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Abstract

We show how to construct maliciously secure oblivious transfer (M-OT) from a strength-
ening of key agreement (KA) which we call strongly uniform KA (SU-KA), where the latter
roughly means that the messages sent by one party are computationally close to uniform,
even if the other party is malicious. Our transformation is black-box, almost round pre-
serving (adding only a constant overhead of up to two rounds), and achieves standard
simulation-based security in the plain model.

As we show, 2-round SU-KA can be realized from cryptographic assumptions such as
low-noise LPN, high-noise LWE, Subset Sum, DDH, CDH and RSA—all with polynomial
hardness—thus yielding a black-box construction of fully-simulatable, round-optimal, M-OT
from the same set of assumptions (some of which were not known before).
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1 Introduction

Oblivious transfer (OT) is a very simple functionality between two parties: a sender with input
two strings (s, $1), and a receiver with input a choice bit b; the output for the receiver equals s,
while the sender learns nothing (i.e., the receiver’s choice bit remains hidden) | , ].
The standard security definition for OT compares an execution of the protocol in the real
world—where either the sender or the receiver might act maliciously—with an execution in the
ideal world where a trusted third party simply implements the above functionality. Following
previous work, we call “fully simulatable” an OT protocol that meets this notion.

Surprisingly, OT turned out to be sufficient for constructing secure multi-party computation
(MPC) for arbitrary functionalities [ , , , ) , , ]. For
this reason, constructing OT has been an important objective and received much attention.
Nevertheless, previous constructions of fully-simulatable OT suffer from diverse shortcomings
(cf. also §1.4): (i) They require trusted setup, or are based on random oracles (as, e.g., in [ ,

]); (ii) They have high round complezity (as, e.g., in | ]), while the optimal number of
rounds would be 4 | , |; (iii) They are non-black-box, in that they are obtained by
generically transforming semi-honestly secure OT (SH-OT)—which in turn can be constructed
from special types of PKE [ |—to fully-simulatable OT via (possibly interactive) zero-
knowledge proofs (d la GMW | ]); (iv) They are tailored to specific hardness assumptions
(as, e.g., in | , D).

One exception is the work of Ostrovsky, Richelson and Scafuro | ], that provide a black-
box construction of 4-round, fully-simulatable OT in the plain model from certified trapdoor
permutations (TDPs) | , , |, which in turn can be instantiated from the
RSA assumption under some parameter regimes | ) ]. This draws our focus to the
question:

Can we obtain 4-round, fully-simulatable OT in a black-box way from minimal
assumptions, without assuming trusted setup or relying on random oracles?

1.1 Our Contribution

We give a positive answer to the above question by leveraging a certain type of key agreement
(KA) protocols, which intuitively allow two parties to establish a secure channel in the presence
of an eavesdropper. The influential work by Impagliazzo and Rudich [ | showed a (black-
box) separation between secret-key cryptography and public-key cryptography and KA. Ever
since, it is common sense that public-key encryption (PKE) requires stronger assumptions than
the existence of one-way functions, and thus secure KA is the weakest assumption from which
public-key cryptography can be obtained. More recent research efforts have only provided
further confidence in this conviction | ].

In more details, our main contribution is a construction of fully-simulatable OT (a.k.a.
maliciously secure OT, or M-OT) from a strengthening of KA protocols, which we term strongly
uniform (SU); our protocol is fully black-boz and essentially round-preserving, adding only a
constant overhead of at most two rounds. In particular, we show:

Theorem 1. For any odd t € N, with t > 1, there is a black-box construction of a (t + 1)-
round, fully-simulatable oblivious transfer protocol in the plain model, from any t-round strongly
uniform key agreement protocol and a perfectly binding commitment scheme.!

!Statistically binding commitment schemes are implied by perfectly-correct KA protocols [ ]. Both LWE
and low-noise LPN implie statistically binding commitment schemes as well | ]



Since, as we show, 2-round and 3-round SU-KA can be instantiated from several assump-
tions, including low-noise (ring) LPN, high-noise (ring) LWE, Subset Sum, CDH, DDH, and
RSA—all with polynomial hardness—a consequence of our result is that we obtain round-
optimal M-OT in the plain model under the same set of assumptions (in a black-box way). In
particular, this yields the first such protocols from LPN, LWE (with modulus noise ratio \/n),
CDH, and Subset Sum.? Note that our LWE parameter setting relates to an approximation
factor of n!'-® for SIVP in lattices of dimension n [ |, which is the weakest LWE assumption
known to imply PKE.

In our construction, we use a special kind of “commit-and-open” protocols which were im-
plicitly used in previous works | , ]. As a conceptual contribution, we formalize their
security properties, which allows for a more modular presentation and security analysis.

1.2 Technical Overview

We proceed to a high level overview of the techniques behind our main result, starting with
the notion of strong uniformity and the abstraction of commit-and-open protocols, and landing
with the intuition behind our construction of M-OT (cf. Fig. 1).

Strong uniformity. As an important stepping stone to our main result, in §3, we introduce
the notion of strong uniformity. Recall that a KA protocol allows Alice and Bob to share a key
over a public channel, in such a way that the shared key is indistinguishable from uniform to the
eyes of a passive eavesdropper. Strong uniformity here demands that, even if Bob is malicious,
the messages sent by Alice are computationally close to uniform over an efficiently sampleable
group.? This flavor of security straightforwardly translates to SH-OT and PKE, yielding so-
called SUSH-OT and SU-PKE. In the case of SUSH-OT, it demands that all messages of the
receiver have this property (even if the sender is malicious). For SU-PKE, we distinguish two
types, which are a strengthening of the types defined by Gertner et al. | )4

e Type-A PKE: The distribution of the public key is computationally indistinguishable

from uniform. This type of PKE is known to exist under DDH | ] and CDH | ]
over efficiently sampleable groups,” LWE | ], low-noise LPN | |, and Subset
Sum | .

e Type-B PKE: The encryption of a uniformly random message w.r.t. a maliciously chosen
public key is computationally close to the uniform distribution over the ciphertext space.
This type of PKE is harder to obtain, and can be constructed from enhanced certified
TDPs, and from CDH and DDH over efficiently sampleable groups. In case of a TDP f,
a ciphertext has the form (f(r), h(r) @ m), where h is a hardcore predicate for f, and r is
a random element from the domain of f. Under CDH or DDH, a ciphertext is defined as

2We can also base our construction on Factoring when relying on the hardness of CDH over the group of
signed quadratic residues [ ], but this requires a trusted setup of this group which is based on a Blum integer.

3We call a group efficiently sampleable if we can efficiently sample uniform elements from the group and,
given a group element, we can simulate this sampling procedure. A reverse sampleable group | ] would
suffice. In the context of public-key encryption a similar property is called oblivious key generation | ].
In our construction, we require a stronger property where the public keys are additionally computationally
indistinguishable from uniform.

“The difference is that the notions in [ ] only ask for oblivious sampleability, rather than our stronger
requirement of computational uniformity over efficiently sampleable groups.

5These are groups for which one can directly sample a group element without knowing the discrete logarithm
with respect to some generator. The latter requires non black-box access to the group, which is also needed when
using ElGamal with messages that are encoded as group elements and not as exponents. Though we need the
stronger property of sampleability of elements that are computationally close to uniform.
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Figure 1: Overview over equivalence and implications of the notion of strong uniformity. The
value t € N denotes the round complexity. T This holds over efficiently sampleable groups. *
We need an enhanced certified TDP.

g" and h(g™)-m, g*" - m respectively, where ¢g" is a uniform group element, and ¢g* is the
public key. Clearly, for a uniform message m, these ciphertexts are uniform even under
maliciously chosen public keys.

In §3, we show that SU Type-A and SU Type-B PKE imply, respectively, 2-round and
3-round SU-KA, whereas 2-round SU-KA implies SU Type-A PKE. Further, we prove that SU-
KA is equivalent to SUSH-OT. The latter implies that strong uniformity is a sufficiently strong
notion to bypass the black-box separation between OT and KA, in a similar way as Type-A
and Type-B PKE bypass the impossibility of constructing OT from PKE | ]

Commit-and-open protocols. A 1-out-of-2 commit-and-open (C&O) protocol is a 3-round
protocol with the following structure: (1) In the first round, the prover, with inputs two messages
mo, my and a bit d, sends a string v (called “commitment”) generated with mg but independent
of my_g4 to the verifier; (2) In the second round, the verifier sends a value 8 to the prover
(called “challenge”); (3) In the third round, the prover sends a tuple (J,mg, m1) to the verifier
(called “opening”). Security requires two properties. The first property, called existence of
a committing branch, demands that a malicious prover must be committed to at least one
message, i.e. my, already after having sent . The second property, called committing branch
indistinguishability, asks that a malicious verifier cannot learn the committing branch, i.e. d, of
an honest prover.

A construction of C&O protocols for single bits is implicit in Kilian | ]. This has been
extended to strings by Ostrovsky et al. | |. Both constructions make black-box use of
a statistically binding commitment scheme, and allow a prover to equivocally open one of the
messages. In §A of the appendix, we revisit the protocol and proof by Ostrovsky et al. to show
that it indeed satisfies the two security notions sketched above.

M-OT from SUSH-OT: A warm up. In order to explain the main ideas behind our
construction of M-OT, we describe below a simplified version of our protocol for the special
case of t = 2, i.e. when starting with a 2-round SUSH-OT (S’,R’); here, we denote with p the
message sent by the receiver, and with o the message sent by the sender, and further observe
that for the case of 2 rounds the notion of strong uniformity collapses to standard semi-honest
security with the additional property that the distribution of p is (computationally close to)
uniform to the eyes of an eavesdropper. We then construct a 4-round OT protocol (S,R), as
informally described below:




1. (R — S): The receiver picks a uniformly random value mq_;, € M, where b is the choice
bit, and runs the prover of the C&O protocol upon input m;_p, obtaining a commitment
~ that is forwarded to the sender.

2. (S = R): The sender samples a challenge 3 for the C&O protocol, as well as uniformly
random elements 79,71 € M. Hence, it forwards (3,79, 7r1) to the receiver.

3. (R = S): The receiver runs the receiver R’ of the underlying 2-round OT protocol with
choice bit fixed to 0, obtaining a value p, which is used to define the message my = pp — 13
required to complete the execution of the C&O protocol in the non-committing branch b.
This results in a tuple (4, mg, m1) that is forwarded to the sender.

4. (S — R): The sender verifies that the transcript T = (v, 3, (0, mg, m1)) is accepting for the
underlying C&O protocol. If so, it samples ug, u; € M uniformly at random, and runs the
sender S’ of the underlying 2-round OT protocol twice, with independent random tapes:
The first run uses input strings (so, up) and message mg + 7o from the receiver, resulting
in a message 0g, whereas the second run uses input strings (s1,u1) and message mj + 71
from the receiver, resulting in a message o;. Hence, it sends (0g,01) to the receiver.

5. Output: The receiver runs the receiver R’ of the underlying 2-round OT protocol, upon
input message o3 from the sender, thus obtaining s;.

Correctness is immediate. In order to prove simulation-based security we proceed in two
steps. In the first step, we show the above protocol achieves a weaker security flavor called
receiver-sided simulatability [ , | which consists of two properties: (1) The existence
of a simulator which by interacting with the ideal OT functionality can fake the view of any
efficient adversary corrupting the receiver in a real execution of the protocol (i.e., standard
simulation-based security w.r.t. corrupted receivers); (2) Indistinguishability of the protocol
transcripts with choice bit of the receiver equal to zero or one, for any efficient adversary
corrupting the sender in a real execution of the protocol (i.e., game-based security w.r.t. cor-
rupted senders). In the second step, we rely on a round-preserving black-box transformation
given in | ], which allows to boost receiver-sided simulatability to fully-fledged malicious
security. To show (1), we consider a series of hybrid experiments:

e In the first hybrid, we run the first 3 rounds of the protocol, yielding a partial transcript
v, (B,70,71), (0, m0,m1). Hence, after verifying that T = (v, 3, (0, mg,m1)) is a valid
transcript of the C&O protocol, we rewind the adversary to the end of the first round
and continue the execution of the protocol from there using a fresh challenge (8',r(,7}),
except that after the third round we artificially abort if there is no value b € {0,1} such
that m; = mé, where (8',m{,, m}) is the third message sent by the adversary after the
rewinding.

Notice that an abort means that it is not possible to identify a committing branch for
the C&O protocol, which however can only happen with negligible probability; thus this
hybrid is computationally close to the original experiment.

e In the second hybrid, we modify the distribution of the value r]_, (right after the rewind-
ing) to r{_, = pi—_p — mi_p, where we set 1 —b &) from the previous hybrid, and where
p1_p is obtained by running the receiver R’ of the underlying 2-round OT protocol with
choice bit fixed to 1.

To argue indistinguishability, we exploit the fact that the distribution of mq_3 is indepen-
dent from that of r|_,, and thus by strong uniformity we can switch |_, + mi_; with
p1—p from the receiver R’.



e In the third hybrid, we use the simulator of the underlying 2-round SH-OT protocol to
compute the messages o1_; sent by the sender. Note that in both the third and the second
hybrid the messages (p1_p,01-p) are computed by the honest sender, and thus any efficient
algorithm telling apart the third and the second hybrid violates semi-honest security of

(9,R)).

In the last hybrid, a protocol transcript is independent of s1_j; but still yields a well distributed
output for the malicious receiver, which immediately implies a simulator in the ideal world.

To show (2), we first use the strong uniformity property of (S',R’) to sample m; uniformly at
random at the beginning of the protocol. Notice the this implies that the receiver cannot recover
the value s; of the sender anymore. Finally, we use the committing branch indistinguishability
of the C&O protocol to argue that the transcripts with b = 0 and b = 1 are computationally
indistinguishable.

M-OT from SUSH-OT: The general case. There are several difficulties when trying to
extend the above protocol to the general case where we start with a t-round SUSH-OT. In fact,
if we would simply iterate sequentially the above construction, where one iteration counts for
a message from R’ to S’ and back, the adversary could use different committing branches from
one iteration to the other. This creates a problem in the proof, as the simulator would need
to be consistent with both choices of possible committing branches from the adversary, which
however requires knowing both inputs from the sender.

We resolve this issue by having the receiver sending all commitments ; for the C&O pro-
tocol in the first round, where each value ~; is generated including a random message m’i_b
concatenated with the full history m’ij), . ,m%_b. Hence, during each iteration, the receiver
opens one commitment as before. As we show, this prevents the adversary from switching
committing branch from one iteration to the next one. We refer the reader to §4.1 for a formal
description of our protocol, and to §4.2 for a somewhat detailed proof intuition. The full proof
appears in §4.3.

1.3 Application to Round-Efficient MPC

Since M-OT implies maliciously secure MPC | , | and very recently, the work of
Choudhuri et al. | |, a direct consequence of Theorem 1 is the following:

Corollary 1. For any odd t € N, there is a non-black-box construction of a (t + 1)-round ma-
liciously secure multi-party computation protocol in the plain model, from any t-round strongly
uniform key agreement protocol.

Corollary 1 yields 4-round maliciously secure MPC from any of low-noise LPN, high-noise
LWE, Subset Sum, CDH, DDH, and RSA, all with polynomial hardness. Previously to our work,
it was known how to get maliciously secure MPC in the plain model, for arbitrary functionalities:

e Using 5 rounds, via interactive ZK proofs and SH-OT | ], assuming polynomially-hard
LWE with super-polynomial noise ratio and adaptive commitments | ], polynomially-
hard DDH | ], and enhanced certified trapdoor permutations (TDP) | , l;

e Using 4 rounds, assuming sub-exponentially-hard LWE with super-polynomial noise ratio
and adaptive commitments | |, polynomially-hard LWE with a SIVP approximation
factor of n3% | |, sub-exponentially-hard DDH and one-way permutations | ,
polynomially-hard DDH/QR/DCR [ |, and either polynomially-hard QR or QR
together with any of LWE/DDH/DCR (all with polynomial hardness) | ].



1.4 Related Work

Maliciously secure OT. Jarecki and Shamtikov | ], and Peikert, Vaikuntanathan, and
Waters | ], show how to construct 2-round M-OT in the common reference string model.

A result by Haitner et al. | ) | gives a black-box construction of M-OT from
SH-OT. While being based on weaker assumptions (i.e., plain SH-OT instead of SUSH-OT),
assuming the starting OT protocol has round complexity ¢, the final protocol requires 4 ad-
ditional rounds for obtaining an intermediate security flavor known as “defensible privacy”,
plus 4 rounds for cut and choose, plus 2 times the number of rounds required for running coin
tossing, plus a final round to conclude the protocol. Assuming coin tossing can be done in 5
rounds | ], the total accounts to t 4 19 rounds, and thus yields 21 rounds by setting t = 2.

Lindell | | gives constructions of M-OT with 7 rounds, under the DDH assumption, the
Nth residuosity assumption, and the assumption that homomorphic PKE exists. Camenish,
Neven, and shelat [ ], and Green and Hohenberger | ], construct M-OT protocols,
some of which even achieve adaptive security, using computational assumptions over bilinear
groups.

There are also several efficient protocols for OT that guarantee only privacy (but not simu-
latability) in the presence of malicious adversaries, see, e.g. [ , , , , ].

Round-optimal MPC. Katz and Ostrovsky | ] proved that 5 rounds are necessary and
sufficient for realizing general-purpose two-party protocols, without assuming a simultaneous
broadcast channel (where the parties are allowed to send each other messages in the same
round). Their result was later extended by Garg et al. | | who showed that, assuming
simultaneous broadcast, 4 rounds are optimal for general-purpose MPC. Together with a result
by Ishai et al. | |—yielding non-interactive maliciously secure two-party computation for
arbitrary functionalities, in the OT-hybrid model—the latter implies that 4 rounds are optimal
for constructing fully-simulatable M-OT in the plain model.

Ciampi et al. | | construct a special type of 4-round M-OT assuming certified
TDPs,% and show how to apply it in order to obtain (fully black-box) 4-round two-party com-
putation with simultaneous broadcast. In a companion paper [ |, the same authors

further give a 4-round MPC protocol for the specific case of multi-party coin-tossing.

2 Preliminaries

2.1 Standard Notation

We use A € N to denote the security parameter, sans-serif letters (such as A, B) to denote
algorithms, caligraphic letters (such as X', )) to denote sets, and bold-face letters (such as v,
A) to denote vectors and matrices; all vectors are by default row vectors, and v denotes a
column vector. An algorithm is probabilistic polynomial-time (PPT) if it is randomized, and its
running time can be bounded by a polynomial in its input length. By y <—s A(z), we mean that
the value y is assigned to the output of algorithm A upon input z and fresh random coins. We
implicitly assume that all algorithms are given the security parameter 1* as input.

A function v : N — [0, 1] is negligible in the security parameter (or simply negligible) if it
vanishes faster than the inverse of any polynomial in A, i.e. v(A) € O(1/p()\)) for all positive
polynomials p(\). We often write v(\) € negl(\) to denote that v(\) is negligible.

5They also claim [ , Footnote 3] that their OT protocol can be instantiated using PKE with special
properties, however no proof of this fact is provided.



Ideal Functionality Fgr:

The functionality runs with Turing machines (S, R) and adversary Sim, and works as follows:

e Upon receiving message (send, sg, s1,S, R) from S, where sq,s1 € {0,1}?, store s¢ and s
and answer send to R and Sim.

e Upon receiving a message (receive, b) from R, where b € {0, 1}, send s;, to R and receive
to S and Sim, and halt. If no message (send, -) was previously sent, do nothing.

Figure 2: Oblivious transfer ideal functionality

For a random variable X, we write P[X = z] for the probability that X takes on a par-
ticular value z € X (with X being the set where X is defined). The statistical distance be-
tween two random variables X and X’ defined over the same set X is defined as A (X; X') =
2> x| Pr[X = 2] — Pr[X’ = 2]|. Given two ensembles X = {X)}ey and Y = {Y)}ren, we
write X = Y to denote that they are identically distributed, X ~s Y to denote that they are
statistically close (i.e., A (Xy;Y)) € negl(\)), and X =, Y to denote that they are computa-
tionally indistinguishable—i.e., for all PPT distinguishers D there exists a negligible function
v : N — [0,1] such that |Pr[D(X)) = 1] — Pr[D(Y)) = 1]| < v(A).

We call a group efficiently sampleable if and only if there is a PPT sampling procedure Samp
for the uniform distribution over the group, and moreover there exists a PPT simulator SimSamp
that given an element of the group, outputs the randomness used by Samp. More precisely,
(r,Samp(1*, 7)) ~. (1, Samp(1*,7')) where 7’ +—s SimSamp(1*,Samp(1%;7)) and r <s {0,1}*.7
A group that is efficiently reverse sampleable (as in [ ]) suffices.

2.2 Oblivious Transfer

An interactive protocol II for the Oblivious Transfer (OT) functionality, features two interactive
PPT Turing machines S, R called, respectively, the sender and the receiver. The sender S holds
a pair of strings sg, 51 € {0, 1}, whereas the receiver R is given a choice bit b € {0,1}. At the
end of the protocol, which might take several rounds, the receiver learns s;, (and nothing more),
whereas the sender learns nothing.

Typically, security of OT is defined using the real/ideal paradigm. Specifically, we compare
a real execution of the protocol, where an adversary might corrupt either the sender or the
receiver, with an ideal execution where the parties can interact with an ideal functionality.
The ideal functionality, which we denote by Fgr, features a trusted party that receives the
inputs from both the sender and the receiver, and then sends to the receiver the sender’s input
corresponding to the receiver’s choice bit. We refer the reader to Fig. 2 for a formal specification
of the Fgr functionality.

In what follows, we denote by REALp g«(2)(A, S0, 51,b) (resp., REALp s«(z) (A, 80, 51,b)) the
distribution of the output of the malicious receiver (resp., sender) during a real execution of the
protocol IT (with sg, s1 as inputs of the sender, b as choice bit of the receiver, and z as auxiliary in-
put for the adversary), and by IDEAL]_-DT,SimR*(Z) (A, s0, 51, b) (resp., IDEAL]_-DT,Sims*@) (A, s0,51,b))
the output of the malicious receiver (resp., sender) in an ideal execution where the parties (with
analogous inputs) interact with Fgr, and where the simulator is given black-box access to the
adversary.

"The existence of a simulator is crucial for constructing SUSH-OT from SU-KA; we solely use it for this
purpose.




Definition 1 (OT with full simulation). Let For be the functionality from Fig. 2. We say that
a protocol IT = (S, R) securely computes For with full simulation if the following holds:

(a) For every non-uniform PPT malicious receiver R*, there exists a non-uniform PPT simu-
lator Sim such that
{RE‘ALI_LR*(Z) ()\, S0, S1, b)})\,so, ~c {IDEALFDT,SimR*(Z) ()\, S0, S1, b)}

b ~
81,0,z A,50,581,b,2

where A € N, sg,s1 € {0,1}*, b€ {0,1}, and z € {0, 1}*.

(b) For every non-uniform PPT malicious sender S*, there exists a non-uniform PPT simulator
Sim such that

{REALs: ()0 50,510}, o e {IDPAL 5 gosro (A 50,51,0) |

A,80,81,b,2

where A € N, sg,s1 € {0,1}*, b€ {0,1}, and z € {0, 1}*.

Game-based security. One can also consider weaker security definitions for OT, where
simulation-based security only holds when either the receiver or the sender is corrupted, whereas
when the other party is malicious only game-based security is guaranteed. Below, we give the
definition for the case of a corrupted sender, which yields a security notion known as receiver-
stded simulatability. Intuitively, the latter means that the adversary cannot distinguish whether
the honest receiver is playing with choice bit 0 or 1.

Definition 2 (OT with receiver-sided simulation). Let Fpr be the functionality from Fig. 2.
We say that a protocol II = (S, R) securely computes Fgr with receiver-sided simulation if the
following holds:

(a) Same as property (a) in Definition 1.

(b) For every non-uniform PPT malicious sender S* it holds that

{VIEWS 5. (X 50,51,0)} ~o { VIEWE g (A 50,51,1) }

A,80,81,2 A,80,81,2

where A\ € N, 59,51 € {0,1}*, and z € {0,1}*, and where VIEWE 5*(2)()\,80,8175) is the
distribution of the view of S* (with input sp, s; and auxiliary input z) at the end of a real
execution of protocol IT with the honest receiver R given b as input.

Receiver-sided simulatability is a useful stepping stone towards achieving full simulatability.
In fact, Ostrovsky et al. | ] show how to compile any 4-round OT protocol with receiver-
sided simulatability to a 4-round OT protocol with full simulatability. This transformation can
be easily extended to hold for any ¢-round protocol, with ¢ > 3; the main reason is that the
transform only relies on an extractable commitment scheme, which requires at least 3 rounds.

Theorem 2 (Adapted from | D). Assuming t > 3, there is a black-box transformation
from t-round OT with receiver-sided simulation to t-round OT with full simulation.®

8They also need the existence of one-way functions. Since OT implies OT extension which implies one-way
functions | , ], OT implies one-way functions.



2.3 Commit-and-Open Protocols

We envision a 3-round protocol between a prover and a verifier where the prover takes as input
two messages mg,m; € M and a bit d € {0,1}. The prover speaks first, and the protocol
is public coin, in the sense that the message of the verifier consists of uniformly random bits.
Intuitively, we want that whenever the prover manages to convince the verifier, he must be
committed to at least one of mg, m; already after having sent the first message.

More formally, a l-out-of-2 commit-and-open (C&O) protocol is a tuple of efficient inter-
def

active Turing machines Il.g, = (P = (Po,P1),V = (Vo, V1)) specified as follows. (i) The
randomized algorithm Py takes mg4 and returns a string v € {0,1}* and auxiliary state infor-
mation o € {0,1}*; (ii) The randomized algorithm V( returns a random string § <—s B; (iii)
The randomized algorithm Py takes (a, 8,7, mi_q) and returns a string 6 € {0,1}*; (iv) The
deterministic algorithm V; takes a transcript (v, 8, (6, mg, m1)) and outputs a bit.

We write (P(mg,m1,d),V(1?)) for a run of the protocol upon inputs (mg,m1,d) to the
prover, and we denote by T o (v, B, (8,m0,m1)) the random variable corresponding to a tran-
script of the interaction. Note that the prover does not necessarily need to know mq_4 before
computing the first message. We say that Il.g, satisfies completeness if honestly generated
transcripts are always accepted by the verifier, i.e. for all mg, m; € M and d € {0, 1}, we have
Pr[Vi(T) =1: T «s(P(mg,m1,d),V(1"))] = 1, where the probability is over the randomness
of Po,VQ, and Pl.

Security properties. Roughly, a C&O protocol must satisfy two security requirements. The
first requirement is that at the end of the first round, a malicious prover is committed to at
least one message. This can be formalized by looking at a mental experiment where we first run
the protocol with a malicious prover, yielding a first transcript 7" = (v, 3, (6, mg, m1)); hence,
we rewind the prover to the point it already sent the first message, and give it a fresh challenge
B" which yields a second transcript 7" = (v, £, (', m, m})). The security property now states
that, as long as the two transcripts T and 7" are valid, it shall exist at least one “committing
branch” d e {0,1} for which m; = miiA. The second requirement says that no malicious verifier
can learn any information on the committing branch of the prover. The formal definitions
appear below.

Definition 3 (Secure commit-and-open protocol). Let Il.g, = (Pg, P1, Vo, V1) be a 1-out-of-2
commit-and-open protocol. We say that Il.g, is secure if, besides completeness, it satisfies the
following security properties.

e Existence of Committing Branch: For every PPT malicious prover P* = (P§,P7)
there exists a negligible function v : N — [0, 1] such that

(7, ) <= PE(1M);
MT)=1)AM(T)=1) B, s Vo(1*); <))
Amo £ my) A(m1 #my) (6, me,m1) <sPi(ao,B); | — ’
(0’,mfy, my) <= Pi(ao, ')
with T = (v, 3, (6,mp,m1)) and T = (v, B3, (8, my, m})), and where the probability is
taken over the random coin tosses of P* and V.

Pr

e Committing Branch Indistinguishability: For all PPT malicious verifiers V*, and
for all messages mg, m1 € M, we have that

{T: TH;(P(mo,ml,o),v*(lA»}AGN ~e {T: TH<P(mo,m1,1),V*(1A)>}A€N-

In §A.2 we show that a protocol by Ostrovsky et al. | | achieves this definition.



3 Strongly Uniform PKE, Key Agreement and OT

3.1 Strongly Uniform PKE

We start with defining strongly uniform public-key encryption (PKE). Here, we differ between
two types of PKE. A Type-A PKE has a public key that is computationally close to uniform,
while for a Type-B PKE this is the case for ciphertexts of uniform messages (under malicious
public keys).

In general, a PKE scheme Il consists of three efficient algorithms (KGen, Enc, Dec) speci-
fied as follows. (i) The probabilistic algorithm KGen takes as input the security parameter and
outputs a pair of keys (pk, sk); (ii) The probabilistic algorithm Enc takes as input the public
key pk and a message p € M, and returns a ciphertext ¢ € C; (iii) The deterministic algorithm
Dec takes as input the secret key sk and a ciphertext ¢ € C, and returns a value p € MU {L}.
We say that Il meets correctness, if for all A € N, all (pk, sk) output by KGen(1%), and all
w € M the following holds: P[Dec(sk, Enc(pk,u)) = p] = 1.

Definition 4 (Strongly uniform Type-A PKE). A PKE scheme Ilxe = (KGen, Enc, Dec) is
called a strongly uniform Type-A PKE if for any PPT distinguisher D the following holds:

[Pr(D(pk) = 1] — Pr[D(u) = 1]| € negl (A)
where (pk, sk) s KGen(1*) and u is uniform over a suitable, efficiently sampleable group.

In case of strongly uniform Type-B PKE, we even ask that a ciphertext of a uniform message
is indistinguishable from uniform to a distinguisher that chooses a public key for the encryption
procedure in an arbitrary way.

Definition 5 (Strongly uniform Type-B PKE). A PKE scheme Ilxe = (KGen, Enc, Dec) is
called a strongly uniform Type-B PKE if for any PPT distinguisher D the following holds:

|Pr[D(c) = 1] — Pr[D(u) = 1]| € negl(A),

where pk € {0,1}* is chosen by D, p s M, ¢ <«s Enc(pk, 1), and u is uniform over a suitable,
efficiently sampleable group.

When using PKE in the following, we also ask for standard security against chosen plaintext
attacks, since this is not implied by the notion of strong uniformity in all generality.

3.2 Strongly Uniform Key Agreement

Let Iy, = (P1, P2) be a key agreement (KA) protocol, where P sends messages during ¢’ rounds,
which we denote by p!,... ,pt/. The messages from Py to Py are denoted with o', ..., at/“, and
are at most ¢’ + 1. W.l.o.g. we will assume that Py sends the last message.

More precisely, algorithms P; and Py are stateful interactive Turing machines such that

for each ¢ € [t']: (i) Algorithm P; takes the current state information oﬂ;ll (where o is

equal to P1’s input 1*) and a message o’~! from Po (with ¢® empty), and returns p’ together
with updated state information aél; (ii) Algorithm Py takes the current state information 0/;21

(where oz(F),2 is equal to Py’s input 1*) and message p* from the receiver, and returns o’ together
with updated state information O‘in'

For strong uniformity, we ask that P;’s messages are computationally close to uniform over
an efficiently sampleable group M. For simplicity, we assume that this is the same group for
all messages. Our results still hold when the messages are uniform in different groups.

Additionally, we ask that given a transcript, one cannot distinguish the key Py and Py agreed

upon from a uniformly random string.
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Definition 6 (Strongly uniform secure key agreement). A KA protocol Iy, = (P1,P2) as
defined above is a strongly uniform secure KA if there exists an efficiently samplable group
M such that the messages (p',..., pt/) sent by P; in a honest execution of the protocol are
distributed over M, and moreover the following conditions are met:

(a) Key Indistinguishability: For an honest execution of the protocol with agreed key K,

((P1(1%), P2(11)), K ) e ((P1(1), Po(1Y)),UT)

where U is uniform and independent of the view of P; and Ps.

(b) Uniformity w.r.t. Malicious Interaction: For all PPT distinguishers D the following
quantity is negligible:

P Vi € [t], (b, pt) < Pl(o/_1 o)
L o) ) =1 PATP . P10

’Pr |:D(O‘D7 (p y O )ze[t}) 1 A (O[B,O'Z) s D(Oé?;l,pl_l)

Vi e [t/],pi —s M } |

f— t’ /L‘ i . 7 fr— . . . . .
Pr |:D(aDa (p O )zE[t]) L: A (OZB,O'Z) P D(aefl’pz—l)

0 ; : 0 _ 0 _1X
where p” is the empty string, and ap, = ap, =17
We show now that the property of strong uniformity is preserved within known construction
of KA from Type-A or Type-B PKE, as well as Type-A PKE from KA. Both of the following

lemmata are straightforward, and therefore we forego a more formal proof and just sketch them.

Lemma 1. There exists a 2-round strongly uniform secure KA if and only if there exists a
strongly uniform CPA-secure Type-A PKE (constructive).

Proof. 1t is a well known fact that 2-round KA implies PKE and vice versa. What we will show
is that this construction preserves strong uniformity. In the construction of KA from PKE the
receiver sends a public key and receives back an encryption of a uniform key. If the public
key is indistinguishable from uniform with all but negligible probability, then all the receivers
messages are, and hence the KA is strongly uniform.

In the construction of PKE from KA, one uses the first message of the KA as public key.
In a 2-round strongly uniform KA this message is indistinguishable from uniform with all but
negligible probability by definition. Hence, the public key is computationally indistinguishable
from uniform with all but negligible probability. O

Lemma 2. If there exists a strongly uniform CPA-secure Type-B PKE, then there exists a
3-round strongly uniform secure KA (constructive).

Gertner et al. [ ] showed a similar lemma, namely that Type-B PKE implies 3-round
semi-honestly secure OT. For simplicity, we prefer showing that there is a 3-round strongly
uniform secure KA given a strongly uniform CPA-secure Type-B PKE.

Proof. The idea is simple and similar to the proof of Lemma 1. Py sends a public key, P
sends an encryption of a uniform key. Finally, Py decrypts the ciphertext and sends a dummy
message. The last message is required by the definition of strongly uniform KA, which asks
that P1’s messages are indistinguishable from uniform, where Py sends the last message.

In order to achieve strongly uniform KA, even for maliciously chosen public key, the ci-
phertext needs to be indistinguishable from uniform with all but negligible probability. Type-B
PKE has this property, and hence the described protocol is strongly uniform. Security follows
trivially, and for identical reasons, as in Lemma 1. O

11



3.3 Strongly Uniform OT

In an OT protocol IT = (S,R) we can w.l.o.g. assume that the sender S always speaks last. We
use the same notation as described above for a key agreement protocol. In particular, p', ..., pt,
are the messages from R to S, and o!,...,c% 1 the messages from S to R. The initial states
are identical with the inputs, i.e. af =b € {0,1} and o = (so,s1) € {0, 1}?*.

Correctness means that for all b € {0, 1}, and for all 59, s € {0, 1}, the following probability
is overwhelming:

Pr pt/Jrl =s,:Vi €[t +1], (aiR,pi) s R(af{l,ai) A (ozé, ai) s S(ag_l,pifl)] ,

where p° is the empty string, and ag = (80, 81), ag = b.

As for security, we require two properties. The first property is equivalent to simulation-
based security for honest-but-curious receivers. The second property says that a malicious
sender cannot distinguish the case where it is interacting with the honest receiver, from the
case where the messages from the receiver are replaced by uniform elements over an efficiently
sampleable group M.

Definition 7 (Strongly Uniform semi-honestly secure OT). An OT protocol II = (S, R) as de-
fined above is a strongly uniform semi-honestly secure OT if there exists an efficiently samplable
group M such that the messages (p!, ..., pt/) sent by R in a honest execution of the protocol
are distributed over M, and moreover the following conditions are met:

(a) Security w.r.t. Semi-Honest Receivers: There exists a PPT simulator Simg such
that for all b € {0,1} and for all sg,s1 € {0,1}* the following holds:

{SimR(l’\,b, sb)} N A, {VIEWF[()\,So,Sl,b)} )

A,50,81,b

"y

where VIEWR (), s0, 51,b) denotes the distribution of the view of the honest receiver at
the end of the protocol.

(b) Uniformity w.r.t. Malicious Senders: For all PPT distinguishers D, and for all b €
{0, 1}, the following quantity is negligible:

I Vi € [t], (o, p*) <s R(ak b, o)
¢ o) ) = 1 » (R, (R
e [otaf ot =10 7

i—1

C Vi € [t'], p' +-s M
Pr [D(aDv (p',0 )ze[t]) L: A (OZB,O'Z) s D(aD ’pz—l) )

where p° is the empty string, and a% =b.

Note that the second property implies game-based security w.r.t. malicious senders (i.e.,
property (b) of Definition 2). Furthermore, for the special case of ¢ = 1 the above definition
collapses to standard semi-honest security, as the only message sent by the malicious sender
plays no role in distinguishing the two distributions.

Next, we show a lemma that is not very surprising, namely that strongly uniform secure
KA can be constructed from strongly uniform semi-honestly secure OT.

Lemma 3. If there exists a t-round strongly uniform semi-honestly secure OT, then there exists
a t-round strongly uniform secure KA (constructive).
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Proof. We construct a t-round KA Ily, from a ¢-round OT II as follows. Py and Ps run II,
where P takes the role of the receiver with choice bit 0. Py takes the role of the sender, with
inputs equal to a uniform key k, i.e. so = k, and a uniformly random string u, i.e. s1 = u.

Given that II is semi-honestly secure, Gertner et al. | , Theorem 5] have shown that
Ik, is indeed a secure KA. The rough idea is to first switch the receiver’s choice bit to 1 by using
the game-based security of IT against honest-but-curious senders (which in our case is implied by
strong uniformity). Afterwards, we can use the security against an honest-but-curious receiver
to argue that an eavesdropper cannot distinguish sy = k from random anymore, since even the
receiver can only learn s; but has no information about sg. Therefore Ily, is a secure KA. It
remains to prove strong uniformity.

Claim 1. Assuming 11 is strongly uniform, so is Ily,.

Proof. Let PPT D’ break the strong uniformity of Ily,, then we construct a PPT distinguisher
D that breaks the strong uniformity of II as follows. Distinguisher D chooses k and v uniformly,
and interacts as a honest sender in II, where the receiver’s messages are either distributed
according to the protocol description or uniform. Hence, P;’s messages are either conform with
the protocol or uniform. Distinguisher D’ receives the view of Py generated by D. Now, if D’
distinguishes the messages of P; being conform with the protocol from uniform, D breaks the
strong uniformity of II. O

O]

The next lemma is more surprising, as it implies that strongly uniform secure KA is equiv-
alent to strongly uniform semi-honestly secure OT. Hence, the notion of strong uniformity is
sufficiently strong to bypass the black-box separation of KA and OT by Gertner et al. | ,
Corollary 7], which is a consequence of the separation between PKE and OT, and the fact that
2-round KA implies PKE. The above also implies that 2-round secure KA is separated as well
from 2-round strongly uniform secure KA.

Lemma 4. If there exists a t-round strongly uniform secure KA, then there exists a t-round
strongly uniform semi-honestly secure OT (constructive).

Proof. We construct an OT protocol II using two parallel executions of a KA protocol Il,,
which we denote with I1Y, and II,. The receiver of the OT acts in both executions as Py. For
his choice bit b, he runs Hﬁa according to the protocol description, and in Hf{;b he samples and
sends uniform messages.

In the last round the sender sends ko + sg and ki + s1, where for j € {0,1} the key k; is the
exchanged key in Hia, and sg, s1 are the OT inputs of the sender. Notice that this is a t-round
protocol, since the sender can send his masked inputs together with his last messages of the KA
protocols.

Claim 2. Assuming Iy, is strongly uniform, so is II.

Proof. Let there be a PPT distinguisher D’ that distinguishes the receiver’s messages in II from
uniform. We construct a PPT distinguisher D for P1’s messages using D’. Distinguisher D acts
in Ilx, as P2, where P1’s messages are either distributed according to the protocol description
or uniform. Hence, D picks b <+s{0,1} and uses the messages sent by D’ in II to interact with
Py in II2,. For Hll{;b, distinguisher D sends uniform messages as in the protocol description.
Finally, D outputs the output of D’. Hence, if D’ is successful, then so is D. O

Claim 3. Assuming Iy, is strongly uniform and secure, then Il is secure against honest-but-
CUTIOUS TECELVETS.
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Proof. We use the following hybrids, where a simulator Sim generates a view of the receiver. In
the last hybrid, Sim only uses s, but not s;_; and therefore implements a simulator Sim(1%, b, s3)
as required for security against honest-but-curious receivers.

HYB1(A): Sim generates the receivers messages in Hf{; b as in an actual key agreement Ily,, i.e.
not uniform as in II. The receiver’s view only contains the messages, not the randomness
used in Iy, to generate these messages.

HYB3(A): Sim sends a uniform value u instead of ky_p + s1_p.

To prove the claim, we need to show that the receiver’s view in the real protocol is indistin-
guishable from HYB1()), and that HYB1(A) is indistinguishable from HYBa(\).

Let D’ be a PPT distinguisher that distinguishes the recevier’s view in the real protocol from
HYB;i(\) with non-negligible probability. We show that there is a PPT distinguisher D that
breaks the strong uniformity of the KA Ily, with the same probability. Distinguisher D runs II,
but replaces the interaction in Hf(;b on the receiver’s side with a challenge instance of Iy, against
the strong uniformity. To simulate the view of the receiver correctly, we need to simulate the
sampling procedure of the uniform messages in the protocol given only the challenge messages.
We can do this by using the simulator SimSamp of efficiently sampleable groups. The challenge
messages are either uniform, as in the receiver’s actual view in II, or honestly generated, as
in HYB1()\). Otherwise, D acts exactly according to the protocol description of II. If D’
distinguishes the two cases, D breaks the uniformity of IIy,.

Now let D’ be a PPT distinguisher that distinguishes HYB1(\) from HYB2(A) with non-
negligible probability. Then we can construct a PPT distinguisher that breaks security, i.e. key
indistinguishability, of II with the same probability. Distinguisher D receives a transcript of Iy,
and a challenge z which is either the key k£ or uniform. Hence, D uses the transcript of Iy, as
transcript of Hll{;b, and the challenge 2z to generate the message k1_, + s1_p as z+ s1_p. Finally,
D generates the remaining parts of the receiver’s view honestly. If z = k, then D simulates
HYB1()), and if z = u, and hence z + s1_; is uniform, D simulates HYB2()\). Hence, whenever
D’ distinguishes HYB1(\) from HYB2()), then D distinguishes the actual key from uniform. [

O]

4 From Strongly Uniform Semi-Honestly Secure OT to Mali-
ciously Secure OT

Our protocol is described in §4.1. In §4.2 we provide a somewhat detailed proof sketch, whereas
in §4.3 we formally show the protocol satisfies receiver-sided simulatability; recall that by using
Theorem 2 we immediately get a fully simulatable OT protocol.

4.1 Protocol Description

Let Hcg0 = (Po, P1, Vo, V1) be a 1-out-of-2 C&O protocol and II' = (S/,R’) be a (2t' + 1)-round
OT protocol, where the first message o' might be the empty string. Our OT protocol IT = (S, R)
is depicted in Fig. 3 on the following page. The protocol consists of (2t +2) rounds as informally
described below.

1. The receiver samples mi_p; € M for all i € [t'], where b is the choice bit. Then he runs
the prover of the C&O protocol upon input (114 ;) ;e for all i € [t'], obtaining (v;);ep
which are forwarded to the sender.
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Sender S(sg, s1)

Receiver R(b)

Ug, U1 —s M
ag o = (s0,uo)
ag,1 = (s1,u1)

(05,0, 79) <= 5'(a§ )

(aé,ua%) A S,(ag,1) (Vi)iern

B s Vo(11)

70,1,71,1 —s M (617 (rk',la U}i)ke{o,l})

i V(, B, (81, (mo ) jegigs (mag)je) =0, (0im0.,mai)

return |
(Oé?,bla Ué“) A S/(Oéé,oa Mo, +70,)
(04?117 o) s S (b 1, ma + 1)
Bi1 < Vo (1Y)

-
P41, T1i41 <3 M (Biv1s (Thyiv1,0L  refo,1})

ag,b =0
Vie [t']:
mMi1—p,i —s M

(Vis i) <=3 Po((ma-p,5)jep)

CHRN AR CE )

0
Mb,i = Py — Tb,i

51’ s Pl(OZi, 61’3 Yiy (mb,j)je[i])

(b pb 1Y) s R (ol o0t +1)

output s, = pZ/H

Figure 3: (2t'+2)-round OT protocol achieving receiver-sided simulatability from (2¢'41)-round
strongly uniform semi-honestly secure OT. Note that the initial state information ozg 0 ag ; and

a%b is set to be equal, respectively to the inputs used by the sender and the receiver during
the runs of the underlying OT protocol (S',R’). The values Sy 41,70 +1,71,¢+1 are not needed
and can be removed, but we avoided to do that in order to keep the protocol description more

compact.

2. The sender samples uniform values ug, u1 <—s M. Then, he runs the underlying (2t' + 1)-
round OT twice with inputs (sg,up) and (si,u1) to generate the first messages of and

1

oy. Further, the sender samples a challenge 3; for the C&O protocol, as well as two

uniformly random group elements rg 1, ri;1 from M, and forwards (51,70,1,71,1) to the
receiver together with the first messages of the OTs (i.e. of and o}).

3. Repeat the following steps for each i € [t']:

(a) (R = S): The receiver runs the receiver R" of the underlying (2¢' 4+ 1)-round OT
protocol with choice bit fixed to 0, and upon input message Ug from the sender,
obtaining a message p; which is used to define the message my; = p; — 13,; required
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to complete the execution of the C&O protocol in the non-committing branch b. This
results in a tuple (d;, mo;, m1 ;) that is forwarded to the sender.

(b) (S — R): The sender verifies that the transcript T; = (i, Bi, (9, (m0,5) el (M1,5)jef))
is accepting for the underlying C&O protocol. If so, he continues the two runs of
the sender S’ for the underlying (2t + 1)-round OT protocol. The first run uses

state ag o and message mo; + ro; from the receiver resulting in a message 06+1 and

state a?:ol, whereas the second run uses state ai&l and message mi; + r1; from the
receiver resulting in a message O'§+1 and state agﬁl. Finally, the sender samples a
challenge ;11 for the C&O protocol, as well as another two uniformly random group
elements rg 41, 11,41 from M, and forwards (Jéﬂ,aiﬂ) and Bi11, 70i+1, T1,i+1 to
the receiver.

4. Output: The receiver runs the receiver R’ of the underlying (2¢' + 1)-round OT protocol,
upon input the (¢ + 1)-th message aéurl from the sender, thus obtaining an output pgﬂ.
Correctness follows by the fact that, when both the sender and the receiver are honest,
by correctness of the C&O protocol the transcripts 7; are always accepting, and moreover the
messages produced by the sender J}; are computed using message my; + 74; = pf} from the
receiver, so that each pair (p};, Jf;) corresponds to the i-th interaction of the underlying (2¢'+1)-
round OT protocol with input strings (sp,up) for the sender and choice bit 0 for the receiver,
and thus at the end the receiver outputs s;. As for security, we have:

Theorem 3 (Receiver-sided simulatability of IT). Assuming that I is a (2t +1)-round strongly
uniform semi-honestly secure OT protocol, and that Il g, is a secure 1-out-of-2 commit-and-open
protocol, then the protocol I1 from Fig. 3 securely realizes For with recewver-sided simulation.

4.2 Proof Intuition

We give a detailed proof in §4.3, and here provide some intuition. In order to show receiver-
sided simulatability we need to prove two things: (1) The existence of a simulator Sim which by
interacting with the ideal functionality Fgr can fake the view of any efficient adversary corrupting
the receiver in a real execution of the protocol; (2) Indistinguishability of the protocol transcripts
with choice bit of the receiver equal to zero or one, for any efficient adversary corrupting the
sender in a real execution of the protocol.

To show (1), we consider a series of hybrid experiments that naturally lead to the definition
of a simulator in the ideal world. In order to facilitate the description of the hybrids, it will be
useful to think of the protocol as a sequence of ¢’ iterations, where each iteration consists of 2
rounds, as depicted in Fig. 3 on the previous page.

e In the first hybrid, we run a malicious receiver twice after he has sent his commitments.
The purpose of the first run is to learn a malicious receiver’s input bit, i.e. on which branch
he is not committed. If he is committed on both branches, simulation will be easy since
he will not be able to receive any of the sender’s inputs. We use the second run to learn
the output of a malicious receiver. We describe the two runs now.

1. The first round of each iteration yields an opening (d;,mo,m1,;). Hence, after veri-
fying that the opening is valid, we rewind the adversary to the end of the first round
of the i-th iteration to receive another opening (07, mq ;, ™ ;).

Now, let b € {0,1} such that my; # mfm By the security of the C&O protocol, there
can be at most one such b. If there is no b we continue the first run. Otherwise, if
there is such a b, we have learned the equivocal branch and start the second run.
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2. We execute the second run according to the protcol with the difference that we now
know the equivocal branch, i.e. b, from the very beginning, which will help us later
to simulate correctly right from the start. Notice that by the security of the C&O
protocol, a malicious receiver cannot change the equivocal branch in the second run.
Obviously, he cannot change it during the same iteration since then he would be
equivocal on both branches and contradict the security of the C&O protocol. He can
also not change the equivocal branch of one of the later rounds j > ¢, since in the
J-th commitment ¢; he cannot be committed to both m;; and mj ;, so he needs to
equivocally open d; as well. Thus, he needs to be committed on the other branch,
i.e. branch 1 —b.

e The values mj_; (right after the rewinding) of each iteration of the first run for k € {0,1},
and second tun for k = 1 — b, are identical to my ;. Moreover, mj , # my; holds only
for the second run for branch k = b. Therefore, in the second hybri(i, we can change the
distribution of 7‘;“- to T;w‘ = pt —my; for k € {0,1}, and both runs except branch k = b
during the second run. The value pj, is obtained by running the simulator for the receiver
of the underlying strongly uniform semi-honest OT protocol with choice bit 1 and input
ug. We can use the messages generated by this simulator on the sender’s side as well.

We will use the strong uniformity of the OT to argue that a malicious receiver cannot
distinguish r;{;’i = ,0}'€ — my,; from uniform. By the semi-honest security, the messages
generated by the simulator are indistinguishable from the actual semi-honest OT. At the
same time this simulator is independent of the sender’s inputs sy and s;. Note that in
this hybrid, we only need to known s; for the second run after having learned b.

In the last hybrid, a protocol transcript is independent of s1_; but still yields a well distributed
output for the malicious receiver, which directly yields a simulator in the ideal world.

To show (2), we first use the strong uniformity of the underlying OT protocol to sample m; ;
uniformly at random at the beginning of the protocol. Notice that this implies that the receiver
cannot recover the value s; of the sender anymore. Further, we need the strong uniformity
property here, since the receiver is interacting with a malicious sender who could influence the
distribution of my; sent by the receiver. Once both messages, mg; and my; for all iterations
are known before the start of the protocol, we can challenge the choice bit indistinguishability
of the C&O protocol. As a consequence, we can argue that the transcripts with b =0and b= 1
are computationally indistinguishable, which implies game-based security against a malicious
sender.

4.3 Security Analysis
4.3.1 Simulatability Against a Malicious Receiver

We need to prove that for all non-uniform PPT malicious receivers R*, there exists a PPT
simulator Sim such that

{REALH,R*(Z) ()\a 50,51, b) })\,80, e {IDEAL].‘DTSimR* (2) ()\7 50, 51, b)}

—
S 4
1:2) A,80,51,b,2

where A € N 50,51 € {0,1}*, b€ {0,1}, and 2z € {0,1}*.

To this end, we introduce several hybrid experiments naturally leading to the definition of
an efficient simulator in the ideal world. Let HYBg(A) be the real world experiment with a
malicious receiver R*. (All experiments are further parameterized by the inputs sg, s; for the
sender, but we omit to explicitly write this for simplicity.)
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First hybrid. Hybrid HYB;()\) proceeds as follows.

1. Th? s/e/nder picks ug, u1 <s M and lets dg,o = O‘g,o = (80, up), dg}l = agl = (s1,u1), and
by b = 1

2. R* forwards (7;);e[], to which the sender replies with (£1,70,1,71,1, 64,61), where (d% 0 )
«sS'(14,a¢ o) (%1"71) s S/ (1%, d(s) 1)

3. Repeat the steps below, for each i € [t']:

(a) R* sends a tuple (d;,mo0,4,m1;). Let T; = (vi, Bi, (i, (mo,j) jefi» (M1,5)jepi)))- Hence:
i. If Vi(T;) = 0, restart the experiment with fresh randomness for R*. Since the
protocol is correct with non-negligible probability, it will only take polynomial

time to find a run where R* never gets restarted within this step in any iteration.
ii. Rewind R* at the beginning of the current iteration, and send a freshly sampled

tuple (3,70, ;) With the same distribution as before.
(b) R* replies with (&;,mg;,m ;). Let T] = (vi, B, (9}, (mqg ;) jeliy> (M4 ) jefs)))- Hence:

i. If Vi(T]) = 0, we restart R* as in step 3(a)i (again this can be done in poly-
nomial time). If Vi(7]) = 1 and on both branches (mg ;)jc # (mo,5) el and
(M} ;)jeli) # (m1,5)jefq), the sender aborts.

ii. Attempt to define b’ as the binary value for which (my, ;)jep # (M j)jep, but
(M _y ;)jer) = (Mi—p j)jep- 1f such value is found, halt and go directly to step 4
after setting b = /.

(¢) The sender computes (a?ol, 5oty s S'(ak 00 T70,4)5 (O‘Zerll’ Gy s S’(dg 1Myt
7“’171) samples (Bi11, r0,i+1,71,i+1) as in the original protocol, and forwards (&, ZH Z+

7’07H_1,7’17Z+1) to R*.

4. Rewind R* to step 2, and re-start running the experiment from there with the following
differences applied to each iteration i € [t']:

(a) Denote by (8}, 7,77 ;) the new challenges sent to R* in step 3(a)ii, and with (5” mg’ i
my ;) the correspondlng answer computed by R* in step 3b. Also let T = (v;, 5 (5”
(mls Ve (M 3) jei)-

(b) If either Vi(7]') = 0, or Vi(7]') = 1 and on both branches (mg ;)jci) # (M0,5) el
and (mf ;)jef) # (M1,5) jeli), the sender aborts.

(c) Attempt to define b” as the binary value for which (myr ;)jep # (Mg ;)jep, but
(mi—v,j)jef) = (MY_yr j)jefq- 1 such value is found, but b” # b the sender aborts.

(d) The sender aborts if b” # L, but (my ;)je = (M ;) jefi-

(e) The sender computes (oz’s+01, outl) s S'(als g, Mg i +70.4)5 (04?11, oty s S'(alg 1, mY i+
1 Z) samples (Bi+1,70,i+1,1,i+1) as in the original protocol, and forwards (o RS ’H

7“0,2+1,7”1,z+1) to R*.
5. Experiment output: The output of R*.
Lemma 5. {HYBO(/\)})\GN e {HYBl()\)})\GN.

Proof. First notice that all the restarts and rewindings of R* do not change R*’s output dis-
tribution, they only decrease the probability of a protocol abort at the cost of a polynomial
increase in the running time.

For i € [t'], consider the following events defined over the probability space of HYB1(\).
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Event Wf"l: The event becomes true if the sender aborts during step 3(b)i, i.e. the values
(6i,mo,i,m1 ) and (8;, mg ;, m] ;) output by R* are such that there is no b € {0,1} for which
(mi)’j) jel] = (m;j) jeli)» and furthermore both transcripts T; and T} are valid transcripts
for the underlying commit-and-prove protocol.

Event Wf"Q: The event becomes true if the sender aborts during step 4b, i.e. the values
(6i,mo,i,m1,4) and (3}, mg,;,m7 ;) output by R* are such that there is no b € {0,1} for
which (my ;) jep) = (m;’]) jefi)» and furthermore both transcripts 7; and 7} are valid tran-

scripts for the underlying commit-and-prove protocol.

Event Wﬁg: The event becomes true if the sender aborts during step 4c, i.e., the non-committing
branches b" and b” are different for the two runs of the adversary (after rewinding).

Event WfA: The event becomes true if the sender aborts during step 4d, i.e., the value " was
set in some previous iteration k < i, meaning that (my- ;)jen # (M ;)jen, but during
the i-th iteration the same branch becomes again committing, meaning that (my ;) jel] =
(mg”,j)je[i]-

g def

Define W} = Wf"l \Y sz \Y Wf”3 \Y% Wf74. For all PPT distinguishers D, by a union bound, we
can write

v 4
Ap(HYBo(\); HYB1(N) < Pr[Fi € [t]: Wi <> > Pr[W ],
i=1 j=1
and thus it suffices to prove that each of the events happens with negligible probability for all
i € [t']. We show this fact below, which concludes the proof of the lemma.

Claim 4. For all PPT R*, and for all i € [t'], we have that Pr[W{ ] € negl(X).

Proof. The proof is down to the property of existence of a committing branch for the commit-
and-prove protocol. By contradiction, assume that there is a pair s, s1 € {0,1}*, some i € [t],
a non-uniform PPT adversary R*, and an auxiliary input z € {0, 1}*, such that R*(z) provokes
event Wﬂl in an execution of HYB1(\) with non-negligible probability. We build a non-uniform
PPT adversary P* that, given i € [t'], attacks the security of ., as follows:?

1. Run R*(2), and after receiving (7;);c[y], forward +; to the challenger, thus obtaining a
challenge (5.

2. Emulate a run of experiment HYBj(\) with R*, except that the value 5; is defined by
embedding the value § received from the challenger.

3. Upon receiving (6;, Mo, m1;) from R, check that T; = (i, Bi, (6i, (mo,5) jefi)> (M1,5) jef))
is a valid transcript; if so, forward (d;, (1m0 ,7) jefi), (M1,5) jefi)) to the challenger.

4. Upon receiving a fresh challenge 3’ for the commit-and-prove protocol from the challenger,
rewind R* as described in HYB;(\), except that the value f] is defined by embedding the
value 3 received from the challenger.

5. Upon receiving (v, m{”,m’“) from R*, check that T} = (v;, B, (4}, (m67j)j€[i}, (mll,j)je[i]))
is a valid transcript; if so, forward (v, (mqg ;) jefi), (M7 ;)jefs)) to the challenger.

6. Complete the remaining steps of the protocol with R*, as described in HYB;(\).

9We can also make the reduction uniform, at the cost of losing a polynomial factor in the computational
distance between the two hybrids (which is needed to guess the index i for which event W7 ; is provoked).
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Notice that the above simulation is perfect; this is because the values (3, 8’) that the reduc-
tion embeds during the i-th iteration have exactly the same distribution as in an execution of
experiment HYB1(\), whereas all other iterations are perfectly distributed as in HYB1(A). It
follows that adversary R* will provoke event Wﬂl with non-negligible probability, which means
that both the transcripts 7; and T} are accepting, and moreover (mo;)jcjj 7 (m6,j)je[i} and
(m1j)je # (M1 ;)je- Thus, P* wins with non-negligible probability, which concludes the
proof of the claim. O

Claim 5. For all PPT R*, and for all i € [t'], we have that Pr[W{,] € negl(X).

Proof. The proof is similar to the one of the previous claim, and therefore omitted. The only
difference is that the challenge 5’ is now embedded by the reduction in S/, and also the tuple
(i, (mg ;) jeli)» (M1 j)jefq)) is sent to the challenger after the rewinding. O

Claim 6. For all PPT R*, and for all i € [t'], we have that Pr[W{ 5] € negl(\).

Proof. Without loss of generality, assume that b = 0 and V" = 1. Notice that event Wf73
means that both transcripts T; and T are accepting for the commit-and-prove protocol, and
additionally (mo ;) ey # (Mg ) jef), Whereas (mi1 ;) e # (Mo ;)je)- The latter contradicts the
property of existence of a committing branch for the commit-and-prove protocol. The formal
reduction is similar to the one given above, and is therefore omitted. O

Claim 7. For all PPT R*, and for all i € [t'], we have that Pr[W{ ] € negl(X).

Proof. Notice that event Wf’4 means that, for some iteration £ < 4, both transcripts T =
(Vs B (k> (M0,5) jelr)s (M) jerw))) and Ty = (i, By, (%, (mg ;) je(r) (M7 5)jeqr))) are accepting
for the commit-and-prove protocol, and additionally there exists a value b € {0, 1} such that
branch b is non-committing, which means (mi—s,;)jen) = (M]_y ;)jer)- However, during the
i-th iteration, both transcripts T; and T}’ are accepting for the commit-and-prove protocol, but
branch b becomes committing again. The latter implies that there exist accepting transcripts

Tj, and T}/ for which both (mi_s;)jel) = (mi_y;)jep and (mp;)jew = (my;)jep), Wwhich
contradicts the property of existence of a committing branch for the commit-and-prove protocol.
The formal reduction is similar to the one given above, and is therefore omitted. O

O

Second hybrid. Hybrid HYB2(\) proceeds identically to HYB1()), except for the following
differences.

s 0 _
1. In step 1, the sender additionally sets aro=1

2. The distribution of the values 7'672- computed during step 3(a)ii is changed by evaluating
(5‘%{',0’ ﬁf)) s R'(df{,}), 56), and by letting r6’i = [3’6 — mo,i.

Notice that the latter change is applied only to the first run of R* (i.e., up to the point where
the value V' is set). This means that the distribution of the values (r(;);c[#) is not modified.

Lemma 6. {HYB1(A)}aen ~c {HYB2(A) }aen.
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Proof. Let W3 be the same event as W{, but over the probability space of HYBz(\). For all
PPT distinguishers D, we can write:

Ap(HYB1(A); HYB3(\)) < Ap(HYB1(X\); HYBo(A\)Vi € [¢'] : = W) + Pr[3i € [t] : Wa).

An argument similar to that used in the proof of Lemma 5 shows that Pr[3i € [t'] : W3] is neg-
ligible, hence it suffices to prove that Ap(HYB1(\); HYB2(\)|Vi € [t'] : = W2) is also negligible.
Note that the only difference between the two experiments comes from the distribution of the
messages (77 ;) je[+], With ¥ < ¢’ being the index corresponding to the round (if any) where the
bit b’ is set during a run of the protocol: In experiment HYB1(\) these values are uniformly
random, whereas in experiment HYBs(\) they are set to gf) — mo_j, where g} is generated by a
fresh run of the receiver for IT" with choice bit fixed to one.

By contradiction, assume that there exists a pair of values sg, s1 € {0, 1}A, and a non-uniform
PPT distinguisher D, such that D can tell apart HYB1(\) and HYB2(\) with non-negligible
probability. We use D to construct a PPT distinguisher D attacking the uniformity property
(cf. property (b) in Definition 7) of protocol II'. Actually, for this particular step of the proof
we only need a weaker property where the distinguisher D is honest but curious. The reduction
works as follows:

1. Forward b = 1, 59 = sg, and uniform $; = ug to the challenger.
2. Receive a challenge ((p', &i)ie[tq,&t/ﬂ) from the challenger.

3. Run experiment HYBs(\) with D, except that the changes below are applied to each
iteration of the first run of the distinguisher:

(a) During step 3(a)ii, the value r{, is set to be rj, = p* —m{;, whereas r} ; is chosen
uniformly at random in M.

i+1

0

(b) During step 3c, the value ¢ is defined by embedding the value 6*T! from the

challenge.
4. Output the same as D(output of R*).

By inspection, depending on each pair (5%, 5%) being distributed either as in a honest execution
of protocol II" between S'(sg, up) and R'(1), or as in an interaction between S'(so, up) and using
uniformly random group elements for the messages of the receiver, the distribution generated
by the reduction is identical either to that of HYB1(\) or to that of HYBa(\). The latter in
particular holds since we are conditioning on the event Wi not happening for all i € ['], which
means that in HYB2(\) the values &SH are computed by running the honest sender S'(sg, ug)
upon input ’FEM- +mo; = (P — mos) + moi = piy.

It follows that D makes a perfect simulation, and thus it retains the same distinguishing
advantage as that of D, which concludes the proof of the lemma. O

Third hybrid. Hybrid HYB3(A) proceeds identically to HYBs(\), except for the following
differences.

1

1. In step 1, the sender additionally sets dgim, = (1,up) and defines & as (déim’,()’&é)

0
LA 50
s Simg (17, g o)-

2. The distribution of the values ﬁf) defined during step 3(a)ii, and of the values 56 defined

during step 3c is changed by evaluating (&Zs—i:’,w b, 5(2')+1) s Sim/R,(o?éim,’O).
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Notice that the latter change is applied only to the first run of R* (i.e., up to the point where
the value ' is set). This means that the distribution of the values (p}, 0f);e[v] is not modified.

Lemma 7. HYBy(\) ~. HYB3(\).

Proof. Let Wi be the same event as W, but over the probability space of HYB3(\). For all
PPT distinguishers D, we can write:

Ap(HYBa(A); HYB3(\)) < Ap(HYBy(N); HYBs(A\)Vi € [¢'] : = W) + Pr[3i € [t] : Ws).

An argument similar to that used in the proof of Lemma 5 shows that Pr[3i € [¢'] : W] is neg-
ligible, hence it suffices to prove that Ap(HYBa()\); HYB3(\)|Vi € [t'] : = W4) is also negligible.
Note that the only difference between the two experiments comes from the distribution of the
values 4 1, (), 57) jelir], with 7% < ¢ being the index corresponding to the round (if any) where
the bit & is set during a run of the protocol: In experiment HYB2()\) these values are generated
through a honest execution of protocol II' between receiver R’ with choice bit fixed to 1 and
sender S’ with inputs (sp, ug), whereas in experiment HYB3()\) they are generated by running
the simulator Simg.

The proof is down to the security of the underlying (2¢' + 1)-round OT protocol I" = (S, R’)
w.r.t. semi-honest receivers (cf. property (a) of Definition 7). By contradiction, assume that
there exists a pair of inputs s, s; € {0,1}*, and a non-uniform PPT distinguisher D, such that
D can tell apart HYB2(\) and HYB3(\) with non-negligible probability. We construct a PPT
distinguisher D that given (s0, 1) attacks semi-honest security of II" as follows:

1. Forward b = 1, 9 = sg, and §; = s1 to the challenger.
2. Receive a challenge (p', &i)ie[t/], 6+ from the challenger.

3. Run experiment HYB3(\) with D, except that the changes below are applied to each
iteration of the first run of the distinguisher:

(a) During step 3(a)ii, the value r( ; is set to be 1, = pt— mg ;» whereas 77 ; is chosen
uniformly at random in M.

(b) During step 3c, the value &éﬂ is defined by embedding the value 6'*! from the
challenge.

4. Output the same as D(output of R*).

By inspection, depending on each pair (p,5*) being distributed either as in a honest execution
of protocol IT" between S'(sg,ug) and R'(1), or as computed by the simulator Simg, with inputs
(1*,1,ug), the distribution generated by the reduction is identical either to that of HYBa(\)
or to that of HYB3(\). The latter in particular holds since we are conditioning on the event
W4 not happening for all i € ['], which means that in HYBa()) the values 6}, are computed by
running the honest sender S'(sg, 1) upon input r{)’i +mo,; = (ph — mo,i) +mo; = Db

It follows that D makes a perfect simulation, and thus it retains the same distinguishing
advantage as that of D, which concludes the proof of the lemma. O

Fourth hybrid. Hybrid HYB4()\) proceeds identically to HYB3(\), except for the following
differences.

1. In step 1, the sender additionally sets 07%,71 =1.
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2. The distribution of the values 7"/1,@' computed during step 3(a)ii is changed by evaluating
(dﬁ,’l,ﬁil) s R/ (ozf?,ll,&l) and by letting 7] ; = ph —ma .
Notice that the latter change is applied only to the first run of R* (i.e., up to the point where

the value b’ is set). This means that the distribution of the values (r;);c[y] is not modified.
The proof of the lemma below is identical to the proof of Lemma 6, and is therefore omitted.

Lemma 8. {HYBg(/\)}AeN e {HYB4()\)})\€N.

Fifth hybrid. Hybrid HYB5(\) proceeds identically to HYB4(\), except for the following
differences.

1

1. In step 1, the sender additionally sets dgi = (1,u;) and defines &y as (déim,J,&%)

s Simg, (14, &

m’,1
Slm 1)

2. The distribution of the values pi defined durlng step 3(a)ii, and of the values &t defined
during step 3c is changed by evaluating (ég , 1 P, Uﬁ ) < Simg, (dZSim’,l)'

Notice that the latter change is applied only to the first run of R* (i.e., up to the point where

the value b’ is set). This means that the distribution of the values (pf, o7);ep is not modified.

The proof of the lemma below is identical to that of Lemma 7, and is therefore omitted.

Lemma 9. {HYB4(\)}aen e {HYB5(\) }ren-

Sixth hybrid. Hybrid HYBg(A) proceeds identically to HYB35()), except for the following
differences.

1. In step 4, the sender additionally sets a%,yl_b =1. If b= 1, set both ag,p = ag,J =1.

2. The distribution of the values r}_ bi computed during step 4a is changed by evaluating

(aiR,yl_b, pl_y) s R/(af?,l1 p 04 _p), and by letting b= pi_y—mi_p;. Ifb= 1, sucha

change is applied on both branches.
The proof of the lemma below is identical to the proof of Lemma 6, and is therefore omitted.

Lemma 10. {HYB5()\)})\€N e {HYBG()\)})\GN.

Seventh hybrid. Hybrid HYB7(\) proceeds identically to HYBg()\), except for the following
differences.

1
1. Instep 4, the sender additionally sets as 1 b

s Simp, (1%, 0, /). I b= L, set both al om0 = (Lyuo), o

ob, o] as

Slm 1 (1 uy) and generate

(g 0 70) <=5 Simpr (14, 0, ), (g 1 01) 5 S'mR’(l O 1)

2. The distribution of the values p} , defined during step 4a, and of the Values aiﬂ, defined
during step 4e is changed by evaluating (¢ Slm 1 P Uier) s Simp, (o Ifb=

1, such changes are applied on both branches.

Qg; ’lb)

The proof of the lemma below is identical to that of Lemma 7, and is therefore omitted.

Lemma 11. {HYBgs(A) }aen ~c {HYB7(\) }ren.
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Simulator. We are now ready to describe the simulator Sim, interacting with the ideal func-
tionality JFgr. The simulator works as follows:

1. Pick ug,u; s M, and let &, 0 = (1,u0), &g, 1 = (1,u), (ag ,0,00) s Simg (14, 62, )
(ag 1, 01) s Simp, (12 NaI 1), and b, by =

2. Upon receiving (’y,-)ie[t/] from R*, sample 31 +s V0(1>‘), r0,1,71,1 s M, and send (81,701,711,
58,61) to R*.

3. Repeat the steps below, for each i € [t']:

(a) Upon receiving a tuple (6;, mo i, m1,;) from R*, let T; = (i, Bi, (0i, (mo5) jefi), (M1,5) jefi))-
Hence:
i. If Vi(T;) = 0, restart R*.
ii. Rewind R* at the beginning of the current iteration, and send a tuple (53}, ;, 71 ;)
where f3] <s Vo(l)‘), 04 = Py — mo; and 1}, = pi — m i, for (agh! ,0,[)6, ~ZH)

s Simp/ (G, ,0) and for (~é+ ,l,pl,aiﬂ) s Simp, (ag, ,1)

(b) Upon receiving a tuple (9, m{m, ml’i) from R*, let T/ = (s, 3., (4., (mOJ)]E[Z] (m 7])]6[4)).
Hence:

i. If Vi(T]) = 0, restart R*. If V1(7}) = 1 and on both branches (mg ;)jci) #
(moyj)je[z] and (mij)JG[Z] # (mld')je[i]? abort.

ii. Attempt to define b’ as the binary value for which (mg,7 ije # (M ) e, but
(M} _y ;)jel) = (Mi-p j)jepi)- If such value is found, halt and go directly to step 4
after setting b = /.

(c) Forward (&, o+ ” L Biv1,mo i41,T1i41) to R*, where B;41 s Vo(1?), and g 41,7141

+—s M.

4. Query For upon input b, obtaining a value s, € {0, 1}*.10 Let O‘slm 1= = (L,u1—p), @, , =

(sp,up) and define o, o} as (aé 1l ot ) s Simg (11, Slm 1 b)s (as,jb, of) «sS' (1%, ag,7b).

Rewind R* to step 2, sample 31 s Vo(1*), 701,711 <5 M, and send (31,701,711, 04, 0%)
to R*.

5. Repeat the steps below, for each i € [t']:

(a) Upon receiving a tuple (8;, mo i, m1,;) from R*, let T; = (i, Bi, (6i, (mo,5) jefis (M15)jepi))-
Hence:
i. If V1(T;) = 0, restart R*.
ii. Rewind R* at the beginning of the current iteration, and send a tuple (BY, 7'6’ )
where 3/ <s Vo(1%), r’l’_bﬂ- =pi_,—mi_pi andr ; s M, for (a Slm 1o b P1 b,azﬁi)
s Sim’R,(agim,’l_b).
(b) Upon receiving a tuple (&7, mq,;,my;) from R*, let T} = (v, B/, (5, (mg ;)jel
(m’l’J)je[i])). Hence:
i. If either V1(T}") = 0, or V1(T}’) = 1 and on both branches (mg ;) ey # (m0,5)jefi
and (m’f,j)je[i] # (maj)jepi), abort.

10Ty case b = L, it is not necessary to query the ideal functionality. In fact, the latter means that in all
iterations of the first run with the adversary, both branches for the C&O protocol are committing, and so they
will be in the second run. Thus, the simulator can simply use the simulation strategy for the committing branch,
which is independent of the sender’s input, on both branches.
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ii. Attempt to define b” as the binary value for which (myy ;)jep # (M ;) jep, but
(mY_y ;)je = (M- 3) jefy- If such value is found, but b” # b, abort.

ii. IF 0" # L, but (my ;) e = (myr,;) jef)-

(c) Forward (Jé—H, Ji—H, ﬂiﬂ, T0,i+1, T1,i4+1) to R*, where 3; 11 < Vo(lf\), and 7o 41, T1,i+1
s M, and further (ag},op™) <sS'(ad, ,,mY, + /), while 0iT} was obtained in
step 5(a)ii above.

6. Return the output of R*.

The distribution of HYB7 () is identical to that of the ideal experiment IDEAL z. ;. re(=) (A, So,
s1,b) for the above defined simulator. This concludes the proof of property (a) in the definition
of receiver-sided simulatability.

4.3.2 Indistinguishability Against a Malicious Sender

We need to show that given the view of a malicious sender it is hard to distinguish whether
he has interacted with a receiver using choice bit b = 0 or b = 1. More precisely, for every
non-uniform PPT malicious sender S* it holds that

{ VIEWFLS*(Z)(/\, 50, 51, 0)} =, { VIEWIF—},S*(Z)(/\, 80, 51, 1)}

A,80,81,% A,50,81,2

where A € N, sg,51 € {0,1}*, and z € {0,1}*, and where VIEWE}S*(Z)(/\,SO,sl,b) is the
distribution of the view of S* (with input sg,s; and auxiliary input z) at the end of a real
execution of IT with the honest receiver R (with input b).

Let HYBy(\,b) = VIEWRS*(Z)()\,SO,sl,b). To show the above, we define the following
hybrid HYB(A,b).

1. The receiver picks for all i € [t'] m1_p; < M. Then, he computes (v, ;) <= Po((m1-s,5) jefi))
and sends (7;)ie[y]-

2. Repeat for each i € [t']: Upon receiving (o), o}, Bi,70,i,71,;) the receiver picks p} <—s M,
sets my,; = pp — b4, computes 0; <3 Py (v, Bi, i, (mb,j)je[i])7 and sends (8;, Mo, 1)

3. The experiment outputs the view of malicious sender S*.

Notice that the output distribution of HYB1(\,b) does not change when we sample my,; <—s M
during the first step and define p; = my; + 73; in the second step.

Lemma 12. For all b € {0,1}, we have that {HYBo(\,b) }aen ~c {HYB1(\, b)}ren-

Proof. By contradiction, assume that there exists a PPT distinguisher D, a bit b € {0, 1}, and
a polynomial p(A) € poly () such that for infinitely many values of A € N:

| Pr[D(HYBo(A,b) = 1] — PrD(HYB; (A, b)) = 1]| > 1/p(A).
We will construct a PPT distinguisher D’ such that

AN . VYie [t’],(aiR,pi) s R(a’{l,oi)
‘P [D (aDa (,0 O )ze[t’]) =1: A (Oz%,di) g D(a6—17pi)
Vi € [t'], p' s M
et [z v

. 1ot Pt ) =1 - . !
v [D (00, (0", i) =15\ (01 o) s D(ay
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We define D’ as follows. Distinguisher D’ invokes D and acts as in the actual protocol, except for
the way he samples the values p’ which are obtained from the challenger after forwarding each
of the values ¢ sent by the malicious sender. Finally, D’ outputs the same as D. It is easy to see
that when p° is generated by R, then D’ simulates HYBg(\,b), and when p’ is picked uniformly
at random he generates HYB1(\,b). Hence, D’ has the same distinguishing advantage as that
of D. This finishes the proof. O

In HYB(\,b) we can sample both messages m; ;, mo; for all i € [n] of the C&O protocol
in the very beginning. Therefore we can use the choice bit indistinguishability to argue that
the receivers choice bit is hidden. This fact is formalized in the lemma below.

Lemma 13. {HYB1(),0) aen ~c {HYB1(A, 1) }ren.

Proof. The proof is by a standard hybrid argument. For each j € [0,¢], let HYB; ;(\,b) be the
hybrid experiment that is identical to HYB1(\,b) except that after sampling (mo ., m1.i)ie[y]
uniformly from M, the receiver defines all commitments (7;)i<; by running the prover P of the
underlying C&O protocol upon input (mj_p,;)i<;, whereas the commitments (7;);~; are defined
by running the prover P upon input (my;)i<j. Observe that HYB; (X, b) = HYB1(\, 1 —b)
and HYB; p(X\,b) = HYB1(\, b); hence, it suffices to show that HYB; j(\,b) ~. HYB1 j11(A,b)
holds for all b € {0,1} and for all j € [0,].

By contradiction, assume that there exists a PPT distinguisher D, a value b € {0,1}, an
index j € [0,#], and a polynomial p(\) € poly (), such that for infinitely many values of A € N:

IP[D(HYB1,j(A, b)) = 1] = P[D(HYB1 j11(A, b)) = 1]| [ = 1/p(}).
We will construct a PPT distinguisher D’ and a PPT malicious verifier V* such that

| [D (P (1, 0)isj1, (1 4,0)isi41,0), V* (1)) = 1]
— P [D/(P((ma)ics1s (i i1 1)V (AN) = 1] | = 1/p(),

where for all ¢ € [¢'], the values mg;,m;; are uniformly sampled by D’ from M. Verifier V*
invokes D and emulates faithfully a run of HYB; j(, b) except that it embeds the commitment
received from the challenger in the value 7,41 which is part of the first message sent to D,
and similarly, after receiving (aé“,a{“,ﬁjﬂ,ro,j+1,r1,j+1) from D, it forwards (j;1 to the
challenger, obtaining a value 0,4 that is used together with (mp;)i<j+1 and (mi_p;)i<jt1 in
order to terminate the execution of the experiment. In the end, D’ outputs the output of D.
Clearly, when the challenger uses committing branch zero, the reduction perfectly simu-
lates HYBj (A, b), and when the challenger uses committing branch 1, the reduction perfectly

simulates HYB j11(A,b). Since t’ € poly()), the statement follows. O

5 Conclusions

We have shown a construction of maliciously secure oblivious transfer (M-OT) protocol from
a certain class of key agreement (KA) and semi-honestly secure OT (SH-OT) protocols that
enjoy a property called strong uniformity (SU), which informally means that the distribution
of the messages sent by one of the parties is computationally close to uniform, even in case the
other party is malicious.

When starting with 2-round or 3-round SUSH-OT or SU-KA, we obtain 4-round M-OT, and
thus, invoking [ |, 4-round maliciously secure MPC from standard assumptions including
low-noise LPN, LWE, Subset Sum, CDH, DDH, and RSA (all with polynomial hardness).

Also, it is a natural question to see whether SU-KA with ¢ > 4 rounds can be instantiated
from concrete assumptions that do not imply PKE.
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A  The ORS Commit-and-Open Protocol

A.1 Commitment Schemes

A non-interactive commitment scheme is an efficient randomized algorithm Commit taking as
input a message m € M together with random coins 7 € {0,1}*, and returning a commit-
ment com. The opening of a commitment com consists of strings (m,r) such that com =
Commit(m; r); we sometimes write Open(m) to denote the randomness that is needed to open
successfully a value com, i.e. com = Commit(m; Open(m)).

As for security, commitment schemes should satisfy two properties called hiding and binding.
Intuitively, the first property says that a commitment does not leak any information on the
committed message; the second property says that it should be hard to open a given commitment
in two different ways. The formal definitions follow.

Definition 8 (Hiding of commitments). A commitment scheme is perfectly (resp., computation-
ally or statistically) hiding, if for all mgy, m; € M it holds that the ensembles { Commit(mg; Uy )} ren
and {Commit(m1;Uy)}ren are identically distributed (resp., computationally or statistically
close), where Uy denotes the uniform distribution over {0, 1}*.

Definition 9 (Binding of commitments). A commitment scheme is computationally binding,
if for all PPT adversaries A there is a negligible function v : N — [0, 1] such that

Pr |Commit(m; ) = Commit(m’;7') Am #m’ = ((m,r),(m/,r")) s A(1Y)| < v(N).

In case the above probability equals zero for all even unbounded adversaries, we say that the
commitment scheme is perfectly binding.

A.2 The ORS Construction

The ORS string C&O protocol Il.g, = (Po, P1, Vo, V1) for string length n is depicted in Fig. 4. It
relies on a statistically binding commitment scheme (Commit, Open) and a linear error detection
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Verifier V(1*) Prover P(mg, m1,b)

my, := G(my),c1_p <5 {0,1}"
Vi€ [n]:
M, ; «$ 2279 st. Vj € Zg :
> My lk, 5] = t[i]
ke{0,1}
o <% Perm(Zg)
My ; <8 22" st Vj € Zg :
> Miilk, 5] = 0i(h)
ke{0,1}
Vp,i := (Mp 4]0, ¥])
visp, = (=110l (M _y s[eq _y [i], #])
v = {Vk,i, Commit(My ;) }refo,1},i€[n]

Y
o
B +s{0,1}"
B
_
my_jp = G(mi_p),cp:=5—c1_p
dl*b S Z:ZL s.t.
D> My lk, di_p[il] = thy_pi]
ke{0,1}
db 8 Z;
dc 1= Open(My, ;[ck[i], ) ke 0,1} ic[n]
da := Open(My, ;[1 — ci[i], d [i]]) ke fo,1},ic[n]
8,mo, m1 9 := (co,c1,do,d1,dc,da)

Ve e {0,1},i € [n] :

tylil = Y My [k, deld]]
ke{0,1}
check if
co+c1=0

mo = G(mg), m; = G(mq)
Vk € {0,1},i € [n] :

(M, ilex[i], #]) = (=1 vy
output 0 iff check fails

Figure 4: The ORS string 1-out-of-2 commit-and-open protocol. Perm(Z,) is the set of per-
mutations over Z,;, and Open(m) denotes the randomness that is needed to open commitment
Commit(m).

code G with minimal distance of at least %(n—i— k), which can be instantiated with, e.g., a Reed-
Solomon code. In what follows, the code G is a public parameter of the protocol, and we write
G(m) to denote an encoding of message m under code G. For simplifying the presentation of
the protocol, we use 1 : Z1 — ZI™" to denote the linear map

(X[O]a s 7X[q - 1]) = (X[l] - X[0]7 s 7X[q - 1] - X[O])7
where x[i] is the i-th entry of a vector x € Z.
Remark 1. In the ORS protocol, the prover does not need to know or fix my_y till the sec-

ond round. Nevertheless, during the committing branch indistinguishability experiment, both

31




messages need to be fized before the first round.

Remark 2. In order to simplify the notation, within this section we shall denote the input bit
of the prover in the 1-out-of-2 C€0 protocol with b (instead of d).

Lemma 14 (Completeness of the ORS protocol). For any € € [0,1), assuming that the com-
mitment scheme Commit is complete with probability at least 1 — €, then the ORS protocol from
Fig. J is complete with probability at least (1 — €)(a+Dn,

Proof. The verifier opens (¢ + 1)n commitments. By completeness, the openings will be correct
with probability (1 — e)(q+1)". In the following, we assume that this is the case. The protocol
will succeed if and only if the checks do not fail, i.e. all of the below equations hold:
cot+ci1=p my = G(mo) m; = G(ml)
Vk € {0,1},4 € [n] : (Mg [ex[i], ¥]) = (1) vy .
By construction, it is easy to see that § = cg+c1. Next we will show that in a honest execution

of the protocol, both mgy and m; will be codewords w.r.t. code G. The entries of my and m;
are computed by the verifier as

migli] == > My[k, dgli]
ke{0,1}
for £ € {0,1}, i € [n]. For branch 1 — b, the vector d € Zg is chosen by the receiver such that
> Myylk, dypli]] = 1in) il
ke{0,1}

holds for all i € [n], where m|_,[i] denotes m_[i] on the receiver’s side. Further, such a vector
d;_; always exists due to the fact that there are ¢ columns in M;_;; and each column sums to
a different value in Z,. For branch b,

S Mylk, dyi]] = ringi]
ke{0,1}

holds for any d;, € Zg. Therefore the vectors mg and m; computed by the verifier are identical to
the vectors m{, and m) computed by the prover, which are in particular chosen to be codewords
w.r.t. code G for messages mg and my.

The last part of the checking procedure checks whether the image of 1 for the two rows of
M is indeed consistent with the transmitted value vy ;. More specifically, Vk € {0,1}, i € [n],

(M ilerli], +]) = (=) vy

must hold. Again, by construction this is true for all ¢ € [n] and k = 1 — b, simply because
Vi_p,; is chosen such that it holds. In case k = b it holds as well, since for each ¢ € [n] all the
columns of My ; sum to My ; or equivalently for all j € Zq, My ,[1, j] =ty ; — M, ;4[0, j]. Due to
this fact, for all ¢ € {0,1}, i € [n]

'l/}(Mb,i[C, *]) = (Mb,’i [67 1} - Mb,’i [67 0}7 s 7Mb,i[ca q— 1] - Mb,’i [cﬂ 0})
= (=My;[l — ¢, 1] + My;[1 —¢,0],..., =Myl — ¢, q — 1] + My;[1 — ¢, 0])
= (=1D)(Mp;[1 — ¢, %))
holds. Further, vy ; := 1(IMj;[0, *]) and therefore
(M e[, ]) = (=1)llvy

holds for any choice of ¢ € {0,1}". This concludes proving completeness. ]
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Lemma 15 (Existence of a committing branch for the ORS protocol). Let k € N be a statistical
security parameter. Assuming that the commitment scheme Commit is statistically binding
except with probability at most €, and that code G has minimal distance %(n + k), then the
ORS protocol from Fig. 4 satisfies the property of existence of a committing branch except with
probability at most 2e + 277,

Proof. We define several hybrids to prove the lemma. In the first hybrid, a malicious prover P*
loses if, for any ¢ € [n] and any k € {0,1}, a partial message myi] differs from 1y [i] and the
opened row of My, ; differs as well, i.e. ci[i] # ¢} [1].

In the second hybrid, the adversary will lose as well if there are more than  positions i € [n]
for which both messages my[i] and m, [¢] differ from the messages mj[i] and m[i] of the second
run.

Hybrid HYB((A): This is the original security game, i.e.

(7, @0) 45 P5(1Y);
67 /6/ s VO(IA)7
(67 mo, ml) A PT(O{(), 6)}
(5/7 m()a mll) AR PT(O‘()a B/)
and the prover wins iff

(Vi(T) =) A (Vi(T) = 1)

Nmo # mg) A (ma # m)).

Hybrid HYB;()\): Identical to HYB((A) except that the prover wins iff
Vi(T) =D A (Vi(T) = 1)

Nmo # mg) A (ma # m))
AVi € [n],k € {0,1} : (mg[i] = m}[i]) V (ckli] = c}i])-

Hybrid HYBs(\): Identical to HYB1(\) except the prover wins iff
(Vi(T) =D A (Vi(T) = 1)
Nmo # mo) A (ma # m)
AVi € [n],k € {0, 1}« (shg[i] = g [i]) V (ck[i] = cili])
Al € [n] | xnoli] # tnhli) A sy [i] # 6T} < .

Claim 8. A (HYBy(\); HYB1()\)) < 2e.

Proof. There is a difference between the two hybrids if and only if there is an i € [n] and
k € {0,1} such that

(i [i] # xi[i]) A (exi] # i)
By the checking procedure of the verifier, we have

(Myi[erli], #]) = (=1 vy,
which implies the two equalities

V[dk[l]] = MM[O, dk[ZH — Mkﬂ‘[o, 0] = —Mkﬂ'[l, dk[ZH + My, Z'[l, 0],
vidg[i]] = My [0, d[i]] — M, 5[0, 0] = =My ,[1, d[i]] + My[1,0].
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Further,
my [Z] = Mk?,i [0, dk[ZH + M]w'[l, dk[z]] = M,m-[(), 0] + M]w'[l, O]

as well as 1y [i] = M ;[0,0] + M ,[1,0]. Since iy [i] # xiny[i], either My ;[0,0] # M; ;[0,0] or
M,i[1,0] # M ,[1, 0] which breaks statistical binding. O

Claim 9. A (HYB1()\); HYB,()\)) < 27*.

Proof. A malicious prover P* is successful in HYB1(\) but not in HYB(\) if for set
S :={i € [n] : wioli] # xiagi] A vy [d] # iy [i] }

the inequality |S| > & holds. To prove the claim, we show this bound on set S.

For any ¢ € [n] and k € {0,1}, either my[i] # m)[i] or c[i] # c,[i] holds. Hence, for all
elements i in S, we necessarily have cy[i] = c([i] and c;[i] = ¢|[i]. This implies that challenge
B = cg + ¢y is identical with 8’ on position 7. Since 4’ is uniformly random, this is only the
case with probability 1/2. If it is not the case, the verifier rejects. Since the size of S has to be
at least k, the probability of this to happen is at most 2715l < 2-#. O

In HYBs(A), the adversary’s choice of mg and m; will both differ from m{, and m] on at
most x positions. On all other positions, my and m; will be identical to my, and m}. Since
there are n — K positions left, at least one of the pairs will be identical on at least %(n - K)
positions. Let this be my.

Due to the minimal distance %(n + k) of code G, there is a unique codeword that matches
these %(n — k) positions. Hence, in both runs, a malicious receiver is committed to 1, = 1y,
because if my, or my is not a codeword, the verifier rejects. Thus, my, = m; decodes to a unique
message my and therefore for all unbounded provers P* experiment HYBg(A) returns 1 with
zero probability, which concludes this proof. O

Lemma 16 (Committing branch indistinguishability of the ORS protocol). Assuming that
the commitment scheme Commit satisfies computational hiding, the ORS protocol from Fig. J
satisfies committing branch indistinguishability.

Proof. To show indistinguishablity, we define a hybrid in which a prover commits to both
messages and both branches will follow the same distribution. Let HYB(\, b) be the experiment
defining committing branch indistinguishability, where the adversary V* acts as a malicious
verifier; our goal is to show that for all PPT V*, we have HYBy(\,0) ~, HYB(\,1). Consider
the hybrid experiment HYB(\, b) where in the first round the prover takes the following actions:

my = G(my),c1_p +s{0,1}", my 4 := G(mq1_y)
dp, di - <sZy
Vi e [n],0 € 0,1} :

My, «sZ2*T s.t. Vj € Zg :

> Mylk, j] = rii]
ke{0,1}

Vi o= P(Mg[0, %])

v = {Vi,i, Commit(My ;) }refo,1},icn]
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and moreover during the third round, the prover acts as follows:

cp,=P0B—cry
dc := Open(My, ;[ck[i], *]) refo,1},ien)
da := Open(My ;[1 — ci[i], di[i]])kefo,1},icn]

Notice that sampling first c;_; and setting ¢; = 8 — c1_p has the same distribution as
cp,c1 <5 {0,1}" conditioned on B = ¢y + ¢1. Therefore both branches have the same distribu-
tion.

Claim 10. For all PPT V*, and for all b € {0,1}, we have that HYBo(\,b) ~. HYB1(\,b).

Proof. We will define n(gq — 1) sub-hybrids. For each i € [n], there are ¢ — 1 commitments in
branch b — 1 that are not opened in the third round. We will switch their committed value
M, _¢, i step by step from the distribution in HY B to the distribution in HYBj, i.e. from being
uniform conditioned on summing to o;(j) to summing to m[i].

We denote the sub hybrids with HYBg o,0(X,b) to HYBg (A, b), where HYBg0,0(A,b) =
HYBO()\, b) and HYBO,nyq()\, b) = HYBl()\, b) We switch from HYBOJ‘J()\, b) to HYBO7i’j+1(>\,
b), and from HYBg; (A, b) to HYBg;1,0(A,0). In the following, we will just show how to
transition from HYBg; j(A,b) to HYBg; j+1(A,b). The other step is done analogously. Further
notice that the the hybrids

HYBg;q, ,ii-1(A,0) and HYBg;q, ,1(A0)

are already distributed identically. Next, we show that for any i* € [n], j* € Z,, and for all
PPT V* and b € {0,1}, hybrids HYBg j<(\,b) and HYB;« j«+1(\,b) are computationally
close, which finishes the proof of the claim.

Recall that an adversary A against the hiding of the commitment scheme chooses two mes-
sages Mg and m1, and receives a commitment com of one of the two messages. We denote this
by com <3 Ocommit(To,m1). Attacker A wins if he successfully determines which message has
been committed to. In what follows, we mostly ignore branch b since it has the same distribution
in both hybrids. In the first round, A simulates the prover as follows.

c1p <51{0,1}",my_p 1= G(myp),d1p <5 Z
V(i < itV (i =i Aj < 5%),0i(5) = tig_yi]
o' s Perm(Z,) s.t. o' (di_p[i*]) = my_p[i*]
Vi > %, 00 (j) == o' ()
Vi > i*, 0; 8% Perm(Zq) s.t. Ji(dlfb[i]) = Ii'll,b[i]
Vi€ [n], My_y; s Z2% st
> Myyilk 4] = 0i(j)

ke{0,1}
Vi < i*, Vi—bpi = w(leb,i[O; *])
Vi > i viyi o= (= 1) (M ieq i), %))
V(i # 1"V j# 55V E # cip[i]), com g j s Commit(M;_y ; [k, j])
come o, 14,5+ <=5 OCommit (0" [57] — Mi_p 3= [co[i"], 57], M1 _p i+ [c1-[i"], 57])

v = {vo,i, V1, Commit(My;), (com; k. ;) re{0,1}.5€lq) Ficn)-
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Since A does not open com;« he can easily simulate the third round:

,leb[i*],j* ?

¢, =F—cip
dc = Ope“<Mk‘,i[Ck [4], *])ke{o,l},z’e[n]
0q = Open(Myi[1 — cx[il, il refo,1} icin)-
If the challenger of the commitment security game commits to message o’ (j*) —M;j_p ;= [cp[i*],
j*], attacker A simulates hybrid HYB = j=(\,b), and otherwise if the challenger commits to

M _pi[c1-p[i*], j*] the attacker simulates hybrid HYBg g j«11(A,b). This concludes the proof
of this claim. ]

Clearly, the distribution of hybrid HYB1 (A, b) is independent of bit b. Therefore, HYB1(\,0) =
HYB;(A,1). This and the previous claim result in the statement of the lemma. O
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