
EFFICIENT FULLY HOMOMORPHIC ENCRYPTION SCHEME

SHUHONG GAO

Abstract. Since Gentry discovered in 2009 the first fully homomorphic encryption

scheme, the last few years have witnessed dramatic progress on designing more effi-

cient homomorphic encryption schemes, and some of them have been implemented for
applications. The main bottlenecks are in bootstrapping and large cipher expansion (the

ratio of the size of ciphertexts to that of messages). Ducas and Micciancio (2015) show

that homomorphic computation of one bit operation on LWE ciphers can be done in less
than a second, which is then reduced by Chillotti et al. (2016, 2017) to 13ms. This paper

presents a compact fully homomorphic encryption scheme that has the following features:

(a) its cipher expansion is 6 with private-key encryption and 20 with public-key encryp-
tion; (b) all ciphertexts after any number (unbounded) of homomorphic bit operations

have the same size and are always valid with the same error size; (c) its security is based
on the LWE and RLWE problems (with binary secret keys) and the cost of breaking the

scheme by the current approaches is at least 2160 bit operations. The scheme protects

function privacy and provides a simple solution for secure two-party computation and
zero knowledge proof of any language in NP.

Keywords. Fully homomorphic encryption, data security, lattices, learning with

errors (LWE) problem, ring learning with errors (RLWE) problem, NP problems, secure

two-party computation, zero knowledge proof, fast Fourier transforms (FFT).

1. Introduction

As cloud computing, internet of things (IoT) and blockchain technology become increas-
ingly prevalent, there is an urgent need to protect the privacy of massive volumes of sensitive
data collected or stored in computer networks or cloud servers, as many of the networks
or servers can be vulnerable to external and internal threats such as malicious hackers or
curious insiders. In the case of blockchain technology, it is the privacy issue that prevents
widespread enterprise adoption of blockchains, despite the transparency and immutability
that the technology offers. The traditional encryption schemes can provide privacy protec-
tion of data but do not allow for the performance of analytics on encrypted data without
decryption first. The Holy-Grail of cryptography is to have a practical encryption scheme
that has the following properties:

(a) encrypted data can be stored anywhere (e.g. untrusted clouds, blockchains, or per-
sonal computers at home or at a hacker’s control);

(b) any third party (including cloud servers, hackers, miners or insiders) can perform
searching or analytics of an arbitrary function on the encrypted data to get search
results in encrypted form, however, only the data owner (who has the secret decoding
key) can decode the encrypted search results;

Date: May 21, 2018.
The work presented in this paper was partially supported by the National Science Foundation under

grants CCF-1407623, DMS-1403062 and DMS-1547399. Thanks go to the Center of Applied Mathematics,

Tianjin University, China, for hosting the author in Summer 2017, and to American Institute of Mathematics
(AIM), San Jose, for hosting the author in several SQuaRE meetings in the last few years with Qi Cheng,

J. Maurice Rojas and Daqing Wan.

1

2 Shuhong Gao

(c) an adversary can access all the encrypted data and use all the available computing
powers in the world but still can not compute any information of the original data
in reasonable time (say 100 years).

An encryption scheme having all the three properties is called a fully homomorphic en-
cryption (FHE) scheme. If (b) is satisfied only for a class of searches (but not all possible
searches), then it is called a somewhat homomorphic encryption (SHE) scheme. In compar-
ison, traditional cryptosystems (e.g. RSA, AES, elliptic curve cryptosystems, etc [55]) have
properties (a) and (c), but not (b) which is the most challenging part of designing an FHE
scheme.

The idea of homomorphic encryption was first proposed in 1978 by Rivest, Adleman
and Dertouzos [99]. Only in 2009 was the breakthrough discovery made by Gentry [60] for
the first fully homomorphic encryption scheme. His work has inspired an explosive surge
of research on homomorphic encryption schemes, and the design blueprint of his original
scheme has been serving as a prototype for designing more efficient schemes since then. In
Gentry’s scheme, random noise is added to ciphertexts (for security reason), the noise grows
quickly when one performs homomorphic operations on the ciphertexts, and the size of the
new ciphertexts may grow as well. Only a limited number of homomorphic operations can
be applied before the noise gets too big to destroy the message encoded in the ciphertexts.
Gentry proposes the novel idea of performing homomorphic decoding and bootstrapping to
reduce the noise size, then more homomorphic operations can be performed, and continue
in this fashion (of bootstrapping whenever needed), any number of homomorphic operations
can be performed as needed for an arbitrary search function on the encrypted ciphertexts,
hence yielding a fully homomorphic encryption scheme.

To design a practical homomorphic encryption scheme, one has to solve three problems:

(i) Cipher expansion problem. The size ratio of the ciphertexts vs the original
data must be small so that communications and storage are not too expensive,
and the size of new ciphertexts obtained under homomorphic operations should be
independent of the complexity of every search function;

(ii) Time efficiency problem. The cost of homomorphic computing of an arbitrary
function f should be proportional to the complexity of f itself, and the overhead
factor should only depend on the security parameter λ;

(iii) Security problem. The security of the scheme must be based on hard mathe-
matical problems, and for a scheme deigned for a given security parameter λ (say
λ = 120, 160, or 200), the cost of breaking the scheme should be at least 2λ (in bit
operations).

On the security problem, Regev [97, 98] proved in 2005 an important theorem on the hard-
ness of the learning with error (LWE) problem. Thanks to Regev’s work and [25, 88],
homomorphic encryption schemes based on the LWE and RLWE problems now have a solid
security foundation.

In the last nine years or so, dramatic progress on the time efficiency problem has been
made by Gentry and his colleagues and many other researchers around the world. In fact,
three generations of homomorphic encryption schemes were developed, each of them has its
advantages and disadvantages. The first generation is based on ideal lattices and approx-
imate gcd problem of integers, see [60, 48, 101, 61, 62, 43, 63, 64, 38, 102]. The second
generation is based on LWE and RLWE problems, and several novel techniques are de-
veloped, including modulus reduction, key switch and re-linearization, for mitigating noise
growth; see [21, 27, 26, 22, 23, 54, 73]. The BGV scheme [22] is implemented in HElib
[72], and the FV scheme [54] is implemented in SEAL [33]. There is also another scheme
combining the idea from NTRU [75] and the RLWE problem, see [103, 86, 20]. The third
generation refers to the GSW scheme [65, 28] which is based on RLWE and approximate

Homomorphic Encryption Scheme 3

eigenvalues; also a novel technique called flattening is invented to better control noise growth.
Though bootstrapping is still prohibitively slow, these schemes can be implemented as lev-
eled schemes to compute functions that have designed depth of multiplications, and they
can handle patches of many bits simultaneously. The SEAL implementation [33] is already
being tested for private genome analysis [78]. In all these schemes, however, the ciphertext
expansion is still too large, ranging from a few hundreds to tens of thousands (depending
on the designed depth).

On bootstrapping, a recent breakthrough is made by Ducas and Micciancio (2015 [51]),
who use the GSW scheme [65] and some novel homomorphic embedding to design a boot-
strapping procedure that can compute one homomorphic bit operation in less than a second.
This scheme is then improved by Chillotti et al. (2016 [39], 2017[40]), who reduce the boot-
strapping time down to 13ms (for one homomorphic bit operation). On cipher expansion,
it is stated in [39] that their ciphertext size is still 400,000 times that of the original data,
and in [40], this expansion factor is claimed to be reduced to 64 (for message block length
500, but no detail is given).

Our contribution. In this paper, we present a compact FHE scheme that has the
following features:

(1) its cipher expansion is 6 under private-key encryption and 10+log2(n) under public-
key encryption where n (a power of 2) denotes the message block length, all cipher-
texts are computed modulo r where r = 16n, and the noise size is bounded by
n− 1;

(2) its bootstrapping procedure needs only a bootstrapping key and does the following:
for any two LWE ciphers Es(x1) and Es(x2) ∈ Znr × Zr with noise size bounded by
n− 1 where x1, x2 ∈ {0, 1}, it produces three random LWE ciphers:

Es(x1 ∧ x2), Es(x1 ∨ x2), Es(x1 ⊕ x2) ∈ Znr × Zr
with noise size still bounded by n− 1 (no failure at all), and the total time for the
bootstrapping procedure (for n = 512) is estimated to be about 130ms, namely 10
times that of [40];

(3) its security is based on the LWE and RLWE problems [97, 98, 88] (with binary
secret keys) and, for any message block length n ≥ 512, the cost of breaking the
scheme by the current approaches is at least 2160 bit operations.

Note that, in the bootstrapping of [51, 39, 40], a new LWE cipher produced by boot-
strapping may be invalid, with probability about 2−33 (for n = 500). That is a very small
probability, so useful for computing many functions, however, it can not be applied to func-
tions that require more than 233 bit operations (unless increasing n). In our scheme, the
LWE ciphers after bootstrapping are always in Znr × Zr with error size bounded by n − 1,
hence always valid (no failure at all). This means that one can perform bootstrapping any
number (unbounded) of times and all the new LWE ciphers are still in Znr × Zr with the
same error size n − 1. Due to this compactness, the computed ciphertexts do not leak
any information on which function is computed, hence the scheme automatically provides
function privacy.

Another important feature of our FHE scheme is that the ciphertexts resulted from
homomorphic computing are independent random. This is extremely important in designing
protocols for secure multi-party computation and for zero knowledge proof. We shall give
more details about this in Section 6.

Organization of the paper. In Section 2 we present notations, basic concepts and
techniques. We describe the LWE and RLWE problems and the related ciphers. We also
present modulus reduction, randomized flattening, external product, etc., which have ap-
peared in the literature in one form or another, but we present them in an exact form that
is important for our scheme. In Section 3, we present our bootstrapping procedure, which is

4 Shuhong Gao

modified from those of [51, 39]. In Section 4, we present our encryption schemes and show
how a pseudocode for a general function f can be computed homomorphically, particularly
how to handle ”if-statement”, ”for-loop” and ”while-loop”. We also show how to pack LWE
ciphers into RLWE ciphers, hence reduce the ciphertext size of the final result. In Section
5, we present security analysis of our scheme, and in Section 6, we mention some use cases,
including secure two-party computation and zero knowledge proof of any language in NP.

2. Basic concepts and techniques

2.1. Cyclotomic rings and norms. Let q be a positive integer and Zq = Z/qZ, the ring
of integers modulo q. For an integer n ≥ 1, let

Rn = R[x]/(xn + 1), Rn = Z[x]/(xn + 1), Rn,q = Z[x]/(xn + 1, q)

where R denotes the field of real numbers and (xn+1, q) denotes the ideal of Z[x] generated
by xn + 1 and q, namely

(xn + 1, q) = {u(x)(xn + 1) + v(x)q : u(x), v(x) ∈ Z[x]}.

For any polynomial f(x) =
∑d
i=0 fix

i ∈ R[x] and for ` ≥ 1, we define the `-norm and
∞-norm as

‖f(x)‖` =

(
d∑
i=0

|fi|`
)1/`

, ‖f(x)‖∞ = max
0≤i≤d

|fi|.

We shall use the cases when ` = 1, 2 and ∞. However, for f(x) =
∑d
i=0 fix

i ∈ Rn, we
define its norm as follows. First find the unique h(x) ∈ R[x] so that deg g(x) < n and
f(x) ≡ h(x) mod (xn + 1) (i.e. h(x) is the remainder of f(x) modulo xn + 1), then define

‖f(x)‖ = ‖h(x)‖,

where the norm || · || stands for any one of the `-norm or ∞-norm (similarly below). For
example, in R4 = R[x]/(x4 + 1), we have ‖10x4 + x+ 8‖∞ = ‖x− 2‖∞ = 2 and

‖(x− 1)4‖1 = ‖x4 − 4x3 + 6x2 − 4x+ 1‖1 = ‖ − 4x3 + 6x2 − 4x‖1 = 14.

For any real number c and for any u(x), v(x) ∈ Rn, we have ‖cu(x)‖ = |c|‖u(x)‖, and if
u(x) ≡ v(x) mod (xn + 1) then ‖u(x)‖ = ‖v(x)‖. Also, the usual triangle inequality still
holds, that is,

‖u(x) + v(x)‖ ≤ ‖u(x)‖+ ‖v(x)‖.

For m ≥ 1, elements in Rmn are viewed as row vectors of length m, similarly for Rmn and
Rmn,q. For u = (u1(x), . . . , um(x)) ∈ Rmn , define

‖u‖p =

(
m∑
i=1

‖ui(x)‖pp

)1/p

, ‖u‖∞ = max
1≤i≤m

‖ui(x)‖∞.

Also, for any real number z, the function bze denotes the integer closest to z. For example,
b1.6e = 2, b−0.4e = 0, however, b−1.5e = −2 or −1, either is fine. For any vector v ∈ Rn
(or any polynomial v ∈ Rn with degree < n), bve is the vector (or the polynomial) when
b·e is applied to each entry (or each coefficient) of v.

Homomorphic Encryption Scheme 5

2.2. Probabilistic distributions. We shall use several probabilistic distributions. A ran-
dom variable on Zq is uniform random if it takes each element of Zq with equal probability,
namely 1/q, and a random variable X on Znq or Rn,q is uniform random if each component
(or each coefficient) is independent and uniform random on Zq. For any real number b > 0,
by b-bounded uniform random variable X on Z, we mean X is uniform random on the
integers i with |i| ≤ b, and X never takes any other value. A random variable X on R is
called Gaussian with parameter α > 0 if its density function is

ρα(x) =
1

α
exp(−π(x/α)2), x ∈ R.

A Gaussian random variable with parameter α has expected value 0 and standard deviation
α/
√

2π. A random variable X over R is called sub-Gaussian with parameter α if E(X) = 0
and its moment generating function satisfies

E[exp(2πtX)] ≤ exp(πα2t2), t ∈ R.
If X is sub-Gaussian with parameter α, then its tails are dominated by a Gaussian of
parameter α, i.e.,

Prob(|X| ≥ t) ≤ 2 exp(−π(t/α)2), for all t ≥ 0.

A b-bounded random variable is always sub-Gaussian with parameter b
√

2π, a sum of inde-
pendent sub-Gaussian random variables on R is still sub-Gaussian. We should note that a
sum of independent sub-Gaussian random variables on Zq will be nearly uniform random
when the number of variables is large enough; see [36].

Let q > 1 be any integer. Each probability distribution on R induces a discretized distri-
bution on Zq as follows. Pick a random number z ∈ R according to the given distribution,
compute y := bqze mod q so that y is between −q/2 and q/2, and return y. For example,
when q = 11, bq · 1.6e = b17.6e = 18 ≡ −4 mod q, however bq · (−1.5)e = b−16.5e = −17
or −16 (then reduce by q), either is fine. We shall use discretized Gaussian distributions on
Zq. For a Gaussian random variable X with parameter α, its discretized Gaussian over Zq
is sub-Gaussian with parameter cαq for some small constant c ≥ 1.

2.3. LWE problem, LWE ciphers, and modulus reduction. Regev (2005 [97, 98])
introduced the learning with error (LWE) problem over Zq. Let χ be a probabilistic distri-
bution on Z, and let s ∈ Znq be an arbitrary vector (corresponding to a secret key of a user).
An LWE sample is of the form (a, b) where a ∈ Znq is uniform random and

b = 〈s,a〉+ e mod q

with e ∈ Z being randomly chosen according to the distribution χ. The LWE problem over
Zq is to find s given LWE samples in Znq ×Zq where the number of samples can be as large
as one desires, but should be bounded by a polynomial in n log(q). The decision version of
the LWE problem is to distinguish LWE samples from samples with uniform distribution
on Znq × Zq. We call χ the error distribution of the LWE problem.

Theorem 2.1 (Regev [97, 98]). Suppose the error distribution χ is a discretized Gaussian
distribution on Zq with parameter α > 0 and αq ≥ 2

√
n. Then solving the LWE problem

over Zq is at least as hard as solving some approximate shortest vector problem for lattices
of dimension n (under quantum reduction).

Note that Brakerski et al [25] removed the quantum reduction requirement and proved
that solving n-dimensional LWE problem over Zq is at least as hard as solving a worst-case
lattice problem in dimension

√
n. It is still an open question whether

√
n in the lattice

problem can be replaced by O(n), which is desirable in applications. Also, a binary-LWE
problem over Fq is the LWE-problem over Fq where the secret vector s ∈ Fnq is a vector in
{0, 1}n. Brakerski et al [25] and Micciancio and Peikert [88] proved the binary-LWE problem

6 Shuhong Gao

is also hard. For this reason, many cryptosystems in the literature use binary secret vectors
s, and we shall follow this tradition as well.

This breakthrough result shows that the average complexity of solving LWE problem is
bounded below by the worst-case complexity of lattice problems. Hence LWE problem is
believed to be hard on average, thus forms the security foundation of many post-quantum
cryptosystems (that are secure even if quantum computers can be built). There are two
minor problems in using Gaussian distributions in practice: one is that Gaussian distribution
is relatively expensive to generate (compared to bounded uniform distributions as we use
below); another is that there is a small probability of decoding failure for new ciphers
computed from bootstrapping. In this paper, we present a compact FHE that never have
decoding failure for both fresh and computed ciphertexts.

Error model for the current paper. We shall use bounded uniform distributions for
errors, that is, we fixed some bound τ > 0 and choose e uniform randomly in [−τ, τ]. In our
choice of public keys and bootstrapping key (described later), the τ will be about n, and in
the fresh ciphertexts of the original data, we use τ = n−1. Also, in all the ciphertexts from
our bootstrapping operations or from homomorphic computing of an arbitrary function, the
error size is always bounded by τ = n − 1. Our error width 2(n − 1) is much bigger than
those used in all the proposed homomorphic schemes in the current literature, and is also
much bigger than 2

√
n as required by Regev’s Theorem above.

Our error distribution is not discretized Gaussian, hence we can not apply Theorem 2.1
directly. However, we argue that our error distribution could be better in the sense that the
LWR problem may be harder. We present two heuristic reasons. First, suppose one uses
a discretize Gaussian Dα,q on Zq with parameter α > 0 so that αq ≈ 2

√
n. Then, for a

random e between −q/2 and q/2 chosen according to Dα,q, the inequality |e| ≤ c
√
n holds

with high probability (for any constant c ≥ 3). Note that all the known attacks on the
LWE problem based on lattice basis reduction become less effective when the error width
increases. Since our schemes use a much bigger error width than 2

√
n, our LWE problem

should not be easier. Secondly, we argue from information theory point of view. Note
that a uniform distribution on [−n, n] has a much higher entropy than that of a discretized
Gaussian on Zq with standard deviation c

√
n where c > 0 is a constant [44]. In computing

b := 〈s,a〉+ e mod q, more information (bits) of 〈s,a〉 is destroyed by e in our case. Hence
it is harder to reconstruct s from a list of samples (a, b) from our error distribution.

Conjecture 2.2. Suppose the error distribution χ in the LWE problem over Zq is τ -bounded
uniform distribution where τ = cn for some constant c > 0. Then solving the LWE problem
over Zq is at least as hard as solving some approximate shortest vector problem for lattices
of dimension n.

We should note that it is shown in [88, 30] that the LWE problem with bounded uniform
distributions for errors is hard when the number of samples is limited (linear in n). However,
the above conjecture is still an open when the number of samples are allowed to be any
polynomial in n.

LWE ciphers. Regev [97, 98] also introduced a cryptosystem based on the LWE problem.
Let s ∈ Znq be a secret key, Dq = bq/4c and 1 ≤ τ < Dq/2. To encrypt a message bit
x ∈ {0, 1}, pick a ∈ Znq uniform randomly and compute

b := 〈s,a〉+ e+ xDq mod q,

where e ∈ [−τ, τ] is uniform random or truncated Gaussian. Then (a, b) is a ciphertext for
x, denoted as

Es(x) = (a, b) ∈ Znq × Zq,
called an LWE cipher of x. Regev originally used D = bq/2c, we use q/4 so that we can
perform homomorphic bit operations on ciphertexts via bootstrapping (see below).

Homomorphic Encryption Scheme 7

To decrypt a ciphertext Es(x) = (a, b), compute

b1 := b− 〈s,a〉 mod q,

where −q/2 < b1 ≤ q/2, and x1 := bb1/Dqe. Then x = x1. The reason is that

b1 ≡ b− 〈s,a〉 ≡ e+ xDq (mod q),

and |e| ≤ τ < Dq/2 implies that −q/2 < e + xDq ≤ q/2, hence b1 = e + xDq (as real
numbers) and b1/Dq = e/Dq + x with |e/Dq| < 1/2.

Modulus reduction. Next we describe how an LWE ciphertext over Zq can be converted
to an LWE ciphertext over Zr where r is much smaller than q. This technique of modulus
reduction is used in [23, 25, 27]. Here we show how precisely the error size changes, depending
only on the entropy (i.e. the bit size) of s.

Lemma 2.3. Let s,a ∈ Znq , e ∈ Z with |e| ≤ τ , x ∈ {0, 1}, Dr = br/4c, and

b ≡ 〈s,a〉+ e+ xDq (mod q).

(a) Suppose τ ≤ q(n− 3)/(2r), q ≥ 4r, and each entry of s is in {0, 1}. Let

b′ = brb/qe, a′ = bra/qe,
computed component wise. Then

b′ ≡ 〈s,a′〉+ e′ + xDr (mod r),

for some e′ ∈ Z with |e′| < n.
(b) Let ` = dlog2 qe and q ≥ 16. Suppose τ ≤ q(n` − 5)/(2r) and s ∈ Znq is arbitrary.

Then there exist s′ ∈ {0, 1}n`, a′ ∈ Zn`r and b′ ∈ Zr so that

b′ ≡ s′(a′)t + e′ + xDr (mod r),

for some e′ ∈ Z with |e′| < n`.

Proof. For part (a), note that

b′ =
rb

q
+ ε0, a′i =

rai
q

+ εi, 1 ≤ i ≤ n,

for some εi ∈ R with |εi| ≤ 1/2 for 0 ≤ i ≤ n. Since b = s at + e+xDq + qy for some integer
y, we have

rb

q
=

n∑
i=1

si
rai
q

+
re

q
+ x

rDq

q
+ ry,

hence

b′ =

n∑
i=1

sia
′
i + xDr + e′ + ry,

where e′ is an integer and

e′ = ε0 −
n∑
i=1

siεi + x

(
rDq

q
−Dr

)
+
re

q
.

We claim that | rDq

q −Dr| < 1. To see this, let q = 4q1+q0 and r = 4r1+r0 where 0 ≤ r0 < 4

and 0 ≤ q0 < 4. Then

rDq

q
−Dr =

(4r1 + r0)q1
4q1 + q0

− r1 =
r1 + r0

4

1 + q0
q1

− r1 =

r0
4 − q0

r1
q1

1 + q0
q1

,

which has absolute value < 1 whenever q1 ≥ 4r1, hence true when q ≥ 4r. As si ∈ {0, 1},
x ∈ {0, 1}, |εi| ≤ 1/2 and |e| ≤ τ ≤ q(n− 5)/(2r), it follows that

|e′| < (n+ 1)
1

2
+ 1 +

rτ

q
≤ n+ 3

2
+
n− 3

2
= n.

8 Shuhong Gao

For part (b), we write each entry of s in binary representation:

si =

`−1∑
j=0

sij2
j ,

where sij ∈ {0, 1} for 1 ≤ i ≤ n and 0 ≤ j ≤ `− 1. Then

〈s,a〉 =

n∑
i=1

siai =

n∑
i=1

`−1∑
j=0

sij(ai2
j).

Apply part (a) to the case with s replaced by s′ = (sij) ∈ {0, 1}n`. This completes the
proof. �

Remarks. (i) In the proof of part (a), one can randomize the rounding so that εi
is random subGaussian; see Lemma 5 in Ducas and Micciancio (2015 [51]). Then the
probability that |ε0 −

∑n
i=1 siεi| ≥ t

√
w + 1 is at most 2 exp(−2t2) where w is the number

of nonzero entries in s. Hence, if τ ≤ 10q
√
n/r, then the probability that |e′| ≥ 20

√
n is at

most 2 exp(−200), which is extremely small. This would allow one to use a small q = O(
√
n)

for encryption, but there would be a very small probability of decoding failure. We shall use
a bigger q = O(n) and make sure that there is no decoding failure at all in our encryption
and bootstrapping schemes, hence allows us to perform any number of homomorphic bit
operations without decoding failure.

(ii) Part (b) and its proof shows that an LWE problem with arbitrary s ∈ Znq can be

reduced to an LWE problem with binary s′ ∈ {0, 1}n` over Zq as well as over Zr for any
r < q. Hence the LWE problem with binary secret is as hard as an arbitrary secret with
dimension reduced by a factor of log2(q). In the following, we shall only use binary s.

2.4. RLWE ciphers. Lyubashevsky, Peikert and Regev (2010 [87]) introduced the ring
learning with error (RLWE) problem in order to get more efficient encryption schemes. Let

Rn = Z[x]/(xn + 1), and Rn,q = Z[x]/(xn + 1, q),

that is, polynomials are computed modulo xn + 1 and all the coefficients modulo q. Each
element of Rn,q (or Rn) is of the form a(x) =

∑n−1
i=0 aix

i, where ai ∈ Z, representing an
n-tuple (a0, a1, . . . , an−1) ∈ Znq (or in Zn). Let s(x) ∈ Rn,q be any secret key. An RLWE

sample is of the form (a(x), b(x)) ∈ R2
n,q where a(x) ∈ Rn,q is uniform random and

b(x) := s(x)a(x) + e(x) mod (xn + 1, q),

where e(x) ∈ Rn with each coefficient small and random (according to certain distribution).
An RLWE sample v ∈ R2

n,q is said to have error size τ if

(1) v(−s(x), 1)t ≡ e(x) (mod (xn + 1, q)),

where e(x) ∈ Rn and ||e(x)||∞ ≤ τ . The RLWE problem over Zq is to find s(x) given many
RLWE samples where each sample is random and independent.

Let m(x) =
∑n−1
i=0 mix

i where mi ∈ {0, 1}, which represents an n-bit message. An RLWE
cipher for m(x) with error size τ is of the form

(2) REs(m(x)) = v +m(x)Dq(0, 1) ∈ R2
n,q

where v ∈ R2
n,q is an RLWE sample with error size τ . Suppose REs(m(x)) = (a(x), b(x)).

Then

b(x)− s(x)a(x) ≡ m(x)Dq + e(x) mod (xn + 1, q),

where e(x) ∈ Rn is random with ||e(x)||∞ ≤ τ . When τ < Dq/2, one can recover m(x) from
b(x)− s(x)a(x), after reduced modulo (xn + 1, q).

Homomorphic Encryption Scheme 9

2.5. Gadget matrix, external product and GSW ciphers. In order to perform ho-
momorphic multiplication, Gentry, Sahai, and Waters (2013 [65]) introduced the idea of
gadget matrix so that new ciphertexts from multiplication of ciphertexts remain the same
size, while previous methods increase the size of new ciphertexts.

Gadget matrix. Let B and ` be positive integers so that B` ≥ q. Let

g = (1, B, . . . , B`−1).

Every element a ∈ Zq can be represented as

a = a0 + a1B + · · ·+ a`−1B
`−1 = (a0, a1, . . . , a`−1)gt

where ai ∈ Z has small size. For example, we can let−B/2 < ai ≤ B/2, then (a0, a1, . . . , a`−1)
is unique. This is good for applications where new ciphertexts from homomorphic comput-
ing do not need to be random. However there are applications (say zero knowledge proof,
see below) where it is important that new ciphertexts are uniformly random (in some sense).
Hence we shall allow |ai| to be as big as 2B. The following lemma is straightforward to
prove.

Lemma 2.4 (Random Flattening). Suppose B` ≥ q and a ∈ Z. For 0 ≤ i ≤ ` − 1, pick
xi ∈ Z with |xi| ≤ 3B/2 uniform randomly and independently, and let

a− (x0 + x1B + · · ·+ x`−1B
`−1) ≡ y0 + y1B + · · ·+ y`−1B

`−1 (mod q),

where |yi| ≤ B/2 for 0 ≤ i ≤ `−1. Set ai = xi+yi for 0 ≤ i ≤ `−1. Then (a0, a1, . . . , a`−1)
is uniform random solution to

a ≡ a0 + a1B + · · ·+ a`−1B
`−1 (mod q),

with |ai| ≤ 2B for 0 ≤ i ≤ `− 1.

We can extend this to any list of elements in Zq. Thus every polynomial a(x) ∈ Rn,q can
be written as

a(x) = a0(x) + a1(x)B + · · ·+ a`−1(x)B`−1 = (a0(x), a1(x), . . . , a`−1(x))gt

where ai(x) ∈ R is independently uniform random with ||ai(x)||∞ ≤ 2B for 0 ≤ i ≤ ` − 1.
Define

G =

(
gt 0
0 gt

)
an (2`)× 2 matrix, called a gadget matrix. Every (a(x), b(x)) ∈ R2

n,q can be written as

(3) (a(x), b(x)) = u(x)G

where u(x) ∈ R2`
n is uniform random with ||u(x)||∞ ≤ 2B. We define

(a(x), b(x)) / G−1 = u(x).

The reader should be warned that G is not a square matrix, so it has no inverse, here we just
use G−1 as an operator that acts from right on (a(x), b(x)), a row vector of two polynomials
with coefficients in Zq (of large size), to get u(x) = (a(x), b(x))/G−1, a random row verctor
of 2` polynomials each with coefficients at most 2B (of small size). This is a nice trick of
trading element size for dimension. For example, when B = 3 and ` = 4, we have

G =

(
1 3 32 33 0 0 0 0
0 0 0 0 1 3 32 33

)t
,

and

(5 + 35x,−14) / G−1 = (−1− x,−1, 1 + x, x, 1, 1, 1,−1) ∈ R8
n.

since 5 = 32 − 3− 1, 35 = 33 + 32 − 1, and −14 = −33 + 32 + 3 + 1. By definition, we have

(4) (v / G−1)G = v, for every v ∈ R2
n,q,

10 Shuhong Gao

which will be crucial in bootstrapping below.
External product. For any row vector v ∈ R2

n,q and any A ∈ R2`×2
n,q (which denotes

(2`)× 2 matrices with entries in Rn,q), their external product is defined as

v �A = (v / G−1)A ∈ R2
n,q,

which is a random vector in R2
n,q, since v / G−1 is a random row vector of length 2` and

A is an (2` × 2) matrix. This definition can be extended to define product of any two
(m`) × m matrices (to get another (m`) × m matrix), as originally defined by Gentry,
Sahai and Waters (2013 [65]). Recently, Chillotti et al (2016 [39, 40]) observed that, for
bootstrapping, it is better to use this external product. From the definition, the external

product is right distributive, that is, for any two matrices A,B ∈ R(2`)×2
n,q , we have

v � (A+B) ≡ v �A+ v �B (mod (xn + 1, q)),

where all three terms use the same v / G−1. However, they are not equal if one computes
each term independently (unless v / G−1 is deterministic). Also, it is not left distributive,
i.e., for two vectors v1,v2 ∈ R2

n,q,

(v1 + v2)�A 6≡ v1 �A+ v2 �A (mod (xn + 1, q)),

in general, since the operator G−1 is not linear when acting on v.
GSW ciphers. Let s(x) =

∑n−1
i=0 six

i, where si ∈ {0, 1}, representing an n-bit secret
key of a user. For any m(x) ∈ Rn (say with small coefficients) , a GSW cipher for m(x)
with error size τ is of the form

(5) GSWs(m(x)) = A+m(x)G ∈ R(2`)×2
n,q

where A ∈ R2`×2
n,q and each row of A is an RLWE sample (chosen independent randomly) so

that

A(−s(x), 1)t ≡ w(x) mod (xn + 1, q)

where w(x) ∈ R2`
n with ||w(x)||∞ ≤ τ . An RLWE cipher for m(x) with error size τ is of

the form

(6) REs(z) = v +m(x)Dq(0, 1) ∈ R2
n,q

where v ∈ R2
n,q is an RLWE sample so that

v(−s(x), 1)t ≡ e(x) mod (xn + 1, q),

where e(x) ∈ Rn with ||e(x)||∞ ≤ τ . The next lemma is observed by Chillotti et al (2016
[39]), here we make the error bound explicit in our error model.

Lemma 2.5. Let m0,m1 ∈ Rn be any two polynomials. For any REs(m0) with error size
τ0 and any GSWs(m1) with error size τ1, we have

REs(m0)�GSWs(m1) = REs(m0m1),

and REs(m0m1) has error size at most ||m1||1τ0 + 4Bn`τ1.

Proof. By assumption, we may let

REs(m0) = v +m0Dq(0, 1) ∈ R2
n,q, GSWs(m1) = A+m1G ∈ R(2`)×2

n,q ,

where v ∈ R2
n,q and A ∈ R2`×2

n,q satisfying, modulo (xn + 1, q),

(7) v(−s(x), 1)t ≡ w0(x), A(−s(x), 1)t ≡ w(x)t,

and w0(x) ∈ Rn and w(x) = (w1(x), . . . , w2`(x)) ∈ R2`
n with ||w0(x)||∞ ≤ τ0 and ||wi(x)||∞ ≤

τ1 for 1 ≤ i ≤ 2`. Let

h = REs(m0(x)) / G−1 = (h1, . . . , h2`) ∈ R2`
n ,

Homomorphic Encryption Scheme 11

with ||h||∞ ≤ 2B. Computing modulo (xn + 1, q), we have

REs(m0(x))�GSWs(m1(x)) ≡ h(A+m1G) = hA+m1hG

≡ hA+m1([v +m0Dq(0, 1)] / G−1)G

≡ hA+m1[v +m0Dq(0, 1)]

≡ (hA+m1v) +m0m1Dq(0, 1) ∈ R2
n,q,

where, in the second last equation, we used the property of G−1 from (4). This proves the
first part of the lemma.

It remains to estimate the error size. The error polynomial is, using (7),

(hA+m1v)(−s(x), 1)t ≡ hw(x)t +m1w0(x) (mod (xn + 1, q)).

Let m1 =
∑n−1
i=0 m1ix

i ∈ Rn and hj =
∑n−1
i=0 hjix

i where hji ∈ Z with |hji| ≤ 2B for
0 ≤ i ≤ n− 1 and 1 ≤ j ≤ 2`. Note that

hw(x)t +m1w0(x) =

2∑̀
j=1

n−1∑
i=0

hjix
iwj(x) +

n−1∑
i=0

m1i · xiw0(x).

Hence

||hw(x)t +m1w0(x)||∞ ≤
2∑̀
j=1

n−1∑
i=0

|hji| · ||xiwj(x)||∞ +

n−1∑
i=0

|m1i| · ||xiw0(x)||∞

≤
2∑̀
j=1

n−1∑
i=0

2Bτ1 +

n−1∑
i=0

|m1i| τ ≤ (2`)n2Bτ1 + ||m1||1 τ0.

This completes the proof. �

3. Homomorphic bit operations

Suppose we are given any two LWE ciphers in Znr ×Zr for x1, x2 ∈ {0, 1} with error size
< Dr/4. We want to compute LWE ciphers for

x1 ∧ x2, x1 ∨ x2, x1 ⊕ x2,

still with error size < Dr/4, where x1∧x2 = x1 ·x2 (AND gate), x1∨x2 = x1 OR x2 (OR gate)
and x1 ⊕ x2 = x1 + x2 (mod 2) (XOR gate, exclusive OR). In this section, we show how to
compute all these new ciphers simultaneously by one bootstrapping operation. Note that a
cipher for (x1 NAND x2) = 1 − x1 ∧ x2 can be obtained from that of x1 ∧ x2 trivially, so we
just need to focus on the above three bit operations. We follow the approach in Ducas and
Micciancio (2015 [51]) and Chillotti et al. (2016 [39]), however, we do not need to perform
key switch as they do.

Let s = (s0, . . . , sn−1) ∈ {0, 1}n, representing an n-bit secret key of a user. Suppose
r ≥ 2n and is divisible by 8, Q is much bigger than r (to be determined later), B` ≥ Q and

m = r/2, Dr = br/4c, D̃Q = bQ/8c.

We shall work in the rings

Rm = Z[x]/(xm + 1), Rm,Q = Z[x]/(xm + 1, Q).

Define a bootstrapping key to be bk = (C0, . . . , Cn−1) where

Ci = GSWs(si) = Ai + siG ∈ R(2`)×2
m,Q , 0 ≤ i ≤ n− 1,

where Ai ∈ R(2`)×2
m,Q is a GSW sample (chosen randomly and independently by the owner of s)

with certain error size (to be determined later). Such a bootstrapping key for the user with

12 Shuhong Gao

the secret key s is made public and can be used by anyone else to compute homomorphic
operations of ciphertexts.

Suppose Es(x1) = (a1, b1) and Es(x2) = (a2, b2) where a1,a2 ∈ Znr and

bi ≡ 〈s,ai〉+ xiDr + ei (mod r),

for some ei ∈ Z with |ei| < Dr/4 for i = 1, 2. We note that

b1 + b2 ≡ 〈s,a1 + a2〉+ (x1 + x2)Dr + e1 + e2 (mod r),

and (in Z),

x1 + x2 = 2(x1 ∧ x2) + (x1 ⊕ x2).

Hence

(8) b1 + b2 ≡ 〈s,a1 + a2〉+ (x1 ∧ x2) · 2Dr + (x1 ⊕ x2)Dr + e1 + e2 (mod r).

Let u = (u0, . . . , un−1) = a1 + a2 ∈ Znr , un = b1 + b2 ∈ Zr, and e = e1 + e2 ∈ Z. Then
|e| < Dr/2 and the equation (8) becomes

(9) un ≡
n−1∑
i=0

siui + (x1 ∧ x2) · 2Dr + (x1 ⊕ x2)Dr + e (mod r).

Let w = un −
∑n−1
i=0 siui. Since Dr = m/2 = r/4, the equation (9) implies the following:

w − r

8
≡ (x1 ∧ x2)m+

(
(x1 ⊕ x2)− 1

2

)
Dr + e (mod r),

w +
r

8
≡ (x1 ∨ x2)m−

(
(x1 ⊕ x2)− 1

2

)
Dr + e (mod r).

In the second equation, we used the fact that

(10) (x1 ⊕ x2) = (x1 ∨ x2)− (x1 ∧ x2).

Since |e| < Dr/2 and (x1 ⊕ x2)− 1/2 = ±1/2, we have∣∣∣∣±((x1 ⊕ x2)− 1

2

)
Dr + e

∣∣∣∣ ≤ 1

2
Dr + |e| < 1

2
Dr +

1

2
Dr = Dr.

Therefore,

w − r

8
≡ (x1 ∧ x2)m+ e1 (mod r),(11)

w +
r

8
≡ (x1 ∨ x2)m+ e2 (mod r),(12)

for some e1, e2 ∈ Z with |e1| < Dr and |e2| < Dr. The two equations (11) and (12) were
first observed by Chillotti et al. [39].

Following Ducas and Micciancio (2015 [51]), we use the group homomorphism from the
additive subgroup (Zr,+) to the following multiplicative group of Rm,q = Z[x]/(xm + 1, q):

〈x〉 = {xi : 0 ≤ i ≤ r − 1} ≡ {1, x, . . . , xm−1,−1,−x, . . . ,−xm−1},
mapping i ∈ Zr to xi ∈ Rm,q. For any subset T ⊆ Zr, let

t(x) =
∑
i∈T

xi ∈ Rm,q.

For example, if r = 20, m = 10 and T = {1, 2,−4, 17}, then

t(x) = x+ x2 + x−4 + x17 ≡ x+ x2 − x6 − x7(mod xm + 1).

For this t(x), its the coefficient at x2 is 1, its coefficient at xm+2 = x12 is −1 (since x2 ≡
−x12), and its coefficient at x3 is 0 since none of 3 and m + 3 is in T . Also note that, if

Homomorphic Encryption Scheme 13

T = {w,w + m}, then t(x) = xw + xw+m ≡ xw + (−1) · xw ≡ 0 (mod xm + 1). Hence we
should avoid using any subset T that contains w and m+ w for some w.

Lemma 3.1. Suppose r = 2m and m is divisible by 4. Let T = {j ∈ Z : |j| < Dr}
and t(x) =

∑
j∈T x

j (mod xm + 1), and assume w ∈ Zr satisfies (11) and (12). Let the

coefficients of t(x)x−w(mod xm + 1) at x3m/4 and xm/4 be c1 and c2, respectively. Then

2(x1 ∧ x2) = 1 + c1, 2(x1 ∨ x2) = 1− c2.

Hence, by (10), we have 2(x1 ⊕ x2) = −(c1 + c2).

Proof. Let z1 = x1 ∧ x2. By (11), w − r/8 ≡ z1m+ e1 (mod r) for some e1 ∈ T , hence

xw−r/8 ≡ xz1m+e1 ≡ (xm)z1xe1 ≡ (−1)z1xe1 (mod xm + 1).

Since x−r/8 ≡ −x3m/4, we have

t(x)x−w ≡ −(−1)z1t(x)x−e1x3m/4.

Since e1 ∈ T and e1 ± m 6∈ T , t(x) contains the term xe1 with coefficient 1. Hence the
coefficient of x3m/4 in t(x)x−w is equal to −(−1)z1 , which is assumed to be c1. Therefore,
1 + c1 = 1− (−1)z1 = 2z1 as claimed. The proof for c2 is similar. �

For any subset T of Zr, we define an RLWE cipher for t(x) =
∑
j∈T x

j to be of the form

REs(t(x)) = v + t(x)D̃q(0, 1) ∈ R2
m,Q,

where v ∈ R2
m,Q is an RLWE sample. Note that we use D̃Q = bQ/8c instead of DQ = bQ/4c

due to the factor 2 in Lemma 3.1. Note that, for any z ∈ {0, 1} and u ∈ Z, we have

xzu = 1 + (xu − 1)z.

Let C = GSWs(z) ∈ R(2`)×2
m,Q be any GSW cipher. One can map zu ∈ Zr to xzu, then to a

GSW cipher: G+ (xu − 1)C ∈ R(2`)×2
m,Q . The following lemma is due to Chillotti et al. [39],

but our error bound is simpler.

Lemma 3.2. Let z ∈ {0, 1}, u ∈ Zr and T ⊆ Zr. Suppose REs((t(x)) ∈ R2
m,Q has error

size τ and C = GSWs(z) ∈ R(2`)×2
m,Q has error size τ1. Then

REs(t(x))� (G+ (xu − 1)C) = REs(t(x)xzu) ∈ R2
m,Q,

and furthermore, REs(t(x)xzu) has error size at most τ + 4Br`τ1.

Proof. Let C = GSWs(z) = A+ zG where A ∈ R(2`)×2
m,Q and

A(−s(x), 1)t ≡ w(x) mod (xn + 1, Q)

with w(x) ∈ Rm and ||w(x)||∞ ≤ τ1. Then

G+ (xu − 1)C = (xu − 1)A+ (1 + (xu − 1)z)G = (xu − 1)A+ xzuG = GSWs(x
zu),

and the error polynomial is (xu − 1)A(−s(x), 1)t ≡ (xu − 1)w(x), with error size

||(xu − 1)w(x)||∞ ≤ 2||w(x)||∞ ≤ 2τ1.

By Lemma 2.5, we have

REs(t(x))� (G+ (xu − 1)C) = REs(t(x))�GSWs(x
zu) = REs(t(x)xzu),

with error at most τ ||xzu||∞ + 4Bm`(2τ1) = τ + 4Br`τ1. �
Our bootstrapping algorithm is described in Figure 1. In Step 4 of the algorithm, we

need to extract some coefficients. Let a(x) = a0 + a1x+ · · ·+ am−1x
m−1 ∈ Rm. We define

Extract(a(x), i) = (ai, ai−1, . . . , a0,−am−1,−am−2, . . . ,−am−(n−1−i)) ∈ ZnQ.

14 Shuhong Gao

Bootstrapping Algorithm : BTbk(v1,v2)

Input: bk = (C0, . . . , Cn−1) ∈ R(2`)×2
m,Q : a bootstrapping key for a user,

v1,v2 ∈ Znr × Zr where vi = Es(xi) for x1, x2 ∈ {0, 1}.
Output: Es(x1 ∧ x2), Es(x1 ∨ x2), Es(x1 ⊕ x2) ∈ Znr × Zr.
Step 1. Compute u := v1 + v2 = (u0, . . . , un−1, un) ∈ Znr × Zr.
Step 2. Initialization:

t(x) :=
∑
j∈T x

j where T := {j ∈ Z : −Dr < j < Dr},
A := (0, t(x)x−unD̃Q) ∈ R2

m,Q.

Step 3. For k from 0 to n− 1 do (Randomness is involved here)
A := A� (G+ (xuk − 1)Ck).

Step 4. Suppose A = (
∑m−1
i=0 aix

i,
∑m−1
i=0 bix

i) ∈ R2
m,Q. Set

a1 := (Extract(a(x), 3m/4), D̃Q + b3m/4) ∈ ZnQ × ZQ,

a2 := (−Extract(a(x),m/4), D̃Q − bm/4) ∈ ZnQ × ZQ,

a3 := a2 − a1 ∈ ZnQ × ZQ.

Step 5. Modulus reduction: For i from 1 to 3 do
ci := brai/Qe ∈ Znr × Zr.

Step 6. Return c1, c2, c3.

Figure 1. Homomorphic bit Operations

This is used to get the coefficients of a(x)s(x) mod (xm + 1). Note that, modulo xm + 1,

a(x)s(x) =

n−1∑
k=0

m−1∑
j=0

skajx
k+j

≡
m−1∑
i=0

[(s0ai + s1ai−1 + · · ·+ sia0)

−(si+1am−1 + si+2am−2 + · · ·+ sn−1am−(n−1−i))]x
i.

Hence, for 0 ≤ i ≤ m− 1, the i-th coefficient of a(x)s(x) mod (xm + 1) is equal to the inner
product of s with Extract(a(x), i).

Theorem 3.3. Suppose a bootstrapping key bk has error size at most τ1, r is divisible by 8
and

r ≥ 16n, Q ≥ n

n− 3
16Br2`τ1.

Then, for any two LWE ciphers Es(xi) = vi ∈ Znr × Zr with error size < Dr/4 where
xi ∈ {0, 1} for i = 1, 2, the bootstrapping algorithm in Figure 1 outputs random LWE
ciphers Es(x1 ∧ x2), Es(x1 ∨ x2), Es(x1 ⊕ x2) ∈ Znr × Zr, all with error size < n ≤ Dr/4.

Proof. Let w = un −
∑n−1
i=0 siui where u = (u0, . . . , un−1, un) ∈ Znr × Zr is computed in

Step 1. Since v1 and v2 have error size < Dr/4, the equations (11) and (12) hold. At Step

2, A = (0, t(x)x−unD̃Q) = REs(t(x)x−un) ∈ R2
m,Q, a trivial RLWE cipher for t(x)x−un

with no error. At Step 3, we apply Lemma 3.2 repeatedly n times. After Step 3, we have
A = REs(t(x)x−w) with error size at most n(4Br`τ1) = 4Bnr`τ1.

At Step 4, letting A = (a(x), b(x)) ∈ Rm,Q, we have

(13) b(x) ≡ a(x)s(x) + t1(x)D̃Q + v(x) mod (xm + 1, Q),

where t1(x) = t(x)x−w and and v(x) ∈ Rm with ||v(x)||∞ ≤ 4Bnr`τ1. Now consider the
coefficients at x3m/4 and xm/4. Let

u1 := Extract(a(x), 3m/4), u2 := Extract(a(x),m/4).

Homomorphic Encryption Scheme 15

We have

b3m/4 ≡ 〈s,u1〉+ c1D̃Q + v3m/4 (mod Q),

bm/4 ≡ 〈s,u2〉+ c2D̃Q + vm/4 (mod Q),

where c1 and c2 are the coefficients of t(x)x−w at x3m/4 and xm/4, respectively, and |vi| ≤
4Bnr`τ1 for i ∈ {3m/4,m/4}. By Lemma 3.1,

D̃Q + b3m/4 ≡ 〈s,u1〉+ (x1 ∧ x2) · 2D̃Q + v3m/4 (mod Q),

D̃Q − bm/4 ≡ 〈s,−u2〉+ (x1 ∨ x2) · 2D̃Q − vm/4 (mod Q),

−(b3m/4 + bm/4) ≡ 〈s,−(u1 + u2)〉+ (x1 ⊕ x2) · 2D̃Q − (v3m/4 + vm/4) (mod Q),

with |v3m/4 + vm/4| ≤ 8Bnr`τ1. Hence a1,a2,a3 ∈ ZnQ × ZQ from Step 4 are LWE ciphers

for Es(x1 ∧ x2), Es(x1 ∨ x2), Es(x1 ⊕ x2) with error at most 8Bnr`τ1.
Finally, at Step 5, we apply Lemma 2.3 (a) to a1,a2,a3 to get LWE ciphers in Znr × Zr

with error size < n. For example, let c1 = (v, vn) ∈ Znr × Zr, the lemma tells us that

vn ≡ 〈s,v〉+ (x1 ∧ x2) · 2D̃r + e (mod r)

for some e ∈ Z with |e| < n where D̃r = r/8, hence 2D̃r = r/4 = Dr. �

4. Fully homomorphic encryption scheme

4.1. Key generations. We shall assume that n ≥ 64 is a power of 2, r is divisible by 8,
m = r/2, B = 35r2n, and

(14) r ≥ 16n, q ≥ nr, 1220r4n2 ≤ Q < 1225r4n2 = B2.

Let Rn = Z[x]/(xn + 1), Rm = Z[x]/(xm + 1), and

Rn,r = Z[x]/(xn + 1, r), Rn,q = Z[x]/(xn + 1, q), Rm,Q = Z[x]/(xm + 1, Q),

Dr = br/4c, Dq = bq/4c, D̃Q = bQ/8c, G =


1 0
B 0
0 1
0 B

 .

Each user generates a secret key, a public key and a bootstrapping key as described below.
Secret key. Pick s = (s0, s1, . . . , sn−1) ∈ {0, 1}n uniform randomly, and let s(x) =∑n−1
i=0 six

i, representing the n-bit secret key of a user.
Public key. A corresponding public key in R2

n,q is generated as pk = (k0(x), k1(x)) where
k0(x) ∈ Rn,q is chosen uniform randomly and

(15) k1(x) := k0(x)s(x) + e(x) mod (xn + 1, q)

with e(x) ∈ Rn being chosen bounded uniform randomly so that

||e(x)||∞ < Dq/(41n),

that is, each coefficient of e(x) is chosen uniform randomly and independently between
−Dq/(41n) and Dq/(41n).
Bootstrapping key. A corresponding bootstrapping key bk = (C0, C1, . . . , Cn−1) is gen-
erated as follows. For each 0 ≤ i ≤ n− 1 do the following:

• pick aji(x) ∈ Rm,Q uniform randomly and independently, for 1 ≤ j ≤ 4,
• pick eji(x) ∈ Rm bounded uniform randomly and independently with

||eji(x)||∞ ≤ n, 1 ≤ j ≤ 4,

• Compute bji(x) := aji(x)s(x) + eji(x) mod (xm + 1, Q), for 1 ≤ j ≤ 4,

16 Shuhong Gao

• Set

Ci :=


a1i(x) b1i(x)
a2i(x) b2i(x)
a3i(x) b3i(x)
a4i(x) b4i(x)

+ siG mod Q.

Note that the error in each Ci is at most n. Let’s check the condition in Theorem 3.3 where
τ1 = n, ` = 2, and B = 35r2n:

n

n− 3
16Br2`τ1 =

n

n− 3
32Br2n =

n

n− 3
1120r4n2 < 1220r4n2,

whenever n ≥ 34. Hence, by the choice of Q in (14), we have
n

n− 3
16Br2`τ1 < Q < B2 = 1225r4n2.

This means that the bootstrapping algorithm in Figure 1 will work when r and Q satisfy
(14).
Pseudo-random number generator P . We also need a pseudo-random number generator
in order to reduce ciphertext size under encryption with private keys. Suppose P is a function
that can expand any n-bit sequence u ∈ {0, 1}n (deterministically) into a sequence of 0’s and
1’s of length ndlog2(r)e, denoted by P (u). The sequence P (u) can be uniquely converted
into a polynomial in Rn,r, denoted by P (u, x). For example, one can use SHAKE-128
[94], or the lightweight generator [7]. However, the function P needs not to have a strong
cryptographic property, but only needs to be statistically uniform, that is, when u ∈ {0, 1}n
is uniform random, P (u, x) should be nearly uniform random in Rn,r. The security of our
encryption scheme depends on the RLWE problem in Rn,r and that P (u, x) being nearly
uniform random in Rn,r.

4.2. Encryption schemes. Regev [97, 98] introduced an encryption scheme that is se-
mantically secure due to his theorem on the hardness of the LWE problem. In order to
improve the efficiency of Regev’s scheme, Lyubashevsky, Peikert and Regev [87] introduced
an encryption scheme based on the RLWE problem, which they prove is hard assuming the
ideal lattice problem in cyclotomic rings is hard. We present two encryption schemes based
on the RLWE problem: one using private keys and other using public keys. Our schemes
are modified from the scheme in [87], however, we add a step for rounding and modulus
reduction. We note that the technique of modulus reduction has been used in [23, 25, 27]
(as mentioned earlier), and Brakerski [21] suggested in a comment on using rounding to re-
duce ciphertext size. We shall combine all these techniques in our schemes, and by carefully
choosing error distributions, we significantly reduce the cipher expansion to 6 for encryption
with private keys as in Lemma 4.1 and to 10 + log2(n) for encryption with public keys as in
Lemma 4.2.

4.2.1. Encryption with private keys. The scheme is presented in Figure 2.

Lemma 4.1. Let r = 2t+1 and (a(x), b(x)) ∈ R2
n,r be as computed in Figure 2. Then there

exists w3(x) ∈ Rn with ||w3(x)||∞ < Dr/4 so that

2t−4b(x)− s(x)a(x) ≡ w3(x) +m(x)Dr mod (xn + 1, r).

In particular, when r = 16n, (u,v) returned in Step 4 has 6n bits and represents an RLWE
cipher REs(m(x)) with error size < n.

Proof. By Step 3, since the coefficients of b1(x) are between 0 and r − 1, we have

b1(x) = 2t−4b(x) + b0(x)

for some b0(x) ∈ Rn with ||b0(x)||∞ < 2t−4. By Step 2, we have

2t−4b(x)− s(x)a(x) ≡ −b0(x) + w(x) +m(x)Dq mod (xn + 1, r).

Homomorphic Encryption Scheme 17

Encryption with private key : REs(m(x))

Input: s(x) =
∑n−1
i=0 six

i where si ∈ {0, 1}, an n-bit secret key,

m(x) =
∑n−1
i=0 mix

i, where mi ∈ {0, 1}, an n-bit message,
t := dlog2(r)e − 1, hence 2t < r ≤ 2t+1,
P : {0, 1}n → {0, 1}n(t+1), a pseudo-random number generator.

Output: (u,v) ∈ {0, 1}n × {0, 1}5n
Step 1. Pick u ∈ {0, 1}n uniform randomly, and compute

a(x) := P (u, x) ∈ Rn,r.
Step 2. Pick w(x) ∈ Rn uniform randomly with ‖w(x)‖∞ ≤ Dr/8, and

compute
b1(x) := a(x)s(x) + w(x) +m(x)Dr mod (xn + 1, r)
(so that each coefficient of b1(x) is between 0 and r − 1).

Step 3. Taking the highest 5 bits for each coefficient of b1(x):
b(x) := bb1(x)/2t−4c.

Let v ∈
(
{0, 1}5

)n
denote the bit representation of b(x).

Step 4. Return (u,v).

Figure 2

Note that r = 2t+1 and Dr = 2t−1, so

|| − b0(x) + w(x)||∞ ≤ ||b0(x)||∞ + ||w(x)||∞ < 2t−4 +Dr/8 = 2t−3 = Dr/4.

Therefore, the lemma holds with w3(x) = w(x)− b0(x). �
Remarks for the case when r is not a power of 2. One can modify Step 3 of Figure
2 as

b(x) := bb1(x)/2t−5c,
that is, taking the highest 6 bits for each coefficient of b1(x). Then the statement in Lemma
4.1 becomes

2t−5b(x)− s(x)a(x) ≡ w3(x) +m(x)Dr mod (xn + 1, r),

for some w3(x) ∈ Rn with ||w3(x)||∞ < Dr/4, and each ciphertext (a(x), b(x)) = REs(m(x))
has n(10+dlog2(n)e) bits. For the proof, one can similar show that ||w3(x)||∞ < 2t−5+Dr/8.
Suppose r = 2t + 4r1 + r0 > 2t where r1 ≥ 0 and 0 ≤ r0 < 4. Then

2t−5 +
Dr

8
= 2t−5 + 2t−5 +

r1
8
≤ Dr

4
= 2t−4 +

r1
4
,

hence ||w3(x)||∞ < Dr/4.

4.2.2. Encryption with public keys. The scheme is presented in Figure 3.

Lemma 4.2. Suppose r = 2t+1, r ≥ 16n, q ≥ 4r and n > 164. Let (a(x), b(x)) =
REpk(m(x)) ∈ R2

n,r be any ciphertext output by Step 4 of Figure 3. Then

2t−5b(x)− s(x)a(x) ≡ w3(x) +m(x)Dr mod (xn + 1, r)

for some w3(x) ∈ Rn with ||w3(x)||∞ < Dr/4. In particular, when r = 16n, each ciphertext
REpk(m(x)) has n(10 + log2(n)) bits and the error, i.e. each coefficient of w3(x), is random
in (−n, n).

Proof. By Step 3, we have

a(x) = ra1(x)/q + v1(x), and 2t−5b(x) = rb1(x)/q + v0(x)

18 Shuhong Gao

Encryption with public key : REpk(m(x))
Input: pk = (k0(x), k1(x)) ∈ R2

n,q,

m(x) =
∑n−1
i=0 mix

i: an n-bit message where each mi ∈ {0, 1},
t := dlog2(r)e − 1, hence 2t < r ≤ 2t+1.

Output: (a(x), b(x)) ∈ R2
n,r

Step 1. Pick u(x) ∈ Rn with each coefficient random in {−1, 0, 1},
Pick w1(x) ∈ Rn randomly with ||w1(x)||∞ ≤ Dq/(41n),
Pick w2(x) ∈ Rn randomly with ||w2(x)||∞ ≤ Dq/82.

Step 2. Compute:
a1(x) := k0(x)u(x) + w1(x) mod(xn + 1, q),
b1(x) := k1(x)u(x) + w2(x) +m(x)Dq mod(xn + 1, q).

(Both a1(x) and b1(x) have coefficients in [0, q − 1].)
Step 3. Modulus reduction and rounding:

a(x) :=
⌊
r
qa1(x)

⌉
, b(x) :=

⌊
r

2t−5q b1(x)
⌋
.

(Each coefficient of b(x) is in [0, 26 − 1], hence has 6 bits.)
Step 4. Return (a(x), b(x)).

Figure 3

where vi(x) ∈ R[x] with degree < n for i = 0 and 1, ||v1(x)||∞ ≤ 1/2 and |v0(x)|∞ <
2t−5. By (15) and Step 2, both computed modulo (xn + 1, q), there exist polynomials
h1(x), h2(x) ∈ Z[x] so that

b1(x)− s(x)a1(x) = u(x)e(x) + w2(x)− s(x)w1(x) +m(x)Dq + h1(x)(xn + 1) + qh2(x).

Let w(x) = u(x)e(x) + w2(x)− s(x)w1(x). Then

2t−5b(x)− s(x)a(x) =
r

q
(b1(x)− s(x)a1(x)) + v0(x)− s(x)v1(x)

=
r

q
(w(x) +m(x)Dq) + v0(x)− s(x)v1(x)

+
r

q
h1(x)(xn + 1) + rh2(x)

≡ w3(x) +m(x)Dr mod (xn + 1, r)

where w3(x) = r
qw(x) + v0(x) − s(x)v1(x) + m(x)

(
r
qDq −Dr

)
. Since q ≥ 4r, we have

| rqDq − Dr| < 1. We need to estimate the coefficient size of other terms in w3(x) (when

reduced modulo xn + 1). Note that, for e(x) =
∑n−1
j=0 ejx

j ∈ Rn and any 0 ≤ i ≤ n− 1, we
have

xie(x) ≡ −(en−ix
0 + · · ·+ en−1x

i−1) + τxi + · · ·+ en−i−1x
n−1 (mod xn + 1).

Hence ||xie(x)||∞ = ||e(x)||∞. By choice, u(x) =
∑n−1
i=0 uix

i where ui ∈ {−1, 0, 1}. Then

||u(x)e(x)||∞ ≤
n−1∑
i=0

||uixie(x)||∞ =

n−1∑
i=0

||e(x)||∞ = n||e(x)||∞ ≤ n
Dq

41n
=
Dq

41
.

Similarly, since si ∈ {0, 1}, we have

||s(x)w1(x)||∞ ≤ n ||w1(x)||∞ ≤ n
Dq

41n
=
Dq

41
.

Homomorphic Encryption Scheme 19

Therefore,

||w(x)||∞ ≤ ||u(x)e(x)||∞ + ||w2(x)||∞ + ||s(x)w1(x)||∞ ≤ 2
Dq

41
+
Dq

82
=

5

82
Dq.

Also,

||v0(x)− s(x)v1(x)||∞ ≤ ||v0(x)||∞ + ||s(x)v1(x)||∞ ≤ 2t−5 + n/2.

It follows that

||w3(x)||∞ ≤ r

q
||w(x)||∞ + ||v0(x)− s(x)v1(x)||∞ + ||m(x)||∞

≤ 5r

82q
Dq + 2t−5 +

n

2
+ 1

≤ 5

82
Dr +

r

26
+
n

2
+ 1 <

Dr

4
,

where the last inequality holds provided r ≥ 16n and n > 164. �
Decryption. Suppose a user has the private key s(x). To decrypt a ciphertext (a(x), b(x))
from REs(m(x)) or REpk(m(x)), the user computes

b1(x) := 2t−4b(x)−s(x)a(x) mod (xn + 1, r), or b1(x) := 2t−5b(x)−s(x)a(x) mod (xn + 1, r),

and m1(x) = bb1(x)/Dre. Then m1(x) = m(x), the reason is that b1(x) ≡ w(x) +
m(x)Dr mod (xn + 1, r) for some w(x) ∈ Rn with ||w(x)||∞ < Dr/4.

4.3. Suggested parameters. In Figures 4, we list some parameters that satisfy the con-
ditions in Theorem 3.3, Lemma 4.1 and Lemma 4.2. We choose primes q and Q so that

r|(q − 1), r|(Q− 1),

hence FFT can be used in computing products of polynomials in Rn,q and Rm,Q. The row
for cs gives the ciphertext expansion ratio under private-key encryption, that is, the bit
size of a ciphertext of an n-bit message divided by n; the row for cpk gives the ciphertext
expansion ratio under public-key encryption. The second row under q and Q indicates the
bit size of q and Q, respectively. The row for bk indicates the bit size of bootstrapping keys.
It is also possible to pick Q as a product of two primes so that FFT can be used, but the
details are omitted here.

n 29 = 512 210 = 1024 211 = 2048 212 = 4096
r 16n 16n 16n 16n
q − 1 r(41n+ 20) r(41n+ 9) r(41n+ 11) r(41n+ 25)

27 bits 29 bits 31 bits 33 bits
Q− 1 r(ρr3n2 + 19) r(ρr3n2 + 85) r(ρr3n2 + 89) r(ρr3n2 + 31)

81 bits 87 bits 93 bits 99 bits
cs 6 6 6 6
cpk 19 20 21 22
bk 162 MB 696 MB 2976 MB 12672 MB

Figure 4. Suggested Parameters for private-key and public-key encryp-
tions and for bootstrapping, where ρ = 1220. The row of cs gives the
ciphertext expansion under private-key encryption, the row of cpk is for
ciphertext expansion for public-key encryption, and the row of bk is for the
size of bootstrapping keys.

20 Shuhong Gao

4.4. Efficiency of bootstrapping. Figure 5 below lists the parameters used by the current
paper and by Ducas and Micciancio [51] and Chillotti et al. [39, 40] when n = 512. In
[39, 40, 51], they use n = 500, however, their bootstrapping algorithms work well for n = 512
(with other parameters the same). The input LWE ciphers are assumed to be in Znr × Zr
where r is listed in the table (after rescaling in [39, 40, 51]. For a bootstrapping key
bk = (C0, C1, . . . , Cn−1), in [51, 39] each Ci is a 6×2 matrix overRm,Q and Rm (respectively),
in [40] each Ci is a 4×2 matrix over Rm with real numbers of 32 bits as coefficients, and in the
current paper each Ci is a 4×2 matrix over Rm,Q. The column under FFT lists the number
of FFTs of length m that need to be computed in the whole bootstrapping algorithm, and
the column under Failure is for the failure probability, that is, the probability that the
computed new ciphertext is not a valid LWE cipher (to participate in further homomorphic
computing. For our bootstrapping algorithm, it always outputs new LWE ciphers with error
at most Dr/4, hence there is no failure at all, however, in [51], it has a probability of at
most 2−31 that the new LWE cipher has error bigger than Dr/4, similarly in [39, 40], the
failure probability is at most 2−33 (more precisely 2−33.56). The probability 2−33 is very
small, hence useful for computing many functions that need fewer than 226 = 67, 108, 864 bit
operations (with failure probability at most 1/128 < 0.008). However, their bootstrapping
algorithm (for n = 512) can not be used to compute functions that need more than 233 bit
operations.

As pointed out in [39], 90% of the time of the bootstrapping algorithm is on computing
FFTs. Our FFT has length 4 times that of [51, 39, 40], and we use the same number of
FFTs as in [40]. Note that, in [40], FFT is computed over complex numbers which have
about 53 bits in binary floating points, while our FFT is computed modulo Q which has
81 bits (for n = 512), we use the rough estimate that each operation modulo Q is 2.5
times as expensive as the corresponding complex number operation with 53 bits.1 This
means that our bootstrapping algorithm can be implemented with running time about 10
times of [40]. By [40], each homomorphic bit operation can be computed in 13ms. We
estimate that our bootstrapping algorithm can compute three LWE ciphers Es(x1 ∧ x2),
Es(x1 ∨ x2) and Es(x1⊕ x2) in about 130ms. Of course, this needs to be verified by careful
implementation, and further optimization should be investigated. We hope to do a careful
hardware implementation in ASIC (application-specific integrated circuit) in the near future.

4.5. Homomorphic computing of arbitrary functions. Let f : {0, 1}N → {0, 1}M
be an arbitrary function with input length N and output length M . We suppose that f
is given as a Boolean circuit, or a pseudocode (with restricted for-loops and while-loops,
see below). In practice, f can be any search function on a large data base x ∈ {0, 1}N ,
hence N is usually large (say N = 8 · 240 = 8, 796, 093, 022, 208 if the data base has size
1TB). Without loss of generality, we assume that N = nd where n = 512 (or any of 1024
and 2048). The data x is divided into d blocks of length n, that is, x = (x1, . . . ,xd)
where xk = (xk,0, xk,1, . . . , xk,n−1) ∈ {0, 1}n, and each block is converted into a polynomial∑n−1
i=0 xk,ix

i ∈ Rn, then encrypted using the private-key encryption scheme or the public-key
encryption scheme described in the previous section:

ck = REs(xk), or REpk(xk), 1 ≤ k ≤ d.

1The estimation is based on the following argument. We can pick Q = Q1Q2 where Q1 and Q2 are two
distinct primes with about 41 to 50 bits for n between 512 and 4096. By the Chinese remainder theorem,

each operation modulo Q is equivalent to the corresponding operation modulo Q1 and Q2, separately. So
each multiplication modulo Q is equivalent to two multiplications modulo a prime number with at most 50

bits. On the other hand, for complex numbers of the form a+jb where j =
√
−1 and a and b are real numbers

with 53 bits, one multiplication needs four multiplications and two additions (or three multiplications and
7 additions) of real numbers with 53 bits. Hence it is an overestimate that each operation modulo Q, where

Q has 80 to 100 bits, costs about 2.5 times that of complex numbers with 53 bits.

Homomorphic Encryption Scheme 21

r m Q bk #FFT Failure
[51] 2048 1024 32 bits 1032 (+314) MB 48000 2−31

[39] 2048 1024 C53 23 (+29) MB 4006 2−33

[40] 2048 1024 C53 16 (+29) MB 3072 2−33

Ours 8192 4096 81 bits 162 MB 3072 0

Figure 5. Parameter comparison for Bootstrapping with n = 512 where
C53 means operations on complex numbers a + bj where j =

√
−1 and a

and b are real numbers with 53 bits in binary floating points. In all four
cases, FFTs used in computing the external product have length m, and
the number of FFTs used is indicated in the column under #FFT. The
column under bk lists the size of bootstrapping keys where the numbers in
the parenthesis denote the size of key-switch keys used in their papers. The
last column is for the failure probability.

Note that the total bit size of all ck’s is about 6N bits with private-key encryption (and
using a pseudo random number generator), or 20N bits with public-key encryption. The
ciphertexts ck, 1 ≤ k ≤ d, are computed once and stored on a cloud server (or any where
in the world) that is reliable (that is, the encrypted data is available and is error free any
time), but not necessarily trustful.

Suppose the bootstrapping key bk = (C0, C1, . . . , Cn−1) is public. The cloud server (in
fact anyone, including hackers) can perform homomorphic computing in three steps:

(a) unpacking the ciphertexts c1, · · · , cd to get LWE ciphers in Znr × Zr for the bits of
x,

(b) homomorphic computing of f on the LWE ciphers, using the bootstrapping algo-
rithm,

(c) packing the resulted LWE ciphers into RLWE ciphers in R2
n,r.

We describe these steps in details below.

4.5.1. Unpacking. First extract LWE ciphers for the bits of xk from ck for 1 ≤ k ≤ d.
Suppose ck is from private-key encryption. Then ck is of the form ck = (uk, vk) where

ui ∈ {0, 1}n and vi ∈
(
{0, 1}5

)n
. Apply the pseudo random number generator P to uk to

get a polynomial ai(x) = P (uk, x) ∈ Rn,r, and convert vi into a polynomial bi(x) ∈ Rn,r.
By Lemma 4.1, we have

2t−4bk(x) ≡ ak(x)s(x) +

(
n−1∑
i=0

xk,ix
i

)
Dr + wk(x) mod (xn + 1, r),

where ‖wk(x)‖∞ < Dr/4. For 0 ≤ i ≤ n− 1, an LWE cipher for xk,i is

Es(xk,i) = (Extract(ak(x), i), 2t−4bk,i) ∈ Znr × Zr
with error size < Dr/4, where bk,i is the coefficient of xi in bk(x).

Next suppose ck is from public-key encryption. By Lemma 4.2, ck is of the form
(ak(x), bk(x)) ∈ R2

n,r so that

2t−5bk(x) ≡ ak(x)s(x) +

(
n−1∑
i=0

xk,ix
i

)
Dr + wk(x) mod (xn + 1, r),

where ‖wk(x)‖∞ < Dr/4. Hence, for 0 ≤ i ≤ n− 1, an LWE cipher for xk,i is

Es(xk,i) = (Extract(ak(x), i), 2t−5bk,i) ∈ Znr × Zr
with error size < Dr/4, where bk,i is the coefficient of xi in bk(x).

22 Shuhong Gao

4.5.2. Homomorphic computing. Let f(x) = y = (y1, . . . , yM) ∈ {0, 1}M an arbitrary func-
tion. It is desired to compute a valid ciphertext for y from the ciphertexts ck, 1 ≤ k ≤ d,
using the bootstrapping algorithm from the previous section. Suppose f is given as a Boolean
circuit with N input bits and M output bits. The cloud server can use our bootstrapping
algorithm to compute an LWE cipher for each gate of the circuit starting from the input
to output, obtaining M LWE ciphers for y1, . . . , yM , one for each. These LWE ciphers will
be the ciphertext for f(x). Since our bootstrapping algorithm does not produce invalid
LWE ciphers at all, one can always get the correct answer y = f(x) by decoding the M
LWE ciphers. Note that the computed ciphertext for f(x) has a larger ciphertext expansion
factor. This should not be a problem in practice since an answer is usually small (say from
a few bits to a few thousand bits). However, when M is large, we need to pack these LWE
ciphers into RLWE ciphers; see next subsection for more details.

Now suppose f is given as a pseudocode which may contain if-statements, for-loops and
while-loops, among other statements. We show below how to homomorphically compute f ,
demonstrated by a few examples.
Homomorphic if-statements. We show how to homomorphically compute if-statements.
We demonstrate by a simple case:

“if a 6= b then u else v”

where a = (a1, . . . , am) ∈ {0, 1}m, b = (b1, . . . , bm) ∈ {0, 1}m and u = (u1, . . . , uk) ∈
{0, 1}k, v = (v1, . . . , v`) ∈ {0, 1}`. Suppose we have computed an LWE cipher for each bit
of a and b. How do we compute the output of this if-statement? Let

z =

m∨
i=1

(ai ⊕ bi).

Then z = 1 iff a 6= b. We can compute an LWE cipher Es(z) ∈ Znr × Zr using 2m− 1 BT
operations, that is, calling the bootstrapping algorithm 2m− 1 times. If k 6= `, we need to
pad u or v by 0’s so that they have the same length, hence we may assume that ` = k. Let

w = zu⊕ (1− z)v = (z ∧ u1 ⊕ (1− z) ∧ v1, . . . , z ∧ uk ⊕ (1− z) ∧ vk).

Then w = u if z = 1 and w = v if z = 0, as required by the if-statement. If u and v are in
plaintext, an LWE cipher for each bit z ∧ ui⊕ (1− z)∧ vi is simply uiEs(z) + vi(1−Es(z)),
which still has error size < Dr/4. If the bits of u and v are given as LWE ciphers with error
size < Dr/4, then an LWE cipher for each bit z ∧ ui ⊕ (1 − z) ∧ vi can be computed with
three BTs. Hence this if-statement can be computed using (2m− 1) + 3 min{`, k} BTs.
Homomorphic for-loop: Integer addition. Let a = (a0, . . . , am−1) and b = (b0, . . . , bm−1)
be two integers in binary representation where a0 and b0 are the least significant bits. Sup-
pose we are given LWE ciphers for all the bits of a and b. We want to compute an LWE
cipher for each bit of their sum. Let c = (c0, . . . , cm) represent their sum. We have the
following pseudocode for computing the bits of c:

Integer addition:
c0 := a0 ⊕ b0; z := a0 ∧ b0;
for i from 1 to m− 1 do

t1 := ai ⊕ bi; t2 := ai ∧ bi;
ci := t1 ⊕ z; t3 := t1 ∧ z;
z := t2 ⊕ t3;

end for
cm := z;
Return (c0, c1, . . . , cm).

Homomorphic Encryption Scheme 23

In the first line, z represents the carry of a0 + b0. The three lines in the for-loop compute
the sum ai + bi + z, certainly ci = (ai ⊕ bi)⊕ z is the least significant bit, and the carry bit
is

t2 ⊕ t3 = (ai ∧ bi)⊕ (ai ⊕ bi) ∧ z = (ai ∧ bi)⊕ (ai ∧ z)⊕ (bi ∧ z),

which is 1 if and only if two or three of ai, bi, z are equal to 1. Note that each line of the
pseudocode can be computed by one BT, namely, using our bootstrapping algorithm once.
Hence a+ b can be computed by 3m− 2 BTs.
Homomorphic while-loop: Integer comparison. Let a = (a0, . . . , am−1) and b =
(b0, . . . , bm−1) be two integers as above. We show how to homomorphically test if a ≥ b (as
integers), that is, compute z ∈ {0, 1} so that z = 1 iff a ≥ b. A pseudocode could be

Integer comparison: z := (a ≥ b)
z := 1; i := m− 1;
while i ≥ 1 and ai = bi do i := i− 1 end while
if ai < bi then z := 0 end if
Return z.

The while-loop is hard to implement homomorphically, since there is no priori bound on
the largest i with ai 6= bi. We introduce a trick to convert the while-loop into a for-loop as
indicated in the following pseudocode:

Homomorphic comparison: z := (a ≥ b)
z := 1; v := 1; (v = 0 indicates when the above while-loop finishes)
for i from m− 1 down to 0 do

t := v ∧ (ai ⊕ bi);
v := (1− t) ∧ v;
z := [t ∧ (ai ∨ (1− bi))]⊕ [(1− t) ∧ z];

end for
Return z.

Note that ai ⊕ bi = 1 iff ai 6= bi, and ai ∨ (1− bi) = 1 iff ai ≥ bi. Hence v changes from 1 to
0 at the largest i with ai 6= bi, and it never change back to 1 after that; also, when v = 0,
all the future t will always be 0, hence z will always stay the same. This pseudocode can be
directly implemented homomorphically. (Note that LWE ciphers for ai⊕ bi and ai∨ (1− bi)
can be computed by one BT, since 1 − (ai ⊕ bi) = ai ⊕ (1 − bi), and one BT can compute
both ai ⊕ (1− bi) and ai ∨ (1− bi).)

In summary, we see from these examples that one can homomorphically compute any
pseudocode that contains if-statements, for-loops and while-loops, the only restriction is
that the number of iterations executed in the for-loops and while-loops must be upper
bounded by numbers that do not depend on encrypted data. The example for integer
comparison shows a trick on how to convert a while-loop for which the number of executed
times depends on encrypted data into a for-loop for which the number of executed times is
independent of encrypted data. Under these restrictions on the for-loops and while-loops,
any pseudo code can be computed homomorphically. Certainly, more careful study is needed
on how to convert an arbitrary algorithm into restricted pseudocode and on how to compute
them more efficiently.

4.5.3. Packing of LWE ciphers. Suppose the output y of a function y = f(x) has M bits.
Then the ciphertext computed for y will be a sequence of M LWE ciphers. We show below
how we can pack any n LWE ciphers in Znr × Zr into one RLWE cipher in R2

m,r where
m = 8n, hence the size of the ciphertext of y will be reduced by a factor of n/16.

24 Shuhong Gao

Lemma 4.3. Suppose y0, . . . , yn−1 ∈ {0, 1} and we have n LWE ciphers Es(yi) ∈ Znr × Zr
with error size < Dr/4 for 0 ≤ i ≤ n− 1. With the bootstrapping key bk, one can compute

an RLWE cipher (w(x), v(x)) ∈ R2
m,r for m(x) =

∑n−1
i=0 yix

i with error < Dr/4, that is,

v(x) ≡ w(x)s(x) + z(x) +m(x)Dr (mod xm + 1, r),

where z(x) ∈ Rm with ‖z(x)‖∞ < n ≤ Dr/4.

Proof. Set Es(1) = (0, Dr) ∈ Znr × Zr, the trivial LWE cipher with no error. For each
0 ≤ i ≤ n − 1, we compute 1 · yi homomorphically using the bootstrapping algorithm in
Section 3, where the Step 5 will be skipped (and ignore a2 and a3 there), giving us LWE
ciphers (ai, bi) ∈ ZnQ × ZQ so that

bi ≡ 〈ai, s〉+ yiDQ + εi (mod Q)

where εi ∈ Z and |εi| < 4Bnr`τ1 = 8Bn2r (since ` = 2 and τ1 = n in the the bootstrapping
key Ci) for 0 ≤ i ≤ n− 1. Now form

a(x) =

n−1∑
i=0

aix
i−1 = (a0(x), . . . , an−1(x)) ∈ Rnm,Q, and b(x) =

n−1∑
i=0

bix
i.

Then

(16) b(x) ≡
n−1∑
i=0

ai(x)si +m(x)DQ + ε(x) (mod Q),

where ε(x) =
∑n−1
i=0 εix

i and ‖ε(x)‖∞ ≤ 8Bn2r.

Next, we need to compute the sum
∑n−1
i=0 ai(x)si homomorphically. For each si, we take

the last two rows of the bootstrapping key Ci = GSW(si) (as in Section 4.1), which gives
us aji(x) and bji(x) ∈ Rm,Q so that

(17)

(
b3i(x)
b4i(x)

)
≡
(
a3i(x)
a4i(x)

)
s(x) + si

(
1
B

)
+

(
e3i(x)
e4i(x)

)
(mod xm + 1, Q),

where ‖eji(x)‖∞ < n. We define a shortened external product: for any a(x), b1(x) and
b2(x) from Rm,Q, define

a(x)�
(
b1(x)
b2(x)

)
= (u1(x), u2(x))

(
b1(x)
b2(x)

)
= u1(x)b1(x) + u2(x)b2(x) ∈ Rm,Q,

where u1(x) and u2(x) are random so that a(x) = u1(x) + u2(x)B with ‖ui(x)‖∞ ≤ 2B.
Let’s apply to the bootstrapping key in (17):

vi(x) := a(x)�
(
b3i(x)
b4i(x)

)
= (u1(x), u2(x))

(
b3i(x)
b4i(x)

)
≡ (u1(x), u2(x))

[(
a3i(x)
a4i(x)

)
s(x) + si

(
1
B

)
+

(
e3i(x)
e4i(x)

)]
,

≡ wi(x)s(x) + a(x)si + zi(x),

where

wi(x) = u1(x)a3i(x) + u2(x)a4i(x) = a(x)�
(
a3i(x)
a4i(x)

)
∈ Rm,Q

and zi(x) = u1(x)e3i(x) + u2(x)e4i(x) with ‖zi(x)‖∞ ≤ 2 · 2Bnm = 2Bnr.
Now back to (16). We compute

(w̃(x), ṽ(x)) :=

n−1∑
i=0

ai(x)�
(
a3i(x) b3i(x)
a4i(x) b4i(x)

)
=

n−1∑
i=0

(wi(x), vi(x)).

Homomorphic Encryption Scheme 25

Then

(18) ṽ(x) ≡ w̃(x)s(x) +

n−1∑
i=0

ai(x)si + z̃(x),

where z̃(x) =
∑n−1
i=0 zi(x) with ‖z̃(x)‖ ≤ 2Bn2r. By (16) and (18), we have

(19) b(x)− ṽ(x) ≡ −w̃(x)s(x) +m(x)DQ + (ε(x)− z̃(x)) (mod xm + 1, Q).

Let
w̃1(x) = −w(x), ṽ1(x) = b(x)− ṽ(x), z̃1(x) = ε(x)− z̃(x).

Then ‖z̃1(x)‖∞ ≤ 8Bn2r + 2Bn2r ≤ 10Bn2r and (19) becomes

(20) ṽ1(x) ≡ w̃1(x)s(x) +m(x)DQ + z̃1(x) (mod xm + 1, Q),

where ‖z̃1(x)‖∞ ≤ 10Bn2r. Finally, do modulus reduction:

w(x) =

⌊
r

Q
w̃1(x)

⌉
, v(x) =

⌊
r

Q
ṽ1(x)

⌉
,

both are in Rm,r. Then (20) becomes

(21) v(x) ≡ w(x)s(x) +m(x)Dr + z(x) (mod xm + 1, r),

for some z(x) ∈ Rm.
We need to estimate the coefficient size of z(x). By our choice,

w(x) =
r

Q
w̃1(x) + h1(x), v(x) =

r

Q
ṽ1(x) + h2(x),

where hi(x) ∈ Rm[x] and ‖hi(x)‖∞ ≤ 1/2 for i = 1, 2. Then (20) becomes

v(x) ≡ w(x)s(x)− h1(x)s(x) + h2(x) +m(x)
r

Q
DQ +

r

Q
z̃1(x),

Hence, in (21), we must have

z(x) = h2(x)− h1(x)s(x) +m(x)

(
r

Q
DQ −Dr

)
+
r

Q
z̃1(x).

Thus

‖z(x)‖∞ ≤ 1

2
n+

1

2
+ 1 +

r

Q
10Bn2r

≤ 1

2
(n+ 3) +

10r

1220r4n2
(35r2n)n2r

≤ 1

2
(n+ 3) +

35

122
n < n.

This completes the proof. �

5. Security analysis

In this section, we give a brief analysis on the security of our homomorphic encryption
scheme. The security model is IND-CPA, that is, our scheme is secure under chosen plaintext
attack, which could be interactive. This means that an adversary can choose plaintexts and
get their ciphertexts, as many such plaintext and ciphertext pairs as desired (but bounded
by a polynomial in n), then try to distinguish (say with success probability 1/10) whether
a given ciphertext is an encryption of 0 or 1, or to distinguish a given valid ciphertext from
uniform random bit strings (of the the same format). This is equivalent to solving hard
lattice problems by Regev’s theorem. However, in the reduction proof of Regev’s theorem,
there is a tightness gap that may be very large as explained in [32]. Hence we need to
estimate the concrete complexity of all current attacks on our scheme with the proposed
parameters.

26 Shuhong Gao

In our scheme, according to Figure 4, n is a power of 2 and we have RLWE ciphertexts
over Zq for three choices of q:

Type 1. q = r = 16n and the error size is bounded by n: corresponding to ciphertexts in
R2
n,q from private-key and public-key encryptions of the original data (see Lemmas

4.1 and 4.2);
Type 2. q ≈ 41rn = 656n2 and the error size is bounded by Dq/(41n) ≈ 4n: corresponding

to the public key pk = (k0(x), k1(x)) ∈ R2
n,q;

Type 3. q = Q ≈ 1220r4n2 ≈ 227n6 and the error size is bounded by n: corresponding to
bootstrapping key Ci ∈ R2

m,Q, 1 ≤ i ≤ n, of the bootstrapping key where m = 8n.

Hence finding the secret key s(x) is equivalent to solving the RLWE problem in the following
cyclotomic rings:

Rn,q = Z[x]/(xn + 1, q), Rm,Q = Z[x]/(x8n + 1, Q)

where q is either 16n (a power of 2) or a prime, and Q is a prime (or a product of two primes
in practical implementation).

5.1. Number theoretic attack and circular security issue. The RLWE problem over
the above two rings and more general rings of the form Z[x]/(f(x), q) have been studied in
[52, 53, 31, 34, 35, 36] using algebraic number theory. They present several attacks that
show many weak instances of the general rings. However, their attacks do not apply to
the two rings used by our scheme. In fact, one of the main ideas of the attacks is to test
if f(x) modulo q has a factor of small degree and the roots of the factor have a small
multiplicative order, the attack is likely to work provided the order ≤ log2(q) (and τ

√
n

is not too large compare to q where τ is the error size). For our two rings, when n is a
power of 2, xn + 1 ≡ (x − 1)n mod 2, but xn + 1 is irreducible modulo 2k for all k > 1.2

When (2n)|(q − 1) and q is a prime, the polynomial xn + 1 factors completely over Zq, and
each root of xn + 1 has multiplicative order exactly 2n. Hence xn + 1 modulo q has no
factor of small degrees whose roots have small orders. Similarly for X8n + 1 over Zq where
(16n)|(q− 1) (where q may be much smaller than Q after a modulus reduction). Hence the
number theoretic attack can not be applied to our rings.

The bootstrapping key is an encoding of the bits of secret key by the secret key itself. This
is called circular encoding. There is a concern whether this kind of circular ciphers could be
easier to break. That remains an open question. For the positive side, the bootstrapping
key enable any third party to compute new LWE ciphers from any given LWE ciphers in
Znr ×Zr with the error size all bounded by n, hence yielding a fully homomorphic encryption
scheme. There is another benefit: by Lemma 4.3, LWE ciphers in Znr × Zr can be packed
into RLWE ciphers in R2

m,r, hence we have the following interesting result.

Corollary 5.1. Let the parameters be as in Section 4.1 with r = 16n. Given the bootstrap-
ping key bk, the LWE problem in Znr ×Zr is equivalent to the RLWE problem in R2

m,r where
m = 8n and the error size in both cases is bounded by n.

The negative side of the bootstrapping key, however, is that our encryption scheme is not
secure under chosen ciphertext attack. In fact, for any Boolean function ω(s0, s1, . . . , sn−1)
(say the sum of a random subset of the si’s modulo 2), any third party can use the boot-
strapping key to compute a random LWE cipher

y = Es(ω(s0, s1, . . . , sn−1)) ∈ Znr × Zr.

Then send y to the owner of the secret key s to decode, and the owner releases the value
ω(s0, s1, . . . , sn−1). One just needs n+O(1) such values to completely determine s. Hence

2Thanks to Professor Daqing Wan for his proof, personal communications.

Homomorphic Encryption Scheme 27

the moral is that, for homomorphic encryption scheme with bootstrapping key, never decode
for anyone but yourself !

5.2. Main attacks on the LWE problem. Except the weak instances of rings mentioned
above, it is not known how to use the ring structure to solve the RLWE problem over our
two rings. Currently the best approach is to extract the LWE ciphers from RLWE ciphers
and solve the LWE problem. The main approaches for solving the LWE problem are briefly
described below.
Meet-in-the-middle attack. Since our polynomial s(x) has binary coefficients, there are
2n choices for s(x). Exhaustive search requires 2n operations in Rn,q. A better approach is
the modified meet-in-the-middle attack by [76, 13, 9, 29], which uses about 20.337n operations
in Rn,q(ignoring some log factor). Since n ≥ 512, this requires at least 2170 operations in
Rn,q.
Gröbner basis attack. When the coefficients of error polynomials are small, one can
solve s(x) by computing certain Gröbner basis [8, 56]. However, our error size is n or 4n,
this approach requires at least n2n = 22n log2 n operations in Zq, which is worst than the
meet-in-the-middle attack.
Lattice basis reduction attacks. A much more powerful attack is to use the lattice
basis reduction algorithm (LLL) due to Lenstra, Lenstra and Lovasz (1982, [82]); see [93]
for its practical performance and [91, 92] for its recent improvements. There is also a BKZ
variation [100, 37], which uses SVP oracles [90, 74, 104, 105, 80, 81, 14]. There are several
approaches that can reduce LWE problems over Zq to lattice problems over Z, including
the SIS method [1, 89, 84], the BKW method [17, 3, 4, 5, 50, 69, 79], the bounded distance
decoding (BBD) method [77, 84, 85, 9].

The paper by Albrecht, Player and Scott [6] give a nice survey on these methods and
give concrete complexity analysis, including the case when the secret vector s is binary (as
we use in our scheme, see also [2]). We shall use their analysis directly, particularly Table
5 in [6], which assumes that q ≈ n2, the secret vector is binary and the error size is about
qα ≈ n1.5/(log2 n)2. Note that, for 210 ≤ n ≤ 216, we have

n1.5/(log2 n)2 ≤ n.

These parameters match those of Type 2 ciphertexts above. Also, by modulus reduction,
Type 3 ciphertexts can be reduced to Type 2 ciphertexts with error size < n. By Table 5,
we see that, for n = 512, the best approach is the sieve method in [9], which needs at least
2168 bit operations; for n = 1024, the best approach is the BKW method, which requires
at least 2481 bit operations. For Type 1 ciphertexts, since the error is as big as q/16, the
complexity can only be bigger. We hope to add more detail of analysis for Type 1 and for
larger values of n in the full version of the paper.

6. Use cases

Fully homomorphic encryption scheme is a powerful tool that can solve many problems in
IT computing, for examples, outsourcing computation [42, 59, 49, 67], verifiable computing
[58, 15, 96, 12], secure multi-party computation [46, 47, 45, 47, 83, 24, 71, 47, 83, 24, 71, 66]
maliciously circuit-private FHE [95, 41], Functional encryption and program obfuscation
[18, 11, 19, 57], zero-knowledge proof and homomorphic signature [16, 66, 68]. Below we
describe a protocol for secure two-party computation and zero knowledge proof of any NP
language.

Secure two-party computation and zero knowledge proof. For zero knowledge
proof of any language in NP, Barak and Brakerski [10] proposed a protocol in their blog
[10], see also [70]. Here we present a different protocol where the prover performs heavy
computing but the verifier does only light computing, which is often desired in verifiable

28 Shuhong Gao

computing (especially on blockchains). Let L be any language in NP and let RL(x, y), whose
value is either 1 or 0, be a relation defining L:

L = {x ∈ {0, 1}∗ : ∃y ∈ {0, 1}∗ so that RL(x, y) = 1}.
Alice and Bob both know the relation RL(x, y) and assume RL(x, y) can be computed in
polynomial time. Suppose Alice has a secret string x for which Bob does not know, Bob
claims that he knows a secret y so that RL(x, y) = 1, hence x ∈ L. Neither Alice nor Bob
wants to leak any information on x or y to the other party. This means that they want to
compute the function RL(x, y) without leaking any information of x or y.

Using our FHE scheme with n ≥ 512, Bob (Prover) can prove to Alice (Verifier) by
the following protocol. First, Alice picks a random secret key s ∈ {0, 1}n and publishes a
corresponding bootstrapping key bk (and a public key, but not needed here), so Bob knows
bk. Fix t to be an integer ≥ 500.

Protocol for Zero Knowledge Proof of any Language in NP

Step 1. For 1 ≤ i ≤ t, Alice picks ri ∈ {0, 1} uniform randomly, xi 6∈ L randomly (with the
same length as x)3, both independently, let

ui := rix⊕ (1− ri)xi =

{
x, if ri = 1,
xi, if ri = 0,

and computes a ciphertext ci := Es(ui). Then send c1, . . . , ct to Bob.
Step 2. For 1 ≤ i ≤ t, Bob picks wi ∈ {0, 1} uniform randomly and yi ∈ {0, 1}∗ randomly

(with the same length as y), let

vi := wiy ⊕ (1− wi)yi =

{
y, if wi = 1,
yi, if wi = 0,

and uses the bootstrapping key bk to compute RL(ui, vi) homomorphically from ci
and the trivial encryption of vi to get a ciphertext

bi := Es(RL(ui, vi)).

Then send b1, . . . , bt to Alice.
Step 3. Alice decodes bi to get zi ∈ {0, 1} for 1 ≤ i ≤ t. Alice accepts only if (ri ≥ zi for all

i) and (ri = zi = 1 for at least t/5 values of i).

Completeness. Suppose Bob knows a y so that RL(x, y) = 1. Note that, for each 1 ≤ i ≤ t,
there are three cases in the above protocol:

(a) ri = 0: zi = RL(ui, vi) = RL(xi, vi) = 0, since xi 6∈ L;
(b) ri = 1 and wi = 0: zi = RL(ui, vi) = RL(x, yi), hence zi can be 0 or 1;
(c) ri = 1 and wi = 1: zi = RL(ui, vi) = RL(x, y) = 1.

Note that the case ri = 0 and zi = 1 never happen, hence Bob must be cheating if this
happens. Also, the probability that ri = wi = 1 is 1/4, thus it is expected to have t/4 values
of i so that ri = zi = 1, hence with high probability the number of such i is at least t/5 (In
fact, this probability is exponentially close to 1 by the laws of large numbers).
Soundness. Now suppose Bob does not know any y so that RL(x, y) = 1. Under the
security assumption of our FHE scheme, Bob has no way to distinguish Es(x) from Es(xi),
and Es(x) is independent random for each instance of encryption. Bob may try to guess zi
and send its encryption to Alice. The probability that (ri ≥ zi for all i) and (ri = zi = 1
for at least t/5 values of i) is exponentially small. Or Bob may guess a y and use a different
function R′ and compute zi := R′(ui, y) homomorphically from ci and the trivial encryption
of y. For Alice to accept, Bob must find R′ and y so that R′(x, y) = 1 and (R′(xi, y) = 0

3Note that we only need xi so that, for random y, RL(xi, y) = 0 holds with probability exponentially

close to 1.

Homomorphic Encryption Scheme 29

for all i with ri = 0), where x, x1, . . . , xt are unknown to Bob. Note that it is expected that
there are t/2 values of i with ri = 0. It can be shown that, for any function R′ and for
random x, y, x1, . . . , xt/2, the probability that R′(x, y) = 1 and R′(xi, y) = 0 for 1 ≤ i ≤ t/2
is at most 1/t. Hence, for large t, Bob has only a small probability of success. (Ideally,
we would want the probability to be exponentially small in t. We leave this as an open
problem.)
Zero Knowledge. First suppose Alice is not honest and tries to get information on Bob’s
secret input y. Alice would pick x1, . . . xt in certain pattern and hope to get the values
R(xi, y) for many different xi’s, then try to reconstruct y. Since Bob returns the values of
RL(xi, vi), which is either RL(xi, y) or RL(xi, yi) for some random yi, each with probability
1/2, Alice has no way to tell which case it is, hence can not deduce any information on y.
Next suppose Bob is not honest and tries to get information on Alice’s secret input x. Bob
only sees the ciphertexts of x and x1, . . . xt for some random xi’s. Since the FHE scheme
used is assumed to be semantically secure, Bob can not get any information on x.

7. Conclusions

We presented a compact fully homomorphic encryption scheme with a small cipher ex-
pansion that is suitable for practical applications in distributed networks of computers,
including IoTs, blockchains and cloud servers. The scheme can protect function privacy
and can be used in many applications including outsourced computing, multi-party secure
computation, verifiable computing, zero knowledge proof, etc. The bottleneck is that our
bootstrapping for homomorphic bit operations is still slow, however, it is suitable for hard-
ware implementation, especially on a cluster of special designed circuits that can perform
homomorphic bit operations in parallel. On the theoretical side, there are still many open
problems, including solving LWE problems and lattice basis problems, and there is a great
need for more careful studying of attacks based on lattice basis-reduction algorithms.

References

1. M. Ajtai, Generating hard instances of lattice problems (extended abstract), Proceedings of the Twenty-

eighth Annual ACM Symposium on Theory of Computing (New York, NY, USA), STOC ’96, ACM,
1996, pp. 99–108.

2. Martin R. Albrecht, On dual lattice attacks against small-secret LWE and parameter choices in HElib
and SEAL, Cryptology ePrint Archive, Report 2017/047, 2017, https://eprint.iacr.org/2017/047.

3. Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, Robert Fitzpatrick, and Ludovic Perret, On

the complexity of the BKW algorithm on LWE, Des. Codes Cryptography 74 (2015), no. 2, 325–354.
4. Martin R. Albrecht, Jean-Charles Faugère, Robert Fitzpatrick, and Ludovic Perret, Lazy modulus

switching for the BKW algorithm on LWE, Public-Key Cryptography – PKC 2014 (Berlin, Heidelberg)

(Hugo Krawczyk, ed.), Springer Berlin Heidelberg, 2014, pp. 429–445.
5. Martin R. Albrecht, Robert Fitzpatrick, and Florian Göpfert, On the efficacy of solving LWE by

reduction to unique-SVP, Information Security and Cryptology – ICISC 2013 (Cham) (Hyang-Sook

Lee and Dong-Guk Han, eds.), Springer International Publishing, 2014, pp. 293–310.
6. Martin R Albrecht, Rachel Player, and Sam Scott, On the concrete hardness of learning with errors,

Journal of Mathematical Cryptology 9 (2015), no. 3, 169–203.

7. Riham AlTawy, Raghvendra Rohit, Morgan He, Kalikinkar Mandal, Gangqiang Yang, and Guang
Gong, sliscp: Simeck-based permutations for lightweight sponge cryptographic primitives, Selected

Areas in Cryptography – SAC 2017 (Cham) (Carlisle Adams and Jan Camenisch, eds.), Springer

International Publishing, 2018, pp. 129–150.
8. Sanjeev Arora and Rong Ge, New algorithms for learning in presence of errors, Automata, Languages

and Programming - 38th International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011,
Proceedings, Part I, 2011, pp. 403–415.

9. Shi Bai and Steven D. Galbraith, Lattice decoding attacks on binary LWE, pp. 322–337, Springer

International Publishing, Cham, 2014.
10. Boaz Barak and Zvika Brakerski, The swiss army knife of cryptography, Blog document, 2012,

http://windowsontheory.org/2012/05/01/the-swiss-army-knife-of-cryptography.

30 Shuhong Gao

11. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan, and

Ke Yang, On the (im)possibility of obfuscating programs, J. ACM 59 (2012), no. 2, 6:1–6:48.

12. Carsten Baum, Ivan Damg̊ard, and Claudio Orlandi, Publicly auditable secure multi-party computa-
tion, Security and Cryptography for Networks (Cham) (Michel Abdalla and Roberto De Prisco, eds.),

Springer International Publishing, 2014, pp. 175–196.

13. Anja Becker, Jean-Sébastien Coron, and Antoine Joux, Improved generic algorithms for hard knap-
sacks, Advances in Cryptology – EUROCRYPT 2011 (Berlin, Heidelberg) (Kenneth G. Paterson, ed.),

Springer Berlin Heidelberg, 2011, pp. 364–385.

14. Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven, New directions in nearest neighbor
searching with applications to lattice sieving, Proceedings of the Twenty-seventh Annual ACM-SIAM

Symposium on Discrete Algorithms (Philadelphia, PA, USA), SODA ’16, Society for Industrial and

Applied Mathematics, 2016, pp. 10–24.
15. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza, SNARKs for C:

Verifying program executions succinctly and in zero knowledge, Advances in Cryptology – CRYPTO
2013 (Berlin, Heidelberg) (Ran Canetti and Juan A. Garay, eds.), Springer Berlin Heidelberg, 2013,

pp. 90–108.

16. Rikke Bendlin and Ivan Damg̊ard, Threshold decryption and zero-knowledge proofs for lattice-based
cryptosystems, Theory of Cryptography (Berlin, Heidelberg) (Daniele Micciancio, ed.), Springer Berlin

Heidelberg, 2010, pp. 201–218.

17. Avrim Blum, Adam Kalai, and Hal Wasserman, Noise-tolerant learning, the parity problem, and the
statistical query model, J. ACM 50 (2003), no. 4, 506–519. MR 2146884

18. Dan Boneh, Amit Sahai, and Brent Waters, Functional encryption: Definitions and challenges, Theory

of Cryptography (Berlin, Heidelberg) (Yuval Ishai, ed.), Springer Berlin Heidelberg, 2011, pp. 253–273.
19. , Functional encryption: A new vision for public-key cryptography, Commun. ACM 55 (2012),

no. 11, 56–64.
20. Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig, Improved security for a ring-based

fully homomorphic encryption scheme, Cryptography and Coding (Berlin, Heidelberg) (Martijn Stam,

ed.), Springer Berlin Heidelberg, 2013, pp. 45–64.
21. Zvika Brakerski, Fully homomorphic encryption without modulus switching from classical gapsvp, Pro-

ceedings of the 32Nd Annual Cryptology Conference on Advances in Cryptology — CRYPTO 2012 -

Volume 7417 (New York, NY, USA), Springer-Verlag New York, Inc., 2012, pp. 868–886.
22. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan, Fully homomorphic encryption without

bootstrapping, Cryptology ePrint Archive, Report 2011/277, 2011, https://eprint.iacr.org/2011/277.

23. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan, (Leveled) fully homomorphic encryption
without bootstrapping, ACM Trans. Comput. Theory 6 (2014), no. 3, Art. 13, 36. MR 3255281

24. Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou, Four round secure computation without

setup, Theory of Cryptography (Cham) (Yael Kalai and Leonid Reyzin, eds.), Springer International
Publishing, 2017, pp. 645–677.

25. Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé, Classical hardness
of learning with errors, STOC’13—Proceedings of the 2013 ACM Symposium on Theory of Computing,

ACM, New York, 2013, pp. 575–584. MR 3210819

26. Zvika Brakerski and Vinod Vaikuntanathan, Fully homomorphic encryption from ring-LWE and se-
curity for key dependent messages, Advances in Cryptology – CRYPTO 2011 (Berlin, Heidelberg)
(Phillip Rogaway, ed.), Springer Berlin Heidelberg, 2011, pp. 505–524.

27. , Efficient fully homomorphic encryption from (standard) LWE, SIAM Journal on Computing
43 (2014), no. 2, 831–871.

28. , Lattice-based FHE as secure as PKE, Proceedings of the 5th Conference on Innovations in

Theoretical Computer Science (New York, NY, USA), ITCS ’14, ACM, 2014, pp. 1–12.
29. Johannes Buchmann, Florian Göpfert, Rachel Player, and Thomas Wunderer, On the hardness of LWE

with binary error: Revisiting the hybrid lattice-reduction and meet-in-the-middle attack, Proceedings
of the 8th International Conference on Progress in Cryptology — AFRICACRYPT 2016 - Volume 9646
(New York, NY, USA), Springer-Verlag New York, Inc., 2016, pp. 24–43.

30. Daniel Cabarcas, Florian Göpfert, and Patrick Weiden, Provably secure LWE encryption with smallish
uniform noise and secret, Proceedings of the 2Nd ACM Workshop on ASIA Public-key Cryptography

(New York, NY, USA), ASIAPKC ’14, ACM, 2014, pp. 33–42.

31. Wouter Castryck, Ilia Iliashenko, and Frederik Vercauteren, Provably weak instances of Ring-LWE
revisited, Proceedings of the 35th Annual International Conference on Advances in Cryptology —

EUROCRYPT 2016 - Volume 9665 (New York, NY, USA), Springer-Verlag New York, Inc., 2016,

pp. 147–167.
32. Sanjit Chatterjee, Neal Koblitz, Alfred Menezes, and Palash Sarkar, Another look at tightness II:

Practical issues in cryptography, Paradigms in Cryptology – Mycrypt 2016. Malicious and Exploratory

Homomorphic Encryption Scheme 31

Cryptology (Cham) (Raphaël C.-W. Phan and Moti Yung, eds.), Springer International Publishing,

2017, https://eprint.iacr.org/2016/360, pp. 21–55.

33. Hao Chen, Kim Laine, and Rachel Player, Simple encrypted arithmetic library - SEAL v2.1, Cryptology
ePrint Archive, Report 2017/224, 2017, https://eprint.iacr.org/2017/224.

34. Hao Chen, Kristin Lauter, and Katherine E. Stange, Security considerations for galois non-dual RLWE

families, Cryptology ePrint Archive, Report 2016/193, 2016, https://eprint.iacr.org/2016/193.
35. Hao Chen, Kristin E. Lauter, and Katherine E. Stange, Attacks on the search-RLWE problem with

small error, Cryptology ePrint Archive, Report 2015/971, 2015, https://eprint.iacr.org/2015/971.

36. Yao Chen, Benjamin Case, Shuhong Gao, and Guang Gong, Error analysis of weak Poly-LWE in-
stances, 2017, http://cacr.uwaterloo.ca/techreports/2017/cacr2017-07.pdf.

37. Yuanmi Chen and Phong Q. Nguyen, BKZ 2.0: better lattice security estimates, Advances in

cryptology—ASIACRYPT 2011, Lecture Notes in Comput. Sci., vol. 7073, Springer, Heidelberg, 2011,
pp. 1–20. MR 2934994

38. Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon Sung Lee, Tancrède Lepoint, Mehdi Ti-
bouchi, and Aaram Yun, Batch fully homomorphic encryption over the integers, Advances in Cryp-

tology – EUROCRYPT 2013 (Berlin, Heidelberg) (Thomas Johansson and Phong Q. Nguyen, eds.),

Springer Berlin Heidelberg, 2013, pp. 315–335.
39. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène, Faster fully homomorphic en-

cryption: Bootstrapping in less than 0.1 seconds, Advances in Cryptology–ASIACRYPT 2016: 22nd In-

ternational Conference on the Theory and Application of Cryptology and Information Security, Hanoi,
Vietnam, December 4-8, 2016, Proceedings, Part I 22, Springer, 2016, pp. 3–33.

40. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène, Improving TFHE: faster

packed homomorphic operations and efficient circuit bootstrapping, Cryptology ePrint Archive, Report
2017/430, 2017, https://eprint.iacr.org/2017/430.

41. Wutichai Chongchitmate and Rafail Ostrovsky, Circuit-private multi-key FHE, Proceedings, Part II,

of the 20th IACR International Conference on Public-Key Cryptography — PKC 2017 - Volume 10175
(New York, NY, USA), Springer-Verlag New York, Inc., 2017, pp. 241–270.

42. Kai-Min Chung, Yael Kalai, and Salil Vadhan, Improved delegation of computation using fully homo-
morphic encryption, Advances in Cryptology – CRYPTO 2010 (Berlin, Heidelberg) (Tal Rabin, ed.),

Springer Berlin Heidelberg, 2010, pp. 483–501.

43. Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi, Fully homomorphic
encryption over the integers with shorter public keys, Advances in Cryptology - CRYPTO 2011 - 31st

Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, 2011,

pp. 487–504.
44. Thomas M. Cover and Joy A. Thomas, Elements of Information Theory, 2nd Edition, John Wiley and

Sons, 2006.

45. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P. Smart,
Practical covertly secure mpc for dishonest majority – or: Breaking the spdz limits, Computer Security

– ESORICS 2013 (Berlin, Heidelberg) (Jason Crampton, Sushil Jajodia, and Keith Mayes, eds.),

Springer Berlin Heidelberg, 2013, pp. 1–18.
46. Ivan Damg̊ard, Valerio Pastro, Nigel Smart, and Sarah Zakarias, Multiparty computation from some-

what homomorphic encryption, Advances in Cryptology – CRYPTO 2012 (Berlin, Heidelberg) (Rei-
haneh Safavi-Naini and Ran Canetti, eds.), Springer Berlin Heidelberg, 2012, pp. 643–662.

47. Ivan Damg̊ard, Antigoni Polychroniadou, and Vanishree Rao, Adaptively secure multi-party compu-

tation from LWE (via equivocal FHE), Public-Key Cryptography – PKC 2016 (Berlin, Heidelberg)
(Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, eds.), Springer Berlin Hei-

delberg, 2016, pp. 208–233.
48. Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan, Fully homomorphic encryp-

tion over the integers, IACR Cryptology ePrint Archive 2009 (2009), 616.

49. Marten van Dijk and Ari Juels, On the impossibility of cryptography alone for privacy-preserving cloud

computing, Proceedings of the 5th USENIX Conference on Hot Topics in Security (Berkeley, CA, USA),
HotSec’10, USENIX Association, 2010, pp. 1–8.

50. Alexandre Duc, Florian Tramèr, and Serge Vaudenay, Better algorithms for LWE and LWR, Advances
in Cryptology – EUROCRYPT 2015 (Berlin, Heidelberg) (Elisabeth Oswald and Marc Fischlin, eds.),
Springer Berlin Heidelberg, 2015, pp. 173–202.

51. Léo Ducas and Daniele Micciancio, FHEW: bootstrapping homomorphic encryption in less than a

second, Advances in cryptology—EUROCRYPT 2015. Part I, Lecture Notes in Comput. Sci., vol.
9056, Springer, Heidelberg, 2015, pp. 617–640. MR 3344940

52. Kirsten Eisenträger, Sean Hallgren, and Kristin Lauter, Weak instances of PLWE, Selected Areas
in Cryptography – SAC 2014 (Cham) (Antoine Joux and Amr Youssef, eds.), Springer International

Publishing, 2014, pp. 183–194.

32 Shuhong Gao

53. Yara Elias, Kristin E. Lauter, Ekin Ozman, and Katherine E. Stange, Provably weak instances of Ring-

LWE, Advances in Cryptology – CRYPTO 2015 (Berlin, Heidelberg) (Rosario Gennaro and Matthew

Robshaw, eds.), Springer Berlin Heidelberg, 2015, pp. 63–92.
54. Junfeng Fan and Frederik Vercauteren, Somewhat practical fully homomorphic encryption, Cryptology

ePrint Archive, Report 2012/144, 2012, https://eprint.iacr.org/2012/144.

55. Steven D. Galbraith, Mathematics of public key cryptography, 1st ed., Cambridge University Press,
New York, NY, USA, 2012.

56. Shuhong Gao, Frank Volny IV, and Mingsheng Wang, A new framework for computing Grobner bases,

Math. Comput. 85 (2016), no. 297, 449–465.
57. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters, Candidate

indistinguishability obfuscation and functional encryption for all circuits, Proceedings of the 2013

IEEE 54th Annual Symposium on Foundations of Computer Science (Washington, DC, USA), FOCS
’13, IEEE Computer Society, 2013, pp. 40–49.

58. Rosario Gennaro, Craig Gentry, and Bryan Parno, Non-interactive verifiable computing: Outsourcing
computation to untrusted workers, Advances in Cryptology – CRYPTO 2010 (Berlin, Heidelberg) (Tal

Rabin, ed.), Springer Berlin Heidelberg, 2010, pp. 465–482.

59. Rosario Gennaro and Daniel Wichs, Fully homomorphic message authenticators, Advances in Cryptol-
ogy - ASIACRYPT 2013 (Berlin, Heidelberg) (Kazue Sako and Palash Sarkar, eds.), Springer Berlin

Heidelberg, 2013, pp. 301–320.

60. Craig Gentry, Fully homomorphic encryption using ideal lattices, Proceedings of the 41st Annual ACM
Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, 2009,

pp. 169–178.

61. Craig Gentry and Shai Halevi, Fully homomorphic encryption without squashing using depth-3 arith-
metic circuits, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science—FOCS 2011,

IEEE Computer Soc., Los Alamitos, CA, 2011, pp. 107–116. MR 2932685

62. , Implementing Gentry’s fully-homomorphic encryption scheme, Advances in cryptology—

EUROCRYPT 2011, Lecture Notes in Comput. Sci., vol. 6632, Springer, Heidelberg, 2011, pp. 129–148.

MR 2813639
63. Craig Gentry, Shai Halevi, and Nigel P. Smart, Better bootstrapping in fully homomorphic encryption,

Public key cryptography—PKC 2012, Lecture Notes in Comput. Sci., vol. 7293, Springer, Heidelberg,

2012, pp. 1–16. MR 2980588
64. , Fully homomorphic encryption with polylog overhead, Advances in cryptology—EUROCRYPT

2012, Lecture Notes in Comput. Sci., vol. 7237, Springer, Heidelberg, 2012, pp. 465–482. MR 2972914

65. Craig Gentry, Amit Sahai, and Brent Waters, Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based, Advances in Cryptology–CRYPTO 2013,

Springer, 2013, pp. 75–92.

66. O. Goldreich, S. Micali, and A. Wigderson, How to play any mental game, Proceedings of the Nine-
teenth Annual ACM Symposium on Theory of Computing (New York, NY, USA), STOC ’87, ACM,

1987, pp. 218–229.
67. Shafi Goldwasser, Yael Tauman Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai Zel-

dovich, How to run turing machines on encrypted data, Advances in Cryptology – CRYPTO 2013

(Berlin, Heidelberg) (Ran Canetti and Juan A. Garay, eds.), Springer Berlin Heidelberg, 2013, pp. 536–
553.

68. Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs, Leveled fully homomorphic signatures

from standard lattices, Proceedings of the Forty-seventh Annual ACM Symposium on Theory of Com-
puting (New York, NY, USA), STOC ’15, ACM, 2015, pp. 469–477.

69. Qian Guo, Thomas Johansson, and Paul Stankovski, Coded-BKW: Solving LWE using lattice codes,
pp. 23–42, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

70. Shai Halevi, Tutorial on homomorphic encryption, https://shaih.github.io/pubs/he-chapter.pdf

(2017).

71. Shai Halevi, Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan Venkitasubramaniam,
Round-optimal secure multi-party computation, Cryptology ePrint Archive, Report 2017/1056, 2017,

https://eprint.iacr.org/2017/1056.
72. Shai Halevi and Victor Shoup, Algorithms in HElib, Advances in cryptology—CRYPTO 2014. Part I,

Lecture Notes in Comput. Sci., vol. 8616, Springer, Heidelberg, 2014, pp. 554–571. MR 3239456

73. , Bootstrapping for helib, Advances in cryptology—EUROCRYPT 2015. Part I, Lecture Notes
in Comput. Sci., vol. 9056, Springer, Heidelberg, 2015, pp. 641–670. MR 3344941

74. Guillaume Hanrot, Xavier Pujol, and Damien Stehlé, Algorithms for the shortest and closest lattice

vector problems, Coding and Cryptology (Berlin, Heidelberg) (Yeow Meng Chee, Zhenbo Guo, San
Ling, Fengjing Shao, Yuansheng Tang, Huaxiong Wang, and Chaoping Xing, eds.), Springer Berlin

Heidelberg, 2011, pp. 159–190.

Homomorphic Encryption Scheme 33

75. Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman, Ntru: A ring-based public key cryptosystem,

Algorithmic Number Theory (Berlin, Heidelberg) (Joe P. Buhler, ed.), Springer Berlin Heidelberg,

1998, pp. 267–288.
76. Nick Howgrave-Graham and Antoine Joux, New generic algorithms for hard knapsacks, Advances in

Cryptology – EUROCRYPT 2010 (Berlin, Heidelberg) (Henri Gilbert, ed.), Springer Berlin Heidelberg,

2010, pp. 235–256.
77. Ravi Kannan, Minkowski’s convex body theorem and integer programming, Math. Oper. Res. 12 (1987),

no. 3, 415–440.

78. Miran Kim and Kristin Lauter, Private genome analysis through homomorphic encryption, BMC
Medical Informatics and Decision Making 15(Suppl 5) (2015), no. S3, http://doi.org/10.1186/1472-

6947-15-S5-S3.

79. Paul Kirchner and Pierre-Alain Fouque, An improved BKW algorithm for LWE with applications to
cryptography and lattices, pp. 43–62, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

80. Thijs Laarhoven and Benne de Weger, Faster sieving for shortest lattice vectors using spherical locality-
sensitive hashing, Progress in Cryptology – LATINCRYPT 2015 (Cham) (Kristin Lauter and Francisco

Rodŕıguez-Henŕıquez, eds.), Springer International Publishing, 2015, pp. 101–118.

81. Thijs Laarhoven, Michele Mosca, and Joop van de Pol, Finding shortest lattice vectors faster using
quantum search, Des. Codes Cryptography 77 (2015), no. 2-3, 375–400.

82. A. K. Lenstra, H. W. Lenstra, and L. Lovász, Factoring polynomials with rational coefficients, Math-

ematische Annalen 261 (1982), no. 4, 515–534.
83. Yehuda Lindell, Nigel P. Smart, and Eduardo Soria-Vazquez, More efficient constant-round multi-

party computation from BMR and SHE, Theory of Cryptography (Berlin, Heidelberg) (Martin Hirt

and Adam Smith, eds.), Springer Berlin Heidelberg, 2016, pp. 554–581.
84. Richard Lindner and Chris Peikert, Better key sizes (and attacks) for LWE-based encryption, Topics

in cryptology—CT-RSA 2011, Lecture Notes in Comput. Sci., vol. 6558, Springer, Heidelberg, 2011,

pp. 319–339.
85. Mingjie Liu and Phong Q. Nguyen, Solving BDD by enumeration: an update, Topics in cryptology—

CT-RSA 2013, Lecture Notes in Comput. Sci., vol. 7779, Springer, Heidelberg, 2013, pp. 293–309.
MR 3082022

86. Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan, On-the-fly multiparty computation on

the cloud via multikey fully homomorphic encryption, Proceedings of the Forty-fourth Annual ACM
Symposium on Theory of Computing (New York, NY, USA), STOC ’12, ACM, 2012, pp. 1219–1234.

87. Vadim Lyubashevsky, Chris Peikert, and Oded Regev, On ideal lattices and learning with errors

over rings, Advances in cryptology—EUROCRYPT 2010, Lecture Notes in Comput. Sci., vol. 6110,
Springer, Berlin, 2010, pp. 1–23. MR 2660480

88. Daniele Micciancio and Chris Peikert, Hardness of SIS and LWE with small parameters, Advances in

Cryptology – CRYPTO 2013 (Berlin, Heidelberg) (Ran Canetti and Juan A. Garay, eds.), Springer
Berlin Heidelberg, 2013, pp. 21–39.

89. Daniele Micciancio and Oded Regev, Lattice-based cryptography, pp. 147–191, Springer Berlin Heidel-

berg, Berlin, Heidelberg, 2009.
90. Daniele Micciancio and Panagiotis Voulgaris, Faster exponential time algorithms for the shortest vector

problem, Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2010, Austin, Texas, USA, January 17-19, 2010, 2010, pp. 1468–1480.

91. Daniele Micciancio and Michael Walter, Practical, predictable lattice basis reduction, Advances in

cryptology—EUROCRYPT 2016. Part I, Lecture Notes in Comput. Sci., vol. 9665, Springer, Berlin,
2016, pp. 820–849. MR 3516393

92. Arnold Neumaier and Damien Stehlé, Faster LLL-type reduction of lattice bases, Proceedings of the
ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC 2016, Waterloo,
ON, Canada, July 19-22, 2016, 2016, pp. 373–380.

93. Phong Q. Nguyen and Damien Stehlé, LLL on the average, Algorithmic Number Theory, 7th In-

ternational Symposium, ANTS-VII, Berlin, Germany, July 23-28, 2006, Proceedings (Florian Hess,
Sebastian Pauli, and Michael E. Pohst, eds.), Lecture Notes in Computer Science, vol. 4076, Springer,

2006, pp. 238–256.
94. National Institute of Standards and Technology, FIPS PUB 202 SHA-3 standard: Permutation-based

hash and extendable-output functions, 2015.

95. Rafail Ostrovsky, Anat Paskin-Cherniavsky, and Beni Paskin-Cherniavsky, Maliciously circuit-private

FHE, Advances in Cryptology – CRYPTO 2014 (Berlin, Heidelberg) (Juan A. Garay and Rosario
Gennaro, eds.), Springer Berlin Heidelberg, 2014, https://eprint.iacr.org/2013/307, pp. 536–553.

96. Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan, How to delegate and verify in public:
Verifiable computation from attribute-based encryption, Theory of Cryptography (Berlin, Heidelberg)

(Ronald Cramer, ed.), Springer Berlin Heidelberg, 2012, pp. 422–439.

34 Shuhong Gao

97. Oded Regev, On lattices, learning with errors, random linear codes, and cryptography, Proceedings of

the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005,

2005, pp. 84–93.
98. Oded Regev, On lattices, learning with errors, random linear codes, and cryptography, J. ACM 56

(2009), no. 6, 34:1–34:40.

99. R L Rivest, L Adleman, and M L Dertouzos, On data banks and privacy homomorphisms, Foundations
of Secure Computation, Academia Press (1978), 169–179.

100. C. P. Schnorr and M. Euchner, Lattice basis reduction: Improved practical algorithms and solving

subset sum problems, Mathematical Programming 66 (1994), no. 1, 181–199.
101. N. P. Smart and F. Vercauteren, Fully homomorphic encryption with relatively small key and cipher-

text sizes, Public Key Cryptography – PKC 2010 (Berlin, Heidelberg) (Phong Q. Nguyen and David

Pointcheval, eds.), Springer Berlin Heidelberg, 2010, pp. 420–443.
102. , Fully homomorphic simd operations, Designs, Codes and Cryptography 71 (2014), no. 1,

57–81.
103. Damien Stehlé and Ron Steinfeld, Making NTRU as secure as worst-case problems over ideal lat-

tices, Advances in Cryptology – EUROCRYPT 2011 (Berlin, Heidelberg) (Kenneth G. Paterson, ed.),

Springer Berlin Heidelberg, 2011, pp. 27–47.
104. Xiaoyun Wang, Mingjie Liu, Chengliang Tian, and Jingguo Bi, Improved Nguyen-Vidick heuristic

sieve algorithm for shortest vector problem, Proceedings of the 6th ACM Symposium on Information,

Computer and Communications Security, ASIACCS 2011, Hong Kong, China, March 22-24, 2011,
2011, pp. 1–9.

105. Feng Zhang, Yanbin Pan, and Gengran Hu, A three-level sieve algorithm for the shortest vector problem,

Selected Areas in Cryptography - SAC 2013 - 20th International Conference, Burnaby, BC, Canada,
August 14-16, 2013, Revised Selected Papers, 2013, pp. 29–47.

Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975 USA

sgao@clemson.edu

