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Abstract

We present a key recovery attack against Y. Wang’s Random Linear Code Encryption
(RLCE) scheme recently submitted to the NIST call for post-quantum cryptography. This
attack recovers the secret key for all the short key parameters proposed by the author.
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Introduction

The McEliece encryption scheme dates back to the late 70’s [14] and lies among the possible
post-quantum alternatives to number theory based schemes using integer factorisation or
discrete logarithm. However, the main drawback of McEliece’s original scheme is the large size
of its keys. Indeed, the classic instantiation of McEliece using binary Goppa codes requires
public keys of several hundreds of kilobytes to assert a security of 128 bits. For example, the
recent NIST submission Classic McEliece [4] proposes public keys of 1.1 to 1.3 megabytes to
assert 256 bits security (with a classical computer).

For this reason, there is a recurrent temptation consisting in using codes with a higher
decoding capacity for encryption in order to reduce the size of the public key. Many proposals
in the last decades involve generalised Reed Solomon (GRS) codes, which are well–known to
have a large minimum distance together with efficient decoding algorithms correcting up to
half the minimum distance. On the other hand, the raw use of GRS codes has been proved
to be insecure by Sidelnikov and Shestakov [15]. Subsequently, some variations have been
proposed as a counter-measure of Sidelnikov and Shestakov’s attack. Berger and Loidreau [3]
suggested to replace a GRS code by a random subcode of small codimension, Wieschebrink
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[18] proposed to join random columns in a generator matrix of a GRS code and Baldi et al.
[1] suggested to mask the structure of the code by right multiplying a generator matrix of a
GRS code by the sum of a low rank matrix and a sparse matrix. It turns out that all of these
proposals have been subject to efficient polynomial time attacks [19, 8, 11].

A more recent proposal by Yongge Wang [16] suggests another way of hiding the structure
of GRS codes. The outline of Wang’s construction is the following: start from a k×n generator
matrix of a GRS code of length n and dimension k over a field Fq, add w additional random
columns to the matrix, and mix the columns in a particular manner. The design of this scheme
is detailed in § 2.1. This approach entails a significant expansion of the public key size but
may resist above-mentioned attacks such as distinguisher and filtration attacks [8, 10]. This
public key encryption primitive is the core of Wang’s recent NIST submission “RLCE–KEM”
[17].

Our contribution In the present article we give a polynomial time key recovery attack
against RLCE which breaks the system when the number of additional random columns w is
strictly less than n− k. This allows us to break half the parameter sets proposed in [17].

1 Notation and prerequisites

1.1 Generalised Reed–Solomon codes

Notation 1. Let q be a power of prime and k a positive integer. We denote by Fq[X]<k the
vector space of polynomials over Fq whose degree is strictly bounded from above by k.

Definition 2 (Generalised Reed Solomon codes). Let x ∈ Fnq be a vector whose entries are
pairwise distinct and y ∈ Fnq be a vector whose entries are all nonzero. The generalised
Reed–Solomon (GRS) code with support x and multiplier y of dimension k is defined as

GRSk(x,y)
def
= {(y1f(x1), . . . , ynf(xn)) | f ∈ Fq[x]<k} .

1.2 Schur product of codes and square codes distinguisher

Notation 3. The component-wise product of two vectors a and b in Fnq is denoted by

a ? b
def
= (a1b1, . . . , anbn).

This definition extends to the product of codes where the Schur product of two codes A and
B ⊆ Fnq is defined as

A ?B
def
= SpanFq {a ? b | a ∈ A , b ∈ B} .

In particular, A ?2 denotes the square code of a code A : A ?2 def
= A ?A .

We recall the following result on the generic behaviour of random codes with respect to
this operation.

Proposition 4. ([6, Theorem 2.3], informal) For a linear code R chosen at random over Fq
of dimension k and length n, the dimension of R?2 is typically min(n,

(
k+1
2

)
).
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This provides a distinguisher between random codes and algebraically structured codes
such as generalised Reed Solomon codes [19, 8], Reed Muller codes [7], polar codes [2] some
Goppa codes [12, 10] or algebraic geometry codes [9]. For instance, in the case of GRS codes,
we have the following result.

Proposition 5. Let n, k,x,y be as in Definition 2. Then,

(GRSk(x,y))
?2 = GRS2k−1(x,y ? y).

In particular, if k < n/2, then

dim (GRSk(x,y))
?2 = 2k − 1.

Thus, compared to random codes whose square have dimension quadratic in the dimension
of the code, the square of a GRS code has a dimension which is linear in that of the original
code. This criterion allows to distinguish GRS codes of appropriate dimension from random
codes.

1.3 Punctured and shortened codes

The notions of puncturing and shortening are classical ways to build new codes from existing
ones. These constructions will be useful for the attack. We recall here their definition. Here,
for a codeword c ∈ Fnq , we denote (c1, . . . , cn) its entries.

Definition 6 (punctured code). Let C ⊆ Fnq and L ⊆ J1, nK. The puncturing of C at L is
defined as the code

PL (C )
def
= {(ci)i∈J1,nK\L s.t. c ∈ C }.

A punctured code can be viewed as the restriction of the codewords to a subset of code
positions. It will be sometimes more convenient to view a punctured code in this way. For
this reason, we introduce the following definition.

Definition 7 (restricted code). Let C ⊆ Fnq and L ⊆ J1, nK. The restriction of C to L is
defined as the code

RL (C )
def
= {(ci)i∈L s.t. c ∈ C } = PJ1,nK\L (C ) .

Definition 8 (shortened code). Let C ⊆ Fnq and L ⊆ J1, nK. The shortening of C at L is
defined as the code

SL (C )
def
= PL ({c ∈ C s.t. ∀i ∈ L, ci = 0}) .

Shortening a code is equivalent to puncturing the dual code, as explained by the following
proposition.

Proposition 9 ([13, Theorem 1.5.7]). Let C be a linear code over Fnq and L ⊆ J1, nK. Then,

SL
(
C⊥
)
= (PL (C ))⊥ and (SL (C ))⊥ = PL

(
C⊥
)
,

where A ⊥ denotes the dual of the code A .

Notation 10. Throughout the document, the indices of the columns (or positions of the
codewords) will always refer to the indices in the original code, although the code has been
punctured or shortened. For instance, consider a code C of length 5 where every word c ∈ C
is indexed c = (c1, c2, c3, c4, c5). If we puncture C in {1, 3}, a codeword c′ ∈ P{1,3} (C ) will
be indexed (c′2, c

′
4, c
′
5) and not (c′1, c′2, c′3).
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2 The RLCE scheme

2.1 Presentation of the scheme

The RLCE encryption scheme is a code-based cryptosystem, inspired by the McEliece scheme.
It has been introduced by Y. Wang in [16] and a proposal called “RLCE-KEM” has recently
been submitted as a response for the NIST’s call for post-quantum cryptosystems [17].

For a message m ∈ Fkq , the cipher text is c = mG+ e where e ∈ Fn+wq is a random error
vector of small weight t and G ∈ Fk×(n+w)q is a generator matrix defined as follows, for given
parameters n, k and w.

1. Let x,y ∈ Fnq be respectively a support and a multiplier (as in Definition 2).

2. LetG0 denote a k×n generator matrix of the generalised Reed–Solomon codeGRSk(x,y)
of length n and dimension k. Denote by g1, . . . , gn the columns of G0.

3. Let r1, . . . , rw be column vectors chosen uniformly at random in Fkq . Denote by G1 the
matrix obtained by inserting the random columns between GRS columns at the end of
G0 as follows:

G1
def
= [g1, . . . , gn−w, gn−w+1, r1, . . . , gn, rw] ∈ Fk×(n+w)q .

4. Let A1, . . . ,Aw be 2 × 2 matrices chosen uniformly at random in GL2(Fq). Let A be
the block–diagonal non singular matrix

A
def
=


In−w (0)

A1

. . .
(0) Aw

 ∈ F(n+w)×(n+w)
q .

5. Let π ∈ Sn+w be a randomly chosen permutation of J1, n+wK and P the corresponding
(n+ w)× (n+ w) permutation matrix.

6. The public key is the matrix G
def
= G1AP and the private key is (x,y,A,P ).

Note: This is a slightly simplified version of the scheme proposed in [17] without the matrices
P 1 and S of the original description. They are actually not needed and the security of our
simplified scheme is equivalent to the security of the scheme presented in [17].

2.2 Suggested sets of parameters

In [17] the author proposes 2 groups of 3 sets of parameters. The first group (referred to as
odd ID parameters) corresponds to parameters such that w ∈ [0.6(n−k), 0.7(n−k)], whereas
in the second group (even ID parameters) the parameters satisfy w = n− k. The parameters
of these two groups are listed in Tables 1 and 2.

The attack of the present paper recovers in polynomial time any secret key when param-
eters lie in the first group.
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Table 1: Set of parameters for the first group : w ∈ [0.6(n− k), 0.7(n− k)].

Security level (bits) Name in [17] n k t w q Public key size (kB)
128 ID 1 532 376 78 96 210 118
192 ID 3 846 618 114 144 210 287
256 ID 5 1160 700 230 311 211 742

Table 2: Set of parameters for the second group : w = n− k.

Security level (bits) Name in [17] n k t w q Public key size (kB)
128 ID 0 630 470 80 160 210 188
192 ID 2 1000 764 118 236 210 450
256 ID 4 1360 800 280 560 211 1232

3 Distinguishing by shortening and squaring

We will show here that it is possible to distinguish some public keys from random codes by
computing the square of some shortening of the public code. More precisely, here is our main
result.

Theorem 11. Let C be a code over Fq of length n+w and dimension k with generator matrix
G which is the public key of an RLCE scheme that is based on a GRS code of length n and
dimension k. Let L ⊂ J1, n+ wK. Then,

dim (SL (C ))?2 6 min(n+ w − |L|, 2(k + w − |L|)− 1).

3.1 Restriction to the case where P is the identity

To prove Theorem 11 we can assume that P is the identity matrix. This is because of the
following lemma.

Lemma 12. For any permutation σ of the code positions J1, n+ wK we have

dim (SL (C ))?2 = dim (SLσ (C σ))?2 ,

where C σ is the set of codewords in C permuted by σ, that is C σ = {cσ : c ∈ C } where
cσ

def
= (cσ(i))i∈J1,n+wK and Lσ def

= {σ(i) : i ∈ L}.

Therefore, for the analysis of the distinguisher, we can make the following assumption.

Assumption 13. The permutation matrix P is the identity matrix.

We will use this assumption several times the rest of the section, especially to simplify the
notation and define the terminology. The general case will follow by using Lemma 12.

3.2 Analysis of the different kinds of columns

3.2.1 Notation and terminology

Before proving the result, let us introduce some notation and terminology. The set of positions
J1, n+ wK splits in a natural way into four sets, whose definitions are given in the sequel

J1, n+ wK = I1GRS ∪ I2GRS ∪ IR ∪ IPR. (1)
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Definition 14. The set of GRS positions of the first type, denoted I1GRS, corresponds to GRS
columns which have not been associated to a random column. This set has cardinality n−w
and is given by

I1GRS
def
= {i ∈ J1, n+ wK |π−1(i) 6 n− w}. (2)

Under Assumption 13, this becomes:

I1GRS
def
= J1, n− wK.

This set is called this way, because at a position i ∈ I1GRS, any codeword v ∈ C has an
entry of the form

vi = yif(xi). (3)

However, there might be other code positions that are of this form, as we will see later.

Definition 15. The set of twin positions, denoted IT, corresponds to columns that result in
a mix of a random column and a GRS one. This set has cardinality 2w and is equal to:

IT
def
= {i ∈ J1, n+ wK |π−1(i) > n− w}.

Under Assumption 13, this becomes:

IT
def
= Jn− w + 1, n+ wK.

The set IT can be divided in several subsets as follows.

Definition 16. Each position in IT has a unique corresponding twin position which is the
position of the column with which it was mixed. For all s ∈ J1, wK, π(n − w + 2s − 1) and
π(n − w + 2s) are twin positions. Under Assumption 13, the positions n − w + 2s − 1 and
n− w + 2s are twins for all s in J1, wK.

For convenience, we introduce the following notation.

Notation 17. The twin of a position i ∈ IT is denoted by τ(i).

To any twin pair {i, τ(i)} = {π(n − w + 2s − 1), π(n − w + 2s)} with s ∈ {1, . . . , w} is
associated a unique linear form ψs : Fq[x]<k → Fq and a non-singular matrix As such that for
any codeword v ∈ C , we have

vi = asyjf(xj) + csψs(f)
vτ(i) = bsyjf(xj) + dsψs(f),

(4)

where j = n− w + s and (
as bs
cs ds

)
= As. (5)

The linear form ψs is the form whose evaluations provides the random column added on
the right of the (n−w+s)–th column during the construction process of G (see § 2.1, Step 3).
From (4), we see that we may obtain more GRS positions: indeed vi = asyjf(xj) if cs = 0
or vτ(i) = bsyjf(xj) if ds = 0. On the other hand if csds 6= 0 the twin pairs are correlated in
the sense that they behave in a non-trivial way after shortening: Lemma 24 shows that if one
shortens the code in such a position its twin becomes a GRS position. We therefore call such
a twin pair a pseudo-random twin pair and the set of pseudo-random twin pairs forms what
we call the set of pseudo-random positions.

6



Definition 18. The set of pseudo-random positions (PR in short), denoted IPR, is given by

IPR
def
=

⋃
s∈J1,wK s.t. csds 6=0

{π(n− w + 2s− 1), π(n− w + 2s)}. (6)

Under Assumption 13, this becomes:

IPR =
⋃

s∈J1,wK s.t. csds 6=0

{n− w + 2s− 1, n− w + 2s}. (7)

If csds = 0, then a twin pair splits into a GRS position of the second kind and a random
position. The GRS position of the second kind is π(n−w+2s− 1) if cs = 0 or π(n−w+2s)
if ds = 0 (cs and ds can not both be equal to 0 since As is invertible).

Definition 19. The set GRS positions of the second kind, denoted I2GRS, is defined as

I2GRS
def
= {π(n− w + 2s− 1) | cs = 0} ∪ {π(n− w + 2s) | ds = 0}. (8)

Under Assumption 13, this becomes:

I2GRS = {n− w + 2s− 1 | cs = 0} ∪ {n− w + 2s | ds = 0}. (9)

Definition 20. The set of random positions, denoted IR, is defined as

IR
def
= {π(n− w + 2s− 1) | ds = 0} ∪ {π(n− w + 2s) | cs = 0}. (10)

Under Assumption 13, this becomes:

IR = {n− w + 2s− 1 | ds = 0} ∪ {n− w + 2s | cs = 0}. (11)

We also define the GRS positions to be the GRS positions of the first or the second kind.

Definition 21. The set of GRS positions, denoted IGRS, is defined as

IGRS
def
= I1GRS ∪ I2GRS. (12)

Remark 22. Note that in the typical case I2GRS and IR are empty sets. Indeed, such positions
exist only if one of the entries (either cs or ds) of a random non-singular matrix As is equal
to zero.

We finish this subsection with a lemma.

Lemma 23. |I2GRS| = |IR| and |IPR| = 2(w − |IR|).

Proof. Using (7), (9) and (11) we see that, under Assumption 13,

Jn− w + 1, n+ wK = IPR ∪ I2GRS ∪ IR (13)

and the above union is disjoint. Next, there is a one-to-one correspondence relating I2GRS and
IR. Indeed, still under Assumption 13, if cs = 0 for some s ∈ J1, wK, then n−w+2s−1 ∈ I2GRS

and n−w+2s ∈ IR and conversely if ds = 0. This proves that |I2GRS| = |IR|, which, together
with (13) yields the result.
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3.3 Intermediate results

Before proceeding to the proof of Theorem 11, let us state and prove some intermediate
results. We will start by Lemmas 24 and 26, that will be useful to prove Proposition 27 on
the structure of shortened RLCE codes, by induction on the number of shortened positions.
This proposition will be the key of the final theorem. Then, we will prove a general result on
modified GRS codes with additional random columns.

3.3.1 Two useful lemmas

The first lemma explains that, after shortening a PR position, its twin will behave like a GRS
position. This is actually a crucial lemma that explains why PR columns in G do not really
behave like random columns after shortening the code at the corresponding position.

Lemma 24. Let i be a PR position and L a set of positions that neither contains i nor τ(i).
Let C ′

def
= SL (C ). The position τ(i) behaves like a GRS position in the code S{i} (C ′). That

is, the τ(i)–th column of a generator matrix of S{i} (C ′) has entries of the form

ỹjf(xj)

for some j in Jn− w + 1, nK and ỹj in Fq.

Proof. Let us assume that i = n−w+2s−1 for some s ∈ {1, . . . , w}. The case i = n−w+2s
can be proved in a similar way. At position i, for any c ∈ C ′, from (4), we have

ci = ayjf(xj) + cψs(f),

where j = n− w + s. By shortening, we restrict our space of polynomials to the subspace of
polynomials in Fq[x]<k satisfying ci = 0, i.e. Since i is a PR position, c 6= 0 and therefore

ψs(f) = −c−1ayjf(xj).

Therefore, at the twin position τ(i) = n− w + 2s and for any c ∈ S{i} (C ′), we have

cτ(i) = byjf(xj) + dψj(f)

= yj(b− dac−1)f(xj).

Remark 25. This lemma does not hold for a random position, since the proof requires that
c 6= 0. It is precisely because of this that we have to make a distinction between twin pairs,
i.e. pairs for which the associated matrix As is such that csds 6= 0 and pairs for which it is
not the case.

This lemma allows us to get some insight on the structure of the shortened code SL (C ).
Before giving the relevant statement let us first recall the following result.

Lemma 26. Consider a linear code A over Fq whose restriction to a subset L is a subcode
of a GRS code over Fq of dimension kGRS. Let i be an element of L. Then the restriction of
S{i} (A ) to L \ {i} is a subcode of a GRS code of dimension kGRS − 1.
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Proof. By definition the restriction A ′ to L is a code of the form

A ′
def
=
{
(yjf(xj))j∈L : f ∈ L

}
,

where the yj ’s are nonzero elements of Fq, the xj ’s are distinct elements of Fq and L is a
subspace of Fq[X]<kGRS

. Clearly the restriction A ′′ of S{i} (A ) to L \ {i} can be written as

A ′′ =
{
(yjf(xj))j∈L\{i} : f ∈ L, f(xi) = 0

}
.

The polynomials f(X) in L such that f(xi) = 0 can be written as f(X) = (X − xi)g(X)
where deg g = deg f − 1 and g ranges in this case over a subspace L′ of polynomials of degree
< kGRS − 1. We can therefore write

A ′′ =
{
(yj(xj − xi)g(xj))j∈L\{i} : g ∈ L

′
}
.

This implies our lemma.

3.3.2 The key proposition

Using Lemmas 24 and 26, we can prove the following result by induction. This result is the
key proposition for proving Theorem 11.

Proposition 27. Let L be a subset of J1, n+wK and let L0,L1,L2 be subsets of L defined as

• L0 the set of GRS positions (see (2), (8) and (12) for a definition) of L, i.e.

L0
def
= L ∩ IGRS;

• L1 the set of PR positions (see (6)) of L that do not have their twin in L, i.e.

L1
def
= {i ∈ L ∩ IPR | τ(i) 6∈ L};

• L2 the set of PR positions of L whose twin position is also included in L, i.e.

L2
def
= {i ∈ L ∩ IPR | τ(i) ∈ L}.

Let C ′ be the restriction of SL (C ) to (IGRS \L0)∪ τ(L1). Then, C ′ is a subcode of a GRS
code of length |IGRS| − |L0|+ |L1| and dimension k − |L0| − |L2|2 ·

Proof. Let us prove by induction on ` = |L| that C ′ is a subcode of a GRS code of length
|IGRS| − |L0|+ |L1| and dimension k − |L0| − |L2|2 ·

This statement is clearly true if ` = 0, i.e. if L is the empty set. Assume that the result
is true for all L up to some size ` > 0. Consider now a set L of size ` + 1. We can write
L = L′ ∪ {i} where L′ is of size `.

Let L0,L1,L2 be subsets of L as defined in the statement and L′0,L′1,L′2 be the subsets of
L′ obtained by replacing in the statement L by L′. There are now several cases to consider
for i.
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Case 1: i ∈ L0. In this case, L0 = L′0 ∪ {i}, L1 = L′1 and L2 = L′2. We can apply Lemma 26
with A = SL′ (C ) because by the induction hypothesis, its restriction to

L′′ def
= (IGRS \ L′0) ∪ τ(L′1)

is a subcode of a GRS code of length |IGRS| − |L′0|+ |L′1| and dimension k− |L′0| −
|L′2|
2 ·

Therefore the restriction of the shortened code SL (C ) = S{i} (A ) to L′′ \ {i} = (IGRS \
L0) ∪ τ(L1) is a subcode of a GRS code of length |IGRS| − |L0| + |L1| and dimension
k − |L′0| −

|L′2|
2 − 1 = k − |L0| − |L2|2 ·

Case 2: i ∈ L1. In this case, L0 = L′0,L1 = L′1 ∪{i} and L2 = L′2. This implies that L′ does not
contain i nor τ(i). We can therefore apply Lemma 24 with C ′ = SL′ (C ). Lemma 24
states that the position τ(i) behaves like a GRS position in S{i} (C ′) = SL (C ). By
induction hypothesis, the restriction of the code C ′ to (IGRS \ L′0) ∪ τ(L′1) is a subcode
of a GRS code of length |IGRS|−|L′0|+|L′1| and dimension k−|L′0|−

|L′2|
2 = k−|L0|− |L2|2 ·

Therefore the restriction of S{i} (C ′) = SL (C ) to (IGRS \ L0) ∪ τ(L1) = (IGRS \ L′0) ∪
τ(L′1) ∪ {τ(i)} is a subcode of a GRS code of dimension k − |L0| − |L2|2 and length
|IGRS| − |L′0|+ |L′1|+ 1 = |IGRS| − |L0|+ |L1|.

Case 3: i ∈ L2. In this case, L0 = L′0,L1 = L′1 \ {τ(i)} and L2 = L′2 ∪ {i, τ(i)}. In fact,
this case can only happen if ` > 1 and we will rather consider the induction with
respect to the set L′′ = L \ {i, τ(i)} of size ` − 1 and the sets L′′0,L′′1,L′′2 such that
L′′0 = L0,L′′1 = L1,L′′2 = L2 \ {i, τ(i)}.

By induction hypothesis on L′′, the restriction of C ′′
def
= SL′′ (C ) to (IGRS \ L′′0)∪ τ(L′′1)

is a subcode of a GRS code of length |IGRS| − |L′′0| + |L′′1| = |IGRS| − |L0| + |L1| and
dimension k − |L′′0| −

|L′′2 |
2 = k − |L0| − |L2|2 + 1.

Following Assumption 13, we can write without loss of generality that i = n−w+2s−1
for some s ∈ {1, . . . , w}. The case i = n−w+2s can be proved in a similar way. Denote

As =

(
a b
c d

)
the non-singular matrix and j = n− w + s.

For any c ∈ C ′, at positions i and τ(i) we have

ci = ayjf(xj) + cψs(f),

cτ(i) = byjf(xj) + dψs(f).

Shortening C ′′ at {i, τ(i)} has the effect of requiring to consider only the polynomials
f for which f(xj) = ψs(f) = 0. Therefore the restriction of S{i,τ(i)} (C ′′) = SL (C )
at (IGRS \ L′′0) ∪ τ(L′′1) is a subcode of a GRS code of length |IGRS| − |L0| + |L1| and
dimension k − |L0| − |L2|2 + 1− 1 = k − |L0| − |L2|2 ·

Case 4: i ∈ IR. In this case L0 = L′0,L1 = L′1 and L2 = L′2. Using the induction hypothesis
yields directly that A = SL′ (C ) is a subcode of a GRS code of length |IGRS| − |L′0| +
|L′1| = |IGRS| − |L0|+ |L1| and dimension k − |L′0| −

|L′2|
2 = k − |L0| − |L2|2 · This is also

clearly the case for SL (C ) = S{i} (A ).

This proves that the induction hypothesis also holds for |L| = `+ 1 and finishes the proof of
the proposition.
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3.3.3 A general result on modified GRS codes

Finally, we need a very general result concerning modified GRS codes where some arbitrary
columns have been joined to the generator matrix. A very similar lemma is already proved
in [8, Lemma 9]. Its proof is repeated below for convenience and in order to provide further
details about the equality case.

Lemma 28. Consider a linear code A over Fq with generator matrix G =
(
GSCGRS Grand

)
P

of size k × (n + r) where GSCGRS is a k × n generator matrix of a subcode of a GRS code
of dimension kGRS over Fq, Grand is an arbitrary matrix in Fk×rq and P is the permutation
matrix of an arbitrary permutation σ ∈ Sn+r. We have

dimA ?2 6 2kGRS − 1 + r.

Moreover, if the equality holds, then for every i ∈ Jn+ 1, n+ wK we have:

dimP{σ(i)}
(
A ?2

)
= dimA ?2 − 1.

Proof. Without loss of generality, we may assume that P is the identity matrix since the
dimension of the square code is invariant by permuting the code positions, as seen in Lemma
12. Let B be the code with generator matrix

(
GSCGRS 0k×r

)
where 0k×r is the zero matrix

of size k × r. We also define the code B′ generated by the generator matrix
(
0k×n Grand

)
.

We obviously have
A ⊆ B + B′.

Therefore

(A )?2 ⊆
(
B + B′

)?2
⊆ B?2 +

(
B′
)?2

+ B ?B′

⊆ B?2 +
(
B′
)?2

,

where the last inclusion comes from the fact that B ?B′ is the zero subspace since B and B′

have disjoint supports. The code B?2 has dimension 6 2kGRS − 1 whereas dim (B′)?2 6 r.
Next, if dimA ?2 = 2kGRS − 1 + r, then

A ?2 = B?2 ⊕ (B′)?2 and dim(B′)?2 = r.

Since B′ has length r, this means that (B′)?2 = Frq and hence, any word of weight 1 supported
by the r rightmost positions is contained in A ?2. Therefore, puncturing this position will
decrease the dimension.

3.4 Proof of the theorem

We are now ready to prove Theorem 11.

Proof of Theorem 11. By using Proposition 27, we know that the restriction of SL (C ) to
(IGRS \ L0) ∪ τ(L1) is a subcode of a GRS code of length |IGRS| − |L0| + |L1| = n − w +

|I2GRS| − |L0|+ |L1| and dimension kGRS
def
= k − |L0| − |L2|2 , where:

• L0
def
= IGRS ∩ L;

11



• L1 is the set of PR positions of L that do not have their twin in L;

• L2 is the union of all twin PR positions that are both included in L.

We also denote by L3 the set IR ∩ L. We can then apply Lemma 28 to SL (C ) and derive
from it the following upper bound:

dim (SL (C ))?2 6 2kGRS − 1 + |IPR \ (L ∪ τ(L1))|+ |IR \ L3|.

Next, using Lemma 23, we get

dim (SL (C ))?2 6 2

(
k − |L0| −

|L2|
2

)
− 1 + 2 (w − |IR|)− 2|L1| − |L2|+ |IR| − |L3|

6 2 (k + w − |L0| − |L1| − |L2| − |L3|)− 1 + (|L3| − |IR|) (14)
6 2 (k + w − |L|)− 1. (15)

The other upper bound on dim (SL (C ))?2 which is dim (SL (C ))?2 6 n + w − |L| follows
from the fact that the dimension of this code is bounded by its length. Putting both bounds
together yields the theorem.

Remark 29. According to our simulations, the inequality of Theorem 11 is sharp and is attained
most of the time when IR is the empty set. When IR is not the empty set, then we may have
equality only if we shorten all the positions in IR: this is because the right-hand term in (14)
should coincide with the right-hand term in (15), which is equivalent to |L3| = |IR|.

4 Reaching the range of the distinguisher

For this distinguisher to work we need to shorten the code enough so that its square does not
fill in the ambient space, but not too much since the square of the shortened code should have
a dimension strictly less than the typical dimension of the square of a random code given by
Proposition 4. Namely, we need to have:

dim (SL (C ))?2 <

(
k + 1− |L|

2

)
and dim (SL (C ))?2 < n+ w − |L|. (16)

Thanks to Theorem 11, we know that (16) is satisfied as soon as

2(k + w − |L|)− 1 <

(
k + 1− |L|

2

)
and 2(k + w − |L|)− 1 < n+ w − |L|. (17)

We will now find the values of |L| for which both inequalities of (17) are satisfied.

First inequality. To study when the first inequality in (17) is verified, let us bring in

k′
def
= k − |L|.

Inequality (17) becomes 4k′ − 2 + 4w < k′2 + k′, or equivalently k′2 − 3k′ − 4w + 2 > 0,
which after a resolution leads to k′ > 3+

√
16w+1
2 ·

Hence, we have:

|L| < k − 3 +
√
16w + 1

2
· (18)

12



Second inequality. On the other hand, the second inequality in (17) is equivalent to

|L| > w + 2k − n. (19)

Conditions to verify both inequalities. Putting inequalities (18) and (19) together gives
that |L| should satisfy

w + 2k − n 6 |L| < k − 3 +
√
16w + 1

2
·

We can therefore find an appropriate L if and only if

w + 2k − n < k − 3 +
√
16w + 1

2
,

which is equivalent to

n− k > w +
3 +
√
16w + 1

2
= w +O(

√
w).

In other words, the distinguisher works up to values of w that are close to the second choice
n− k = w.

From now on we set

`min = w + 2k − n

`max =

⌈
k − 3 +

√
16w + 1

2
− 1

⌉
·

Practical results. We have run experiments using Magma [5] and Sage. For the param-
eters of Table 1, here are the intervals of possible values of |L| so that the code SL (C )?2 has
a non generic dimension:

• ID 1: n = 532, k = 376, w = 96, |L| ∈ J316, 354K;

• ID 3: n = 846, k = 618, w = 144, |L| ∈ J534, 592K;

• ID 5: n = 1160, k = 700, w = 311, |L| ∈ J551, 663K.

There interval always coincide with the theoretical interval J`min, `maxK.

5 The attack

In this section we will show how to find an equivalent private key (x,y,A,P ) defining the
same code. This allows to decode and recover the original message like a legitimate user.

We assume that all the matrices As =

(
as bs
cs ds

)
appearing in the definition of the scheme

in Subsection 2.1 are such that csds 6= 0. We explain in the appendix how the attack can be
changed to take the case csds = 0 into account. Note that this corresponds to a case where
IR = ∅ and I2GRS = ∅, which is the typical case as noticed in Remark 22.

Remark 30. In the present section where we the goal is to recover the permutation, we no
longer work under Assumption 13.

13



5.1 Outline of the attack

In summary, the attack works as follows.

1. Compute the interval J`min, `maxK of the distinguisher and choose ` in the middle of the
distinguisher interval. Ensure ` < `max.

2. For several sets of indices L ⊆ J1, n+wK such that |L| = `, compute SL (C ) and identify
pairs of twin positions contained in J1, n+ wK. Repeat this process until identifying all
pairs of twin positions, as detailed in § 5.2.

3. Puncture the twin positions in order to get a GRS code and recover its structure using
the Sidelnikov Shestakov attack [15].

4. For each pair of twin positions, recover the corresponding 2× 2 non-singular matrix Ai,
as explained in § 5.4.

5. Finish to recover the structure of the underlying GRS code.

5.2 Identifying pairs of twin positions

Let L ⊆ J1, n + wK be such that both |L| and |L| + 1 are contained in the distinguisher
interval. The idea we use to identify pairs of twin positions is to compare the dimension of
(SL (C ))?2 with the dimension of

(
P{i} (SL (C ))

)?2 for all positions i in J1, n + wK \ L. This
yields information on pairs of twin positions.

• If i ∈ IGRS (see (2), (8) and (12) for the definition), puncturing does not affect the
dimension of the square code:

dim (SL (C ))?2 = dim
(
P{i} (SL (C ))

)?2
.

• If i ∈ IPR (see (6) for a definition) and τ(i) ∈ L, then according to Lemma 24, the
position i is “derandomised” in SL (C ) and hence behaves like a GRS position in the
shortened code. Therefore, very similarly to the previous case, the dimension does not
change.

• If i ∈ IPR and τ(i) 6∈ L, in SL (C ), the two corresponding columns behave like random
ones. Assuming that the inequality of Theorem 11 is an equality, which almost always
holds (see Remark 29), then, according to Lemma 28, puncturing SL (C )?2 at i (resp.
τ(i)) reduces its dimension. Therefore,

dim
(
P{i} (SL (C ))

)?2
= dim

(
P{τ(i)} (SL (C ))

)?2
= dim (SL (C ))?2 − 1.

This provides a way to identify any position in J1, n+wK \L having a twin which also lies
in J1, n+wK\L: by searching zero columns in a parity–check matrix of S (C )?2, we obtain the
set TL ⊂ J1, n+wK\L of even cardinality of all the positions having their twin in J1, n+wK\L:

TL
def
=

⋃
{i,τ(i)}⊆J1,n+wK\L

{i, τ(i)}.

14



As soon as these positions are identified, we can associate each such position to its twin.
This can be done as follows. Take i ∈ TL and consider the code SL∪{i} (C ). The column
corresponding to the twin position τ(i) has been derandomised and hence will not give a zero
column in a parity–check matrix of

(
SL∪{i} (C )

)?2, so puncturing the corresponding column
will not affect the dimension.

This process can be iterated by using various shortening sets L until obtaining w pairs of
twin positions. It is readily seen that considering O(1) such sets is enough to recover all pairs
with very large probability.

5.3 Recovering the non-randomised part of the code

As soon as all the pairs of twin positions are identified, consider the code PIPR
(C ) punctured

at IPR. Since the randomised positions have been punctured this code is nothing but a GRS
code and, applying the Sidelnikov Shestakov attack [15], we recover a pair a, b such that

PIPR
(C ) = GRSk(a, b).

5.4 Recovering the remainder of the code and the matrix A

5.4.1 Joining a pair of twin positions : the code C (i)

To recover the remaining part of the code we will consider iteratively the pairs of twin positions.
We recall that IPR corresponds to the set of positions having a twin. Let {i, τ(i)} be a pair
of twin positions and consider the code

C (i) def
= RIGRS∪{i,τ(i)} (C ) .

In this code, all but two columns, columns i and τ(i), are GRS positions.
For any codeword c ∈ C (i) we have

ci = ayjf(xj) + cψj(f)
cτ(i) = byjf(xj) + dψj(f)

(20)

for some j ∈ Jn− w + 1, nK, where ψj and A =

(
a b
c d

)
are defined as in (4) and (5).

Note that we do not need to recover exactly (x,y,A,P ). We need to recover a 4–tuple
(x′,y′,A′,P ′) which describes the same code. Thus, without loss of generality, after possibly
replacing a by ayj and b by byj , one can suppose that yj = 1. Moreover, after possibly
replacing ψj by dψj , one can suppose that d = 1. Recall that in this section we suppose that
cd 6= 0.

Thanks to these simplifying choices, (20) becomes

ci = af(xj) + cψj(f)

cτ(i) = bf(xj) + ψj(f).

5.4.2 Shortening C (i) at the last position to recover xj

If we shorten C (i) at the τ(i)-th position, according to Lemma 24, it will “derandomise” the
i-th position (it implies ψj(f) = −bf(xj)) and any c ∈ S{τ(i)}

(
C (i)

)
verifies

ci = (a− bc)f(xj).
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Since the support xj and multiplier yj are known at all the positions of C (i) but the two
PR ones, for any codeword c ∈ S{τ(i)}

(
C (i)

)
, one can find the polynomial f ∈ Fq[x]<k whose

evaluation provides c. Therefore, by collecting a basis of codewords in S{τ(i)}
(
C (i)

)
and the

corresponding polynomials, we can recover the values of xj and a− bc.

5.4.3 Recovering the 2× 2 matrix

Once we have xj we need to recover the matrix

A =

(
a b
c 1

)
.

Note that, its determinant detA = a− bc has already been obtained in the previous section.
First, one can guess b as follows. Let G(i) be a generator matrix of C (i). As in the previ-
ous section, by interpolation, one can compute the polynomials f1, . . . , fk whose evaluations
provide the rows of G(i). Consider the column vector

v
def
=

f1(xj)...
fk(xj)


and denote by vi and vτ(i) the columns of G(i) corresponding to positions ci and cτ(i):

vi =

af1(xj) + cψj(f1)
...

afk(xj) + cψj(fk)

 and vτ(i) =

bf1(xj) + ψj(f1)
...

bfk(xj) + ψj(fk)

 .

Next, search λ ∈ Fq such that vi − λvτ(i) is collinear to v. This relation of collinearity
can be expressed in terms of cancellation of some 2 × 2 determinants which are polynomials
of degree 1 in λ. Their common root is nothing but c.

Finally, we can find the pair (a, b) by searching the pairs (λ, µ) such that

(i) λ− cµ = detA;

(ii) vi − λv and vτ(i) − µv are collinear.

Here the relation of collinearity will be expressed as the cancellation of 2 × 2 determinants
which are linear combinations of λ, µ and λµ and elementary elimination process provides us
with the value of the pair (a, b).

6 Complexity of the attack

The most expensive part of the attack is the step consisting in identifying pairs of twin
positions. Recall that, from [8], the computation of the square of a code of length n and
dimension k costs O(k2n2) operations in Fq. We need to compute the square of a code O(w)
times, because there are w pairs of twin positions. Hence this step has a total complexity
of O(wn2k2) operations in Fq. Note that the actual dimension of the shortened codes is
significantly less than k and hence the previous estimate is overestimated.
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The cost of the Sidelnikov Shestakov attack is that of a Gaussian elimination, namely
O(nk2) operations in Fq which is negligible compared to the previous step.

The cost of the final part is also negligible compared to the computation of the squares of
shortened codes. This provides an overall complexity in O(wn2k2) operations in Fq.

Conclusion

We presented a polynomial time key-recovery attack based on a square code distinguisher
against the public key encryption scheme RLCE. This attack allows us to break all the so-
called odd ID parameters suggested in [17]. Namely, the attack breaks the parameter sets for
which the number w of random columns was strictly less than n − k. Our analysis suggests
that, for this kind of distinguisher by squaring shortenings of the code, the case w = n − k
is the critical one. The even ID parameters of [17], for which the relation w = n − k always
holds, remain out of the reach of our attack.
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A How to treat the case of degenerate twin positions?

Recall that a pair of twin positions i, τ(i) is such that any codeword c ∈ C has i–th and
τ(i)–th entries of he form:

ci = ayjf(xj) + bψj(f) cτ(i) = cyjf(xj) + dψj(f).

This pair is said to be degenerated if either b or d is zero. In such a situation, some of the
steps of the attack cannot be applied. In what follows, we explain how this rather rare issue
can be addressed.

If either b or d is zero, then one of the positions is actually a pure GRS position while the
other one is PR but the process explained in the article does not manage to associate the two
twin columns.

Suppose w.l.o.g. that b = 0. In the first part if the attack, when we collect pairs of twin
positions, the position τ(i) will be identified as PR with no twin sister a priori. To find its
twin sister, we can proceed as follows. For any GRS position j replace the j–th column vj of
a generator matrix G of C by an arbitrary linear combination of vj and the τ(i)–th column,
this will “pseudo–randomise” this column and if the j–th column is the twin of the τ(i)–th
one, this will be detected by the process of shortening, squaring and searching zero columns
in the parity check matrix.
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