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Abstract. The slightly subexponential algorithm of Blum, Kalai and Wasserman (BKW) provides
a basis for assessing LPN/LWE security. However, its huge memory consumption strongly limits its
practical applicability, thereby preventing precise security estimates for cryptographic LPN/LWE
instantiations.
We provide the first time-memory trade-offs for the BKW algorithm. For instance, we show how
to solve LPN in dimension k in time 2

4
3

k
log k and memory 2

2
3

k
log k . Using the Dissection technique

due to Dinur et al. (Crypto ’12) and a novel, slight generalization thereof, we obtain fine-grained
trade-offs for any available (subexponential) memory while the running time remains subexponential.
Reducing the memory consumption of BKW below its running time also allows us to propose a first
quantum version QBKW for the BKW algorithm.

1 Introduction

The Learning Parity with Noise (LPN) problem [5] and its generalization to arbitrary moduli, the Learning
with Errors (LWE) problem [33], lie at the heart of our most promising coding-based and lattice-based
post-quantum cryptographic constructions [3,32,29]. With the NIST standardization [1], we have the
urgent pressure to identify LPN/LWE instantiations that allow for efficient constructions, but yet give us
the desired level of classic and quantum security.

Hence, we have to run cryptanalytic algorithms on medium-scale parameter sets in order to properly
extrapolate towards cryptographic instantiations.

In LPN of dimension k and error-rate 0 ≤ p < 1/2, one has to recover a secret s ∈ Fk2 from samples
(ai, 〈ai, s〉+ ei) for uniformly random ai ∈ Fk2 and inner products with Bernoulli distributed error ei, i.e.,
Pr[ei = 1] = p.

It is not hard to see that for constant error p, any candidate solution s′ can be checked for correctness
in time polynomial in p and k. This gives a simple brute-force LPN algorithm with time complexity 2k
and constant memory.

The algorithm of Blum, Kalai and Wassermann [6] solves the faulty system of linear equations from
LPN/LWE by a block-wise Gaussian elimination. In a nutshell, BKW takes sums of two vectors whenever
they cancel a block of Θ( k

log k ) bits to keep the accumulating error under control. In cryptographic
constructions we usually have constant p, for which the BKW algorithm runs in time 2

k
log k (1+o(1)), albeit

using the same amount of memory.
These two algorithms, brute-force and BKW, settle the initial endpoints for our time-memory trade-offs.

Hence, for gaining a log(k)-factor in the run time exponent one has to invest memory up to the point
where memory equals run time. Interestingly, this behavior occurs in the second method of choice for
measuring LWE security, lattice reduction, too.

Whereas on lattices of dimension n, lattice enumeration such as Kannan’s algorithm [22] takes time
2O(n logn) with polynomial memory only, lattice sieving methods [26,13,25,27] require 2O(n) time and
memory. Due to their large memory requirements, in practice lattice sieving is currently outperformed by
enumeration, and there is an increasing interest in constructing time-memory trade-offs, e.g., by lattice
tuple sieving [4,18,19].

For BKW, the research so far mainly concentrated on run time, where many optimizations have been
proposed in the cryptographic literature, e.g. [28,16,17,36,8]. While these improvements may significantly
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Table 1: c-sum-algorithms: Given a list L and some target t, the algorithms output |L| sets each containing
c entries from L adding to t. Memory consumption of the algorithms coincides with the size of list L. Let
Nc := (MBKW)

log c
c−1 = 2

log c
c−1

k
log k .

c-sum Algorithm Memory Time for

classic

sorting (BKW) N2 N2 c = 2 [6]
Naive Nc Nc

c−1 c ≥ 2 Section 4.1
Dissection Nc Nc

c−
√

2c c = 4, 7, 11, 16, . . . Section 5.2
Tailored Dissection Nc

α Nc
c−α
√

2c c = 4, 7, 11, 16, . . . α ∈ [1,
√
c√
c−1 ] Section 5.3

quantum Naive + Grover Nc Nc
c/2 c ≥ 2 Section 4.2

reduce the running time for breaking concrete LPN instances such as (k, p) = (512, 1/4) or (512, 1/8), to
the best of our knowledge for the running time exponent k

log k (1 + o(1)) all improvements only affect the
o(1)-term. Moreover, all proposals share the same huge memory requirements as original BKW, making
it impossible to run them even in moderately large dimensions.

As a consequence state-of-the-art BKW implementations are currently only possible in dimension
k up to around 100. For instance [14] reported a break of (k, p) = (135, 1/4). However, of the total 6
days running time, the authors spent 2.5 days for an exponential preprocessing, followed by less than 2
hours BKW in dimension 99, and another 3.5 days of exponential decoding. The reason for this run-time
imbalance is that BKW in dimension 99 had already consumed all available memory, namely 240 bits.

Hence, if we really want to break larger LPN instances in practice, we must study time-memory
trade-offs that sacrifice a bit of running time, but stay in the sub-exponential time regime at the benefit
of a manageable memory.

Our contribution. We provide the first time-memory trade-offs for the BKW algorithm. These trade-offs
give us a smooth interpolation for the complexities of solving LPN between the known endpoints 2k time
for brute-force and 2

k
log k for BKW.

Since our algorithms’ running times remain subexponential even for given memory below the require-
ment 2

k
log k of classic BKW, we (asymptotically) outperform all previous algorithms (e.g. [14]) that solved

LPN in exponential time when classic BKW was not applicable due to memory restrictions.
As a starting point, we consider—instead of 2-sums as in the original BKW algorithm—c-sums for

(constant) c > 2 that cancel some blocks of bits. The use of sums of more than 2 vectors has already
been discussed in the literature for improving the running time of BKW, e.g. by Zhang et al. [36] as an
extension LF (k) of the BKW variants LF1 and LF2 by Levieil and Fouque [28], using Wagner’s k-list
algorithm [35].

Since the number of c-sums grows exponentially in c, so does the number of c-sums whose sum cancels
some block of bits. In turn, we systematically use c-sums to significantly lower the number of samples N
that need to be stored, at the slightly increased cost of finding such c-sums.

We show that the complexities of any c-sum BKW algorithm are dominated by the cost of computing
c-sums. As a consequence we abstract the c-sum-problem from the BKW algorithm and study various
memory-friendly algorithms to solve it. We ensure that our c-sum algorithms do not require more memory
than already consumed by c-sum BKW for storing its samples. In fact, our BKW algorithms have sample
and (thus) memory complexity as little as Nc := MBKW

log c
c−1 for any constant c ∈ N, whereMBKW := 2

k
log k

denotes the memory (and sample) requirement of classic BKW.
In Table 1, we give a brief overview of our c-sum algorithms complexities, and therefore also of our

c-sum BKW complexities. We stress that all c-sum algorithms from Table 1, including those that use the
Dissection technique [34,11], may be studied for arbitrary list sizes outside of the BKW context.

Naive. We first consider a naive approach that computes all (c− 1)-sums of list entries and looks for
some matching cth vector. This naive approach already gives us a smooth first time-memory trade-off,
informally captured in the following theorem.
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Theorem 1.1 (Naive BKW Trade-Off, informal). Let c ∈ N. The LPN problem in dimension k
can be solved in Time T and space M where

log T = log c · k

log k , logM = log c
c− 1 ·

k

log k .

Observe that the trade-off behaves quite nicely as a function of c. While we can reduce the memory
consumption almost by a factor of 1

c this comes at the cost of only a (log c)-factor in the run time
exponent.

Note that for c = 2 Theorem 1.1 yields the well-known BKW complexities. While we consider constant
c throughout this work, we point out that our results hold up to a choice of c(k) = k1− log log k

log k for which
the formulas in Theorem 1.1 (as well as for the upcoming trade-offs) result in exponential running time
in k with polynomial memory, matching the endpoint of the LPN brute-force algorithm. See Figure 1
(stars) for an illustration of this time-memory trade-off.
QBKW. Using a standard Grover-search in our naive c-sum algorithm to identify (c − 1)-sums for
which there exists a matching cth vector, we halve the running time complexity exponent from log c · k

log k
down to log c

2 · k
log k . See Figure 1 (green triangles) for the resulting trade-off curve.

Dissection. We replace our naive c-sum algorithm by more advanced time-memory techniques like
Schroeppel-Shamir [34] and its generalization, Dissection [11], to reduce the classic running time. We call
the resulting algorithm Dissection-BKW. To give some illustrative results, with the Schroeppel-Shamir
technique Dissection-BKW achieves exponents

log T = 4
3

k

log k , logM = 2
3

k

log k

(see the blue diamond at logM = 2
3

k
log k in Figure 1). Using 7-Dissection, Dissection-BKW achieves

exponents
log T = 1.87 k

log k , logM = 0.47 k

log k
(see the blue diamond at logM ≈ 0.47 k

log k in Figure 1).

Theorem 1.2 (Dissection BKW Trade-Off, informal). Let c ∈ N be sufficiently large. The LPN
problem in dimension k can be solved in Time T and space M where

log T =
(

1−
√

2
c

)
· log c · k

log k , logM = log c
c− 1 ·

k

log k .

Hence, in comparison to Theorem 1.1 Dissection mitigates the price we pay for saving a factor of log c
c−1 in

memory from 1 down to
(

1−
√

2/c
)
.

The trade-off is depicted by the blue diamonds in Figure 1. Interestingly, when classically employing
Schroeppel-Shamir we are on par (see point ( 2

3 ,
4
3 ) in Figure 1) with the complexities from the quantum

trade-off as Schroeppel-Shamir allows for a square-root gain in the running time; the same as using a
Grover-search in a quantum algorithm.
Tailored Dissection. Eventually, we introduce a new slight generalization of the Dissection technique
that we call tailored Dissection. It allows us to achieve a piece-wise continuous trade-off (black line
segments depicted in Figure 1) covering the sub-exponential memory regime entirely.
Open Problem. There are quantum versions of Schroeppel-Shamir/Dissection [23] faster than their
classic counterpart when finding a single solution is satisfactory. However, their advantage over Schroeppel-
Shamir/Dissection seems to evaporate if one is required to find many solutions as in our BKW case.

2 Preliminaries

2.1 Notation

For a ≤ b ∈ N let [a, b] := {a, a + 1, . . . , b} and [a] := [1, a]. For a set S and s ≤ |S| let
(
S
s

)
denote the

set of all size-s subsets of S. A list L = (l1, . . . , li) is an element L ∈ Si and is of length |L| = i. We let
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Fig. 1: Illustration of our BKW trade-offs. Instantiations exist exactly for marks as well as everywhere on solid lines.
Naive BKW trade-off in red stars (see Theorem 1.1), QBKW trade-off in green triangles and Dissection-BKW
trade-offs in blue diamonds and solid black line segments (see Theorem 1.2).

∅ denote the empty list. For two lists L1, L2 we write L1 ⊆ L2 if all elements from L1 are contained
in L2 at least as often as in L1. We write shortly l ∈ L2 for (l) ⊆ L2. For lists L1 = (l1, . . . , li) and
L2 = (li+1, . . . , lj) we let L1 ∪ L2 := (l1, . . . , li, li+1, . . . , lj). Logarithms are always base 2.

For v ∈ Fa2 and b ≤ a we denote the last b coordinates of v by lowb(v). ui denotes the ith unit vector.
0b denotes the zero vector of dimension b.

By UM we denote the uniform distribution on a finite set M , by Berp we denote the Bernoulli
distribution, i.e., X ∼ Berp means that Pr [X = 1] = 1− Pr [X = 0] = p. The sum X of n independent
random variables X1, . . . , Xn

iid∼ Berp is binomial distributed with parameters n and p, denoted by
X ∼ Binn,p. A probability p(k) is called overwhelming in k, if 1 − p(k) is negligible in k. We denote
deterministic assignments in algorithms by ←.

Theorem 2.1 (Chernoff Bound, [30]). Let X ∼ Binn,p. Then

Pr [X ≤ (1− r)np] ≤ exp
(
−1

2r
2np

)
for any r ∈ [0, 1]. (1)

2.2 The LPN Problem

Definition 2.1 ((Search) LPN Problem). Let k ∈ N, s ∈ Fk2 and p ∈ [0, 1
2 ) be a constant. Let

Sample denote an oracle that, when queried, samples a ∼ UFk2 , e ∼ Berp and outputs a sample of the
form (a, b) := (a, 〈a, s〉+ e) . The LPNk problem consists of recovering s given access to Sample. In the
following we call k the dimension, s the secret, p the error rate, b the label of a and e the noise.

Brute-Force Sampling Algorithm. A straight-forward way to recover the first bit s1 of the secret s
is to query Sample until we obtain a sample of the form (u1, b). Then b = 〈u1, s〉+ e = s1 + e. Hence,
Pr [s1 = b] = 1− p > 1

2 . However, as Sample draws a uniformly from Fk2 , we expect to have to query the
oracle 2k times to have a = u1.

Further, to boost the confidence in recovering s1 correctly from merely 1− p to being overwhelming
(in k) one may collect many samples (u1, bi) and decide on s1 by majority vote, whose error is bounded
in the following lemma.

Lemma 2.1 (Majority Vote). Let q > 1
2 and X1, . . . , Xn ∼ Berq independently. Then

Pr
[

n∑
i=1

Xi >
n

2

]
≥ 1− exp

(
− n

2q

(
q − 1

2

)2
)

.
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Proof. Since X :=
∑n
i=1 Xi ∼ Binn,q, using Theorem 2.1 with r = 1− 1

2q gives

Pr
[
X >

n

2

]
≥ 1− exp

(
−1

2

(
1− 1

2q

)2
nq

)
= 1− exp

(
− n

2q

(
q − 1

2

)2
)

.

ut

Corollary 2.1. For n := 2(1−p)k
( 1

2−p)2 many samples, a majority vote recovers s1 correctly with probability at
least 1− exp(−k).

Proof. Let us define Xi = 1 iff bi = s1, which implies q = 1− p. Lemma 2.1 yields the desired result. ut

Therefore, for any constant error rate p, the majority vote requires only a linear number n = O(k) of
labels of the form (u1, bi). Clearly, we can recover the remaining bits sj , j = 2, . . . , k of the secret s by
querying Sample until we obtained sufficiently many samples with a = uj . Overall, the probability that
we recover all bits of s correctly is at least (1− exp(−k))k ≥ 1− k · exp(−k) = 1− negl(k).

2.3 Combining Samples

In [6], Blum, Kalai and Wasserman introduced the idea to construct a = u1 from a collection of N
arbitrary samples rather than merely waiting for a sample where a = u1. Their core idea is based on
synthesizing a new sample from two existing ones (a1, b1), (a2, b2) via addition

(a1 ⊕ a2, b1 ⊕ b2) = (a1 ⊕ a2, 〈a1 ⊕ a2, s〉 ⊕ e1 ⊕ e2) .

In this synthesized sample, which we call a 2-sum of samples, we have a1 ⊕ a2 ∼ UFk2 and e1 ⊕ e2 ∼ Berp′
where p′ = 1

2 −
1
2 (1− 2p)2 > p according to the following Piling-Up lemma.

Lemma 2.2 (Piling-Up Lemma [14]). Let p ∈ [0, 1] and ei ∼ Berp, i ∈ [n] be identically, independently
distributed. Then

n⊕
i=1

ei ∼ Ber 1
2−

1
2 (1−2p)n .

Summing up two or more samples enables us to synthesize samples at the expense of an error rate
approaching 1

2 exponentially fast in the number of summands.

3 The c-Sum-Problem and its Application to BKW

3.1 A Generalized BKW Algorithm

While BKW repeatedly adds pairs of samples to zero out chunks of coordinates, we add c > 2 samples to
accomplish the same. Beneficially, as the number of size-c subsets grows exponentially in c, this allows for
a drastic reduction in the number of initially required samples (thus, memory as well) while still finding
sufficiently many sums of c vectors adding up to zero on a block of coordinates.

We give our c-sum-BKW in Algorithm 1. For a block-size b and j ∈ [a] we refer to the coordinates
[k − jb + 1, k − (j − 1)b] as the jth stripe. Essentially, c-sum-BKW consists of a for-loop (line 4) that
generates zeros (resp. the first unit vector) on the jth stripe for j ∈ [a− 1] (resp. the ath stripe). This
step is repeated multiple times (see line 2) to obtain sufficiently many labels of u1 samples in order to let
a majority vote determine the first bit s1 of the secret s with overwhelming probability. This process is
repeated k times to recover all bits of s.

For a list L as constructed in line 3, j ∈ [a] and t ∈ Fb2 we let c-sum(L, j, t) denote an algorithm that
outputs a new list L where the coordinates of each entry match t on the jth stripe (see lines 5, 6). If L
should shrink to size 0 throughout an execution, we abort and return a failure symbol (see lines 7, 8).

We point out that (essentially) the original BKW algorithm may be obtained by letting c-sum add
pairs of vectors whose sum matches t on the jth stripe to L′.

Let us introduce the c-sum-problem lying at the heart of any algorithm that shall be used to instantiate
c-sum. In short, given a list of vectors L ∈ (Fb2)∗, i.e., a stripe from the c-sum-BKW point of view, the
c-sum-problem asks to collect sums of c vectors that add up to some target t ∈ Fb2.
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Algorithm 1 c-sum-BKW(k, p, εa, N) . c ∈ N

Input: dimension k, error rate p, εa > 0, N ≥ 2
b+c log c+1

c−1 , access to Sample
Output: s ∈ Fk2
1: a := log k

(1+εa) log c , b := k
a
, n := 8(1−p)k

(1−2p)2ca

2: for i← 1, . . . , n do
3: Query N samples from Sample and save them in L.
4: for j ← 1, . . . , a− 1 do
5: L← c-sum(L, j, 0b)
6: L← c-sum(L, a,u1)
7: if L = ∅ then
8: return ⊥
9: Pick (u1, bi) uniformly from L.
10: s1 ← majorityvote(b1, . . . , bn)
11: Determine s2, . . . , sk the same way.
12: return s = s1 . . . sk

Definition 3.1 (The c-Sum-Problem (c-SP)). Let b, c,N ∈ N with c ≥ 2. Let L := (l1, . . . , lN ) be
a list where li ∼ UFb2 for all i and let t ∈ Fb2 be a target. A single-solution of the c-SPb is a size-c set
L ∈

([N ]
c

)
such that ⊕

j∈L
lj = t .

A solution is a set of at least N distinct single-solutions. The c-sum-problem c-SPb consists of finding
a solution when given L, t while c is usually fixed in advance. We refer to (L, t, c) as an instance of the
c-SPb, concisely (L, t) if c is clear from the context.

Note that by definition a solution to the c-sum-problem c-SPb consists of at least N single-solutions.
These may again be combined into a new list of size (at least) N . Thus, we may apply a c-SPb solving
algorithm on different b-bit stripes of a list. Further, the list does not shrink if a solution exists in each
iteration.

Obviously, a solution should exist whenever the list size N is large enough, since then sufficiently many
c-sums add up to some given target t. In the following, we show that the lower bound for the list-size N
from Algorithm 1 guarantees the existence of such a solution with overwhelming probability under the
following heuristic assumption that is regularly used in the analysis of BKW-type algorithms [36,8,7].

Independence Heuristic. Obviously, c-sums
⊕

j∈L lj are stochastically dependent for L ⊆ [N ] with
|L| = c. However, their dependency should only mildly affect the runtime of an iterative collision search
as in BKW-type algorithms. For instance, it has been shown in [10] that the dependence between 2-sums⊕

j∈L lj merely affects the overall runtime exponent by an o(1)-term. We heuristically assume that this
also holds for c > 2, and therefore treat (iterative) c-sums as independent in our run time analyses.

We provide various experiments in Section 7.1 that support the Independence Heuristic.
For Algorithm 1, we need the following lemma only for the special case α = 1. However, our Tailored

Dissection approach in Section 5.3 also requires α > 1.

Lemma 3.1. Let (L, t) be a c-SPb instance with

|L| = Nα, where N = 2
b+c log c+1

c−1 and α ≥ 1 .

Under the Independence Heuristic, (L, t) has at least Nα single-solutions with probability 1− exp(−N/4).

Proof. For every L ⊆ [N ] with |L| = c define an indicator variable that takes value XL = 1 iff
⊕

j∈L lj = t.
Let X =

∑
LXL be the number of single-solutions to the c-SPb. Under the Independence Heuristic,

the XL can be analyzed as if independent, thus X ∼ Bin(Nαc ),2−b is binomially distributed. Hence,

E[X] =
(
Nα

c

)
· 2−b ≥

(
Nα

c

)c
· 2−b . (2)
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Since logN = b+c log c+1
c−1 , we obtain

logE[X] ≥ c(α logN − log c)− b ≥ α (c(logN − log c)− b)

= α
(
c

(
b+ c log c+ 1− (c− 1) log c

c− 1

)
− b
)

= α · cb+ c log c+ c− (c− 1)b
c− 1 = α · b+ c log c+ 1 + c− 1

c− 1
= α(logN + 1) ≥ α logN + 1. (3)

Thus, our choice of N guarantees E[X] ≥ 2Nα. We can upper-bound the probability that the c-
sum-problem has less than Nα single-solutions solution using our Chernoff bound from Theorem 2.1
as

Pr [X < Nα] ≤ Pr
[
X <

1
2E[X]

]
≤ exp

(
−E[X]

8

)
≤ exp

(
−N4

)
.

ut

Observation 3.1. Any algorithm solving the c-sum-problem may be used to replace c-sum in lines 5
and 6 of c-sum-BKW (Algorithm 1) by

1) Projecting all entries of L onto their jth stripe to obtain a list Lj .
2) Solving the c-sum-problem instance (Lj , t) to obtain a solution S.
3) Summing up the entries of L as specified in S.

Thereby step 2) is clearly dominating.

As a consequence of Observation 3.1 we do not distinguish between c-sum and an algorithm solving
the c-sum-problem.

We now give Theorem 3.2 stating that c-sum-BKW inherits its complexities from c-sum. As a result, we
may focus on solving the c-sum-problem in the remainder of this work.

Theorem 3.2 (Correctness and Complexities of c-sum-BKW). Let c-sum denote an algorithm solving
the c-SPb in expected time Tc,N and expected memory Mc,N with overwhelming success probability, where
N ≥ 2

b+c log c+1
c−1 . Under the Independence Heuristic c-sum-BKW solves the LPNk problem with overwhelming

probability in time T , memory M , where

T = (Tc,N )1+o(1) , M = (Mc,N )1+o(1) ,

using N1+o(1) samples.

Proof. Let a = log k
(1+εa) log c and b = k

a as in Algorithm 1. Consider one iteration of the for-loop in line 2.
As stated in Lemma 3.1 there exists a solution to the c-SPb instance (implicitly defined via the jth stripe
of L and target 0b (resp. u1)) with probability at least 1− exp(−N4 ). Hence, the probability that there is
a solution to the instance in each iteration is greater than(

1− exp
(
−N4

))an
≥ 1− an · exp

(
−N4

)
.

We now analyze the probability that a single bit of the secret gets recovered correctly. Since we build
c-sums iteratively a times in lines 4-6, eventually we obtain vectors being a sum of at most ca samples,
having an error of 1

2 −
1
2 (1− 2p)ca according to Lemma 2.2.

Note that the labels b1, . . . , bn collected in line 10 are stochastically independent as each bi is obtained
from freshly drawn samples. Now Corollary 2.1 yields that n := 8(1−p)k

(1−2p)2ca samples are sufficient for the
majority vote to determine a bit of s correctly with error probability at most exp(−k). Using the Union
Bound, one bit of the secret s gets successfully recovered with probability at least

1− an · exp
(
−N4

)
− exp(−k) .
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As we have to correctly recover all, i.e., k bits of s, the overall success probability of c-sum-BKW is at least(
1− 2an · exp

(
−N4

)
− exp(−k)

)k
≥ 1− 2ank · exp

(
−N4

)
− k exp(−k) .

Let us look at the term 2ank · exp
(
−N4

)
. Since n = Õ(2κpca) for some constant κp, we have for constant c

2ank = Õ(n) = 2O(kε
′
) with ε′ < 1,whereas N = 2Θ(b) = 2Θ( ka ) = 2Θ( k

log k ). (4)

Thus, the factor exp
(
−N4

)
clearly dominates and makes the overall success probability overwhelming

in k.

Let us now analyze the time and memory complexity of c-sum-BKW. Since c-sum has only expected
time/memory complexity, this expectation will be inherited to c-sum-BKW. We later show how to remove
the expectation from c-sum-BKW’s complexities by a standard technique.

Let us start with the running time of c-sum-BKW, where we ignore the negligible overhead of iterations
of line 2 caused by failures in the c-sum-algorithm. Clearly, Tc,N ≥ N . Hence, one iteration of the for-loop
can be carried out in time Õ(max{N, a · Tc,N}) = Õ(Tc,N ). Thus, for recovering the whole secret we get
a running time of Õ(n · Tc,N ). From Equation (4) we already know that N dominates n, which implies
that Tc,N dominates n. More precisely, we have n · Tc,N = (Tc,N )1+o(1). Hence, we can also express the
overall expected running time as (Tc,N )1+o(1).

The memory consumption is dominated by c-sum, which gives us in total expected Õ(Mc,N ) =
(Mc,N )1+o(1). The sample complexity of c-sum-BKW is Õ(knN) = Õ(nN) = N1+o(1).

It remains to remove the expectations from the complexity statements for time/memory, while keeping
the success probability overwhelming. We run c-sum-BKW k times aborting each run if it exceeds its
expected running time or memory by a factor of 4. A standard Markov bound then shows that this
modified algorithm fails to provide a solution with probability at most 2−k. For details see Appendix A.

ut

In the following section, we discuss an algorithm to naively solve the c-sum-problem leading to a first
trade-off in the subexponential time/memory regime that also allows for a quantum speedup.

4 First Time-Memory Trade-Offs for BKW

4.1 A Classic Time-Memory Trade-Off

A straight-forward algorithm to solve an instance of the c-sum-problem is to compute all sums of c
elements from L. For N = |L| this approach takes time O(N c) while it requires memory O(N).

With little effort, we can do slightly better: Let L be sorted. Now let us brute-force all (c− 1)-sums
from L, add t, and check whether the result appears in L. This gives us by construction a c-sum that
matches t.

The details of this c-sum-naive approach are given in Algorithm 2. Notice that whenever we call
c-sum-naive, we should first sort the input list L, which can be done in additional time Õ(N).

Algorithm 2 c-sum-naive(L, t) . c ∈ N
Input: Sorted list L = (v1, . . . , vN ) ∈ (Fb2)N , target t ∈ Fb2
Output: S ⊆

([N ]
c

)
or ⊥

1: for all V = {i1, . . . ic−1} ⊆ [N ] do
3: for all ic ∈ [N ] \ V satisfying vic = t⊕ (⊕i∈Vvi) do
4: S ← S ∪ {{i1, . . . , ic}}
5: if |S| = N then
6: return S
7: return ⊥

The following lemma shows correctness and the complexities of Algorithm 2.
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Lemma 4.1. c-sum-naive finds a solution of the c-SPb in time Õ
(
N c−1) and memory Õ(N).

Proof. Assume there exists a solution to instance (L, c). The for-loop in line 1 iterates over each (c−1)-sum
of L and checks, if there is another vector in L, completing the (c−1)-sum to a c-sum with value t. If there
is such an element, the respective single-solution is added to S. By iterating over each (c− 1)-sum, the
algorithm is able to find all single-solutions of (L, t) as for every single-solution it holds that ⊕cj=1vij = t,
which is equivalent to vic = t ⊕ (⊕c−1

j=1vij ) and thus the single-solution is recovered when V takes the
value {i1, . . . , ic−1}. Hence, if a solution to the c-SPb exists, then it is found by Algorithm 2, showing
correctness.

For the run time statement, line 1 performs
(
N
c−1
)
≤ N c−1 iterations. Each solution can be found

in the sorted list L in time O(logN) = Õ(1). Since Algorithm 2 halts once N single-solutions have
been added to S, this leaves us with a total running time of Õ(N c−1) and memory consumption of
Õ(max(N, |S|)) = Õ(N). ut

Let us now replace in the c-sum-BKW algorithm the c-sum subroutine with Algorithm 2 c-sum-naive,
and call the resulting algorithm c-sum-naive-BKW.

Theorem 4.1 (Naive Trade-Off). Let c ∈ N. For all ε > 0 and sufficiently large k, under the
Independence Heuristic c-sum-naive-BKW solves the LPNk problem with overwhelming success probability
in time T = 2ϑ(1+ε), using M = 2µ(1+ε) memory and samples, where

ϑ = log c · k

log k , µ = log c
c− 1 ·

k

log k .

Proof. Let N := 2
b+c·log c+1

c−1 . According to Lemma 4.1 c-sum-naive is correct and we can apply Theorem 3.2
to conclude that c-sum-naive-BKW solves LPN with overwhelming success probability.

Further Lemma 4.1 shows that c-sum-naive runs in time

Tc,N = Õ(N c−1) = Õ(2b+c log c+1) = Õ(2b) for constant c.

Thus, by Theorem 3.2 c-sum-naive-BKW runs in time T = 2b(1+o(1)). Since c-sum-BKW operates on
stripes of width b = log c · k(1+εa)

log k (see the definition in Algorithm 1), we obtain the claimed complexity
T = 2ϑ(1+εa+o(1)) = 2ϑ(1+ε) for every ε > εa and sufficiently large k.

Since c-sum-naive requires memory Mc,N = Õ(N), by Theorem 3.2 the memory complexity of
c-sum-BKW is (for constant c)

M = (Mc,N )1+o(1) = N1+o(1) = (2
b
c−1 )1+o(1) =

(
2

log c
c−1 ·

k
log k
)1+o(1)

.

The sample complexity of c-sum-BKW is N1+o(1) (see Theorem 3.2) and therefore identical to M . ut

Figure 2 depicts the time-memory trade-off obtained in Theorem 4.1. Thereby, for increasing c the memory
consumption decreases by log c

c−1 whereas the running time increases only by log c.

4.2 A Quantum Time-Memory Trade-Off

Grover’s algorithm [15] identifies a marked element in an unsorted database D in time O(
√
|D|) with

overwhelming probability. A matching lower bound Ω(
√
|D|) by Donotaru and Høyer [12] shows that

Grover’s algorithm is optimal. We use a modification of Grover’s algorithm due to [9], denoted Grover,
that applies even in case the number of marked elements is unknown.

Theorem 4.2 (Grover Algorithm [9]). Let f : D → {0, 1} be a function with non-empty support.
Then Grover outputs with overwhelming probability a uniformly random preimage of 1, making q queries
to f , where

q = Õ
(√

|D|
|f−1(1)|

)
.

9



0.2 0.4 0.6 0.8 1

1

2

3

4

logM in k
log k

lo
g
T

in
k

lo
g
k

c-sum-naive-BKW

Fig. 2: Time-Memory trade-off as given in Theorem 4.1. Stars from right to left corresponding to c = 2, 3, . . .

We use Grover’s algorithm to speed up our naive approach to solving the c-sum-problem. While we
previously brute-forced all (c− 1)-sums in list L and checked if there is a fitting cth entry in L, we now
employ a Grover-search to immediately obtain (c− 1)-sums for which there exists a suitable cth element
in L. Let us define the Grover function ft as

ft :
(

[|L|]
c− 1

)
→ {0, 1},V 7→

1 ∃ic ∈ [|L|] \ V :
c−1∑
j=1

lij = lic + t

0 else
.

Given some V ∈ f−1
t (1) we can recover all ic such that V ∪ {ic} is a single-solution of instance (L, t) in

time Õ(log |L|) if L is sorted.

Algorithm 3 Q-c-sum(L, t) . c ∈ N
Input: Sorted list L = (v1, . . . , vN ) ∈ (Fb2)N , target t ∈ Fb2
Output: S ⊆

([N ]
c

)
or ⊥

1: repeat Õ(N) times
2: V = (i1, . . . , ic−1)← Groverft

3: for all ic ∈ [N ] \ V satisfying vic = t⊕ (⊕i∈Vvi) do
4: S ← S ∪ {{i1, . . . , ic}}
5: if |S| = N then
6: return S
7: return ⊥

Lines 3-7 of Q-c-sum and c-sum-naive are identical. We merely replaced the brute-force search (line 1
in Algorithm 2) by a Grover-search (lines 1, 2 in Algorithm 3).

Lemma 4.2. Q-c-sum solves the c-SPb with overwhelming probability in time Õ
(
N c/2) and memory

Õ(N).

Proof. Assume there exists a solution to instance (L, c). Then f−1
t (1) ≥ |L| = N . As stated in Theorem 4.2

Grover queries ft

Õ

(√
|D|

|f−1(1)|

)
= Õ

(√
N c−1

N

)
= Õ

(
N

c
2−1) .
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times, since ft has domain D =
([|L|]
c−1
)
of size |D| =

([|L|]
c−1
)

=
(
N
c−1
)
. Observe that ft can be computed in

time Õ(logN) = Õ(1) if L is sorted. Hence, one iteration if the for-loop in line 1 requires time Õ(N c
2−1).

It follows that Q-c-sum runs in time Õ(N c
2 ) requiring memory Õ(N).

It remains to show that Q-c-sum recovers an existing solution with overwhelming probability. As
Grover returns a uniform element from f−1

t (1), we are given an instance of the coupon collectors problem
[31] where we have an overwhelming probability to have seen N distinct preimages after obtaining
N lnN = Õ(N) preimages via Grover. ut

Let QBKW denote algorithm c-sum-BKW where c-sum is instantiated using Q-c-sum.

Theorem 4.3. Let c ∈ N. For all ε > 0 and sufficiently large k, under the Independence Heuristic QBKW
solves the LPNk problem with overwhelming success probability in time T = 2ϑ(1+ε), using M = 2µ(1+ε)

memory and samples, where

ϑ = c

2 · (c− 1) · log c · k

log k , µ = log c
c− 1 ·

k

log k .

Proof. The proof proceeds along the lines of the proof of Theorem 4.1.

The trade-off from Theorem 4.3 is depicted in Figure 3 on Page 4 by triangles.
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c-sum-naive-BKW
QBKW

Fig. 3: Time-Memory trade-off of QBKW (see Theorem 4.3) halving the running time exponent compared to
c-sum-naive-BKW (see Theorem 4.1). Marks from right to left corresponding to c = 2, 3, . . .

5 Time-Memory Trade-Offs for BKW via Dissection

While a naive approach already led to a first time-memory trade-off, a meet-in-the-middle approach for
solving the c-sum-problem prohibits a trade-off, as we explain in Section 5.1. As a consequence, we resort
to the more advanced Dissection technique [11,34] in Section 5.2. However, as Dissection merely leads to
instantiations for a rather sparse choice of available memory, we give a slight generalization of Dissection
tailored to any given amount of memory. This allows for a trade-off covering the whole range of possible
memory (see Section 5.3).

Let us define the specific structure of single-solutions that are recovered by all c-sum-problem algorithms
in this section.

Definition 5.1 (Equally-split (Single-)Solution). Let (L, t) be an c-SPb instance. Partition L into
lists L1, . . . , Lc of size L

c each. A single-solution is equally-split (wrt. L1, . . . , Lc) if it corresponds to list
elements l1, . . . , lc whereby li ∈ Li for all i ∈ [c]. An equally-split solution is a collection of N equally-split
single-solutions.
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Lemma 5.1. Let (L, t) be a c-SPb instance with

|L| = Nα, where N = 2
b+c log c+1

c−1 and α ≥ 1 .

Then, under the Independence Heuristic, (L, t) has at least Nα equally-split single-solutions with probability
1− exp(−N/4).

Proof. LetX be a random variable for the number of equally-split single-solutions. Then E[X] =
(
Nα

c

)c·2−b.
Hence, Equation (2) is satisfied, and the rest follows as in the proof of Lemma 3.1. ut

5.1 Meet-in-the-Middle and beyond

Let (L, t) be an instance of the c-sum-problem. In a meet-in-the-middle approach one splits a c-sum
t = vi1⊕ . . .⊕vic into two parts t =

(
vi1⊕ . . .⊕vi c2

)
⊕
(
vi c

2 +1⊕ . . .⊕vic
)
. Let us define L1 := (v1, . . . , v |L|

2
),

L2 := (v |L|
2 +1, . . . , v|L|) and consider a single-solution corresponding to c

2 elements from L1 and L2 each:

(vi1 , . . . , vi c2 ) ⊆ L1 and (vi c
2 +1 , . . . , vic) ⊆ L2 .

If we compute all c2 -sums of elements from L1 and save them in a new list L
c
2
1 , then for each c

2 -sum v

of L2 we can check if w := v ⊕ t ∈ L
c
2
1 . If so, v and w form a single-solution since v ⊕ w = t. Obviously,

this approach has expected time and memory complexity Õ(max(|L|, |L| c2 )) = Õ(|L| c2 ) for c ≥ 2. Yet,
choosing c > 2 only leads to worse complexities, time and memory-wise, while for c = 2 the complexities
for the meet-in-the-middle approach are as bad as for c-sum-naive.

Schroeppel and Shamir’s Meet-in-the-Middle. We present a heuristic simplification of the Schroeppel-
Shamir algorithm [34] due to Howgrave-Graham and Joux [21].

In a nutshell, the idea of Schroeppel and Shamir is to run a meet-in-the-middle attack but impose
an artificial constraint τ on the c

2 -sums. This results in lists L
c
2 ,τ
1 that are significantly smaller than L

c
2
1

in the original meet-in-the-middle approach. In order to find all single-solutions, one iterates τ over its
whole domain. L

c
2 ,τ
1 is in turn built from smaller lists as follows. Let t = vi1 ⊕ . . .⊕ vic and write

t = vi1 ⊕ . . .⊕ vi c4︸ ︷︷ ︸
`11

⊕ vi c
4 +1 ⊕ . . .⊕ vi c2︸ ︷︷ ︸

`12

⊕ vi c
2 +1 ⊕ . . .⊕ vi 3c

4︸ ︷︷ ︸
`21

⊕ vi 3c
4 +1
⊕ . . .⊕ vic︸ ︷︷ ︸
`22

.

Create four lists L
c
4
11, L

c
4
12, L

c
4
21, L

c
4
22 containing all c

4 -sums of elements from the first, second, third,
and fourth quarter of L. Let `i,j denote elements from L

c
4
ij for i, j = 1, 2. As a constraint we choose

low c
4 log |L|(`11 ⊕ `12) = τ for some fixed τ . Now we construct L

c
2 ,τ
1 from L

c
4
11 and L

c
4
12 using a meet-in-the-

middle approach requiring expected time Õ(|L| c4 ). Similarly, we can compute all elements of list L
c
2 ,t⊕τ
2

to obtain sums of c
2 vectors ( c4 from L

c
4
2,1 and L

c
4
2,2 each) matching t⊕ τ on the last |τ | = c

4 log |L| bits.
Eventually, given the elements from L

c
2 ,t⊕τ
2 and list L

c
2 ,τ
1 one can some recover single-solutions as before.

Thereby list L
c
2 ,τ
1 is of expected size

E
[∣∣∣L c

2 ,τ
1

∣∣∣] =
∣∣∣L c

4
11

∣∣∣ · ∣∣∣L c
4
12

∣∣∣ · 2−|τ | = |L|2· c4− c4 = |L| c4 .

We conclude that the expected memory consumption of the algorithm is given by Õ(max
{
|L|, |L| c4

}
).

As we iterate over 2|τ | = |L| c4 choices of τ requiring expected time Õ(|L| c4 ) per iteration, the overall
expected running time is given by Õ(|L| c2 ) for all c ≥ 4. Hence, for c = 4 we obtain an algorithm as fast
as the meet-in-the-middle approach, while consuming only expected memory Õ(|L|).

Note that it is sufficient to store list L
c
2 ,τ
1 while all elements from L

c
2 ,t⊕τ
2 may be computed and

checked on-the-fly, i.e., without storing its elements.

The Schroeppel-Shamir algorithm is a special case of Dissection run on 4 lists in the subsequent
section, which further exploits the asymmetry between storing lists and computing (memory-free) lists on
the fly.
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5.2 Dissection

Dissection can be considered as a memory-friendly member of the class of k-list algorithms [35]. A
Dissection algorithm is given c lists Lc, . . . , L1 and a target t. For simplicity the algorithm merely sums
list elements to obtain target t rather than outputting a single-solution explicitly. One could keep track
of indices of those elements that sum to t, but for ease of notation we omit this. Instead, we employ some
abstract “index recovering” procedure later.
High-level Structure of Dissection. A Dissection identifying sums of vectors adding up to some
target t consists of the following steps

1) A loop iterates over an artificially introduced constraint τ . For each τ :
1.1) A meet-in-the-middle approach is run to obtain a list L of sums from the first few lists that add

up to τ on a some bits. List L is kept in memory.
1.2) Dissection is called recursively to find sums from the remaining lists that sum to t ⊕ τ on a

some bits. These sums are passed to the parent call on-the-fly.
1.3) For all sums passed from the recursive call in step 1.2) list L is searched to construct sums

adding up to τ on some more bits.

Before giving the fully-fledged Dissection algorithm, let us give an 11-Dissection example.

Fig. 4: Structure of an 11-Dissection on input lists L11, . . . , L1. Recursively called 7- and 4-Dissection enclosed in
dashed boxes. Arrows entering a list from the right side indicate a check on-the-fly. Arrows leaving a list on the
left side indicate that a found match is returned on-the-fly. Arrows entering a list from the top indicate that the
list below is populated with entries from above and stored entirely.

Example 5.1 (11-Dissection). An 11-Dissection is run on lists L11, . . . , L1 and some target t. It loops
through an artificial constraint τ3. Within each iteration: A list L(11,8) containing sums l11 ⊕ . . . ⊕ l8
consistent with constraint τ3 where l11 ∈ L11, . . . , l8 ∈ L8 is computed and stored. Then, still within the
first iteration of the loop, a 7-Dissection is run (see Figure 4) on lists L7, . . . , L1 and a modified target
t⊕τ3. The 7-Dissection itself introduces a constraint τ2 and stores a list L(7,5) containing sums of elements
from L7, L6, L5 fulfilling τ2. It recursively calls a 4-Dissection, i.e. Schroeppel-Shamir (Section 5.1), on
target t⊕ τ3 ⊕ τ2. Internally, the 4-Dissection introduces another constraint τ1.

Whenever a partial sum is identified by the 4-Dissection, it is passed to the 7-Dissection on-the-fly
while the 4-Dissection carries on. See the “chain” at the bottom in Figure 4 traversing lists from right to
left. Once, the 7-Dissection receives a sum, it immediately checks for a match in list L(7,5) and discards
or returns it—in case of the latter—enriched by a matching element from L(7,5) to the 11-Dissection and
continues.

Whenever the 11-Dissection receives a sum from the 7-Dissection, it instantly checks for a match in
list L(11,8) to detect if a single-solution has been found.

Definition 5.2 (Join Operator). Let d ∈ N and L1, L2 ∈ (Fd2)∗ be lists. The join of L1 and L2 is
defined as

L1 ./ L2 := (l1 ⊕ l2 : l1 ∈ L1, l2 ∈ L2) .
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For t ∈ F≤d2 the join of L1 and L2 on t is defined as

L1 ./t L2 := (l1 ⊕ l2 : l1 ∈ L1, l2 ∈ L2 ∧ low|t|(l1 ⊕ l2) = t) .

If L2 = (l2) we write L1 ./t l2 instead of L1 ./t (l2).

Clearly, computing elements contained in a sequence of joins can be implemented memory-friendly without
having to explicitly compute intermediate lists.

Definition 5.3 (The Magic Sequence [11]). Let c−1 := 1 and

ci := ci−1 + i+ 1 (5)

for all i ∈ N ∪ {0}. The magic sequence is defined as magic := (ci)i∈N≥1 .

One easily verifies that, alternatively,

magic =
(

1
2 ·
(
i2 + 3i+ 4

))
i∈N≥1

. (6)

As Dissection formulated in the language of k-list algorithms might be of independent interest we
deter from adding c-SPb-solving related details to the Dissection algorithm presented next, but rather
introduce a simple wrapper algorithm (see Algorithm 5) to solve the c-sum-problem afterwards.

We define the class of Dissection algorithms recursively. Let L2, L1 ∈ (Fd2)∗, d ∈ N and t ∈ F≤d2 . Then

c0-Dissect(L2, L1, t, inner) := L2 ./t L1 . (7)

Here, “inner” indicates that c0-Dissect was called recursively by another Dissection algorithm in contrast
to an initial, explicit call to run Dissection that will be called with parameter “outer”.

We proceed to define ci-Dissect for i ≥ 1. Lists are denoted by L and input-lists are numbered
Lci down to L1 for ci ∈ magic. As a reading aid, list and element indices keep track of input-lists they
originated from: A list L(j,i) is the output of a join of lists Lj ./ . . . ./ Li for j > i. List elements are
denoted l. We write l(j,i) to indicate that l(j,i) is a sum of elements lκ ∈ Lκ for κ = j, . . . , i.

Algorithm 4 ci-Dissect(Lci , . . . , L1, t, pos) . ci ∈ magic
Input: Lists Lci , . . . , L1 ∈ (Fb2)2λ where λ ≤ b

i
, target t ∈ Fb2, pos ∈ {outer, inner}

Output: S ⊆
([N ]
ci

)
or ⊥

1: for all τi ∈ Fi·λ2 do
2: L(ci,ci−1+1) ← Lci ./τi (Lci−1 ./ . . . ./ Lci−1+1)
3: for all l(ci−1,1) passed from ci−1-Dissect(Lci−1 , . . . , L1, lowi·λ(t)⊕ τi, inner) do
4: for all l(ci,1) ∈ L(ci,ci−1+1) ./t l(ci−1,1) do
5: if pos = inner then

pass l(ci,1) to ci+1-Dissect
6: else

S ← S ∪ {recover indices(l(ci,1))}
7: return S

The optimality of this recursive structure is shown in [11]. We now establish the required properties
of Algorithm 4 in a series of lemmataand provide detailed proofs that were merely sketched in [11].

Lemma 5.2 (Correctness of ci-Dissect). For some fixed ja let la := La(ja) denote the jth
a element

of list La. When ci-Dissect(Lci , . . . , L1, t, outer) halts, set S contains (jci , . . . , j1) ∈ [2λ]ci if and only
if
⊕ci

a=1 la = t.
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Algorithm 5 ci-sum-Dissect(L, t) . ci ∈ magic
Input: L ∈ (Fb2)N , target t ∈ Fb2
Output: S ⊆

([N ]
ci

)
or ⊥

1: Partition L into ci lists Lci , . . . , L1 of size N
ci

each
2: S ← ci-Dissect(Lci , . . . , L1, t, outer)
3: if |S| < N then
4: return ⊥
5: return S

Proof. We prove the claim by induction over i ≥ 1.

Base clause i = 1. Assume (j4, j3, j2, j1) ∈ [2λ]4 is a single-solution. Then for τ := l4 ⊕ l3 we have

l4 ⊕ l3 = τ and l2 ⊕ l1 = t⊕ τ .

Thus, once the for-loop in line 1 reaches τ1 := lowλ(τ), sum l4 ⊕ l3 is added to L4,3 in line 2. Further,
clearly l2 ⊕ l1 ∈ L2 ./t1⊕τ1 L1. Hence, once the for-loop in line 3 considers l2 ⊕ l1, the single-solution is
recovered in line 4 and added to S in line 6.

Now, if (j4, j3, j2, j1) is not a single-solution we have

l4 ⊕ l3 = τ ⇒ l2 ⊕ l1 6= t⊕ τ .

Thus, when the for-loop in line 1 considers τ1 = lowλ(l4 ⊕ l3) partial single-solutions on λ bits may be
found in lines 2 and 3, however, all of these are disregarded in line 6 when the join on (all) b bits is
computed.
Step i→ i+ 1. Observe that (jci+1 , . . . , j1) ∈ [2λ]ci+1 is a single-solution for target t if and only if for
τ := lci+1 ⊕ . . .⊕ lci+1 we have

lci ⊕ . . .⊕ l1 = t⊕ τ .

As soon as the for-loop in line 1 reaches τi+1 = low(i+1)λ(τ), sum lci+1 ⊕ . . . ⊕ lci+1 is added to list
L(ci+1,ci+1). The claim now follows from observing that lowa(lci⊕. . .⊕l1) = lowa(t⊕τ) and the correctness
of ci-Dissect called in line 3.

ut

Lemma 5.3 (Memory Consumption of ci-Dissect). For all i ≥ 1 algorithm ci-Dissect requires
expected memory Õ(max{2λ,E[|S|]}).

Proof. Only lists L(ci,ci−1+1) for all i from the join operation in line 2 are kept in memory. As the sum of
uniform vectors is uniform, we expect an |Fi·λ2 |-fraction of |Lci | · . . . · |Lci−1+1| elements to be added to
L(ci,ci−1+1). Hence, lists L(ci,ci−1+1) are of expected size Õ(2λ·(i+1)−i·λ) = Õ(2λ).

These lists themselves may be computed in memory Õ(2λ) when the entries in Lci−1 ./ . . . ./ Lci−1+1
is are computed on-the-fly and are disregarded or added to list L(ci,ci−1+1).

At the “bottom” of the recursion for i = 1 in line 3, the join of lists L2 and L1 in line 3 (see
Equation (7)) can be computed using memory Õ(2λ).

Further, all elements passed from a recursive call in line 3 are processed on-the-fly in line 4 and—still
on-the-fly—passed to ci+1-Dissect (line 5) requiring no additional memory, dropped or added to S
(line 6) consuming memory E[|S|] overall. The claim follows.

ut

Lemma 5.4. Let i ≥ 1 and consider one iteration of the for-loop in line 1 within a call of
ci-Dissect(· · · , inner). Then, in total, expected Õ(2ci−2·λ) elements are returned in line 5.

Proof. We proceed by induction over i.
Base clause i = 1. Fix any τ1 ∈ Fλ2 in the for-loop in line 1. List L(4,3) computed in line 2 is of
expected size Õ(2λ). The for-loop in line 3 iterates over expected |L2 ./lowi·λ(t)⊕τi L1| = Õ(2λ) values of
l(2,1). Note that, as we consider an inner call c1-Dissect was given a target t of length 2 · λ and the join
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computed in line 4 imposes an additional restriction on 2·λ−λ = λ bits. Thus, L(4,3) ./t l(2,1) is of expected
size Õ(|L(4,3)|)/2λ = Õ(20). Iterating over all values of l(2,1) we expect Õ(2λ+0) = Õ(2λ) = Õ(2c−1·λ)
elements to be returned in line 5.
Step i→ i+1. We consider a call of ci+1-Dissect(· · · , inner). Fix any τi+1 ∈ F(i+1)·λ

2 in the for-loop
in line 1. List L(ci+1,ci+1) is of expected size Õ(2λ). Let l(ci,1) be an element returned to the for-loop in line 3
from a call of ci-Dissect(· · · , inner). Thereby, the sum of l(ci−1,1) and any element in L(ci+1,ci+1) already
takes the desired value on the last (i+ 1) · λ coordinates.3 Since we are in an inner call, ci+1-Dissect
was invoked with a target of length (i+ 2) ·λ and the join in line 4 constitutes an additional restriction on
(i+ 2) · λ− (i+ 1) · λ = λ bits. Hence, we expect |L(ci+1,ci+1) ./t l(ci,1)| = (|L(ci+1,ci+1)| · 1)/2λ = Õ(20)
elements to be returned for each fix l(ci,1).

Now, by induction hypothesis ci-Dissect(· · · , inner) returns expected 2ci−2·λ values l(ci,1) per
iteration of its own for-loop (line 1) over τi ∈ Fi·λ2 . The claim follows from (ci−2 + i) · λ = ci−1 · λ. ut

Lemma 5.5. Let i ≥ 1. Algorithm ci-Dissect(· · · , inner) runs in expected time Õ(2ci−1·λ).

Proof. We prove the running time by induction over i. Let Tci denote the expected running time of
ci-Dissect(· · · , inner).
Base clause i = 1. Follows from the proof of Lemma 5.4 for i = 1 and observing that the for-loop in
line 1 iterates over 2λ values.
Step i→ i+ 1. Tci+1 is given by the cost of one iteration of the for-loop in line 1 times the number of
iterations. The for-loop iterates over 2(i+1)·λ values. Within each iteration in

line 2 an “unbalanced” join on i+ 2 lists Lci+1 , . . . , Lci+1 is computed taking time Õ(2(i+1)·λ),
line 3 ci-Dissect(· · · , inner) is called requiring expected time Tci ,
line 5 expected O(2ci−1·λ) partial single-solutions are returned.

Note that the number of elements returned in line 5 was proven in Lemma 5.4. Disregarding Oh-notation
for convenience we have:

log Tci+1 = log
(

2(i+1)·λ ·max
{

2(i+1)·λ, Tci , 2ci−1·λ
})

= (i+ 1) · λ+ max {(i+ 1) · λ, log Tci , ci−1 · λ}

Using the induction hypothesis we have log Tci = ci−1 · λ. Thus

log Tci+1 = (i+ 1 + max{i+ 1, ci−1}) · λ .

For i ≥ 1 we have i+ 1 ≤ i+ 1 + 1
2 (i2 − i) = ci−1. Hence

log Tci+1 = (ci−1 + i+ 1) · λ
= ci · λ .

ut

Lemma 5.6 (Running Time of ci-Dissect). Let i ≥ 1. A call of algorithm ci-Dissect(· · · , outer)
runs in expected time Õ(max{2ci−1·λ,E[|S|]}).

Proof. The proof closely follows the proof of Lemma 5.5. Let T outer
ci (resp. T inner

ci ) denote the expected
running time of a call of algorithm ci-Dissect(· · · , outer) (resp. ci-Dissect(· · · , inner)). Again, the
running time is given by the cost per iteration times the number of iterations of the for-loop in line 1.
One easily verifies the claim for i = 1.

Consider T outer
ci+1

. The for-loop in line 1 iterates over 2(i+1)·λ values. Within each iteration in

line 2 an “unbalanced” join on i+ 2 lists Lci+1 , . . . , Lci+1 is computed taking time Õ(2(i+1)·λ),
3 Observe that in a call ci-Dissect(· · · , inner) partial solutions returned in line 5 already match the target on

(i+ 1) · λ bits (see the target length in line 3).
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line 3 ci-Dissect(· · · , inner) is invoked requiring expected time T inner
ci ,

line 6 expected |S|/2(i+1)·λ single-solution are returned.

Dropping Oh-notation again:

log Tci+1 = (i+ 1) · λ+ max
{

(i+ 1) · λ, log T inner
ci , logE[|S|]− (i+ 1) · λ

}
.

Now, employing Lemma 5.5 we have T inner
ci = Õ(2ci−1·λ). Hence

log Tci+1 = (i+ 1) · λ+ max {(i+ 1) · λ, ci−1 · λ, logE[|S|]− (i+ 1) · λ} (8)
= max {ci · λ, logE[|S|]} ,

similarly to the proof of Lemma 5.5 and the claim follows. ut

Lemma 5.7. Let b ∈ N and ci ∈ magic. For t ∈ Fb2 let (L, t) be an instance of the ci-SPb where we
have |L| = N := 2

b+ci·log ci+1
ci−1 . Under the Independence Heuristic ci-sum-Dissect solves the ci-SPb with

overwhelming probability in expected time T = Õ(N ci−1) and expected memory M = Õ(N).

Proof. From Lemma 5.1 we know that at least N equally-split single-solutions exist with overwhelming
probability. Lemma 5.2 ensures that ci-Dissect recovers all of them. Note that the lists defined in line 1
are of length

2λ = N

ci
= 2

b+ci·log ci+1
ci−1 −log ci = 2

b+log ci+1
ci−1 .

One easily verifies that λ = b+log ci+1
ci−1 ≤ b

i as syntactically required by ci-Dissect. Hence, Algorithm 5
solves the c-SPb with overwhelming probability.
From Lemma 5.3 we have

M = Õ(max{2λ,E[|S|]}) = Õ(max{N,E[|S|]}) .

Under the Independence Heuristic we obtain E
[
|S|
]

=
(
N
ci

)ci
· 2−b = 2N , where the last equality follows

from Equation (3). Therefore, M = Õ(N).
From Lemma 5.6 we conclude

T = Õ(max{2ci−1·λ,E[|S|]}) = Õ(N ci−1) .

ut

Since ci−1 = ci − i− 1 by Equation (5) and i ≈
√

2ci by Equation (6), we see that ci-sum-Dissect
reduces the time complexity of solving the c-sum-problem from N c−1 (c-sum-naive) down to roughly
N c−

√
2c (see also Table 1). Let ci-Dissect-BKW denote the variant of c-sum-BKW, where c-sum is instantiated

using ci-sum-Dissect.

Theorem 5.1 (Dissection Trade-Off). Let ci ∈ magic, ε > 0 and k ∈ N sufficiently large. Under the
Independence Heuristic ci-Dissect-BKW solves the LPNk problem with overwhelming success probability in
time T = 2ϑ(1+ε), using M = 2µ(1+ε) memory and samples, where

ϑ =
(

1− i

ci − 1

)
· log ci ·

k

log k , µ = log ci
ci − 1 ·

k

log k .

Proof. Let N := 2
b+ci·log ci+1

ci−1 . It follows from Lemma 5.7 and Theorem 3.2 that ci-Dissect-BKW solves
LPN with overwhelming probability. We now combine Lemma 5.7 and Theorem 3.2 to compute the
running time T and memory complexity M of ci-Dissect-BKW. We have

log T = ci−1 ·
b+ ci · log ci + 1

ci − 1 · (1 + o(1)) ,
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whereby c-sum-BKW operates on stripes of size b = log ci · k·(1+εa)
log k . Hence

log T =
(
ci−1 log ci
ci − 1 · k · (1 + εa)

log k + ci−1 · (ci log ci + 1)
ci − 1

)
· (1 + o(1))

= ci−1 log ci
ci − 1 · k

log k · (1 + εa + o(1))

= ci−1

ci − 1 · log ci ·
k

log k · (1 + ε)

for every ε > εa and sufficiently large k. Finally

log T (5)=
(

1− i

ci − 1

)
· log ci ·

k

log k · (1 + ε) .

Analogously we have for M :
logM = log ci

ci − 1 ·
k

log k · (1 + ε) ,

for every ε > εa and sufficiently large k. The sample complexity of c-sum-BKW is N1+o(1) = M . ut

The trade-off of Theorem 5.1 clearly improves over the naive trade-off initially obtained in Theorem 4.1.
While the memory consumption of the Dissection approach remains the same as for the naive trade-off,
we can reduce the price we have to pay in time from log ci down to (1− i

ci−1 ) · log ci.
All trade-offs obtained so far are depicted in Figure 5. Note that the dashed lines merely illustrate the

behavior of the trade-offs while instantiations only exist for the marked points. Although it improves
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Fig. 5: New Dissection time-memory trade-off as given in Theorem 4.1 (blue diamonds from right to left for
ci = 4, 7, . . . ∈ magic) compared to previous trade-off from 5.1 (red stars from right to left for c = 2, 3, 4, . . .).

over the naive tradeoff from Section 4.1, this improvement comes at the price of covering only ci-sums
with ci ∈ magic. Given some available memory M , one would choose the minimal ci ∈ magic such that
ci-Dissect-BKW consumes at most memory M . However, such a choice of ci is unlikely to fully use M . In
the following section, we show how to further speed up the algorithm by using M entirely.

5.3 Tailored Dissection

Assume, we run ci-sum-Dissect and our available memory is not fully used. Recall that ci-sum-Dissect
collects single-solutions while iterating an outmost loop over some constraint. In a nutshell, access to
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additional memory allows us to increase the size of lists Lci , . . . , L1, where N = |Lci |+ . . .+ |L1|. Thereby,
the number of equally-split single-solutions of a c-sum-problem instance increases significantly beyond N .
As it suffices to identify (roughly) N single-solutions, we may prune the outmost loop of ci-Dissect to
recover N (rather than all) equally-split single-solutions.

Yet, examining a fraction of the solution space only leads to recovering a respective fraction of
single-solutions if the latter are distributed sufficiently uniformly.4

Let us briefly recall that the total number of existing single-solutions taken over the initial choice of
input lists is close to a binomial distribution under the Independence Heuristic. This allowed us to show
that ci-sum-Dissect succeeds with high probability as sufficiently many single-solutions exist with high
probability.

Now, let us denote the random variable of the number of single-solutions gained in the jth iteration of
the outmost loop of ci-Dissect by Zj . In order to prove that a certain number of iterations is already
sufficient to collect enough single-solutions with high probability we require information on the distribution
of sums of Zj . However, as we show shortly, already Zj is distributed rather awkwardly and it seems to
be a challenging task to obtain Chernoff-style results ensuring that the sum of Zj does not fall too short
from its expectation with high probability. In turn, we resort to the following heuristic.

Tailoring Heuristic. Let ci ∈ magic. Let random variable Zj denote the number of single-solutions
gained in the jth iteration of the outmost for-loop of ci-Dissect taken over the initial choice of input lists.
We heuristically assume that there exists a polynomial function poly(λ), such that for all J ⊆ {1, . . . , 2iλ}
we have

Pr

∑
j∈J

Zj <
1

poly(λ) · E
[∑
j∈J

Zj

] ≤ negl(λ) . (9)

In particular, it follows from Equation (9) that for all ι ≤ 2iλ we have

Pr

ι·poly(λ)∑
j=1

Zj ≥ E
[ ι∑
j=1

Zj

] ≥ 1− negl(λ) .

That is, we can compensate the deviation of the sums of Zj below its expectation by iterating poly(λ)
more often.5

As for the Independence Heuristic we ran experiments to verify the Tailoring Heuristic (Section 7.2).

Algorithm 6 tailored-ci-sum-Dissect(L, t) . ci ∈ magic

Input: L ∈ (Fb2)N
α

where N := 2
b+ci·log ci+1

ci−1 and α ≥ 1, target t ∈ Fb2
Output: S ⊆

([Nα]
ci

)
or ⊥

1: Partition L into ci lists Lci , . . . , L1 of size 2λ := Nα

ci
each

2: S ← ci-Dissect(Lci , . . . , L1, t, outer) . halt ci-Dissect once |S| = Nα

3: if |S| < Nα then
4: return ⊥
5: return S

We stress that the only syntactical difference of tailored-ci-sum-Dissect compared to ci-sum-Dissect
(Algorithm 5) is the increase of the size of list L from N to Nα for α ≥ 1 and the halt condition added as
a comment in line 2.

Lemma 5.8 (Tailored Dissection). Let b ∈ N, ci ∈ magic and α ∈ [1, ci−1
ci−1

]. For t ∈ Fb2 let (L, t) be an

instance of the ci-SPb for |L| = Nα whereby N := 2
b+ci·log ci+1

ci−1 . Under the Independence and Tailoring
Heuristic tailored-ci-sum-Dissect solves the ci-SPb with overwhelming probability in expected time
T = Õ

(
N ci−1−i·(α−1)) and expected memory M = Õ (Nα).

4 Imagine many single-solutions concentrated on few constraints τi as a counterexample.
5 Clearly, it does not make sense to iterate ι · poly(λ) > 2i·λ times. However, once we would have ι · poly(λ) > 2i·λ
iterating 2iλ times is sufficient to collect enough single-solutions as shown in Lemma 3.1.
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Proof. Let (L, t) be an ci-SPb instance where |L| = Nα for N and α as in the statement. Lemma 5.2
implies that ci-Dissect recovers only equally-split single-solutions. As Nα ≥ N we may use Lemma 5.1
stating that for a list size |L| = Nα at least Nα equally-split single-solutions exist with overwhelming
probability. Let λ = α logN − log ci as defined in line 1 of Algorithm 6. One easily verifies that for
α ≤ ci−1

ci−1
we have i · λ ≤ b as syntactically required by ci-Dissect.

We now argue that for
x := max(0, b− ci−1 · λ+ log ci + 1)

iterating over roughly 2x constraints is sufficient to collect Nα single-solutions with overwhelming
probability.

First, we show that x ≤ i · λ, i.e., the number of constraints needed to find enough single-solutions,
varies between one and the whole set of constraints, depending on the initial list size Nα.

Since we know that α ≥ 1, which is equivalent to λ ≥ b+δi
ci−1 = b+δi

ci−1+i , it follows that

x ≤ b− ci−1
b+ log ci + 1
ci−1 + i

+ log ci + 1

= i · (b+ log ci + 1)
ci−1 + i

≤ iλ .

Note that for α = 1 the algorithm collapses into ci-sum-Dissect, since the lists are of size N and we have
to iterate over the full set of constraints, which is x = i · λ.

We now show that poly(λ) · 2x iterations are sufficient to find at least Nα single-solutions with
overwhelming probability. Define Zj to be the number of single solutions gained in iteration j by solving
a ci-SPb. Since we just prune the outmost loop of the ci-Dissect-call, the recursive call of ci−1-Dissect
is still an exhaustive search for all ci−1-sums that match a given target on i ·λ bits, namely the constraint
of the ci-Dissect. So we know, that the number of returned solutions for target j of ci−1-Dissect
may be modeled as Yj ∼ Bin2λci−1 ,2−iλ under the Independence Heuristic. Additionally, also using the
Independence Heuristic, the size of list Lci,ci−1+1, which is the join of i+ 1 lists of size 2λ on i · λ bits,
is Xj := |Lci,ci−1+1| ∼ Bin2(i+1)·λ,2−iλ . Note that the number of single solutions gained in iteration j is
the join of the returned solutions from ci−1-Dissect and the list Lci,ci−1+1 on the remaining b− iλ bits,
therefore Zj |Xj=x,Yj=y ∼ Binx·y,2−(b−iλ) .

Note that Xj and Yj are independent, even without resorting to a heuristic as distinct lists were used
to build the partial sums. This directly implies that

E[Zj ] = E[E[Zj |(Xj , Yj)]] = E[Xj · Yj · 2−(b−iλ)] = E[Xj ] · E[Yj ] · 2−(b+iλ) = 2(ci−1+1)λ−b . (10)

Now, under the Tailoring Heuristic we have that with overwhelming probability

|S| =
poly(λ)·2x∑
j=1

Zj ≥ E
[ 2x∑
j=1

Zj

]
.

Since all Zj are identically distributed it follows

|S| ≥
2x∑
j=1

E[Zj ] = 2x · E[Z1] (10)= 2(ci−1+1)λ−b+x = 2λ+log ci+1 = 2 ·Nα ,

with overwhelming probability. Hence, poly(λ) · 2x = Õ(2x) iterations are sufficient to collect Nα single-
solutions with overwhelming probability.

Since tailored-ci-sum-Dissect only splits the input list and then invokes ci-Dissect memory and
time complexity remain as in ci-Dissect. Hence, the expected memory complexity is given by Lemma 5.3
as Õ(max(2λ, |S|))=Õ(Nα) since the algorithm terminates as soon as Nα single-solutions are found.

The expected running time of ci-Dissect follows from Equation (8) in Lemma 5.6, by setting i to
i− 1 (because of the induction) and by observing that now expected E[Zj ] = 2(ci−i)λ−b single-solutions
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are returned in each iteration. This leads to T = Õ
(
2x ·max(2ci−2λ, 2(ci−i)λ−b)

)
. Before analyzing T , we

show that x := max(0, b− ci−1 · λ+ log ci + 1) and b− ci−1 · λ+ log ci + 1 only differ by a constant. This
follows from the fact, that α ≤ ci−1

ci−1
and therefore λ ≤ ci−1

ci−1
logN − log ci = b+ci·log ci+1

ci−1
− log ci, which

gives us

x = b− ci−1λ+ log ci + 1

≥ b− ci−1

(
b+ ci · log ci + 1

ci−1
− log ci

)
+ log ci + 1

= ci−1 log ci − ci · log ci + log ci .

Using ci−1 = ci − i− 1 we get

x ≥ −i · log ci + 1 .

Therefore the maximum just leads to the addition of a constant. For the running time T it follows, that

log T = max(b− ci−1λ+ ci−2 · λ, α logN)
= max(b− (ci−1 − ci−2) · λ, α logN)
= max(b− i · λ, α logN) .

Using b = logN · (ci − 1)− ci · log ci − 1 and λ = α logN − log ci, we get

log T = max(logN · (ci − 1)− ci · log ci − 1− i · (α logN − log ci), α logN)
= max(logN · (ci−1 − i · (α− 1))− ci · log ci − 1 + i · log ci, α logN) .

Note that T = Õ(max(N ci−1−i·(α−1), Nα)) since ci as well as i are constant.
It remains to show, that Õ(max(N ci−1−i·(α−1), Nα)) = Õ(N ci−1−i·(α−1)) = T . To this end note that

N ci−1−i·(α−1) ≥ Nα

⇔ ci−1 − i · (α− 1) ≥ α

⇔ ci−1 + i

i+ 1 ≥ α ,

since α ≤ ci−1
ci−1

we get the more restrictive condition

⇐ ci−1 + i

i+ 1 ≥ ci − 1
ci−1

⇔ ci−1

i+ 1 ≥ 1 ,

which holds for all i. ut

The complexities of tailored-ci-sum-Dissect are given in Table 1 where we simplified α’s upper bound
using ci−1 ≈ ci −

√
2ci. Let tailored-ci-BKW denote c-sum-BKW, where the c-sum-problem is solved via

tailored-ci-sum-Dissect.

Theorem 5.2 (Tailored-Dissection Trade-Off). Let ci ∈ magic and further α ∈ [1, ci−1
ci−1

], ε > 0 and
k ∈ N sufficiently large. Under the Independence and Tailoring Heuristic tailored-ci-BKW solves the
LPNk problem with overwhelming success probability in time T = 2ϑ(1+ε), using M = 2µ(1+ε) memory and
samples, where

ϑ =
(

1− α · i
ci − 1

)
· log ci ·

k

log k , µ = α · log ci
ci − 1 · k

log k .

Proof. We aim at using tailored-ci-sum-Dissect to instantiate the c-sum subroutine of c-sum-BKW. Note
that c-sum-BKW will invoke the c-sum subroutine with a list of size Nα, where logN = b+ci·log ci+1

ci−1 , which
guarantees α logN ≥ b+ci·log ci+1

ci−1 as required by c-sum-BKW (see Theorem 3.2).
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The time complexity of the tailored-ci-sum-Dissect, when invoked with a list of size Nα is given
as Tc,N = Õ(N ci−1−i·(α−1)) by Lemma 5.8. Using logN = b+ci·log ci+1

ci−1 and ci−1 = ci − i− 1, we get

b+ ci · log ci + 1
ci − 1 · (ci−1 − i · (α− 1)) =

(
1− α · i

ci − 1

)
· (b+ ci · log ci + 1) .

As ci is constant we have
Tc,N = Õ

(
2
(

1− α·i
ci−1

)
·b
)
.

Using Theorem 3.2 gives T = (Tc,N )1+o(1) = 2
(

1− α·i
ci−1

)
·b·(1+o(1)). Now recall that the ci-SPb solved as

subroutine in the c-sum-BKW algorithm operates on stripes of size b = log ci · k(1+εa)
log k leading to

log T =
(

1− α · i
ci − 1

)
· log ci ·

k · (1 + εa)
log k · (1 + o(1))

=
(

1− α · i
ci − 1

)
· log ci ·

k

log k · (1 + εa + o(1))

=
(

1− α · i
ci − 1

)
· log ci ·

k

log k · (1 + ε) ,

for every ε > εa and sufficiently large k, as claimed.
The memory complexity of tailored-ci-sum-Dissect is Mc,N = Õ(Nα), according to Lemma 5.8,

whereas the memory of c-sum-BKW is given by Theorem 3.2 as M = (Mc,N )(1+o(1)) = Nα·(1+o(1)). Hence

logM = b+ ci · δi
ci − 1 · α · (1 + o(1))

=
(

log ci
ci − 1 ·

k · (1 + εa)
log k + ci · δi

ci − 1

)
· α · (1 + o(1))

= α · log ci
ci − 1 · k

log k · (1 + εa + o(1))

= α · log ci
ci − 1 · k

log k · (1 + ε) ,

for every ε > εa and sufficiently large k. We have a sample complexity ofNα·(1+o(1)) = 2
b+ci·log ci+1

ci−1 ·α·(1+o(1))

and therefore equal to the memory complexity M . ut

The trade-off obtained from Theorem 5.2 as well as both trade-offs previously obtained are given in
Figure 6.

At least intuitively it is clear how to choose optimal parameters for tailored-ci-BKW for any given
amount of memory M : Find the minimal ci ∈ magic such that ci-Dissect-BKW uses at most memory
M . Then, resort to tailored-ci-BKW using memory M entirely. We now provide the formal justification
proving that the approach sketched above is indeed admissible and optimal captured in the following
Corollary.

Corollary 5.1. Let ε > 0 and k ∈ N sufficiently large. Consider memoryM = 2m·
k

log k ·(1+ε) for m ∈ (0, 1].
Let

i∗ := min
i∈N

{
log ci
ci − 1 ≤ m

}
.

Under the Independence Heuristic tailored-ci∗ -BKW solves the LPNk problem with overwhelming success
probability in time T = 2ϑ(1+ε) where

ϑ = (log ci∗ − i∗ ·m) · k

log k .

Proof. First we show that for any given amount of memoryM there is an instantiation of tailored-ci-BKW
with memory complexity Mα = M . We do so, by showing that there is a possible parametrization to
achieve any memory consumption between the requirements of ci−1-Dissect- and ci-Dissect-BKW.
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Fig. 6: Time-memory trade-off obtained via Theorem 5.2 (solid lines) as generalization of the Dissection trade-off
(blue diamonds, right to left for ci = 4, 7, 11, . . . ∈ magic) as given in 5.1. Naive trade-off (red stars, right to left
for c = 2, 3, 4, . . .) as given in Theorem 4.1, Trade-off obtained through QBKW given as dashed line for orientation.

The memory complexity Mα of tailored-ci-BKW, where

logMα = α · log ci
ci − 1 · k

log k · (1 + ε) , with α ∈
[
1, ci − 1

ci−1

]
and ε > 0 ,

is obviously continuous in α. Remember that the tailored-ci-BKW when minimizing the memory con-
sumption, choosing α = 1, collapses to ci-Dissect-BKW, as stated in the proof of Lemma 5.8, therefore
having the same memory (and time) complexity. On the other hand, when we maximize the memory
consumption, choosing α = ci−1

ci−1
we get

logMα = log ci
ci−1

· k

log k · (1 + ε)

for sufficiently large k. If we compare Mα to the memory requirements M−1 of ci−1-Dissect-BKW we get:

logMα ≥ logM−1

⇔ log ci
ci−1

≥ log ci−1

ci−1 − 1 , (11)

where Equation (11) holds for all i ≥ 1, which can easily be verified numerically. Since Mα is continuous in
α, this implies a possible instantiation for any given memory in the interval of the memory requirements
of ci-Dissect- and ci−1-Dissect-BKW for all i ≥ 2 (because there is no dissection defined for c0). For
i = 1 one easily verifies, that tailored-c1-BKW has a maximal memory complexity of Mα = k

log k · (1 + ε)
for α = c1−1

c0
= 3

2 , which leads to a possible instantiation for any given memory.

We now show that the choice of i∗ := min
i∈N

{
log ci
ci−1 ≤ m

}
is optimal, in terms of minimizing the time

complexity Tα of tailored-ci-BKW

log Tα =
(

1− α · i
ci − 1

)
· log ci ·

k

log k · (1 + ε) ,

which decreases linearly in α. Hence, it suffices to show that the running time Tα of tailored-ci-BKW is at
least the running time of ci−1-Dissect-BKW. Let T−1 be the time complexity of ci−1-Dissect-BKW, with

log T−1 =
(

1− i− 1
ci−1 − 1

)
· log ci−1 ·

k

log k · (1 + ε)
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and set α = ci−1
ci−1

. We already know, that for this choice of α time Tα will become minimal. Further

log Tα ≥ log T−1

⇔
(

1− i

ci−1

)
log ci ≥

(
1− i− 1

ci−1 − 1

)
· log ci−1

⇔ ci−1 − i
ci−1

· log ci ≥
ci−1 − i
ci−1 − 1 · log ci−1

⇔ log ci
ci−1

≥ log ci−1

ci−1 − 1 ,

which has already been stated in Equation (11). Hence, tailored-ci-BKW is slower than ci−1-Dissect-BKW
regardless of the available memory. Further, ci∗-Dissect-BKW does not require more memory than M
since log ci∗

ci∗−1 ≤ m by choice of i∗.
One easily verifies that setting α∗ = m·(ci−1)

log ci leads to an overall memory consumption of M and the
stated running time. Thus, it remains to show that α∗ is an admissible choice satisfying 1 ≤ α∗ ≤ ci−1

ci−1
.

Because of the minimality of i∗ we have m <
log ci∗−1
ci∗−1−1 , hence α

∗ ≤ (ci∗−1) log ci∗−1
ci∗−1·log ci∗

. Note that α∗ ≤ ci−1
ci−1

follows again from (11). Also, m ≥ log ci∗
ci∗−1 and thus α∗ ≥ 1.

Since Tα∗ is decreasing linearly in α∗, maximizing α∗ = m·(ci−1)
log ci , i.e., maximizing m and minimizing

i, is optimal. ut

The Curious Case of i = 1. As already seen various times for i ≥ 2 we have

1
ci−1

>
log ci−1

(ci−1 − 1) log ci
⇔ log Tγ > log T−1 .

That is, for i ≥ 2 algorithm tailored-ci-BKW is strictly slower than ci−1-Dissect-BKW (see the leaps
in time in Figure 6). However, for i = 1 the trade-off does exactly interpolate between c1-Dissect-BKW and
the complexities of the original BKW algorithm. To explain this behavior one observes that tailored-c1-BKW
using as much memory as allowed is merely a slight modification of 2-sum-naive-BKW in turn having the
same complexities as the original BKW algorithm:

To this end note that a c1 = 4 tailored-dissection with maximal input lists, operates on lists of size 2b/2,
selecting the constrained parameters τi from T ⊆ Fb/2

2 . Since the input lists are that large, the iteration
over a subset of size |T | = O(1) is sufficient to find a solution to the ci-SPb. Internally a 4-dissection looks
for 2-sums of vectors matching τi on b

2 bits between lists L1 and L2 and τi ⊕ t between L3 and L4, where
t is the target. Then the found 2-sums are matched to t on the remaining b

2 bits. So one iteration of the
c1-Sum-Dissect can be seen as building a 2-sum of vectors, twice. The c-sum-BKW algorithm operates in
this case on stripes of size b = 2·k·(1+εa)

log k , so each 2-sum is matched on b
2 = k·(1+εa)

log k bits, which is exactly
the length of the stripes the 2-sum-naive-BKW operates on. Therefore, one iteration of the c1-Sum-Dissect
correlates to two iterations of the 2-sum-naive-BKW. But in total we are only iterating a = log k

2·(1+εa) times
instead of 2 · a times, like the 2-sum-naive-BKW does, resulting in an equal amount of 2-sums the final
unit vector consists of, while each 2-sum is matched on the same target size of b2 bits.

6 Time-Memory Trade-Offs for solving LWE

Introduced by Regev [32] the Learning With Errors (LWE) problem is a versatile generalization of LPN
to arbitrary moduli q. In [2] it is shown how to employ a BKW-type algorithm to solve the LWE problem.
We briefly discuss that all trade-offs obtained for the BKW algorithm to solve LPN carry over to using
BKW to solve the LWE problem.

In short, transitioning from solving LPN to BKW we essentially lose the log k-factor in the denominator
in our complexity exponents similarly to [2].
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Definition 6.1 (LWE Problem). Let k ∈ N, q = kνq , s ∈ Fkq and Dσ be a discrete Gaussian distribution
with mean zero and variance σ2, where σ = kνs . Let Sampleq denote an oracle that, when queried, samples
a ∼ UFkq , e ∼ Dσ and outputs a sample of the form

(a, b) := (a, 〈a, s〉+ e) .

The LWEk problem consists of recovering s given access to Sampleq.

The BKW algorithm may be slightly tweaked to work in the LWE setting as shown by Albrecht et
al. [2]. To this end one still adds two samples in each step to create zeroes (now in Fq) on stripes of width
b. However, the number of samples needed for the majority vote in this setting is

m = e
4π2σ22a

q2 ,

after a BKW steps, as shown in [24]. Setting a := (1−εa+2νq−2νs) · log k for εa > 0 yields m = e4π2k1−ε

and results in a total time, memory and sample complexity of

Õ
(
qb · e4π2k1−εa

)
= qb(1+ε) = 2

1
2 ·

νq

νq−νs+ 1
2
k(1+ε)

,

for any ε > 0 and sufficiently large k, which can also be found in [20].
Clearly, we can generalize the c-sum-problem to arbitrary modulus q. The main observation is that all

given algorithms solving the c-SPb may be employed to solve the c-sum-problem mod q. To this end we
note that the naive approach, as well as the two Dissection algorithms merely require addition in the
finite field (denoted ⊕ over F2) and a total order on list elements, e.g., lexicographic order.

Eventually, c-sum-BKW has a natural generalization to the LWE setting, too. As the probability of two
uniform vectors adding to some fixed pattern on b coordinates is 1

qb
instead of 1

2b , we have to adjust the
number of samples initially collected. Following the lines of the proof of Lemma 3.1 we see that N ≥ q

b+cδ
c−1

list elements are required for the c-sum-problem to have a solution with overwhelming probability. As
before, as we add c rather than two samples in each step, we adjust a by a factor of log c and set

a := (1− εa + 2νq − 2νs) ·
log k
log c

for εa > 0.
We summarize the resulting complexities. For an algorithm as given by an entry in Table 2 we obtain

complexities time T = 2ϑ(1+ε) and memory/samples M = 2µ(1+ε) where

ϑ = t · 1
2 ·

νq

νq − νs + 1
2
· k , µ = m · 1

2 ·
νq

νq − νs + 1
2
· k , (12)

and t, m as given in Table 2.

Table 2: Partial complexity exponents of our various algorithms solving the LWE problem. For each algorithm
using the respective values of t and m in Equation (12) gives the corresponding complexities.

Algorithm t m for

classic

BKW 1 1
c-sum-naive-BKW log c log c

c−1 c ≥ 2
ci-Dissect-BKW

(
1− i

ci−1

)
· log ci log ci

ci−1 ci ∈ magic
tailored-ci-BKW

(
1− α · i

ci−1

)
· log ci α · log ci

ci−1 ci ∈ magic, α ∈ [1, ci−1
ci−1

]

quantum QBKW 1
2 ·

c
c−1 · log c log c

c−1 c ≥ 2
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7 Experimental Verification of Heuristics

We present experimental results to verify our Independence Heuristic as well as our Tailoring Heuristic.

7.1 Experiments for the Independence Heuristic

We tested the Independence Heuristic for ci ∈ {4, 7}. We iteratively monitored the number of single-
solutions found after a run of ci-sum-Dissect on successive stripes starting with a list of size N . For each
ci we repeatedly called ci-sum-Dissect on three stripes. After each call we stored the number of single-
solutions found. To analyze the impact of dependencies amongst the list elements—rather than influences
due to variations in the number of single-solutions found—we pruned lists of more than N single-solutions
down to N before starting the next run, and discarded lists where less than N single-solutions were found.

Note that during the first run all list elements are independent and uniformly distributed, even if
their c-sums are not. While the list elements remain uniform on a “fresh” stripe in subsequent runs of
ci-sum-Dissect they are not independent anymore what could affect (besides c-sums being dependent)
the distribution of existing single-solutions even further. Under the Independence Heuristic the number of
single-solutions found is close to being Bin(N/ci)ci ,2−b distributed after any run of ci-sum-Dissect.

Our experiments with parameters as given in Table 3 lead to the plots given in Figure 7. The measured
relative frequencies are given by points, while the continuous plots are the benchmark distributions
Bin(N/ci)ci ,2−b for our Independence Heuristic.

Table 3: Parameters for testing the Independence Heuristic. Parameter a denotes the number of stripes of width b.

ci a b N run sample size in thous. given in

c1 = 4 3 25 2048
1 108 Figure 7a
2 100 Figure 7b
3 58 Figure 7c

c2 = 7 3 33 441
1 29 Figure 7d
2 23 Figure 7e
3 18 Figure 7f

We see from Figure 7 that the distribution of the output list-size is close to their benchmark, even
after three iterations of the c-sum subroutine, where already 43 = 64-sums (resp. 73 = 343-sums) haven
been built.

We also used the Independence Heuristic in Lemma 5.8 to show that the random variables Zj of
the number of single-solutions gained in the jth iteration over a constraint is close to being binomially
Binx·y,2−(b−iλ) distributed, where x ∼ Bin2(i+1)·λ,2−iλ and y ∼ Bin2λci−1 ,2−iλ . In order to verify this
experimentally, we computed several instances with parameter set

i = 1 (c1 = 4), b = 25, a = 3, N = 8192 .

Each time we performed three consecutive runs of 4-sum-Dissect on successive stripes and stored the
number of single-solutions obtained per constraint after each iteration. The results are given in Figure 8.
Again, the obtained relative frequencies accurately match the benchmark curve Binx·y,2−(b−iλ) .

7.2 Experiments on the Tailoring Heuristic

As in the previous subsection, let Zj be the number of single-solutions obtained per constraint iteration
in ci-sum-Dissect. In Tailored Dissection it is required that the sum of these random variables is close
to its expectation. The Tailoring Heuristic states that this is true with overwhelming probability, if we
slightly increase the expected number of required iterations by a polynomial factor.

To test the Tailoring Heuristic we ran 4-sum-Dissect (without tailoring) on three stripes (a = 3) with
N = 8192 and varying choice of b. We summed the numbers Zj of single-solutions found per randomized
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(a) Distribution of the number of single-solutions after
run 1 of 4-sum-Dissect. Sample size in thousands: 108.
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(d) Distribution of the number of single-solutions after
run 1 of 7-sum-Dissect. Sample size in thousands: 29.
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(b) Distribution of the number of single-solutions after
run 2 of 4-sum-Dissect. Sample size in thousands: 100.
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(e) Distribution of the number of single-solutions after
run 2 of 7-sum-Dissect. Sample size in thousands: 23.
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(c) Distribution of the number of single-solutions after
run 3 of 4-sum-Dissect. Sample size in thousands: 58.
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(f) Distribution of the number of single-solutions after
run 3 of 7-sum-Dissect. Sample size in thousands: 18.

Fig. 7: Distribution of the number of single-solutions over successive runs of ci-sum-Dissect. Under the Indepen-
dence Heuristic this distribution is close to Bin(N/ci)ci ,2−b . All parameters are given in Table 3.
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(a) First run. Sample size in thous.: 20.
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(b) Second run. Sample size in thous.: 22.
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(c) Third run. Sample size in thous.: 14.

Fig. 8: Distribution of the number of single-solutions per constraint in the first (Figure 8a), second (Figure 8b)
and third run (Figure 8c) of 4-sum-Dissect.

Table 4: Parameters and results for testing the Tailoring Heuristic for 4-sum-Dissect, N = 8192.

E[iterations to reach N ]

b theory experiments 99% confidence interval sample size in thous. given in

25 32 32.50 32.50 · (1± 0.031) 50
28 256 255.40 255.40 · (1± 0.031) 100 Figure 9a
29 512 511.78 511.78 · (1± 0.026) 150 Figure 9b
30 1024 1024.20 1024.20 · (1± 0.021) 250 Figure 9c
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constraint τj during the last run in a list, until their sum exceeded N . The results can be found in Table 4
and Figure 9.

We see in Table 4 that the experimentally required numbers of iteration very accurately match
their theoretical predictions (that were computed under the Independence Heuristic). Moreover, we
experimentally need only a small factor to achieve a 99% confidence interval, even for low expectations.
This means that the distribution has small variance and sharply concentrates around its mean, as can
also been seen in Figure 9. This all supports the validity of our Tailoring Heuristic for the analysis of
Tailored Dissection BKW.

245 250 255 260 265

0.00

0.05

0.10

0.15

(a) b = 28. Parameters of sample setX1: E[X1] = 255.40,
Var[X1] = 7.55, σX1 = 2.75, 99% confidence interval
E[X1]± 8.

490 500 510 520 530
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0.04

0.06

0.08

(b) b = 29. Parameter of sample set X2: E[X2] = 511.78,
Var[X2] = 22.81, σX2 = 4.78, 99% confidence interval
E[X2]± 13.

1,000 1,020 1,040 1,060

0.00

0.02

0.04

(c) b = 30. Parameter of sample set X3: E[X3] = 1024.20,
Var[X3] = 63.99, σX3 = 7.99, 99% confidence interval
E[X3]± 21.

Fig. 9: Required number of iterations to collect at least N single-solutions. N = 8192.

Acknowledgements. We would like to thank Eamonn Postlethwaite for his detailed feedback and helpful
suggestions on an earlier version of this paper.

Andre Esser was supported by DFG Research Training Group GRK 1817. Felix Heuer, Alexander
May and Christian Sohler were supported by Mercator Research Center Ruhr, project “LPN-Krypt”.

29



A Las Vegas to Monte Carlo Boosting Technique

Corollary A.1 (Corollary of Markov’s Inequality, [30]). Let X denote a non-negative random
variable with expectation E[X]. Then for any c > 0 we have

Pr[X ≥ c · E[X]] ≤ 1
c
.

For a randomized algorithm A we let random variable TA (resp. MA) denote the running time (resp.
memory consumption) of A taken over its randomness.

Corollary A.2 (Las Vegas to Monte-Carlo). Let A be a randomized algorithm that outputs a solution
with probability 1. Then for any k ∈ N there exists a randomized algorithm B := Bk with running time
TB ≤ 4k · E[TA], memory consumption MB ≤ 4 · E[MA] that outputs a solution with probability at least
1− 2−k.

Proof. Let k ∈ N. We define algorithm Bk as follows: Run A k times on fresh randomness and abort a
run if TA > 4 · E[TA] or MA > 4 · E[MA]. If any run of A output a solution, output it. Otherwise, return
a failure symbol ⊥.

The running time and memory consumption of B are easy to verify. For B’s failure probability we
have

Pr[B outputs ⊥] = Pr[All k runs of A were aborted]
= Pr[A was aborted]k

= (Pr[TA > 4 · E[TA] ∪MA > 4 · E[MA]])k

≤ (Pr[TA > 4 · E[TA]] + Pr[MA > 4 · E[MA]])k

≤ 2−k ,

where we employed Corollary A.1 for the last bound.
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