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Abstract. Structured encryption (STE) schemes encrypt data struc-
tures in such a way that they can be privately queried. One aspect of
STE that is still poorly understood is its leakage. In this work, we de-
scribe a general framework to design STE schemes that do not leak the
query/search pattern (i.e., if and when a query was previously made).
Our framework consists of two compilers. The first can be used to make
any dynamic STE scheme rebuildable in the sense that the encrypted
structures it produces can be rebuilt efficiently using only O(1) client
storage. The second transforms any rebuildable scheme that leaks the
query/search pattern into a new scheme that does not. Our second com-
piler is a generalization of Goldreich and Ostrovsky’s square root oblivi-
ous RAM (ORAM) solution but does not make use of black-box ORAM
simulation. We show that our framework produces STE schemes with
query complexity that is asymptotically better than ORAM simulation
in certain (natural) settings and comparable to special-purpose oblivious
data structures.
We use our framework to design a new STE scheme that is “almost” zero-
leakage in the sense that it reveals an, intuitively-speaking, small amount
of information. We also show how the scheme can be used to achieve
zero-leakage queries when one can tolerate a probabilistic guarantee of
correctness. This construction results from applying our compilers to a
new STE scheme we design called the piggyback scheme. This scheme
is a general-purpose STE construction (in the sense that it can encrypt
any data structure) that leaks the search/query pattern but hides the
response length on non-repeating queries.

1 Introduction

A structured encryption (STE) scheme encrypts data in such a way that it can
be privately queried. An STE scheme is secure if it does not reveal any partial
information about the data or query beyond a given leakage profile. Special cases
of STE include searchable symmetric encryption (SSE) [37,17,13,26,25,8,38] and
graph encryption [10,29]. STE has received attention due to its applications to
the design of secure cloud services, secure databases, lawful surveillance [22] and
network provenance [42]. In recent years, a lot of progress has been made on im-
proving various characteristics of STE including its efficiency [13], its dynamism
[26,25,32,7], its parallelism and locality [25,7,9,3,14], its security [13,38,5] and its
expressiveness [10,8,34,15,24].



One aspect that is still poorly understood, however, is its leakage. In the
context of SSE, we currently know of four attacks. All of these attacks are query-
recovery attacks in the sense that they aim to recover information about the
queries. The IKK attack [20] exploits co-occurrence leakage (i.e., how often each
pair of queries occur together in a document) assuming knowledge of the client’s
data collection. The Count attack [6] exploits co-occurrence and response length
leakage (i.e., how many documents contain the query) assuming knowledge of
the client’s data collection and of a subset of its queries. 3 The LZWT attack
[28] exploits search pattern leakage. File injection attacks [41] are query-recovery
attacks where the adversary needs the ability to inject documents/files.

Oblivious RAM (ORAM). One approach that is often suggested for han-
dling leakage is to avoid STE completely and use one of two ORAM-based ap-
proaches. The first, which we refer to as ORAM simulation, is to store the data
(represented as an array) in an ORAM and query it by simulating every read and
write operation of the query algorithm with an ORAM access. Note that this
approach is general-purpose. The second approach is to design a custom oblivi-
ous data structure and query it with a dedicated oblivious query algorithm. We
briefly note that while ORAM simulation is often cited as a zero-leakage (ZL)
solution, 4 its exact query leakage actually depends on the data structure being
managed. More precisely, ORAM simulation is only ZL for structures with con-
stant query complexity. For structures that do not satisfy this constraint (e.g.,
inverted indexes) some form of padding must be applied which increases both
the storage and query complexity of the solution.

Leakage suppression. Another direction, which we initiate here, is to focus
on designing general tools and techniques to suppress the leakage of existing
schemes. We focus mainly on two kinds of techniques: compilers, which take
schemes with a given leakage profile and produce new schemes with an im-
proved profile; and transforms, which modify queries and/or data in such a way
that they can be safely used with schemes that have a certain leakage profile.
Our goal is to find compilers and transforms for as wide a class of schemes as
possible and that incur the smallest overhead possible. In this work, we propose
a leakage suppression framework (i.e., a set of compilers and transforms) for
query equality leakage. The query equality, which is typically referred to as the
search/query pattern in the encrypted search literature, reveals if and when a
query has occurred in the past. Interestingly, our main compiler is a general-
ization of Goldreich and Ostrovsky’s square-root ORAM solution [18] but uses
STE to avoid ORAM simulation.

Our leakage suppression framework—which combines both STE and ORAM—
can result in STE schemes that are asymptotically more efficient than ORAM

3 It was shown experimentally in [6] that the IKK and Count attacks need to know at
least 90% and 75% of the client’s data, respectively. In addition, the Count attack
also needs to know at least 5% of the client’s queries whenever it knows less than
100% of the client’s data.

4 In this work, a solution is ZL if its leakage reveals only information that is derived
from the security parameter or other public parameters.
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simulation under certain assumptions on the data and queries which we make
precise in Section 8.5 We also find that these schemes can achieve the same
asymptotic efficiency as custom oblivious data structures (specifically, we com-
pare to the case of oblivious trees). While we focus here on query equality,
suppression frameworks for other common leakage patterns would be of interest.

1.1 Our Contributions and Techniques
In this work, we consider leakage suppression techniques focusing on query equal-
ity. We make several contributions which we summarize below.

Modeling leakage. Because the terminology and formalism used in previous
work is sometimes inconsistent and contradictory, we extend the definitional
approach of [13,10] with a more intuitive nomenclature and precise descrip-
tions. The details are in Section 5.1 but, as an example, we mention that the
search/query pattern is referred to as the query equality pattern in our frame-
work and is modeled as a function qeq : D×Qt → {0, 1}t×t, where D is a space
of data objects, Qt is a sequence of queries from a query space Q, and {0, 1}t×t is
the set of binary t×t matrices. The function qeq takes a data object and a query
sequence and outputs a binary matrix with a 1 at location (i, j) if the ith and jth

queries in the sequence are equal and 0 otherwise. We also identify and formal-
ize the notion of sub-pattern leakage which captures the behavior of a leakage
pattern on a specified subset of query sequences. As we will see, sub-patterns
are important in understanding and analyzing our suppression techniques.

Reinterpreting the square-root solution. Our main suppression compiler
is based on the seminal square-root ORAM solution of Goldreich and Ostrovsky
[18] which works as follows. Items are encrypted and stored in a main memory
together with encrypted dummy items after being randomly shuffled. In addition,
a cache is maintained in which encrypted items are moved after being accessed.
The ORAM structure consists of the main memory and the cache. Reading from
the ORAM requires accessing the entire cache to look for the item and retrieving
from main memory either a dummy item if the item was found in the cache, or
the real item if the item was not found in the cache.

We observe that the square-root solution can be reinterpreted through the
lens of STE as follows: the main memory is an encrypted array that leaks the
query equality pattern (since reading the same location twice requires sending
the same randomly permuted address to the server) and the cache is an encrypted
dictionary with no query leakage. The access protocol can then be understood
as a mechanism that leverages the ZL queries of the cache to suppress the query
equality leakage of the encrypted array.

The cache-based compiler. As we show, the ideas that underlie the square-
root solution are not only applicable to encrypted arrays but can be generalized
to more complex constructions like encrypted multi-maps and dictionaries. In
other words, instead of using a ZL cache to suppress the query equality leakage

5 When these assumptions do not apply, the schemes are comparable in efficiency to
ORAM simulation.
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of an encrypted array (i.e., the main memory) we want to use the cache to
suppress the query equality leakage of complex encrypted structures. Though
there are technical subtleties that must be addressed when moving to more
complex structures we describe and analyze this generalization of the square-
root solution which we refer to as the cache-based compiler (CBC).

The main advantage of using the CBC to suppress query equality leakage is
that we can avoid ORAM simulation; that is, we do not have to represent our
data structure as an array and simulate every read and write instruction of the
query algorithm with an ORAM access. As we show in Section 8, our framework
induces an additive overhead over the optimal query complexity. This is in con-
trast to ORAM simulation which induces a multiplicative overhead. Comparing
the efficiency of the two approaches over arbitrary data and queries, however,
is not possible so we show that under certain natural conditions (e.g., known
to occur in the keyword search setting), our framework results in schemes that
are asymptotically faster than ORAM simulation and comparable to dedicated
oblivious data structure constructions (here, we consider the case of oblivious
trees). While the CBC allows us to avoid ORAM simulation, our framework
can still benefit from improvements in ORAM design. The reason is that while
ORAM is not used to manage the main data structure, it can (and should) be
used to implement the cache. Note also that the CBC yields a static scheme even
though it requires a dynamic ZL dictionary. Designing a dynamic variant of the
CBC is left as an important open problem.

Non-repeating sub-patterns. In analyzing the security of the schemes that
result from the CBC, we find that their query leakage is a sub-pattern of the
base scheme’s query leakage. Specifically, it is what we refer to as the non-
repeating sub-pattern which is the leakage that occurs on sequences of non-
repeating queries. This suggests that a future goal in STE design might be
to focus on schemes with low non-repeating sub-pattern leakage as opposed to
focusing on schemes with low query leakage directly.

Safe extensions. As mentioned above, there are several technicalities that
must be handled when adapting the square-root solution to more complex struc-
tures. The first is that the structure must be extendable in the sense that it must
be able to hold and query dummy items. We formalize this process as an exten-
sion scheme, which takes as input a data structure and outputs a new one with
the same items plus a given number of dummy items. While, a-priori, this might
seem straightforward, one has to handle dummy items with care because the
leakage of the scheme (which was not originally designed to handle dummies)
could reveal information that enables the adversary to distinguish between real
and dummy items. In addition, the way in which dummy items are handled
could be correlated with the real items and this could be revealed to the ad-
versary through the leakage of the scheme. In Section 6.1, we formally define
the security properties that extension schemes must satisfy in order to be safely
used with the CBC.

The rebuild compiler (RBC). Another challenge is that the CBC requires
the base scheme to be efficiently rebuildable, i.e, equipped with an efficient proto-
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col that can reconstruct the structure with new randomness. Most STE schemes
were not designed with this in mind so we describe a general-purpose protocol
that can be used to rebuild any dynamic STE scheme. If the base scheme has
O(log2 n) update complexity, 6 where n is the number of items stored in the
structure, then our protocol has computation and communication complexity
O(n log2 n). In addition, our rebuild protocol does not affect the latency of the
scheme in the sense that queries can still be made and answered while a rebuild
is taking place. Note, however, that the output of the RBC is a static rebuildable
scheme, therefore losing the dynamism of the base construction. The question
of designing a variant of the RBC that preserves dynamism is left open.

The piggyback scheme (PBS). As discussed, the CBC results in new con-
structions that leak the non-repeating sub-pattern of their base scheme. Our goal,
therefore is reduced to designing schemes with low non-repeating sub-pattern
leakage. In the setting of encrypted arrays, this is relatively straightforward
because the base scheme that implicitly underlies the square-root solution (i.e.,
encrypt and randomly shuffle the items, and fetch by reading the permuted loca-
tion) does not reveal anything when queried on non-repeating sequences. This is
not the case, however, for standard encrypted multi-map or dictionary construc-
tions which reveal the response identity (i.e., the plaintext result of the query) if
they are response revealing; or the response length if they are response hiding.
In particular, this means that these leakages may persist even after applying the
CBC.

To address this we design a new scheme called PBS with low non-repeating
sub-pattern leakage. There are two variants of the scheme: one that reveals the
total sequence response length (i.e., the sum of the response lengths over all
queries in the sequence) and another that reveals nothing. The former achieves
standard correctness whereas the latter is correct with only a certain probability.
At a high level, PBS results from applying a transform to the data and queries so
that they can be safely used with an encrypted multi-map that leaks the response
length. Our approach is to modify the data in such a way that, at query time,
the client can retrieve a fixed number of words per query (which we refer to as
a batch) no matter how large the response is. To maintain correctness, incoming
queries are queued and processed at the next available time. This introduces
a delay in the querying process but by carefully tuning the batch size we can
ensure the entire response is retrieved in a reasonable amount of time. PBS is
general-purpose in the sense that it encrypts any data structure. As far as we
know, this is the first general-purpose STE scheme and may be of independent
interest.

New constructions. Our framework results in several new schemes. First,
by applying our compilers to PBS, we get a new general-purpose STE scheme
called AZL that is “almost” ZL. Specifically, when used on a sequence of t queries
(q1, . . . , qt), its query leakage reveals nothing on queries (q1, . . . , qt−1) and then
reveals the sum of the sequence’s response lengths on query qt. We then show

6 As far as we know, all dynamic SSE schemes have update complexity ranging from
constant to O(log2 n).
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that by applying our compilers to a variant of PBS, we can get a “fully” ZL
construction at the cost of achieving a weaker notion of correctness. As discussed
above, the query complexities of both AZL and its fully ZL variant, FZL, are
asymptotically smaller than ORAM simulation under natural assumptions.

Of course, our compilers can also be applied to other constructions with
query equality leakage, including schemes for single-keyword and boolean SSE
[13,10,8,7,5,2,24], encrypted relational databases [23] or encrypted graphs [10,29].
We stress, however, that the resulting schemes may not be ZL (or even almost
ZL) since, as discussed above, our framework suppresses query equality leakage
but still reveals the base scheme’s non-repeating sub-pattern.

2 Related Work

Structured and searchable encryption. Searchable encryption was first
considered explicitly by Song, Wagner and Perrig in [37]. In [13], Curtmola,
Garay, Kamara and Ostrovsky introduced adaptive security and proposed the
first schemes with optimal search complexity O(#DB[w]), where #DB[w] is the
number of documents that contain the keyword w. The notion of structured
encryption was introduced by Chase and Kamara [10] as a generalization of
SSE that supports queries on arbitrarily-structured data. Subsequent works have
considered the problems of dynamic [17,26,25,38,5,7], I/O-efficient [7,30], local
[9,3,14], more secure [38,16,5], expressive [10,8,34,15,24], and multi-user [13,21]
SSE.

Recently, Garg, Mohassel and Papamanthou [16] presented a dynamic SSE
construction that hides the query equality pattern by leveraging ORAM and
garbled RAM techniques. Their construction has non-optimal search complex-
ity Õ(#DB[w] · logN + log3N), where N =

∑
w∈W DB[w]. We note that while

this scheme does not reveal the query equality explicitly, it still leaks the re-
sponse length which is often correlated with the query equality. Our AZL and
FZL constructions, on the other hand, hide the query equality and reveal only
the sequence response length and ⊥, respectively. In addition, they achieve this
without the multiplicative logN overhead and with less computation on the
client side.

Oblivious RAM. The seminal work of Goldreich and Ostrovsky [18] intro-
duced the notion of ORAM and described the Square-Root and Hierarchical
solutions. Many subsequent constructions improved ORAM upon several dimen-
sions including communication complexity, number of rounds, client storage and
storage overhead [33,40,19,27,36,39,16].

3 Preliminaries and Notation

Notation. The set of all binary strings of length n is denoted as {0, 1}n, and
the set of all finite binary strings as {0, 1}∗. [n] is the set of integers {1, . . . , n},
and 2[n] is the corresponding power set. We write x← χ to represent an element

x being sampled from a distribution χ, and x
$← X to represent an element x

being sampled uniformly at random from a set X. The output x of an algorithm
A is denoted by x ← A. Given a sequence v of n elements, we refer to its ith
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element as vi or v[i]. If S is a set then #S refers to its cardinality. If s is a string
then |s|2 refers to its bit length.

Sorting networks. A sorting network is a circuit of comparison-and-swap
gates. A sorting network for n elements takes as input a collection of n elements
(a1, . . . , an) and outputs them in increasing order. Each gate g in an n-element
network SNn specifies two input locations i, j ∈ [n] and, given ai and aj , re-
turns the pair (ai, aj) if ai < aj and (aj , ai) otherwise. Sorting networks can be
instantiated with the asymptotically-optimal Ajtai-Komlos-Szemeredi network
[1] which has size O(n log n) or Batcher’s more practical network [4] with size
O(n log2 n) but with small constants.

The word RAM. Our model of computation is the word RAM. In this model,
we assume memory holds an infinite number of w-bit words and that arithmetic,
logic, read and write operations can all be done in O(1) time. We denote by
|x|w the word-length of an item x; that is, |x|w = |x|2/w. Here, we assume that
w = Ω(log k).

Abstract data types. An abstract data type specifies the functionality of a
data structure. It is a collection of data objects together with a set of operations
defined on those objects. Examples include sets, dictionaries (also known as key-
value stores or associative arrays) and graphs. The operations associated with an
abstract data type fall into one of two categories: query operations, which return
information about the objects; and update operations, which modify the objects.
If the abstract data type supports only query operations it is static, otherwise
it is dynamic. For simplicity we define data types as having a single operation
and note that the definitions can be extended to capture multiple operations in
the natural way. We model a dynamic data type T as a collection of four spaces
D = {Dk}k∈N, Q = {Qk}k∈N, R = {Rk}k∈N and U = {Uk}k∈N and two maps
qu : D×Q→ R and up : D×U→ D, where D, Q, R and U are, respectively, T’s
object, query, response and update spaces. In Section 9, we make the additional
assumption that U = Q× R, i.e., an update can be written as a pair composed
of a query and its response. When specifying a data type T we will often just
describe its maps (qu, up) from which the object, query, response and update
spaces can be deduced. The spaces are ensembles of finite sets of finite strings
indexed by the security parameter. We assume that R includes a special element
⊥ and that D includes an empty object d0 such that for all q ∈ Q, qu(d0, q) = ⊥.

Data structures. A type-T data structure is a representation of data objects
in D in some computational model (as mentioned, here it is the word RAM).
Typically, the representation is optimized to support qu as efficiently as possible;
that is, such that there exists an efficient algorithm Query that computes the
function qu. For data types that support multiple queries, the representation is
often optimized to efficiently support as many queries as possible. As a concrete
example, the dictionary type can be represented using various data structures
depending on which queries one wants to support efficiently. Hash tables support
Get and Put in expected O(1) time whereas balanced binary search trees support
both operations in worst-case log(n) time.
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Definition 1 (Structuring scheme). Let T = (qu : D×Q→ R, up : D×U→
D) be a dynamic type. A type-T structuring scheme SS = (Setup,Query,Update)
is composed of three polynomial-time algorithms that work as follows:

– DS← Setup(d): is a possibly probabilistic algorithm that takes as input a data
object d ∈ D and outputs a data structure DS. Note that d can be represented
in any arbitrary manner as long as its bit length is polynomial in k. Unlike
DS, its representation does not need to be optimized for any particular query.

– r ← Query(DS, q): is an algorithm that takes as input a data structure DS
and a query q ∈ Q and outputs a response r ∈ R.

– DS← Update(DS, u): is a possibly probabilistic algorithm that takes as input
a data structure DS and an update u ∈ U and outputs a new data structure
DS.

Here, we allow Setup and Update to be probabilistic but not Query. This
captures most data structures but the definition can be extended to include
structuring schemes with probabilistic query algorithms. We say that a data
structure DS instantiates a data object d ∈ D if for all q ∈ Q, Query(DS, q) =
qu(d, q). We denote this by DS ≡ d. We denote the set of queries supported by
a structure DS as QDS; that is,

QDS
def
=

{
q ∈ Q : Query(DS, q) 6= ⊥

}
.

Similarly, the set of responses supported by a structure DS is denoted RDS.

Definition 2 (Correctness). Let T = (qu : D × Q → R, up : D × U → D)
be a dynamic type. A type-T structuring scheme SS = (Setup,Query,Update) is
perfectly correct if it satisfies the following properties:

1. (static correctness) for all d ∈ D,

Pr [DS ≡ d : DS← Setup(d) ] = 1,

where the probability is over the coins of Setup.

2. (dynamic correctness) for all d ∈ D and u ∈ U, for all DS ≡ d,

Pr [Update(DS, u) ≡ up(d, u) ] = 1,

where the probability is over the coins of Update.

Note that the second condition guarantees the correctness of an updated
structure whether the original structure was generated by a setup operation
or a previous update operation. Weaker notions of correctness (e.g., for data
structures like Bloom filters) can be derived from Definition 2.

Basic data structures. We use structures for several basic data types in-
cluding arrays, dictionaries and multi-maps which we recall here. Throughout,
we will make black-box use of these data types which means that they can be
instantiated with any appropriate data structure. To highlight this black-box us-
age, we refer to the data structure by its type’s name. For example, we will write
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RAM, DX and MM to refer to some arbitrary array, dictionary and multi-map 7

data structures.

An array RAM of capacity n stores n items at locations 1 through n and
supports read and write operations. We write v := RAM[i] to denote reading the
item at location i and RAM[i] := v the operation of storing an item at location
i. A dictionary structure DX of capacity n holds a collection of n label/value
pairs {(`i, vi)}i≤n and supports get and put operations. We write vi := DX[`i] to
denote getting the value associated with label `i and DX[`i] := vi to denote the
operation of associating the value vi in DX with label `i. A multi-map structure
MM with capacity n is a collection of n label/tuple pairs {(`i,vi)i}i≤n that
supports get and put operations. Similarly to dictionaries, we write vi := MM[`i]
to denote getting the tuple associated with label `i and MM[`i] := vi to denote
operation of associating the tuple vi to label `i.

Data structure logs. Given a structure DS that instantiates an object d, we
will be interested in the shortest sequence of update operations needed to create
a new structure DS′ that also instantiates d. We refer to this as the update log
of DS and assume the existence of an efficient algorithm Log that takes as input
DS and outputs a sequence (u1, . . . , un) such that adding u1, . . . , un to an empty
structure results in some DS′ ≡ d.

Extensions. An important property we will need from a data structure is that
it be extendable in the sense that, given a structure DS one can create another
structure DS 6= DS that is functionally equivalent to DS but that also supports
a number of dummy queries. We say that a structure is efficiently λ-extendable,
for λ ≥ 1, if there exists a query set Q ⊃ Q of size #Q + λ and a probabilistic
polynomial time algorithm ExtT that takes as input DS and λ and returns a new
structure DS of the same type T such that: (1) DS ≡ d; and (2) for all q ∈ Q\Q,
Query(DS, q) = ⊥. 8 We say that DS is an extension of DS and that DS is a
sub-structure of DS.

Cryptographic protocols. We denote by (outA, outB) ← ΠA,B(X,Y ) the
execution of a two-party protocol Π between parties A and B, where X and Y
are the inputs provided by A and B, respectively; and outA and outB are the
outputs returned to A and B, respectively. We sometimes write ΠA,A to denote
an execution of Π where the first party follows the protocol and the second
party is some adversary A. Similarly we sometimes write ΠS,A to denote an
execution of Π between a simulator S and an adversary A. We quantify the
round complexity of a protocol in either moves (i.e., messages sent between the
parties) or rounds (i.e., pairs of messages exchanged between the parties).

7 Multi-maps are the abstract data type instantiated by an inverted index. In the en-
crypted search literature multi-maps are sometimes referred to as indexes, databases
or tuple-sets (T-sets).

8 Note that we make the implicit assumption that adding dummy queries to the query
space of some data type does not change the type.
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4 Re-Defining Structured Encryption

An STE scheme can be roughly viewed as a data structuring scheme that works
over encrypted data. Several types of STE schemes were described in [11] (the
full version of [10]) but here we consider structure-only schemes. This variant
only encrypts objects as opposed to standard schemes which encrypt both a data
structure and data items (e.g., documents, emails, user profiles). At a high-level,
the formulation proposed in [10] works as follows. During a setup phase, the
client constructs an encrypted data structure EDS under a key K. The client
then sends EDS to the server. During the query phase, the client constructs and
sends a token tk generated from its query q and secret key K. The server then
uses the token tk to query EDS and recover a response r. Below, we formally
describe our notion of STE. Our definition generalizes that of [10] in several
respects.

Interaction. In the standard variant of STE, the query phase is non-interactive;
that is, it requires only a single round that consists of the client sending a token
and the server returning an encrypted data item. All the constructions proposed
in [10] are non-interactive and many SSE constructions are as well. There are,
however, several constructions that are interactive including [35,25,8]. The use
of interaction in STE provides a lot of power and most interactive constructions
are able to improve on the leakage of non-interactive schemes. For example [25]
uses interaction during the update phase to leak less than [26], and [8] uses in-
teraction to leak less than the naive boolean SSE construction which consists of
the server taking intersections and unions of results.

Rebuilding. Since previous notions of STE did not consider rebuilding, the
standard security notions of [13,10] have to be augmented appropriately. In par-
ticular, the definition has to properly capture the effect of rebuilding operations
on the security of the scheme. Functionally, the result of rebuilding an encrypted
structure EDS should be equivalent to re-running the scheme’s Setup algorithm
(with new coins) on the structure underlying EDS. From a security perspective,
the purpose of rebuilding is to reduce the scheme’s leakage.

4.1 Syntax and Correctness
In Definition 3 below we extend the syntax of STE to include interactive opera-
tions and rebuilding. We do this by adding an additional protocol for rebuilding
operations. When using data structures, it is sometimes convenient to build a
structure with a Setup operation that takes as input a data object. Other times,
it is more convenient to build an empty structure with an Init operation and
add items subsequently. Here, we only define a Setup algorithm but capture Init
operations by inputting an empty structure DS0 ≡ d0.

Definition 3 (Structured encryption). A type-T interactive structured en-
cryption scheme STE = (Setup,QueryC,S,UpdateC,S,RebuildC,S) consists of an
algorithm and three two-party protocols that work as follows:

– (K, st,EDS)← Setup(1k, λ,DS): is a probabilistic polynomial-time algorithm
that takes as input a security parameter 1k, a query capacity λ ≥ 1 and a
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type-T structure DS. It outputs a secret key K, a state st and an encrypted
structure EDS. If DS ≡ d0, it outputs an empty EDS. We sometimes write
this as Setup(1k, λ,⊥).

–
(
(st, r),⊥

)
← QueryC,S

(
(K, st, q),EDS

)
: is a two-party protocol executed be-

tween a client and a server where the client inputs a secret key K, a state st
and a query q and the server inputs an encrypted data structure EDS. The
client receives as output an updated state st and a response r while the server
receives ⊥.

– (st′,EDS′) ← UpdateC,S
(
(K, st, u),EDS

)
: is a two-party protocol executed

between a client and server where the client inputs a secret key K, a state
st and an update u and the server inputs an encrypted data structure EDS.
The client receives a new state st′ as output and the server receives EDS′.

–
((
st′,K ′

)
,EDS′

)
← RebuildC,S ((K, st) ,EDS): is a two-party protocol exe-

cuted between the client and server where the client inputs a secret key K
and a state st. The server inputs an encrypted data structure EDS. The client
receives an updated state st′ and a new key K ′ as output while the server
receives a new structure EDS′.

For visual clarity, we sometimes omit the subscripts of the protocols when the
parties involved are clear from the context.

We say that a type-T encrypted structure EDS instantiates a data object
d ∈ D if for all q ∈ Q, Query

(
(K, st, q),EDS

)
outputs

(
(st, r),⊥)

)
such that

r = qu(d, q), where K and st are the key and state of EDS. We write this as
EDS ≡ d and sometimes write EDS ≡ DS to mean that EDS and DS instantiate
the same data object.

Definition 4 (Correctness). A type-T structured encryption scheme STE =
(Setup,QueryC,S,UpdateC,S,RebuildC,S) is correct if it satisfies the following
properties:

– (static correctness) for all k ∈ N, for all d ∈ D, for all DS that instantiate
d, for all λ ≥ 1,

Pr
[
EDS ≡ DS : (K, st,EDS)← Setup(1k, λ,DS)

]
≥ 1− negl(k),

where the probability is over the coins of Setup and of Query.

– (dynamic correctness) for all k ∈ N, for all d ∈ D, for all EDS that instantiate
d, for all u ∈ U, for all λ ≥ 1,

Pr
[
EDS′ ≡ up(d, u) : (st,EDS′)← Update

(
(K, st, u),EDS

) ]
≥ 1− negl(k),

where K and st are the key and state of EDS and the probability is over the
coins of Update.

– (rebuild correctness) for all k ∈ N, for all d ∈ D, for all EDS that instantiate
d,

Pr
[
EDS′ ≡ d :

(
(st,K ′),EDS′)← Rebuild

(
(K, st),EDS

) ]
≥ 1− negl(k),

where K and st are the key and state of EDS and the probability is over the
coins of Rebuild.
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Structured encryption variants. The syntax of the different variants of
STE can all be recovered from Definition 3. Stateless schemes can be recovered
by omitting the state from the inputs and outputs of the algorithms. Schemes
with non-interactive queries and/or updates can be recovered by requiring that
the QueryC,S or UpdateC,S protocols have only one message referred to as the
search and update tokens, respectively. Response-revealing schemes have the
following query syntax

(
st, r

)
← QueryC,S

(
(K, st, q),EDS

)
.

5 Defining Security

As discussed in the previous Section, the standard notion of security for STE
guarantees that an encrypted structure reveals no information about its under-
lying structure beyond the setup leakage LSt, that the query protocol reveals no
information about the structure and queries beyond the query leakage LQr, and
that the update protocol reveals no information about the structure and updates
beyond the update leakage LUp. If this holds for non-adaptively chosen opera-
tions then this is referred to as non-adaptive semantic security. If, on the other
hand, the operations are chosen adaptively, this leads to the stronger notion of
adaptive semantic security [13]. This notion of security was first proposed and
formalized by Curtmola et al. in the context of SSE [13] and later generalized
to STE in [10].

5.1 Modeling Leakage

We use the approach of [13,10] to capture leakage in STE. Every STE operation is
associated with leakage which itself can be composed of multiple leakage patterns.
The collection of all of these leakage functions is the scheme’s leakage profile.
Leakage patterns are (families of) functions over the various spaces associated
with the underlying data type.

Leakage patterns. For concreteness, we describe several well-known leakage
patterns. Because the terminology used in previous work to describe leakage
is very inconsistent, we propose new terminology and nomenclature. Our goal
here is to provide a nomenclature for leakage patterns that gives names that
are precise, concise, unique and intuitive. We refer to any leakage pattern that
reveals an item completely as an identity pattern, any leakage pattern that reveals
whether two items are equal as an equality pattern, any leakage pattern that
reveals the size of a set as a size pattern and any leakage pattern that reveals the
length of an item as a length pattern. Let T = (qu : D×Q→ R, up : D×U→ D)
be a dynamic data type and consider the following leakage patterns:

– the query equality pattern is the function family qeq = {qeqk,t}k,t∈N with
qeqk,t : Dk × Qtk → {0, 1}t×t such that qeqk,t(d, q1, . . . , qt) = M , where M
is a binary t × t matrix such that M [i, j] = 1 if qi = qj and M [i, j] = 0 if
qi 6= qj . The query equality pattern is referred to as the search pattern in
the SSE literature;

– the response identity pattern is the function family rid = {ridk,t}k,t∈N with
ridk,t : Dk×Qtk → Rk such that ridk,t(d, q1, . . . , qt) =

(
qu(d, q1), · · · , qu(d, qt)

)
.
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The response identity pattern is referred to as the access pattern in the SSE
literature;

– the data identity pattern is the function family did = {didk}k∈N with didk :
Dk → Dk such that didk(d) = d.

– the response equality pattern is the function family req = {reqk,t}k,t∈N with
reqk,t : Dk ×Qtk → {0, 1}t×t such that reqk,t(d, q1, . . . , qt) = M , where M is
a binary t× t matrix such that M [i, j] = 1 if qu(d, qi) = qu(d, qj).

Note that the patterns described above can be defined over any data type. Some
leakage patterns, however, can only be defined over data types with spaces that
have additional structure. As examples, consider the following patterns where
we assume that the underlying type is defined over data, query and response
spaces that are equipped with “length functions” | · |D : D → N, | · |Q : Q → N
and | · |R : R → N (we drop the subscripts for visual clarity since the space is
clear from the context):

– the query length pattern is the function family qlen = {qlenk,t}k,t∈N with

qlenk,t : Dk ×Qtk → N such that qlenk,t(d, q1, . . . , qt) =
(
|q1|, · · · , |qt|);

– the response length pattern is the function family rlen = {rlenk,t}k,t∈N with
rlenk,t : Dk×Qtk → N such that rlenk,t(d, q1, . . . , qt) =

(
|qu(d, qt)|, · · · , |qu(d, qt)|

)
;

– the maximum query length pattern is the function family mqlen = {mqlenk,t}k,t∈N
with mqlenk,t : Dk ×Qtk → N such that mqlenk,t(d, q1, . . . , qt) = maxq∈Qk

|q|;
– the maximum response length pattern is the function family mrlen = {mrlenk,t}k,t∈N

with mrlenk,t : Dk×Qtk → N such that mrlenk,t(d, q1, . . . , qt) = maxq∈Qk
|qu(d, q)|;

– the total response length pattern is the function family trlen = {trlenk}k∈N
with trlenk : Dk → N such that trlenk(d) =

∑
q∈Qk

|qu(d, q)|;
– the data size pattern is the function family dsize = {dsizek}k∈N with dsizek :

Dk → N such that dsizek(d) = |d|.
We say that a pattern is ZL if it depends only on the security parameter and
other public parameters. Note that this does not imply that no leakage occurred
but rather that whatever leakage did occur is not useful since it could have been
derived solely from the public parameters. For example, the maximum query
length is a ZL pattern since it can be derived from the security parameter. Given
some query leakage pattern patt : D×Qt → X, we will often abuse notation and
write patt(DS, q1, . . . , qt) to mean patt(d, q1, . . . , qt) where d ≡ DS. Similarly, for
some setup leakage pattern patt : D→ X, we sometimes write patt(DS) to mean
patt(d) where d ≡ DS. We use the same notation for update and rebuild leakage
patterns.

Leakage sub-patterns. Given a leakage pattern patt we can decompose it into
sub-patterns that capture its behavior on restricted classes of query sequences.
In this work, we are particularly interested in how certain schemes behave when
used on non-repeating query sequences—as opposed to arbitrary sequences. We
refer to this as patt’s non-repeating sub-pattern.

Definition 5 (Non-repeating sub-patterns). Let T = (qu : D×Q→ R) be
a static data type and patt : D × Qt → X be a query leakage pattern. We say
that nrp : D × Qt → X is patt’s non-repeating sub-pattern if there exists some
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function other : D × Qt → X such that for all DS of type T and all sequences
(q1, . . . , qt) ∈ Qt,

patt(DS, q1, . . . , qt) =

{
nrp(DS, q1, . . . , qt) if qi 6= qj for all i, j ∈ [t],

other(DS, q1, . . . , qt) otherwise.

Definition 5 can be extended to any other operation in the natural way.

Operational leakage. Each operation of an STE scheme (e.g., setup, query,
update) generates some leakage which is the direct product of one or more leakage
patterns. As an example, consider the setup and query leakage of typical static
SSE schemes (e.g., [13,7]). The setup leakage is LSt = trlen and the query leakage
is LQr = (qeq, rid) = qeq × rid. Note that during the Ideal experiment used to
formalize SSE security, the simulator will receive trlen(DB) =

∑
w∈W #DB(w) in

order to simulate EDB and

qeq× rid(DB, w1, . . . , wt) =
(
qeq(DB, w1, . . . , wt), rid(DB, w1, . . . , wt)

)
,

in order to simulate the tth search token. We say that an operation is ZL if its
leakage includes only ZL patterns.

Leakage profiles. A leakage profile is a collection of leakages for a set of op-
erations. For example, the standard leakage profile for static response-revealing
SSE schemes like [13,7] is

ΛRR = (LSt,LQr) =

(
trlen,

(
qeq, rid

))
.

The response-hiding variants of these constructions, however, have leakage profile

ΛRH = (LSt,LQr) =

(
trlen,

(
qeq, rlen

))
.

Leakage upper bounds. Another useful notion for our purposes is that of a
leakage upper bound which allows us to argue that some leakage pattern reveals
nothing beyond some other operational leakage.

Definition 6. Let patt1 and patt2 be two query leakage patterns. We say that
patt1 leaks at most patt2 if there exists a probabilistic polynomial time simulator
S such that for all probabilistic polynomial time distinguishers D, for all d ∈ D,
for all DS ≡ d, for all t ∈ N, for all sequences (q1, . . . , qt) ∈ Qt, the following
expression is negligible in k,∣∣∣∣Pr

[
D
(
patt1

(
DS, q1, . . . , qt

))
= 1

]
− Pr

[
D
(
S
(
patt2

(
DS, q1, . . . , qt

)))
= 1

]∣∣∣∣ .
We write this as patt1 ≤ patt2.

Similar notions can be defined for Setup, Rebuild and Update operations in the
natural way.
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5.2 Adaptive Semantic Security
In this Section, we extend the notion of adaptive semantic security for STE from
[13,10]. Obviously, since we consider interactive Query and Update protocols, we
require that the entire interaction between the adversary and the challenger be
simulatable (with appropriate leakage) as opposed to just the tokens as is the
case in the non-interactive definitions. Also, to capture the effect of rebuilding,
the adversary is allowed to execute rebuild operations.

Definition 7 (Adaptive semantic security). Let STE = (Setup,QueryC,S,
UpdateC,S,RebuildC,S) be a type-T structured encryption scheme and consider
the following probabilistic experiments where C is a stateful challenger, A is a
stateful adversary, S is a stateful simulator, Λ = (pattSt, pattQr, pattUp, pattRb)
is a leakage profile, λ ≥ 1 is a query capacity and z ∈ {0, 1}∗:
RealSTE,C,A(k): given z and λ the adversary A outputs a structure DS of type T

and receives EDS from the challenger, where (K, st,EDS)← Setup(1k, λ,DS).
A then adaptively chooses a polynomial-size sequence of operations (op1, . . . opm).
For all t ∈ [m] the challenger and adversary do the following:
1. if opt is a query operation q ∈ Q, they execute QueryC,A

((
K, st, q

)
,EDS

)
;

2. if opt is an update operation u ∈ U, they execute UpdateC,A
((
K, st, u

)
,EDS

)
;

3. if opt is a rebuild operation, they execute RebuildC,A
((
K, st

)
,EDS

)
.

Finally, A outputs a bit b that is output by the experiment.

IdealSTE,A,S(k): given z and λ the adversary A outputs a structure DS of
type T. Given pattSt(DS), the simulator returns an encrypted structure EDS
to A. A then adaptively chooses a polynomial-size sequence of operations
(op1, . . . , opm). For all t ∈ [m], the challenger, simulator and adversary do
the following:
1. if opt is a query operation q ∈ Q, they execute QueryS,A

(
pattQr(DS, q),EDS

)
;

2. if opt is an update operation u ∈ U, they execute UpdateS,A
(
pattUp(DS, u),EDS

)
;

3. if opt is a rebuild operation, they execute RebuildS,A
(
pattRb(DS),EDS

)
.

Finally, A outputs a bit b that is output by the experiment.

We say that STE is adaptively Λ-semantically secure if there exists a probabilis-
tic polynomial time simulator S such that for all probabilistic polynomial time
adversaries A, all λ ≥ 1, and all z ∈ {0, 1}∗,

|Pr [ RealSTE,A(k) = 1 ]− Pr [ IdealSTE,A,S(k) = 1 ]| ≤ negl(k).

Connection to ORAM and PIR. STE captures other primitives like ORAM
and PIR. In particular, the syntax and security definitions of both primitives can
be recovered from Definition 7 as follows. ORAM can be viewed as an adaptively
ΛORAM-secure array encryption scheme with

ΛORAM =
(
LSt,LRd,LWr

)
=
(
dsize,⊥,⊥

)
,

where LSt, LRd and LWr are the setup, read and write leakages. Similarly, PIR
can be viewed as an adaptively ΛPIR-secure array encryption scheme where

ΛPIR =
(
LSt,LRd

)
=
(
did,⊥

)
.

where LSt and LRd are the setup and read leakages.

15



6 The Cache-Based Compiler

STE provides a natural way to understand the square-root solution of Goldreich
and Ostrovsky [18]. More precisely, the construction consists of two components:
a main memory in which the encrypted data and dummy items are stored and
a cache in which items are moved after being accessed. Access to this ORAM
structure requires constantly accessing the cache to look for the desired item and
either retrieving a dummy item (in case the item was in the cache) or the real
item from main memory (in case the item was not in the cache).

We observe that this ORAM structure can be viewed through the lens of
structured encryption as follows: the main memory is an encrypted array that
leaks the query equality pattern and the cache is a ZL encrypted dictionary. The
access protocol can then be understood as a mechanism that leverages the ZL
property of the cache to suppress the query equality leakage of the encrypted
array. We now describe this view in more detail.

A structured view of the square-root solution. We assume familiarity
with the square-root solution and refer the reader to [18] for a detailed exposition.
Given an array RAM of N items the square-root solution produces a structure
ORAM = (ERAM,EDX) which consists of an encrypted array ERAM and an
encrypted dictionary EDX. ERAM is an encryption of a

√
N -extension RAM of

RAM, where
√
N is the capacity with which RAM has been extended. Concretely,

it consists of encryptions of the data items in RAM and of
√
N dummy items

all permuted at random.9 We refer to an item’s location in RAM as its virtual
address and to its location in ERAM as its real address. To allow for space-
efficient rebuilding, the permutation is instantiated by sorting on random tags
that are associated to each item and that are generated by evaluating a PRF on
the item’s virtual address. To access the item with virtual address i, one executes
a Read protocol which re-computes the item’s random tag and performs a binary
search to find it. Since the tags are deterministic the locations accessed by the
binary search are also deterministic and, therefore, the Get protocol reveals the
query equality (but nothing else since the labels are pseudo-random). The cache
simply consists of encryptions of elements of the form 〈i, v〉, where i is the virtual
address of item v. To retrieve the item with virtual address i, one executes a
protocol Get which retrieves and decrypts each element of the cache and returns
to the client the one with prefix i. The purpose of concatenating virtual addresses
i to items v is to allow for retrievals based on virtual address as opposed to
based on location in the cache. More abstractly, it instantiates a dictionary with
pairs that consist of data items labeled with their virtual address. Finally, by
retrieving the entire cache every time a query is made to EDX, we ensure that
the Get protocol for EDX is ZL and that nothing is revealed about the query or
response.

So we have two structures: ERAM, which holds N +
√
N items (i.e., the real

items plus the dummy items) and has query leakage qeq; and EDX, which holds√
N items and has query leakage ⊥. Clearly, accessing ERAM directly more than

9 Note that after
√
N queries, the entire ORAM needs to be rebuilt.
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once leaks information so the goal is to leverage the obliviousness of EDX to
suppress the leakage of ERAM. At a high-level, Goldreich and Ostrovsky’s idea
is as follows. To retrieve the item at virtual address i, the client executes a Get(i)
operation on EDX to check if the item is in the cache. If so, the client executes
a Read(j) operation on ERAM, where j is the virtual address of a dummy item,
followed by a Put operation on EDX to store the dummy item in the cache. If
the ith item was not in EDX, then the client executes a Read(i) operation on
ERAM followed by a Put operation on EDX to store the item just retrieved from
ERAM. This protocol has several properties: (1) the client always retrieves the
desired item; (2) for any two virtual addresses accessed, the view of the server
is identically distributed; and (3) ERAM is never queried more than once on the
same address. The first property guarantees correctness. The second guarantees
that no partial information is revealed about the address queried. The third
property guarantees queries cannot be linked; effectively suppressing the leakage
of ERAM.

Overview of the CBC. As argued above, the square-root solution can be
seen as an instantiation of a more general approach that consists of using a
ZL encrypted dictionary to suppress the query equality pattern of an encrypted
RAM. We observe that this approach is not only applicable to encrypted RAMs
(as in the case of the square-root solution) but to a larger class of encrypted
structures. We formalize this by abstracting and generalizing this approach.
The result is a compiler that, given a structured encryption scheme STEEDS

with query leakage qeq× patt and a dictionary encryption scheme STEEDX, with
query leakage ⊥, yields a new structured encryption scheme STESDS with query
leakage nrp, where nrp is the non-repeating sub-pattern of patt. If nrp = ⊥, then
the resulting scheme has ZL queries.

The CBC works as follows. Given a data structure DS of type T and a query
capacity λ ≥ 1, it creates a new structure SDS = (EDS,EDX) which consists of:
(1) an encryption EDS of a λ-extension of DS; and (2) an encrypted dictionary
EDX with capacity λ. To perform a query q on SDS, the client executes a Get
on the cache EDX for q. If this results in ⊥ (i.e., there is no value in the cache
with label q) the client queries the main structure EDS with q and updates
EDX with the pair (q, r), where r is the result of the query. If, on the other
hand, the initial EDX query resulted in a value v 6= ⊥, the client queries the
main structure EDS with an unused dummy. It then updates EDX with the pair
(q, v). Rebuilding is handled by creating a new encrypted dictionary EDX and
executing the Rebuild protocol of STEEDS. Due to space limitations, we defer a
more detailed/pseudo-code description to the full version of this work.

Correctness is easy to verify and, intuitively, one can see that EDS will not
leak the query equality because it will be queried with any q at most once. There
are, however, some subtleties that come up when trying to apply the CBC to
structures other than encrypted RAMs. We discuss some of these challenges
below.
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6.1 Safe Extensions
As highlighted above, the CBC relies on the ability to query the main encrypted
structure EDS on dummy values. In other words, EDS must be an encryption of
an extension DS of the underlying structure DS. In particular, this means that
the setup and query leakage of STEEDS will be on the extension DS as opposed
to the original structure DS. This creates some technical problems that have to
be treated carefully.

Extension leakage. The first difficulty is that leakage on DS could reveal
useful information about its sub-structure DS. As a concrete example, consider
an array encryption scheme with the setup leakage LSt = dsize which, in this
case, reveals the size of the array. Let λ ≥ 1, s = dsize(RAM) and consider an
extended array RAM with size 2 · (s+ λ) if the first element of the sub-array is
even and size 2 · (s+ λ) + 1 otherwise. Clearly, the size (i.e., the setup leakage)
of the extension RAM reveals a bit of information about the first element of its
sub-array.

Definition 8 (Safe extensions). Let Λ = (pattSt, pattQr, pattRb) be a type-T
leakage profile. We say that an extension Ext is Λ-safe if for all k ∈ N, for all
d ∈ Dk, for all DS ≡ d, for all λ ≥ 1, for all DS output by Ext(DS, λ), for all
t ∈ N, for all (q1, . . . , qt) ∈ Qtk, pattSt(DS) ≤ pattSt(DS), pattQr(DS, q1, . . . , qt) ≤
pattQr(DS, q1, . . . , qt), and pattRb(DS) ≤ pattRb(DS).

6.2 Security of the Cache-Based Compiler
We are now ready to analyze the security of the CBC. In Theorem 1 below,
we precisely describe the leakage of the supressed scheme as a function of the
leakage of the base scheme, of the extension and of the underlying cache.

Theorem 1. If STEEDS is a static and rebuildable
(
pattSt, qeq × patt, pattRb

)
-

secure scheme of type T, if Ext is an (pattSt, nrp, pattRb)-safe extension scheme,
and if STEEDX is a (patt′St,⊥,⊥)-secure dictionary encryption scheme, then
STESDS is a (

pattSt, nrp, pattRb

)
-secure

scheme of type T, where nrp is the non-repeating sub-pattern of patt.

The proof of Theorem 1 is deferred to the full version of the paper.

7 The Rebuild Compiler

In this section, we describe a compiler that turns any dynamic STE scheme into
a rebuildable static STE scheme. Recall that for most applications of STE, the
client outsources its data to the server. The client, therefore, does not have a local
copy of the data from which it can build a new encrypted structure. One possible
solution is to have the client retrieve the encrypted structure, “extract” the
underlying data structure and set up a new one. This naive approach, however,
does not always work as there are many STE schemes that do not support a
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form of extraction in the sense above. This is the case, for example, for the SSE
constructions of Goh [17] and the ZMF construction of Kamara and Moataz
[24]. 10 Another issue occurs if the client does not have enough local storage
to store the encrypted structure. In such a case, the rebuild protocol has to be
space-efficient for the client and, preferably, make use of only O(1) space.

Overview of the RBC. There are three main challenges in making an en-
crypted structure rebuildable. The first is that our approach needs to be general-
purpose; that is, it should work for any dynamic encrypted structure. Second,
the rebuild operation should be time-efficient for the server and client, and space-
efficient for the client. The third is that the rebuild operation’s leakage should
be minimal.

At a high-level, our approach works as follows. When the client constructs an
encrypted structure EDS from a plaintext structure DS, it also builds what we
refer to as an “encrypted log” RAM. This log is an array that holds encryptions
of all the add operations necessary to build the structure DS. The log is stored
at the server with EDS. To rebuild EDS, the client will use a sorting network to
randomly shuffle the encrypted log at the server. The client and server will then
initialize a new (empty) encrypted structure EDSN . The client then retrieves
each ciphertext in the log, decrypts it to recover an update u and executes with
the server an add operation on EDSN for u. After processing every element of
the log, EDSN becomes the new structure. We note that our approach works for
both response-hiding and response-revealing constructions.

Detailed description. Let STEEDS = (Setup,Query,Add) be a dynamic type-
T STE scheme. Our compiler converts STEEDS into a new static rebuildable
scheme RSTEEDS = (Setup,Query,Rebuild).

Setup takes as input a static data structure DS and encrypts it using STEEDS.Setup.
This results in a key KM and an encrypted structure EDSM . It then creates an
array RAM that stores encryptions of the updates needed to build DS. That is,
it computes (u1, . . . , um) := Log(DS) and, for all i ∈ [m], it sets

RAM[i] := SKE.Enc
(
KL, ui

)
,

where KL is a symmetric key. Setup outputs EDS = (EDSM ,RAM), the keys KM

and KL for EDSM and RAM, respectively, and state that includes the state of
EDSM and a counter cnt that will be used to keep track of the number of queries
executed.

Query takes as input the secret key, the state and a query from the client,
and the encrypted structure from the server. It uses the counter cnt to check if
the number of queries since the last Rebuild has not exceeded λ. If so it executes
the query protocol of STEEDS and increments cnt. If not, it aborts.

The RebuildC,S protocol takes as inputs the secret key from the client and
the encrypted structure EDS = (EDSM ,RAM) from the server. First, the server
creates a copy RAM′ of RAM. The client and server then obliviously permute

10 Technically, this is also true for the schemes in [13,10,26,8,7] but they can be easily
modified to achieve this property.
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RAM′. To do this, the client samples a random permutation π over [m] and
the client and server choose a sorting network for [m] items. For each gate
g = (i, j) of the network, the server sends the ciphertexts cti = RAM′[i] and
ctj = RAM′[j] to the client. The client decrypts them and swaps them as follows:
if π(i) < π(j), then it returns the pair (ct′i, ct′j) otherwise it returns the pair
(ct′j , ct′i), where ct′i and ct′j are re-encryptions of cti and ctj under the same

key KL. The server then stores the first element of the pair at RAM′[i] and
the second at RAM′[j]. At the end of this phase, RAM′ holds a set of randomly
permuted and re-encrypted ciphertexts. Next, the client and server initialize a
new encrypted structure ((KN , stN ),EDSN )← STEEDS.Setup(1k,⊥). The client
sequentially retrieves and decrypts all the elements in RAM′ and uses the result to
update EDSN . More precisely, for all retrieved ciphertexts cti, it computes ui :=
Dec(KL, cti) and executes (stN ,EDSN )← Add((KN , stN , ui),EDSN ). Finally, it
sets the counter cnt back to 0 and sets EDSM to be the new encrypted structure
EDSN . Due to space constraints, we provide a more detailed description in the
full version of this work.

Remark on amortization and latency. The encrypted structures that re-
sult from our rebuild compiler are “amortized” in the sense that an entire Rebuild
operation needs to be executed after every λ queries. We note, however, that
Rebuild executions do not affect the latency of Query executions because the
two operate on different structures: namely, Rebuild works on RAM and EDSN
whereas Query works on EDSM .

Security. We prove the security of our compiler in Theorem 2 below. We
give a black-box leakage analysis and later discuss specific instantiations. We
show that the resulting scheme is adaptively-secure with a slightly augmented
setup leakage, the same query leakage, and rebuild leakage that depends on the
underlying scheme’s add leakage.

Theorem 2. If STEEDS is a dynamic and non-rebuildable
(
pattSt, pattQr, pattAd

)
-

secure scheme of type T, then RSTEEDS is a static and rebuildable (pattSt×lsize×
mllen, pattQr, pattRb)-secure scheme of type T where,

pattRb(DS) =

(
pattAd(DS, u)

)
u∈Log(DS)

.

Due to space limitation, the proof of Theorem 2 is deferred to the full version of
the paper.

Efficiency. The resulting scheme produces encrypted structures of sizeO(Seds(DS)+
|Log(DS)|w), where Seds(DS) is the space complexity of the underlying STE
scheme. The query complexity is the same as the underlying scheme’s. The com-
plexity of the rebuild operation depends on the sorting network used and the
amount of local storage at the client. Using Batcher’s bitonic sort [4] with O(1)
client local storage, Rebuild has communication complexity

O

( ∑
r∈RDS

|r|w · log2 #QDS + #QDS ·max
u∈U

Teds
Ad (u)

)
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where Teds
Ad (u) is the add complexity of STEEDS and r = qu(q). Note that if

maxu∈U Teds
Ad (u) = O

(
log2 #QDS

)
, then the rebuild communication complexity

is

O

( ∑
r∈RDS

|r|w · log2 #QDS

)
The round complexity of Rebuild isO

(
#QDS·log2 #QDS+#QDS·maxu∈U Teds

Ad (u)
)
.

8 Efficiency of the Cache-Based Compiler

In this section, we give the asymptotic overhead of the constructions that result
from both the CBC and ORAM simulation (when using tree-based ORAM)
and provide a comparison of the two. We defer a more detailed analysis and
additional comparisons (e.g., to ORAM simulation with the square-root solution
and to custom oblivious data structures) to the full version of this work.

Recall that STESDS.Query executes: (1) STEEDS.Query in order to query the
main structure EDS; (2) STEEDX.Get to query the cache EDX; and (3) STESDS.Rebuild
to rebuild the cache when the counter reaches capacity λ. The un-amortized
query complexity of the suppressed structure over a query sequence (q1, . . . , qλ)
is therefore

Tsds
Qr (q1, . . . , qλ) =

λ∑
i=1

Teds
Qr (qi) +

λ∑
i=1

Tedx
Qr (qi) + Teds

Rb (λ) + Tedx
Rb (λ), (1)

where Tsds
Qr (q1, . . . , qλ) is the query complexity of SDS, Teds

Qr (qi) is the query

complexity of EDS, Tedx
Qr (qi) is the query complexity of the cache EDX, and

Teds
Rb (λ) and Tedx

Rb (λ) are the rebuild complexities of EDS and EDX, respectively.

CBC with a tree-based cache. If the CBC is instantiated with tree-based
cache, then we have Tedx

Qr (q1, . . . , qi) = O
(
maxj∈[i] |rj |w · log2 i

)
, where rj =

qu(DS, qj). Replacing the rebuild cost in Eq. (1) with the cost of the RBC, we
have

Tsds
Qr (q1, . . . , qλ) =

λ∑
i=1

Teds
Qr (qi) +O

(
λ ·max

q∈q
|r|w · log2 λ

)
+O

( ∑
r∈RDS

|r|w · log2 #QDS

)

where q = (q1, . . . , qλ).

ORAM simulation with the tree-based ORAM. ORAM simulation of a
structure DS using tree-based ORAM has the following complexity.

Ttree
Qr (q1, . . . , qλ) =

λ∑
i=1

B(qi) ·O
(

log2 |DS|2
B

)
· B
w
,

where B is the block-size of the ORAM and B(qi) denotes the number of blocks
that need to be read to answer query qi. Setting B = maxr∈RDS

|r|2, we have

Ttree
Qr (q1, . . . , qλ) =

λ∑
i=1

B(qi) ·O
(

log2 |DS|2
B

)
· max
r∈RDS

|r|w.
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CBC vs. ORAM simulation. In the following proposition, we compare the
efficiency of the CBC with the efficiency of ORAM simulation.

Proposition 1. Let DS be a type-T data structure and q = (q1, . . . , qλ) be a
query sequence with 1 ≤ λ ≤ #QDS. If

∑
r∈RDS

|r|w = o

(
λ∑
i=1

B(qi) · max
r∈RDS

|r|w

)
and λ·max

q∈q
|qu(DS, q)|w = O

( ∑
r∈RDS

|r|w

)

then
Tsds

Qr (q1, . . . , qλ) = o
(
Ttree

Qr (q1, . . . , qλ)
)
.

Note that for structures with constant-time queries, B(qi) = 1, our approach
improves asymptotically over ORAM simulation whenever∑

r∈RDS

|r|w = o

(
λ · max

r∈RDS

|r|w
)
.

However, for structures with non-constant query complexity (e.g. search trees,
graphs), our approach improves over ORAM simulation whenever∑

r∈RDS

|r|w = o

(
ω(1) · λ · max

r∈RDS

|r|w
)
.

A note on our assumptions. We note that the assumptions in Proposition 1
are natural and are satisfied in many scenarios of interest. For example, if the
response lengths of DS are distributed according to a power law (a common
assumption in the context of keyword search), there always exists a λ for which
the first assumption holds. Furthermore, the second assumption follows whenever
queries with small responses are more likely than queries with large responses.
Again, this is a common assumption in keyword search where users are more
likely to search for keywords contained in smaller numbers of documents than
keywords that are stored in large number of documents.

9 PBS: The Piggyback Scheme

We describe a general-purpose STE scheme that reveals the query equality and
response length on arbitrary query sequences, but only the total response length
on sequences of distinct queries. As we will see in Section 10, this construction,
combined with the RBC and the CBC, results in a scheme that only leaks the
total response length on arbitrary sequences. The main idea behind the scheme
is to trade-off query latency for leakage. 11 At a high level, our approach is to
hide response lengths by ensuring the client retrieves a fixed number of words per
query (a batch); no matter what the response length. To maintain correctness,

11 This approach was first suggested in [23] but never described or analyzed formally.

22



incoming queries are queued and processed at the next available time. Naturally,
this introduces a delay/latency in the querying process but by carefully tuning
the batch size we can ensure that the entire response is retrieved in a reasonable
amount of time. For ease of exposition, we describe a slightly simpler variant of
our construction which achieves correctness under some assumptions (which we
describe below).

Overview. Our scheme makes black-box use of a dynamic dictionary en-
cryption scheme STEEDX = (Setup,Get,Put). Given a batch size α ≥ 1 and
a data structure DS, if DS ≡ d0, the Setup initializes an empty encrypted
dictionary EDX. Otherwise, for every query q ∈ QDS, it does the following.
It divides q’s response r into N words (r1, . . . , rN ) and pads it with enough
⊥ symbols to make it a multiple of the batch size α. It then adds the pairs(
(q‖1, r1), . . . , (q‖N + p, rN+p)

)
to DX, where p is the number of ⊥ symbols. It

also keeps track of q’s batch size (N + p)/α in a dictionary DXst. After pro-
cessing every query in QDS, it encrypts DX with STEEDX. The output includes a
key KD, the encrypted dictionary EDX and a state stD. The state of scheme st
includes the batch size α, a timeout parameter θ assumed to be larger than the
maximum time gap between updates, the encrypted dictionary state stD, the
dictionary DXst and two empty queues Qs and Qu. Note that the reason we pad
is to guarantee the ability to retrieve α words even when the queue contains a
single query. For example, if we did not pad and the first query’s response con-
sisted of less than α words, the server would clearly learn the response length of
that query.

Query is a two-party protocol between the client and the server. It takes as
input from the client a key K, a state st and a query q and from the server
EDS = EDX. The client starts by adding the pair (q, 0) to Qs. It then peeks at
Qs to recover the pair (q′, c) and retrieves α words by executing STEEDX.Get on
labels q′‖c ·α+ 1, . . . , q′‖c ·α+α. It uses DXst to check if this was the last batch
of words for q′ and if so it removes (q′, c) from Qs. If not, it updates c to c+ 1.

Add is a two-party protocol between the client and the server. It takes as
input from the client a key K, a state st and an update u and from the server
EDS = EDX. It checks if the last update occurred more than θ time ago. If so,
it flushes Qu by executing STEEDS.Put on all the remaining updates in Qu and
aborts. If not, it parses the update u as a pair composed of the query q and its
response r. Similar to Setup, it divides q’s response r into N words (r1, . . . , rN )
and pads it with enough ⊥ symbols to make it a multiple of the batch size α.
The padded response now has length c = (N + p)/α, where p is the number of
⊥ symbols added. It also keeps track of q’s batch size (N + p)/α in a dictionary
DXst. The client then adds the pair ((q, r), c− 1) to the queue Qu. It then peeks
at Qu to recover the pair ((q′, r′), c′) and updates EDX by executing STEEDX.Put
on the update sequence (q′‖c′ ·α+ 1, r′1), . . . , (q′‖c′ ·α+α, r′α). It removes all r′i
from r′, for i ∈ [α]. Finally, if the counter c′ is equal to 0, then it removes the
pair (u′, c) from Qu, otherwise, it updates c′ by c′ − 1.

Note that, as described, the construction will be correct as long as: (1) the
updates u = (q, r) are only for new queries; and that (2) we never query on
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queries that are still being updated (i.e., that are still in Qu). In the full ver-
sion of this work, we show how to lift these restrictions and provide a detailed
description of the scheme.

9.1 Security of PBS
In this Section, we analyze the security of PBS. Even though the scheme makes
black-box use of an encrypted dictionary we find that here a black-box leak-
age analysis is not as informative as a concrete leakage analysis. Therefore, in
Theorem 3 below we consider the security of PBS instantiated with any response-
hiding dynamic encrypted dictionary that has the following leakage profile

ΛEDX =
(
LSt,LGt,LPt

)
=

(
trlen, qeq,⊥

)
.

This profile can be achieved by extending well-known constructions [13,7]. We
give such an example in the full version of the paper.

Setup leakage. The setup leakage of PBS is the total batched response length
which reveals the total number of padded word batches needed to store the re-
sponses in the structure. More precisely, this is defined as tbrlen = {tbrlenk,α}k,α∈N,
where tbrlenk,α : Dk → N with:

tbrlenk,α(DS) =
∑
r∈RDS

|r|+ α−
(
|r| mod α

)
= trlen(DS) +

∑
r∈RDS

α−
(
|r| mod α

)
.

Query leakage. The query leakage of PBS is the repeated query equality pat-
tern rqeq = {rqeqk,m}k,m∈N, where rqeqk,m : Dk ×Qtk is defined as:

rqeqk,m(DS, q1, . . . , qt) =


⊥ if t < m and qi 6= qj for all i, j ∈ [t],

γm if t = m and qi 6= qj for all i, j ∈ [t],

qeq× rlen(DS, q1, . . . , qt) otherwise,

where

γm
def
=

( ∑
i∈[m]

|qu(DS, qi)|+ α−
(
|qu(DS, qi)| mod α

))
· α−1 − (m− 1).

Note that the non-repeating sub-pattern of rqeq is

nrpk,m(DS, q1, . . . , qt) =

{
⊥ if t < m and qi 6= qj for all i, j ∈ [t],

γm if t = m and qi 6= qj for all i, j ∈ [t].

The non-repeating sub-pattern reveals nothing except on the last query where
it reveals γm, i.e., the total number of batches needed to finish retrieving the
entire sequence. For repeated sequences, rqeq reveals the query equality and the
response length patterns.

24



Note that, intuitively speaking, it seems that PBS leaks “less” than rqeq.
Specifically, it doesn’t leak qeq× rlen on every repeating sequence. Nevertheless,
the scheme’s leakage on non-repeating patterns is captured precisely by nrp which
is ultimately what is relevant for use with the CBC.

Add leakage. The add leakage of PBS is the add length pattern alen = {alenk,m}k,m∈N,
where alenk,m : Dk × Utk is defined as:

alenk,m(DS, u1, . . . , ut) =

{
⊥ if t < m,

γm if t = m,

The add length pattern reveals nothing except on the last update where it reveals
γm, i.e., the total number of batches needed to finish the update sequence.

Theorem 3. If STEEDX is (trlen, qeq,⊥)-secure, then PBS is (tbrlen, rqeq, alen)-
secure.

The proof of Theorem 3 is deferred to the full version of the paper.

9.2 Latency of PBS
We now analyze the latency of our construction; that is, how long the client has
to wait until it receives the entire response for its query. For a query sequence
(q1, . . . , qt), the client’s waiting time at time t is equal to the number of queries
left in the queue at that time. In the worst-case, this is

t ·
(

maxr∈RDS
|r|w

α
− 1

)
.

Note that if α is set to maxr∈RDS
|r|w, the scheme does not introduce any latency.

This, of course, comes at the cost of a large amount of padding which translates
to storage and communication overhead.

The above bound on the latency helps us understand the limitations of the
scheme in the worst case but it does not tell us much about its latency in general.
Given that, in practice, a client is very unlikely to exclusively search for queries
with maximum response length, we are interested in more likely scenarios where
client queries and their response lengths follow some known distributions.

The Zipf distribution. To get a more interesting bound on latency, we have
to make assumptions on how queries are sampled and how the response lengths
are distributed. Here, we will assume queries are sampled from a Zipf distribution
Zn,s with probability mass function fn,s : [n]→ [0, 1], fn,s(r) = r−s/Hn,s, where
r is the rank of the query and Hn,s is the harmonic number Hn,s =

∑n
i=1 i

−s.
Recall that the Zipf distribution is defined over ranks so we assume an implicit
ranking function that maps queries to their rank.

We also assume that the lengths of the responses are Zipf distributed by
which we mean that the rth response has word length

r−s

Hn,s
·
∑
r∈RDS

|r|w.
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Here again, we assume the existence of a ranking function that maps responses
to their rank. From our second assumption, it follows that the set of all response
lengths is

L =

{
T

1 ·Hn,s
, . . . ,

T

ns ·Hn,s

}
,

where T
def
=
∑
r∈RDS

|r|w. In our analysis, we will set s = 1. All these assumptions
are inspired from the information retrieval literature [12,43] where it is common
to assume that keyword search queries are sampled from a distribution Zn,s and
that the number of documents in which keywords appear is distributed according
to Zn,s. Furthermore, for English language queries and datasets, it common to
set s = 1.

Before we can finish our analysis, we need to make a third assumption. Specif-
ically, we have to choose a mapping between the rth ranked query and a response.
Here, we will assume that high-rank queries have low-rank responses. The intu-
ition is that, in the context of keyword search, we tend to search more often for
keywords that appear less frequently in the dataset. Alternatively, we tend to
search less for keywords that appear frequently in the data. In our analysis, we
will refer to this as the inverted query hypothesis.

In the following Theorem we bound the probability that the client will re-
trieve all of its responses as a function of the number of additional query oper-
ations it executes, i.e., the number of operations beyond the minimal t.

Theorem 4. If the rank of the client’s queries is sampled i.i.d. from Zn,1 and if
the lengths of the responses are distributed according to the Zn,1 distribution then,
under the inverted query hypothesis, the client will retrieve all of its responses
after an additional ε · t query operations with probability at least

1− exp

(
− 2t

(
ε · α

µ

)2)
,

where µ
def
= maxr∈RDS

|r|w.

The proof of Theorem 4 is deferred to the full version of the paper.

Correctness vs. leakage. As described above, PBS achieves perfect correct-
ness and the client will retrieve the responses for all its queries. For this, however,
the client needs to perform additional queries (i.e., more than the t queries in
its sequence) in order to empty its queue Qs.

The scheme, however, can be used differently. Specifically, if the client is will-
ing to trade correctness for lower leakage, it can stop querying after m query
operations. Theorem 4 shows that after a sequence of t queries, with probability
that is a function of ε, the client needs to perform an additional ε · t query oper-
ations to empty its queue (of course assuming the queries are sampled according
to a Zipf distribution). Assuming the client sets the size of the queue to meet its
requirements, if it stops querying after m query operations, the leakage profile
of PBS becomes

ΛPBS =
(
LSt,LQr,LAd

)
=
(
tbrlen, rqeq′,⊥

)
,
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where

rqeq′k,m(DS, q1, . . . , qt) =

{
⊥ if qi 6= qj for all i, j ∈ [t],

qeq× rlen(DS, q1, . . . , qt) otherwise.

In this case, the scheme’s non-repeating sub-pattern leakage is just ⊥.

10 (Almost) Zero-Leakage Structured Encryption

We now describe an almost zero-leakage STE scheme, AZL, followed by a fully
ZL variant we refer to as FZL. AZL results from first applying the RBC to PBS,
and then applying CBC to the result. In the following, we describe the leakage
profiles of the intermediate constructions that result from this process.

Applying the RBC to PBS. Let RPBS be the scheme that results from
applying the RBC to PBS. It follows by Theorem 2 that the concrete leakage
profile of this scheme is,

ΛRPBS =
(
LSt,LQr,LRb

)
=

((
tbrlen, lsize,mllen

)
, rqeq,

(
ulen, lsize,mllen

))
,

where lsize = {lsizek}k∈N is defined as lsizek(DS) = #Log(DS),mllen = {mllenk}k∈N
is defined as mllenk(DS) = maxu∈Log(DS) |u|, and ulen = {ulenk,m}k,m∈N is de-
fined as

ulenk,m(DS) =

(
alenk,m(u)

)
u∈Log(DS)

.

Safely extending RPBS. We now show how to safely extend RPBS so that
it can be used as the base scheme of the CBC. Here, we assume that λ and α
are publicly-known parameters and that all queries in the query space QDS have
the same bit length. Let (q̃1, · · · , q̃λ) be dummy queries. For all i ∈ [λ], compute
DS← Update(DS, (q̃i,0)), where |0|w = maxr∈RDS

|r|w.

Theorem 5. The extension scheme described above is((
tbrlen, lsize,mllen

)
, nrp,

(
ulen, lsize,mllen

))
-safe.

The proof of Theorem 5 is deferred to the full version of the paper.

Applying the CBC. Let AZL be the scheme that results from applying the
CBC to RPBS using the extension scheme described above. It follows by Theorem
1 that the concrete leakage profile of AZL is

ΛAZL =
(
LSt,LQr,LRb

)
=

((
tbrlen, lsize,mllen

)
, nrp,

(
ulen, lsize,mllen

))
,

where

nrp(DS, q1, . . . , qt) =

{
⊥ if t < m and qi 6= qj for all i, j ∈ [t],

γλ if t = λ and qi 6= qj for all i, j ∈ [t].

Note that the setup leakage of the cache is mllen which is already included in
the setup leakage of RPBS.
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Efficiency. AZL has query complexity

TSDS
Qr (q1, . . . , qλ) =

λ∑
i=1

TEDS
Qr (qi) +O

(
λ ·max

q∈q
|r|w · log2 λ

)
+O

( ∑
r∈RDS

|r|w · log2 #QDS

)
,

and storage complexity

O

(
λ · (α+ max

u∈Log(DS)
|u|w)+#QDS · (α+ max

r∈RDS

|r|w)+(λ+#QDS) · max
u∈Log(DS)

|u|w
)
.

If maxu∈Log(DS) |u|w = O(maxr∈RDS
|r|w), the storage overhead simplifies to

O

(
(λ+ #QDS) · (α+ max

r∈RDS

|r|w)

)
.

Achieving zero-leakage. As discussed in Section 9, the non-repeating sub-
pattern leakage of PBS is ⊥ if we are willing to tolerate probabilistic correctness.
In such a case, applying the RBC and then the CBC results in a scheme FZL
with query leakage,

ΛFZL =
(
LSt,LQr,LRb

)
=

((
tbrlen, lsize,mllen

)
,⊥,

(
ulen, lsize,mllen

))
.

The efficiency of FZL is the same as AZL.

An improved extension for probabilistic correctness. We briefly note
that under probabilistic correctness, we can extend RPBS more efficiently than
described above. The extension works as follows. Let (q̃1, . . . , q̃λ) be dummy
queries. For all i ∈ [λ], compute DS ← Update(DS, (q̃i,0)), where |0|w = α.
Note that the setup and rebuild leakage of this variant are the same as those
considered in Theorem 5 so they can be simulated exactly as in the proof of
that Theorem. The non-repeating query sub-pattern is nrp(DS, q1, . . . , qt) =
nrp(DS, q1, . . . , qt) = ⊥ which can be simulated trivially.

11 Conclusions and Future Directions

In this work, we introduced a new framework to cope with leakage based on
compilers and transformations that suppress the leakage of STE schemes. Our
work motivates several interesting directions for future work. The most imme-
diate is the design of a query equality suppression framework for dynamic STE
schemes. Another interesting challenge is to design compilers with lower compu-
tational overhead. Here, trying to improve the cost of our rebuild compiler—even
for restricted classes of encrypted structures—might be a good start. As far as
we know, our PBS construction is the first STE scheme to hide the response
length without naive padding (i.e., padding to the maximum response length).
To achieve this, we used queuing techniques which introduce a delay in the
query process. Can the latency of PBS be improved? Can response lengths be
suppressed without introducing delays at all? Finally, in this work we focused
on suppressing query equality and response length leakage but an important
direction for future work is to find suppression techniques and frameworks for
other common leakage patterns.
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