cryptocurrency
Zcash [3].6 Under our scheme, organizations are required to post
zk-SNARKs on the blockchain along with the commitments to their
recorded data, as incontrovertible evidence that they are comply-
ing with applicable regulations. If the regulations themselves are
secret, organizations must additionally publish commitments to the
regulations, and prove compliance with specific regulations while
keeping contents of both the regulations and the records secret.
Further details are in Section 3.3.

Putting a price on records. Building upon the SNARK-based scheme,
fines for non-compliance with regulations can be implemented au-
tomatically via transactions on the blockchains. This variation can
be extended to support versatile system of fees (not necessarily
fines) based on arbitrary properties of committed records. For ex-
ample, a local police department might be required to pay some
fees depending on how much surveillance technology they deploy,
a quantity that should be logged in their records (and the fees could
even go back to the local community). Using SNARKs, this can be
implemented in a way that reveals nothing more than the amount
of the fee paid and the fact that it is the correct fee amount for the
committed record. Moreover, as above, compliance with fee-paying
regulations can be asserted in a publicly verifiable manner even

6Note that zk-SNARKs require a one-time trusted setup, which can be implemented
using multi-party computation (MPC) between a number of carefully chosen “trustees,”
and will be secure as long as not all of the trustees collude to subvert the protocol.
Exactly such a trusted setup based on MPC was run in order to launch Zcash, as
documented by [27]. See Section 3.3.1 for more discussion of SNARK setup.

3

when the regulations themselves are secret. Further details are in
Section 3.3.2.

Our scheme would be able to be implemented on the Ethereum
blockchain with no modification to the Ethereum protocol, satisfy-
ing all of the above properties simultaneously. In the body of the
paper, we discuss how this instantiation would work, as well as
discussing: a simplified scheme (satisfying indelibility, secrecy, and
accountable deletion but without audits) that could be implemented
on the Bitcoin blockchain with no modification to the Bitcoin pro-
tocol; and an enhanced scheme that also hides fee amounts paid in
a pricing scheme, and could be deployed on a hypothetical version
of Zcash/Ethereum that combines Zcash’s anonymity features with
Ethereum’s flexible scripts and transaction formats.7

The general framework for publicly accountable record-keeping
on secret data and regulations may find utility in other domains as
well. To illustrate this point, we briefly describe one potential such
application.

Whistleblowers. Public timestamping schemes could also serve as
a tool for timestamped record-keeping to lend credibility to whistle-
blowers. Potential whistleblowers could commit to their data in
a timely fashion and record the commitments on the blockchain,
either with the explicit intent of later revealing it, or “just in case.”
A common tactic used against whistleblowers is to cast doubt upon
their authenticity or even their sanity, and the presence of a times-
tamped trail of evidence could an helpful tool to boost their credi-
bility. Moreover, we believe that the presence of infrastructure for
“just-in-case whistleblowing” could cause an interesting and benefi-
cial shift in the incentives of corrupt organizations and individuals
therein. Currently, “good” individuals in corrupt organizations are
often incentivized to keep quiet for fear of retribution. Though
such individuals may not take the initiative to blow the whistle, it
is strictly beneficial for them to anonymously post commitments
to whistleblowing data in the blockchain, which they can come
out and reveal in case of any future investigation in which the
corruption is brought to light or the cause for fear is removed (e.g.,
due to change of employer). In the long run, perhaps this landscape
of individual incentives could incentivize organizations to rein in
corruption.

Finally, some remarks are in order.

Remark 1. While it remains possible that an organization could
simply refuse to open their commitments, this is analogous to the
long-existing reality that an entity served with a subpoena can choose
either to comply or face punishment under the law. In comparison to
the existing system, our proposal provides stronger guarantees on the
authenticity and public verifiability of records, and better incentivizes
organizations to keep regular records as required by the law.

Remark 2. Our system does not provide a way to check that all
generated records are committed on the blockchain. That is, a govern-
ment or business could choose not to comply with regulations and not
keep records. This is also the case today.
7While we believe fee amounts would not be sensitive information in many settings,
the ability to hide amounts could potentially enable (discussion of) more controversial
pricing schemes, e.g., pay-per-wiretap.

Remark 3. A corrupt organization could record false information
in its logs. This is true when they are required to keep traditional/paper
logs, and also true in the blockchain-based record-keeping scheme
that we propose. Existing measures to deter and mitigate corruption,
such as audits, could be applied to blockchain-based record-keeping
too.

Remark 4. The question of what should be done if an instance
of non-compliance is discovered by way of an accountable record-
keeping scheme is beyond the scope of this paper, and is likely to be
context-dependent. For example, when it is desirable that the identity
of the creator of a record not be known, then it is problematic for the
public to directly approach the creator of the non-compliant record
with a complaint; in such cases, one solution could be to designate a
specific (judicial) committee to receive and arbitrate complaints.

1.2 Relation to existing services
The potential of blockchains for timestamping documents has long
been recognized. A number of websites offer a timestamping ser-
vice on the Bitcoin blockchain (and some also on other blockchains,
notably that of Ethereum), wherein users submit documents of their
choice to be timestamped, upon which the service creates a transac-
tion containing the hash of the document and adds it to the Bitcoin
blockchain. Some other services provide more complex frameworks
for timestamped data management with the aim of selling their
services as a generic or special-purpose data management solution
to organizations. Features marketed include “proof of existence”;
assurance of data “privacy”, “integrity”, “attribution”, and “auditabil-
ity”; and “scalability” to large volumes of data. To our knowledge,
the auditability claimed by existing systems refers only to audits
where the underlying data is revealed in an audit. We are not aware
of existing proposals which put forward an inter-organizational
regulatory framework (like our work), rather than targeting data
management solutions within organizations. The desiderata for the
two cases overlap to a degree, but have ultimately different goals:
e.g., latency is a major concern of many existing services, and is
not a limiting factor for us; whereas information-theoretic security
and publicly verifiable audits on secret data with secret laws are
paramount in our setting and not addressed by existing solutions.
More detailed discussion of existing services is in Appendix A.

2 PRELIMINARIES
We write “PPT” to denote probabilistic polynomial time. For a ran-
domized algorithmA, when we refer to the algorithm’s randomness
explicitly, we writeA(x ; r) to denote the output ofA on input x and
randomness r .

2.1 Blockchains
In this subsection, we give a brief overview of the high-level struc-
ture of a blockchain with a stylized focus on the properties of
blockchains that are relevant to this work.

A blockchain is a finite sequence of blocks B = (B1,B2, . . .)
maintained by a decentralized network of parties, in the form of a
public, append-only ledger whose contents all the parties are guar-
anteed to agree upon. Each block Bi contains some data including
a set of transactions. In Bitcoin, the transactions typically record

4

monetary transfers of the form “Alice transfers x bitcoins to Bob.”8
More generally, a blockchain-based record-keeping system may
instead support non-monetary “transactions” that serve to record
certain data.

The entities that create blocks are typically called “miners,” and
we will refer to the entities that create transactions as “participants.”
Participants need not be miners, and vice versa. In order to have a
transaction τ added to the blockchain, a participant broadcasts τ to
the entire network of miners (we refer to this action as “sending τ
to the blockchain network”); a miner who is creating a block will
insert into the block some number of broadcasted transactions that
have not yet been added to the blockchain.

Transaction fees. Transactions that are added to the blockchain
may be accompanied by an optional transaction fee, i.e., a small
amount of currency that is designated to be transferred to the party
who creates a block containing the transaction in question and suc-
cessfully adds that block to the blockchain. Having a transaction fee
is usually advantageous for the transaction creator, as it incentivizes
miners to include the transaction (quickly) in the blockchain.9 The
default presence of a nominal transaction fee is also important
to prevent denial-of-service attacks by adversaries flooding the
network with transactions (sometimes called “penny-flooding”).

Record transactions. We describe our proposed scheme in the
context of an abstract blockchain that includes a special transac-
tion type called a record transaction. A record transaction does
not entail any monetary transfer, and can store some arbitrary
data δ of the transaction creator’s choice. A record transaction
RecordTx(pk,δ) = (ζ ,δ) contains the data D as well as any auxil-
iary information ζ that is required by the transaction format of the
abstract blockchain. While we recognize that Bitcoin transactions
can be used to instantiate our scheme, we prefer to first present
our scheme in terms of an abstract blockchain since the underlying
ideas are not Bitcoin-specific.

On the use of blockchains vs. other types of ledgers. Though it is
presented as using a blockchain and we give discussion of instanti-
ations based on Bitcoin and Ethereum, our main construction could
also be instantiated based on other types of append-only ledgers,
including ones which are not fully decentralized. Such options
might be preferable in situations where a small set of stakeholders
can plausibly be trusted not to collude together to falsify records.
Building atop an existing decentralized blockchain such as Bitcoin
or Ethereum can have the disadvantage that the miners on whom
the integrity of the blockchain’s content depends are typically un-
known entities whose motives may be harder to ascertain than
those of known reputable stakeholders.

An extension feature of ours — specifically, the system for auto-
matic penalties for violations — relies more on the “smart contract”
capability of the Ethereum blockchain specifically. For such a fea-
ture, use of an existing blockchain-based cryptocurrency might

8In fact, Bitcoin’s scripting language, Script, allows for more complex monetary trans-
fers that impose conditions upon the recipients, e.g., “Alice transfers x bitcoins to
anyone who can find a SHA-256 preimage of value y .”
9Indeed, although the transaction fee is technically optional in Bitcoin, in practice,
transactions with fees below 0.00001 BTC are typically discarded as spam (according
to https://en.bitcoin.it/wiki/Transaction_fees).

be advantageous in order to enforce penalties in a currency with
exogenous monetary value.

2.2 Cryptographic commitments
This subsection presents standard definitions of cryptographic
commitments (including SHA-based commitment, Merkle commit-
ments, and Pedersen commitments), and may be skipped by those
familiar with these concepts.

Throughout this work, we use the term “commitment scheme” to
refer only to non-interactive commitment schemes. Next, we define
the syntax of a commitment scheme and informally describe the
required security properties. We now recall the standard definition
of a commitment scheme.

Definition 2.1 (Commitment scheme). A commitment scheme (for
a message spaceM) is a triple of probabilistic polynomial-time
algorithms C = (Setup,Commit,Open) as follows.
• Setup(1λ) takes as input a security parameter λ (in unary)
and outputs public parameters pp.
• Commit(pp,m) takes as input public parameters pp and a
messagem ∈ M and outputs a commitment c .
• Open(pp, (c,m′,ω ′)) takes as input public parameters pp, a
messagem′, and a string ω ′ and outputs{

1 if c = Commit(pp,m′;ω ′)
0 otherwise

.

A secure commitment scheme is required to satisfy the following:
• Hiding: ∀ PPT adversaries A = (A1,A2), ∃ negligible ε s.t.
∀λ ∈ N,

Pr


pp ← Setup(1λ)
(m0,m1, state) ← A1(1λ)
b ← {0, 1}
c ← Commit(pp,mb)

b ′ ← A2(c, state)

: b ′ = b


≤ 1/2 + ε(λ) .

(1)
If C moreover satisfies (1) for computationally unbounded
adversaries and ε = 0, then C is said to satisfy perfect hiding.
• Binding: ∀ PPT adversaries A, ∃ negligible ε s.t. ∀λ ∈ N,

Pr


pp ← Setup(1λ)
(c,m,ω,m′,ω ′) ← A(1λ)
b ← Open(pp, (c,m,ω))
b ′ ← Open(pp, (c,m′,ω ′))

: m ,m′ ∧ b = 1 = b ′

 ≤ ε(λ) .

(2)
If C moreover satisfies (2) for computationally unbounded
adversaries and ε = 0, then C is said to satisfy perfect binding.

For our purposes, the public parameters pp are assumed to be gen-
erated in an initial setup phase and thereafter publicly known to
all parties, so we sometimes leave them implicit and write simply
Commit(m) and Open(c,m,ω) for brevity.

Remark 5. It may be that in the context of a specific commitment
scheme, not all of the commitment randomness needs to be passed as
input to the opening algorithm; rather, it may suffice for the opening
algorithm to take as input some function of the commitment ran-
domness. This could be preferable if the function output is smaller
than the commitment randomness, or if the opening algorithm can

5

be more efficient by operating on the function output rather than
the commitment randomness directly. We have written Definition 2.1
as above to avoid the additional notational clutter of defining some
“decommitment information” that is distinct from the commitment
randomness.

It is well-known that a commitment scheme cannot satisfy both
perfect hiding and perfect binding simultaneously.

Definition 2.2 (Succinctness). A commitment scheme C is succinct
if the size of commitments is independent of the message size.

SHA as a commitment scheme. As remarked in Section 1, SHA
can serve as a very efficient and succinct commitment scheme in
practice. Instead of running SHA directly on the data D to be com-
mitted, one should use D | |r as the input to SHA, where r ← {0, 1}λ
serves as commitment randomness. Essentially, the use of r ensures
that two commitments to the same D will be indistinguishable from
two commitments to different values. Note that this SHA-based
scheme implements a perfectly secure commitment scheme in the
random oracle model.

Definition 2.3 (Merkle commitment). Given any commitment
scheme C = (Setup,Commit,Open) and a length-halving (or suc-
cinct) collision-resistant hash function familyH , the Merkle com-
mitment CH,BMerkle is defined as follows.

• SetupH,BMerkle(1
λ) outputs (pp,h) where pp ← Setup(1λ) and

h ←H .
• CommitH,BMerkle((pp,h),m) divides the message m into B/2-
bit contiguous chunks, m1, . . . ,m ⌈2 |m |/B ⌉ , computes ci =
Commit(pp,mi ;ωi) for random ωi , and considers the com-
mitments c1, . . . , c ⌈2 |m |/B ⌉ to be “labels” on the leaves of a
binary tree. The label of any node ν in the binary tree is then
defined to be ℓν = h(ℓν,0 | |ℓν,1) and ℓν,0, ℓν,1 are defined to
be the labels of ν ’s children. Finally, the output is ℓroot where
root denotes the root node of the tree.

Note that in the case of Merkle commitment, not all of the com-
mitment randomness needs to be passed as input to the opening
algorithm; rather, it would suffice for the opening algorithm to take
as input the set of all labels in the tree computed by CommitMerkle
(and check the equality of the root node label with the commitment,
and also check that each node’s claimed label is indeed the hash
of its two children’s labels). In practice, this may be the preferable
implementation (see Remark 5 for more discussion).

Partial opening. It is possible to open any consecutive pair (m2i−1,m2i)
of the B/2-bit chunks of the messagem by revealing the labels of
the nodes along its path to the root (together with the labels of im-
mediate siblings of those nodes). This opening procedure provably
preserves the hiding property for all chunks of the message apart
fromm2i−1 andm2i .

Generalized Merkle commitment. In Definition 2.3, the chunk
sizes are fixed at B/2, but this scheme would work equally well with
arbitrary, variable-size chunks. That is, the data could be split into
chunks according to logical divisions, and theminimum appropriate
number of chunks can be decided adaptively, case by case. (Reducing
the number of chunks is beneficial for efficiency.)

Use of SHA for Merkle commitment. To use SHA to instanti-
ate Merkle commitment, the randomized SHA-based commitment
scheme described above should be used to generate the commit-
ments for leaf nodes, and SHA can be applied deterministically in
place of h at each non-leaf node of the tree.

2.2.1 Perfect hiding. Possibly the best-known perfectly hiding
commitment scheme is the Pedersen commitment [19], which is
based on the discrete logarithm assumption over strong-prime-
order groups. The scheme is described below.

Definition 2.4 (Pedersen commitment).

• SetupPed(1λ) outputs (p,д,y) where p = 2q + 1 is a strong
(λ + 1)-bit prime, д is a random generator of G = QR(Z∗p),10
and y is a random element of G.
• CommitPed((p,д,y),m) takes a message m ∈ Zq and out-
puts (c, (r ,m)) where r ← Z∗q is randomly sampled and
c = дrym mod p.

The Pedersen commitment is unconditionally perfectly hiding
since the commitment randomness r is chosen randomly in Z∗q and
therefore c = дrym is distributed randomly in G, for any message
m. The computational binding property follows from the hardness
of discrete logarithm.

2.2.2 Timed commitments. Timed commitments are a variant on
the standard notion of commitments, in which “a potential forced
opening phase permits the receiver to recover (with effort) the com-
mitted value without the help of the signer” [8]. Under assumptions
about the inherent sequentiality of certain computations, it can be
ensured that no commitment can be “forced open” until a certain
amount of time has elapsed (and until then, the standard hiding
property of commitment schemes applies). This type of commit-
ment could be useful in special circumstances where it is desired
that committed data be inevitably revealed after a certain delay,
even without the committer’s later cooperation.

Unfortunately, timed commitments cannot be succinct, by a
straightforward information-theoretic argument. We thus remark
upon this as an interesting theoretical possibility—perhaps suitable
for use in rare cases—rather than a generally practical option.

2.3 Zero-knowledge SNARKs
A SNARK is a cryptographic proof primitive; the acronym stands
for “Succinct Non-interactive ARgument of Knowledge.” Our con-
struction uses preprocessing zero-knowledge SNARKs (zk-SNARKs)
for arithmetic circuit satisfiability,11 following the construction of
[5, 7]. “Preprocessing” means that there is a potentially expensive
algorithm (Gen) that must be run as a one-time setup, on whose out-
put the subsequent generation and verification of proofs depends.
We leave implicit the term “preprocessing” from here on.

Definition 2.5 (Zero-knowledge SNARK). Apreprocessing zk-SNARK
comprises a triple of PPT algorithms SNARK = (Gen,Prove,Verify)
as follows:
• Gen(1λ ,R) takes as input the security parameter λ and a de-
scription of a binary relation R (represented as an arithmetic

10QR(Z∗p) denotes quadratic residues in Z∗p .
11We consider arithmetic circuits over an implicit field F. In the implementation of [?
], circuits should be over a suitable prime field Fp ; for details, see [?].

6

circuit of size polynomial in λ), and outputs a pair (pkR ,vkR)
of a proving key and verification key.
• Prove(pkR , (x ,w)) takes as input a proving key pkR and an
input-witness pair (x ,w) and outputs a proof π attesting to
x ∈ LR , where

LR = {x : ∃w s.t. (x ,w) ∈ R} .

• Verify(vkR , (x ,π)) takes as input a verification key vkR and
an input-proof pair (x ,π) and outputs a bit indicatingwhether
π is a valid proof for x ∈ LR .

SNARK is a zk-SNARK if the following four conditions hold.
• Completeness: Honestly generated proofs must verify with
overwhelming probability. Formally, ∃ negligible ε s.t. ∀λ ∈
N, ∀R, ∀(x ,w) ∈ R,

Pr

(pkR ,vkR) ← Gen(1λ ,R)
π ← Prove(pkR , (x ,w))
b ← Verify(vkR , (x ,π))

: b = 1
 ≥ 1 − ε(λ) .

• Perfect zero-knowledge:12 The distribution of keys and proof
reveals no information about the witness (i.e., can be sim-
ulated without the witness). Formally, there is a stateful
PPT algorithm Sim = (Sim1, Sim2) such that ∀R, ∀λ, and
∀(x ,w) ∈ R, the following distributions are identical:

(pkR ,vkR) ← Gen(1λ ,R)
π ← Prove(pkR , (x ,w))
output (pkR ,vkR ,x ,π)

 ≡

(pkR ,vkR ,τ) ← Sim1(1λ ,R)
π ← Sim2(τ ,x)
output (pkR ,vkR ,x ,π)

 .
τ , sometimes referred to as the “simulation trapdoor,” is the
state passed from Sim1 to Sim2. In general, τ may be consid-
ered to contain (pkR ,vkR) as outputted by Sim1.
• Succinctness: For any λ ∈ N, binary relation R, and (pk,vk) ∈
Gen(1λ ,R), an honestly generated proof has size poly(λ) (but
constant in other parameters), and Verify(vk, (x , ·)) runs in
time poly(λ) ·O(|x |).
• Proof of knowledge: For any PPT algorithm Prove∗, there is a
PPT algorithm Extract and negligible function ε s.t. ∀λ ∈ N,
∀R, for any auxiliary input z ∈ {0, 1}∗,

Pr


(pkR, vkR) ← Gen(1λ, R)
(x ∗, π ∗) ← Prove∗(z, pkR, vkR)
w∗ ← Extract(z, pkR, vkR)
b∗ ← Verify(vkR, (x ∗, π ∗))

: b = 1 ∧ (x ∗, w∗) < R

 ≤ ε(λ) .

We may leave implicit the unary security parameter input 1λ .

3 RECORD-KEEPING SCHEME
We begin by presenting a basic framework in which it is possible for
organizations to cryptographically commit to data, and to post these
commitments to a public ledger. We then overview the different
types of parties in our record-keeping system, and the roles they
play. After that, we proceed to describe the full-fledged version
12The zero-knowledge condition can be relaxed to statistical or computational variants;
these definitions are standard so we omit the details of the variants. The SNARK
construction of [7] was originally stated to satisfy a weaker notion of zero-knowledge
than that given here, but in fact [7]’s construction also satisfies the stronger definition
given here, and the proofs of [7] suffice unchanged to prove the stronger definition [25].
That perfect zero-knowledge can be achieved is moreover remarked in the appendix
of [6]. We note that the conference version of this paper [12] contained the weaker
notion of zero-knowledge than the one given here, i.e., that used in the main part of
[7].

of our system which incorporates zero-knowledge proofs that the
committed data adheres to certain regulations.

3.1 Committing to records
In the following, the algorithms Commit andOpen denote the com-
mitment and decommitment algorithms of a succinct commitment
scheme.

Algorithm 1. Commit to a record

Public parameters:
• Blockchain B.
• Succinct commitment scheme C = (Setup, Commit, Open).
Input: (pk, D) defined as follows:
• Public key pk of data owner/record creator.
• Data D to be committed.

(1) Generate public parameters pp ← Setup(1λ).
(2) Generate a succinct commitment c ← Commit(pp, D ;ω) ∈ {0, 1}λ .
(3) Generate a record transaction τ = RecordTx(pk, c).
(4) Send τ to the blockchain network (with an appropriate transaction

fee to ensure that τ will appear in the blockchain within the next
24 hours).

(5) Store D and ω locally (or on the cloud) for record-keeping purposes.

The public key pk may be thought of as both an identifier of
the data owner/record creator and as a public verification key for
others to confirm a transaction’s authorship.

The routine record-keeping procedure required of an organi-
zation is to keep records on a regular (e.g., daily) basis, and run
Algorithm 1 daily to record corresponding commitments in the
blockchain. If the organization is later required to reveal the records
(e.g., due to a routine audit, or when presented with a warrant),
then it runs the decommitment algorithm to prove that the re-
vealed records indeed match the commitment that was added to
the blockchain at the appropriate point in the past.

Succinct perfectly hiding commitments. SHA-based commitments
are succinct and thus can be used directly as C in our construction.
However, for the case of perfect hiding, recall that parameter sizes
in the standard Pedersen commitment grow with the message size,
and in particular, the commitment is not succinct. We can obtain a
commitment scheme that is both succinct and perfectly hiding by
first creating a Pedersen commitment c ′ and then using a succinct,
computationally hiding commitment scheme C = (Commit,Verify)
to create a succinct commitment c = Commit(c ′).13 In other words,
the SHA hash of a Pedersen commitment is still perfectly hiding.14

3.2 Basic regulatory framework
Parties. In the basic framework, there are 3 types of parties (each

modeled as interactive Turing machines). All types of parties have
read access to the blockchain, and may communicate along authen-
ticated channels.

13The transformation is generic, in that it would work for any other perfectly hiding
commitment scheme too.
14Because the underlying commitment already achieves hiding and binding (and
is randomized), it actually suffices to apply SHA directly here, rather than use the
randomized SHA-based commitment scheme described in Section 2.

7

• Organizations O ∈ Org that create records and insert them
in the blockchain. EachO ∈ Org has the following associated
public parameters:
– Public key pkO ∈ {0, 1}∗.
– Frequency parameter φO ∈ R ∪ {⊥}, indicating that O
commits to a record to the blockchain every φO days.
(Further discussion of this parameter is given below.)

• Auditors A ∈ Aud, who may initiate two types of interac-
tions:
– Reveal committed data
– Request arbitration of disputes
• The Court, C, which is an arbitrator of disputes between
organizations and auditors.

The frequency parameter. By default, organizations should post
record transactions to the blockchain on a regular schedule, so that
the time of record posting does not reveal any sensitive information.
That is, all data from a given time interval should be aggregated
to create a single record, and an “empty” record should be created
even if no new data was produced during the time interval.

In some scenarios, where the timing pattern of record generation
does not constitute sensitive information, the rate of record-keeping
is irrelevant. In this case, we consider the frequency parameter φ0
to have the value ⊥.

Record types and format. Each record transaction contains a com-
mitment c ← Commit(D), as described in Algorithm 1. The data
D that is committed to may be of one of two types: log data or
regulations. Formally, a regulation is represented as an efficiently
checkable predicate p which takes as input some log data and evalu-
ates to 1 if and only if certain requirements are satisfied. Regulations
could represent laws or other desirable checks.

3.2.1 Instantiation with Bitcoin. Bitcoin’s OP_RETURN transac-
tion type can store up to 80 bytes of arbitrary data of the transaction
creator’s choice, and is thus suitable to serve as a “record transac-
tion” in our basic record-keeping scheme.

3.3 Zero-knowledge proofs of compliance
Secret log data. The most basic type of check that could be use-

fully performed on committed log data is a syntactic format check.
More generally, zero-knowledge proofs or arguments could be used
to prove that specific regulations are being adhered to (for exam-
ple, quotas not being exceeded, or patient status being recorded
at the required time intervals) without revealing any information
about the log data other than the fact that it adheres to these reg-
ulations. If non-interactive zero-knowledge proofs of compliance
were to accompany each record transaction containing log data in
the blockchain, then adherence to regulations would be publicly
verifiable by anyone viewing the blockchain.

Algorithm 2. Post proof that secret log data satisfies public predi-
cate

Public parameters:
• Blockchain B.
• Succinct commitment scheme C = (Setup, Commit, Open).
• zk-SNARK SNARK = (Gen, Prove, Verify).

Input: (pk, D, p, (pkR, vkR)) defined as follows:
• Public key pk of data owner/record creator.
• Data D to be committed.
• Predicate p to be attested to.
• Key-pair (pkR, vkR) ← Gen(R) where R is a circuit accepting the fol-
lowing relation:{

((c′, p′), (ω′, D′)) : c′ = Commit(D′;ω′) ∧ p′(D′) = 1
}
.

Algorithm:
(1) Generate a succinct commitment: c = Commit(D ;ω) ∈ {0, 1}λ ,

where ω denotes the randomness used to generate the commitment.
(2) Generate a SNARK proof: π = Prove(pkR, ((c, p), (ω, D))).
(3) Generate a record transaction τ = RecordTx(pk, (R, vkR, c, p, π)).
(4) Send τ to the blockchain network.
(5) Store D locally (or on the cloud) for record-keeping purposes.

Algorithm 3. Verify that secret log data satisfies a public predicate

Public parameters:
• Blockchain B.
• Succinct commitment scheme C = (Setup, Commit, Open).
• zk-SNARK SNARK = (Gen, Prove, Verify).
Input: (pk, r) defined as follows:
• Public key pk of data owner/record creator.
• Record r = (R, vkR, c, c̃, π).
Algorithm:

(1) Let b = Verify(vkR, ((c, p), π).
(2) If b = 0, send r to the Court C.

Secret regulations. To provide proof of compliance with a secret
regulation p, an additional step is required: organizations must first
create a commitment c̃ to the secret regulation p. Then, commit-
ments to log data must be accompanied by a zk-SNARK attesting
that the log data satisfies the unknown predicate committed to in c̃ .

Algorithm 4. Post proof that secret log data satisfies secret predi-
cate

Public parameters:
• Blockchain B.
• Succinct commitment scheme C = (Setup, Commit, Open).
• zk-SNARK SNARK = (Gen, Prove, Verify).
Input: (pk, D, p, (pkR̃, vkR̃)) defined as follows:
• Public key pk of data owner/record creator.
• Data D to be committed.
• Secret predicate p to be attested to.
• Key-pair (pkR̃, vkR̃) ← Gen(R̃) where R̃ is a circuit accepting the fol-
lowing relation: {

((c′, c̃′), (ω′, D′, ω̃′, p′)) :

c′ = Commit(D′;ω′) ∧ c̃′ = Commit(p′; ω̃′) ∧ p′(D′) = 1
}
.

Algorithm:
(1) Generate a succinct commitment: c = Commit(D ;ω) ∈ {0, 1}λ ,

where ω denotes the randomness used to generate the commitment.
(2) Generate a succinct commitment: c̃ = Commit(p ; ω̃) ∈ {0, 1}λ ,

where ω̃ denotes the randomness used to generate the commitment.
(3) Generate a SNARK proof: π̃ = Prove(pkR̃, ((c, c̃), (ω, D, ω̃, p))).

8

(4) Generate a record transaction τ̃ = RecordTx(pk, (R, vkR, c, c̃, π̃)).
(5) Send τ̃ to the blockchain network.
(6) Store (D, p) locally (or on the cloud) for record-keeping purposes.

Algorithm 5. Verify that secret log data satisfies a secret predicate

Public parameters:
• Blockchain B.
• Succinct commitment scheme C = (Setup, Commit, Open).
• zk-SNARK SNARK = (Gen, Prove, Verify).
Input: (pk, r̃) defined as follows:
• Public key pk of data owner/record creator.
• Record r̃ = (R̃, vkR̃, c, c̃, π̃).
Algorithm:

(1) Let b = Verify(vkR̃, ((c, c̃), π).
(2) If b = 0, send r̃ to the Court C.

Reusing secret predicates across different log data items. When an
organization attests to the satisfaction of a single secret predicate
with respect to multiple log data items, it may be desirable that it
be publicly known that the predicate attested to is the same across
all the log data items concerned. In this case, the commitment c̃
to the secret predicate p could be reused for the zk-SNARK proofs
generated for multiple log data items, rather than generating a
fresb commitment c̃ for each log data item (as would be implied
by naively applying Algorithm 5). Another alternative would be to
allow certain records to reference previous records’ commitments to
secret predicates, rather than requiring a commitment to a predicate
to be included explicitly in each record transaction.

The Court. The Court’s task is to enforce publicly known poli-
cies for record-keeping under its jurisdiction, encompassing: the
procedure by which an auditor can bring to the notice of the Court
a failure of an organization to provide valid proofs of compliance
regulations; the punishment associated with such failures; the cir-
cumstances in which recorded data can be legally compelled to
be revealed; the steps that a requester must take to prove that his
request is legitimate under the policies (e.g., presenting a warrant
from a judge); the steps that the data owner can take to challenge
the legitimacy of a request under the law; the time period within
which requested data is required to be produced; and the punish-
ment associated with non-cooperation with a legitimate request to
reveal the data.

Mandatory data deletion. Certain regulations (or internal policies
of specific organizations) require that recorded data is deleted after
a certain period of time. Data deletion events should be recorded
when they occur. Thus, an organization adhering to regulations,
upon being served with a request to reveal a particular past data
record, must always be able to either reveal the requested data by
opening the commitment in the corresponding record transaction,
or reveal a record that that data has been legitimately deleted, by
(partially) opening a commitment in a subsequent record trans-
action. When a deletion event is included in a record, a Merkle

commitment must be used to ensure that the deletion event can be
revealed while keeping the rest of the record hidden.

Regulations as predicates. Not all laws can easily or succinctly
be represented in the form of a well-defined predicate that log data
must satisfy. The challenges of representing law in the form of
code are interesting and have been recognized in the legal and
computer science communities (e.g., [16]); while addressing these
challenges is beyond the scope of our paper, we highlight that secret
laws might be a setting in which purposely designing laws to be
able to be represented in code might be of particular benefit, as
it would facilitate the use of a secure accountability scheme such
as our proposal. We note that in some cases, it may be useful to
design the log format to include, at the very least, assertions that
specific requirements have been satisfied, even if the adherence is
too complicated to check directly.

3.3.1 Discussion about SNARKs. Using recent constructions [7]
of zero-knowledge SNARKs (Succinct Non-interactive ARguments
of Knowledge), proof sizes would be under 300 bytes at 128 bits of
security on megabytes of record data, for natural checks such as
quotas being respected, periodicity of certain types of logs, records
being signed off by appropriate staff, or consistency between dif-
ferent parts of logged data. For [7], proof verification time is under
5ms regardless of the original program’s running time. Each zk-
SNARK would attest to the output (i.e., 0 or 1) of a specific predicate
p evaluated on the input data (i.e., records) D. We discuss efficiency
considerations in more detail shortly.

Keeping SNARK sizes small. Existing SNARK constructions work
by converting a program to a circuit, and then generating a SNARK
for the circuit. Since circuit size grows with the size of input data,
the input data size can influence the succinctness of the proof and
the efficiency of proof generation. Using the implementation and
parameter settings of [7], megabytes of record data can be directly
processed to yield proofs under 300 bytes at 128 bits of security. We
believe this would be sufficient for many applications provided that
organizations keep frugal plain-text logs of important records.15
For cases when it is essential to process larger amounts of data in a
single transaction, the recursive proof composition technique of [9]
could be used to keep the proofs succinct (though proof generation
time would grow).

Another factor that influences proof size and generation time is
the complexity of the (circuit representation of the) predicate itself.
For natural predicates such as quotas being respected, periodicity of
certain types of logs, records being signed off by appropriate staff,
or consistency between different parts of logged data, the circuit
complexity can be linear in the data size (with small constants16),
provided that “circuit-friendly” cryptographic primitives are used.
Circuit-friendly constructions of collision-resistant hash functions
are given by [1, 11] (and previously used in the context of SNARKs

15As opposed, for example, to storing all of their employees’ HTML emails and word-
processed reports, etc. The latter would seem to be an excess in many cases anyway,
and potentially also disadvantageous as later references to the recorded data might
have to search for a needle in a haystack.
16E.g., respecting quotas could be represented by “threshold” type predicates that
would require just one gate per data bit; and using hash-and-sign with circuit-friendly
signatures, signature verifications could be done with tens of gates per bit.

9

by [5]), and circuit-friendly constructions of a number of crypto-
graphic primitives, including signature schemes, are given by [15].
Though we believe it likely that many natural predicates for rou-
tine audits would be relatively simple, we remark that in principle,
our system would not be limited to such simple checks. Arbitrar-
ily complex checks – described as predicates upon the committed
data – could be performed, using recursive proof composition (as
mentioned above) if necessary.

Finally, we note that [7] constructs preprocessing zk-SNARKs,
in which the statement to be proven (or more precisely, the lan-
guage to be attested to) must be known during the setup phase, and
parameters established during the setup depend on the statement.
This is compatible with our setting because we can consider the
predicate to be an input to the statement to be proven, together
with the data commitment. In the case of secret law, the input is
just a commitment to the predicate, and the actual predicate serves
as part of the witness.

Bitcoin’s OP_RETURN transaction only holds up to 80 bytes,
so the Bitcoin protocol could not be used unchanged for built-in
audits. A factor of three or four increase in the data storage of
an OP_RETURN transaction would suffice to support a SNARK-
based audit scheme alongside our basic record-keeping scheme.
The last increase of the OP_RETURN storage capacity was in late
2015 (Bitcoin Core 0.11.x), when it increased two-fold from 40 to
80 bytes. However, the Ethereum blockchain inherently supports
storage of larger amounts of data, and we moreover suggest the
use of Ethereum with our extended record-keeping scheme due
to its more versatile scripting language, which can be useful for
additional features such as pricing schemes, as discussed later.

SNARK setup. All existing zk-SNARK constructions require some
form of trusted setup, either in the form of a structured common
reference string, or a common random string. The more efficient
constructions, such as [7], rely on a common reference string.17
The common reference string can be generated using an efficient
MPC protocol between a number of carefully chosen “trustees,”
and will be secure as long as at least one trustee is honest (and
not compromised) [4]. Exactly such a trusted setup based on MPC
was run in order to launch Zcash, as documented by [27]. Notably,
even if the setup is compromised, it is possible to ensure that only
soundness is damaged (i.e., it may be possible to generate proofs of
false statements), but secrecy of data is still preserved [24].

Perfect secrecy. While many zk-SNARK descriptions in the lit-
erature refer to statistical zero knowledge, existing constructions
achieve perfect zero knowledge at the cost of a negligible error
probability [3, 6]. In our setting, this ensures perfect (information-
theoretic) secrecy of committed data.

3.3.2 Putting a price on records. Recall that transactions are
usually accompanied by a transaction fee that is transferred to the
party who mines the block containing the transaction in question.
This means that there is a small cost associated with adding each
record transaction to the blockchain. We propose two alternative
17We remark that the very recent zk-SNARK construction of [2] could be considered
preferable in some respects, as it relies on the weaker assumption of a common random
string andworks in the random oracle model without knowledge assumptions (whereas
[7] requires a knowledge-of-exponent assumption). However, the proof sizes in [2]
are orders of magnitude larger than those in [7].

pricing schemes which could be useful in the context of record-
keeping: a “free” scheme – for use when it is in the public interest
to remove the burden of paying fees for record transactions – and
a “paid” scheme implementing the pricing schemes discussed in
Section 1, using zk-SNARKs.

(Almost) free record transactions. If it were determined to be in
the public interest to remove the burden of paying fees for record
transactions, then adding record transactions to the blockchain
could be made (almost) “free” in at least a couple of different ways,
as described below.
• Fee waivers: If the benefit were universally deemed to be
worthwhile by miners, then miners could simply agree to
use mining software that favors record transactions, instead
of (roughly) prioritizing by highest transaction fees, as is
currently the norm. Note that this system could not be taken
advantage of by parties interested in performing monetary
transactions for lower fees, since a record transaction (or
Bitcoin’s OP_RETURN transaction) does not allow for mon-
etary transfer.18 However, since a truly free scheme would
be open season for denial-of-service attacks, we do suggest
imposing a nominal fee that is much smaller than the fee
for a regular transaction. (Note that a single satoshi – the
smallest transferrable denomination of Bitcoin – is worth
only a few thousandths of a US cent, at the time of writing.)
• Fee subsidies: The simple fee-waiving scheme described above
is arguably “unfair” to miners, as they have to shoulder the
cost in lost transaction fees, whereas the benefit of the record-
keeping system applies to the whole population (i.e., not just
miners). An alternative scheme that addresses this issue
would be to have the transaction fees of record transactions
be subsidized by the public, whether that be all members
of the blockchain network, or all taxpayers in a jurisdic-
tion. In the former case, a candidate scheme would be that
a small fraction19 of all transaction fees of regular trans-
actions are set aside to be used for record transaction fees.
In the latter case, a special account would be maintained
by the tax authorities and funded by taxpayer money allo-
cated for the purpose of subsidizing record transaction fees.
Given a sufficiently rich scripting language for transactions,
such subsidies could be automatically implemented through
scripts.

Paid record transactions. Taking a different perspective, we be-
lieve there are many situations where it would be of public benefit
for record-keepers to pay fees for logging their records. In combi-
nation with the secrecy-preserving audits of Section 3.3, fees could
be charged based on specific properties of the committed records.
• Fines: Fines for (minor) violations of regulations could be
automatically imposed as follows: either the record-keeping
organization must either post evidence (i.e., a SNARK) show-
ing that their record complies with a specific regulation, or

18More precisely: OP_RETURN allows for the transaction creator to “burn” money
(i.e., render it unspendable) and to pay a transaction fee, but not to transfer money to
recipients of his choice.
19E.g., 1%; in practice, the fraction would depend on the rate of transactions processed
by the currency.

10

accompany the record transaction with a monetary transfer
of a specified amount.
• Routine fees: Moreover, it would be possible to implement
a versatile system of fees based on arbitrary properties of
committed records. For example, a local police department
might be required to pay some fees depending on how much
surveillance technology they deploy (e.g., over the course of
a month), a quantity that should be logged in their records.

A way to implement a fee scheme, like the ones described above,
would be for miners to routinely check the SNARK attached to a
record transaction and only accept the transaction into the blockchain
if the appropriate fee is attached. Instead of simply attesting to the
binary output of a predicate on the committed data, the SNARK
would attest that a particular fee v is the correct output of a fee pro-
gram P evaluated on the input data D. Natural fee schemes which
depend on adherence to certain thresholds or count the number of
records of a particular type (e.g., measuring resource usage) would,
as discussed in the previous subsection, have relatively efficient
circuit representations allowing for succinct proofs by direct appli-
cation of [7] on megabytes of data.

Note that with a small modification to the blockchain protocol,
no real trust assumption need be placed on the miners: if a care-
less or malicious miner includes an invalid record transaction in
the blockchain, then this can be detected by any member of the
network by checking the corresponding SNARK (recall that it is
publicly verifiable), and the modified blockchain protocol dictates
that invalid transactions be ignored. Another variant protocol could
furthermore impose a monetary penalty on miners who include
invalid transactions in their block (e.g., by taking away their mining
reward), thus incentivizing miners to perform the required checks
and refrain from polluting the blockchain with invalid transaction
that will end up being ignored. We refer to [18] for technical de-
tails of how such penalties could be implemented, as they define a
“penalty transaction” that can be repurposed for our setting.

To whom are the fees paid? The traditional answer would be: to
the appropriate governmental or regulatory agency. In the setting
of blockchains, the fees could also be distributed among (an appro-
priate subset of) the members of the blockchain network, or given
back to miners. We suggest that such systems could be impactful
in emphasizing direct accountability. For instance, returning to
the example of the local police department which is charged for
the amount of surveillance technology they use: the fees could be
directly shared among all members of the locality who register a
blockchain payment address in a local registry. If the registry itself
were maintained on the blockchain,20 then the distribution of fees
could again happen automatically via scripts.

3.3.3 Instantiation with Ethereum (or Zcash). Ethereum trans-
actions can store larger amounts of data than Bitcoin transactions,
and in particular, fit the zk-SNARKs required for our full record-
keeping scheme. Ethereum script is Turing-complete, so can be used
to implement the automatic payment schemes discussed above.

20E.g., a local resident could register their payment address by having the mayor’s
office digitally sign it, and post the payment address and signature on the blockchain
in a special “registration transaction”. This would be publicly verifiable using the
verifiation key of the mayor’s office.

In specific cases where it is required to implement secret law
together with secret pricing schemes where the fee amounts cannot
be revealed, one would need an anonymous cryptocurrency (such
as Zcash). Unfortunately, Zcash transactions and scripting currently
resemble Bitcoin’s, and thus would not be suitable for deploying
our full record-keeping scheme. A hypothetical extension of Zcash
including more expressive scripting and transactions with enough
data storage to fit zk-SNARKs would support our full scheme.

4 ACKNOWLEDGEMENTS
We are grateful for insightful and helpful conversations with Oded
Goldreich, Mark Moir, Daniel Weitzner and Jonathan Frankle. We
also thank Madars Virza for useful discussions about zk-SNARKs.

This research was supported by the following grants: NSF MACS
(CNS-1413920), DARPA IBM (W911NF-15-C-0236), and SIMONS
Investigator Award Agreement Dated June 5th, 2012.

REFERENCES
[1] Miklós Ajtai. 1996. Generating Hard Instances of Lattice Problems (Extended

Abstract). In Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, Gary L.
Miller (Ed.). ACM, 99–108. https://doi.org/10.1145/237814.237838

[2] Eli Ben-Sasson, Iddo Bentov, Alessandro Chiesa, Ariel Gabizon, Daniel Genkin,
Matan Hamilis, Evgenya Pergament, Michael Riabzev, Mark Silberstein, Eran
Tromer, and Madars Virza. 2016. Computational integrity with a public random
string from quasi-linear PCPs. IACR Cryptology ePrint Archive 2016 (2016), 646.
http://eprint.iacr.org/2016/646

[3] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anonymous
Payments from Bitcoin. In 2014 IEEE Symposium on Security and Privacy, SP 2014,
Berkeley, CA, USA, May 18-21, 2014. IEEE Computer Society, 459–474. https:
//doi.org/10.1109/SP.2014.36

[4] Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and Madars
Virza. 2015. Secure Sampling of Public Parameters for Succinct Zero Knowledge
Proofs. In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA,
USA, May 17-21, 2015. IEEE Computer Society, 287–304. https://doi.org/10.1109/
SP.2015.25

[5] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, andMadars Virza. 2014. Scalable
Zero Knowledge via Cycles of Elliptic Curves. InAdvances in Cryptology - CRYPTO
2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21,
2014, Proceedings, Part II (Lecture Notes in Computer Science), Juan A. Garay and
Rosario Gennaro (Eds.), Vol. 8617. Springer, 276–294. https://doi.org/10.1007/
978-3-662-44381-1_16

[6] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, andMadars Virza. 2014. Scalable
Zero Knowledge via Cycles of Elliptic Curves. IACR Cryptology ePrint Archive
2014 (2014), 595. http://eprint.iacr.org/2014/595

[7] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. 2014. Suc-
cinct Non-Interactive Zero Knowledge for a von Neumann Architecture. In
23rd USENIX Security Symposium (USENIX Security 14). USENIX Association,
San Diego, CA, 781–796. https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/ben-sasson

[8] Dan Boneh andMoni Naor. 2000. Timed Commitments. InAdvances in Cryptology
- CRYPTO 2000, 20th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 20-24, 2000, Proceedings (Lecture Notes in Computer Sci-
ence), Mihir Bellare (Ed.), Vol. 1880. Springer, 236–254. https://doi.org/10.1007/
3-540-44598-6_15

[9] Alessandro Chiesa, Eran Tromer, and Madars Virza. 2015. Cluster Computing
in Zero Knowledge. In Advances in Cryptology - EUROCRYPT 2015 - 34th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II (Lecture Notes in
Computer Science), Elisabeth Oswald and Marc Fischlin (Eds.), Vol. 9057. Springer,
371–403. https://doi.org/10.1007/978-3-662-46803-6_13

[10] Adán Sánchez de Pedro Crespo and Luis Ivan Cuende García. 2016. Stampery
Blockchain Timestamping Architecture (BTA). (2016). Available online: https:
//s3.amazonaws.com/stampery-cdn/docs/Stampery-BTA-v5-whitepaper.pdf.

[11] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. 1996. Collision-Free Hashing
from Lattice Problems. Electronic Colloquium on Computational Complexity
(ECCC) 3, 42 (1996). http://eccc.hpi-web.de/eccc-reports/1996/TR96-042/index.
html

[12] Shafi Goldwasser and Sunoo Park. 2017. Public Accountability vs. Secret Laws:
Can They Coexist?: A Cryptographic Proposal. In Proceedings of the 2017 on

11

Workshop on Privacy in the Electronic Society, Dallas, TX, USA, October 30 - No-
vember 3, 2017, Bhavani M. Thuraisingham and Adam J. Lee (Eds.). ACM, 99–110.
https://doi.org/10.1145/3139550.3139565

[13] House Energy and Commerce Committee. 2016. Deciphering the De-
bate Over Encryption: Industry and Law Enforcement Perspectives. (April
2016). https://energycommerce.house.gov/hearings-and-votes/hearings/
deciphering-debate-over-encryption-industry-and-law-enforcement.

[14] Dia Kayyali. 2014. What You Need to Know About the FISA Court – and How
it Needs to Change. (August 2014). https://www.eff.org/deeplinks/2014/08/
what-you-need-know-about-fisa-court-and-how-it-needs-change.

[15] Ahmed E. Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, Hubert Chan, Charalam-
pos Papamanthou, Rafael Pass, Abhi Shelat, and Elaine Shi. 2015. How to Use
SNARKs in Universally Composable Protocols. IACR Cryptology ePrint Archive
2015 (2015), 1093. http://eprint.iacr.org/2015/1093

[16] William Li, Pablo Azar, David Larochelle, Phil Hill, and AndrewW. Lo. 2015. Law
Is Code: A Software Engineering Approach to Analyzing the United States Code.
Journal of Business and Technology Law 10 (2015). Issue 2.

[17] Eric Lichtblau. 2013. In Secret, Court Vastly Broadens Pow-
ers of N.S.A. (2013). http://www.nytimes.com/2013/07/07/us/
in-secret-court-vastly-broadens-powers-of-nsa.html.

[18] Sunoo Park, Albert Kwon, Joël Alwen, Georg Fuchsbauer, Peter Gaži, and
Krzysztof Pietrzak. 2015. SpaceMint: A Cryptocurrency Based on Proofs of
Space. Cryptology ePrint Archive, Report 2015/528. (2015). http://eprint.iacr.org/
2015/528.

[19] Torben P. Pedersen. 1991. Non-Interactive and Information-Theoretic Secure
Verifiable Secret Sharing. In Advances in Cryptology - CRYPTO ’91, 11th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 11-15,
1991, Proceedings (Lecture Notes in Computer Science), Joan Feigenbaum (Ed.),
Vol. 576. Springer, 129–140. https://doi.org/10.1007/3-540-46766-1_9

[20] Dakota S. Rudesill. 2015. Coming to Terms with Secret Law. (November 2015).
Harvard National Security Journal 241 (2015); Ohio State Public Law Working
Paper No. 321. Available at SSRN: https://ssrn.com/abstract=2687223.

[21] David A. Schulz, Hannah Bloch-Wehba, John Langford, Patrick Toomey,
Brett Max Kaufman, Alex Abdo, Arthur B. Spitzer, and Scott Michelman. 2016.
Motion of the American Civil Liberties Union for the Release of Court Records.
(October 2016). Original document at: https://www.aclu.org/legal-document/
aclu-motion-filed-foreign-intelligence-surveillance-court-fisc-requesting-release.
Associated blog post at: https://www.aclu.org/blog/speak-freely/
constitution-leaves-no-room-secret-law.

[22] Edward Snowden. 2013. Snowden Surveillance Archive. (2013). Archive of
documents leaked by Edward Snowden, maintained by Canadian Journalists
for Free Expression and the Politics of Surveillance Project at the Faculty of
Information at the University of Toronto. Available at: https://snowdenarchive.
cjfe.org.

[23] Peter Todd. 2016. Preventing Consensus Fraud with Commitments
and Single-Use-Seals. (December 2016). https://petertodd.org/2016/
commitments-and-single-use-seals.

[24] Madars Virza. 2016. (December 2016). Private communication.
[25] Madars Virza. 2017. (November 2017). Private communication.
[26] Daniel J. Weitzner. 2016. Testimony of Daniel J. Weitzner. (April

2016). http://docs.house.gov/meetings/IF/IF02/20160419/104812/
HHRG-114-IF02-Wstate-WeitznerD-20160419.pdf.

[27] Zooko Wilcox. 2016. The Design of the Ceremony. (October 2016). https:
//z.cash/blog/the-design-of-the-ceremony.html.

A MORE DISCUSSION OF RELATION TO
EXISTING SERVICES

A number of websites offer a timestamping service on the Bitcoin
blockchain (and some also on other blockchains, notably that of
Ethereum), wherein users submit documents of their choice to be
timestamped, upon which the service creates a transaction contain-
ing the hash of the document and adds it to the Bitcoin blockchain.
Some of these services21 embed the hash in the transaction by
setting it as the “recipient address” of a tiny monetary transfer.
However, repurposing the recipient field in this way is frowned
21E.g., BitcoinProof, OriginStamp, SatoshiProof, among others.

upon because it bloats the unspent transaction output (UTXO) data-
base with bogus addresses; it is preferable to use a special-purpose
transaction type which can store arbitrary data without “pretend-
ing” to be a monetary transfer. Bitcoin has a special transaction
type called OP_RETURN which can serve this purpose. Numerous
existing services22 use Bitcoin’s OP_RETURN transaction to store
hashes of data on the blockchain. Moreover, many of these services
use Merkle trees to generate a single succinct hash of large quan-
tities of data, often aggregated across different users:23 this is an
important measure given the limited throughput of the blockchain.
Merkle trees are a basic and versatile cryptographic tool that will
be an important in our constructions too.

While many of the existing services offer a simple service al-
lowing users to timestamp any data of their choice, some other
services provide more complex frameworks for timestamped data
management with the aim of selling their services as a generic24
or special-purpose25 data management solution to organizations.
Features marketed include “proof of existence”; assurance of data
“privacy”, “integrity”, “attribution”, and “auditability”; and “scalabil-
ity” to large volumes of data. We are not aware of existing proposals
which put forward an inter-organizational regulatory framework
(like our work), instead of targeting data management within or-
ganizations as do the above examples. The desiderata for the two
cases overlap but have important differences: we prioritize the de-
sign of a framework that can be compatible with the interests of
all parties involved, and incorporate the regulatory framework as
part of the protocol, which we then prove satisfies well-motivated
security definitions. Moreover, latency is not a limiting concern
for our setting as we consider the aggregation of records over long
periods of time, whereas many of the data management offerings
consider it essential to have latency much faster than the growth
rate of the blockchain [10], and that is one of the main technical
challenges (perhaps the main one) that their systems aim to address.

In contrast, the primary concern in our setting (unaddressed
by existing solutions) public auditability of secret information to
enable proof of compliance with arbitrary regulations, even in cases
where the regulations themselves are kept secret. To our knowledge,
the auditability claimed by existing systems refers only to audits
where the underlying data is revealed in an audit; we are not aware
of any scheme that targets privacy-preserving, publicly verifiable
audits, which constitute an integral feature of our system.26

22E.g., Bitproof, Eternity Wall, Factom, OpenTimestamps, Stampery, and others.
23We remark that sharing a single Merkle hash across multiple users can violate data
privacy if done naively. This can be acceptable in cases where the timestamped data is
intended to be public; and in other cases, some services appear to address the problem
by encrypting the data before hashing it.
24E.g., Factom, Stampery, Tierion, among others.
25E.g., Dipl.me specializes in educational diplomas.
26We note that there do exist schemes that involve proving properties of certain secret
data for specific applications, such as anonymous currency transfer (Zcash [3]) or
preventing consensus fraud ([23]). These address substantially different use cases from
our scheme, and moreover, they do not consider settings where the statement to be
proven is itself secret.

12

