Adaptive Garbled RAM from Laconic Oblivious Transfer

Sanjam Garg* Rafail Ostrovsky'
University of California, Berkeley UCLA
sanjamg@berkeley.edu rafail@cs.ucla.edu

Akshayaram Srinivasan
University of California, Berkeley
akshayaram@berkeley.edu

Abstract

We give a construction of an adaptive garbled RAM scheme. In the adaptive setting, a client
first garbles a “large” persistent database which is stored on a server. Next, the client can provide
garbling of multiple adaptively and adversarially chosen RAM programs that execute and modify
the stored database arbitrarily. The garbled database and the garbled program should reveal
nothing more than the running time and the output of the computation. Furthermore, the sizes
of the garbled database and the garbled program grow only linearly in the size of the database
and the running time of the executed program respectively (up to poly logarithmic factors).
The security of our construction is based on the assumption that laconic oblivious transfer
(Cho et al., CRYPTO 2017) exists. Previously, such adaptive garbled RAM constructions were
only known using indistinguishability obfuscation or in random oracle model. As an additional
application, we note that this work yields the first constant round secure computation protocol
for persistent RAM programs in the malicious setting from standard assumptions. Prior works
did not support persistence in the malicious setting.

1 Introduction

Over the years, garbling methods [Yao86, LP09, ATK04, BHR12b, Appl7] have been extremely
influential and have engendered an enormous number of applications in cryptography. Informally,
garbling a function f and an input z, yields the function encoding f and the input encoding
Z. Given f and Z, there exists an efficient decoding algorithm that recovers f(x). The security
property requires that]?and z do not reveal anything about f or x except f(z). By now, it is well
established that realizing garbling schemes [BHR12b, App17] is an important cryptographic goal.

*Research supported in part from DARPA/ARL SAFEWARE Award W911NF15C0210, AFOSR Award FA9550-
15-1-0274, AFOSR YIP Award, DARPA and SPAWAR under contract N66001-15-C-4065, a Hellman Award and
research grants by the Okawa Foundation, Visa Inc., and Center for Long-Term Cybersecurity (CLTC, UC Berkeley).
The views expressed are those of the author and do not reflect the official policy or position of the funding agencies.

tResearch supported in part by NSF grant 1619348, DARPA SPAWAR contract N66001-15-1C-4065, US-Israel
BSF grant 2012366, OKAWA Foundation Research Award, IBM Faculty Research Award, Xerox Faculty Research
Award, B. John Garrick Foundation Award, Teradata Research Award, and Lockheed-Martin Corporation Research
Award. The views expressed are those of the authors and do not reflect position of the Department of Defense or the
U.S. Government.

One shortcoming of standard garbling techniques has been that the size of the function en-
coding grows linearly in the size of the circuit computing the function and thus leads to large
communication costs. Several methods have been devised to overcome this constraint.

e Lu and Ostrovsky [LO13] addressed the question of garbling RAM program execution on a
persistent garbled database. Here, the efficiency requirement is that the size of the function
encoding grows only with the running time of the RAM program. This work has lead to fruitful
line of research [GHL*14, GLOS15, GLO15, LO17] that reduces the communication cost to
grow linearly with running times of the programs executed, rather that the corresponding
circuit sizes. A key benefit of this approach is that it has led to constructions based on
one-way functions.

e Goldwasser, Kalai, Popa, Vaikuntanathan, and Zeldovich [GKP"13] addressed the question
of reducing the communication cost by reusing the encodings. Specifically, they provided a
construction of reusable garbled circuits based on standard assumptions (namely learning-
with-errors). However, their construction needs input encoding to grow with the depth of the
circuit being garbled.

e Finally, starting with Gentry, Halevi, Raykova, and Wichs [GHRW14], a collection of works [CHJV15,
BGL*15, KLW15, CH16, CCHR16, ACCT16] have attempted to obtain garbling schemes
where the size of the function encoding only grows with its description size and is otherwise
independent of its running time on various inputs. However, these constructions are proven
secure only assuming indistinguishability obfuscation [BGIT01, GGH*13].

A recurring theme in all the above research efforts has been the issue of adaptivity: Can the
adversary adaptively choose the input after seeing the function encoding?

This task is trivial if one reveals both the function encoding and the input encoding together
after the input is specified. However, this task becomes highly non-trivial if we require the size
of the input encoding to only grow with the size of the input and independent of the complexity
of computing f. The first solution to this problem was provided by Bellare, Hoang and Rog-
away [BHR12a] for the case of circuits in the random oracle model [BR93]. Subsequently, several
adaptive circuit garbling schemes have been obtained in the standard model from (i) one-way
functions [HJOT16, JW16, JKK*17],! or (ii) using laconic OT [GS18a] which relies on public-key
assumptions [CDGT17, DG17, DGHM18, BLSV18|.

However, constructing adaptively secure schemes for more communication constrained settings
has proved much harder. In this paper, we focus on the case of RAM programs. More specifically,
adaptively secure garbled RAM is known only using random oracles (e.g. [LO13, GLOS15]) or
under very strong assumptions such as indistinguishability obfuscation [CCHR16, ACC*16]. In
this work, we ask:

Can we realize adaptively secure garbled RAM from standard assumptions?

Further motivating the above question, is the tightly related application of constructing con-
stant round secure RAM computation over a persistent database in the malicious setting. More
specifically, as shown by Beaver, Micali and Rogaway [BMR90] garbling techniques can be used

! A drawback of these works is that the size of the input encoding grows with the width/depth of the circuit
computing f

to realize constant round secure computation [Yao82, GMWS87] constructions. Similarly, above-
mentioned garbling schemes for RAM programs also yield constant round, communication efficient
secure computation solutions [HY16, Mial6, GGMP16, KY18|. However, preserving persistence
of RAM programs in the malicious setting requires the underlying garbling techniques to provide
adaptive security.?

1.1 Our Results

In this work, we obtain a construction of adaptively secure garbled RAM based on the assumption
that laconic oblivious transfer [CDG'17] exists. Laconic oblivious transfer can be based on a
variety of public-key assumptions such as (i) Computation Diffie-Hellman Assumption [DG17], (ii)
Factoring Assumption [DG17], or (iii) Learning-With-Errors Assumption [BLSV18, DGHM18]. In
our construction, the size of the garbled database and the garbled program grow only linearly in
the size of the database and the running time of the executed program respectively (up to poly
logarithmic factors). The main result in our paper is:

Theorem 1.1 (Informal) Assuming either the Computational Diffie-Hellman assumption or the
Factoring assumption or the Learning-with-Errors assumption, there exists a construction of adap-
tive garbled RAM scheme where the time required to garble a database, a program and an input
grows linearly (upto poly logarithmic factors) with the size of the database, running time of the
program and length of the input respectively.’

Additionally, plugging our adaptively secure garbled RAM scheme into a malicious secure con-
stant round secure computation protocol yields a maliciously secure constant round secure RAM
computation protocol [IKOT11, ORS15, BL18, GS18b]| for a persistent database. Again, this con-
struction is based on the assumption that laconic OT exists and the underlying assumptions needed
for the constant round protocol.

2 Our Techniques

In this section, we outline the main challenges and the techniques used in our construction of
adaptive garbled RAM.

Starting Point. In arecent result, Garg and Srinivasan [GS18a] gave a construction of adaptively
secure garbled circuit transfer where the size of the input encoding grows only with the input and
the output length. The main idea behind their construction is a technique to “linearize” a garbled
circuit. Informally, a garbled circuit is said to be linearized if the simulation of particular garbled
gate depends only on simulating one other gate (or in other words, the simulation dependency
graph is a line). In order to linearize a garbled circuit, their work transforms a circuit into a
sequence of CPU step circuits that can make read and write accesses at fized locations in an
external memory. The individual step circuits are garbled using a (plain) garbling scheme and the

2We note that adaptive security is not essential for obtaining protocols with round complexity that grows with
the running time of the executed programs [0S97, GKK ™12, WHC™14].

3 As in the case of adaptively secure garbled circuits, the size of the input encoding must also grow with the output
length of the program. Here, we implicitly assume that the input and the outputs have the same length.

access to the memory is mediated using a laconic OT.* The use of laconic OT enables the above
mentioned garbling scheme to have “linear” structure wherein the simulation of a particular CPU
step depends only on simulating the previous step circuit.

A Generalization. Though the approach of Garg and Srinivasan shares some similarities with
a garbling a RAM program (like garbling a sequence of CPU step circuits), there are some crucial
differences.

1. The first difference is that unlike a circuit, the locations that are accessed by a RAM program
are dynamically chosen depending on the program’s input.

2. The second difference is that the locations that are accessed might leak information about
the program and the input and a garbled RAM scheme must protect against such leakages.

The first step we take in constructing an adaptive garbled RAM scheme is to generalize the above
approach of Garg and Srinivasan [GS18a] to construct an adaptively secure garbled RAM scheme
with weaker security guarantees. The security that we achieve is that of unprotected memory access
[GHL*14]. Informally, a garbled RAM scheme is said to have unprotected memory access if both
the contents of the database and the memory locations that are accessed are revealed in the clear.
This generalization is given in Section 4.

In the non-adaptive setting, there are standard transformations (outlined in [GHL"14]) from a
garbled RAM with unprotected memory access to a standard garbled RAM scheme where both the
memory contents and the access patterns are hidden. This transformation involves the additional
use of an ORAM scheme. Somewhat surprisingly, these transformations fail in the adaptive setting!
The details follow.

Challenges. To understand the main challenges, let us briefly explain how the security proof goes
through in the work of Garg and Srinivasan [GS18a]. In a typical construction of a garbled RAM
program, using a sequence of garbled circuits, one would expect that the simulation of garbled
circuits would be done from the first CPU step to the last CPU step. However, in [GS18a] proof,
the simulation is done in a rather unusual manner, from the last CPU step to the first CPU step.
Of course, it is not possible to simulate the last CPU step directly. Thus, the process of simulating
the last CPU step itself involves a sequence of hybrids that simulate and “un-simulate” the garbling
of the previous CPU steps. Extending this approach so that the memory contents and the access
patterns are both hidden faces the following two main challenges.

- Challenge 1: In the Garg and Srinivasan construction [GS18a, memory contents were en-
crypted using one-time pads. Since the locations that each CPU step (for a circuit) reads from
and write to are fixed, the one-time pad corresponding to that location could be hardwired
to those CPU steps. On the other hand, in the case of RAM programs the locations being
accessed are dynamically chosen and thus it is not possible to hard-wire the entire one-time
pad into each CPU step as this would blow up the size of these CPU steps.

4 A laconic OT scheme allows to compress a large database/memory to a small digest. The digest in some sense
binds the entire database. In particular, given the digest there exists efficient algorithms that can read/update
particular memory locations. The time taken by these algorithms grow only logarithmically with the size of the
database.

It is instructive to note that encrypting the memory using an encryption scheme and de-
crypting the read memory contents does not suffice. See more on this in preliminary attempt
below.

- Challenge 2: In the non-adaptive setting, it is easy to amplify unprotected memory access
security to the setting where memory accesses are hidden using an oblivious RAM scheme
[Gol87, Ost90, GO96]. However, in the adaptive setting this transformation turns out to be
tricky. In a bit more detail, the Garg and Srinivasan [GS18a] approach of simulating CPU step
circuits from the last to the first ends up in conflict with the security of the ORAM scheme
where the simulation is typically done from the first to the last CPU steps. We note here that
the techniques of Canetti et al. [CCHR16] and Ananth et al. [ACCT16], though useful, do
not apply directly to our setting. In particular, in the Canetti et al. [CCHR16] and Ananth
et al. [ACCT16] constructions, CPU steps where obfuscated using an indistinguishability
obfuscation scheme. Thus, in their scheme the obfuscation for any individual CPU step
could be changed independently. For example, the PRF key used in any CPU step could
be punctured independent of the other CPU steps. On the other hand, in our construction,
inspite of each CPU step being garbled separately, its input labels are hardwired in the
previous garbled circuit. Therefore, a change in hardwired secret value (like a puncturing a
key) in a CPU step needs an intricate sequence of hybrids for making this change. For instance,
in the case of the example above, it is not possible to puncture the PRF key hardwired in a
particular CPU step in one simple hybrid step. Instead any change in this CPU step must
change the CPU step before it and so on. In summary, in our case, any such change would
involve a new and intricate hybrid argument.

2.1 Solving Challenge 1

In this subsection, we describe our techniques to solve challenge 1.

Preliminary Attempt. A very natural approach to encrypting external memory would be to
use a pseudorandom function to encrypt memory content in each location. More precisely, a data
value d in location L is encrypted using the key PRF (L) where K is the PRF key. The key K for
this pseudorandom function is hardwired in each CPU step so that it first decrypts the ciphertext
that is read from the memory and uses the underlying data for further processing. This approach
to solving Challenge 1 was in fact used in the works of Canetti et al. [CCHR16] and Ananth et
al. [ACCT16] (and several other prior works) in a similar context. However, in order to use the
security of this PRF, we must first remove the hardwired key from each of the CPU steps. This
is easily achieved if we rely on indistinguishability obfuscation. Indeed, a single hybrid change is
sufficient to have the punctured key to be hardwired in each of the CPU steps. However, in our
setting this does not work! In particular, we need to puncture the PRF key in each of the CPU step
circuits by simulating them individually and the delicate dependencies involved in garbling each
CPU step blows up the size of the garbled input to grow with the running time of the program.’
Due to the same reason, the approaches of encrypting the memory by maintaining a tree of secret
keys [GLOS15, GLO15] do not work.

For the readers who are familiar with [GS18a], the number of CPU steps that have to be maintained in the
input dependent simulation for puncturing the PRF key grows with the number of CPU steps that last wrote to this
location and this could be as large as the running time of the program.

Our New Idea: A Careful Timed Encryption Mechanism. From the above attempts, the
following aspect of secure garbled RAM arise. Prior approaches for garbling RAM programs use
PRF keys that in some sense “decrease in power”% as hybrids steps involve sequential simulation
of the CPU steps starting with the first CPU step and ending in the last CPU step. However, in
the approach of [GS18al, the hybrids do a backward pass, from the last CPU step circuit to the
first CPU step circuit. Therefore, we need a mechanism wherein the hardwired key for encryption
in some sense “strengthens” along the first to the last CPU step.

Location vs. Time. In almost all garbled RAM constructions, the data stored at a particular
location is encrypted using a location dependent key (e.g. [GLOS15]). This was not a problem
when the keys are being weakened across CPU steps. However, in our case we need the key to be
strengthened in power across CPU steps. Thus, we need a special purpose encryption scheme where
the keys are derived based on time rather than the locations. Towards this goal, we construct a
special purpose encryption scheme called as a timed encryption scheme. Let us explain this in more
detail.

Timed Encryption. A timed encryption scheme is just like any (plain) symmetric key encryption
except that every message is encrypted with respect to a timestamp. Additionally, there is a special
key constrain algorithm that constrains a key to only decrypt ciphertexts that are encrypted within
a specific timestamp. The security requirement is that the constrained key does not help in distin-
guishing ciphertexts of two messages that are encrypted with respect to some future timestamp.
We additionally require the encryption using a key constrained with respect to a timestamp time to
have the same distribution as an encryption using an unconstrained key as long as the timestamp
to which we are encrypting is less than or equal to time. For efficiency, we require that the size of
the constrained key to grow only with the length of the binary representation of the timestamp.

Solving Challenge 1. Timed encryption provides a natural approach to solving challenge 1. In
every CPU step, we hardwire a time constrained key that allows that CPU step to decrypt all the
memory updates done by the prior CPU steps. The last CPU step in some sense has the most
powerful key hardwired, i.e., it can decrypt all the updates made by all the prior CPU steps and the
first CPU step has the least powerful key hardwired. Thus, the hardwired secret key strengthens
from the first CPU step to the last CPU step. In the security proof, a backward pass of simulating
the last CPU step to the first CPU step conforms well with the semantics and security properties
of a timed encryption scheme. This is because we remove the most powerful keys first and the
rest of the hardwired secret keys in the previous CPU steps do not help in distinguishing between
encryptions of the actual value that is written and some junk value. We believe that the notion
timed encryption might have other applications and be of independent interest.

Constructing Timed Encryption. We give a construction of a timed encryption scheme from
any one-way function. Towards this goal, we introduce a notion called as range constrained PRF. A
range constrained PRF is a special constrained PRF [BW13] where the PRF key can be constrained
to evaluate input points that fall within a particular range. The ranges that we will be interested
in are of the form [0,z]. That is, the constrained key can be used to evaluate the PRF on any
y € [0, z]. For efficiency, we require that the size of the constrained key to only grow with the binary
representation of . Given such a PRF, we can construct a timed encryption scheme as follows. The
key generation samples a range constrained PRF key. The encryption of a message m with respect

5The tree-based approaches of storing the secret keys use the mechanism wherein the hardwired secret keys
decrease in power in subsequent CPU steps. In particular, the secret key corresponding to the root can decrypt all
the locations, the secret keys corresponding to its children can only decrypt a part of the database and so on.

to a timestamp time proceeds by evaluating the PRF on time to derive sk and then using sk as a
key for symmetric encryption scheme to encrypt the message m. The time constraining algorithm
just constrains the PRF key with respect to the range [0,time]. Thus, the goal of constructing
a timed encryption scheme reduces to the goal of constructing a range constrained PRF. In this
work, we give a construction of range constrained PRF by adding a range constrain algorithm to
the tree-based PRF scheme of Goldreich, Goldwasser and Micali [GGMS86].

2.2 Solving Challenge 2

Challenge 1 involves protecting the contents of the memory whereas challenge 2 involves protecting
the access pattern. As mentioned before, in the non-adaptive setting, this problem is easily solved
using an oblivious RAM scheme. However, in our setting we need an oblivious RAM scheme with
some special properties.

The works of Canetti et al. [CCHR16] and Ananth et al. [ACC*16] define a property of an
ORAM scheme as strong localized randomness property and then use this property to hide their ac-
cess patterns. Informally, an ORAM scheme is said to have a strong localized randomness property
if the locations of the random tape accessed by an oblivious program in simulating each memory
access are disjoint. Further, the number of locations touched for simulating each memory access
must be poly logarithmic in the size of the database. These works further proved that the Chung-
Pass ORAM scheme [CP13] satisfies the strong localized randomness property. Unfortunately, this
strong localized randomness property alone is not sufficient for our purposes. Let us give the details.

To understand why the strong localized randomness property alone is not sufficient, we first
recall the details of the Chung-Pass ORAM (henceforth, denoted as CP ORAM) scheme. The CP
ORAM is a tree-based ORAM scheme where the leaves of this tree are associated with the actual
memory. A position map associates each data block in the memory with a random leaf node.
Accessing a memory location involves first reading the position map to get the address of the leaf
where this data block resides. Then, the path from the root to this particular leaf is traversed and
the content of the this data block is read. It is guaranteed that the data block is located somewhere
along the path from the root to leaf node. The read data block is then placed in the root and the
position map is updated so that another random leaf node is associated with this data block. To
balance the memory, an additional flush is performed but for the sake of this introduction we ignore
this step. The CP ORAM scheme has strong localized randomness as the randomness used in each
memory accesses involves choosing a random leaf to update the position map. Let us now explain
why this property alone is not sufficient for our purpose.

Recall that in the security proof of [GS18a], the CPU steps are simulated from the last step
to the first. A simulation of a CPU step involves changing the bit written by the step to some
junk value and the changing the location accessed to a random location. We can change the bit
to be written to a junk value using the security of the timed encryption scheme, however changing
the location accessed to random is problematic. Note that the location that is being accessed in
the CP ORAM is a random root to leaf path. However, the address of this leaf is stored in the
memory via the position map. Therefore, to simulate a particular CPU step, we must first change
the contents of the position map. This change must be performed in those CPU steps that last
updated this memory location. Unfortunately, timed encryption is not useful in this setting as we
can use its security only after removing all the secret keys that are hardwired in the future time
steps. However, in our case, the CPU steps that last updated this particular location might be so
far into the past that removing all the intermediate encryption keys might blow up the cost of the

input encoding to be as large as the program running time.

To solve this issue, we modify the Chung-Pass ORAM to additionally have the CPU steps to
encrypt the data block that is written using a puncturable PRF. Unlike the previous approaches
of encrypting the data block with respect to the location, we encrypt it with respect to the time
step that modifies the location. This helps in circumventing the above problem as we can first
puncture the PRF key (which in turn involves a careful set of hybrids) and use its security to
change the position map to contain an encryption of the junk value instead of the actual address
of the leaf node.” Once this change is done, the locations that the concerned CPU step is accessing
is a random root to leaf path.

3 Preliminaries

Let A denote the security parameter. A function u(-) : N — R* is said to be negligible if for any
polynomial poly(-) there exists A\g € N such that for all A > Ao we have p(\) < m. For a
probabilistic algorithm A, we denote A(z;7) to be the output of A on input x with the content
of the random tape being r. When r is omitted, A(z) denotes a distribution. For a finite set S,
we denote z < S as the process of sampling z uniformly from the set S. We will use PPT to
denote Probabilistic Polynomial Time. We denote [a] to be the set {1,...,a} and [a,b] to be the
set {a,a+1,...,b} for a < b and a,b € Z. For a binary string = € {0,1}", we will denote the i’
bit of by x;. We assume without loss of generality that the length of the random tape used by
all cryptographic algorithms is \. We will use negl(-) to denote an unspecified negligible function
and poly(+) to denote an unspecified polynomial function.

3.1 Puncturable PRF
We recall the notion of puncturable PRF [GGM86, BW13, BGI14, KPTZ13, SW14].

Definition 3.1 A puncturable pseudorandom function is a tuple of PPT algorithms (PP.KeyGen,
PP.Eval, PP.Punc) with the following properties:

e Functionality is preserved under puncturing: For all A, for all x € {0,1}" (where n is
the input length) and Yy # x,

Pr[PP.Eval(K[x],y) = PP.Eval(K,y)] =1
where K < PP.KeyGen(1*) and K[z] < PP.Punc(K, z).

e Pseudorandomness at punctured points: For all \, for all x € {0,1}", and for all poly
sized adversaries A

| Pr[A(K[z], PP.Eval(K, z)) = 1] — PrlA(K[z],r) = 1]| < negl())

where K < PP.KeyGen(1*) and K|[x] < PP.Punc(K,x) and r is a random string having the
same length as PP.Eval(K, z).

Theorem 3.2 ([GGM86, BW13, BGI14, KPTZ13, SW14|) Assuming the ezistence of one-
way functions, there exists a construction of puncturable pseudorandom functions.

"Unlike in the location based encryption scheme, it is sufficient to change the encryption only in the CPU steps
that last modified this location.

3.2 Garbled Circuits

Below we recall the definition of garbling scheme for circuits [Yao82, AIK04, ATKO05] with selective
security (see Lindell and Pinkas [LP09] and Bellare et al. [BHR12b] for a detailed proof and further
discussion). A garbling scheme for circuits is a tuple of PPT algorithms (GarbleCkt, EvalCkt).
Very roughly, GarbleCkt is the circuit garbling procedure and EvalCkt the corresponding evaluation
procedure. We use a formulation where input labels for a garbled circuit are provided as input to
the garbling procedure rather than generated as output. (This simplifies the presentation of our
construction.) More formally:

e C « GarbleCkt (1’\, C, {labw7b}wen7b€{0’1}): GarbleCkt takes as input a security parameter A, a
circuit C, and input labels lab,,;, where w € n (n is the set of input wires to the circuit C)

and b € {0,1}. This procedure outputs a garbled circuit C. We assume that for each w, b,
lab,, p is chosen uniformly from {0, 1A

e y < EvalCkt (E, {laby 4., }wen): Given a garbled circuit C and a sequence of input labels
{laby 2, }wen (referred to as the garbled input), EvalCkt outputs a string y.

Correctness. For correctness, we require that for any circuit C, input = € {0, 1}'"' and input
labels {laby b }wen,befo,1}y We have that:

Pr [C(x) — EvalCkt (E, {labw,%}w@)} —1
where C < GarbleCkt (1" ¢, {laby Y wen,pefo})-

Selective Security. For security, we require that there exists a PPT simulator Simcy: such that
for any circuit C' and input x € {0, 1}'"', we have that

{E, {Iabw,xw}wen} £ {Sikat (1& 11, (), {Iabwww}w@l) ,{labw,xw}wen}

where C < GarbleCkt (1, C, {laby Y wen pefo,1}) and for each w € n and b € {0, 1} we have laby,j <

{0,1}*. Here ~ denotes that the two distributions are computationally indistinguishable.

Theorem 3.3 ([Yao86, LP09]) Assuming the existence of one-way functions, there exists a con-
struction of garbling scheme for circuits.

3.3 Range Constrained PRF

We now define a type of constrained PRF called as Range Constrained PRF. Informally, a range
constrained PRF key allows to evaluate the PRF on any point in the domain {0, 1}" that falls in a
particular range. We will specifically be interested in ranges of the form [0, T'] for any T" € [0,2" —1].
We now give the formal definition of this primitive.

Syntax. A Range Constrained PRF consists of the following PPT algorithms

e RC.KeyGen(1) : It is a PPT algorithm that takes the security parameter (encoded in unary)
as input and outputs a PRF key K. We implicity assume that the key K defines an efficiently
computable function PRFg : {0,1}™) — {0,1}*. For brevity, we will use n to denote n(\)
respectively.

e RC.Constrain(K,T) : It is a deterministic algorithm that takes a PRF key K as input and a
value T' € [0,2" — 1] (encoded in binary) and outputs a constrained key K[T7].

e RC.Eval(K[T],z) : It is a deterministic algorithm that takes as input a constrained key K|[T]
and an input z and outputs either a string y or L.

Correctness. We say that a range constrained PRF to be correct if for all K in the support of
RC.KeyGen, T € [0,2" — 1] and = € [0, 7] we have,

RC.Eval(K[T],z) = PRFg(x)
where K[T] := RC.Constrain(K,T).
Security. For security, we require that for any PPT adversaries A, any T1,Ts,...,Ty € [0,2" —1]
any y ¢ [0, T;] for any i € [£],
[PrIA({K[Ti]}ieg, PRFk (y) = 1] = PrlA{K[Ti]}ieyg,) = 1]] < negl())

where K < RC.KeyGen(1*), K[T;] := RC.Constrain(K,T;) for all i € [¢] and r « {0, 1}*.
We give the proof of the following theorem in the Appendix A.

Theorem 3.4 Assuming the existence of one-way functions, there exists a construction of range
constrained PRFs.

3.4 Updatable Laconic Oblivious Transfer

In this subsection, we recall the definition of updatable laconic oblivious transfer from [CDG117].

We give the formal definition below from [CDG'17]. We generalize their definition to work for
blocks of data instead of bits. More precisely, the reads and the updates happen at the block-level
rather than at the bit-level.

Definition 3.5 ([CDG"17]) An updatable laconic oblivious transfer consists of the following al-
gorithms:

e crs < crsGen(1*, 1Y) : It takes as input the security parameter 1* (encoded in unary) and a
block size N and outputs a common reference string crs.

e (d,D) < Hash(crs, D) : It takes as input the common reference string crs and database D €
{{0,1}V}* as input and outputs a digest d and a state D. We assume that the state D also
includes the database D.

10

e «+ Send(crs,d, L, {m; 0, mi1}icin)) : It takes as input the common reference string crs, a
digest d, and a location L € N and set of messages mig,mi1 € {0,1}*N) for every i € [N]
and outputs a ciphertext e.

e (my,...,my) < Receivel(crs,e, L) : This is a RAM algorithm with random read access to
D. It takes as input a common reference string crs, a ciphertext e, and a location L € N and
outputs a set of messages my,...,my.

e ¢, < SendWrite(crs,d, L, {b; }ic[n, {mj,o,mj,l}‘jcil) . It takes as input the common reference
string crs, a digest d, and a location L € N, bits b; € {0,1} for each i € [N] to be written,
|d]

and |d| pairs of messages {mjo,m;1}; 4,

ciphertext ey,.

where each mj . is of length p(\) and outputs a

o {m; }ljdzl1 « ReceiveWrite? (crs, L, {bi}icn)s €w) : This is a RAM algorithm with random read/write
access to D. It takes as input the common reference string crs, a location L, a set of bits
bi,...,bny € {0,1} and a ciphertext ey,. It updates the state D (such that D[L] = by ...bn)
and outputs messages {mj}ljoil.

We require an updatable laconic oblivious transfer to satisfy the following properties.

Correctness: We require that for any database D of size at most M = poly()\), any memory
location L € [M], any set of messages (m; g, m;1) € {0,1}PN) for each i € [N] where p(-) is
a polynomial that

crs + crsGen(1?)
. B (d, D) < Hash(crs, D) -
Pr| Vie [N]’ Mi = M4, D[L,i] € — Send(crs, d, L, {mi’o, m¢71}i€[N]) =1
(m1,...,my) < Receive?(crs,e, L)

where D[L,i] denotes the i'" bit in the L block of D.

Correctness of Writes: Let database D be of size at most M = poly(\) and let L € [M] be any
two memory locations. Let D* be a database that is identical to D except that D*[L,i| = b; for
all i € [N] some sequence of {b;} € {0,1}. For any sequence of messages {m;o,m;1}je[n €
{0, 13PN we require that

i crs — crsGen (11, 1Y) 7
(d,D) <« Hash(crs, D)
m =m,; d* * TYx *
Pr J 295 | (d*,D*) < Hash(crs, D*) =1,
v € [ld] Cw < SendWrite(crs, d, L, {bi}l-e[N], {mjvo,mj,l}ljcil)
i {mg |jd:|1 < ReceiveWrite” (crs, L, {bi}iein ew)]

Sender Privacy: There exists a PPT simulator Simgot such that the for any non-uniform PPT
adversary A = (A1, Az) there exists a negligible function negl(-) s.t.,

| PrExpt™ (1%, A) = 1] — Pr[Expt® (1%, A) = 1]| < negl())

real ideal

where Expt™® and Expt are described in Figure 1.

11

EXptreaI[lA, .A] Exptideal[lA’ .A]

1. crs + crsGen(1*,1V). 1. crs + crsGen(1%).

2. (D,Ly{m’i,07mi,1}i6[1\7]75t) — 2. (D,L,{mi,o,mi,l}ie[m,st) —
A (crs). Ai(crs).

3. (d,ﬁ) <+ Hash(crs, D). 3. (d,ﬁ) + Hash(crs, D).

4. Output As(st, Send(crs, d, L, {mi,0, ms,1}icin))- 4. Output
Az (st, Simgot(crs, D, L, {m; p(ri }ic[n]))-

Figure 1: Sender Privacy Security Game

Sender Privacy for Writes: There exists a PPT simulator Simgotw such that the for any non-
uniform PPT adversary A = (A1, As) there exists a negligible function negl(-) s.t.,

}Pr[WriSenPrivExptrea'(1/\,A) = 1] — Pr[WriSenPrivExpt'®®(1*, A) = 1]| < negl(\)

where WriSenPrivExpt™! and WriSenPrivExpt'®®® are described in Figure 2.

WriSenPrivExpt™!'[1*, A] WriSenPrivExpt®e[1*| A]
1. crs < crsGen(1*,17V). 1. crs < crsGen(1*,17).
2. (D, L, {bi}ie(vy; {myj.0, mj1}en, st) 2. (D, L, {bi}ievy; {mj.0, mjaten, st)
— A (crs). — Ai(crs).
3. (d, D) « Hash(crs, D). 3. (d, D) « Hash(crs, D).

4. (d*,D*) « Hash(crs, D*) where D* be a database
that is identical to D except that D*[L,i] = b, for
each i € [N].
4. ey < SendWrite(crs, d, L, {b: }icny, 5. f{fw <~ iimeo;\N(C"saD7La {biticin,
mMjdx}j
{mj,07mj71}|jd:‘1) JdjIaen]

5. Output As(st, ew). 6. Output Asx(st,ew).

Figure 2: Sender Privacy for Writes Security Game

Efficiency: The algorithm Hash runs in time |D|poly(log |D|,\). The algorithms Send, SendWrite,
Receive, ReceiveWrite run in time N - poly(log |D|, A).

Theorem 3.6 ([CDG"17, DG17, BLSV18, DGHM18]) Assuming either the Computational
Diffie-Hellman assumption or the Factoring assumption or the Learning with Errors assumption,
there exists a construction of updatable laconic oblivious transfer.

Remark 3.7 We note that the security requirements given in Definition 3.5 is stronger than the
one in [CDG' 17] as we require the crs to be generated before the adversary provides the database D
and the location L. However, the construction in [CDG' 17] already satisfies this definition since
in the proof, we can guess the location by incurring a 1/|D| loss in the security reduction.

12

3.5 Somewhere Equivocal Encryption

We now recall the definition of Somewhere Equivocal Encryption from the work of [HJOT16].
Informally, a somewhere equivocal encryption allows to create a simulated ciphertext encrypting
a message m with certain positions of the message being “fixed” and the other positions having
a “hole.” The simulator can later fill these “holes” with arbitrary message values by deriving a
suitable decryption key. The main efficiency requirement is that the size of the decryption key
grows only with the number of “holes” and is otherwise independent of the message size. We give
the formal definition below.

Definition 3.8 ([HJO116]) A somewhere equivocal encryption scheme with block-length s, mes-
sage length n (in blocks) and equivocation parameter t (all polynomials in the security parameter)
is a tuple of probabilistic polynomial algorithms I1 = (KeyGen, Enc, Dec, SimEnc, SimKey) such that:

o key <+ KeyGen(1*) : It is a PPT algorithm that takes as input the security parameter (encoded
in unary) and outputs a key key.

o ¢« Enc(key,my...my): It is a PPT algorithm that takes as input a key key and a vector of
messages = myj ... my with each m; € {0,1}® and outputs a ciphertext c.

o T < Dec(key,¢) : It is a deterministic algorithm that takes as input a key key and a ciphertext
¢ and outputs a vector of messages M = myq ... My.

e (st,¢) < SimEnc((m;)i¢r,) : It is a PPT algorithm that takes as input a set of indices I C [n]
and a vector of messages (m;);¢; and outputs a ciphertext ¢ and a state st.

o key' < SimKey(st, (m;)icr) : It is a PPT algorithm that takes as input the state information
st and a vector of messages (m;)icr and outputs a key key’.

and satisfies the following properties:

Correctness. For every key < KeyGen(1*), for every m € {0,1}**™ it holds that:

Dec(key, Enc(key,m)) =m
Simulation with No Holes. We require that the distribution of (¢, key) computed via (st,¢)
SimEnc(m, §) and key < SimKey(st,) to be identical to key < KeyGen(1*) and ¢ <— Enc(key,m1 ... my,).

In other words, simulation when there are no holes (i.e., I =) is identical to honest key generation
and encryption.

Security. For any PPT adversary A, there exists a negligible function v = v(\) such that:
| Pr{ExpsT"e (12, 0) = 1] — PrExpiiee(1*, 1) = 1] < v(N)
simenc

where the experiment Exp’y'" is defined as follows:

Ezxzperiment Expj?‘ﬁ”c

1. The adversary A on input 1* outputs a set I C [n] s.t. |I| < t, a vector (m;)igr, and a
challenge j € [n]\ I. Let I' = TU{j}.

13

2. o Ifb=0, compute ¢ as follows: (st,¢) < SimEnc((m;)igr,1).
o Ifb=1, compute € as follows: (st,¢) <= SimEnc((m;)igr,I').

Co

. Send ¢ to the adversary A.

. The adversary A outputs the set of remaining messages (m;)ic;-

B

e Ifb=0, compute key as follows: key <— SimKey(st, (m;);er).
o Ifb=1, compute key as follows: key «— SimKey(st, (m;);cr’)

5. Send key to the adversary.

6. A outputs b’ which is the output of the experiment.

Theorem 3.9 ([HJO'16]) Assuming the existence of one-way functions, there exists a some-
where equivocal encryption scheme for any polynomial message-length n, black-length s and equiv-
ocation parameter t, having key size t - s - poly(X) and ciphertext of size n - s - poly(\) bits.

3.6 Random Access Machine (RAM) Model of Computation

We start by describing the Random Access Machine (RAM) model of computation in Section 3.6.
Most of this subsection is taken verbatim from [CDG'17].

Notation for the RAM Model of Computation. The RAM model consists of a CPU and a
memory storage of M blocks where each block has length N. The CPU executes a program that can
access the memory by using read/write operations. In particular, for a program P with memory
of size M, we denote the initial contents of the memory data by D € {{0, 1} }M. Additionally,
the program gets a “short” input x € {0,1}", which we alternatively think of as the initial state of
the program. We use |P| to denote the running time of program P. We use the notation PP (z) to
denote the execution of program P with initial memory contents D and input x. The program P
can read from and write to various locations in memory D throughout its execution.®

We will also consider the case where several different programs are executed sequentially and the
memory persists between executions. We denote this process as (y1, ..., y¢) = (Pi(x1),. .., Pi(x,))”
to indicate that first P (x1) is executed, resulting in some memory contents D; and output yi,
then P2D !(x2) is executed resulting in some memory contents Dy and output y2 etc. As an example,
imagine that D is a huge database and the programs P; are database queries that can read and
possibly write to the database and are parameterized by some values x;.

CPU-Step Circuit. Consider an execution of a RAM program which involves at most 7' CPU
steps. We represent a RAM program P via T small CPU-Step Clircuits each of which executes one
CPU step. In this work we will denote one CPU step by:*

O\ (state, rData) = (state’, R/W, L, wData)

8In general, the distinction between what to include in the program P, the memory data D and the short input
z can be somewhat arbitrary. However as motivated by our applications we will typically be interested in a setting
where the data D is large while the size of the program |P| and input length x is small.

9In the definition below, we model each Ccpy as a deterministic circuit. Later, we extend the definition to allow
each Ccpy to have access to random coins.

14

This circuit takes as input the current CPU state state and rData € {0,1}". Looking ahead the
data rData will be read from the memory location that was requested by the previous CPU step.
The circuit outputs an updated state state’, a read or write R/W, the next location to read/write
from L € [M], and data wData to write into that location (wData = L when reading). The sequence
of locations accessed during the execution of the program collectively form what is known as the
access pattern, namely MemAccess = {(R/W",L7) : 7 = 1,...,T}. We assume that the CPU state
state contains information about the location that the previous CPU step requested to read from.
In particular, lastLocation(state) outputs the location that the previous CPU step requested to read
and it is L if the previous CPU step was a write.

Note that in the description above without loss of generality we have made some simplifying
assumptions. We assume that each CPU-step circuit always reads from or writes to some location
in memory. This is easy to implement via a dummy read and write step. Moreover, we assume
that the instructions of the program itself are hardwired into the CPU-step circuits.

Representing RAM computation by CPU-Step Circuits. The computation PP (z) starts
with the initial state set as state; = z. In each step 7 € {1,...T}, the computation proceeds as
follows: If 7 = 1 or R/W™ ! = write, then rData” := 1; otherwise rData” := D[L"!]. Next it
executes the CPU-Step Circuit Cgpy,(state”, rData”) = (state™ !, R/W", L7, wData"). If R/W" =
write, then set D[L7] = wData”. Finally, when 7 = T, then state” ! is the output of the program.

3.7 Oblivious RAM
In this subsection, we recall the definition of oblivious RAM [Gol87, Ost90, GO96].

Definition 3.10 (Oblivious RAM) An Oblivious RAM scheme consists of two procedures (OProg, OData)
with the following syntax:

o P* OProg(lA, 11oe M 1T P): Given a security parameter \, a memory size M, a program P
that runs in time T, OProg outputs an probabilistic oblivious program P* that can access D*
as RAM. A probabilistic RAM program is modeled exactly as a deterministic program except
that each step circuit additionally take random coins as input.

o D* «+ OData(lA,D) . Given the security parameter X\, the contents of the database D €
{{0, 13N¥M | outputs the oblivious database D*. For convenience, we assume that OData
works by compiling a program P that writes D to the memory using OProg to obtain P*. It
then evaluates the program P* by using uniform random tape and outputs the contents of the
memory as D*.

Efficiency. We require that the run-time of OData should be M - N - poly(log(M N)) - poly(A), and
the run-time of OProg should be T - poly(A) - poly(log(M N)). Finally, the oblivious program P*
itself should run in time T' = T - poly(\) - poly(log(M N)). Both the new memory size M' = |D*|
and the running time T' should be efficiently computable from M, N, T, and \.

Correctness. Let Py,..., P, be programs running in polynomial times t1,...,t; on memory D of
size M. Let x1,...,x¢ be the inputs and A be a security parameter. Then we require that:

Pr[(P}(z1), ..., Pi(x))?" = (Pi(z1), ..., Piz))P] =1

15

where D* «+ OData(1*, D), P} < OProg(1*,1°¢M 1T P} and (P (z1),..., P} (z¢)P" indicates
running the ORAM programs on D* sequentially using an uniform random tape.

Security. For security, we require that there exists a PPT simulator Sim such that for any se-
quence of programs Py, ..., Py (running in time ti,...,t; respectively), initial memory data D €
{{0, 13VIM | and inputs x1,. .., 2, we have that:

MemAccess ~ Sim(1*, {1%}_)

where (y1,...,ye) = (Pi(x1), ..., Pi(z))?, D* « OData(1*,1V, D), P’ OProg(1*,1ls M 1T p))
and MemAccess corresponds to the access pattern of the CPU-step circuits during the sequential
execution of the oblivious programs (Py(x1),. .., P} (x¢))P" using an uniform random tape.

3.7.1 Strong Localized Randomness

For our construction of adaptively secure garbled RAM, we need an additional property called
as strong localized randomness property [CCHR16] from an ORAM scheme. We need a slightly
stronger formalization than the one given in [CCHRI16] (refer to footnote 10).

Strong Localized Randomness. Let D € {{0,1}"}¥ be any database and (P,z) be any
program/input pair. Let D* < OData(1*,1V, D) and P* < OProg(1*,19¢M 17 P). Further, let
the step circuits of P* be indicated by {Cg;J}TE[T/]. Let R be the contents of the random tape
used in the execution of P*.

Definition 3.11 ([CCHR16]) We say that an ORAM scheme has strong localized randomness
property if there there exists a sequence of efficiently computable values 71 < 70 < ... < T, where
=1, 7m =T and s — 74—1 < poly(log M N) for all t € [2,m] such that:

1. For every j € [m — 1] there exists an interval I; (efficiently computabl*e from j) of size
poly(log M N, \) s.t. for any T € [1j,Tj+1), the random tape accessed by C?P(JT is given by R,
(here, Ry, denotes the random tape restricted to the interval I;).

2. For every j,j' € Im—1] and j #j', ;N I;; = 0.

8. Further, for every j € [m], there exists an k < j such that given R\ (1) (where R\ (1,01,
denotes the content of the random tape except in positions I; U I;) and the output of step
circuits Cg:l’} for 7 € [Tk, Tk+1), the memory access made by step circuits CS:J for T €
[7j,Tj+1) is computationally indistinguishable to random. This k is efficiently computable
given the program P and the input x.*°

In Appendix B, we show that the Chung-Pass ORAM scheme [CP13] where the contents of the
database are encrypted using a special encryption scheme satisfies the above definition of strong
localized randomness. We now give details on this special encryption scheme. The key generation
samples a puncturable PRF key K < PP.KeyGen(1%). If the 7" step-circuit has to write a value
wData to a location L, it first samples 7 < {0, 1}* and computes ¢ = (7||r, PP.Eval(K, 7|r)®wData).

0Here, we require that the memory access to be indistinguishable to random even given the outputs of the step
circuits Ogny” for 7 € [Tk, Te+1). This is where we differ from the definition of [CCHR16].

16

It writes ¢ to location L. The decryption algorithm uses K to first compute PP.Eval(K, 7||r) and
uses it compute wData.

Remark 3.12 For the syntax of the ORAM scheme to be consistent with this special encryption
scheme, we will use a puncturable PRF to generate the random tape of P*. This key will also be
used implicitly used to derive the key for this special encryption scheme.

3.8 Adaptive Garbled RAM
We now give the definition of adaptive garbled RAM.

Definition 3.13 An adaptive garbled RAM scheme GRAM consists of the following PPT algo-
rithms satisfying the correctness, efficiency and security properties.

e GRAM.Memory(1*, D): It is a PPT algorithm that takes the security parameter 1* and a
database D € {0,1}M as input and outputs a garbled database D and a secret key SK.

e GRAM.Program(SK,i,P): It is a PPT algorithm that takes as input a secret key SK, a
sequence number i, and a program P as input (represented as a sequence of CPU steps) and
outputs a garbled program P.

e GRAM.Input(SK,i,x): It is a PPT algorithm that takes as input a secret key SK, a sequence
number i and a string x as input and outputs the garbled input T.

° GRAM.Evalﬁ(st,ﬁ, x): It is a RAM program with random read write access to D. It takes
the state information st, garbled program P and the garbled input T as input and outputs a
string y and updated database D'.

Correctness. We say that a garbled RAM GRAM is correct if for every database D, t = poly())
and every sequence of program and input pair {(Py, 1), ..., (P, x¢)} we have that

Pr[EXptcorrectness(l/\v UGRAM) = 1] < negl(A)

where EXptgrrectness 15 defined in Figure 5.
Adaptive Security. We say that GRAM satisfies adaptive security if there exists (stateful) sim-

ulators (SimD, SimP, Simln) such that for all t that is polynomial in the security parameter X\ and
for all polynomial time (stateful) adversaries A , we have that

Pr[Expt,ey (1%, GRAM, A) = 1] — Pr[Expt;ges (1%, Sim, A) = 1]| < negl

where Expt,e,), EXptigea are defined in Figure 4.

17

(D, SK) + GRAM.Memory(1*, D).
e Set Dy :=D, Dy :=D andst= L.

for every ¢ from 1 to ¢

— P, + GRAM.Program(SK, i, P}) .
— Z; + GRAM.Input(SK, i, z;).
— Compute (yi, Diy1) := PPi(z;) and (§i, Dit1,st) := UGRAM.Eval? (i,st, Py, ;).

K3

Output 1 if there exists an ¢ € [t] such that ¥; # ;.

Figure 3: Correctness Experiment for GRAM

Exptreal [1)\7 GRAM7 A} Exptideal[l)\v S'm7 A]
e D« A(1") where D € {0,1} e D« A(1*) where D € {0,1}".
e (D, SK) + GRAM.Memory(1*, D). e (D,st) + SimD(1*,1M).
e for every i from 1 to ¢ e for every ¢ from 1 to ¢
— P AD{(P, 7). ..., — P, AD{(P, &),
(Pifl,fifﬂ}). (P’i*h%i*l)})'
— P, + GRAM.Program(SK, i, P,). — (P, st) < SimP(117l st) .
- xL%A(Ea{(%ail)av - wi%A(Ev{(ﬁiﬁEl)va
(Pim1,Ti-1)},). (Pim1,Ti-1)}, Py).
— Zi + GRAM.Input(SK, i, z;). — (i, Diy1) :== PPi(2;) where Dy := D.
o Output A({(P1,71),..., (P, &0)}). = @i < Simin(st, ;).
o Output A{(P1,Z1),..., (P, T)}).

Figure 4: Adaptive Security Experiment for GRAM

Efficiency. We require the following efficiency properties from a UGRAM scheme.

The running time of GRAM.Memory should be bounded by M - poly(log M) - poly()).

The running time of GRAM.Program should be bounded by T - poly(log M) - poly(\) where T
is the number of CPU steps in the description of the program P.

The running time of GRAM.Input should be bounded by |z| - poly(log M,logT') - poly()\).

The running time of GRAM.Eval should be bounded by T - poly(log M) - poly(\) where T is the
number of CPU steps in the description of the program P.

18

4 Adaptive Garbled RAM with Unprotected Memory Access

Towards our goal of constructing an adaptive garbled RAM, we first construct an intermediate
primitive with weaker security guarantees. We call this primitive as adaptive garbled RAM with
unprotected memory access. Informally, a garbled RAM scheme has unprotected memory access if
both the contents of the database and the access to the database are revealed in the clear to the
adversary. We differ from the security definition given in [GHL"14] in three aspects. Firstly, we
give an indistinguishability style definition for security whereas [GHLT14] give a simulation style
definition. The indistinguishability based definition makes it easier to get full-fledged adaptive
security later. Secondly and most importantly, we allow the adversary to adaptively choose the
inputs based on the garbled program. Thirdly, we also require the garbled RAM scheme to satisfy
a special property called as equivocability. Informally, equivocability requires that the real garbling
of a program P is indistinguishable to a simulated garbling where the simulator is not provided
with the description of the step circuits for a certain number of time steps (this number is given by
the equivocation parameter). Later, when the input is specified, the simulator is given the output
of these step circuits and must come-up with an appropriate garbled input.
We now give the formal definition of this primitive.

Definition 4.1 An adaptive garbled RAM scheme with unprotected memory access UGRAM con-
sists of the following PPT algorithms satisfying the correctness, efficiency and security properties.

° UGRAM.Memory(P‘7 1", D): It is a PPT algorithm that takes the security parameter 1%, an
equivocation parameter n and a database D € {{0, YVIM a5 input and outputs a garbled
database D and a secret key SK.

e UGRAM.Program(SK,i, P): It is a PPT algorithm that takes as input a secret key SK, a
sequence number i, and a program P as input (represented as a sequence of CPU steps) and
outputs a garbled program P.

e UGRAM.Input(SK,i,x): Itis a PPT algorithm that takes as input a secret key SK, a sequence
number i and a string x as input and outputs the garbled input .

° UGRAM.EvaIB(st7 ﬁ,f): It is a RAM program with random read wrile access to D. It takes
the state information st, garbled program P and the garbled input T as input and outputs a
string y and updated database D'.

Correctness. We say that a garbled RAM UGRAM is correct if for every database D, t = poly(\)
and every sequence of program and input pair {(Py,x1),..., (P, z)} we have that

Pr[Expt 1", UGRAM) = 1] < negl()\)

correctness(

where Expt 1s defined in Figure 5.

correctness

Security. We require the following two properties to hold.

e Equivocability. There exists a simulator Sim such that for any non-uniform PPT stateful
adversary A and t = poly(\) we require that:

Pr(Exptequiv (1%, A, 0) = 1] — Pr[Expteqyy (11,4, 1) = 1]| < negl())

19

(D, SK) < UGRAM.Memory(1*,1", D).
e Set D1 :=D, Dy :=D andst= L.

for every ¢ from 1 to ¢
— P, + UGRAM.Program(SK, i, P;) .
— Z; + UGRAM.Input(SK, i, z;).
— Compute (yi, Dit1) := P i(2;) and (i, Diy1,st) := UGRAM.Eval?: (i,st, P;, ;).

e Output 1 if there exists an ¢ € [t] such that y; # y;.

Figure 5: Correctness Experiment for UGRAM

where Exptequiv(l)‘,A, b) is described in Figure 6.

e Adaptive Security. For any non-uniform PPT stateful adversary A and t = poly(\) we
require that:

PrExptycram(1*, A, 0) = 1] — Pr[Exptycram (1, A4, 1) = 1]| < negl())

where Exptygram (1Y, A, b) is described in Figure 7.

Efficiency. We require the following efficiency properties from a UGRAM scheme.
e The running time of UGRAM.Memory should be bounded by M N - poly(log M N) - poly(\).

e The running time of UGRAM.Program should be bounded by T - poly(log M N) - poly(\) where
T is the number of CPU steps in the description of the program P.

The running time of UGRAM.Input should be bounded by n - |z| - poly(log M N,logT') - poly(A).

The running time of UGRAM.Eval should be bounded by T - poly(log M N,logT) - poly(\) where
T is the number of CPU steps in the description of the program P.

4.1 Construction

In this subsection, we give a construction of adaptive garbled RAM with unprotected memory
access from updatable laconic oblivious transfer, somewhere equivocal encryption and garbling
scheme for circuits with selective security using the techniques developed in the construction of
adaptive garbled circuits [GS18a]. Our main theorem is:

Theorem 4.2 Assuming the existence of updatable laconic oblivious transfer, somewhere equivocal
encryption, a pseudorandom function and garbling scheme for circuits with selective security, there
exists a construction of adaptive garbled RAM with unprotected memory access.

20

1. D« A1 1™).
2. Dis computed as follows:
(a) Ifb=0: (D,SK) + UGRAM.Memory(1*,1", D).
(b) Ifb=1:D « Sim(1*,1", D).
3. for each i from ¢:
(a) (P, 1)+ A(D,{P;,%;};ci_1) where I C [|P]] and |I| < n.
(b) P is computed as follows:
i. If b=0: P, + UGRAM.Program(SK,i, P}).
ii. Ifb=1: P« Sim({C& Yegr)
() @i« AP}, T} jeqi-1), P).
(d) Z; is computed as follows:
i. fb=0:7Z; + UGRAM.Input(SK,i,z;)
ii. fb=1:2Z; < Sim(z;, {y: }+er) where y; is the o/p of Cg;'l’f when P; is executed with z;.
46— ALP;, T} jem)-
5. Output b'.

Figure 6: Exptequiv(l/\, A, b)

L. D+« A1 1™).
2. (D,SK) + UGRAM.Memory(1*,1", D).
3. for x each i from t:
(@) (Pio, Pin) < A(D,{P;,%;}je(i-1)-
(b) P is computed as follows:
i. Ifb=0: P, + UGRAM.Program(SK,i, Pi).
ii. If b=1: P, + UGRAM.Program(SK,i, P; 1)
() @i — AP}, T} e, P)-
(d) z; + UGRAM.Input(s, SK, x;)
4.8+ A{P;, T} jem)-

5. Output b if the output of each step circuit in P/} (z;) is same as P/ (z;) for every i € [t].

Figure 7: Exptygram(1}, A, D)

21

Construction. We give the formal description of the construction in Figure 8. We use a some-
where equivocal encryption with block length set to |SC | where SC. denotes the garbled version of
the step circuit SC described in Figure 9, the message length to be 7' (which is the running time of
the program P) and the equivocation parameter to be t + logT where ¢ is the actual equivocation
parameter for the UGRAM scheme.

Correctness. The correctness of the above construction follows from a simple inductive argument
that for each step 7 € [|P|], the state and the database are updated correctly at the end of the
execution of SNCT. The base case is 7 = 0. In order to prove the inductive step for a step 7, observe
that if the step 7 outputs a read then labels recovered in Step 4.(c).(ii) of AdpEvalCkt correspond to
data block in the location requested. Otherwise, the labels recovered in Step 4(b).(ii) of AdpEvalCkt
corresponds to the updated value of the digest with the corresponding block written to the database.

Efficiency. The efficiency of our construction directly follows from the efficiency of updatable
laconic oblivious transfer and the parameters set for the somewhere equivocal encryption. In
particular, the running time of UGRAM.Memory is D-poly(\), UGRAM.Program is T-poly(log M N, \)
and that of UGRAM.Input is n|z| - poly(log M,log T, \). The running time of UGRAM.Eval is T -
poly(log M,log T, \).

Security. In Appendix C, we argue the security of the construction.

5 Timed Encryption

In this section, we give the definition and construction of a timed encryption scheme. We will use
a timed encryption scheme in the construction of adaptive garbled RAM in the next section.

A timed encryption scheme is a symmetric key encryption scheme with some special properties.
In this encryption scheme, every message is encrypted with respect to a timestamp time. Addition-
ally, there is a special algorithm called as constrain that takes an encryption key K and a timestamp
time’ as input and outputs a time constrained key K [time']. A time constrained key K|[time'] can be
used to decrypt any ciphertext that is encrypted with respect to timestamp time < time’. For secu-
rity, we require that knowledge of a time constrained key does not help an adversary to distinguish
between encryptions of two messages that are encrypted with respect to some future timestamp.

Definition 5.1 A timed encryption scheme is a tuple of algorithms (TE.KeyGen, TE.Enc, TE.Dec,
TE.Constrain) with the following syntaz.

e TE.KeyGen(1%) : It is a randomized algorithm that takes the security parameter 1* and outputs
a key K.

e TE.Constrain(K,time) : It is a deterministic algorithm that takes a key K and a timestamp
time € [0,2* — 1] and outputs a time-constrained key K[time].

e TE.Enc(K,time,m) : It is a randomized algorithm that takes a key K, a timestamp time and
a message m as input and outputs a ciphertext c or L.

e TE.Dec(K,c): It is a deterministic algorithm that takes a key K and a ciphertezt ¢ as input
and outputs a message m.

22

UGRAM.Memory(1*,1*, D): On input a database D € {{0,1}¥}* do:

1. Sample crs + crsGen(1*,1V) and K < PRFKeyGen(1?) defining PRFy : {0,1}?**! —
{0, 1},

2. For each k € [\] and b € {0, 1}, compute labj, , := PRF x (1]/k||b).

3. Compute (d,ﬁ) = Hash(crs, D).

4. Output B, {Iab}c,dk}ke[,\] as the garbled memory and (K, crs) as the secret key.
UGRAM.Program(SK,i, P): On input SK = (K, crs), sequence number 4, and a program P (with T

step-circuits) do:
1. For each step 7 € [2,T], k € [A\+n+ N] and b € {0,1},
(a) Sample labj,, < {0,1}*.
(b) Set laby, , := PRFx(i[|k[|b) and labj ;" := PRFx((i + 1)||k||b).
We use {Iabg’b} to denote {Iab;b}ke[)\+n+N],be{o’l}.

2. for each 7 from T down to 1 do:
(a) Compute SC, + GarbleCkt (1’\7 SClers, 7, {Iab;jgl}], {Iab;’b}) where the step-circuit SC
is described in Figure 9.
3. Compute key = KeyGen(1*; PRF & (i]|0*|0))
4. Compute ¢ < Enc(key, {SAET}TE[T]) and output P := c.

UGRAM.Input(SK,i,z) : On input the secret key SK = (K, crs), sequence number i and a string = €
{0,1}" do:
1. For each k € [A\+n+ N] and b € {0,1}, compute Iab,lcvl7 := PRF (]| k||b).
2. Compute key = KeyGen(1*; PRFx([0*(|0)).

3. Output z := (key, {|ablle,xk Feert1 2 4n)s {labllﬁ,()}ke[n-i-/\-l-l,n-ﬁ-)\-i-N])-
UGRAM.EvaIE(i, st, P,7) : On input i, state st, the garbled program P, and garbled input Z do:

1. Parse T as (key, {Iabk}ke[AH’HJr,\JrN]) and P as c.
2. If i = 1, obtain {laby },c[y from garbled memory; else, parse st as {laby }e[r-
3. Compute {SAET}TE[T] := Dec(key, c) and set lab := {labr } reintatny-
4. for each 7 from 1 to T do:
(a) Compute (R/W, L, A, {laby}rc(r11.11n], B) := EvalCkt(SC,, Tab).
(b) If R/W = write,
i. Parse A as (ey,wData) and B as {labg }re[r41,n+2r+N]-
ii. {labp}rep < ReceiveWriteﬁ(crs,L,WData,ew)
(c) else,
i. Parse A as {laby}rcinqa) and B as e.
ii. {labg }reinart1naren] Receiveﬁ(crs, Le)
(d) Set m = {|abk}ke[n+/\+N].

5. Parse lab as {laby}refniasn]- Output {labg}yeparinra) and st := {laby ey

Figure 8: Adaptive Garbled RARBwith Unprotected Memory Access

Step Circuit SC
Input: A digest d, state state and a block rData.
Hardcoded: The common reference string crs, the step number 7 and a set of labels {laby 5}
1. Compute (state’,R/W, L, wData) := C’g’fu(state, rData).
2. If 7 =T, reset labxp, = b for all k € [A\+ 1, A +n] and b € {0,1}.
3. if R/W = write do:
(a) Compute e, < SendWrite(crs, d, L, wData, {labg t }re[r],beq0,1})-
(b) Output (R/W, L, e,,, wData, {Iabk,state;_A}ke[)\+17>\+n], {labg 0} kentr+1.n4r+N7)-
4. else,

(a) Compute e < Send(crs,d, L, {laby. s } ke [n+r+1,n+2A+N],0€{0,1})-
(b) (R/W, L, {laby,a, }re(ns {labk state] , trer+1,24n]5€)-

Figure 9: Description of the Step Circuit

We require a timed encryption scheme to follow the following properties.

Correctness. We require that for all messages m and for all timestamps time; < times:
Pr[TE.Dec(K|times],c) =m| =1

where K + TE.KeyGen(1%), K|times] := TE.Constrain(K,time) and ¢ < TE.Enc(K, time;, m).

Encrypting with Constrained Key. For any message m and timestamps time; < timeg, we
require that:
{TE.Enc(K,time;,m)} ~ {TE.Enc(K|times], time;, m)}

where K < TE.KeyGen(1*), K|timey] := TE.Constrain(K, times) and ~ denotes that the two distri-
butions are identical.

Security. For any two messages mq,m1 and timestamps (time, {time; };c;)) where time; < time
for all i € [t], we require that:

{{K[time;] }icpy), TE.Enc(K, time, mo) } ~ {{K[time;] }iciy), TE.Enc(K, time,m1)}
where K < TE.KeyGen(1*) and K|[time;] := TE.Constrain(K, time;) for every i € [t].

Theorem 5.2 Assuming the existence of one-way functions, there exists a construction of timed
encryption.

24

Construction. Let (SK.KeyGen,SK.Enc,SK.Dec) be a symmetric key encryption scheme. We
assume without loss of generality that SK.KeyGen(1%) outputs an uniformly chosen random string
in {0,1}*. We describe the construction below.

e TE.KeyGen(1%) : Sample K < RC.KeyGen(1*) defining PRF : {0,1}* — {0,1}* and output
K.

e TE.Enc(K,time,m): Compute SK := PRFg(time) and output (time, SK.Enc(SK,m)).
e TE.Dec(K,c) : Parse c as (time, ct) and compute SK := PRF g (time) and output SK.Dec(SK, ct).
e TE.Constrain(K,time) : Output RC.Constrain(K,time).

We note that correctness follows directly from the correctness of range constrained PRF and
symmetric key encryption scheme. The encryption with constrained key property follows from the
observation that for any time < time', PRF g(me/ (time) = PRF ¢ (time). The security property can
be easily argued from the security of range constrained PRF and symmetric key encryption.

6 Construction of Adaptive Garbled RAM

In this section, we give a construction of adaptive garbled RAM. We make use of the following
primitives.

e A timed encryption scheme (TE.KeyGen, TE.Enc, TE.Dec, TE.Constrain). Let N be the output
length of TE.Enc when encrypting single bit messages.

e A puncturable pseudorandom function (PP.KeyGen, PP.Eval, PP.Punc).
e An oblivious RAM scheme (OData, OProg) with strong localized randomness.

e An adaptive garbled RAM scheme UGRAM with unprotected memory access.

The formal description of our construction appears in Figure 10.

Correctness. We give an informal argument for correctness. The only difference between UGRAM
and the construction we give in Figure 10 is that we encrypt the database using a timed encryption
scheme and encode it using a ORAM scheme. To argue the correctness of our construction, it is
sufficient to argue that each step circuit SC faithfully emulates the corresponding step circuit of P*.
Let SC*T be the step circuit that corresponds to the 7" step of the i*" program P;. We observe that
any point in time the L** location of the database Dis an encryption of the actual data bit with
respect to timestamp time := (i’||7') where SC**™ last wrote at the L' location. It now follows from
this invariant and the correctness of the timed encryption scheme that the hardwired constrained
key K[i||7] in SC*™ can be used to decrypt the read block X as the step that last modified this
block has a timestamp that is less than (i||7).

Efficiency. We note that setting the equivocation parameter n = poly(log M N), we obtain that

the running time of GRAM.Input is |z| - poly(\,log M N). The rest of the efficiency criterion follow
directly from the efficiency of adaptive garbled RAM with unprotected memory access.

25

GRAM.Memory(1*, D): On input the database D € {0,1}M:

1.

Sample K < TE.KeyGen(1*) and S + PRFKeyGen(1*) defining PRFgs : {0,1}* — {0,1}"
(where n is the input length of each program).

2. Initialize an empty array D of M blocks with block length N.

for each i from 1 to M do:

(a) Set D[i] + TE.Enc(K,0*, DIi]).

D* + OData(1*,1V, D).

(5,SK) < UGRAM.Memory(1*, 1*, D*) where t = poly(log M N).
Output D as the garbled memory and (K, S, SK) as the secret key.

GRAM.Program(SK’',i, P): On input SK’' = (K, S, SK), sequence number 4, and a program P:

1.

Sample K’ <+ PP.KeyGen(1*)

2. P* + OProg(1*,19¢ M 1T P) where P* runs in time 7".

3. For each 7 € [T], compute K[(i||7)] < TE.Constrain(K, (i||7)) where (i||7) is expressed as a
A-bit string.

4. Compute r := PRFg(i).

5. Let 11,...,Tm be the sequence of values guaranteed by strong localized randomness.

6. for each 7 € [T'] do:
(a) Let j € [m — 1] be such that 7 € [}, 741).
(b) Let C&py = SC;[i, 7, K[(i||7)], I;, K',7'] where ' =r if 7 =T, else r’ = L. The step

circuit SC is described in Figure 11

7. Construct a RAM program P’ with step-circuits given by {CZp}.

8. P+ UGRAM.Program(SK,i, P').

9. Output P.

GRAM.Input(SK’,4, P): On input SK’' = (K, S,SK), i and x:

1.
2.
3.

Compute r = PRF (1)
Compute Z < UGRAM.Input(SK, i, z)
Output Z = (Z,r).

GRAM.EvaIE(i7 st,]3, Z): On input state st, the garbled program]3, and garbled input z:

1.

Compute (y,st’) + UGRAM.EV3|5(S’E, P, Z) and update st to st’. Output y & r.

Figure 10: Construction of Adaptive GRAM

26

Input: A ciphertext ccpy and a data block X € {0, 1}N.
Hardcoded: The sequence number %, step number 7, the constrained key K[(i||7)], the interval I;, the
key K’ and a string »'.

1. Compute rData := TE.Dec(K[(¢]|7)], X) and state = TE.Dec(K|(i||7)], ccpu)-
2. Compute Ry, = PP.Eval(K', I;).
3. Compute (R/W, L, state’, wData) := C’éD,;’T(state7 rData, Ry,).
4. if 7 =T, then output cgpy = state’ & 1'; else cgpy = TE.Enc(K|[(i]|)], state’).
5. else if R/W = write do:

(a) Compute X’ + TE.Enc(K[i||7], (¢, 7), wData).

(b) Output (cepy, R/W, L, X").
6. else if R/W = read, output (c¢py, R/W, L, L).

Step Circuit SC;

Security.

Figure 11: Description of the Step Circuit

In Appendix D, we argue the security of our construction.

References

[ACCT16] Prabhanjan Ananth, Yu-Chi Chen, Kai-Min Chung, Huijia Lin, and Wei-Kai Lin. Del-

[ATK04]

[ATKO5]

[Appl7]

[BGI+01]

egating RAM computations with adaptive soundness and privacy. In Martin Hirt and
Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 3-30.
Springer, Heidelberg, October / November 2016.

Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC°. In 45th
FOCS, pages 166-175. IEEE Computer Society Press, October 2004.

Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private ran-
domizing polynomials and their applications. In Proceedings of the 20th Annual IEEE
Conference on Computational Complezity, CCC ’05, pages 260-274, Washington, DC,
USA, 2005. IEEE Computer Society.

Benny Applebaum. Garbled circuits as randomized encodings of functions: a primer.
TACR Cryptology ePrint Archive, 2017:385, 2017.

Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 1-18. Springer, Heidelberg, August
2001.

27

[BGI14]

[BGL*15]

[BHR12a)

[BHR12b)]

[BL18]

[BLSV18§]

[BMR90]

[BRO3]

[BW13]

[CCHR16]

[CDG+17]

[CH16]

Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudoran-
dom functions. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages
501-519. Springer, Heidelberg, March 2014.

Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct ran-
domized encodings and their applications. In Rocco A. Servedio and Ronitt Rubinfeld,
editors, 47th ACM STOC, pages 439-448. ACM Press, June 2015.

Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling
with applications to one-time programs and secure outsourcing. In Xiaoyun Wang
and Kazue Sako, editors, ASTACRYPT 2012, volume 7658 of LNCS, pages 134-153.
Springer, Heidelberg, December 2012.

Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits.
In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 12, pages 784—
796. ACM Press, October 2012.

Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round
oblivious transfer via garbled interactive circuits. In Jesper Buus Nielsen and Vincent
Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 500-532.
Springer, Heidelberg, April / May 2018.

Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan. Anonymous
ibe, leakage resilience and circular security from new assumptions. To appear in Euro-
crypt, 2018. https://eprint.iacr.org/2017/967.

Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In 22nd ACM STOC, pages 503-513. ACM Press, May
1990.

Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62-73. ACM
Press, November 1993.

Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applica-
tions. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2018, Part 1I, volume
8270 of LNCS, pages 280-300. Springer, Heidelberg, December 2013.

Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova. Adaptive succinct
garbled RAM or: How to delegate your database. In Martin Hirt and Adam D. Smith,
editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 61-90. Springer, Heidelberg,
October / November 2016.

Chongwon Cho, Nico Déttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Antigoni
Polychroniadou. Laconic receiver oblivious transfer and applications. To appear in
Crypto, 2017.

Ran Canetti and Justin Holmgren. Fully succinct garbled RAM. In Madhu Sudan,
editor, ITCS 2016, pages 169-178. ACM, January 2016.

28

[CHJIV15]

[CP13]

[DG17]

[DGHM18]

[GGH*13]

[GGMS6]

[GGMP16]

[GHL"14]

[GHRW14]

[GKK112]

[GKP+13]

[GLO15]

Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Succinct
garbling and indistinguishability obfuscation for RAM programs. In Rocco A. Servedio
and Ronitt Rubinfeld, editors, 47th ACM STOC, pages 429-437. ACM Press, June
2015.

Kai-Min Chung and Rafael Pass. A simple oram. Cryptology ePrint Archive, Report
2013/243, 2013. https://eprint.iacr.org/2013/243.

Nico Déttling and Sanjam Garg. Identity based encryption from diffie-hellman assump-
tions. To appear in Crypto, 2017.

Nico Dttling, Sanjam Garg, Mohammad Hajiabadi, and Daniel Masny. New con-
structions of identity-based and key-dependent message secure encryption schemes. To
appear in PKC, 2018. https://eprint.iacr.org/2017/978.

Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th FOCS, pages 40—49. IEEE Computer Society Press, October 2013.

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. J. ACM, 33(4):792-807, 1986.

Sanjam Garg, Divya Gupta, Peihan Miao, and Omkant Pandey. Secure multiparty
RAM computation in constant rounds. In Martin Hirt and Adam D. Smith, editors,
TCC 2016-B, Part I, volume 9985 of LNCS, pages 491-520. Springer, Heidelberg,
October / November 2016.

Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel
Wichs. Garbled RAM revisited. In Phong Q. Nguyen and Elisabeth Oswald, editors,
EUROCRYPT 2014, volume 8441 of LNCS, pages 405-422. Springer, Heidelberg, May
2014.

Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Outsourcing private
RAM computation. In 55th FOCS, pages 404-413. IEEE Computer Society Press,
October 2014.

S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin,
Mariana Raykova, and Yevgeniy Vahlis. Secure two-party computation in sublinear
(amortized) time. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM
CCS 12, pages 513-524. ACM Press, October 2012.

Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages
555-564. ACM Press, June 2013.

Sanjam Garg, Steve Lu, and Rafail Ostrovsky. Black-box garbled RAM. In Venkatesan
Guruswami, editor, 56th FOCS, pages 210-229. IEEE Computer Society Press, October
2015.

29

[GLOS15]

[GMWS7]

[GOY6]

[Gol8T]

[GS18a]

[GS18b]

[HJO*16]

[HY16]

[IKO*11]

[JKK*17]

[JW16]

Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. Garbled RAM
from one-way functions. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th
ACM STOC, pages 449-458. ACM Press, June 2015.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
ACM STOC, pages 218-229. ACM Press, May 1987.

Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
rams. J. ACM, 43(3):431-473, 1996.

Oded Goldreich. Towards a theory of software protection and simulation by oblivious
RAMs. In Alfred Aho, editor, 19th ACM STOC, pages 182-194. ACM Press, May
1987.

Sanjam Garg and Akshayaram Srinivasan. Adaptively secure garbling with near opti-
mal online complexity. In Advances in Cryptology - EUROCRYPT 2018 - 37th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II, pages 535-565, 2018.

Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation
from minimal assumptions. In Jesper Buus Nielsen and Vincent Rijmen, editors, FU-
ROCRYPT 2018, Part I, volume 10821 of LNCS, pages 468-499. Springer, Heidelberg,
April / May 2018.

Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro, and Daniel
Wichs. Adaptively secure garbled circuits from one-way functions. In Matthew Rob-
shaw and Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS,
pages 149-178. Springer, Heidelberg, August 2016.

Carmit Hazay and Avishay Yanai. Constant-round maliciously secure two-party com-
putation in the RAM model. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B,
Part I, volume 9985 of LNCS, pages 521-553. Springer, Heidelberg, October / Novem-
ber 2016.

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sa-
hai. Efficient non-interactive secure computation. In Kenneth G. Paterson, editor,
EUROCRYPT 2011, volume 6632 of LNCS, pages 406-425. Springer, Heidelberg, May
2011.

Zahra Jafargholi, Chethan Kamath, Karen Klein, Ilan Komargodski, Krzysztof
Pietrzak, and Daniel Wichs. Be adaptive, avoid overcommitting. In Advances in
Cryptology - CRYPTO 2017 - 87th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I, pages 133-163, 2017.

Zahra Jafargholi and Daniel Wichs. Adaptive security of Yao’s garbled circuits. In
Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part I, volume 9985 of LNCS,
pages 433-458. Springer, Heidelberg, October / November 2016.

30

[KLW15]

[KPTZ13]

[KY18]

[LO13]

[LO17]

[LP09)]

[Mial6]

[ORS15]

[0S97]

[Ost90]

[SW14]

[WHCT14]

[Yao82]

[Yao86]

Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability obfus-
cation for turing machines with unbounded memory. In Rocco A. Servedio and Ronitt
Rubinfeld, editors, 47th ACM STOC, pages 419-428. ACM Press, June 2015.

Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Vir-
gil D. Gligor, and Moti Yung, editors, ACM CCS 13, pages 669-684. ACM Press,
November 2013.

Marcel Keller and Avishay Yanai. Efficient maliciously secure multiparty computation
for ram. To appear in EUROCRYPT, 2018. https://eprint.iacr.org/2017/981.

Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In Thomas Johansson
and Phong Q. Nguyen, editors, FUROCRYPT 2013, volume 7881 of LNCS, pages
719-734. Springer, Heidelberg, May 2013.

Steve Lu and Rafail Ostrovsky. Black-box parallel garbled RAM. In Advances in
Cryptology - CRYPTO 2017 - 87th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II, pages 66-92, 2017.

Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party
computation. Journal of Cryptology, 22(2):161-188, April 2009.

Peihan Miao. Cut-and-choose for garbled RAM. Cryptology ePrint Archive, Report
2016/907, 2016. http://eprint.iacr.org/2016/907.

Rafail Ostrovsky, Silas Richelson, and Alessandra Scafuro. Round-optimal black-box
two-party computation. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 339-358. Springer, Heidelberg,
August 2015.

Rafail Ostrovsky and Victor Shoup. Private information storage (extended abstract).
In 29th ACM STOC, pages 294-303. ACM Press, May 1997.

Rafail Ostrovsky. Efficient computation on oblivious RAMs. In 22nd ACM STOC,
pages 514-523. ACM Press, May 1990.

Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475-484.
ACM Press, May / June 2014.

Xiao Shaun Wang, Yan Huang, T.-H. Hubert Chan, Abhi Shelat, and Elaine Shi.
SCORAM: Oblivious RAM for secure computation. In Gail-Joon Ahn, Moti Yung,
and Ninghui Li, editors, ACM CCS 14, pages 191-202. ACM Press, November 2014.

Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd
FOCS, pages 160-164. IEEE Computer Society Press, November 1982.

Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
27th FOCS, pages 162-167. IEEE Computer Society Press, October 1986.

31

A Constructing Range Constrained PRF

In this section, we describe a construction of range constrained PRF from one-way functions.

Construction. We now give a construction of range constrained PRF from any length doubling
PRG : {0,1}* — {0,1}?}. The construction is exactly same as the GGM construction [GGMS86]
with an additional constrain algorithm. We will denote the left half of the output of PRG by
PRGy(-) and the right half by PRG;(+).

e RC.KeyGen(1%) : Sample s + {0,1}* as the seed of the PRG and output s as the PRF key.
The implicit PRF; : {0,1}" — {0, 1}* for any n = poly(}) is defined as PRF(zoz1 . .. Zp_1) :=
PRG,, ,(PRG,, ,(...PRG,(s)).

e RC.Constrain(s,T) :

Parse the binary representation of 1" as Ty ... Th_1.
— Initialize an empty set S.

Set t :=s.

for each ¢ from 0 to n — 1 do:
« If T; is 1, add (¢, PRGq(t)) to S and reset t := PRGy(¢).
* Else, reset t := PRGq(t).
— Add (v,t) to S (where v is a special symbol) and output S as the constrained key.

e RC.Eval(S, x):

— To evaluate PRF using the constrained key S on an input x < T, compute the least
index i such that z; = 0 and T; = 1 (such a bit must exist since x < T'). Recover (i,t;)
from S and output PRG,,_,(...PRG,,,,(t;)) as the output.

— To evaluate PRF using the constrained key S on an input 7', obtain (v,t) from S and
output ¢.

The correctness of the above construction is easy to observe. The security can be argued as
follows. Let y be the challenge point and by definition y > maxy T;. Let us call maxy T} as T.
Let ¢ be the least index such that y; = 1 and 7; = 0 (such an index must exist since y > T).
By construction, we have that s = PRGy,(...PRGy,(s)) is not present in any of the constrained
keys { K[T]}rejq- We can use the security of PRG repeatedly to replace this string with random.
We can then invoke the PRG security again to show that PRG,, , (PRG(yn—2...PRG, (s"))...) is
indistinguishable to random given the constrained key.

B Strong Localized Randomness of [CP13]

In this section, we show that the Chung-Pass ORAM scheme [CP13] instantiated with the following
special encryption scheme satisfies the strong localized randomness property.

1. KeyGen(1) : Sample K «+ PP.KeyGen(1%).

32

2. Enc(K,7,v) : The encryption algorithm takes as input the key K, the time step 7 and the
value v. It samples a random string r < {0, 1}* and outputs (7||r, PP.Eval(K, (7||7)) ® v) as
the ciphertext.

3. Dec(K,c): The ciphertext is parsed as (c1, c2) and the value v is computed as PP.Eval(K, ¢1)®
Cco.

We now recall the Chung-Pass ORAM scheme [CP13]. The following text is taken verbatim from
[CP13].

In database D*, is maintained as a complete binary tree I' of depth d = log(M/a); we index
nodes in the tree by a binary string of length at most d, where the root is indexed by the empty
string e, and each node indexed by ~ has left and right children indexed ~0 and 1, respectively.
Each memory cell » will be associated with a random leaf pos in the tree, specified by the position
map Pos; as we shall see shortly, the memory cell r will be stored at one of the nodes on the path
from the root € to the leaf pos. To ensure that the position map is smaller than the memory size,
we assign a block of o consecutive memory cells to the same leaf; thus memory cell r corresponding
to block b = |r/a| will be associated with leaf Pos(b).

Each node in the tree is associated with a bucket which stores (at most) K tuples (b, pos, v) where
v is the content of block b and pos is the leaf associated with the block b; K € (log M)poly log(M)
is a parameter that will determine the security of the ORAM (thus each bucket stores K (a + 2)
words.) We assume that all registers and memory cells are initialized with a special symbol L.

We first specify how a datablock is read.

e Fetch: Let b = |r/a| be the block containing memory cell r, and let ¢ = rmoda be the rs
component in the block b. We first look up the position of the block b using the position
map: pos = Pos(b); if Pos(b) = L, let pos <— [n/a] to be a uniformly random leaf. Next,
we traverse the tree from the roof to the leaf pos, making exactly one read and one write
operation for every memory cell associated with the nodes along the path. More precisely,
we read the content once, and then we either write it back (unchanged), or we simply erase
it (writing 1) so as to implement the following task: search for a tuple of the form (b, pos, v)
in any of the nodes during the traversal; if such a tuple is found, remove it, and otherwise let
v = L. Finally return the i** component of v.

e Update Position Map: Pick a uniformly random leaf pos’ <— [n/a]| and let Pos(b) = pos’.

e Put Back: Add the tuple (b, pos’,v) to the root ¢ of the tree. If there is not enough space
left in the bucket, abort outputting overflow.

e Flush: Pick a uniformly random leaf pos* < [n/a] and traverse the tree from the roof
to the leaf pos* , making exactly one read and one write operation for every memory cell
associated with the nodes along the path so as to implement the following task: push down
each tuple (b, pos”,v") read in the nodes traversed as far as possible along the path to pos*
while ensuring that the tuple is still on the path to its associated leaf pos” (that is, the tuple
ends up in the node v = longest common prefix of pos” and pos* .) (Note that this operation
can be done trivially as long as the CPU has sufficiently many work registers to load two
whole buckets into memory; since the bucket size is polylogarithmic, this is possible.) If at
any point some bucket is about to overflow, abort outputting overflow.

33

The process of writing a datablock val to a location proceeds identically to how a datablock is read,
except that in the Put Back steps, we add the tuple (b, pos’, v') where v’ is the string v but the i
component is set to val (instead of adding the tuple (b, pos’, v) as in reading).

Modified ORAM scheme. The modification that we make to the Chung-Pass ORAM scheme
is that every value v that is being written to the database by the 7 step-circuit is encrypted using
the special encryption scheme with respect to the timestep 7.

Strong Localized Randomness. We now argue why this ORAM construction satisfies the
strong localized randomness property. Note that the random tape accessed by each memory access
is independent of other memory accesses. This shows the first two properties in Definition 3.11.
We now argue the third property. Note that the second root to leaf path that is being accessed is
random and independent. The only issue is the first path that is being accessed is a root to leaf
path where the leaf node is maintained in the position map. In order to make this access to be
random and independent, we need to change how the Pos map is updated and that is where the
special encryption scheme helps us. For a particular memory access to a location L, let 7 to Tx41
be the step circuits that last updated the Pos map for this location. Now, instead of pushing the
correct leaf node in the Pos map, we use the security of the special encryption scheme to push a
junk value. It now follows from that the first root to leaf path for accessing the location L is also
random. We can even make the computational indistinguishability argument even when given the
encryption key K punctured at 7||r, for each 7 € [, Tg11).

C Security of UMA Adaptive Garbled RAM

C.1 Security

We now show that the construction given in Figure 8 satisfies the equivocability and the adaptive
security properties described in Definition 4.1. Before we proceed to proving these two properties,
we give the description of the simulator (for the equivocability property) in Figure 12. Recall that
this simulator takes as input the set I that has to be equivocated along with the set of step circuits
not in I. We denote this set by P ;. For the ease of exposition, we split the simulator into three
sub-routines: SimD,SimP and SimIn that correspond to simulating the database, simulating the
program and simulating the input respectively.

C.1.1 Equivocability

To prove equivocability, we need to show that the advantage of any adversary in the experiment
described in Figure 6 is negligible. In order to show this, we argue that for every sequence number,
Sim(1, P) is computationally indistinguishable to the real world garbling of program P. The rest
follows via a standard hybrid argument.

We now ague that Sim(I, P) is computationally indistinguishable to the real world garbling
of program P. Let us assume that P has a running time of 7" or in other words, is described by
T CPU steps. In this proof of indistinguishability, we assume that the labels for the first garbled
circuit and the coins used in KeyGen are generated randomly instead of using a PRF key to compute
them. This assumption follows directly from the security of the PRF.

34

SimD(1*,17, D) : On input 1*,1" and the database D, compute D exactly as in UGRAM.Memory and
output the garbled database D.

SimP(1*,4,1, P\r,st): On input SK = (K, crs), sequence number i, the set I and {Cf,;{j}tg[do:
1. Forstep 7 € [2,T], k € [A\+n+ N] and b € {0,1},
(a) Sample labj,, < {0,1}*.
(b) Set laby, j, := PRF (il k[b) and labj " := PRF g ((i + 1)]||b).
2. for each 7 from T down to 1 such that 7 ¢ I do:
(a) Compute SC, + GarbleCkt (1’\, SClers, 7, {Iab;fgl 1, {Iabz’b}) where the step-circuit SC
is described in Figure 9.
3. Compute (st,c) + SimEnc(Z, {§ET}T¢1).
4. Output P:=c.
Simin(st, 4,2, {yr }rer): On input the string = € {0,1}", and {y, }res do:
Notation: For every 7 € I, we parse y, = (state®”, R/Wi’T, L7 wData"") where yi,r is the output
of the 7" step circuit of program P;. Let D™ to be content of the database after the execution of
the 7% step in the i program. We let d*7 be the digest of D*7 (i.c., _(d”,) := Hash(crs, D).
and inp”” to be the input to SC, of the i*" program. We define D*?,inp™?, state’? d*® to be
database, input to the first step circuit SCy, the CPU state and the digest before starting the
execution of program i.
1. for each 7 from T down to 1 such that 7 € I:

(a) For each k € [\+n+ N] and b € {0,1}, compute laby, , := PRF g (i||k[|b) and lab/ ' :=
PRFx ((i + 1)]|k[|b).
(b) if R/W"" = write do:
i. Compute ¢ < Simgorw(crs, D?"~1 L>7 wData"", {Iab;‘zi),ﬂ}ke[/\}).

.. L T, T i +1 —+1
ii. Set m:= (R/W , LT, ¢,wData, {'ab;+>\75tate;-c,f}ke[n]» {|3b71;+n+,\70}k€[N])~

iii. Compute §(ET — Sikat (1)‘, 1|SC|, m, {|ab;; inpi,f}ke[n+)\+N]>

»INPy
(c) else,
i. Compute ¢ < Simeor(crs, D71 L¥7 {lab,; ir41} jeniat1nt s n])-
]

.. L 1,T i, T+1 T+1

i Set m = (R/WT, L7 {lab] L buepygs {13b7 1) o Yes©)-

iii. Compute SC; < Simcyt (1)‘, 115¢1 m, {Iab;inpij}ke[,ﬁ,*_]v])

2. Compute key < SimKey(sty, {S’ET}Tej).
3. Output 7 := (key, {Iab,1€+/\7$k}ke[n], {labk a0 ken))-

Figure 12: Sim(I, P ;)

In order to show the computational indistinguishability, we define a sequence of hybrids where
the indistinguishability between the successive hybrids is shown via the following rule.

35

Rule A. This rule states that for any two sets I, I’ C [T] such that I’ = I U {g*}, Sim(I, P\) is
computationally indistinguishable to Sim(I’, P 1) if g* is the first step or if g* — 1 isin I.

Hybrid Sequence. Our sequence of hybrids that proves the indistinguishability is described via
an optimal strategy for the following pebbling game. The rule A described above corresponds to
the rule of our pebbling game below.

Pebbling Game. Consider the positive integer line 1,2,...7. We are given a certain number
pebbles. We can place the pebbles on this positive integer line according to the following rule:

Rule A: We can place or remove a pebble in position ¢ if and only if there is a pebble in position
1 — 1. This restriction does not apply to position 1: we can always place or remove a pebble
at position 1.

Note that the set of indexes where a pebble is present corresponds to the equivocated set I. Thus,
any configuration of the pebbling game where there is a pebble in position ¢ € I corresponds to the
hybrid Sim(I, P).

Optimization goal of the pebbling game. The goal is to pebble the line [1,7] such that
every position in I has a pebble while minimizing the number of pebbles that are present on the
line at any point in time.

Optimal Pebbling Strategy. We provide an optimal pebbling strategy that uses ¢ + log(T)
pebbles. We first state the following lemma which was proved in [GS18a].

Lemma C.1 ([GS18a]) For any integer 1 < p < 2F — 1, it is possible to make O(p'°823) ~
O(p'58%) moves and get a pebble at position p using k pebbles.

Using the above lemma, we now give an optimal strategy for our pebbling game.

Lemma C.2 For any T € N, there exists a strategqy for pebbling the line graph [1, N| according to
rule using at most t + log T pebbles and making poly(T) moves.

Proof The strategy is given below. For each ¢ € I in the decreasing order do:
1. Use the strategy in Lemma C.1 to place a pebble in position i.
2. Recover all the other pebbles except that one in positions > 7 by reversing the moves.

The correctness of this strategy follows by inspection and the number of moves is polynomial in 7'.
|

C.1.2 Implementing Rule A

Lemma C.3 (Rule A) Let I and I' be two subsets of [T] that satisfy the constraints given in
rule A. Assuming the security of somewhere equivocal encryption, garbling scheme for circuits and
updatable laconic oblivious transfer, we have that Sim(I, P\I) ~ Sim(I’,P\p).

36

Proof We prove this via a hybrid argument.

Hybrid;: This is our starting hybrid and is distributed as Sim(Z, P 1).

Hybrid;: In this hybrid, we change the generation of garbled program such as (sti,c) <
SimEnc(I’, {SNCT}TQI/) instead of (sty, ¢) < SimEnc(, {§ET}T§Z1)

Computational indistinguishability between hybrid Hybrid; and Hybrid; reduces directly to
the security of somewhere equivocal encryption scheme.

Hybridy: By conditions of the rule we have that ¢* — 1 € I. Thus, we have that ¢* — 1 € I'.
Therefore, we note that the input labels {la bij‘b} are not used in SimP but only in SimIn where
it is used to generate SAEQ*_l and sTg*. In this hybrid, we postpone the sampling of {IabZTb}
and the generation of gfg* from SimP to Simln.

The change in hybrid Hybrid, from Hybrid, is just syntactic and the distributions are identical.

Hybrids: In this hybrid, we change the sampling of {la bi*b} and the generation of SNCg*. Specifi-

cally, we do not sample the entire set of labels {la bi*b} but a subset namely {la bz) - Tk (Where
’ ,lnpk

inp?” is the input to SCy+) and we generate SCy« from the simulated distribution. (Note that

g*

since g* —1 € I', we have that SCg«_; is also simulated and only {lab} inp, s k}k are needed for
’ g

its generation.) More formally, we generate
Yo : A qlsC g
SCy+ = Simgp (1 L 11SCl i, {Iabk’inpi*}kem)

where m is the output of the step circuit SCyx.

The only change in hybrid Hybrid; from Hybrid, is in the generation of the garbled circuit
SCy+ and the security follows directly from the selective security of the garbling scheme.

Hybrid,: In this hybrid, we change how the output value m hardwired in SNCg* is generated

for the case where R/ WY is a read. In particular, we simulate the laconic OT ciphertext e.

Computational indistinguishability between hybrids Hybrid; and Hybrid, follows directly from

the sender privacy of the laconic OT scheme.

Hybridg: In this hybrid, we change how m is generated for the case where R/W is a write.

More specifically, we simulate the laconic OT write ciphertext e,

Computational indistinguishability between hybrids Hybrid, and Hybrids follows directly from

the sender privacy for writes of the laconic OT scheme.

Hybrid,: In this hybrid, we reverse the changes made earlier with respect to sampling of

{Iabz*b}. Specifically, we sample all values {Iabg*b} and not just {Iabi*_ o« 1k Additionally,
)) ,inpg,

this is done in SimP rather than Simln.

Note that this change is syntactic and the hybrids Hybridg to Hybrid, are identical. Finally,
observe that hybrid Hybrid; is the same as Sim(I’, P,).

This completes the proof of the lemma. We additionally note that the above sequence of hybrids
is reversible.]

37

C.1.3 Adaptive security

To prove adaptive security, we need to show that all PPT adversaries have negligible advantage in
the experiment described in Figure 7. As in the previous case, we show that for any two program
P, P’ that have the same output in each step circuit for a particular input z, garbling of program
P is computationally indistinguishable to garbling of P’. The rest follows via a standard hybrid
argument. As in the previous case, we assume that the labels and the coins in KeyGen are generated
randomly instead of using a PRF.

To show that real world garbling of program P is computationally indistinguishable to the real
world garbling of program P’ (where P and P’ have the same outputs in each step circuit), we
repeatedly use the following rule of indistinguishability in addition to rule A.

Rule B. Let us define a hybrid distribution Hybrid; ;. which is same as Sim(/, P ;) except that

for all steps 7 > g¥, C’Z’éﬁ is garbled instead of CE’F{DU. This rule states that for any ¢g* such that

either g* —1 € I or ¢* = 1, Hybrid; ,. ~ Hybrid, j._;.

Our Hybrids, Asin the previous case, our sequence of hybrids corresponds to an optimal strategy
for the pebbling game described below. The rules A and B correspond to two types of moves in
the pebbling game.

Pebbling Game. Consider the positive integer line 1,2,...7. We are given a certain number
pebbles Gray and Black pebbles. We can place the pebbles on this positive integer line according
to the following rule:

Rule A: We can place or remove a Gray pebble in position ¢ if and only if there is a Gray pebble in
position ¢ — 1. This restriction does not apply to position 1: we can always place or remove
a Gray pebble at position 1.

Rule B: We can replace a Gray pebble in position ¢ with a Black pebble if there is a Gray pebble
in position 7 — 1 or if ¢ = 1 and all positions 7’ > i have Black pebbles.

Note that in the above game a position 7 without a pebble corresponds to garbling CE’FﬁJ and

a position 7 with a black pebble corresponds to garbling CE’PPL;. A position with a gray pebble
corresponds to simulating the step circuit implementing that time step.

Optimization goal of the pebbling game. The goal is to pebble the line [1,7] such that
every position in has a Black pebble while minimizing the number of Gray pebbles that are present
on the line at any point in time.

The same pebbling game was considered in [GS18a] who gave an optimal strategy. We now
state the following lemma from [GS18a].

Lemma C.4 ([GS18a]) For any T € N, there exists a strategy for pebbling the line graph [T
according to rules A and B by using at most log T Gray pebbles and making poly(T') moves.

Implementing rule A directly follows from Lemma C.3 and we now show how to implement rule
B.

38

C.1.4 Implementing Rule B
Lemma C.5 Let I C [T] and g* € [T] satisfy the constraints given in rule B. Assuming the

security of selective garbled circuits and updatable laconic oblivious transfer, we have Hybridy o._4 ~
Hybrid; ;..

Proof =~ We prove this via a hybrid argument starting with Hybrid; ;. and ending in hybrid
Hybrid; j«_4.

e Hybrid;: In this hybrid, we change the generation of garbled program such as (stj,c) <
SimEnc(1 U {g*}, {SNCT}WHU{Q*}) instead of (sty,c) <— SimEnc(I, {SAET}TQ[)

Computational indistinguishability between hybrid Hybrid; and Hybrid; ,._; reduces directly
to the security of somewhere equivocal encryption scheme.

e Hybridy: By conditions of the rule we have that g* —1 € I. Therefore, we note that the input

labels {la bi*b} are not used in SimP but only in SimIn where it is used to generate ng*,l and

SCgy+. In this hybrid, we postpone the sampling of {Iabi*b} and the generation of é?:g* from
SimP to Simlin.

The change in hybrid Hybridy from Hybrid; is just syntactic and the distributions are identical.

e Hybrids: In this hybrid, we change the sampling of {la bz;} and the generation of S’Eg*. Specif-

ically, we do not sample the entire set of labels {Iabz*b} but a subset namely {la bz) o 1k and
) ,inp?

we generate S/Eg* from the simulated distribution. (Note that since g* — 1 € I, we have that
SCy+_1 is also simulated and only {IabZ) o+ & are needed for its generation.) More formally,
inpy

)

we generate

Yo : A 1/SC g

ch* — Slmckt(l , 1| ‘7m, {Iabk,inpz* }ke[A])
where m is the output of the step circuit SCyx.

The only change in hybrid Hybrids from Hybrid, is in the generation of the garbled circuit
SCy+ and the security follows directly from the selective security of the garbling scheme.

e Hybrid,: In this hybrid, we change how the output value m hardwired in SﬂEg* is generated
for the case where R /Wi’g "is aread. In particular, we simulate the laconic OT ciphertext e.

Computational indistinguishability between hybrids Hybrids and Hybrid, follows directly from
the sender privacy of the laconic OT scheme.

e Hybrids: In this hybrid, we change how m is generated for the case where R/W is a write.
More specifically, we simulate the laconic OT write ciphertext e,

Computational indistinguishability between hybrids Hybrid, and Hybrid; follows directly from
the sender privacy for writes of the laconic OT scheme.

e Hybridg: In this hybrid, we change how the output value m hardwired in étg*. In particular,

we change it to be the output of C’g&,glj instead of C’g;’g*. Hybrids and Hybridg are identically

distributed since the outputs of these two step circuits are exactly the same.

39

e Hybrid; to Hybrid;: In this hybrid, we reverse the changes made earlier with respect to the
hybrids Hybrids to Hybrid; and use Cg,gJ to generate SNCg*.

Note that Hybrid;; is distributed identically to Hybrid; ;.. This completes the proof of the lemma.
|

D Proof of Indistinguishability

We assume without loss of generality, that the adversary first provides the number of queries that
it makes to the garbled program and the garbled input oracle. This assumption is without loss of
generality since given any adversary with running time ¢, we can turn it into an adversary that
makes ¢ queries (where some of them are for dummy programs and inputs) to the garbled program
and the garbled input oracle.

We first give the description of the simulator in Figure 13.

D.1 Proof of Indistinguishability

We need to show that the advantage of the adversary in the experiment described in Figure 4
is negligible. To prove this, we show that the real world garbling procedure is computationally
indistinguishable to the simulated garbling for a single program. The rest follows via a hybrid
argument where we repeatedly use this argument from the last (program, input) tuple to the
first (program, input) tuple. For the hybrid argument to go through, we additionally need the
intermediate hybrid distributions to know the number of (program, input) tuples that the adversary
queries for. We assumed without of generality that the adversary provides this before the start of
the experiment.

In the rest of this subsection, we show that the real world garbling procedure is indistinguish-
able to the simulated garbling for a single (program, input) tuple. We assume that in the rest of
the hybrids the output of the PRFg is replaced with a random string. This assumption follows di-
rectly from the security of the PRF. We define an intermediate hybrid distribution Hybrid, as follows.

Hybrid, : In this hybrid, we generate the garbled memory, garbled program and the garbled in-
put as follows.

Garbled Memory: On input the security parameter and the database D, the garbled memory is
generated exactly as in GRAM.Memory given in Figure 10.

Garbled Program: On input the program P, the garbled program P is generated as follows:

1. Sample K’ + PP.KeyGen(1%)
2. P* < OProg(1*,1°6M 17 P) where P* runs in time 7.

3. For each 7 € [t—1], compute K[(i||T)] +— TE.Constrain(K, (i||7)) where (i||7) is expressed
as a A-bit string.

4. Choose r + {0,1}".
5. for each 7 € [t,T"] do:
(a) Choose L™ < [M'] where M’ is the number of blocks in D.

40

SimD(1*,1V,1) : On input the security parameter, 1V and 1" do:
1. Sample K «+ TE.KeyGen(1*) and S < PRFKeyGen(1%) defining PRFg : {0,1}* — {0,1}".
2. Initialize an empty array D of M blocks with block length N.
3. for each i from 1 to M do:
(a) Set D[i] + TE.Enc(K,0*,0).
4. D* + OData(1*, 1%, 13)
5. (D,SK) + UGRAM.Memory(1*,1", D*)
6. Output D as the garbled memory and st as (K, S, SK).
SimP(1*,4, 17l st): On st and the running time 7" do:
1. Let T’ be the running time of the program after compiling with an ORAM scheme.
2. Compute r = PRF(S,).
3. for cach 7 € [T'] do:

(a) Choose L™ < [M’] where M’ is the number of blocks in D.

(b) Sample R/W" « {read, write}.

(¢) Choose X7 <— TE.Enc(K, (i||7),0) and cZpy = TE.Enc(XK, (¢]|7),0™).

(d) Let CZpy = SCL[i, 7, cfpys X7, L™,R/W",1'] where v/ = r if 7 = T'; else v’ = L. The
step-circuit SC’ is described below.

4. Construct a RAM program P’ with step-circuits given by {CZp}-
5. P+ UGRAM.Program(SK, i, P').
6. Output P.
SimIn(y,st) : On input y and st do:
1. Output Z + UGRAM.Input(SK,i,0™) and y ® PRFg(i).

Step Circuit SC_

Input: The CPU state state and a data block X € {0,1}%.
Hardcoded: The sequence number 4, step number 7, the ciphertext ¢Zp,, X™,R/W" ,the location L™
and the string r’.

1. if 7 =T’ then output ccpy = 1’5 else cepy = cEpy-
2. if R/W™ = write do:

(a) Output (state, R/W™, L7, X7).
3. else if R/W" = read, output (state, R/W", L7, 1).

Figure 13: Simulator for Adaptive Security

41

(b) Sample R/W" «+ {read, write}.
(c) Choose X7 < TE.Enc(XK, (i||7),0) and cZp, = TE.Enc(K, (i[|T),0™).
(d) Let CZpy :=SC[i, 7, cpy, X7, L™, R/W", 7] where v’ =r if 7 =T"; else 7/ = L.
6. Let 7q,..., T, be the sequence of values guaranteed by strong localized randomness.
7. for each 7 € [t — 1] do:
(a) Let j € [m — 1] be such that 7 € [7; + 1, 7j41].
(b) Let CZpy := SCr[i, 7, K[(i||7)], I;, K']
8. Construct a RAM program P’ with step-circuits given by {CZp}.
9. P < UGRAM.Program(SK, i, P').
10. Output P.

Garbled Input: On input SK’' = (K, SK), i and x and the output y:

1. Compute T +— UGRAM.Input(SK, i, z).
2. Output Z and y @ r if t < T’ + 1. Otherwise, output and r.

Note that Hybridy,; is distributed identically to the real world garbling procedure. We now
show that Hybrid, is computationally indistinguishable to Hybrid,_; for every ¢ € [2,T' + 1].

Lemma D.1 Assuming the security of adaptive garbled RAM with unprotected memory access,
timed encryption and puncturable PRF we have Hybrid, ~ Hybrid,_; for every t € [2,T" +1].

Proof We prove via a hybrid argument.

Hybrid, ; : In this hybrid, we change how the garbled program and the garbled input are gen-
erated. In particular, we will use the simulator uSim for the equivocal security of UGRAM to
generate them. More formally, we generate

P« uSim({CZpy}refrvp fi-13)

T < uSim(z, y4—1)

where y;_1 is the output of the Cé}b on input z.
The computational indistinguishability between Hybrid, and Hybrid, ; follows from the equivocal
security of adaptive garbled RAM with unprotected memory access.

Hybrid, 5 : In this hybrid, we change how y;—1 is generated. In particular, if R/Wt_1 is write
we choose X' <— TE.Enc(K[i||(t —1)], (¢, (t —1)),0) in y;—1 instead of setting X’ <— TE.Enc(Ké||(t —
)], (i, (t — 1)),wData’"!). The computational indistinguishability between Hybrid, ; and Hybrid, 5
follows directly from the security of timed encryption scheme.

Hybrid, 3 : In this hybrid, we change how the ciphertext encrypting the state is generated in y;—1.

In particular, if ¢ < 7" 4+ 1, we choose ccpy < TE.Enc(K[i||(t — 1)], (i, (t — 1)),0™) in y—1 instead
of setting it to be TE.Enc(K|[(i||7)],state’). If ¢ = T” + 1, we change ccpy = r and output y @ r as

42

part of the garbled input. The indistinguishability between Hybrid, o to Hybrid, 5 reduces directly
to the security of the timed encryption scheme if t < 7'+ 1. If t = T' 4 1, Hybrid, , and Hybrid, 3
are identically distributed.

Hybrid, 4 : In this hybrid, we change Cé;b to a dummy step circuit that generates encryption
of the state and the block to be written as in Hybrid; 5. However, the memory access (R/W, L)
made by this step circuit is still computed using Cé}b. It follows from the equivocal security of the
adaptive garbled RAM with unprotected memory access that Hybrid, 5 is computationally indistin-
guishable to Hybrid, 4.

Hybrid, 5 : Let j € [m — 1] be such that 7; < ¢t — 1 < 7j41. Depending on the program input,
there exists a k < j such that property 3 in the definition of strong localized randomness holds. In
this hybrid, we guess such a k (we are successful with probability 1/m) while generating the garbled
program. In this hybrid, we change how the garbled program is generated. Instead of garbling the
program as in Hybrid, 4, we will construct another program that will have the same output in each
step circuit as the program in Hybrid, 4. Let us explain the construction of this new program.

We puncture the PRF key at I} and I; and hardwire the output of the PRF on input I} in
the step circuits 7, < ¢ — 1 < 7341 and the output of the PRF on input [; in the step circuits
7j <t—1< 7j41. We use the punctured key in the rest of the step circuits. The step circuits
for timesteps 7 € [7j,7j41) and T € [, Tr41) additionally have output of the PRF on I; and Iy
hardwired This value is used in the computation of the memory access (R/W, L).

Note that it follows from the correctness property of the puncturable PRF that the programs
garbled in Hybrid, , and Hybrid, ; have the same output in each step circuit for each input x. It
now follows from the adaptive security of the garbled RAM with unprotected memory access that
Hybrid, 4 is computationally indistinguishable to Hybrid, 5.

Hybrid, s : In this hybrid, we replace the hardwired PRF outputs on I; and I with random
strings. Computational indistinguishability between Hybrid, 5 and Hybrid, ¢ follows from the se-
curity of puncturable PRFs.

Hybrid, 7 : In this hybrid, we use the uSim to simulate the step circuits for time steps 7 €
[Tk, Tk+1) U [7j,Tj+1). The indistinguishability between Hybrid, ; and Hybrid, ¢ follows from the
equivocal security.

Hybrid, s : In this hybrid, we change the memory access (i.e, (R/W, L)) in y—1 to be random.
It follows from the strong localized property of ORAM scheme that this change is computationally
indistinguishable.

Hybrid, g : In this hybrid, we change C’é,;b to a dummy circuit that outputs y;—1 as generated
in Hybrid, g and the rest of the circuits for the timesteps 7 € |74, Try1) U [75,7j41) as in Hybrid, g.
The indistinguishability of Hybrid, g and Hybrid, ¢ follows from the equivocal security of adaptive

garbled circuits with unprotected memory access.

Hybrid, 1o : In this hybrid, we reverse the change made in Hybrid, 5, namely, we replace the hard-

43

wired random strings in the step circuits for time steps 7, where 7, <7 < 741 and 7, <7 < 71
with the PRF output on I} and I;. It follows from the security of puncturable PRF that Hybrid, o
is computationally indistinguishable to Hybrid, ;.

Hybrid, 4, : This hybrid is distributed identically to Hybrid, ;. Note that the only difference between

Hybrid, ;o and Hybrid, ;; is that PRF key K’ is punctured at intervals I}, and I; in Hybrid, ;, whereas
it not punctured in Hybrid, ; and the PRF output is computed to obtain the random coins for the
memory access. The indistinguishability between Hybrid, ;4 and Hybrid, ;; follows directly from the
adaptive security of garbled RAM with unprotected memory access since the two programs have
the same output in each step circuit for each input x.

This completes the proof of the lemma. |

Hybrid, : In this hybrid, we change how the garbled database is generated. In particular, instead
of garbling the original database, we garble a dummy database whose initial contents are set to
the all zeroes string. It follows from the security of the timed encryption scheme that Hybrid, is
computationally indistinguishable to Hybrid;. Note that Hybrid, is identically distributed to the
simulated distribution.

44

