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Abstract. We propose the concept of pseudorandom quantum states,
which appear random to any quantum polynomial-time adversary. It offers
a computational approximation to perfectly random quantum states anal-
ogous in spirit to cryptographic pseudorandom generators, as opposed to
statistical notions of quantum pseudorandomness that have been studied
previously, such as quantum t-designs analogous to t-wise independent
distributions.
Under the assumption that quantum-secure one-way functions exist, we
present efficient constructions of pseudorandom states, showing that
our definition is achievable. We then prove several basic properties of
pseudorandom states, which show the utility of our definition. First,
we show a cryptographic no-cloning theorem: no efficient quantum al-
gorithm can create additional copies of a pseudorandom state, when
given polynomially-many copies as input. Second, as expected for ran-
dom quantum states, we show that pseudorandom quantum states are
highly entangled on average. Finally, as a main application, we prove that
any family of pseudorandom states naturally gives rise to a private-key
quantum money scheme.

1 Introduction

Pseudorandomness is a foundational concept in modern cryptography and theo-
retical computer science. A distribution D, e.g., over a set of strings or functions,
is called pseudorandom if no computationally-efficient observer can distinguish
between an object sampled from D, and a truly random object sampled from the
uniform distribution [57,64,10]. Pseudorandom objects, such as pseudorandom
generators (PRGs), pseudorandom functions (PRFs) and pseudorandom permuta-
tions (PRPs) are fundamental cryptographic building blocks, such as in the design
of stream ciphers, block ciphers and message authentication codes [25,38,24,54,28].
Pseudorandomness is also essential in algorithm design and complexity theory
such as derandomization [48,33].



The law of quantum physics asserts that truly random bits can be generated
easily even with untrusted quantum devices [15,42]. Is pseudorandomness, a
seemingly weaker notion of randomness, still relevant in the context of quantum
information processing? The answer is yes. By a simple counting argument, one
needs exponentially many bits even to specify a truly random function on n-bit
strings. Hence, in the computational realm, pseudorandom objects that offer
efficiency as well as other unique characteristics and strengths are indispensable.

A fruitful line of work on pseudorandomness in the context of quantum
information science has been about quantum t-designs and unitary t-designs
[4,17,27,12,16,34,60,70,46,45,44,11,41]. However, while these objects are often
called “pseudorandom” in the mathematical physics literature, they are actually
analogous to t-wise independent random variables in theoretical computer science.
Our focus in this work is a notion of computational pseudorandomness, and in
particular suits (complexity-theoretical) cryptography.

The major difference between t-wise independence and cryptographic pseu-
dorandomness is the following. In the case of t-wise independence, the observer
who receives the random-looking object may be computationally unbounded, but
only a priori (when the random-looking object is constructed) fixed number t
samples are given. Thus, quantum t-designs satisfy an “information-theoretic” or
“statistical” notion of security. In contrast, in the case of cryptographic pseudo-
randomness, the observer who receives the random-looking object is assumed to
be computationally efficient, in that it runs in probabilistic polynomial time for
an arbitrary polynomial that is chosen by the observer, after the random-looking
object has been constructed. This leads to a “computational” notion of security,
which typically relies on some complexity-theoretic assumption, such as the
existence of one-way functions).

In general, these two notions, t-wise independence and cryptographic pseu-
dorandomness, are incomparable. In some ways, the setting of cryptographic
pseudorandomness imposes stronger restrictions on the observer, since it assumes
a bound on the observer’s total computational effort (say, running in probabilistic
polynomial time). In other ways, the setting of t-wise independence imposes
stronger restrictions on the observer, since it forces the observer to make a
limited number of non-adaptive “queries,” specified by the parameter t, which
is usually a constant or a fixed polynomial. In addition, different distance mea-
sures are often used, e.g., trace distance or diamond norm, versus computational
distinguishability.

Cryptographic pseudorandomness in quantum information, which has received
relatively less study, mostly connects with quantum money and post-quantum
cryptography. Pseudorandomness is used more-or-less implicitly in quantum
money, to construct quantum states that look complicated to a dishonest party,
but have some hidden structure that allows them to be verified by the bank
[1,40,2,3,69]. In post-quantum cryptography, one natural question is whether the
classical constructions such as PRFs and PRPs remain secure against quantum
attacks. This is a challenging task as, for example, a quantum adversary may query
the underlying function or permutation in superposition. Fortunately, people have
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so far restored several positive results. Assuming a one-way function that is hard
to invert for polynomial-time quantum algorithms, we can attain quantum-secure
PRGs as well as PRFs [28,66]. Furthermore, one can construct quantum-secure
PRPs from quantum-secure PRFs using various shuffling constructions [68,58].

In this work, we study pseudorandom quantum objects such as quantum
states and unitary operators. Quantum states (in analogy to strings) and unitary
operations (in analogy to functions) form continuous spaces, and the Haar measure
is considered the perfect randomness on the spaces of quantum states and unitary
operators. A basic question is:

How to define and construct computational pseudorandom approximations of
Haar randomness, and what are their applications?

Our contributions. We propose definitions of pseudorandom quantum states
(PRS’s) and pseudorandom unitary operators (PRUs), present efficient con-
structions of PRS’s, demonstrate basic properties such as no-cloning and high
entanglement of pseudorandom states, and showcase the construction of private-
key quantum money schemes as one of the applications.

1. We propose a suitable definition of quantum pseudorandom states.
We employ the notion of quantum computational indistinguishability to define
quantum pseudorandom states. Loosely speaking, we consider a collection
of quantum states

{
|φk〉

}
indexed by k ∈ K, and require that no efficient

quantum algorithm can distinguish between |φk〉 for a random k and a state
drawn according to the Haar measure. However, as a unique consideration in
the quantum setting, we need to be cautious about how many copies of the
input state are available to an adversary.
Classically, this is a vacuous concern for defining a pseudorandom distribution
on strings, since one can freely produce many copies of the input string. The
quantum no-cloning theorem, however, forbids copying an unknown quantum
state in general. Pseudorandom states in terms of single-copy indistinguisha-
bility have been discussed in the literature (see for example [13] and a recent
study [14]). Though this single-copy definition may be suitable for certain
cryptographic applications, it also loses many properties of Haar random
states as a purely classical distributions already satisfies the definition 4.
Therefore we require that no adversary can tell a difference even given any
polynomially many copies of the state. This subsumes the single-copy version
and is strictly stronger. We gain from it many interesting properties, such as
the no-cloning property and entanglement property for pseudorandom states
as discussed later in the paper.

2. We present concrete efficient constructions of PRS’s with the minimal as-
sumption that quantum-secure one-way functions exist.

4
For example, a uniform distribution over the computational basis state {|k〉} has an
identical density matrix as a Haar random state and satisfy the single-shot definition
of PRS. But distinguishing them becomes easy as soon as we have more than one
copies. These states also do not appear to be hard to clone or possess entanglement.
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Our construction uses any quantum-secure PRF = {PRFk}k∈K and computes
it into the phases of a uniform superposition state (see equation (8)). We call
such family of PRS the random phase states. This family of states can be
efficiently generated using the quantum Fourier transform and a phase kick-
back trick. We prove that this family of state is pseudorandom by a hybrid
argument. By the quantum security of PRF, the family is computationally
indistinguishable from a similar state family defined by truly random functions.
We then prove that, this state family corresponding to truly random functions
is statistically indistinguishable from Haar random states. Finally, by the
fact that PRF exists assuming quantum-secure one-way functions, we can
base our PRS construction on quantum-secure one-way functions.
We note that Aaronson [1, Theorem 3] has described a similar family of
states, which uses some polynomial function instead of a PRF in the phases.
In that construction, however, the size of the state family depends on (i.e.,
has to grow with) the adversary’s number of queries that the family wants to
tolerate. It therefore fails to satisfy our definition, in which any polynomial
number queries independent of the family are permitted.

3. We prove cryptographic no-cloning theorems for PRS’s, and they give a simple
and generic construction of private-key quantum money schemes based on
any PRS.
We prove that a PRS remains pseudorandom, even if we additionally give
the distinguisher an oracle that reflects about the given state (i.e., Oφ :=
1− 2|φ〉〈φ|). This establishes the equivalence between the standard and a
strong definition of PRS’s. Technically, this is proved using the fact that with
polynomially many copies of the state, one can approximately simulate the
reflection oracle Oφ.
We obtain general cryptographic no-cloning theorems of PRS’s both with
and without the reflection oracle. The theorems roughly state that given
any polynomially many copies of pseudorandom states, no polynomial-time
quantum algorithm can produce even one more copy of the state. We call
them cryptographic no-cloning theorems due to the computational nature
of our PRS. The proofs of these theorems use SWAP tests in the reduction
from a hypothetical cloning algorithm to an efficient distinguishing algorithm
violating the definition of PRS’s.
Using the strong pseudorandomness and the cryptographic no-cloning theorem
with reflection oracle, we show that any PRS immediately gives a private-key
quantum money scheme. While much attention has been focused on public-
key quantum money [1,40,2,3,69], we emphasize that private-key quantum
money is already non-trivial. Early schemes for private-key quantum money
due to Wiesner and others were not query secure, and could be broken
by online attacks [62,9,39,20]. Aaronson and Christiano finally showed a
query-secure scheme in 2012, which achieves information-theoretic security
in the random oracle model, and computational security in the standard
model [2]. They used a specific construction based on hidden subspace states,
whereas our construction (which is also query-secure) is more generic and
can be based on any PRS. The freedom to choose and tweak the underlying
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pseudorandom functions or permutations in the PRS may motivate and
facilitate the construction of public-key quantum money schemes in future
work.

4. We show that pseudorandom states are highly entangled.
It is known that a Haar random state is entangled with high probability. We
establish a similar result for any family of pseudorandom states. Namely,
the states in any PRS family are entangled on average. It is shown that the
expected Schmidt rank for any PRS is superpolynomial in κ and that the ex-
pected min entropy and von Neumann entropy are of the order ω(log κ) where
κ is the security parameter. This is yet another evidence of the suitability of
our definition.
The proof again rests critically on that our definition grants multiple copies
to the distinguisher—if the expected entanglement is low, then SWAP test
with respect to the corresponding subsystems of two copies of the state will
serve as a distinguisher that violates the definition.

5. We propose a definition of quantum pseudorandom unitary operators (PRUs).
We also present candidate constructions of PRUs (without a proof of security),
by extending our techniques for constructing PRS’s.
Loosely speaking, these candidate PRUs resemble unitary t-designs that
are constructed by interleaving random permutations with the quantum
Fourier transform [27], or by interleaving random diagonal unitaries with
the Hadamard transform [45,44], and iterating this construction several
times. We conjecture that a PRU can be obtained in this way, using only
a constant number of iterations. This is in contrast to unitary t-designs,
where a parameter counting argument suggests that the number of iterations
must grow with t. This conjecture is motivated by examples such as the
Luby-Rackoff construction of a pseudorandom permutation using multi-round
Feistel network built using a PRF.

Table 1. Summary of various notions that approximate true randomness

Classical Quantum

True randomness Uniform distribution Haar measure

t-wise independence t-wise independent Quantum t-designs
random variables

(this work)
Pseudorandomness PRGs PRS’s

PRFs, PRPs PRUs

Discussion. We summarize the mentioned variants of randomness in Table 1. The
focus of this work is mostly about PRS’s and we briefly touch upon PRUs. We
view our work as an initial step and anticipate further fundamental investigation
inspired by our notion of pseudorandom states and unitary operators.
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We mention some immediate open problems. First, can we prove the security of
our candidate PRU constructions? The techniques developed in quantum unitary
designs [27,12] seem helpful. Second, are quantum-secure one-way functions
necessary for the construction of PRS’s? Third, can we establish security proofs
for more candidate constructions of PRS’s? Different constructions may have their
own special properties that may be useful in different settings. It is also interesting
to explore whether our quantum money construction may be adapted to a
public-key money scheme under reasonable cryptographic assumptions. Finally,
the entanglement property we prove here refers to the standard definitions of
entanglement. If we approach the concept of pseudo-entanglement as a quantum
analogue of pseudo-entropy for a distribution [7], can we improve the quantitative
bounds?

We point out a possible application in physics. PRS’s may be used in place
of high-order quantum t-designs, giving a performance improvement in certain
applications. For example, pseudorandom states can be used to construct toy
models of quantum thermalization, where one is interested in quantum states
that can be prepared efficiently via some dynamical process, yet have “generic” or
“typical” properties as exemplified by Haar-random pure states, for instance [52].
Using t-designs with polynomially large t, one can construct states that are
“generic” in a information-theoretic sense [36]. Using PRS, one can construct
states that satisfy a weaker property: they are computationally indistinguishable
from “generic” states, for a polynomial-time observer.

In these applications, PRS states may be more physically plausible than
high-order quantum t-designs, because PRS states can be prepared in a shorter
time, e.g., using a polylogarithmic-depth quantum circuit, based on known
constructions for low-depth PRFs [6,47].

2 Preliminaries

2.1 Notions

For a finite set X , |X | denotes the number of elements in X . We use the notion

YX to denote the set of all functions f : X → Y . For finite set X , we use x← X
to mean that x is drawn uniformly at random from X . The permutation group
over elements in X is denoted as SX . We use poly(κ) to denote the collection of
polynomially bounded functions of the security parameter κ, and use negl(κ) to
denote negligible functions in κ. A function ε(κ) is negligible if for all constant
c > 0, ε(κ) < κ−c for large enough κ.

In this paper, we use a quantum register to name a collection of qubits that
we view as a single unit. Register names are represented by capital letters in
a sans serif font. We use S(H), D(H), U(H) and L(H) to denote the set of
pure quantum states, density operators, unitary operators and bounded linear
operators on space H respectively. An ensemble of states {(pi, ρi)} represents a
system prepared in ρi with probability pi. If the distribution is uniform, we write
the ensemble as {ρi}. The adjoint of matrix M is denoted as M∗. For matrix
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M , |M | is defined to be
√
M∗M . The operator norm ‖M‖ of matrix M is the

largest eigenvalue of |M |. The trace norm ‖M‖1 of M is the trace of |M |. For
two operators M,N ∈ L(H), the Hilbert-Schmidt inner product is defined as

〈M,N〉 = tr(M∗N).

A quantum channel is a physically admissible transformation of quantum
states. Mathematically, a quantum channel

E : L(H)→ L(K)

is a completely positive, trace-preserving linear map.
The trace distance of two quantum states ρ0, ρ1 ∈ D(H) is

TD(ρ0, ρ1)
def
=

1

2
‖ρ0 − ρ1‖1 . (1)

It is known (Holevo-Helstrom theorem [30,31]) that for a state drawn uniformly
at random from the set {ρ0, ρ1}, the optimal distinguish probability is given by

1 + TD(ρ0, ρ1)

2
.

Define number N = 2n and set X = {0, 1, . . . , N − 1}. The quantum Fourier
transform on n qubits is defined as

F =
1√
N

∑
x,y∈X

ωxyN |x〉〈y|. (2)

It is a well-known fact in quantum computing that F can be implemented in
time poly(n).

For Hilbert space H and integer m, we use ∨mH to denote the symmetric
subspace of H⊗m, the subspace of states that are invariant under permutations of
the subsystems. Let N be the dimension ofH and let X be the set {0, 1, . . . , N−1}
such that H is the span of {|x〉}x∈X . For any x = (x1, x2, . . . , xm) ∈ Xm, let mj

be the number of j in x for j ∈ X . Define state

∣∣x; Sym
〉

=

√∏
j∈X mj !

m!

∑
σ

∣∣∣xσ(1), xσ(2), . . . , xσ(m)

〉
. (3)

The summation runs over all possible permutations σ that give different tuples
(xσ(1), xσ(2), . . . , xσ(m)). Equivalently, we have∣∣x; Sym

〉
=

1√
m!
∏
j∈X mj !

∑
σ∈Sm

∣∣∣xσ(1), xσ(2), . . . , xσ(m)

〉
. (4)

The coefficients in the front of the above two equations are normalization constants.
The set of states {∣∣x; Sym

〉}
x∈Xm (5)
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forms an orthonormal basis of the symmetric subspace ∨mH [59, Prop.7.2]. This
implies that the dimension of the symmetric subspace is(

N +m− 1

m

)
.

Let ΠSym
m be the projection onto the symmetric subspace ∨mH. For a permu-

tation σ ∈ Sm, define operator

Wσ =
∑

x1,x2,...,xm∈X

∣∣x
σ
−1

(1)
, x
σ
−1

(2)
, . . . , x

σ
−1

(m)

〉〈
x1, x2, . . . , xm

∣∣.
The following identity will be useful [59, Prop.7.1]

ΠSym
m =

1

m!

∑
σ∈Sm

Wσ. (6)

Let µ be the Haar measure on S(H), it is known that [26, Prop.6]∫ (
|ψ〉〈ψ|

)⊗m
dµ(ψ) =

(
N +m− 1

m

)−1
ΠSym
m . (7)

2.2 Cryptography

In this section, we recall several definitions and results from cryptography that is
necessary for this work.

Pseudorandom functions (PRF) and pseudorandom permutations (PRP) are
important constructions in classical cryptography. Intuitively, they are families of
functions or permutations that looks like truly random functions or permutations
to polynomial-time machines. In the quantum case, we need a strong requirement
that they still look random even to polynomial-time quantum algorithms.

Definition 1 (Quantum-Secure Pseudorandom Functions and Permu-
tations). Let K, X , Y be the key space, the domain and range, all implicitly
depending on the security parameter κ. A keyed family of functions

{
PRFk :

X → Y
}
k∈K is a quantum-secure pseudorandom function (QPRF) if for any

polynomial-time quantum oracle algorithm A, PRFk with a random k ← K is
indistinguishable from a truly random function f ← YX in the sense that:∣∣∣∣∣ Pr

k←K

[
APRFk(1κ) = 1

]
− Pr
f←YX

[
Af (1κ) = 1

]∣∣∣∣∣ = negl(κ).

Similarly, a keyed family of permutations
{
PRPk ∈ SX

}
k∈K is a quantum-secure

pseudorandom permutation (QPRP) if for any quantum algorithm A making at
most polynomially many queries, PRPk with a random k ← K is indistinguishable
from a truly random permutation in the sense that:∣∣∣∣ Pr

k←K

[
APRPk(1κ) = 1

]
− Pr
P←SX

[
AP (1κ) = 1

]∣∣∣∣ = negl(κ).

8



In addition, both PRFk and PRPk are polynomial-time computable (on a classical
computer).

Fact 1 QPRFs and QPRPs exist if quantum-secure one-way functions exist.

Zhandry proved the existence of QPRFs assuming the existence of one-way
functions that are hard to invert even for quantum algorithms [66]. Assuming
QPRF, one can construct QPRP using various shuffling constructions [68,58].
Since a random permutation and a random function is indistinguishable by
efficient quantum algorithms [65,67], existence of QPRP is hence equivalent to
existence of QPRF.

3 Pseudorandom Quantum States

In this section, we will discuss the definition and constructions of pseudorandom
quantum states.

3.1 Definition of Pseudorandom States

Intuitively speaking, a family pseudorandom quantum states are a set of random
states

{
|φk〉

}
k∈K that is indistinguishable from Haar random quantum states.

The first idea on defining pseudorandom states can be the following. Without
loss of generality, we consider states in S(H) where H = (C2)⊗n is the Hilbert
space for n-qubit systems. We are given either a state randomly sampled from
the set

{
|φk〉 ∈ H

}
k∈K or a state sampled according to the Haar measure on

S(H), and we require that no efficient quantum algorithm will be able to tell the
difference between the two cases.

However, this definition does not seem to grasp the quantum nature of the
problem. First, the state family where each |φk〉 is a uniform random bit string will
satisfy the definition—in both cases, the mixed states representing the ensemble
are 1/2n. Second, many of the applications that we can find for PRS’s will not
hold for this definition.

Instead, we require that the family of states looks random even if polynomially
many copies of the state are given to the distinguishing algorithm. We argue that
this is the more natural way to define pseudorandom states. One can see that this
definition also naturally generalizes the definition of pseudorandomness in the
classical case to the quantum setting. In the classical case, asking for more copies
of a string is always possible and one does not bother making this explicit in the
definition. This of course also rules out the example of classical random bit strings
we discussed before. Moreover, this strong definition, once established, is rather
flexible to use when studying the properties and applications of pseudorandom
states.

Definition 2 (Pseudorandom Quantum States (PRS’s)). Let κ be the se-
curity parameter. Let H be a Hilbert space and K the key space, both parameterized
by κ. A keyed family of quantum states

{
|φk〉 ∈ S(H)

}
k∈K is pseudorandom,

if the following two conditions hold:
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1. (Efficient generation). There is a polynomial-time quantum algorithm G
that generates state |φk〉 on input k. That is, for all k ∈ K, G(k) = |φk〉.

2. (Pseudorandomness). Any polynomially many copies of |φk〉 with the
same random k ∈ K is computationally indistinguishable from the same
number of copies of a Haar random state. More precisely, for any efficient
quantum algorithm A and any m ∈ poly(κ),∣∣∣∣ Pr

k←K

[
A(|φk〉

⊗m) = 1
]
− Pr
|ψ〉←µ

[
A(|ψ〉⊗m) = 1

]∣∣∣∣ = negl(κ),

where µ is the Haar measure on S(H).

3.2 Constructions and Analysis

In this section, we give an efficient construction of pseudorandom states which we
call random phase states. We will prove that this family of states satisfies our def-
inition of PRS’s. There are other interesting and simpler candidate constructions,
but the family of random phase states is the easiest to analyze.

Let PRF : K×X → X be a quantum-secure pseudorandom function with key
space K, X = {0, 1, 2, . . . , N − 1} and N = 2n. K and N are implicitly functions
of the security parameter κ. The family of pseudorandom states of n qubits is
defined

|φk〉 =
1√
N

∑
x∈X

ω
PRFk(x)
N |x〉, (8)

for k ∈ K and ωN = exp(2πi/N).

Theorem 1. For any QPRF PRF : K ×X → X , the family of states {|φk〉}k∈K
defined in Eq. (8) is a PRS.

Proof. First, we prove that the state can be efficiently prepared with a single
query to PRFk. As PRFk is efficient, this proves the efficient generation property.

The state generation algorithm works as follows. First, it prepares a state

1

N

∑
x∈X
|x〉
∑
y∈X

ωyN |y〉.

This can be done by applying H⊗n to the first register initialized in |0〉 and the
quantum Fourier transform to the second register in state |1〉.

Then the algorithm calls PRFk on the first register and subtract the result
from the second register, giving state

1

N

∑
x∈X
|x〉
∑
y∈X

ωyN
∣∣y − PRFk(x)

〉
.

The state can be rewritten as

1

N

∑
x∈X

ω
PRFk(x)
N |x〉

∑
y∈X

ωyN |y〉.
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Therefore, the effect of this step is to transform the first register to the required
form and leaving the second register intact.

Next, we prove the pseudorandomness property of the family. For this purpose,
we consider three hybrids. In the first hybrid H1, the state will be |φk〉

⊗m for
a uniform random k ∈ K. In the second hybrid H2, the state is |f 〉⊗m for truly

random functions f ∈ XX where

|f 〉 =
1√
N

∑
x∈X

ω
f(x)
N |x〉.

In the third hybrid H3, the state is |ψ〉⊗m for |ψ〉 chosen according to the Haar
measure.

By the definition of the quantum-secure pseudorandom functions for PRF, we
have for any polynomial-time quantum algorithm A and any m ∈ poly(κ),∣∣Pr

[
A(H1) = 1

]
− Pr

[
A(H2) = 1

]∣∣ = negl(κ).

By Lemma 1, we have for any algorithm A and m ∈ poly(κ),∣∣Pr
[
A(H2) = 1

]
− Pr

[
A(H3) = 1

]∣∣ = negl(κ).

This completes the proof by triangle inequality.

Lemma 1. For function f : X → X , define quantum state

|f 〉 =
1√
N

∑
x∈X

ω
f(x)
N |x〉.

For m ∈ poly(κ), the state ensemble
{
|f 〉⊗m

}
is statistically indistinguishable

from
{
|ψ〉⊗m

}
for Haar random |ψ〉.

Proof. Let m ∈ poly(κ) be the number of copies of the state. We have

E
f

[(
|f 〉〈f |

)⊗m]
=

1

Nm

∑
x∈Xm,y∈Xm

E
f
ω
f(x1)+···+f(xm)−[f(y1)+···+f(ym)]
N

∣∣x〉〈y∣∣,
where x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym). For later convenience, define
density matrix

ρm = E
f

[(
|f 〉〈f |

)⊗m]
.

We will compute the entries of ρm explicitly.
For x = (x1, x2, . . . , xm) ∈ Xm, let mj be the number of j in x for j ∈ X .

Obviously, one has
∑
j∈X mj = m. Note that we have omitted the dependence

of mj on x for simplicity. Recall the basis states defined in Eq. (4)∣∣x; Sym
〉

=
1√(∏

j∈X mj !
)
m!

∑
σ∈Sm

∣∣∣xσ(1), xσ(2), . . . , xσ(m)

〉
.
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For x,y ∈ Xm, let mj be the number of j in x and m′j be the number of j in y.
We can compute the entries of ρm as〈

x; Sym
∣∣ρm∣∣y; Sym

〉
=

m!

Nm

√(∏
j∈X mj !

)(∏
j∈X m

′
j !
) E
f

[
exp
(2πi

N

m∑
l=1

(
f(xl)− f(yl)

))]
.

When x is not a permutation of y, the summation
∑m
l=1

(
f(xl) − f(yl)

)
is a

summation of terms ±f(zj) for distinct values zj . As f is a truly random function,
f(zj) is uniformly random and independent of f(zj′) for zj 6= zj′ . So it is not
hard to verify that the entry is nonzero only if x is a permutation of y. These
nonzero entries are on the diagonal of ρm in the basis of

{∣∣x; Sym
〉}

. These
diagonal entries are 〈

x; Sym
∣∣ρm∣∣x; Sym

〉
=

m!

Nm∏
j∈X mj !

.

Let ρmµ be the density matrix of a random state |ψ〉⊗m, for |ψ〉 chosen from
the Haar measure µ. From Eqs. (5) and (7), we have that

ρmµ =

(
N +m− 1

m

)−1 ∑
x;Sym

∣∣x; Sym
〉〈

x; Sym
∣∣.

We need to prove
TD
(
ρm, ρmµ

)
= negl(κ).

Define

δx;Sym =
m!

Nm∏
j∈X mj !

−
(
N +m− 1

m

)−1
.

Then

TD(ρm, ρmµ ) =
1

2

∑
x;Sym

∣∣δx;Sym∣∣ .
The ratio of the two terms in δx;Sym is

m!

(
N +m− 1

m

)
Nm

∏
j∈X

mj !
=

m−1∏
l=0

(
1 +

l

N

)
∏
j∈X

mj !
.

For sufficient large security parameter κ, the ratio is larger than 1 only if∏
j∈X mj ! = 1, which corresponds to x’s whose entries are all distinct. As there

are
(
N
m

)
such x’s, we can calculate the trace distance as

TD
(
ρm, ρmµ

)
=

(
N

m

)[
m!

Nm −
(
N +m− 1

m

)−1]
=
N(N − 1) · · · (N −m+ 1)

Nm − N(N − 1) · · · (N −m+ 1)

(N +m− 1) · · ·N
.
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As first term is less than 1 and is at least

(1− 1

N
) · · · (1− m− 1

N
) ≥ 1− 1 + 2 + · · ·+ (m− 1)

N

For our choices of m ∈ poly(κ) and N ∈ 2poly(κ), this term is 1 − negl(κ) for
sufficiently large security parameter κ. Similar analysis applies to the second
term and this completes the proof.

3.3 Comparison with Related Work

We remark that a similar family of states was considered in [1] (Theorem 3).
However, the size of the state family there depends on a parameter d which
should be larger than the sum of the number of state copies and the number of
queries. In our construction, the key space is fixed for a given security parameter,
which may be advantageous for various applications.

We mention several other candidate constructions of PRS’s and leave detailed
analysis of them to future work. A construction closely related to the random
phase states in Eq. (8) uses random ±1 phases,

|φk〉 =
1√
N

∑
x∈X

(−1)PRFk(x)|x〉.

Intuitively, this family is less random than the random phase states in Eq. (8)
and the corresponding density matrix ρm has small off-diagonal entries, making
the proof more challenging. The other family of candidate states on 2n qubits
takes the form

|φk〉 =
1√
N

PRPk

[∑
x∈X
|x〉 ⊗ |0n〉

]
.

In this construction, the state is an equal superposition of a random subset of size
2n of {0, 1}2n and PRP is any pseudorandom permutation over the set {0, 1}2n.
We call this the random subset states construction.

Finally, we remark that under plausible cryptographic assumptions our PRS
constructions can be implemented using shallow quantum circuits of polyloga-
rithmic depth. To see this, note that there exist PRFs that can be computed in
polylogarithmic depth [6], which are based on lattice problems such as “learning
with errors” (LWE) [53], and are believed to be secure against quantum comput-
ers. These PRFs can be used directly in our PRS construction. (Alternatively,
one can use low-depth PRFs that are constructed from more general assumptions,
such as the existence of trapdoor one-way permutations [47].)

This shows that PRS states can be prepared in surprisingly small depth,
compared to quantum state t-designs, which generally require at least linear
depth when t is a constant greater than 2, or polynomial depth when t grows
polynomially with the number of qubits [4,12,44,41]. (Note, however, that for t =
2, quantum state 2-designs can be generated in logarithmic depth [16].) Moreover,
PRS states are sufficient for many applications where high-order t-designs are
used [52,36], provided that one only requires states to be computationally (not
statistically) indistinguishable from Haar-random.
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4 Cryptographic No-cloning Theorem and Quantum
Money

A fundamental fact in quantum information theory is that unknown or random
quantum states cannot be cloned [63,18,61,49,51]. The main topic of this section
is to investigate the cloning problem for pseudorandom states. As we will see,
even though pseudorandom states can be efficiently generated, they do share the
no-cloning property of generic quantum states.

Let H be the Hilbert space of dimension N and m < m′ be two integers. The
numbers N,m,m′ depend implicitly on a security parameter κ. We will assume
that N is exponential in κ and m ∈ poly(κ) in the following discussion.

We first recall the fact that for Haar random state |ψ〉 ∈ S(H), the success
probability of producing m′ copies of the state given m copies is negligibly small.
Let C be a cloning channel that on input (|ψ〉〈ψ|)⊗m tries to output a state that

is close to (|ψ〉〈ψ|)⊗m
′

for m′ > m. The expected success probability of C is
measured by ∫ 〈(

|ψ〉〈ψ|
)⊗m′

, C
((
|ψ〉〈ψ|

)⊗m)〉
dµ(ψ).

It is known that [61], for all cloning channel C, this success probability is bounded
by (

N +m− 1

m

)/(
N +m′ − 1

m′

)
,

which is negl(κ) for our choices of N,m,m′.
We establish a no-cloning theorem for PRS’s which says that no efficient

quantum cloning procedure exists for a general PRS. The theorem is called the
cryptographic no-cloning theorem because of its deep roots in pseudorandomness
in cryptography.

Theorem 2 (Cryptographic No-cloning Theorem). For any PRS family
{|φk〉}k∈K, m ∈ poly(κ), m < m′ and any polynomial-time quantum algorithm
C, the success cloning probability

E
k∈K

〈(
|φk〉〈φk |

)⊗m′
, C
((
|φk〉〈φk |

)⊗m)〉
= negl(κ).

Proof. Assume on the contrary that there is a polynomial-time quantum cloning
algorithm C such that the success cloning probability of producing m+ 1 from
m copies is κ−c for some constant c > 0. We will construct a polynomial-time
distinguisher D that violates the definition of PRS’s. Distinguisher D will draw
2m+ 1 copies of the state, call C on the first m copies, and perform the SWAP
test on the output of C and the remaining m + 1 copies. It is easy to see that
D outputs 1 with probability (1 + κ−c)/2 if the input is from PRS, while if the
input is Haar random, it outputs 1 with probability (1 + negl(κ))/2. Since C is
polynomial-time, it follows that D is also polynomial-time. This is a contradiction
with the definition of PRS’s and completes the proof.
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4.1 A Strong Notion of PRS and Equivalence to PRS

In this section, we show that, somewhat surprisingly, PRS in fact implies a
seemingly stronger notion, where indistinguishability needs to hold even if a
distinguisher additionally has access to an oracle that reflects about the given
state. There are at least a couple of motivations to consider an augmented notion.
Firstly, unlike a classical string, a quantum state is inherently hidden. Give a
quantum register prepared in some state (i.e., a physical system), we can only
choose some observable to measure which just reveals partial information and
will collapse the state in general. Therefore, it is meaningful to consider offering
a distinguishing algorithm more information describing the given state, and the
reflection oracle comes naturally. Secondly, this stronger notion is extremely
useful in our application of quantum money schemes, and could be interesting
elsewhere too.

More formally, for any state |φ〉 ∈ H, define an oracle Oφ := 1− 2|φ〉〈φ| that
reflects about |φ〉.

Definition 3 (Strongly Pseudorandom Quantum States). Let H be a
Hilbert space and K be the key space. H and K depend on the security pa-
rameter κ. A keyed family of quantum states

{
|φk〉 ∈ S(H)

}
k∈K is strongly

pseudorandom, if the following two conditions hold:

1. (Efficient generation). There is a polynomial-time quantum algorithm G
that generates state |φk〉 on input k. That is, for all k ∈ K, G(k) = |φk〉.

2. (Strong Pseudorandomness). Any polynomially many copies of |φk〉 with
the same random k ∈ K is computationally indistinguishable from the
same number of copies of a Haar random state. More precisely, for any
efficient quantum oracle algorithm A and any m ∈ poly(κ),∣∣∣∣ Pr

k←K

[
AOφk (|φk〉

⊗m) = 1
]
− Pr
|ψ〉←µ

[
AOψ (|ψ〉⊗m) = 1

]∣∣∣∣ = negl(κ),

where µ is the Haar measure on S(H).

Note that since the distinguisher A is polynomial-time, the number of queries
to the reflection oracle (Oφk or Oψ) is also polynomially bounded.

We prove the advantage that a reflection oracle may give to a distinguisher is
limited. In fact, standard PRS implies strong PRS, and hence they are equivalent.

Theorem 3. A family of states
{
|φk〉

}
k∈K is strongly pseudorandom if and only

if it is (standard) pseudorandom.

Proof. Clearly a strong PRS is also a standard PRS by definition. It suffice to
prove that any PRS is also strongly pseudorandom.

Suppose for contradiction that there is a distinguishing algorithm A that
breaks the strongly pseudorandom condition. Namely, there exists m ∈ poly(κ)
and constant c > 0 such that for sufficiently large κ,∣∣∣∣ Pr

k←K

[
AOφk (|φk〉

⊗m) = 1
]
− Pr
|ψ〉←µ

[
AOψ (|ψ〉⊗m) = 1

]∣∣∣∣ = ε(κ) ≥ κ−c.
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We assume A makes q ∈ poly(κ) queries to the reflection oracle. Then, by
Theorem 4, there is an algorithm B such that for any l∣∣∣∣ Pr

k←K

[
AOφk (|φk〉

⊗m)
]
− Pr
k←K

[
B(|φk〉

⊗(m+l))
]∣∣∣∣ ≤ 2q√

l + 1
,

and ∣∣∣∣ Pr
|ψ〉←µ

[
AOψ (|ψ〉⊗m)

]
− Pr
|ψ〉←µ

[
B(|ψ〉⊗(m+l))

]∣∣∣∣ ≤ 2q√
l + 1

.

By triangle inequality, we have∣∣∣∣ Pr
k←K

[
B(|φk〉

⊗(m+l))
]
− Pr
|ψ〉←µ

[
B(|ψ〉⊗(m+l))

]∣∣∣∣ ≥ κ−c − 4q√
l + 1

.

Choosing l = 64q2κ2c ∈ poly(κ), we have∣∣∣∣ Pr
k←K

[
B(|φk〉

⊗(m+l))
]
− Pr
|ψ〉←µ

[
B(|ψ〉⊗(m+l))

]∣∣∣∣ ≥ κ−c/2,
which is a contradiction with the definition of PRS for {|φk〉}. Therefore, we
conclude that PRS and strong PRS are equivalent.

We now show a technical ingredient that allows us to simulate the reflection
oracle about a state by using multiple copies of the given state. This result is
inspired by a similar theorem proved by Ambainis et al. [5, Lemma 42]. Our
simulation applies the reflection about the standard symmetric subspace, as
opposed to a reflection operation about a particular subspace in [5], on the
multiple copies of the given state, which we know how to implement efficiently.

Theorem 4. Let |ψ〉 ∈ H be a quantum state. Define oracle Oψ = 1− 2|ψ〉〈ψ|
to be the reflection about |ψ〉. Let |ξ〉 be a state not necessarily independent of

|ψ〉. Let AOψ be an oracle algorithm that makes q queries to Oψ. For any integer
l > 0, there is a quantum algorithm B that makes no queries to Oψ such that

TD
(
AOψ (|ξ〉),B(|ψ〉⊗l ⊗ |ξ〉)

)
≤ q

√
2√

l + 1
.

Moreover, the running time of B is polynomial in that of A and l.

Proof. Consider a quantum register T, initialized in the state |Θ〉T = |ψ〉⊗l ∈ H⊗l.
Let Π be the projection onto the symmetric subspace ∨l+1H ⊂ H⊗(l+1), and let
R = 1− 2Π be the reflection about the symmetric subspace.

Assume without loss of generality that algorithm A is unitary and only
performs measurements at the end. We define algorithm B to be the same as
A, except that when A queries Oψ on register D, B applies the reflection R on
the collection of quantum registers D and T. We first analyze the corresponding
states after the first oracle call to Oψ in algorithms A and B,

|ΨA〉 = Oψ
(
|φ〉D

)
⊗ |Θ〉T, |ΨB〉 = R

(
|φ〉D ⊗ |Θ〉T

)
.
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For any two states |x〉, |y〉 ∈ H, we have(
〈x| ⊗ 〈Θ|

)
R
(
|y〉 ⊗ |Θ〉

)
= 〈x|y〉 − 2 E

π∈Sl+1

(
〈x| ⊗ 〈Θ|

)
Wπ

(
|y〉 ⊗ |Θ〉

)
= 〈x|y〉 − 2

l + 1
〈x|y〉 − 2l

l + 1
〈x|ψ〉 〈ψ|y〉

=
l − 1

l + 1
〈x|y〉 − 2l

l + 1
〈x|ψ〉 〈ψ|y〉 ,

where the first step uses the identity in Eq. (6) and the second step follows by
observing that the probability of a random π ∈ Sl+1 mapping 1 to 1 is 1/(l + 1).
These calculations imply that,(

1⊗ 〈Θ|
)
R
(
1⊗ |Θ〉

)
=
l − 1

l + 1
1− 2l

l + 1
|ψ〉〈ψ|.

We can compute the inner product of the two states |ΨA〉 and |ΨB〉 as

〈ΨA|ΨB〉 = tr
((
|φ〉 ⊗ |Θ〉

) (
〈φ| ⊗ 〈Θ|

)
(Oψ ⊗ 1)R

)
= tr

(
|φ〉〈φ|Oψ

(
1⊗ 〈Θ|

)
R
(
1⊗ |Θ〉

))
= tr

(
|φ〉〈φ|

(
1− 2|ψ〉〈ψ|

)( l − 1

l + 1
1− 2l

l + 1
|ψ〉〈ψ|

))
=
l − 1

l + 1
+

2l

l + 1
|〈φ|ψ〉|2 − 2(l − 1)

l + 1
|〈φ|ψ〉|2

=
l − 1

l + 1
+

2

l + 1
|〈φ|ψ〉|2

≥ 1− 2

l + 1
.

This implies that

‖|ΨA〉 − |ΨB〉‖ ≤
2√
l + 1

.

Let |Ψ qA〉 and |Ψ qB〉 be the final states of algorithmA and B before measurement
respectively. Then by induction on the number of queries, we have

‖|Ψ qA〉 − |Ψ
q
B〉‖ ≤

2q√
l + 1

.

This concludes the proof by noticing that

TD
(
|Ψ qA〉, |Ψ

q
B〉
)
≤ ‖|Ψ qA〉 − |Ψ

q
B〉‖ .

Finally, we show that if A is polynomial-time, then so is B. Based on the con-
struction of B, it suffices to show that the reflection R is efficiently implementable
for any polynomially large l. Here we use a result by Barenco et al. [8] which

provides an efficient implementation for the projection Π onto ∨l+1H. More
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precisely, they design a quantum circuit of size O(poly(l, log dimH)) that imple-

ments a unitary U such that U |φ〉 =
∑
j |ξj 〉|j〉 on H⊗(l+1) ⊗H′ for an auxiliary

space H′ of dimension O(l!). Here |ξ0〉 = Π|φ〉 corresponds to the projection of
|φ〉 on the symmetric subspace. With U , we can implement the reflection R as
U∗SU where S is the unitary that introduces a minus sign conditioned on the
second register being 0.

S|Ψ 〉|j〉 =

{
−|Ψ 〉|j〉 if j = 0,

|Ψ 〉|j〉 otherwise.

4.2 Quantum Money from PRS

Using Theorem 3, we can improve Theorem 2 to the following version. The proof
is omitted as it is very similar to that for Theorem 2 and uses the complexity-
theoretic no-cloning theorem [1,2] for Haar random states.

Theorem 5 (Cryptographic no-cloning Theorem with Oracle). For any
PRS {|φk〉}k∈K, m ∈ poly(κ), m < m′ and any polynomial-time quantum query
algorithm C, the success cloning probability

E
k∈K

〈(
|φk〉〈φk |

)⊗m′
, COφk

((
|φk〉〈φk |

)⊗m)〉
= negl(κ).

A direct application of this no-cloning theorem is that it gives rise to new
constructions for private-key quantum money. As one of the earliest findings in
quantum information [62,9], quantum money schemes have received revived inter-
ests in the past decade (see e.g. [1,40,43,21,22,3]). First, we recall the definition
of quantum money scheme adapted from [2].

Definition 4 (Quantum Money Scheme). A private-key quantum money
scheme S consists of three algorithms:

– KeyGen, which takes as input the security parameter 1κ and randomly samples
a private key k.

– Bank, which takes as input the private key k and generates a quantum state
|$〉 called a banknote.

– Ver, which takes as input the private key k and an alleged banknote |¢〉, and
either accepts or rejects.

The money scheme S has completeness error ε if Ver (k, |$〉) accepts with
probability at least 1− ε for all valid banknote |$〉.

Let Count be the money counter that output the number of valid banknotes
when given a collection of (possibly entangled) alleged banknotes |¢1, ¢2, . . . , ¢r〉.
Namely, Count will call Ver on each banknotes and return the number of times
that Ver accepts. The money scheme S has soundness error δ if for any
polynomial-time counterfeiter C that maps q valid banknotes |$1〉, . . . , |$q〉 to r
alleged banknotes |¢1, . . . , ¢r〉 satisfies

Pr
[
Count

(
k,C(|$1〉, . . . , |$q〉)

)
> q
]
≤ δ.
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The scheme S is secure if it has completeness error ≤ 1/3 and negligible sound-
ness error.

For any PRS =
{
|φk〉

}
k∈K with key space K, we can define a private-key

quantum money scheme SPRS as follows:

– KeyGen(1κ) randomly outputs k ∈ K.
– Bank(k) generates the banknote |$〉 = |φk〉.
– Ver(k, ρ) applies the projective measurement that accepts ρ with probability
〈φk |ρ|φk〉.

We remark that usually the money state |$〉 takes the form |$〉 = |s, ψs〉 where
the first register contains a classical serial number. Our scheme, however, does
not require the use of the serial numbers. This simplification is brought to us by
the strong requirement that any polynomial copies of |φk〉 are indistinguishable
from Haar random states.

Theorem 6. The private-key quantum money scheme SPRS is secure for all
PRS.

Proof. It suffices to prove the soundness of SPRS is negligible. Assume to the
contrary that there is a counterfeiter C such that

Pr
[
Count

(
k,C(|φk〉

⊗q)
)
> q
]
≥ κ−c

for some constant c > 0 and sufficiently large κ. From the counterfeiter C, we
will construct an oracle algorithm AOφk that maps q copies of |φk〉 to q+ 1 copies
with noticeable probability and this leads to a contradiction with Theorem 5.

The oracle algorithm A first runs C and implement the measurement{
M0 = 1− |φk〉〈φk |,M

1 = |φk〉〈φk |
}

on each copy of the money state C outputs. This measurement can be implemented
by attaching an auxiliary qubit initialized in (|0〉+ |1〉)/

√
2 and call the reflection

oracle Oφ conditioned on the qubit being at 1 and performs the X measurement
on this auxiliary qubit. This gives r-bit of outcome x ∈ {0, 1}r. If x has Hamming
weight at least q+ 1, algorithm A outputs any q+ 1 registers that corresponds to

outcome 1; otherwise, it outputs |0〉⊗(q+1). By the construction of A, it succeeds
in cloning q + 1 money states from q copies with probability at least κ−c.

Our security proof of the quantum money scheme is arguably simpler than
that in [2]. In [2], to prove their hidden subspace money scheme is secure, one
needs to develop the so called inner-product adversary method to show the
worst-case query complexity for the hidden subspace states and use a random self-
reducible argument to establish the average-case query complexity. In our case, it
follows almost directly from the cryptographic no-cloning theorem with oracles.
The quantum money schemes derived from PRS’s enjoy many nice features of
the hidden subspace scheme. Most importantly, they are also query-secure [2],
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meaning that the bank can simply return the money state back to the user after
verification.

It is also interesting to point out that quantum money states are not necessarily
pseudorandom states. The hidden subspace state [2], for example, do not satisfy
our definition of PRS as one can measure polynomially many copies of the state
in the computational basis and recover a basis for the hidden subspace with high
probability.

5 Entanglement of Pseudorandom Quantum States

In this section, we study the entanglement property of pseudorandom quan-
tum states. Our result shows that any PRS consists of states that have high
entanglement on average.

The entanglement property of a bipartite pure quantum state is well under-
stood and is completely determined by the Schmidt coefficients of a bipartite
state (see e.g. [32]). Any state |ψ〉 ∈ HA⊗HB on system A and B can be written
as ∣∣ψ〉 =

R∑
j=1

√
λj
∣∣ψjA〉⊗ ∣∣ψjB〉,

where λj > 0 for all 1 ≤ j ≤ R and the states |ψjA〉 (and |ψjB〉) form a set of
orthonormal states on A (and B respectively). Here, the positive real numbers
λj ’s are the Schmidt coefficients and R is the Schmidt rank of state |ψ〉. Let
ρA be the reduced density matrix of |ψ〉 on system A, then λj is the nonzero
eigenvalues of ρA. Entanglement can be measured by the Schmidt rank R or
entropy-like quantities derived from the Schmidt coefficients. We consider the
quantum α-Rényi entropy of ρA

Sα(ρA) :=
1

1− α
log

( R∑
j=1

λαj

)
.

When α→ 1, Sα coincides with the von Neumann entropy of ρA

S(ρA) = −
R∑
j=1

λj log λj .

When α→∞, Sα coincides with the quantum min entropy of ρA

Smin(ρA) = − log ‖ρA‖ = − log λmax,

where λmax is the largest eigenvalue of ρA. For α = 2, the entropy S2 is the
quantum analogue of the collision entropy.

For Haar random state |ψ〉 ∼ µ(HA ⊗HB) where the dimensions of HA and
HB are dA and dB respectively, the Page conjecture [50] proved in [23,55,56]
states that for dA ≤ dB , the average entanglement entropy is explicitly given as

ES(ρA) =
1

ln 2

 dAdB∑
j=dB+1

1

j

− dB − 1

2dA

 > log dA −O(1).
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That is, the Haar random states are highly entangled on average and, in fact,
a typical Haar random state is almost maximumly entangled. A more detailed
discussion on this phenomena is give in [29,35]. The following theorem and its
corollary tell us that pseudorandom states are also entangled on average though
the quantitative bound is much weaker.

Theorem 7. Let {|φk〉}k∈K be a family of PRS with security parameter κ. Con-
sider partitions of the state |φk〉 into systems A and B consisting of nA and nB
qubits each where both nA and nB are polynomial in the security parameter. Let
ρk be the reduced density matrix on system A. Then,

E
k

tr(ρ2k) = negl(κ).

Proof. Assume to the contrary that

E
k

tr(ρ2k) ≥ κ−c

for some constant c > 0 and sufficiently large κ. We will construct a distinguisher
A that tells the family of state {|φk〉} apart from the Haar random states.

Consider the SWAP test performed on the system A of two copies of |φk〉.
The test accepts with probability

1 + tr(ρ2k)

2
.

Let distinguisher A be the above SWAP test, we have∣∣∣∣ Pr
k←K

[
A(|φk〉

⊗2) = 1
]
− Pr
|ψ〉←µ

[
A(|ψ〉⊗2) = 1

]∣∣∣∣
=

1

2

∣∣∣∣E
k

tr(ρ2k)− E
µ

tr(ρ2ψ)

∣∣∣∣ ≥ κ−c/4,
for sufficiently large κ. The last step follows by a formula of Lubkin [37]

E
|ψ〉←µ

tr(ρ2ψ) =
dA + dB
dAdB + 1

=
2nA + 2nB

2nA+nB + 1
= negl(κ).

Corollary 1. Let {|φk〉}k∈K be a family of PRS with security parameter κ.
Consider partitions of the state |φk〉 into systems A and B consisting of nA and
nB qubits each where both nA and nB are polynomial in the security parameter.
We have

1. Let Rk be the Schmidt rank of state |φk〉 under the A, B partition, then

Ek Rk ≥ κ
c for all constant c > 0 and sufficiently large κ.

2. Ek Smin(ρk) = ω(log κ) and Ek S(ρk) = ω(log κ).
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Proof. The first item follows from the fact that

tr(ρ2k) ≥ 1

Rk
.

where Rk is the Schmidt rank of state |φk〉. The second item for the min entropy
follows by Jensen’s inequality and

tr(ρ2k) ≥ λ2max.

Finally, the bound on the expected entanglement entropy follows by the fact that
min entropy is the smallest α-Rényi entropy for all α > 0.

6 Pseudorandom Unitary Operators (PRUs)

6.1 Definitions

Our notion of pseudorandom states readily extends to distributions over unitary
operators. Let H be a Hilbert space and let K a key space, both of which depend
on a security parameter κ. Let µ be the Haar measure on the unitary group
U(H).

Definition 5. A family of unitary operators {Uk ∈ U(H)}k∈K is pseudoran-
dom, if two conditions hold:

1. (Efficient computation) There is an efficient quantum algorithm Q, such
that for all k and any |ψ〉 ∈ S(H), Q(k, |ψ〉) = Uk|ψ〉.

2. (Pseudorandomness) Uk with a random key k is computationally in-
distinguishable from a Haar random unitary operator. More precisely, for
any efficient quantum algorithm A that makes at most polynomially many
queries to the oracle,∣∣∣∣ Pr

k←K

[
AUk(1κ) = 1

]
− Pr
U←µ

[
AU (1κ) = 1

]∣∣∣∣ = negl(κ).

The extensive literature on approximation of Haar randomness on unitary
groups concerns with unitary designs [19,12], which are statistical approximations
to the Haar random distribution up to a fixed t-th moment. Our notion of
pseudorandom unitary operators in terms of computational indistinguishability,
in addition to independent interest, supplements and could substitute for unitary
designs in various applications.

6.2 Candidate constructions

Clearly, given a pseudorandom unitary family {Uk}, it immediately gives pseu-
dorandom states as well (e.g., {Uk|0〉}). On the other hand, our techniques for
constructing pseudorandom states can be extended to give candidate construc-
tions for pseudorandom unitary operators (PRUs) in the following way. Let
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H = (C2)⊗n. Assume we have a pseudorandom function PRF : K × X → X ,
with domain X = {0, 1, 2, . . . , N − 1} and N = 2n. Using the phase kick-back
technique, we can implement the unitary transformation Tk ∈ U(H) that maps

Tk : |x〉 7→ ω
PRFk(x)
N |x〉, ωN = exp(2πi/N). (9)

Our pseudorandom states were given by |φk〉 = TkH
⊗n|0〉, where H⊗n denotes

the n-qubit Hadamard transform. We conjecture that by repeating the operation
TkH

⊗n a constant number of times (with different keys k), we get a PRU. This
is resembles the construction of unitary t-designs in [45,44].

Alternatively, one can give a candidate construction for PRUs based on pseu-
dorandom permutations (PRPs) as follows. First, let PRPk be a pseudorandom
permutation (with key k ∈ K) acting on {0, 1}n, and suppose we have efficient
quantum circuits that compute the permutation Pk : |x〉|y〉 7→ |x〉|y ⊕ PRPk(x)〉
as well as its inverse Rk : |x〉|y〉 7→ |x〉|y ⊕ PRP−1k (x)〉 (where ⊕ denotes the bit-
wise xor operation). Then we can compute the permutation in-place by applying
the following sequence of operations:

|x〉|0〉 Pk−−→ |x〉|PRPk(x)〉
SWAP−−−−−→ |PRPk(x)〉|x〉
Rk−−→ |PRPk(x)〉|0〉.

(10)

For simplicity, let us denote this operation by Sk : |x〉 7→ |PRPk(x)〉 (ignoring
the second register, which stays in the state |0〉). Now we can consider repeating
the operation SkH

⊗n several times (with different keys k), as a candidate for a
PRU. Note that this resembles the construction of unitary t-designs in [27].

It is an interesting challenge to prove that these constructions actually yield
PRUs. For the special case of non-adaptive adversaries, one could try to use the
proof techniques of [27,45,44] for unitary t-designs. For the general case, where
the adversary can make adaptive queries to the pseudorandom unitary, new
proof techniques seem to be needed. Finally, we can consider combining all of
these ingredients (the pseudorandom operations Sk and Tk, and the Hadamard
transform) to try to obtain more efficient constructions of PRUs.
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