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Abstract
Secure multi-party computation (MPC) allows mutually distrusting parties to compute securely
over their private data. The hardness of MPC, essentially, lies in performing secure multiplica-
tions over suitable algebras.

There are several cryptographic resources that help securely compute one multiplication over
a large finite field, say GF [2n], with linear communication complexity. For example, the compu-
tational hardness assumption like noisy Reed-Solomon codewords are pseudorandom. However, it
is not known if we can securely compute, say, a linear number of AND-gates from such resources,
i.e., a linear number of multiplications over the base field GF [2]. Before our work, we could only
perform o(n) secure AND-evaluations.

Technically, we construct a perfectly secure protocol that realizes a linear number of multi-
plication gates over the base field using one multiplication gate over a degree-n extension field.
This construction relies on the toolkit provided by algebraic function fields.

Using this construction, we obtain the following results. We provide the first construction that
computes a linear number of oblivious transfers with linear communication complexity from the
computational hardness assumptions like noisy Reed-Solomon codewords are pseudorandom, or
arithmetic-analogues of LPN-style assumptions. Next, we highlight the potential of our result for
other applications to MPC by constructing the first correlation extractor that has 1/2 resilience
and produces a linear number of oblivious transfers.
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1 Introduction

Secure multi-party computation [GMW87, Yao82] (MPC) allows mutually distrusting parties
to compute securely over their private data. Even when parties follow the protocols honestly,
but are curious to find additional information about other parties’ private inputs, most
functionalities cannot be securely computed [Bea89, IL89, Kil88, Kus89]. So, we rely on
diverse forms of cryptographic resources to help parties perform computations over their
private data. These cryptographic resources can either be computational hardness assump-
tions [GMW87, IPS08] or physical resources like noisy channels [BMM99, CK88, Kil91, Kil00],
correlated private randomness [Kil00, WW06], trusted resources [CLOS02, IPS08, IPS09],
and tamper-proof hardware [CGS08, DNW08, Kat07, MS08].

In this paper, for the simplicity of exposition of the key ideas, we consider 2-party secure
computation against honest-but-curious adversaries. Suppose two parties are interested
in securely computing a boolean circuit C that uses AND, and XOR, and represent the
input, output, and the intermediate values of the computation in binary. Parties can use
the oblivious transfer (OT) functionality to securely compute C (with perfect security and
linear communication complexity) using the GMW protocol [GMW87]. The OT functionality
takes as input a pair of bits (x0, x1) from the sender and a choice bit b from the receiver,
and outputs the bit xb to the receiver. Notice Alice does not know Bob’s choice bit b, and
Bob does not know Alice’s other bit x1−b. Parties perform m calls to the OT functionality
to securely compute circuits that have m AND gates (and an arbitrary number of XOR
gates) with Θ(m) communication complexity. In this work, we consider secure computation
protocols that have communication complexity proportional to the size of the circuit C.1

Parties can also compute arithmetic circuits that use MUL and ADD gates over large fields
by emulating the arithmetic gates using finite fields. In particular, using efficient bilinear
multiplication algorithms [CC87], parties can securely compute one multiplication over the
finite field GF [2n] by performing m OT calls and linear communication complexity, where
n = Θ(m). In general, using m OT calls, parties can securely compute any circuit C that has
mi arithmetic gates over GF [2ni ], for i ∈ N, such that

∑
imi · ni = Θ(m), which measures

the size of C. Intuitively, the size of the arithmetic circuit C refers to the cumulative size of
representing the elements of the (multiplication) gates in the circuit.

Summarizing this discussion, we conclude that m OT calls help the parties securely
compute arithmetic circuits (over characteristic 2 fields) of size Θ(m) with communication
complexity Θ(m). Several cryptographic resources can implement the m instances of the OT
functionality using a linear communication complexity. For example, there are instantiations
based on polynomial-stretch local pseudorandom generators [IKOS08], the Phi-hiding assump-
tion [IKOS09], LWE [DHRW16], DDH-hard groups [BGI17], and noisy channels [IKO+11].
By composing these protocols, parties can use the corresponding cryptographic resources
and securely compute linear-size circuits using only linear communication.

On the other hand, there are cryptographic resources that directly enable secure multi-
plication over a large extension field using communication that is proportional to the size
of the field. For example, consider the constructions based on Paillier encryption [DJ01,
Gil99, Pai99], LWE [DPSZ12, LPR10], pseudorandomness of noisy random Reed-Solomon
codewords [IPS09, NP06], and arithmetic analogues of well-studied cryptographic assump-
tions [ADI+17]. The key functionality in this context is a generalization of the OT func-

1 Network latency considerations typically motivate the study of MPC protocols with linear communication
complexity.
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tionality, namely the Oblivious Linear-function Evaluation [WW06] (OLE) over a field K,
say K = GF [2n]. The OLE functionality takes as input a pair of field elements (A,B) ∈ K2

from the sender and an element X ∈ K from the receiver, and outputs the linear evaluation
Z = A ·X +B to the receiver. Note that, for x0, x1, b ∈ GF [2], we have xb = (x0 +x1)b+x0,
i.e., OT is a particular instantiation of the OLE functionality. Using (the generalization of)
the GMW protocol, parties can compute one multiplication over K with Θ(lg |K|) communi-
cation complexity. Note that the circuit with one MUL gate (over K) has size lg |K|, so the
communication complexity of the protocol is linear in the circuit size. However, using OLE
over K = GF [2n], can we securely compute boolean circuits such that the communication
complexity is linear in the circuit size?

The question motivated above with the illustrative example of K = GF [2n] and F = GF [2]
generalizes to any K that is an extension field of a constant-size base field F. Before our
work, the best solution securely evaluated size m = o(n) boolean circuits using Θ(n) = ω(m)
communication complexity from one OLE over GF [2n] (refer to Section 1.3 for the state-of-
the-art construction). We present the first solution that securely evaluates size m = Θ(n)
boolean circuits using one OLE over GF [2n] and, thus, has communication complexity linear
in the circuit size. Additionally, we found secure computation of size-m boolean circuits using
linear communication from more diverse cryptographic resources. Because, any cryptographic
resource that securely implements OLE over K with a linear communication complexity, also
enables the secure computation of linear-size boolean circuits with a linear communication
complexity. In particular, we provide the first linear communication protocols for m OTs
from cryptographic hardness assumptions such as the pseudorandomness of noisy Reed-
Solomon codewords [IPS09, NP06] and arithmetic analogues of well-studied cryptographic
assumptions [ADI+17].

1.1 Multiplication Embedding Problem

Our approach to the MPC problem begins with the following combinatorial embedding
problem, which was originally introduced by Block, Maji, and Nguyen [BMN17] in the context
of leakage-resilient MPC. Let F be a finite field. Alice has private input a = (a1, . . . , am) ∈ Fm
and Bob has private input b = (b1, . . . , bm) ∈ Fm. The two parties want Bob to receive the
output c = (c1, . . . , cm) ∈ Fm such that ci = ai · bi, for all i ∈ {1, . . . ,m}.

Alice and Bob have access to an oracle that takes input A ∈ K from Alice and B ∈ K
from Bob, where K is a degree-n extension of the field F, and outputs C = A · B to Bob.
Alice and Bob want to perform only one call to this oracle and enable Bob to compute c.
Note that Alice and Bob perform no additional interactions. Given a fixed value of n and a
particular base field F, how large can m be?

The prior work of Block et al. [BMN17] constructed an embedding that achieved m =
n1−o(1) using techniques from additive combinatorics. This paper, using algebraic function
fields, provides an asymptotically optimal m = Θ(n) construction. Section 1.2 summarizes
our results and a few of its consequences for MPC.

Recent Independent Work. Recently, in an independent work, Cascudo et al. [CCXY18]
(CRYPTO-2018) also studied this embedding problem as reverse multiplication-friendly em-
beddings (RMFE), and provide a constant-rate construction. They use this result to achieve
new amortization results in MPC.
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1.2 Our Contributions
Given two vectors a = (a1, . . . , am) ∈ Fm and b = (b1, . . . , bm) ∈ Fm, we represent their
Schur product as the vector a ∗ b = (a1 · b1, . . . , am · bm). We prove the following theorem.

I Theorem 1 (Embedding Theorem). Let Fq be a finite field of size q, a power of a prime.
There exist constants c∗q ∈ {1, 2, 3, 4, 6}, cq > 0, and n0 ∈ N such that for all n > n0 where c∗q
divides n, there exist (linear) maps E : Fmq → K and D : K→ Fmq , where K is the degree-n
extension of the field Fq, such that the following constraints are satisfied.
1. We have m > cqn, and
2. For all a,b ∈ Fmq , we have: D

(
E(a) · E(b)

)
= a ∗ b.

Intuitively, an oracle that implements one multiplication over a degree-n extension field
K facilitates the computation of m = Θ(n) multiplications over the base field F. For instance,
assuming the base field F = GF [2], our result shows that we can implement m = Θ(n) AND
gates, which are equivalent to the MUL arithmetic gates over the GF [2], by performing only
one call to the functionality that implements MUL over K = GF [2n]. Section 1.3 presents a
summary of the intuition that inspired our construction, and Section 2 provides the required
technical background, and Section 2.2 presents the proof of Theorem 1.

Consequences for MPC. Recall that the OLE functionality over the field K takes as
input (A,B) from the sender and X from the receiver, and outputs Z = A ·X +B to the
receiver. Essentially, OLE over the field K generates an additive secret share (−B,Z) of
the product A ·X. The embedding of Theorem 1 also helps Alice and Bob implement m
independent OLEs over the base field F, represented by the OLE (F)m functionality, using
one OLE over the extension field K.

I Theorem 2. Let F be a finite field, and K be a degree-n extension of F. There exists a
2-party semi-honest secure protocol for the OLE (F)m functionality in the OLE (K)-hybrid,
where m = Θ(n), that performs only one call to the OLE (K) functionality (and no additional
communication).

Section 3 provides the proof of Theorem 2 in the semi-honest setting. Continuing our working
example of F = GF [2], we can implement m = Θ(n) independent OT functionalities by
performing one call to the OLE (K) functionality.

Using Theorem 2, we can implement a linear number of OTs at a constant communication
overhead based on computational hardness assumptions like the pseudorandomness of noisy
Reed-Solomon codewords [IPS09, NP06] and arithmetic analogues of well-studied crypto-
graphic assumptions [ADI+17], which help construct an OLE over large (but finite) fields.
In general, if a cryptographic resource supports the generation of one OLE over K using
Θ(lg |K|) communication complexity, then the following result also applies to that resource.

I Corollary 1. There exists a computationally secure protocol implementing m OTs using
Θ(m) communication based on (any of) the following computational hardness assumptions.
1. Pseudorandomness of noisy random Reed-Solomon codewords [IPS09, NP06],
2. Arithmetic analogues of “LPN-style assumptions” and the existence of polynomial-stretch

local arithmetic PRGs [ADI+17].

In fact, we can leverage efficient bilinear multiplication algorithms [CC87] that incur a
constant communication overhead, to obtain the following result.

I Corollary 2. Let F be a finite field, and K be a degree-n extension of F. Let F1, . . . ,Fk are
finite fields such that Fi is a degree-ni extension of the base field F, for i ∈ {1, . . . , k}. Let C
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be a circuit that uses mi arithmetic gates over the field Fi. If m1n1 +· · ·+ mknk 6 Θ(n),
then there exists a secure protocol for C in the OLE (K)-hybrid that performs only one call to
the OLE (K) functionality.

Section 5 presents Corollary 2 and provides the outline of constant overhead secure com-
putation of OLE (Fi) by performing Θ(ni) calls to the OLE (F) functionality, where Fi is a
degree-ni extension of the base field F. We emphasize that Corollary 2 allows the flexibility
to generate the (randomized version of the) OLE (K) in an offline phase of the computation
without the necessity to fix the representation of the computation itself. We only fix the
base field F and an upper-bound n estimating the size of the circuit C.

Finally, using our embedding, instead of the original multiplication embedding of [BMN17],
we obtain the following result for correlation extractors (cf., [IKOS09] for definitions and an
introduction).

I Corollary 3. For every 1/2 > ε > 0, there exists an n-bit correlated private randomness
such that, despite t = (1/2 − ε)n bits of leakage, we can securely construct m = Θ(εn)
independent OTs from this leaky correlation.

Section 4 presents the details of the definition of correlation extractors and the proof of this
corollary.

1.3 Technical Overview
To illustrate the underlying idea of our embedding, we use the example where |F| = 3n/2,
and K is a degree-n extension of F. Note that in this intuition the size of the base field
implicitly bounds the degree of the extension field K that we can consider. Ideally, our
objective is to obtain multiplication embeddings for small constant-size F for infinitely many
n, which our theorem provides. Nevertheless, we feel that the intuition presented in the
sequel assists the reading of the details of Section 2.

Assume that n is even and m := (n/2− 1). We arbitrarily enumerate the elements in F

F = {f−m, . . . , f−2, f−1, f1, f2, . . . , fn−1}

Suppose the field K is isomorphic to F[t]/π(t), where π(t) ∈ F[t] is an irreducible polynomial
of degree n.

Recall that Alice and Bob have private inputs a = (a1, . . . , am) ∈ Fm and b =
(b1, . . . , bm) ∈ Fm. Alice constructs the unique polynomial A(t) ∈ F[t]/π(t) of degree
< m such that A(f−i) = ai, for all i ∈ {1, . . . ,m} using Lagrange interpolation. Similarly,
Bob constructs the unique polynomial B(t) ∈ F[t]/π(t) of degree < m such that B(f−i) = bi,
for all i ∈ {1, . . . ,m}.

Suppose the two parties have access to an oracle that multiplies two elements of K and
outputs the result to Bob. Upon receiving the inputs A(t) and B(t) from Alice and Bob,
respectively, which correspond to elements in K, the oracle outputs the result C(t) = A(t)·B(t)
to Bob.2 Note that C(t) is the convolution of the two polynomials A(t) and B(t). Moreover,
it has the property that C(f−i) = ai · bi, for all i ∈ {1, . . . ,m}. So, Bob can evaluate the
polynomial C(t) at appropriate places to obtain c = a ∗ b.

2 Note that this is exact polynomial multiplication because the degree of A(t) and B(t) are both < m.
So, the degree of C(t) is < 2m− 1 = n. This observation, intuitively, implies that “ mod π(t)” does
not affect C(t).
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Note that this protocol crucially relies on the fact that the field F has sufficiently many
places {f−1, . . . , f−m} to enable the encoding of a1, . . . , am as the evaluation of polynomials
at those respective places. For constant-size fields F, this intuition fails to scale to large
values of n. So, we use the toolkit of algebraic function fields for a more generalized and
formal treatment of these intuitive concepts and construct these multiplication embeddings
for every base field F.

Prior Best Construction. [BMN17] showed that (lg |F|)1−o(1) OTs could be embedded
into one OLE over F if F has characteristic 2. Overall, this construction yields s(log s)−o(1)

OTs from one OLE over K, where s = lg |K|.
Reduction of our Construction to Chen and Cramer [CC06]. Chen and Cramer

[CC06] construct algebraic geometry codes/secret sharing schemes that have properties
similar to the Reed-Solomon codes, except that these linear codes are over finite fields of
appropriate size. It is not clear how to rely solely on the distance and independence properties
of these codes to get our results. However, the algebraic geometric techniques underlying the
construction of [CC06] and our construction have a significant overlap.

2 Embedding Multiplications

Our goal is to embedm multiplications over Fq using a single multiplication over Fqn such that
m = Θ(n). To do so, we use algebraic function fields over Fq with appropriate parameters.

2.1 Preliminaries
We introduce the basics of algebraic function fields necessary for our construction. For
explicit details we refer the reader to Appendix A, or works such as [Sti09]. Let Fq be a
finite field of q elements, where q is a power of prime. Then an algebraic function field K/Fq
of one variable over Fq is a finite algebraic extension of Fq(x) for some x transcendental over
Fq. Recall that Fq(x) = {f(x)/g(x) : f, g ∈ Fq[x], g 6= 0}. When clear from context, we write
K in place of K/Fq.

Every function field K has an infinite set of “points” called places, denoted by P ∈ P(K).
Every place P has an associated degree degP ∈ N, and for any k ∈ N, the set P(k)(K)
denotes the set of places of degree k. In particular, for every k ∈ N, this set is finite, and the
set P(1)(K) is called the set of rational places. For every element f ∈ K, and any place P ,
we can evaluate f at place P , denoted as f(P ). Then two cases occur: either f has a pole at
P , which we denote as f(P ) =∞; or f is defined at P . For P which is not a pole of f and
degP = k, we have that f(P ) is isomorphic to some element of Fqk . For any two functions
f, g and place P such that P is not a pole of f or g, we have that f(P ) + g(P ) = (f + g)(P ),
f(P ) · g(P ) = (f · g)(P ), and xf(P ) = (x · f)(P ) for any x ∈ Fq. Every place P has an
associated valuation ring OP . A valuation ring O of K is a ring such that Fq ( O ( K and
for every z ∈ K either z ∈ O or z−1 ∈ O.

A divisor D of K is a formal sum of places. Namely, D =
∑
P∈P(K) mPP where mP ∈ Z

and mP = 0 for all but finitely many places P . The set of places P where mP 6= 0 is called
the support of D and is denoted as Supp(D). Any divisor D also has associated degree
degD :=

∑
P∈P(K) mP (degP ) ∈ Z. Note that every place is also a divisor; namely P = 1 ·P .

Such divisors are called prime divisors. For any two divisors D =
∑
mPP and D′ =

∑
nPP ,

we define D +D′ =
∑

(mP + nP )P . We say that D 6 D′ if mP 6 nP for all places P .
For any f ∈ K \ {0}, the principal divisor associated to f is denoted as (f). Informally,

the principal divisor (f) =
∑
aPP for places P , where aP = 0 if P is not a zero or a pole of

f , aP > 0 if P is a pole of f of order aP , and aP < 0 if P is a zero of f of order |aP |. Given
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any divisor D, we can define the Riemann-Roch space associated to D. This space is defined
as L (D) := {f ∈ K : (f) +D > 0} ∪ {0}. The Riemann-Roch space of any divisor D is a
vector space over Fq and has dimension `(D). This dimension is bounded by the degree of
the divisor.

I Imported Lemma 1 ([Cas10, Lemma 2.51]). For any D ∈ Div(K), we have `(D) 6
degD + 1. In particular, if degD < 0, then `(D) = 0.

Every function field K has associated g(K) ∈ N called the genus. In particular,
g(K) := maxD degD − `(D) + 1, where the max is taken over all divisors D of K. When
clear from context, we simply write g := g(K).

2.2 Our Construction
In this section we present our construction that proves Theorem 1. We need three results
to prove our result. First, we need Imported Lemma 1. The second needed result shows
that there always exists a prime divisor of degree n for large enough n. This is given by the
following lemma.

I Imported Lemma 2 ([BCS97, Lemma 18.21]). Let K/Fq be an algebraic function field of
one variable of genus g and degree at least n satisfying n > 2 logq g + 6. Then there exists a
prime divisor of degree n of K/Fq.

Finally, we need the following result.

I Lemma 1. Let V be a subspace of dimension m of Frq. Then there exists a linear mapping
ψ : Frq → Fmq such that ψ is a bijection from V to Fmq and that ψ(x) ∗ ψ(y) = ψ(x ∗ y) for
every x, y ∈ Frq.

Proof. Let G be a generator matrix of V ⊆ Frq, then V = {uG : u ∈ Fmq } and for any
x ∈ V there exists a unique z ∈ Fmq such that x = zG. Let GT denote the columns of G
indexed by set T ⊆ {1, . . . , r} and xT denote the entries of x ∈ Frq indexed by T . Choose
S ⊆ {1, . . . r} such that G \GS has full rank. Note that |S| = r −m. Let G′ = G \GS and
S′ = {1, . . . , r} \ S. Define ψ : Frq → Fmq as ψ(x) = xS′ . Now, for any x, y ∈ Fr, we have
ψ(x) ∗ ψ(y) = xS′ ∗ yS′ = (x ∗ y)S′ = ψ(x ∗ y). Finally, it follows that ψ is a bijection from
V to Fm since G′ has full rank and for any x ∈ V there exists a unique z ∈ Fm such that
x = zG. J

At a high level, the proof of Theorem 1 follows from Figure 1, and the intuition presented
in Section 1.3 carries over, with the main difference being now the base field F here is of
constant size.

Proof of Theorem 1 . We consider two cases for the size q of the field: (1) q is an even
power of a prime and q > 49, and (2) q < 49 or q is an odd power of a prime.

Case 1. Suppose q > 49 and q is an even power of a prime. In this case we choose
c∗q = 1. Suppose there exists an algebraic function field K/Fq of genus g and degree
n > max{2 logq g + 6, 6g}. Let P be a prime divisor of degree one of K/Fq. By Imported
Lemma 2 there exists a prime divisor Q of degree n. Let s = b(n− 1)/2c and consider the
Riemann-Roch space L (2sP ) = {z ∈ K/Fq | (z) + 2sP > 0} and the valuation ring OQ of Q.
The vector space L (2sP ) is contained in OQ, which yields that the map κ : L (2sP )→ Fqn

defined as z 7→ z(Q) is a ring homomorphism. The kernel of κ is L (2sP −Q), which has
dimension 0 by Imported Lemma 1 (since deg(2sP −Q) = 2s− n < 0). This implies that κ
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L (sP )×L (sP )

Fqn × Fqn

κ× κ

Frq × Frq

γ × γ

L (2sP )
φ

Fqn

Frq

κ

γ

∗

mult.

Figure 1 Commutative diagram for performing r pointwise multiplications (the Schur product)
over Fq using one multiplication over Fqn . The map φ represents polynomial multiplication.

is injective. Since L (sP ) ⊆ L (2sP ), the evaluation map κ restricted to L (sP ), represented
by κ|L (sP ), is a homomorphism from L (sP ) to Fqn and is injective.

Let r > s and suppose K/Fq has at least r + 1 distinct prime divisors of degree one. Let
P1, P2, . . . , Pr be distinct prime divisors of degree one other than P . Consider the evaluation
map γ : L (2sP ) → Frq defined by x 7→ (x(P1), x(P2), . . . , x(Pr)) . Since deg(sP −

∑
Pi) =

s−r < 0, the kernel of γ|L (sP ) is L (sP−
∑
Pi), which has dimension 0. Note that γ is a linear

map, therefore by the rank-nullity theorem we have dim(ker(γ|L (sP )))+dim(Im(γ|L (sP ))) =
dim(L (sP )). So dim(Im(γ|L (sP ))) = dim(L (sP )) = s− g + 1 since deg(sP ) = s > 2g − 1.
Let m = s− g + 1 and V = Im(γ|L (sP )). Then V is a vector subspace of Frq of dimension
m. By Lemma 1, there exists a bijection ψ : V → Fmq such that it preserves the point-wise
product operation; that is, ψ(x) ∗ ψ(y) = ψ(x ∗ y) for every x, y ∈ V .

We define E : Fmq → K such that E = κ ◦ γ−1 ◦ ψ−1, and D : Im(κ) ⊆ Fqn → Fmq such
that D = ψ ◦ γ ◦ κ−1, where K = Fqn .

I Claim 1. The maps E and D are well-defined.

Proof. The definitions of E and D have inversion of functions and the fact is that not
all functions have inverse functions. So we need to prove that we can always perform the
inversions γ−1, ψ−1, and κ−1. Since ψ is a bijection from from V to Fmq and γ is also a
bijection from L (sP ) to V , the mapping E is well-defined. Next, since κ is injective it is a
bijection from L (2sP ) to Im(κ). Thus, the mapping D is also well-defined. J

I Claim 2. E and D are linear maps.

This follows directly from the fact that ψ, κ, and γ are all linear maps. Next we will
show that D

(
E(a) · E(b)

)
= a ∗ b for every a,b ∈ Fmq . Let x, y ∈ L (sP ) such that

a = ψ(x(P1), x(P2), . . . , x(Pr)) = ψ(γ(x)) and b = ψ(y(P1), y(P2), . . . , y(Pr)) = ψ(γ(y))
(such x and y always exist by properties of ψ and γ). Note that (x · y) ∈ L (2sP ) because
L (sP ) ·L (sP ) ⊆ L (2sP ), so γ has the following property.

γ(x · y) = ((x · y)(P1), . . . , (x · y)(Pr)) = (x(P1) · y(P1), . . . , x(Pr) · y(Pr))
= (x(P1), . . . , x(Pr)) ∗ (y(P1), . . . , y(Pr)) = γ(x) ∗ γ(y).

Therefore, we have

D(E(a) · E(b)) = D(κ(x) · κ(y)) = D(κ(x · y))
= ψ(γ(x · y)) = ψ(γ(x) ∗ γ(y))
= ψ(γ(x)) ∗ ψ(γ(y)) = a ∗ b.
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Finally, since s = b(n− 1)/2c and n > 6g, we have that m = s − g + 1 = Θ(n). This
completes the proof of Case 1.

Case 2. Suppose q < 49 is a power of prime or q is an odd power of a prime. Then
Figure 2 presents how to choose c∗q such that qc

∗
q is an even power of a prime and is at least

49.

q

q < 49 q > 49

2 4 8 16 32 3 9 27 5 25 q > 7 q = p2a+1 q = p2a

c∗q 6 3 2 2 2 4 2 2 4 2 2 2 1

Figure 2 Table for our choices of c∗q for Theorem 1. The value of c∗q is chosen minimally such
that qc∗q is an even power of a prime and qc∗q > 49.

Let q∗ := qc
∗
q . Suppose that n is sufficiently large and is divisible by c∗q , and that

n/c∗q > max{2 logq∗ g + 6, 6g}. Now q∗ is an even power of a prime and q∗ > 49, so we
are in Case 1 with the following parameters. Let n∗ := n/c∗q , let K/Fq∗ be an algebraic
function field of genus g, and let Q be a prime divisor of degree n∗. Divisor Q exists since
n∗ > 2 logq∗ g + 6. Let s = b(n∗ − 1)/2c and set m = s− g + 1.

Notice for every x ∈ Fq, it holds that x ∈ Fq∗ since Fq is a subfield of Fq∗ . Now consider
any a,b ∈ Fmq . Again we have a,b ∈ Fmq∗ . We define the maps of Case 1 with respect to q∗
and n∗. In particular, we apply the algorithm from Case 1 with appropriate changes to q and
n. Concretely, let κ : L (2sP ) → F(q∗)n∗ , let γ : L (2sP ) → Frq∗ , and let V = Im(γ|L (sP )).
Let ψ : V → Fmq∗ be a bijection defined by Lemma 1. Let E = κ◦γ−1◦ψ−1 and D = ψ◦γ◦κ−1.
Consequently, we have D(E(a) · E(b)) = a ∗ b.

We now have s = b(n∗ − 1)/2c = b(n/c∗q − 1)/2c = Θ(n) and g = Θ(n∗) = Θ(n).
Therefore, we have m = s − g + 1 = Θ(n). This completes the proof of case 2. Finally,
Imported Theorem 1 gives concrete constructions of function fields with degree n prime
divisors and r + 1 distinct rational places, which gives the result. J

2.3 Function Field Instantiation using Garcia-Stichtenoth Curves
In the proof of Theorem 1, we assume that there exists at least r+ 1 distinct places of degree
one and there exists a prime divisor of degree n. We use appropriate Garcia-Stichtenoth
curves to ensure this is indeed the case. Formally, we have the following theorem.

I Imported Theorem 1 (Garcia-Stichtenoth [GS96]). For every q that is an even power of a
prime, there exists an infinite family of curves {Cu}u∈N such that:
1. The number of rational places #Cu(Fq) > qu/2(√q − 1), and
2. The genus of the curve g(Cu) 6 qu/2.

For Theorem 1, we want the following conditions to be satisfied.
1. The number of distinct degree one places is at least r + 1
2. There exists a prime divisor of degree n.

Let q > 49 be an even power of a prime. Then for any u ∈ N, we choose n = qu/2(√q−1) ∈
N and consider the function field given by the curve Cu. By Imported Theorem 1, we have
that the number of rational points #Cu(Fq) > qu/2(√q − 1) = n and g(Cu) 6 qu/2 = n√

q−1 .
In particular, for s =

⌊
n−1

2
⌋
, we have s < n and we can always choose r such that s < r 6 n.
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Setting r = n − 1, we have that the map γ in the proof of Theorem 1 defines a suitable
Goppa code [Gop81] over Fq. With r = n− 1, we in fact have that there are at least r + 1
distinct prime divisors of degree one. Furthermore, we have n > 6g and since g 6 n√

q−1 , so

2 logq g + 6 6 2 logq (n/(√q − 1)) + 6 6 n.

So there exists a prime divisor of degree n by Imported Lemma 2. Finally we have

m = s− g + 1 > b(n− 1)/2c − n/(√q − 1) + 6 = Θ(n).

Note that g > 0, so we also have m 6
⌊
n−1

2
⌋

+ 6 = Θ(n).

2.4 Efficiency
There are efficient algorithms to generate the places on the Garcia-Stichtenoth curves in
Imported Theorem 1. In particular, the evaluation and the interpolation algorithms are
efficient. The existence of such algorithms is one of the primary motivations for using
Garcia-Stichtenoth curves instead of other alternate constructions.

For example, the cost of creating the generator matrices for multiplication-friendly linear
secret sharing schemes as introduced by the seminal work of Chen-Cramer [CC06] corresponds
to the cost of the encoding in our construction. The result of Shum-Aleshnikov-Kumar-
Stichtenoth-Deolalikar [SAK+01], for instance, provides such an efficient encoding algorithm.
The reconstruction/decoding problem has an efficient algorithm using the Berlekamp-Massey-
Sakata algorithm with Feng-Rao majority voting.

3 Realizing OLE (F)m using one ROLE (K)

In this section, we show how to securely realize m independent copies of OLE (F) using
one sample of ROLE (K) (Random-OLE), for field F = Fq and K a degree n extension field
of F. Intuitively, the ROLE (K) functionality is an inputless functionality that samples
A,B,X uniformly and independently at random from K, and outputs (A,B) to one party
and (X,Z) to the other party. This secure realization is achieved by composing two steps.
First, we securely realize one OLE (K) from one ROLE (K) using a standard protocol (cf. the
randomized self-reducibility of the OLE functionality [WW06]). Then, we embed m copies of
OLE (F) into one OLE (K). Formally, we have the following theorem.

I Theorem 3 (Realizing multiple small OLE using one large ROLE). Let F be a field of size q,
a power of a prime. Let K be a degree n extension field of F. There exists a perfectly secure
protocol for OLE (F)m in the ROLE (K)-hybrid that performs only one call to the ROLE (K)
functionality, m = Θ(n), and has communication complexity 3 lg |K|.

3.1 Preliminaries
We introduce the functionalities we are interested in.

Oblivious Linear-function Evaluation. For a field (F,+, ·), oblivious linear-function
evaluation over F, represented by OLE (F), is a two-party functionality that takes as input
(a, b) ∈ F2 from Alice and x ∈ F from Bob and outputs z = ax + b to Bob. In particular,
OLE refers to the OLE (GF [2]) functionality.

Random Oblivious Linear-function Evaluation. For a field (F,+, ·), random obliv-
ious linear-function evaluation over F, represented by ROLE (F), is a correlation that samples
a, b, x ∈ F uniformly and independently at random. It provides Alice the secret share
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rA = (a, b) and provides Bob the secret share rB = (x, z), where z = ax+ b. In particular,
ROLE refers to the ROLE (GF [2]) correlation.

3.2 Securely realizing OLE (K) using one ROLE (K)
The protocol presented in Figure 3 is the standard protocol that implements the OLE (K)
functionality in the ROLE (K)-hybrid with perfect semi-honest security (cf. [WW06]).

Given. Alice has (Ã0, B̃0) and Bob has (X̃0, Z̃0), where Ã0, B̃0, X̃0 are random elements in K and
Z̃0 = Ã0X̃0 + B̃0.

Private Inputs. Alice has private input (A∗, B∗) ∈ K2 and Bob has X∗ ∈ K.

Hybrid. Parties are in ROLE(K)-hybrid.

Interactive Protocol.
1. First Round. Bob sends M = X̃0 −X∗ to Alice.

2. Second Round. Alice sends α = Ã0 +A∗ and β = Ã0M +B∗ + B̃0.

Output Computation. Bob outputs Z∗ = αX∗ + β − Z̃0.

Figure 3 Perfectly secure protocol realizing OLE (K) in the ROLE (K) correlation hybrid.

3.3 Securely realizing OLE (F)m using one OLE (K)
This section presents the realization of Theorem 2. Our goal is to embed m independent
copies of OLE (F) into one OLE (K), where m = Θ(n). More concretely, suppose we are
given an oracle that takes as input A∗, B∗ ∈ K from Alice and X∗ ∈ K from Bob, and
outputs Z∗ = A∗ ·X∗ + B∗ to Bob. Our aim is to implement the following functionality.
Alice has inputs a = (a1, . . . , am) ∈ Fmq and b = (b1, . . . , bm) ∈ Fmq , and Bob has input
x = (x1, . . . , xm) ∈ Fmq . We want Bob to obtain z = (z1, . . . , zm), where z = a ∗ x + b, in
other words, zi = ai · xi + bi for every i ∈ [m]. To do that, we extend our multiplication
embedding with addition using a standard technique like in [BMN17, GIMS15]. We define a
randomized encoding function E2 needed for our protocol as the following.

Definition of the (randomized) encoding function E2

E2 : Fm
q → Fqn . E2(b) returns a uniformly random B ∈ Im(κ) ⊆ Fqn such that D(B) = b; that is,

ψ(γ(κ−1(B))) = b.

We show that the protocol presented in Figure 4 achieves m = Θ(n) and realizes Theorem 2.
Correctness. We argue the correctness of the protocol by showing that D(Z∗) = a∗x+b.

In the protocol, Alice creates A∗ = E(a) and B∗ = E2(b), and Bob creates X∗ = E(x).
Calling the OLE (K) functionality, Bob receives Z∗ = A∗ · X∗ + B∗. In particular, Bob
receives Z∗ = E(a) · E(x) + E2(b). Then Bob computes D(Z∗). Since D is a linear map
and by Theorem 1, we have m = Θ(n) and the following.

D(Z∗) = D (E(a) · E(x) + E2(b)) = D (E(a) · E(x)) +D(E2(b)) = a ∗ x + b

Security. We argue the security for our protocol. The security relies on the observation
that E(a) · E(x) + E2(b) is uniformly distributed over the set

{Z : Z ∈ Im(κ) and D(Z) = z} ,
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Given. Linear maps E and D as in Theorem 1, and the linear map E2 defined above.

Private input. Alice has private inputs a = (a1, . . . , am) ∈ Fm
q and b = (b1, . . . , bm) ∈ Fm

q . Bob has
private input x = (x1, . . . , xm) ∈ Fm

q .

Hybrid. Parties are in the OLE (K)-hybrid.

Private Input Construction.
1. Alice creates private inputs A∗ = E(a) and B∗ = E2(b).
2. Bob creates private input X∗ = E(x).
3. Both parties invoke the OLE (K) functionality with respective Alice input (A∗, B∗) and Bob input

X∗. Bob receives Z∗ = A∗X∗ +B∗ = E(a) · E(x) + E2(b).

Output Decoding. Bob outputs z = D(Z∗) = D(E(a) · E(x) + E2(b)).

Figure 4 Protocol for embedding m copies of OLE (F) into one OLE (K), where K is a degree n
extension field of F.

where z = a ∗ b + c. Note that Alice does not receive any message, so the simulation of
semi-honest corrupt Alice is trivial.

Consider the case that Bob is semi-honest corrupt. In this case, the simulator receives
x from the environment, sends x to the external functionality, and receives z as output. It
samples Z∗ = E2(z), and sends (X∗ = E(x), Z∗, z) as the view of Bob to the environment.

We shall show that this simulation is perfect. Note that E(a) · E(x) ∈ Im(κ). Observe
that E2(b) is a uniform distribution over a coset of E2(0m). Now, E(a) · E(x) + E2(b) is
a uniform distribution over the coset {Z : Z ∈ Im(κ) and D(Z) = z} , where z = a ∗ x + b.
That is, the distribution of E(a) · E(x) + E2(b) is identical to the distribution of E2(z).

3.4 Realization of OLE (F)m in the ROLE (K)-hybrid

The protocol that realizes Theorem 3 is the parallel composition of the protocols presented
in Figure 3 and Figure 4 (Theorem 2). The composition of these protocols in parallel gives
an optimal two-round protocol for realizing OLE (F)m in the ROLE (K)-hybrid with perfect
security and m = Θ(n) by Theorem 1, as desired.

4 Linear Production Correlation Extractors in the High Resilience
Setting

This section provides the necessary background of correlation extractors and proves Corol-
lary 3. In particular, Corollary 3 is achieved by the construction of a suitable correlation
extractor. A correlated private randomness, or correlation in short, is a joint distribution
(RA, RB) which samples shares (rA, rB) according to the distribution and sends secret shares
rA to Alice and rB to Bob. Correlations are given to parties in an offline preprocessing
phase. Parties then use their respective secret shares in an online phase in an interactive
protocol to securely compute an intended functionality. Correlation extractors take leaky
shares of correlations and distill them into fresh randomness to be used to securely compute
the intended functionality. Formally, we define a correlation extractor below.

I Definition 1 (Correlation Extractor [IKOS09]). Let (RA, RB) be a correlated private ran-
domness such that the secret share size of each party is n′-bits. An (n′,m, t, ε)-correlation
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extractor for (RA, RB) is a two-party interactive protocol in the (RA, RB)[t]-hybrid that se-
curely implements m copies of the OT functionality against information-theoretic semi-honest
adversaries with ε-simulation error.

Using this definition we restate Corollary 3 as follows.

I Theorem 4 (Half Resilience, Linear Production Correlation Extractor). For all constants
0 < δ < g 6 1/2, there exists a correlation (RA, RB), where each party gets n′-bit secret
shares, such that there exists a two-round (n′,m, t, ε)-correlation extractor for (RA, RB),
where m = Θ(n′), t = (1/2− g)n′, and ε = 2−(g−δ)n′/2.

The construction of this correlation extractor achieves linear production m = Θ(n′) and 1/2
leakage resilience by composing our embedding (Theorem 1, Theorem 2) with the correlation
extractor of Block, Maji, and Nguyen (BMN) [BMN17]. Prior correlation extractors either
achieved sub-linear production, (significantly) less than 1/2 resilience, or were not round-
optimal.

4.1 Preliminaries
We introduce some useful functionalities and correlations.

Random Oblivious Transfer Correlation. Random oblivious transfer, represented
by ROT, is a correlation that samples x0, x1, b uniformly and independently at random. It
provides Alice the secret share rA = (x0, x1) and provides Bob the secret share rB = (b, xb).

Recall also the Oblivious Linear-function Evaluation and Random Oblivious
Linear-function Evaluation functionalities from Section 3.1. We denote ROLE (GF [2])
by ROLE. Note that ROT and ROLE are identical (functionally equivalent) correlations.

Inner-product Correlation. For a field (K,+, ·) and n′ ∈ N, inner-product correlation
over K of size n′, represented by IP

(
Kn′

)
, is a correlation that samples random rA =

(x0, . . . , xn′−1) ∈ Kn′ and rB = (y0, . . . , yn′−1) ∈ Kn′ subject to the constraint that x0 +y0 =∑n′−1
i=1 xiyi. The secret shares of Alice and Bob are, respectively, rA and rB .

4.2 Realizing Theorem 4
The realization of Theorem 4 is the parallel composition of two protocols. First, we utilize
the BMN ROLE (K) extraction protocol [BMN17, Figure 7]. Informally, the BMN extraction
protocol takes leaky shares of the inner-product correlation over the field K, and securely
extracts one sample of ROLE (K). In particular, the BMN extraction protocol is resilient to
t = (1/2− g)n′ bits of leakage, for any g ∈ (0, 1/2].

Second, we utilize our new embedding protocol of Theorem 3 which produces m copies of
OLE (F) from one ROLE (K), and compose it in parallel with the BMN extraction protocol
for ROLE (K). Previously, the BMN embedding achieved m = (n′)1−o(1) production, whereas
with Theorem 3 we achieve m = Θ(n′) production with the following parameters. We take
F = GF [2] and K = GF[2δn′ ], where n′ and δ are given, η := 1

δ − 1, and n := n′

(η+1) . In
particular, K is a degree-n extension of F, and n here corresponds to the n of Corollary 3.
So m = Θ(n′) = Θ(n). We then take (RA, RB) = IP

(
K1/δ) to be the input correlation for

the BMN extraction protocol.
The BMN extraction protocol is a perfectly secure semi-honest protocol for extracting one

ROLE
(
GF[2δn′ ]

)
in the

(
IP
(
GF[2δn′ ]

1/δ))[t]
-hybrid which is resilient to t = (1/2− g)n′ bits

of leakage, for all 0 < δ < g 6 1/2 (cf. [BMN17, Theorem 1]). Then the parallel composition
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of the protocols of Figure 3 and Figure 4 is a perfectly secure semi-honest protocol for
realizing m copies of OLE (GF [2]) in the ROLE

(
GF[2δn′ ]

)
-hybrid, and m = Θ(n′) = Θ(n).

This proves Theorem 4, and thus Corollary 3.

4.3 Comparison with Prior Works
Correlation extractors were introduced by Ishai, Kushilevitz, Ostrovsky, and Sahai [IKOS09]
as a natural generalization of privacy amplification and randomness extraction. Since the
initial feasibility result of [IKOS09], there have been significant qualitative and quantitative
improvements in correlation extractor constructions. Figure 5 summarizes the current
state-of-the-art of correlation extractors.

Correlation Message Number of OTs Number of Simulation
Description Complexity Produced (m/2) Leakage bits (t) Error (ε)

[IKOS09] ROTn/2 4 Θ(n) Θ(n) 2−Θ(n)

[GIMS15] ROTn/2 2 n/poly lgn (1/4− g)n 2−gn/m

IP
(
Kn/ lg|K|) 2 1 (1/2− g)n 2−gn

[BMN17] IP
(
Kn/ lg|K|) 2 n1−o(1) (1/2− g)n 2−gn

[BGMN18] ROTn/2 2 Θ(n) Θ(n) 2−Θ(n)

ROLE (F)n/2 lg|F| 2 Θ(n) Θ(n) 2−Θ(n)

Our Results IP
(
Kn/ lg|K|) 2 Θ(n) (1/2− g)n 2−gn

Figure 5 A qualitative summary of prior relevant works in correlation extractors and a comparison
to our correlation extractor construction. Here K is a finite field and F is a finite field of constant size.
All correlations have been normalized so that each party gets an n-bit secret share. The parameter
g is defined as the gap to leakage resilience such that t > 0.

Prior to our work, the Block, Gupta, Maji, and Nguyen correlation extractors [BGMN18]
achieve the best qualitative and quantitative parameters. For example, starting with n/2
independent samples of the ROT correlation, they construct the first round-optimal correlation
extractor that produces m = Θ(n) secure ROT samples despite t = (1/4− ε)n bits of leakage,
for any ε > 0. Note that any correlation extractor for n/2 ROT samples can have at most
t = n/4 resilience [IMSW14].

Our correlation extractor is also round optimal. However, the BMN [BMN17] correlation
extractor and our correlation extractor have resilience in the range t/n ∈ [1/4, 1/2). Intuitively,
our correlation extractor is ideal where high resilience is necessary. Our correlation extractor
needs a large correlation, for example, the inner-product correlation over large fields. Contrast
this with the case of BGMN extractor that uses multiple samples of the ROT correlation. To
achieve t = (1/2 − g)n resilience, where g ∈ (0, 1/4], we use the inner-product correlation
over fields of size (roughly) 2gn. Using the multiplication embedding in Theorem 1, our work
demonstrates the feasibility of extracting m = Θ(gn) independent ROT samples when the
fractional resilience is in the range t/n ∈ [1/4, 1/2).

5 Chudnovsky-Chudnovsky Bilinear Multiplication

We discuss the reverse problems of Theorem 1 and Theorem 3. We assume familiarity with
Section 2. First we consider the problem of computing one large field multiplications using
many small field multiplications. This is given by the following theorem.
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I Theorem 5 (Field Extension Multiplication via Pointwise Base Field Multiplication). Let F be
a finite field of size q, a power of a prime. For sufficiently large n, there exists a constant
c′ > 0 and (linear) maps E′ : K→ Fm and D′ : Fm → K, where K is the degree-n extension
of the field F, such that the following constraints are satisfied.
1. We have m > c′n, and
2. For all A,B ∈ K, the following identity holds

D′ (E′(A) ∗ E′(B)) = A ·B

where “∗” is pointwise multiplication over Fm.
Note that since the maps E′ and D′ are linear, the following holds.

I Corollary 4. For all A,B,C ∈ K, we have

D′
(
E′(A) ∗ E′(B) + E′(C)

)
= D′

(
E′(A) ∗ E′(B)

)
+D′

(
E′(C)

)
.

Theorem 5 follows from the results of Chudnovsky-Chudnovsk [CC87]. In particular, they
show that the rank of bilinear multiplication is Θ(n).

I Imported Theorem 2 (Chudnovsky and Chudnovsky [BCS97, Theorem 18.20]). For every
power of a prime q there exists a constant cq such that R(Fqn/Fq) 6 cqn, where R is the
rank of the Fq-bilinear map that is multiplication over Fqn .

The theorem states that if K is a degree n extension of Fq, then the bilinear complexity of
multiplication over K is Θ(n). This result is due to the Chudnovsky-Chudnovsky interpolation
algorithm (cf. Imported Lemma 3) and the following result of Garcia and Stichtenoth.

I Imported Theorem 3 (Garcia and Stichtenoth [GS95], [BCS97, Theorem 18.24]). Let p
be a power of prime, X1 be an indeterminate over Fp2 , and K1 := Fp2(X1). For i > 1 let
Ki+1 := Ki(Zi+1), where Zi+1 satisfies the Artin-Schreier equation Zpi+1 +Zi+1 = Xp+1

m and
Xi := Zi/Xi−1 ∈ Ki (for i > 2). Then Ki/Fp2 has genus gi given by

gi =
{
pi + pi−1 − p i+1

2 − 2p i−1
2 + 1 if i ≡ 1 mod 2,

pi + pi−1 − 1
2p

i
2 +1 − 3

2p
i
2 − p i

2−1 + 1 if i ≡ 0 mod 2,

and |P(1)(Ki/Fp2)| > (p2 − 1)pi−1 + 2p > (p− 1)gi.

I Imported Lemma 3 (Chudnovsky-Chudnovsky Interpolation Algorithm [BCS97, Proposition
18.22]). Let K/Fq be an algebraic function field of one variable of genus g, n > 2 logq g + 6,
and assume that there exist at least 4g + 2n prime divisors of degree one of K/Fq. Then we
have R(Fqn/Fq) 6 3g + 2n− 1.

Imported Lemma 3 gives rise to the commutative diagram of Figure 6 which defines the
interpolation method. This interpolation method implements multiplication over Fqn using r′
pointwise multiplications over Fr′q . This gives that r′ = 3g + 2n− 1 = Θ(n). Setting m = r′

and setting E′ and D′ according to the interpolation algorithm directly yields Theorem 5.
Concretely, we have the maps E′ and D′ defined as follows.

E′ := κ′ ◦ (γ′)−1 D′ := γ′ ◦ (κ′)−1.

Note both κ′ and γ′ are linear maps, so E′ and D′ are also linear maps.
Given E′ and D′ of Theorem 5, we compute the reverse problem of Theorem 3. That is,

we can use multiple small ROLE to realize one large OLE.
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L (s′P )×L (s′P )

Fqn × Fqn

κ′ × κ′

Fr′q × Fr′q

γ′ × γ′

L (2s′P )
φ

Fqn

Fr′q

κ′

γ′

∗

mult.

Figure 6 Chudnovsky-Chudnovsky interpolation algorithm for performing multiplication over
Fqn using r′ pointwise multiplications over Fr′

q , where r′ = Θ(n) and s′ = n+ 2g − 1.

I Theorem 6 (Realizing one large OLE using multiple small ROLE). Let F be a field of size q,
a power of a prime. Let K be a degree n extension field of F. There exists a perfectly secure
protocol for OLE (K) in the ROLE (F)m-hybrid that performs only one call to the ROLE (F)m

functionality, m = Θ(n), and has communication complexity 3m lg |F|.

To realize Theorem 6, we compose two steps in parallel. First we securely realize OLE (F)m

from ROLE (F)m using a standard protocol. Then we use m copies of OLE (F) to implement
a single OLE (K).

5.1 Securely realizing OLE (F)m using ROLE (F)m

The protocol presented in Figure 7 is an extension of the standard protocol that implements
the OLE (F) functionality in the ROLE (F)-hybrid with perfect semi-honest security. In
particular, it is the m parallel composition of the OLE (F) functionality in the ROLE (F)-
hybrid.

Pseudocode of the OLE (F)m protocol
Given. Alice has (a′,b′) and Bob has (x′, z′), where a′,b′,x′ are random elements in Fm
and z′ = a′ ∗ x′ + b′.

Private Inputs. Alice has private input (a∗,b∗) ∈ F2m and Bob has x∗ ∈ Fm.

Hybrid. Parties are in ROLE (F)m-hybrid.

Interactive Protocol.
1. First Round. Bob sends m = x′ − x∗ to Alice.
2. Second Round. Alice sends α = a′ + a∗ and β = a′ ∗m + b∗ + b′.

Output Computation. Bob outputs z∗ = α ∗ x∗ + β − z′.

Figure 7 Perfectly secure protocol realizing OLE (F)m in the ROLE (F)m correlation hybrid.
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5.2 Securely realizing OLE (K) from OLE (F)m

The goal is to use m copies of OLE (F) to compute one OLE (K), where m = Θ(n). Concretely,
suppose we are given an oracle which takes as input a,b ∈ Fm from Alice and x ∈ Fm from
Bob, and outputs z = a ∗ x + b to Bob. Our aim is to implement the following functionality.
Alice has private inputs A ∈ K and B ∈ K, and Bob has input X ∈ K. We want Bob to
obtain Z = AX + B ∈ K. We show that if Alice and Bob use the protocol presented in
Figure 8, we can achieve m = Θ(n). More formally, we have the following lemma.

I Lemma 2 (Performing one large OLE using multiple small OLE). Let K be an extension field
of F of degree n. There exists a perfectly secure protocol for OLE (K) in the OLE (F)m-hybrid
that performs only one call to the OLE (F)m functionality and m = Θ(n).

Given. Two linear maps E′ and D′ as in Theorem 5.

Private input. Alice has private inputs A ∈ K and B ∈ K. Bob has private input X ∈ K.

Hybrid. Parties are in the OLE (F)m-hybrid.

Private Input Construction.
1. Alice creates private inputs a = E′(A) and b = E′(B).
2. Bob creates private inputs x = E′(X).
3. Both parties invoke the the OLE (F)m functionality with respective Alice input (a,b)

and Bob input x. Bob receives z = a ∗ x + b = E′(A) ∗ E′(X) + E′(B).

Output Decoding. Bob outputs Z = D′(z) = D′
(
E′(a) ∗ E′(x) + E′(b)

)
= AX +B.

Figure 8 Protocol for computing one OLE (K) using m copies of OLE (F), where K is a degree n
extension field of F.

Figure 8 realizes Lemma 2. In the protocol, Alice creates a = E′(A) and b = E′(B), and
Bob creates x = E′(X). Calling the OLE (F)m functionality, Bob receives z = a ∗ x + b. In
particular, he receives z = E′(A) ∗E′(X) +E′(B). Bob then computes D′(z). Since D′ is a
linear map and by Theorem 5, we have the following.

D′(z) = D′
(
E′(A) ∗ E′(X) + E′(B)

)
= D′

(
E′(A) ∗ E′(X)

)
+D′

(
E′(B)

)
= AX +B

5.3 Proof of Theorem 6
The protocol which satisfies Theorem 6 is the parallel composition of the protocols presented
in Figure 7 and Figure 8 (Lemma 2). The composition of these protocols in parallel gives
an optimal two-round protocol for realizing OLE (K) in the ROLE (F)m-hybrid with perfect
security and m = Θ(n) by Theorem 5, as desired.

5.4 Prior Work
Chudnovsky-Chudnovsky [CC87] gave the first feasibility result on the bilinear complexity of
multiplication, showing Θ(n) multiplications in Fq suffice to perform one multiplication over
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Fqn . Since then there have been several works on explicit constructions and variants of the
bilinear multiplication algorithms and improved the bounds on the bilinear complexity.

The works of [GS95, GS96, STV92] discuss the construction of appropriate function fields
such that there is sufficient number of rational points for interpolation. Improvement on the
bounds for the bilinear complexity of multiplication and generalizations of the Chudnovsky-
Chudnovsky method appear in [BR04, BBBT17, BPR16, Ran12]. Explicit construction of
multiplication algorithms are discussed in [ABBR15, BBBT17, CÖ10], and in the particular
case of function fields over elliptic curves in [BBT13, Cha12].
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A Detailed Basics of Algebraic Function Fields

We introduce the basics of algebraic function fields in detail which are necessary for our
construction. We follow the conventions of [Sti09, Cas10]. Let Fq be a finite field of q
elements, where q is a power of prime.

I Definition 2 (Algebraic Function Field). An algebraic function field (or function field for
simplicity) K/Fq of one variable over Fq is an extension field K ⊇ Fq and a finite algebraic
extension of Fq(x) for some element x which is transcendental over Fq.

We let F̃q denote the field of constants of K/Fq. In the remainder of this paper, we only
consider function fields K/Fq such that Fq = F̃q. For ease of presentation, we assume Fq to
always be the field of constants and denote K/Fq by K. The simplest example of a function
field is the rational function field. The function field K is called rational if K = Fq(x) for
x ∈ K which is transcendental over Fq. Explicitly, the rational function field K is written as

K = {f(x)/g(x) : f, g ∈ Fq[x], g 6≡ 0} .

I Definition 3 (Valuation Ring). A valuation ring of the function field K is a ring O ⊆ K
such that

Fq ( O ( K, and
for every z ∈ K, either z ∈ O or z−1 ∈ O.

Valuation rings are used to define a more general “point” of a function field, namely places.

I Definition 4 (Places). A place P of K is the maximal ideal of some valuation ring O of
K. We denote the set of all places of K by P(K).

Places uniquely define their corresponding valuation rings, and valuation rings uniquely
define their corresponding places. This is given by the following lemmas.

I Imported Lemma 4 ([Cas10, Proposition 2.5]). A valuation ring O of K is a local ring;
that is, its only maximal ideal is P = O \ O∗, where O∗ denotes the group of units of O.

I Imported Lemma 5 ([Cas10, Proposition 2.8]). Given P ∈ P(K), there is a unique
valuation ring OP such that P is its maximal ideal. This valuation ring is precisely OP =
{f ∈ K : f−1 6∈ P}.

These two imported lemma state that places and valuation rings are interchangeable. In fact,
a place P is the principle ideal of its corresponding valuation ring OP .

I Imported Lemma 6 ([Cas10, Proposition 2.9]). Any valuation ring O of K is a principal
ideal domain. Therefore any place P ∈ P(K) is a principle ideal and can be written in the
form P = tPOP for some tP ∈ P .

Any tP ∈ P which satisfies P = tpOP is called a uniformizing parameter for P . Valuation
rings give rise to valuation maps.

I Definition 5 (Valuation Map). For any P ∈ P(K) with any uniformizing parameter tP ,
define the function vP : K → Z ∪ {∞} by

vP (f) :=


n if 0 6= f ∈ OP , and f = tnPu, u ∈ O∗P
−n if f ∈ K \ OP , and f−1 = tnPu, u ∈ O∗P
∞ if f = 0

The value vP (f) is the valuation of f at P .
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This map is well-defined since OP is a valuation ring and by the following lemma.

I Imported Lemma 7 ([Cas10, Proposition 2.12]). For any P ∈ P(K) and uniformizing
parameter tP for P , every element 0 6= f ∈ OP can be uniquely written as f = tnPu for n ∈ N
and u ∈ O∗P . Furthermore, for any 0 6= f ∈ OP and any two uniformizing parameters tP
and t′P of P , if f = tnPu = (t′P )n′u′, then n′ = n.

Note that Definition 5 gives an equivalent definition of a valuation ring OP for place P .

I Imported Theorem 4 ([Sti09, Theorem 1.1.13]). For any P ∈ P(K), we have OP = {z ∈
K : vP (z) > 0}.

We can now define evaluation of a function at a place.

I Definition 6 (Evaluation at a Place). For any P ∈ P(K), the residue class field of P is
KP := OP /P . The evaluation of f ∈ OP at P is its residue class in KP and is denoted by
f(P ). For f 6∈ OP , its evaluation at P is defined to be f(P ) =∞.

In other words, evaluation of a function f at place P yields the residue class of f in KP . In
fact, KP is isomorphic to a finite field extension of Fq, where the degree of the extension
depends on the place P .

I Imported Lemma 8 ([Cas10, Proposition 2.17]). Let P ∈ P(K). Then Fq ⊆ OP and
Fq∩P = {0}. Hence there is a canonical embedding of Fq into KP , so Fq can be considered as
a subfield of KP . Furthermore the degree |KP : Fq| of the field extension satisfies |KP : Fq| 6
|K : Fq(x)| <∞, for any 0 6= x ∈ P .

In particular, if |KP : Fq| = a, then we have KP
∼= Fqa and f(P ) ≡ α ∈ Fqa for f ∈ OP .

Imported Lemma 8 naturally defines the degree of a place P .

I Definition 7 (Degree of a place). For every P ∈ P(K), the degree of P is degP := |KP : Fq|.

We denote the set of all places of degree k by P(k)(K). Note that the set P(1)(K) is called
the set of rational places (or rational points). Places are used to define the divisors of a
function field K.

IDefinition 8 (Divisors). A divisorD of a function fieldK is a formal sumD =
∑
P∈P(K) mPP

where mP ∈ Z and mP = 0 except for a finite number of places P ∈ P(K). We define
Supp(D) := {P ∈ P(K) : mP 6= 0} to be the support of divisor D. The set of all divisors of
K is denoted Div(K).

Note that from Definition 8, it is clear that every place P ∈ P(K) is also a divisor, namely
P = 1 · P ∈ Div(K). Such divisors are called prime divisors. Any divisor D ∈ Div(K) has
corresponding degree depending on places P ∈ Supp(D).

I Definition 9 (Degree of a Divisor). For any divisor D =
∑
P∈P(K) mPP , the degree of D is

degD :=
∑
P∈P(K) mP (degP ) ∈ Z.

This definition is consistent with the degree of place P for the case where divisor D is also a
place. We can naturally define the summation of two divisors.

I Definition 10 (Sum of Divisors). Let D =
∑
P∈P(K) mPP and D′ =

∑
P∈P(K) nPP be two

divisors. Then D +D′ :=
∑
P∈P(K)(mP + nP )P .

We use Definition 10 to define a partial ordering of divisors.
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I Definition 11 (Divisor Partial Ordering). For divisors D =
∑
P∈P(K) mPP and D′ =∑

P∈P(K) nPP , we say that D 6 D′ if mP 6 nP for all P ∈ P(K). We say that a divisor D
is effective (or positive) if D > 0.

Every f ∈ K \ {0} can be associated with a divisor by the following theorem.

I Imported Theorem 5 ([Cas10, Theorem 2.32]). Every f ∈ K \ {0} has finitely many zeros
and poles. That is, we have vP (f) = 0 except for finitely many P ∈ P(K).

We now define the divisor associated to f ∈ K \ {0}.

I Definition 12 (Principal Divisors). For any f ∈ K \ {0}, the divisor

(f) :=
∑

P∈P(K)

vP (f)P

is the principal divisor associated to f . We let Prin(K) := {D ∈ Div(K) : ∃f ∈ K \{0}, D =
(f)} denote the set of principal divisors.

Associating every nonzero function f with divisor (f) allows us to define the Riemann-Roch
space.

I Definition 13 (Riemann-Roch Space). For a divisor G ∈ Div(K), the Riemann-Roch space
associated with G is defined as

L (G) := {f ∈ K : (f) +G > 0} ∪ {0}.

Note that L (G) is a vector space over Fq for any G ∈ Div(K). We denote the dimension
of L (G) over Fq by `(G). In particular, the dimension of the Riemann-Roch space is bounded
by the degree of its divisor, given by Imported Lemma 1 and the following lemma.

I Imported Theorem 6 (Riemann’s Theorem [Cas10, Theorem 2.53]). There exists M ∈ Z
such that for all D ∈ Div(K), we have `(D) >M + degD.

We now define the genus of the function field K.

I Definition 14 (Genus). The genus of the function field K is defined as

g(K) := max
D∈Div(K)

degD − `(D) + 1 ∈ N.

When clear from context, we let g := g(K).

The genus always exists and is a non-negative integer by Imported Theorem 6. Next we
define canonical divisors. First we need the following definition.

I Definition 15 (Space of Differential Forms). The space of differential forms Ω(K) of K is
the K-vector space generated by the symbols df , f ∈ K, such that

d(f + g) = df + dg for all f, g ∈ K,
d(fg) = f · dg + df · g for all f, g ∈ K,
df = 0 for all f ∈ Fq.

Now we can associate a divisor to any w ∈ Ω(K) \ {0}.

I Definition 16 (Canonical Divisor). For any w ∈ Ω(K)\{0}, the canonical divisor associated
to w is the divisor

(w) :=
∑

P∈P(K)

vP (w)P.
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Canonical divisors are well-defined by the following lemma.

I Imported Lemma 9 ([Cas10, Proposition 2.62]). For w ∈ Ω(K) \ {0}, we have vP (w) = 0
for all but a finite number of places P ∈ P(K).

Next we state an important result about canonical divisors.

I Imported Theorem 7 ([Cas10, Theorem 2.65]). For any canonical divisor W ∈ Div(K),
we have degW = 2g − 2 and `(W ) = g.

We have the tools in place to state the Riemann-Roch Theorem.

I Imported Theorem 8 (Riemann-Roch Theorem [Sti09, Theorem 1.5.15]). Let W be a
canonical divisor of K/Fq. Then for each divisor A ∈ Div(K),

`(A) = degA+ 1− g + `(W −A).
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