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Abstract

We consider a scenario where a server holds a huge database that it wants to make accessible
to a large group of clients. After an initial setup phase, clients should be able to read arbitrary
locations in the database while maintaining privacy (the server does not learn which locations
are being read) and anonymity (the server does not learn which client is performing each read).
This should hold even if the server colludes with a subset of the clients. Moreover, the run-time
of both the server and the client during each read operation should be low, ideally only poly-
logarithmic in the size of the database and the number of clients. We call this notion Private
Anonymous Data Access (PANDA).

PANDA simultaneously combines aspects of Private Information Retrieval (PIR) and Oblivi-
ous RAM (ORAM). PIR has no initial setup, and allows anybody to privately and anonymously
access a public database, but the server’s run-time is linear in the data size. On the other hand,
ORAM achieves poly-logarithmic server run-time, but requires an initial setup after which only
a single client with a secret key can access the database. The goal of PANDA is to get the best
of both worlds: allow many clients to privately and anonymously access the database as in PIR,
while having an efficient server as in ORAM.

In this work, we construct bounded-collusion PANDA schemes, where the efficiency scales
linearly with a bound on the number of corrupted clients that can collude with the server, but is
otherwise poly-logarithmic in the data size and the total number of clients. Our solution relies
on standard assumptions, namely the existence of fully homomorphic encryption, and combines
techniques from both PIR and ORAM. We also extend PANDA to settings where clients can
write to the database.
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1 Introduction

As individuals and organizations increasingly rely on third party data stored remotely, there is
often a need to access such data both privately and anonymously. For example, we can envision a
service that has a large database of medical conditions, and allows clients to look up their symptoms;
naturally clients do not want to reveal which symptoms they are searching for, or even the frequency
with which they are performing such searches.

To address this, we consider a setting where a server holds a huge database that it wants to
make accessible to a large group of clients. The clients should be able to read various arbitrary
locations in the database while hiding from the server which locations are being accessed (privacy),
and which client is performing each access (anonymity). We call this Private Anonymous Data
Access (PANDA).

In more detail, PANDA allows some initial setup phase, after which the server holds an encoded
database, and each client holds a short key. The setup can be performed by a trusted third party,
or via a multi-party computation protocol. After the setup phase, any client can execute a read
protocol with the server, to retrieve an arbitrary location within the database. We want this
protocol to be highly efficient, where both the server’s and client’s run-time during the protocol
should be sub-linear (ideally, poly-logarithmic) in the database size and the total number of clients.
For security, we consider an adversarial server that colludes with some subset of clients. We want
to ensure that whenever an honest client performs a read access, the server learns nothing about
the location being accessed, or the identity of the client performing the access beyond the fact that
she belongs to the group of all honest clients. For example, the server should not learn whether
two accesses correspond to two different clients reading the same location of the database, or one
client reading two different database locations.1

We call the above a read-only PANDA, and also consider extensions that allow clients to write
to the database, which we discuss below in more detail.

Connections to PIR and ORAM. PANDA combines aspects of both Private Information
Retrieval (PIR) [CGKS95, KO97] and Oblivious RAM (ORAM) [GO96]. Therefore, we now give
a high-level overview of these primitives, their goals, and main properties.

In a (single-database) PIR scheme [KO97], the server holds a public database in the clear.
The scheme has no initial setup, and anybody can run a protocol with the server to retrieve an
arbitrary location within the database. Notice that since there are no secret keys that distinguish
one client from another, a PIR scheme also provides perfect anonymity. However, although the
communication complexity of the PIR protocol is sub-linear in the data size, the server’s run-time is
inherently linear in the size of the data. (Indeed, if the server didn’t read the entire database during
the protocol, it would learn something about the location being queried, since it must be among
the ones read.) Therefore, PIR does not provide a satisfactory answer to the PANDA problem,
where we want sub-linear efficiency for the server.

In an ORAM scheme, there is an initial setup after which the server holds an encoded database,
and a client holds a secret key. The client can execute a protocol with the server to privately read
or write to arbitrary locations within the database, and the run-time of both the client and the
server during each such protocol is sub-linear in the data size. However, only a single client in
possession of a secret key associated with the ORAM can access the database. Therefore, ORAM
is also not directly applicable to the PANDA problem, where we want a large group of clients to

1We assume clients have an anonymous communication channel with the server (e.g., using anonymous mix
networks [Cha03] such as TOR [DMS04] or [BG12, LPDH17]).
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access the database.

1.1 Prior Work Extending PIR and ORAM

Although neither PIR nor ORAM alone solve the PANDA problem, several prior approaches have
considered extensions of PIR and ORAM, aimed to overcome their aforementioned limitations. We
discuss these approached, and explain why they do not provide a satisfactory solution for PANDA.

ORAM with Multiple Clients. As mentioned above, in an ORAM scheme only a single client
can access the database, whereas in PANDA we want multiple clients to access it. There are several
natural ways that we can hope to extend ORAM to the setting of multiple clients.

The first idea is to store the data in a single ORAM scheme, and give all the clients the secret
key for this ORAM. Although this solution provides anonymity (all clients are identical) it does
not achieve privacy; if the server colludes with even a single client, the privacy of all other clients
is lost.

A second idea is to store the data in a separate ORAM scheme for each client, and give the
client the corresponding secret key. Each client then accesses the data using her own ORAM. This
achieves privacy even if the server colludes with a subset of clients, but does not provide anonymity
since the server sees which ORAM is being accessed.2

The third idea is similar to the previous one, where the data is stored in a separate ORAM
scheme for each client, and the client accesses the data using her own ORAM. However, unlike the
second idea, the client also performs a “dummy” access on the ORAM schemes of all other clients
to hide her identity. This requires a special ORAM scheme where any client without a secret key
can perform a “dummy” access which looks indistinguishable from a real access to someone that
does not have the secret key. It turns out that existing ORAM schemes can be upgraded relatively
easily to have this property (using re-randomizable encryption). Although this solution achieves
privacy and anonymity, the efficiency of both the server and the client during each access is linear
in the total number of clients.

Lastly, we can also store the data in a single ORAM scheme on the server, and distribute the
ORAM secret key across several additional proxy servers. When a client wants to access a location
of the data, she runs a multiparty computation protocol with the proxy servers to generate the
ORAM access. Although this solution provides privacy, anonymity and efficiency, it requires having
multiple non-colluding servers, whereas our focus is on the single server setting.

Variants of the above ideas have appeared in several prior works (e.g., [MBN15, MMRS15,
KPK16, BHKP16, ZZQ16]) that explored multi-client ORAM. In particular, the work of Backes
et al. [BHKP16] introduced the notion of Anonymous RAM (which is similar to our notion of
secret-writes PANDA, discussed below), and proposed two solutions which can be seen as variants
of the third and fourth ideas discussed above. Nevertheless, despite much research activity, no prior
solution simultaneously provides privacy, anonymity and efficiency in the single-server setting.

Doubly Efficient PIR. As noted above, the server run-time in a PIR protocol is inherently
linear in the data size, whereas in PANDA we want the run time of both the client and the server
to be sub-linear. However, it may be possible to get a doubly efficient PIR (DEPIR) variant in
which the server run-time is sub-linear, by relaxing the PIR problem to allow a pre-processing
stage after which the server stores an encoded version of the database. This concept was first

2Also, the server storage in this solution grows proportionally to the number of clients times the data size.
Reducing the server storage, even without anonymity, is an interesting relaxation of PANDA which we explore in
Appendix 5.3.
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proposed by Beimel, Ishai and Malkin [BIM00], who showed how to construct information-theoretic
DEPIR schemes in the multi-server setting, with several non-colluding servers. Two recent works,
of Canetti et al. [CHR17] and Boyle et al. [BIPW17], give the first evidence that this notion may
even be achievable in the single-server setting. Concretely, they consider DEPIR schemes with a
pre-processing stage which generates an encoded database for the server, and a key that allows
clients to query the database at arbitrary locations. They distinguish between symmetric-key and
public-key variants of DEPIR, depending on whether the key used to query the database needs to be
kept secret or can be made public. Both works show how to construct symmetric-key DEPIR under
new, previously unstudied, computational hardness assumptions relating to Reed-Muller codes. The
work of [BIPW17] also shows how to extend this to get public-key DEPIR by additionally relying
on a heuristic use of obfuscation. Unfortunately, both of the above assumptions are non-standard,
poorly understood, and not commonly accepted.

In relation to PANDA, symmetric-key DEPIR suffers from the same drawbacks as ORAM,
specifically, only a single client with a secret key can access the database.3 If we were to give
this key to several clients, then all privacy would be lost even if only a single client colludes with
the server. On the other hand, public-key DEPIR immediately yields a solution to the PANDA
problem, at least for the read-only variant. Moreover, it even has additional perks not required
by PANDA, specifically: the set of clients does not need to be chosen ahead of time, anybody
can use the system given only a public key, and the server is stateless. Unfortunately, we currently
appear to be very far from being able to instantiate public-key DEPIR under any standard hardness
assumptions.

1.2 Our Results

Read-Only PANDA. In this work, we construct a bounded-collusion PANDA scheme, where we
assume some upper bound t on the number of clients that collude with the server. The client and
server efficiency scales linearly with t, but is otherwise poly-logarithmic in the data size and the total
number of clients. In particular, our PANDA scheme allows for up to a poly-logarithmic collusion
size t while maintaining poly-logarithmic efficiency for the server and the client. Our construction
relies on the generic use of (leveled) Fully Homomorphic Encryption (FHE) [RAD78, Gen09] which
is in turn implied by the Learning With Errors (LWE) assumption [Reg09]. Our basic construction
provides security against a semi-honest adversary, and we also discuss how to extend this to get
security in the fully malicious setting. In summary, we get the following theorem.

Theorem 1.1 (Informal statement of Theorem 3.12). Assuming the existence of FHE, there exists a
(read-only) PANDA scheme with n clients, t collusion bound, database size L and security parameter
λ such that, for any constant ε > 0, we get:

• The client/server run-time per read operation is t · poly(λ, logL).

• The server storage is t · L1+ε · poly(λ, logL).

PANDA with Writes. We also consider extensions of PANDA to a setting that supports writes
to the database. If the database is public and shared by all clients, then the location and content
of write operations is inherently public as well. However, we still want to maintain privacy and
anonymity for read operations, as well as anonymity for write operations. We call this a public-writes

3The main difference between symmetric-key DEPIR and ORAM is that in the former the server is stateless and
only stores a static encoded database, while in the latter the server is stateful and its internal storage is continuously
updated after each operation. In PANDA, we allow the server to be stateful.
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PANDA and it may, for example, be used to implement a public message board where clients can
anonymously post and read messages, while hiding from the server which messages are being read.
We also consider an alternate scenario where each client has her own individual private database
which only she can access. In this case we want to maintain privacy and anonymity for both the
reads and writes of each client, so that the server does not learn the content of the data, which
clients are accessing their data, or what parts of their data they are accessing. We call this a
secret-writes PANDA.4 We show the following results.

Theorem 1.2 (Informal statement of Theorems 4.4 and 4.9). Assuming the existence of FHE,
there exists a public-writes PANDA with n clients, t collusion bound, database size L and security
parameter λ such that, for any constant ε > 0, we get:

• The client/server run-time per read operation is t · poly(λ, logL).

• The client run-time per write is O(logL), and the server run-time is t · Lε · poly(λ, logL).

• The server storage is t · L1+ε · poly(λ, logL).

The same results as above hold for secret-writes PANDA, except that the client run-time per write
increases to t · poly(λ, logL), and L now denotes the sum of the initial database size and the total
number of writes performed throughout the lifetime of the system.

Extensions. We also consider the PANDA problem in stronger security models in which the
adversary can adaptively choose the access pattern, and maliciously corrupt parties. Our construc-
tions are also secure in the adaptive setting. Moreover, the read-only PANDA scheme is secure
against maliciously-corrupted clients, and a variant of it (which employs Merkle hash trees and
succinct interactive arguments of knowledge) is secure if additionally the server is maliciously cor-
rupted. Finally, we discuss modifications of our PANDA with writes schemes that remain secure
in the presence of malicious corruptions. See Section 5 for further details.

1.3 Our Techniques

We now give a high-level overview of our PANDA constructions. We start with the read-only
setting, and then discuss how to enable writes.

1.3.1 Read-Only PANDA

Our construction relies on Locally Decodable Codes (LDCs) [KT00], which have previously been
used to construct multi-server PIR [CGKS95, WY05]. We first give an overview of what these are,
and then proceed to use them to build our scheme in several steps.

Locally Decodable Codes (LDCs). An LDC consists of a procedure that encodes a message
into a codeword, and a procedure that locally decodes any individual location in the message by
reading only few locations in the codeword. We denote the locality by k. An LDC has s-smoothness
if any s out of k of the codeword locations accessed by the local decoder are uniformly random
and independent of the message location being decoded. Such LDCs (with good parameters)

4Note that in the read-only setting, having a scheme for a shared public database is strictly more flexible than a
scheme for individual private databases. We can always use the former to handle the latter by having clients encrypt
their individual data and store it in a shared public database. However, once we introduce writes, these settings
become incomparable.
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immediately give information-theoretic multi-server doubly-efficient PIR without any keys [BIM00]:
each of the k servers holds a copy of the encoded database, and the client runs the local decoding
procedure by reading each of the k queried codeword locations from a different server. Even if
s out of k servers collude, they don’t learn anything about the database location that the client
is retrieving.5 LDCs with sufficiently good parameters for our work can be constructed using
Reed-Muller codes [Ree54, Mul54].

Initial Idea: LDCs + ORAM. Although LDCs naturally only give a multi-server PIR, our
initial idea is to think of these as “virtual servers” which will all be emulated by a single real server
by placing each virtual server under a separate ORAM instance. Each client is assigned a random
committee consisting of a small subset of these virtual servers, for which she gets the corresponding
ORAM keys. When the adversary corrupts a subset of the clients, it gets all of their ORAM keys,
and can therefore be seen as corrupting all the virtual servers that are on the committees of these
clients. Nevertheless, we can ensure that the committee of any honest client has sufficiently few
corrupted virtual servers for LDC smoothness to hide the client’s queries.

In more detail, we think of having k′ different virtual servers, for some k′ which is sufficiently
larger than the locality k of the LDC. For each virtual server, we choose a fresh ORAM key, and
store an LDC encoding of the database under this ORAM. Each client is assigned to a random
committee consisting of k out of k′ of these virtual servers, for which she gets the corresponding
ORAM keys. To read a location of the database, the client runs the LDC local decoding algorithm,
which requests to see k codeword locations. The client then reads each of the k codeword locations
from a different virtual server on her committee, by using the corresponding ORAM scheme. Notice
that an adversary that corrupts some subset of t clients, thus obtaining all of their ORAM keys, can
be seen as corrupting all the virtual servers on their committees. We can choose the parameters to
ensure that the probability of the adversary corrupting more than s out of k of the virtual servers
on the committee of any honest client is negligible (specifically, setting k′ = tk2 and s to be the
security parameter). As long as this is the case, our scheme guarantees privacy, since the server
only learns at most s out of the k codeword locations being queried (by the security of ORAM), and
these locations reveal nothing about the database location being read (by the LDC smoothness).

Indeed, although the above solution already gives a non-trivial multi-client ORAM with privacy
and low server storage (see further discussion in Appendix 5.3), it does not provide any anonymity.
The problem is that each client only accesses the k out of k′ ORAM schemes belonging to her
committee, and doesn’t have the keys needed to access the remaining ORAM schemes. Therefore,
the server can distinguish between different clients based on which of the ORAMs they access.

One potential idea to fix this issue would be for the client to make some “dummy” accesses
to the k′ − k remaining ORAM schemes (which are not on her committee) without knowing the
corresponding keys. Most ORAM schemes can be easily modified to enable such “dummy” accesses
without a key, that look indistinguishable from real accesses to a distinguisher that doesn’t have
the key. Unfortunately, in our case the adversarial colluding server does have the keys for many of
these ORAM schemes. Therefore, to make this idea work in our setting, we would need an ORAM
where clients can make a “smart dummy” access without a key that looks indistinguishable from a
real access to a random location even to a “smart” distinguisher that has the key. The square-root
ORAM scheme [Gol87, GO96] can be modified to have this property, but the overall client/server
efficiency in the final solutions would be at least square-root of the data size. Unfortunately, more

5In standard PIR schemes, the servers hold the original database, and each query is answered by computing the
requested codeword symbol on the fly. However, if the codeword size is polynomial, then the servers can compute the
codeword first in a preprocessing phase, and then use the pre-computed codeword to answer each query in sub-linear
time.
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efficient ORAM schemes with poly-logarithmic overhead (such as hierarchical ORAM [Ost90, GO96]
or tree-based ORAM [SvDS+13]) do not have this property, and it does not appear that they could
be naturally modified to add it. Instead, we take a different approach and get rid of ORAM
altogether.

Bounded-Access PANDA: LDCs + Permute. Our second idea is inspired by the recent
works of Canetti et al. [CHR17] and Boyle et al. [BIPW17] on DEPIR, as well as earlier works
of Hemenway et al. [HO08, HOSW11]. Instead of implementing the virtual servers by storing the
LDC codeword under an ORAM scheme, we do something much simpler and use a Pseudo-Random
Permutation (PRP) to permute the codeword locations. In particular, for each of the k′ virtual
servers we choose a different PRP key, and use it to derive a different permuted codeword. Each
client still gets assigned a random committee consisting of k out of k′ of the virtual servers, for
which she gets the corresponding PRP keys. To retrieve a value from the database, the client runs
the LDC local decoding algorithm, which requests to see k codeword locations, and reads these
locations using the virtual servers on her committee by applying the corresponding PRPs. She also
reads uniformly random locations from the k′ − k virtual servers that are not on her committee.

In relation to the first idea, we can think of the PRP as providing much weaker security than
ORAM. Namely, it reveals when the same location is read multiple times, but hides everything else
about the locations being read (whereas an ORAM scheme even hides the former). On the other
hand, it is now extremely easy to perform a “smart dummy” access (as informally defined above)
by reading a truly random location in the permuted codeword, which is something we don’t know
how to do with poly-logarithmic ORAM schemes.

It turns out that this scheme is already secure if we fix some a-priori bound B on the total
number of read operations that honest clients will perform. We call this notion a bounded-access
PANDA. Intuitively, even though permuting the codewords provides much weaker security than
putting them in an ORAM, and leaks partial information about the access pattern to the codeword,
the fact that this access pattern is sampled via a smooth LDC ensures that this leakage is harmless
when the number of accesses is sufficiently small. More specifically, our proof follows the high-level
approach of Canetti et al. [CHR17], who constructed a bounded-access (symmetric-key) DEPIR
which is essentially equivalent to the above scheme in the setting with a single honest client and
exactly k virtual servers, where the adversary doesn’t get any of the PRP keys. In our case, we need
to extend this proof to deal with the fact that the adversary colludes with some of the clients, and
therefore learns some subset of the PRP keys.

Upgrading to Unbounded-Access PANDA. Our bounded-access PANDA scheme is only
secure when the number of accesses is a-priori bounded by some bound B, and can actually be shown
to be insecure for sufficiently many accesses beyond that bound (following the analysis of [CHR17]).
In the work of Canetti et al. [CHR17] and Boyle et al. [BIPW17], going from bounded-access DEPIR
to unbounded-access DEPIR required new non-standard computational hardness assumptions. In
our case, we will convert bounded-access PANDA to unbounded-access PANDA using standard
assumptions, namely leveled FHE which can be instantiated under the LWE assumption. The
main reason that we can use our approach for PANDA, but not for DEPIR, is that it makes the
server stateful. This is something we allow in PANDA, whereas the main goal of DEPIR was to
avoid it.

Our idea is essentially to “refresh” the bounded-access PANDA after every B accesses. More
specifically, we think of the execution as proceeding in epochs, each consisting of B accesses. We
associate a different Pseudo-Random Function (PRF) key with each virtual server and, for epoch i,
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we derive an epoch-specific PRP key for each server by applying the corresponding PRF on i. We
then use this PRP key to freshly permute the codeword in each epoch. The clients get the PRF
keys for the virtual servers in their committee. This lets clients derive the corresponding epoch-
specific PRP keys for any epoch, and they can then proceed as they would using the bounded-access
PANDA. The only difficulty is making sure that the server can correctly permute the codeword
belonging to each virtual server in each epoch without knowing the associated PRF/PRP keys. We
do this by storing FHE encryptions of each of the PRF keys on the server and, at the beginning
of each epoch, the server performs a homomorphic computation to derive an encryption of the
correctly permuted codeword for each virtual server. The clients also get the FHE decryption keys
for the virtual servers in their committee, and thus can decrypt the codeword symbols that they
read from the virtual servers. Note that the server has to do a large amount of work, linear in
the codeword size, at the beginning of each epoch. However, we can use amortized accounting to
spread this cost over the duration of the epoch and get low amortized complexity. Alternately,
the server can spread out the actual computation across the epoch by performing a few steps of
it at a time during each access to get low worst-case complexity. (This is possible because the
database is read-only, and so its contents at the onset of the next epoch are known in advance at
the beginning of the current epoch.) The security of this scheme follows from that of the bounded-
access PANDA since in each epoch, the read operations are essentially performed using a fresh copy
of the bounded-access PANDA (with fresh PRP keys).

PANDA with Public Encoding. Our construction of (unbounded-access) PANDA scheme
described above has some nice features beyond what is required by the definition. Specifically,
although the server is stateful and its internal state is updated in each epoch, the state can be
computed using public information (the FHE encryptions of the PRF keys), the database, and
the epoch number.6 We find it useful to abstract this property further as a PANDA with public
encoding. Specifically, we think of the PANDA scheme as having a key generation algorithm which
doesn’t depend on the database, and generates a public-key for the server and secret-keys for each
of the clients. The server can then use the public-key to create a fresh encoding of the database
with respect to an arbitrary epoch identifier (which can be a number, or an arbitrary bit string).
The clients are given the epoch identifier, and can perform read operations which consist of reading
some subset of locations from the server. Security holds as long as the number of read operations
performed by honest clients with respect to any epoch identifier is bounded by B. Such a scheme
can immediately be used to get an unbounded-access PANDA by having the server re-encode the
database at the beginning of each epoch with an incremented epoch counter.

Note that our basic security definition considers a semi-honest adversary who corrupts the server
and some subset of the clients, but otherwise follows the protocol specification. However, with the
above structure, it’s also clear that fully malicious clients (who might not follow the protocol) have
no affect on the server state, and therefore cannot violate security. A fully malicious server, on
the other hand, can lie about the epoch number and cause honest clients to perform too many
read operations in one epoch, which would break security. However, if we assume that the epoch
number is independently known to honest clients (for example, epochs occur at regular intervals,
and clients know the rate at which accesses occur and have synchronized clocks) then this attack is
prevented. The only other potential attack for a fully malicious server is to give incorrect values for
the locations accessed in the encoded database. We can also prevent this attack by using succinct

6For example, the state does not depend on the history of protocol executions with the clients, and is unaffected
by client actions. This may be of independent interest even if we downgrade the scheme to the single client setting,
and gives the first ORAM scheme we are aware of with this property.

8



(interactive) arguments to prove that the values were computed correctly.

1.3.2 PANDA with Writes

We also consider PANDA schemes where clients can write to the database, and discuss two PANDA
variants in this setting which we call public-writes and secret-writes.

Public-writes PANDA. In a public-writes PANDA, we consider a setting where the server holds
a shared public database which should be accessible to all clients. Clients can write to arbitrary
locations in the database but, since the database is public, the locations and the values being
written are necessarily public as well. However, we still want to maintain anonymity for the write
operations (i.e., the server does not learn which client is performing each write), and both privacy
and anonymity for the read operations (namely, the server does not learn which client is performing
each read, or the locations being read). Our write operation is extremely simple: the client just
sends the location and value being written to the server. However, even if we use PANDA with
public encoding, the server cannot simply update the encoded database since this would require
(at least) linear time.

Instead, we use an idea loosely inspired by hierarchical ORAM [Ost90, GO96]. We will store
the database on the server in a sequence of logL levels, where L is the database size. Each level
i consists of a separate instance of a read-only PANDA with public encoding, and will contain at
most Li = 2i database values. We think of the levels as growing from the top down, namely level-0
(the smallest) is the top-most level, and level-logL (the largest) is the bottom-most. Initially, all
the data is stored in the bottom level i = logL, and all the remaining levels are empty. When a
client wants to read some location j of the database, she uses the read-only PANDA for each of the
logL levels to search for location j, and takes the value found in the top-most level that contains
it. When a client writes to some location j, the server will place that database value in the top
level i = 0. The server knows (in the clear) which database values are stored at each level. After
every 2i write operations, the server takes all the values in levels 0, . . . , i and moves them to level
i+ 1 by using the public encoding procedure of PANDA and incrementing the epoch counter; level
i + 1 will contain all the values that were previously in levels ≤ i + 1, and levels 0, . . . , i will be
emptied.7 Although the cost of moving all the data to level i + 1 scales with the data size Li+1,
the amortized cost is low since this only happens once every 2i writes.8

One subtlety that we need to deal with is that our read-only PANDA was designed as an
array data structure which holds L items with addresses 1, . . . , L. However, the way we use it in
this construction requires a map data structure where the intermediate levels store Li � L items
with addresses corresponding to some subset of the values 1, . . . , L. We can resolve this using
the standard data-structures trick of storing a map in an array by hashing the n addresses into n
buckets where each bucket contains some small number of values (to handle collisions). Our final
public-writes PANDA scheme can also be thought of as implementing a map data structure, where
database entries can be associated with arbitrary bit-strings as addresses, and clients can read/write
to the value at any address. We can also allow the total database size to grow dynamically by adding
additional levels as needed.

Secret-writes PANDA. In this setting, instead of having a shared public database, we think
of each client as having an individual private database which only she can access. We want the

7Note that the epoch counters are also incremented, and the encodings are refreshed, when sufficiently many reads
occur at that level, just like in the read-only case.

8The server complexity can actually be de-amortized using the pipelining trick of Ostrovsky and Shoup [OS97].
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clients to be able to read and write to locations in their own database, while maintaining privacy
and anonymity so that the server doesn’t learn the identity of the client performing each access,
the location being accessed, or the content of the data.

Our starting point is the public-writes PANDA scheme, which already guarantees privacy and
anonymity of read operations, and anonymity of write operations. The clients can also individually
encrypt all their content to ensure that it remains private. Therefore, we only need to modify write
operations to provide privacy for the underlying location being written. To achieve this, we rely on
the fact that our public-writes PANDA scheme already supports a map data structure, where data
can be associated with an arbitrary bit-string as an address. As a first idea, when a client wants
to write to some location j in her database, she can use a client-unique PRF, associating the data
with the address PRF (j), and then write it using the public-writes scheme. While this partially
hides the location j, the server still learns when the same location is written repeatedly. To solve
this problem, we also add a counter c, and set the address to be PRF (j, c). Whenever a client
wants to read some location j, she uses the read operation of the public-writes PANDA to perform
a binary search, and find the largest count c such that there is a value at the address PRF (j, c) in
the database. Whenever a client wants to write to location j, she first finds the correct count c (as
she would in a read access), and then writes the value to address PRF (j, c+ 1). This ensures that
the address being written reveal no information about the underlying database location. The only
downside to this approach is that the server storage grows with the total number of writes, rather
than the total data size. Indeed, since the server cannot correlate different “versions” of the same
database location, it cannot delete old copies. Although we view this as a negative, we note that
many existing database systems only support “append only” operations, and keep (as a backup)
all old versions of the data. Therefore, in such a setting the growth in server storage caused by our
scheme does not in fact add any additional overhead.

2 Preliminaries

Throughout the paper λ denotes a security parameter. We use standard cryptographic definitions
of Pseudo-Random Permutations (PRPs), Pseudo-Random Functions (PRFs), and Fully Homo-
morphic Encryption (FHE) (see, e.g., [Gol01, Gol04]). For a vector a = (a1, . . . , an), and a subset
S = {i1, . . . , is} ⊆ [n], we denote aS = (ai1 , . . . , ais).

Parameter Names. For all variants of the PANDA problem, we will let n denote the number
of clients, L denote the database size, and t denote a bound on the number of corrupted clients
colluding with the server.

2.1 Locally Decodable Codes (LDCs).

Locally decodable codes were first formally introduced by [KT00]. We rely on the following defini-
tion of smooth LDCs.

Definition 2.1 (Smooth LDC). An s-smooth, k-query locally decodable code with message length
L, and codeword size M over alphabet Σ, denoted by (s, k, L,M)Σ-smooth LDC, is a triplet
(Enc,Query,Dec) of PPT algorithms with the following properties.

Syntax. Enc is given a message msg ∈ ΣL and outputs a codeword c ∈ ΣM ,
Query is given an index ` ∈ [L] and outputs a vector r = (r1, . . . , rk) ∈ [M ]k,
and Dec is given cr = (cr1 , . . . , crk) ∈ Σk and outputs a symbol in Σ.
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Local decodability. For every message msg ∈ ΣL, and every index ` ∈ [L],

Pr [r← Query (`) : Dec (Enc (msg)r) = msg`] = 1.

Smoothness. For every index ` ∈ [L], the distribution of (r1, . . . , rk) ← Query (`) is s-wise
uniform. In particular, for any subset S ⊆ [k] of size |S| = s, the random variables ri : i ∈ S
are uniformly random over [M ] and independent of each other.

We will use the Reed-Muller (RM) family of LDCs [Ree54, Mul54] over a finite field F which,
roughly, are defined by m-variate polynomials over F. More specifically, to encode messages in FL,
one chooses a subset H ⊆ F such that |H|m ≥ L. Encoding a message msg ∈ FL is performed by
interpreting the message as a function msg : Hm → F, and letting m̃sg : Fm → F be the low degree
extension of msg; i.e., the m-variate polynomial of individual degree < |H| whose restriction to Hm

equals msg. The codeword c consists of the evaluations of m̃sg at all points if Fm. We can locally
decode any coordinate ` ∈ [L] of the message by thinking of ` as a value in Hm. This is done by
choosing a random degree-s curve ϕ : F → Fm such that ϕ (0) = `, and querying the codeword
on k ≥ ms (|H| − 1) non-0 points on the curve. The decoder then uses the answers a1, · · · , ak
to interpolate the (unique) univariate degree-(k − 1) polynomial ϕ̃ such that ϕ̃ (i) = ai for every
1 ≤ i ≤ k. It outputs ϕ̃ (0) as the `’th message symbol. To guarantee that the field contains
sufficiently many evaluation points, the field is chosen such that |F| ≥ k + 1. The codeword length
is M = |F|m.

Theorem 2.2. For any constant ε > 0, there exist (s, k, L,M)Σ-smooth LDCs with |Σ| = poly(s, logL),

k = poly(s, logL) and M = L1+ε · poly(s, logL). Furthermore, the encoding time is Õ(M) and the
decoding time is Õ(k).

Proof. Let ŝ = max{s, dlogLe}. For any constant c ≥ 1, choose H and m such that |H| = ŝc

and m = d(logŝ L)/ce. This satisfies |H|m ≥ L as required. Furthermore m ≤ ŝ. Then we set
k = ms (|H| − 1) ≤ ŝc+2 and we can choose a characteristic-2 field Σ = F of size k + 1 ≤ |F| ≤
2k ≤ ŝc+3. This gives M = |F|m ≤ (ŝc+3)d(logŝ L)/ce ≤ (ŝc+3)(ŝc+3)(logŝ L)/c ≤ L1+3/c · poly(s, logL).
We get the bound in the Theorem by picking c > 3/ε. For the run times, we can rely on FFT
techniques for fast multi-variate polynomial interpolation and evaluation. See Appendix A for a
further discussion.

3 Read-Only PANDA

In this section we describe our read-only PANDA scheme. We first formally define this notion. At a
high level, a PANDA scheme is run between a server S and n clients C1, · · · , Cn, and allows clients
to securely access a database DB, even in the presence of a (semi-honestly) corrupted coalition
consisting of the server S and a subset of at most t of the clients. In this section, we focus on
the setting of a read-only, public database, in which the security guarantee is that read operations
of honest clients remain entirely private and anonymous, meaning the corrupted coalition learns
nothing about the identity of the client performed the operation, or which location was accessed.

Definition 3.1 (RO-PANDA). A Read-Only Private Anonymous Data Access (RO-PANDA) scheme
consists of procedures (Setup,Read) with the following syntax:

• Setup(1λ, 1n, 1t,DB) is a function that takes as input a security parameter λ, the number of
clients n, a collusion bound t, and a database DB ∈ {0, 1}L, and outputs the initial server
state stS , and client keys ck1, · · · , ckn. We require that the size of the client keys |ckj | is
bounded by some fixed polynomial in the security parameter λ, independent of n, t, |DB|.
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• Read is a protocol between the server S and a client Cj . The client holds as input an address
addr ∈ [L] and the client key ckj , and the server holds its current states stS . The output of
the protocol is a value val to the client, and an updated server state st′S .

We require the following correctness and security properties.

• Correctness: In any execution of the Setup algorithm followed by a sequence of Read pro-
tocols between various clients and the server, each client always outputs the correct database
value val = DBaddr at the end of each protocol.

• Security: Any PPT adversary A has only negl (λ) advantage in the following security game
with a challenger C:

– A sends to C:
∗ The values n, t and the database DB ∈ {0, 1}L.

∗ A subset T ⊂ [n] of corrupted clients with |T | ≤ t.
∗ A pair of read sequences R0 =

(
j0
l , addr0

l

)
1≤l≤q , R

1 =
(
j1
l , addr1

l

)
1≤l≤q (for some

q ∈ N) , where
(
jbl , addrbl

)
denotes that client jbl ∈ [n] reads address addrbl ∈ [L].

We require that
(
j0
l , addr0

l

)
=
(
j1
l , addr1

l

)
for every l ∈ [q] such that j0

l ∈ T ∨ j1
l ∈ T .

– C performs the following:

∗ Picks a random bit b← {0, 1}.
∗ Initializes the scheme by computing Setup

(
1λ, 1n, 1t,DB

)
.

∗ Sequentially executes the sequence Rb of Read protocol executions between the hon-
est server and clients. It sends to A the views of the server S and the corrupted
clients {Cj}j∈T during these protocol executions, where the view of each party con-
sists of its internal state, randomness, and all protocol messages received.

– A outputs a bit b′.

The advantage AdvA (λ) of A in the security game is defined as: AdvA (λ) = |Pr [b′ = b]− 1
2 |.

Efficiency Goals. Since a secure PANDA scheme can be trivially obtained by having the client
store the entire database locally, or having the server send the entire database to the client in every
read request, the efficiency of the scheme is our main concern. We focus on minimizing the client
storage and the client/server run-time during each Read protocol. At the very least, we require
these to be t · o (|DB|).

Bounded-Access PANDA. We will also consider a weaker notion of a bounded-access RO-
PANDA scheme, for which security is only guaranteed to hold as long as the total number of
read operations q is a-priori bounded. Such schemes will be useful building blocks for designing
RO-PANDA schemes with full-fledged security.

Definition 3.2 (B-access RO-PANDA). Let B be an access bound. We say that (Setup,Read) is a
B-access RO-PANDA scheme if the security property of Definition 3.1 is only guaranteed to hold
for PPT adversaries that are restricted to choose read sequences R0, R1 of length q ≤ B.
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Remark on Adaptive Security. Note that, for simplicity, our definition is selective, where
the adversary chooses the entire read sequences R0, R1 ahead of time. We could also consider a
stronger adaptive security definition where the adversary chooses the sequence of reads adaptively
as the protocol progresses. Although our constructions are also secure in the stronger setting (with
minimal modifications to the proofs), we chose to present our results in the selective setting to keep
them as simple as possible.

3.1 A Bounded-Access Read-Only PANDA Scheme

As a first step, we now show how to construct a bounded-access RO-PANDA scheme, yielding the
following theorem.

Theorem 3.3 (B-access RO-PANDA). Assuming one-way functions exist, for any constant ε > 0
there is a B-bounded access RO-PANDA where, for n clients with t collusion bound and database
size L:

• The client and server complexity during each Read protocol is t · poly(λ, logL).

• The client storage is t · poly(λ, logL).

• The server storage is α ≤ t · L1+ε · poly(λ, logL).

• The access bound is B = α/(t · poly(λ, logL)).

Note that in the above theorem we can increase the access-bound B arbitrarily by artificially
inflating the database size L to increase α. However, we will mainly be interested in having a small
ratio α/B while keeping α as small as possible.

Construction Outline. As outlined in the introduction, our idea is inspired by the recent works
of Canetti et al. [CHR17] and Boyle et al. [BIPW17] on DEPIR. We rely on an s-smooth, k-query
LDC where s = λ is set to be the security parameter. We think of the server S as consisting of
k′ = k2t different “virtual servers”, where t is the collusion bound. Each virtual server contains a
permuted copy of the LDC codeword under a fresh PRP. Each client is assigned a random committee
consisting of k out of k′ of the virtual servers and gets the corresponding PRP keys. To retrieve
an entry from the database, the client runs the LDC local decoding algorithm, which requests to
see k codeword locations, and reads these locations using the virtual servers on its committee by
applying the corresponding PRPs. It also reads uniformly random locations from the k′−k virtual
servers that are not on its committee.

Construction 3.4 (B-Access RO-PANDA). The scheme uses the following building blocks:

• An (s, k, L,M)Σ-smooth LDC (EncLDC,QueryLDC,DecLDC) (see Definition 2.1, Theorem 2.2).

• A CPA-secure symmetric encryption scheme
(
KeyGensym,Encsym,Decsym

)
.

• A pseudorandom permutation (PRP) family P : {0, 1}λ × [M ] → [M ] where for every
K ∈ {0, 1}λ the function P (K, ·) is a permutation.

The scheme consists of the following procedures:

• Setup(1λ, 1n, 1t,DB): Recall that n denotes the number of clients, t is the collusion bound,
and DB ∈ {0, 1}L. Instantiate the LDC with message size L and smoothness s = λ, and let
k be the corresponding number of queries, M be the corresponding codeword size and Σ be
the alphabet. Set k′ = k2t to be the number of virtual servers. Proceed as follows.
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– Database encoding. Generate the codeword D̃B = EncLDC (DB) with D̃B ∈ ΣM .

– Virtual server generation. For every 1 ≤ i ≤ k′:

∗ Generate a PRP key Ki
PRP ← {0, 1}λ, and an encryption key Ki

sym ←
KeyGensym

(
1λ
)
.

∗ Let D̂B
i
∈ ΣM be a permuted database which satisfies D̂B

i

P (Ki
PRP,j)

= D̃Bj for all

j ∈ [M ].

∗ Let D̃B
i

be the encrypted-permuted database with D̃B
i

j = Encsym
(
Ki

sym, D̂B
i

j

)
.

– Committee generation. For every j ∈ [n], pick a random size-k subset Sj ⊆ [k′].

– Output. For each client Cj , set the client key ckj = (Sj ,
{
Ki

PRP,K
i
sym : i ∈ Sj

}
) to

consist of the description of the committee and the PRP and encryption keys of the

virtual servers on the committee. Set the server state stS = {D̃B
i

: i ∈ [k′]} to consist
of the encrypted-permuted databases of every virtual server.

• The Read protocol. To read database entry at location addr ∈ [L] from the server S, a
client Cj with key ckj = (Sj ,

{
Ki

PRP,K
i
sym : i ∈ Sj

}
) operates as follows.

– (Query.) Denote Sj = {v1, . . . , vk} ⊆ [k′]. Sample (rv1 , · · · , rvk)← QueryLDC (addr), and
for each v ∈ Sj set r̂v = P (Kv

PRP, rv) to be the query to virtual server v. For every
v ∈ [k′] \ Sj , pick r̂v ∈R [M ] uniformly.

– (Recover). Send (r̂1, · · · , r̂k′) to the server S and obtain the answers

(
D̃B

1

r̂1 , · · · , D̃B
k′

r̂k′

)
.

For every v = vh ∈ Sj , decrypt ah = Decsym
(
Kv

sym, D̃B
v

r̂v

)
, and output DecLDC (a1, · · · , ak).

Remark. Note that in the above construction the server is completely static and stateless. Indeed
the Read protocol simply consists of the client retrieving some subset of the locations from the server.

3.1.1 Proof of Security

We prove the following claim about the above construction.

Claim 3.5. Assuming the security of all of the building blocks, Construction 3.4 is B-bounded-
access RO-PANDA for B = M/(2k2).

Claim implies Theorem. It’s easy to see that Claim 3.5 immediately implies Theorem 3.3 by
plugging in the LDC parameters from Theorem 2.2. In particular, for n clients, t collusion bound
and database size L:

• The client/server run-time is k′ log |Σ| = tk2 log |Σ| = t · poly(λ, logL).

• The client storage is k′ · (poly(λ) + logL) = t · poly(λ, logL).

• The server storage is α = k′ ·M · log |Σ| = tk2M · log |Σ| = t · L1+ε · poly(λ, logL).

• The bound B is B = M/(2k2) = α/(t · poly(λ, logL)).
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Background Lemmas. To show that the construction is secure, we rely on two lemmas. The
first lemma comes from the work of Canetti et al. [CHR17].

Lemma 3.6 (Lemma 1 in [CHR17]). Let X = (X1, · · · , Xm) , Y = (Y1, · · · , Ym) be l-wise indepen-
dent random variables such that for every 1 ≤ i ≤ m, Xi, Yi are identically distributed. Assume
also that there is a value ? such that Pr [Xi = ?] ≥ 1−δ. Then SD (X,Y ) ≤ (mδ)l/2 +ml−1δl/2−1 ≤
2ml−1δl/2−1 ≤ 2m(m2δ)l/2−1.

The second lemma deals with the intersection size of random sets.

Lemma 3.7. Let T ⊆ [n] be an arbitrary set of size |T | ≤ t. Let S1, · · · , Sn be chosen as random
subsets Sj ⊆ [k′] of size |Sj | = k, where k′ = k2t. Then, for all ρ > 2e, the probability that there
exists some j ∈ [n] \ T such that | (∪i∈TSi) ∩ Sj | ≥ ρ is at most n · 2−ρ.

Proof. Define E =
⋃
i∈T Si and let ` = |E| so that ` ≤ tk. For any fixed j ∈ [n] \ T the set Sj is

random and independent of E and therefore we have

Pr [|Sj ∩ E| ≥ ρ] =

(
`
ρ

)(
k′−ρ
k−ρ
)(

k′

k

) ≤
(
e`

ρ

)ρ
·
(
k′−ρ
k−ρ
)(

k′

k

)
≤
(
e`

ρ

)ρ
· k (k − 1) · · · (k − ρ+ 1)

k′ (k′ − 1) · · · (k′ − ρ+ 1)

≤
(
e`

ρ

)ρ(1

`

)ρ
≤
(
e

ρ

)ρ
≤
(

1

2

)ρ
were the third line follows since k−x

k′−x ≤
k
k′ ≤

1
` for 0 ≤ x ≤ ρ − 1. The lemma follows by a union

bound over all j ∈ [n].

Proof of Claim. We are now ready to prove Claim 3.5.

Proof of Claim 3.5. The correctness of the scheme follows directly from the correctness of the LDC
and the symmetric encryption scheme. We now argue security.

Let A be a PPT adversary corrupting the server and a subset T of at most t clients. Let R0, R1

be the two sequences of read operations of length q ≤ B which A chooses in the security game.
Without loss of generality, we can assume that R0, R1 do not contain read operations by corrupted
clients since A can generate the corresponding accesses itself (and it does not affect the server state
in any way). Let S1, . . . , Sn be the random committees chosen during Setup and let E =

⋃
i∈T Si.

We proceed via a sequence of hybrids.

H1 Hybrid H1 is the security game as in Definition 3.1.

H2 In hybrid H2, for all i 6∈ E, we replace the encrypted database D̃B
i

by a dummy encryption
(e.g.,) of the all 0 string.

Hybrids H1 and H2 are computationally indistinguishable by CPA security of the encryption
scheme.
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H3 In hybrid H3, for all i 6∈ E we replace all calls to the PRP P (Ki
PRP, ·) during the various

executions of the Read protocol with a truly random permutation πi : [M ]→ [M ].

Hybrids H2 and H3 are computationally indistinguishable by PRP security. Here we rely

on the fact that in both hybrids the encrypted database D̃B
i

for i 6∈ E is independent of the
permutation.

H4 In hybrid H4, if during the committee selection in the Setup algorithm it occurs that there
exists some j ∈ [n] \ T such that |E ∩ Sj | ≥ s/2, then the game immediately halts.

Hybrids H3 and H4 are statistically indistinguishable by Lemma 3.7, where we set ρ = s/2.
Recall that s = λ and therefore n · 2−ρ = negl(λ).

H5 In hybrid H5, we replace the queries (r̂1, · · · , r̂k′) created during the execution of each Read
protocol with truly random values (u1, · · · , uk′)← [M ]k

′
.

The main technical difficulty is showing that hybrids H4 and H5 are (statistically) indistinguish-
able, which we do below. Once we do that, note that hybrid H5 is independent of the challenge bit b
and therefore in hybrid H5 we have Pr[b = b′] = 1

2 . Since hybrids H1 and H5 are indistinguishable,
it means that in hybrid H1 we must have |Pr[b = b′]− 1

2 | = negl(λ) which proves the claim.
We are left to show that hybrids H4 and H5 are statistically indistinguishable. We do this by

showing that for every Read protocol execution, even if we fix the entire view of the adversary prior
to this protocol, the queries sent during the protocol in hybrid H4 are statistically close to uniform.
The protocol is executed by some honest client j with committee Sj = {v1, . . . , vk} and we know
that |Sj ∩ E| ≤ s/2. Let (r̂1, . . . , r̂k′) be the distribution on the client queries in the protocol.

(i) For all v 6∈ Sj the values r̂v are chosen uniformly at random and independently by the client.

(ii) For v ∈ Sj∩E, the values r̂v = P (Kv
PRP, rv) are uniformly random by the s-wise independence

of {rv}v∈Sj and the fact that |Sj ∩ E| ≤ s/2.

(iii) For v ∈ Sj \E, we want to show that the values r̂v = πv(rv) are statistically close to uniform,
even if we condition on (i),(ii). Note that the values {rv}v∈Sj\E are s/2-wise independent even
conditioned on the above, and therefore so are the values {r̂v}v∈Sj\E . For each v, let Zv ⊆ [M ]
be the set of values πv(r) that were queried in some prior protocol execution by some client.
Then |Zv| ≤ B. Note that if r̂v = πv(rv) 6∈ Zv then r̂v is simply uniform over [M ] \ Zv by
the randomness of the permutation πv. We can define random variables Xv where Xv = r̂v
when r̂v ∈ Zv and Xv = ? otherwise. We can then think of sampling {r̂v}v∈Sj\E by sampling
{Xv}v∈Sj\E and defining r̂v = Xv when Xv 6= ? and sampling r̂v uniformly at random over
[M ]\Zv otherwise. Note that {Xv}v∈Sj\E is a set of |Sj \E| ≤ k variables which are s/2-wise
independent and Pr[Xv = ?] ≥ 1 − δ where δ ≤ |Zv|/M ≤ B/M . Therefore, by applying
Lemma 3.6, the variables {Xv}v∈Sj\E are statistically close to truly independent variables
{Yv}v∈Sj\E such that each Yv has the same marginal distribution as Xv, where the statistical

distance is 2k(k2B/M)s/4−1 ≤ 2k(1/2)s/4−1 = negl(λ). Replacing the variables {Xv} by {Yv}
is equivalent to replacing the values {r̂v}v∈Sj\E by truly uniform and independent values.

3.2 Public-Encoding PANDA

In this section we describe a public-encoding variant of bounded-access RO-PANDA schemes, which
will be used in the following sections to construct an unbounded-access RO-PANDA as well as
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PANDA schemes that support writes. At a high level, a public-encoding bounded-access PANDA
scheme contains a key-generation algorithm KeyGen that generates a public key pk and a set {ckj}
of client secret keys. Any database owner can locally encode the database using only the public
key. The scheme guarantees privacy and anonymity, even if the adversary obtains a subset of the
secret keys, as long as the honest clients make at most B accesses to the database. Furthermore,
we allow the server to create many encodings of the same, or different, databases with respect to
some labels lab, and the clients can generate accesses using the corresponding label lab. As long as
the clients make at most B accesses with respect to any one label, security is maintained.

Definition 3.8 (Public-Encoding PANDA). A public-encoding PANDA (PE-PANDA) consists of
a tuple of algorithms (KeyGen,Encode,Query,Recover) with the following syntax.

• KeyGen(1λ, 1n, 1t, 1L) is a PPT algorithm that takes as input a security parameter λ, the
number of clients n, and the collusion bound t, and a database size L. It outputs a public
key pk, and a set of client secret keys {ckj}j∈[n].

• Encode(pk,DB, lab) is a deterministic algorithm that takes as input a public-key pk, a database

DB, and a label lab, and outputs an encoded database D̃B.

• Query(ckj , addr, lab) is a PPT algorithm that takes as input a secret-key ckj , an address addr
in a database, and a label lab, and generates a list (q1, · · · , qk′) of coordinates in the encoded
database.

• Recover
(

ckj , lab,
(

D̃Bq1 , · · · , D̃Bqk′

))
is a deterministic algorithm that takes as input a secret-

key ck, a label lab, and a list
(

D̃Bq1 , · · · , D̃Bqk′

)
of entries in an encoded database, and outputs

a database value val.

We require that it satisfies the following correctness and security properties.

• Correctness: For every λ, n, t, L ∈ N, every DB ∈ {0, 1}L, every label lab ∈ {0, 1}∗, every
address addr ∈ [L], and every client j ∈ [n]:

Pr


(

pk, {ckj}j∈[n]

)
← KeyGen

(
1λ, 1n, 1t, 1L

)
D̃B = Encode (pk,DB, lab)

(q1, · · · , qk′)← Query (ckj , addr, lab)

val = Recover
(

ckj , lab,
(

D̃Bq1 , · · · , D̃Bqk′

)) : val = DBaddr

 = 1.

• B-Bounded-Access Security: Every PPT adversary A has only negl (λ) advantage in the
following security game with a challenger C:

– A sends to C values n, t, L, and a subset T ⊂ [n] of size |T | ≤ t.

– C executes
(

pk, {ckj}j∈[n]

)
← KeyGen

(
1λ, 1n, 1t, 1L

)
and sends pk and {ckj}j∈T to A.

Additionally, C picks a random bit b.

– A is given access to the oracle Queryb{ckj} that on input (j0, j1, addr0, addr1, lab) such that

j0, j1 /∈ T , outputs Query (ckjb , addrb, lab).
We restrict A to make at most B queries to the oracle with any given label lab, but
allow it to make an unlimited number of queries in total.

– A outputs a bit b′.
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The advantage AdvA (λ) of A in the security game is defined as: AdvA (λ) = |Pr [b′ = b]− 1
2 |.

Next, we construct a public-encoding PANDA scheme, based on our bounded-access PANDA
scheme (Construction 3.4 in Section 3.1). The high-level idea is to use fresh PRP keys for every
label, by creating them via a PRF applied to the label. The public key of the server contains FHE
encryptions of the PRF keys. This enables the server to create the encoded-permuted databases
for each virtual server, as in Construction 3.4, by operating on the PRF keys under FHE.

Construction 3.9 (Public-Encoding PANDA). The scheme uses the same building blocks as
Construction 3.4. In addition we rely on:

• A pseudo-random function F : {0, 1}λ × {0, 1}∗ → {0, 1}λ.

• The symmetric-key encryption scheme in Construction 3.4 will be replaced by a symmetric-
key leveled FHE scheme (KeyGenFHE,EncFHE,DecFHE,EvalFHE).

The scheme consists of the following algorithms:

• KeyGen
(
1λ, 1n, 1t, 1L

)
operates as follows:

– Let the parameters s, k,M, k′ be chosen the same way as in Construction 3.4.

– For every virtual server i ∈ [k′]:

∗ Generates a random FHE key Ki
FHE ← KeyGenFHE

(
1λ
)
. We use a leveled FHE that

can evaluate circuits up to some fixed polynomial depth d = poly(λ, logM) specified
later.

∗ Generates a random PRF key Ki
PRF ← {0, 1}λ.

∗ Encrypts the PRF key: K̃i
PRF ← EncFHE

(
Ki

FHE,K
i
PRF

)
.

– Generates the random size-k committee Sj ⊆ [k′] for every 1 ≤ j ≤ n.

– Outputs the public key pk =

(
L,
{
K̃i

PRF

}
i∈[k′]

)
, and the secret keys{

ckj =
(
Sj , L,

{
Ki

PRF,K
i
FHE : i ∈ Sj

})}
j∈[n]

.

• Encode

(
pk =

(
L,
{
K̃i

PRF

}
i∈[k′]

)
,DB, lab

)
operates as follows:

– Let D̃B = EncLDC (DB) using and LDC with parameters s, k, L,M as in the Setup algo-
rithm of Construction 3.4.

– For every i ∈ [k′]:

∗ Generates an encrypted key K̃i
PRP = EvalFHE

(
CF,lab (·) , K̃i

PRF

)
, where CF,x (·) is the

circuit that on input K computes F (K,x).

∗ Generate an encrypted-permuted database D̃B
i

= EvalFHE

(
C
P,D̃B

(·) , K̃i
PRP

)
, where

C
P,D̃B

(·) is the circuit that on input K computes the permuted database D̂B which

satisfies D̂B
i

P (K,j) = D̃Bj for all j ∈ [M ].

– Outputs

(
D̃B

1
, · · · , D̃B

k′
)

.

• Query,Recover. These algorithms work the same way as the two stages of the Read protocol
in Construction 3.4 where the client sets Ki

PRP := F
(
Ki

PRF, lab
)

and Ki
sym := Ki

FHE for i ∈ Sj .
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Leveled FHE Remark. In the above construction we set parameter d representing the maximum
circuit depth for the leveled FHE to be the combined depth of the circuits CF,x (·) and C

P,D̃B
(·)

defined above. Since we can use a permutation network which permutes data of size M in depth
logM , so we have d = poly(λ, logM). We assume that the leveled FHE scheme allows us to
compute circuits C of depth d in time |C| · poly(λ, d).

Claim 3.10. Assuming the security of all of the building blocks, Construction 3.9 is a B-bounded-
access secure public-encoding PANDA scheme for B = M/(2k2).

Proof. Correctness follows directly from the correctness of Construction 3.4, and the correctness of
the underlying LDC and FHE scheme. We now argue that the scheme is secure via a sequence of
hybrids. Let A be a PPT adversary and let T be the subset of at most t clients that it chooses to
corrupt. Let S1, . . . ,Sn be the random committees chosen during Setup and let E =

⋃
i∈T Si. We

proceed via a sequence of hybrids which mirrors the proof of Claim 3.5.

H1 Hybrid H1 is the security game as in Definition 3.8.

H2 In hybrid H2, for all i 6∈ E, we replace K̃i
PRF by an FHE encryption of the all-0 string.

Hybrids H1 and H2 are computationally indistinguishable by security of the FHE encryption
scheme.

H3 In hybrid H3, for all i 6∈ E, whenever the Query algorithm computes Ki
PRP := F

(
Ki

PRF, lab
)

and uses P (Ki
PRP, ·) we instead replace this by a truly random permutation πi,lab[M ]→ [M ].

Hybrids H2 and H3 are computationally indistinguishable by the PRF and PRP security.

H4 In hybrid H4, if during the committee selection in the Setup algorithm it occurs that there
exists some j ∈ [n] \ T such that |E ∩ Sj | ≥ s/2 then the game immediately halts.

Hybrids H3 and H4 are statistically indistinguishable by Lemma 3.7, where we set ρ = s/2.
Recall that s = λ and therefore n · 2−ρ = negl(λ).

H5 In hybrid H5, we replace the values (q1, · · · , q′k) generated by Query (ckjb , addrb, lab) by uni-
formly random values (u1, · · · , uk′)← [M ]k

′
.

To show hybrids H4 and H5 are indistinguishable, we use a sequence of intermediate hybrids
where we do the switch for each distinct label lab queried by the adversary one at a time.
Performing each such switch follows the exact same argument as in Claim 3.5 by relying on
the fact that each label corresponds to a fresh and independent permutation πi,lab.

Note that hybrid H5 is independent of the challenge bit b and therefore in hybrid H5 we have
Pr[b = b′] = 1

2 . Since hybrids H1 and H5 are indistinguishable, it means that in hybrid H1 we must
have |Pr[b = b′]− 1

2 | = negl(λ) which proves the claim.

Theorem 3.11 (Public-Encoding PANDA). Suppose leveled FHE exists. Then for any constant
ε > 0 there is a PE-PANDA scheme with B-bounded access security, for n clients, t collusion bound
and database size L where:

• The complexity of Query and Recover procedures is t · poly(λ, logL).

• The server public key and the client secret keys are each of size t · poly(λ, logL).

• The complexity of the encoding procedure and the size of the encoded database is α ≤ t ·L1+ε ·
poly(λ, logL).
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• The access bound is B = α/(t · poly(λ, logL)).

Proof. All of the parameters are set the same way as in Construction 3.4 and Theorem 3.3. We
only have to analyze the complexity of the encoding procedure. Here we rely on the fact that
EncLDC (DB) can be computed in time Õ(M) = L1+ε · poly(λ, logL). We also rely on the fact that
performing operations under leveled FHE only introduces poly(λ, d) multiplicative overhead where
d = poly(λ, logM) = poly(λ, logL).

3.3 Read-Only PANDA with Unbounded Accesses

In this section we use the public-encoding PANDA scheme of Section 3.2, which has B-bounded-
access security, to obtain a read-only PANDA scheme that is secure against any unbounded number
of accesses. Specifically, we will prove the following:

Theorem 3.12 (Read-Only PANDA). Suppose leveled FHE exists. Then for any constant ε > 0
there is a read-only PANDA, for n clients, t collusion bound and database size L where:

• The client/server complexity during each Read protocol is t · poly(λ, logL).

• The client keys are of size t · poly(λ, logL).

• The server state is of size t · L1+ε · poly(λ, logL).

The high-level idea for our construction is conceptually simple: after every B operations, the
server re-encodes the database with a fresh label. We think of these sequences of B consecutive
accesses as “epochs”, and the label is simply a counter indicating the current epoch. The clients
get the current epoch number by reading it from the server before performing an access.

Construction 3.13 (Read-only PANDA). The scheme uses a PE-PANDA scheme
(KeyGen,Encode,Query,Recover) with B-bounded-access security as a building block. We
define the following procedures.

• Setup(1λ, 1n, 1t,DB). Takes as input a security parameter λ, the number of clients n, a
collusion bound t, and a database DB ∈ {0, 1}L. It does the following.

– Counter initialization. Initializes an epoch counter counte, and a step counter counts, to
0.

– Generating keys. Runs
(

pk, {ckj}j∈[n]

)
← KeyGen

(
1λ, 1n, 1t, 1L

)
.

– Encoding the database. Runs D̃B = Encode (pk,DB, counte).

– Output. For each client Cj , 1 ≤ j ≤ n set the client key to ckj := ckj . For the server S

set stS := (pk, D̃B, counte, counts).

• The Read Protocol. To read the data block at address addr from the server, a client Cj
and the server S run the following protocol.

– The client reads the epoch counter counte from S.

– The client runs (q1, · · · , qk′)← Query (ckj , addr, counte), and sends (q1, · · · , qk′) to S.

– The server computes ai = D̃Bqi and sends back the values (a1, · · · , ak′) to the client.

– The client recovers DBaddr = Recover (ckj , counte, (a1, · · · , ak′)).

20



– The server S updates its state as follows: if counts < B − 1, S updates counts :=
counts + 1. Otherwise, S updates counts := 0, counte := counte + 1, and replaces D̃B :=
Encode (pk,DB, counte). If the complexity of the computation Encode (pk,DB, counte) is
cEncode, the server performs cEncode/B steps of this computation during each protocol
execution so that it is completed by the end of the epoch.

Claim 3.14. Assuming we start with a PE-PANDA scheme that has B-bounded-access security as
a building block, then Construction 3.13 is a secure RO-PANDA scheme.

Proof. The correctness of Construction 3.13 follows directly from the correctness of the underlying
PE-PANDA scheme. As for security, since the encoded database is updated every B read requests,
and there are at most poly (λ) read requests overall, any PPT adversary A in the security game of
Definition 3.1 obtains at most B queries to each of poly (λ) encoded databases (each generated with
a unique label). Therefore, security follows directly from the security of the PE-PANDA scheme.

The proof of Theorem 3.12 now follows.

Proof of Theorem 3.12. We instantiate Construction 3.13 with the PE-PANDA scheme of Theo-
rem 3.11. The client complexity of any read operation entails running Query and Recover once
(and reading the counter), which is t · poly(λ, logL). The server complexity additionally entails
performing cEncode/B = α/B ≤ t · poly(λ, logL) steps per read operation to re-encode the database
once per epoch (here, cEncode is the complexity of the Encode algorithm, and α is the complexity
of the encoding procedure of the PE-PANDA scheme). The server storage and the client key sizes
are the same as in the PE-PANDA.

Remark 3.15. We note that when Construction 3.13 is instantiated with the PE-PANDA scheme
of Construction 3.9, the concrete server complexity can be improved: instead of freshly encoding
the database in each epoch (which requires computing an LDC encoding and then permuting
it under FHE) we can just re-permute the LDC-encoded database under the FHE scheme. Since
Construction 3.9 uses the RM-LDC, which is quasilinear-time encodable, this modification does not
improve the asymptotic complexity of the resultant PANDA scheme. However, it could potentially
allow one to replace the RM-LDC with a different LDC that is not quasilinear-time encodable.

4 PANDA With Writes

In this section we extend the read-only scheme of Section 3 to support writes. We first construct
(Section 4.1) a PANDA scheme in the public database setting. We then design (Section 4.2) a
PANDA scheme that supports writes in the private database setting.

4.1 A Public-Writes PANDA Scheme

We construct a PANDA scheme for public databases that supports write operations, but only
guarantee privacy of read operations, a primitive we call public-writes PANDA (PW-PANDA).
Notice that this is the “best possible” security guarantee when there is (even) a (single) corrupted
client. (Indeed, as the database is public, a corrupted coalition can always learn what values
were written to which locations by simply reading the entire database after every operation.) We
note that it suffices to consider this weaker security guarantee when all clients are honest, since
any public-writes PANDA scheme can be generically transformed into a PANDA scheme which
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guarantees the privacy of write operations when all clients are honest. Indeed, one can implement
a (standard) single-client ORAM scheme on top of the public-writes PANDA scheme, for which all
clients know the private client key. (We note that the transformation might require FHE-encrypting
the PANDA, to allow the server to perform operations on the PANDA which are caused by client
operations on the ORAM.)

We now formally define the notion of a public-writes PANDA scheme.

Definition 4.1 (Public-Writes PANDA (PW-PANDA)). A public-writes PANDA (PW-PANDA)
scheme consists of procedures (Setup,Read,Write), where Setup,Read have the syntax of Defini-
tion 3.1, and Write has the following syntax. It is a protocol between the server S and a client Cj .
The client holds as input an address addr ∈ [L], a value v, and the client key ckj , and the server
holds its current states stS . The output of the protocol is an updated server state st′S .

We require the following correctness and security properties.

• Correctness: In any execution of the Setup algorithm followed by a sequence of Read and
Write protocols between various clients and the server, where the Write protocols were exe-
cuted with a sequence Q of values, the output of each client in a read operation is the value it
would have read from the database if (the prefix of) Q (performed before the corresponding
Read protocol) was performed directly on the database.

• Security: Any PPT adversary A has only negl (λ) advantage in the following security game
with a challenger C:

– A sends to C:
∗ The values n, t, and the database DB ∈ {0, 1}L.

∗ A subset T ⊂ [n] of corrupted clients with |T | ≤ t.
∗ A pair of access sequencesQ0 =

(
opl, val0l , j

0
l , addr0

l

)
1≤l≤q , Q

1 =
(
opl, val1l , j

1
l , addr1

l

)
1≤l≤q,

where
(
opl, valbl , j

b
l , addrbl

)
denotes that client jbl performs operation opl at address

addrbl with value valbl (which, if opl = read, is ⊥).

We require that
(
opl, val0l , j

0
l , addr0

l

)
=
(
opl, val1l , j

1
l , addr1

l

)
for every l ∈ [q] such that

j0
l ∈ T ∨ j1

l ∈ T ; and
(
val0l , addr0

l

)
=
(
val1l , addr1

l

)
for every l ∈ [q] such that opl = write

(in particular, write operations differ only in the identity of the client performing the
operation).

– C performs the following:

∗ Picks a random bit b← {0, 1}.
∗ Initializes the scheme by computing Setup

(
1λ, 1n, 1t,DB

)
.

∗ Sequentially executes the sequenceQb of Read and Write protocol executions between
the honest server and clients. It sends to A the views of the server S and the
corrupted clients {Cj}j∈T during these protocol executions, where the view of each
party consists of its internal state, randomness, and all protocol messages received.

– A outputs a bit b′.

The advantage AdvA (λ) of A in the security game is defined as: AdvA (λ) = |Pr [b′ = b]− 1
2 |.

Construction Outline. As outlined in the introduction, the public-writes PANDA scheme con-
sists of logL levels of increasing size (growing from top to bottom), each containing size-λ “buckets”
that hold several data blocks, and implemented with a B-bounded-access PE-PANDA scheme. To
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initialize our PANDA scheme, we generate PE-PANDA public- and secret-keys for every level.
Initially, all levels are empty, except for the lowest level, which consists of a PE-PANDA for the
database DB. read operations will look for the data block in all levels (returning the top-most
copy),9 whereas write operations will write to the top-most level, causing a reshuffle at predefined
intervals to prevent levels from overflowing. We note that adding a new copy of the data block
(instead of updating the existing data block wherever it is located) allows us to change only the
content of the top level. This is crucial to obtaining a non-trivial scheme, since levels are imple-
mented using a read-only PANDA, and so can only be updated by generating a new scheme for
the entire content of the level, which might be expensive (and so must not be performed too often
for lower levels).

Notice that since the levels are implemented using a PE-PANDA scheme (which, in particular,
is only secure against a bounded number of accesses), security is guaranteed only as long as each
level is accessed at most an a-priori bounded number of times. To guarantee security against any
(polynomial) number of accesses, we “regenerate” each level when the number of times it has been
accessed reaches the bound. This regeneration is performed by running the Encode algorithm of
the PE-PANDA scheme with a new label, consisting of the epoch number of the current level and
the number of regeneration operations performed during the current epoch (this guarantees that
every label is used at most once in each level). In summary, each level can be updated in one of
two forms: (1) through a reshuffle operation that merges an upper level into it; or (2) through a
regenerate operation, in which the PE-PANDA of the level is updated (but the actual data blocks
stored in it do not change). We note that (unlike standard hierarchical ORAM) the reshuffling and
regeneration need not be done obliviously, since the server knows the contents of all levels.

As explained in the introduction, we associate a public hash function with each level, which
is used to map data blocks into buckets, thus overcoming the issue that the PE-PANDA scheme
is designed for an array structure (in particular, reading a certain data block requires knowing its
index in the array), whereas the hierarchical structure causes the structure implemented in each
level to be a map, since levels contain a subset of (not necessarily consecutive) data blocks. (In
particular, since this subset depends on previous write operations performed on the PANDA, a
client does not know the map structure of the levels, and consequently will not know in which
location to look for the desired data block.)

We now formally describe the construction. We assume for simplicity of the exposition that B
is a multiple of λ.

Construction 4.2 (Public-writes PANDA). The scheme uses the following building blocks:

• A PE-PANDA scheme (KeyGen,Encode,Query,Recover).

• A hash function family h (used to map data blocks to buckets).

We define the following protocols.

• Setup(1λ, 1n, 1t,DB): Recall that n denotes the number of clients, t is the collusion bound,
and DB ∈ {0, 1}L. It does the following.

– Counter initialization. Initialize a counter countW to 0. (countW counts the total number
of writes performed so far.)

9We note that in standard hierarchical ORAM, once the data block was found, the client should make “dummy”
random accesses to lower levels. However, since in our construction each level is implemented as a PE-PANDA
scheme which anyway hides the identity of the read operation, we can simply continue looking for the data block in
the “right” locations at all levels.
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– Generating level counters and keys. For every 1 ≤ i ≤ `, where ` = logL is the number
of levels:

∗ Run
(

pki,
{

ckij
}
j∈[n]

)
← KeyGen

(
1λ, 1n, 1t, 12i·λ

)
.

∗ Pick a random hash function hi for level i.

∗ Initialize a write-epoch counter countiW , a read-epoch counter countiR, and a step
counter countis, to 0.10

– Initializing level `. Generate an encoded database using the InitLevel procedure of Fig-
ure 1:

D̃B
`
← InitLevel

(
`, pk`, h`, count`W , count`R,DB′

)
where DB′ = ((1, b1) , . . . , (L, bL)),11 and set level ` to be L` =

(
DB′, D̃B

`
)

.

– Output. For each client Cj , set the client key ckj =
({

ckij
}
i∈[`]

,
{
hi
}
i∈[`]

)
to consist of

its secret keys, and the hash functions, for all levels. Set the server state

stS =
(

countW ,
{

countiW , countiR, countis
}
i∈[`]

,
{

pki
}
i∈[`]

,
{
hi
}
i∈[`]

, L`
)

to consist of all counters, its public keys and the hash functions of all levels, and the
contents of level `.

• The Read protocol. To read the database value at location addr ∈ [L] from the server S, a

client Cj with key
({

ckij
}
i∈[`]

,
{
hi
}
i∈[`]

)
and the server S run the following protocol.

– The client Cj initializes an output value val to ⊥.

– Cj performs the following for every non-empty level i from ` to 1:

∗ Obtaining database label. Read countiW , countiR from S.

∗ Computing bucket index. Computes l = hi (addr). (If addr appears in level i, it will
be in bucket Bucl.)

∗ Looking for data block addr in level i. Reads Bucl from level i, namely for every
(l − 1) · λ+ 1 ≤ m ≤ l · λ:

· Runs (q1, . . . , qz) ← Query
(
ckij ,m,

(
countiW , countiR

))
, sends (q1, . . . , qz) to S,

and obtains answers (a1, . . . , az).

· Runs
(
addr′, val′

)
= Recover

(
ckij ,

(
countiW , countiR

)
, (a1, . . . , az)

)
.

· If addr′ = addr then set val := val′.

– The server S updates its state as follows: if countis < Bi − λ, S updates countis ←
countis + λ.12 Otherwise, S updates countis = 0, countiR ← countiR + 1, and sets D̃B

i
:=

Encode
(
pki,DBi,

(
countiW , countiR

))
(where Li =

(
DBi, D̃B

i
)

).

10countiW represents the number of times the level was reshuffled into a lower level, i.e., the number of level-i epochs;
countiR represents the number of times the underlying PE-PANDA scheme was refreshed, i.e., re-initialized, in the
current level-i epoch; and countis represents the number of read operations performed in level i since its underlying
PE-PANDA was last refreshed. We note that though countiW can be computed from countW , for simplicity of the
exposition we choose to included it explicitly in the description of the scheme.

11This guarantees that each data block contains also the logical address of the block, which will be needed when
blocks are mapped to buckets.

12This is where we use the assumption that λ divides B, otherwise a regeneration of level i mights be needed while
Bucl is being read.
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• The Write protocol. To write value val at location addr ∈ [L] on the server S, a client Cj

with key
({

ckij
}
i∈[`]

,
{
hi
}
i∈[`]

)
and the server S run the following protocol.

– The client Cj generates a “dummy” level 0 which contains a single data block (addr, val),
and sends it to the server.

– The server S updates its state as follows:

∗ countW := countW + 1.

∗ For i = 0, 1, . . . , ` such that 2i divides countW , S reshuffles level i into level i + 1
using the ReShuffle procedure of Figure 1, namely executes

ReShuffle
(
i, countiW , countiR, countis, counti+1

W , counti+1
R , counti+1

s , pki+1, hi+1, Li, Li+1
)

where Li, Li+1 are the contents of levels i and i+ 1 (respectively).
If before executing ReShuffle for level i, Li+1 is empty (following a previous reshuffle,

or because it has not yet been initialized), then S first sets Li+1 :=
(

DB∅, D̃B
i+1
)

where DB∅ is the empty database, and D̃B is generated using the InitLevel procedure

of Figure 1: D̃B
i+1

:= InitLevel
(
i+ 1, pki+1, hi+1, counti+1

W , counti+1
R ,DB∅

)
.

We prove the following claim about Construction 4.2.

Claim 4.3. Assuming we start with a PE-PANDA scheme that has B-bounded-access security as
a building block, and the hash functions are random functions, then Construction 4.2 is a secure
PW-PANDA scheme.

Proof. Correctness follows from the correctness of the underlying PE-PANDA scheme, and the
definition of the Read protocol (it returns the top-most copy of the data block, which is also the
most recent copy). We now argue security.

Let A be a PPT adversary corrupting the server and a subset T of at most t clients and let
Q0 =

(
opl, val0l , j

0
l , addr0

l

)
1≤l≤q , Q

1 =
(
opl, val1l , j

1
l , addr1

l

)
1≤l≤q denote the sequences of accesses

which A chose in the game. We assume all write operations in Q0, Q1 are identical, i.e., are also
performed by the same clients. This is without loss of generality, since for corrupted clients this is
the case (by the restrictions of Definition 4.1), and write operations of honest clients (may) differ
only in the identity of the client performing the operation, which in any case does not influence the
operations performed by the Write algorithm.

Let z1, . . . , zm,m ≤ q be the indices of all accesses in Q0, Q1 in which an honest client performs
a read access (by the restrictions on Q0, Q1 imposed by Definition 4.1, and by our assumption,
Q0, Q1 differ only in these indices). We proceed via a sequence of hybrids.

H1,1 is the security game of Definition 4.1 with b = 1.

H1,l, 2 ≤ l ≤ ` is the security game of Definition 4.1, in which the challenger performs Q0 in all
accesses up to (not including) the z1’st access, reads location addr0

z1 in the PE-PANDAs of
levels 1, . . . , l−1, reads location addr1

z1 in the PE-PANDAs of levels l, . . . , `, and performs Q1

in all remaining accesses.

Hk,l, 2 ≤ k ≤ m, 1 ≤ l ≤ `: is the security game of Definition 4.1, in which the challenger performs
Q0 in all accesses up to (not including) the zk’th access, reads location addr0

zk
in the PE-

PANDAs of levels 1, . . . , l− 1, reads location addr1
zk

in the PE-PANDAs of levels l, . . . , `, and
performs Q1 in all remaining accesses.
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The InitLevel procedure
Inputs:

i: the index of a level to initialize.

pki, hi, countiW , countiR: the public key, hash function, and counters of level i.

DB: a database (of size at most 2i), consisting of entries of the form (addr, val).

Operation:

• For every entry (addr, val) ∈ DB, add (addr, val) to bucket Bucihi(addr).
a

• Fill every bucket to size λ using “dummy” blocks of the form (0, 0).b

• Run D̃B
i
← Encode

(
pki,

(
Buci1, . . . ,Buci2i

)
,
(
countiW , countiR

))
, and output D̃B

i
.

The ReShuffle procedure

Inputs:

i: the index of a level to reshuffle.

countjW , countjR, countjs, j ∈ {i, i+ 1}: the counters of levels i, i+ 1.

pki+1, hi+1: the public-key and hash function of level i+ 1.

Lj =
(

DBj , D̃B
j
)
, j ∈ {i, i+ 1}: the contents of levels i, i+ 1.

Operation:

• Removing duplicate entries. Merge DBi,DBi+1 into a single database DB, where if

(addr, val) ∈ DBi,
(
addr, val′

)
∈ DBi+1, then DB contains only (addr, val).c

• Update level i. Set level i to be empty, and update countiW := countiW + 1, and countiR =
countis = 0.

• Update level i+ 1. Run

D̃B
i+1′

= InitLevel
(
i+ 1, pki+1, hi+1, counti+1

W , counti+1
R ,DB

)
.

Set the new level i+ 1 to be Li+1 :=
(

DB, D̃B
)

, and update counti+1
R = counti+1

s = 0.

aWe implicitly assume here that no bucket overflows. If a bucket overflows then the server simply aborts the
computation. As we show below, this happens only with negligible probability.

bWe note that “dummy” blocks are not required to be indistinguishable from real blocks, but rather all parties
should be able to distinguish between the two. Here, we implicitly assume that “0” is not a valid address, but
it could be replaced with any other non-valid address. Alternatively, one could concatenate a bit to every entry,
indicating whether it is a real or “dummy” entry.

cThis can be done in time O
(∣∣DBi∣∣ +

∣∣DBi+1
∣∣) by putting both databases in a hash table, and then scanning

the table for collisions, and checking, for every collision, whether it is due to multiple copies of the same data
block.

Figure 1: Procedures used in Construction 4.2
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Hm,`+1: is the security game of Definition 4.1 with b = 0.

We now show that every pair of adjacent hybrids are computationally indistinguishable, and
consequently so are H1,1, Hm,`+1. Therefore, AdvA (λ) = |Pr [b′ = b] − 1

2 | = 1
2 |Pr [b′ = 1|b = 1] −

Pr [b′ = 1|b = 0] | = negl (λ).
For k ∈ [m] , l ∈ [`− 1], Hk,l, Hk,l+1 differ only in the zk’th read operation on the PE-PANDA

of level l. In particular, we can fix the public- and secret-keys of the PE-PANDAs, the contents
of the PE-PANDAs, and the accesses to these PE-PANDAs, in all levels l′ 6= l (this is possible
because the keys were generated for each level independently; the contents of the databases in each
level are identical in both cases; and each level is accessed independently). After this conditioning,
we are left with the security game of Definition 3.8 when A queries at most poly (λ) PE-PANDAs
with keys pkl, cklj , 1 ≤ j ≤ n (these PE-PANDAs were generated with different labels for database

size 2l · λ). Moreover, each PE-PANDA is accessed at most B times with each label (because the
PE-PANDA is refreshed, by running Encode, every B operations). Therefore, indistinguishability
follows from the security of the underlying PE-PANDA scheme. The same argument shows that
Hm,`, Hm,`+1 are indistinguishable.

For k ∈ [m− 1], Hk,`, Hk+1,1 differ only in the zk’th read operation on the PE-PANDA of level
` (which in Hk,` is to addr1

zk
and in Hk+1,1 is to addr0

zk
). Then Hk,` ≈ Hk+1,1 by the same argument

as above. This completes the security proof.

We now use Claim 4.3 to prove the following theorem.

Theorem 4.4 (Public-writes PANDA). Suppose leveled FHE exists. Then for any constant ε > 0
there is a PW-PANDA, for n clients, t collusion bound and database size L, where:

• The client/server complexity during each Read protocol is t · poly(λ, logL).

• The client complexity during each Write protocol is O(logL), and the amortized server com-
plexity is t · Lε · poly(λ, logL).

• The client keys are of size t · poly(λ, logL).

• The server state is t · L1+ε · poly(λ, logL).

Remark on De-amortization. We note that using a technique of Ostrovsky and Shoup [OS97],
the server complexity in Theorem 4.4 can be de-amortized, by slightly modifying Construction 4.2 to
allow the server to spread-out the reshuffling process. More specifically, we only need to modify the
order in which reshuffles are performed in the Write algorithm, such that the operations needed for
reshuffle can be executed over multiple accesses to the PANDA. (We note that the server complexity
caused by Encode operations in the Read algorithm can be de-amortized as in Construction 3.13.)

Concretely, at time T , let i ∈ [`] ∪ {0} be the largest such that 2i divides T (in particular, at
time T every level j ∈ {1, . . . , i} is reshuffled into the next level), then we first reshuffle level i into
level i+ 1, then reshuffle level i− 1 into level i, etc. To see why this “bottom-up” reshuffle strategy
is useful, notice that if at time T level j is reshuffled into level j + 1 (which requires merging levels
j, j+1, and re-encoding the PE-PANDA of level j+1) then the data blocks involved in the reshuffle
have been known for the last 2j−2 time units. Indeed, level j has not been changed in the last
2j−1 time units (since the last time level j − 1 was reshuffled into it), and level j − 1 has not been
changed in the last 2j−2 time units (since the last time level j−2 was reshuffled into it). Therefore,
the operations needed to performed the reshuffle of level j into level j + 1 (which in Theorem 4.4

requires at most t ·
(
2j · λ

)1+ε · poly (λ, logL) operations) can be spread out over 2j−2 operations.
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Proof of Theorem 4.4. We instantiate Construction 4.2 with the PE-PANDA schemes of Theo-
rem 3.11, and instantiate the hash functions using a PRF F (i.e., hi is defined by picking a random
PRF key Ki and setting hi (·) = F (Ki, ·)).

The client complexity of any read operation entails running Query and Recover λ times for each
level (as well as reading the counters, and computing the hash), which is t · poly(λ, logL). The
server complexity additionally entails updating O (logL) counters, and performing (amortized)
cEncode/B = α/B ≤ t · poly(λ, logL) steps per read operation to re-encode the database once
every B read operations (here, cEncode is the complexity of the Encode algorithm, and α is the
complexity of the encoding procedure of the PE-PANDA scheme). The client complexity of any
write operation is O (logL) (the client simply generates an entry, which includes an address of
size logL). The server complexity additionally entails reshuffling level-i into level-(i + 1) every 2i

write operations, performing cEncode
(
2i · λ,B

)
= t ·

(
2i · λ

)1+ε ·poly(λ, log
(
2i · λ

)
) operations, so the

amortized complexity per write operation is t ·
(
2i
)ε ·poly(λ, logL) ≤ t ·Lε ·poly(λ, logL). The server

storage and the client key sizes are logL times the storage and key sizes of the PE-PANDA (the
server also stores logL counters of size at most poly (λ, logL)), i.e., have size t ·L1+ε · poly(λ, logL)
and t · poly(λ, logL), respectively.

Finally, we show that a bucket overflows only with negligible probability. For simplicity of the
analysis, we model the PRF as a random function. Whenever InitLevel is called for some level
i ∈ [`], the corresponding database contains at most 2i data blocks, which are then allocated to
the 2i size-λ buckets. Therefore, in expectation every specific bucket Buc will contain a single data
block, and so by Chernoff’s bound the probability that Buc overflows is at most

eλ−1

λλ
≤ 2−λ

where the inequality holds for a large enough λ ≥ 2e. Since the total number of buckets in all levels
is at most L · logL = poly (λ), the probability that any bucket overflows is negligible.

4.1.1 A Public-Writes PANDA Scheme for Map Structures and Dynamic Databases

We show that the PW-PANDA of Construction 4.2 can be extended to support map structures (in
which the data blocks are not necessarily consecutive), and dynamic databases that grow throughout
the execution. This will be useful when constructing PANDA schemes in the private-database
setting in the following section.

Construction Outline. Though Construction 4.2 was described for databases with an array
structure, it can actually be used for databases given as map structures, because the data is
organized in each level using a hash function. Therefore, it remains to describe how to modify the
construction to support dynamic databases. Let DB be the initial database of size L, and Lmax ∈ N
be an upper bound on its maximal size during the execution (we assume that Lmax = poly (λ))13.
Construction 4.2 is instantiated with the size bound Lmax, and initialization generates level counters
and keys for levels 1, . . . , logLmax (i.e., for all levels that might be needed throughout the execution),
where all levels are initially empty. Additionally, the construction generates a RO-PANDA scheme
for DB. A new data block is added to the PANDA in the same manner that an existing block is
written to the database, and new levels are initialized when needed, just as levels 1, . . . , logL are

13This assumption is only needed to bound the probability a bucket overflows. In fact, Lmax can even be taken
to be 2λ, as long as we are guaranteed that the database size throughout the execution is always poly (λ). Setting
Lmax = 2λ gives a scheme in which there is no a-priori polynomial bound on the database size (i.e., it can grow to
any polynomial size).
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generated in Construction 4.2. To read a data block, one looks for it both in the RO-PANDA, and
in the hierarchical structure.

The parameters of the resultant scheme are summarized in the next theorem, where we say
that DB is a dynamic database of size at most Lmax if it is a dynamic database (i.e., to which data
blocks may be added) whose size never exceeds Lmax.

Theorem 4.5 (PW-PANDA for map structures and dynamic databases). Suppose leveled FHE
exists. Then for any constant ε > 0 and database size bound Lmax there is a PW-PANDA scheme
for dynamic databases of size at most Lmax, for n clients, and t collusion bound, where when the
database has size L:

• The client and server complexity during each Read protocol is poly (logLmax)+t·poly (λ, logL).

• The client complexity during each Write protocol is O (logL+ logLmax).

• The amortized server complexity during each Write protocol is poly (logLmax)+t·Lε·poly(λ, logL).14

• The client keys are of size t · poly (λ, logLmax).

• The server state is t · poly (λ, logLmax) + t · L1+ε · poly (λ, logL).

Proof. We first describe the scheme
(
Setup′,Read′,Write′

)
for dynamic databases, which uses the

protocols (Setup,Read,Write) of Construction 4.2 (which, in turn, uses the PE-PANDA scheme
of Theorem 3.11), and a RO-PANDA scheme

(
SetupR,ReadR

)
. (We note that instead of a RO-

PANDA scheme, one can use Construction 4.2, which is also a RO-PANDA scheme. However, using
a different RO-PANDA scheme might yield a more efficient construction.)

• Setup′
(
1λ, 1n, 1t, 1L, Lmax,DB

)
runs Setup

(
1λ, 1n, 1t, 1Lmax ,DB

)
,15 but does not initialize the

lowest level. (In particular, after initialization all levels of the PW-PANDA are empty.)
Additionally, it runs SetupR

(
1λ, 1n, 1t,DB

)
to generate a RO-PANDA for DB. It outputs to

each client Cj a key ck′j =
(
ckRj , ckj

)
consisting of its keys ckRj , ckj for the RO-PANDA and

PW-PANDA (respectively), and a server state st′S =
(
stRS , stS

)
consisting of its states stRS , stS

in the RO-PANDA and PW-PANDA, respectively.

• Read′
(
addr, ck′j =

(
ckRj , ckj

)
, st′S =

(
stRS , stS

))
Runs ReadR

(
addr, ckRj , stRS

)
,Read (addr, ckj , stS)

to look for addr in the RO-PANDA and the PW-PANDA. If the data block was found in both,
then the copy in the PW-PANDA is returned (since it is newer).

• Write′
(
addr, val, ck′j =

(
ckRj , ckj

)
, st′S =

(
stRS , stS

))
simply runs Write (addr, val, ckj , stS) to write

value val to address addr in the database stored in the PW-PANDA.

We now show that
(
Setup′,Read′,Write′

)
has the desired properties. Correctness follows directly

from the correctness of Construction 4.2 (Theorem 4.4), and the correctness of the RO-PANDA
scheme (which can be initialized using Construction 4.2).

Regarding security, let A be a PPT adversary corrupting the server and a subset T of at most t
clients, and let Q0 =

(
opl, val0l , j

0
l , addr0

l

)
1≤l≤q , Q

1 =
(
opl, val1l , j

1
l , addr1

l

)
1≤l≤q denote the sequences

of accesses which A chose in the security game of Definition 4.1. We proceed through a sequence
of hybrids.

14The server complexity can be de-amortized similarly to Theorem 4.4.
15We note that if Lmax is super-polynomial then even passing 1Lmax to Setup cannot be done in poly (λ) time.

However, Setup′ can emulate Setup without actually writing down 1Lmax , and since the emulation only instantiates
logLmax empty levels, the emulation would be efficient.
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Hb
1 is the security game of Definition 4.1 (with the modification that new entries may be written

to the database) with bit b.

Hb
2 is the same as Hb

1, except that all calls to ReadR (during the execution of the Read′ or Write′

protocols) induced by read or write operations of honest clients, are replaced with read requests
to address 1 (or any other arbitrary address).

Hb
1 ≈ Hb

2 by the security of the RO-PANDA scheme.

To complete the proof, we show that the views of A in H0
2 , H

1
2 are computationally indistin-

guishable (and so its advantage in the security game is negligible). This follows from the security
of the PW-PANDA scheme: both views contain the same write operations, and the same ReadR

calls (for calls induced by read operations of honest clients this holds because they read address 1;
for calls induces by read operations of corrupted clients this holds because these operations read
the same address, by the restrictions in the security game of Definition 4.1). Therefore, the views
differ only in read accesses of honest clients to the PW-PANDA, or in the identity of the client in
write operations of honest clients on the PW-PANDA, which are indistinguishable by the security
of the PW-PANDA scheme.

As for the complexity of the scheme, we follow the analysis in the proof of Theorem 4.4. (For
the RO-PANDA scheme, we can use another copy of the scheme of Construction 4.2, which will
at most double the complexity.) Regarding the Read complexity, each execution of Read′ requires
performing poly (logLmax) operations for each of the logLmax levels (to read the counters etc.), but
the client only needs to perform read operations on the first logL levels (all other levels are empty),
so the client and server complexity during the Read protocol is poly (logLmax) + t · poly (λ, logL).
Similarly, the client and server complexities during Write are the same as in Construction 4.2 (since
all operations need to be performed only on the first L levels), except that they also need to perform
O (1) operations on counters (of size at most logLmax), so the complexities are O (logL+ logLmax)
and poly (logLmax) + t · Lε · poly(λ, logL), respectively. Regarding server state and key sizes, the
client holds logLmax keys of the PE-PANDA scheme, so the key size is t · poly (λ, logLmax), and the
server stores public keys for all logLmax levels, but only the first logL levels are non-empty, so the
server state has size t · poly (λ, logLmax) + t · L1+ε · poly (λ, logL). We note that bucket overflows
still happen with negligible probability since Lmax = poly (λ).

4.2 A Secret-Writes PANDA Scheme

In this section we focus on the the private-database setting, in which the database consists of the
private data of different clients (and each client is allowed to access only its own data). In this
setting, write privacy can be obtained for honest clients. Our goal is to design a PANDA scheme
(supporting writes) in this setting, and for this we use a PW-PANDA scheme for dynamic databases
(Section 4.1.1). We first formally define the primitive.

Definition 4.6 (Secret-Writes PANDA (SW-PANDA)). A Secret-Writes Private Anonymous Data
Access (SW-PANDA) scheme consists of procedures (Setup,Read,Write) with the syntax of Defini-
tion 4.1, and the following correctness and security properties.

• Correctness: In any execution of the Setup algorithm followed by a sequence of Read and
Write protocols between various clients and the server, in which every client only accessed
its own data, and where the Write protocols were executed with a sequence Q of values, the
output of each client in a read operation is the value it would have read from the database if
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(the prefix of) Q (performed before the corresponding Read protocol) was performed directly
on the database.

• Security: Any PPT adversary A has only negl (λ) advantage in the following security game
with a challenger C:

– A sends to C:
∗ The values n, t, and a pair of databases DB0,DB1 ∈ {0, 1}L.

∗ A subset T ⊂ [n] of corrupted clients with |T | ≤ t.
∗ A pair of access sequencesQ0 =

(
opl, val0l , j

0
l , addr0

l

)
1≤l≤q , Q

1 =
(
opl, val1l , j

1
l , addr1

l

)
1≤l≤q,

where
(
opl, valbl , j

b
l , addrbl

)
denotes that client jbl performs operation opl at address

addrbl in database DBb with value valbl (which, if opl = read, is ⊥).

We require that
(
opl, val0l , j

0
l , addr0

l

)
=
(
opl, val1l , j

1
l , addr1

l

)
for every l ∈ [q] such that

j0
l ∈ T ∨ j1

l ∈ T (in particular, Q0, Q1 differ only on accesses of honest clients), and that
DB0,DB1 agree on all blocks that belong to clients in T .

– C performs the following:

∗ Picks a random bit b← {0, 1}.
∗ Initializes the scheme by computing Setup

(
1λ, 1n, 1t,DBb

)
.

∗ Sequentially executes the sequenceQb of Read and Write protocol executions between
the honest server and clients. It sends to A the views of the server S and the
corrupted clients {Cj}j∈T during these protocol executions, where the view of each
party consists of its internal state, randomness, and all protocol messages received.

– A outputs a bit b′.

The advantage AdvA (λ) of A in the security game is defined as: AdvA (λ) = |Pr [b′ = b]− 1
2 |.

Notice that Definition 4.6 does not hide which operations were read and which were write
operations. A stronger notion of security which also hides the type of operations performed, can
be generically achieved as follows: in every (read or write) operation, first read the desired address,
and then write to that address, either writing-back the read value (when performing a read), or
writing the new desired value (when performing a write).

Construction Overview. Recall from the introduction that we use a PW-PANDA scheme for
dynamic databases (Section 4.1.1), and the high-level idea is for write operations to add new copies
of the data blocks to the PW-PANDA. To prevent the adversary from correlating different copies
of the same data block (which would allow it to deduce the number of times a specific data block
was written), we replace the actual address of the written value with an “effective” address which
is obtained by applying a PRF (with a client-specific key) to the logical address and the copy
number. Since this prevents the server from removing duplicates from the underlying PANDA,
the server storage grows proportionally to the number of writes. Moreover, the PANDA scheme
may now contain multiple copies of the same data block, so operations need to first determine the
current copy number. For read operations, this is achieved by performing a binary search over all
possible copy numbers. For write operations, this is obtained by first performing a read for the
data block (which locates the most recent copy), and then setting the copy number of the new copy
accordingly.
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We now formally describe our construction. For simplicity of the exposition, we assume that all
clients know the location of their blocks in DB.16 We use a bound Lmax (whose value is set below)
on the maximal size of the database.

Construction 4.7 (Secret-Writes PANDA). The scheme uses the following building blocks:

• A PW-PANDA scheme for dynamic databases
(
SetupPW,ReadPW,WritePW

)
.

• A symmetric encryption scheme (KeyGen,Enc,Dec) with pseudorandom ciphertexts17 (used
to encrypt the contents of data blocks).

• A PRF F (used to generate the “effective” block addresses).

We define the following protocols.

• Setup(1λ, 1n, 1t,DB): Recall that n denotes the number of clients, t is the collusion bound,
and DB ∈ {0, 1}L. It does the following.

– Counter initialization. Initialize a write counter countW to 0.18

– Generating client keys. For every 1 ≤ j ≤ n, generate a random PRF key Kj ← {0, 1}λ

for F , and an encryption key Ksym
j ← KeyGen

(
1λ
)
, for client Cj .

– Initializing the database.

∗ For every data block bi, 1 ≤ i ≤ L which belongs to client Cj , compute b̃i ←
Enc

(
Ksym
j , bi

)
, and let D̃B =

((
(1, 1) , b̃1

)
, . . . ,

(
(L, 1) , b̃L

))
. (Intuitively, we at-

tach to each data block its logical address, and the copy number “1”.)

∗ Run SetupPW
(

1λ, 1n, 1t, 1L, Lmax, D̃B
)

to generate a public-writes PANDA scheme

for dynamic databases for D̃B. SetupPW outputs a server state stPWS , and client keys
ckPW1 , . . . , ckPWn .

– Output. For each client Cj , set the client key ckj =
(
Kj ,K

sym
j , ckPWj

)
to consist of

its PRF and encryption keys, as well as its key in the PW-PANDA scheme. Set the
server state stS =

(
countW , stPWS

)
to consist of the counter, and the server state in the

PW-PANDA scheme.

• The Read protocol. To read the database value at location addr ∈ [L] from the server S, a

client Cj with key ckj =
(
Kj ,K

sym
j , ckPWj

)
and the server S run the following protocol.

– Obtaining counter information. Cj reads countW from S. (Notice that there are at most
countW copies of the data block addr in the PW-PANDA.)

– Locating the most recent copy in the PW-PANDA. Cj performs a binary search to find
the most recent copy (i.e., the copy with largest index) of data block addr, in the range
1, . . . , countW (if such a copy exists). The binary search is executed as follows: whenever

16This assumption can be removed by implementing DB with a structure similar to the levels in Construction 4.2,
namely using buckets to which data blocks are mapped using a public hash.

17A symmetric encryption scheme with pseudorandom ciphertexts is a symmetric encryption scheme in which the
ciphertexts generated by Enc are pseudorandom strings (see, e.g., [ABSV15]).

18We note that when the underlying PW-PANDA is the scheme obtained from Construction 4.2, then one can use
the write counter of the underlying scheme. However, we cannot generally assume that the underlying scheme keeps
such a counter.
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the algorithm requires reading (i.e., searching for) copy m from the PANDA, the client
and server run ReadPW for address addrm = F (Kj , (addr,m)) in the PW-PANDA. Let(

(addr,m) , ṽal
)

denote the output of the binary search.

– Recovering data. Cj decrypts val = Dec
(
Ksym
j , ṽal

)
.

• The Write protocol. To write value val at location addr ∈ [L] on the server S, a client Cj

with key ckj =
(
Kj ,K

sym
j , ckPWj

)
and the server S run the following protocol.

– Locating the most recent copy. The client and server execute the Read protocol for data
block addr. (Notice that from this execution, Cj learns the index m of the most recent
copy of block addr.)

– Adding a new block copy. Cj encrypts ṽal← Enc
(
Ksym
j , val

)
, and computes the effective

address of the new copy as addr′ = F (Kj , (addr,m+ 1)). Then, the client and server

run WritePW to add the block at address addr′ with value ṽal.

– The server S updates its state by setting countW := countW + 1.

We prove the following claim about Construction 4.7.

Claim 4.8. Assuming the security of all the building blocks, Construction 4.7 is a secure SW-
PANDA scheme.

Proof. The correctness of the scheme follows directly from the correctness of the underlying build-
ing blocks. (In particular, when the range of F is sufficiently large, then except with negligible
probability no two effective addresses in the execution are the same, and so no client overwrites
another client’s data blocks.) We now argue security.

Let A be a PPT adversary corrupting the server and a subset T of at most t clients. Let
DB0,DB1 be any pair of databases that agree on all blocks that belong to clients in T , and let
Q0 =

(
opl, val0l , j

0
l , addr0

l

)
1≤l≤q , Q

1 =
(
opl, val1l , j

1
l , addr1

l

)
1≤l≤q denote the sequences of accesses

which A chose in the game. We proceed through a sequence of hybrids.

Hb
1: Hb

1 is the security game of Definition 4.6 with bit b.

Hb
2: In Hb

2, the value of all data blocks of honest clients (in DBb or in write operations) are replaced
with encryptions of 0.

Hb
1 ≈ Hb

2 by the security of the encryption scheme. (Notice that the pseudorandom ciphertexts
of the encryption scheme guarantee indistinguishability even if a client owns multiple data
blocks, or writes the same value to a data block multiple times.)

Hb
3: In Hb

3, we replace the effective addresses computed (during the run of the Read or Write
protocols) during an access of an honest client with the output of a random function (instead
of the outputs of F ).

Hb
2 ≈ Hb

3 by the security of the PRF.

To finish the proof, we show that that the views of A in H0
3 , H

1
3 are computationally indistin-

guishable (and so its advantage in the security game is negligible). This follows from the security
of the PW-PANDA scheme. Indeed, in both cases write operations of honest clients write encryp-
tions of 0 to random addresses (since the address is the output of a random function on a unique

33



value, due to the use of increasing copy numbers). Moreover, write operations of different honest
clients are indistinguishable due to the pseudorandom ciphertexts of the encryption scheme (which
guarantees that given two ciphertexts, one cannot determine whether they were generated with
the same encryption key, or with different encryption keys, nor learn anything about the key; thus
one learns nothing about the identity of the client who performed the operation). Furthermore,
in both views the database contains encryptions of the same values for data blocks of corrupted
clients (since these were initialized with the same values, and all operations of corrupted clients are
the same in Q0, Q1), and encryptions of 0 in the data blocks of honest clients. Finally, the read
operations of corrupted clients are the same in both views (by the restrictions of Definition 4.6).
Consequently, H3

0 , H
3
1 differ only in read accesses of honest clients to the PW-PANDA, and the

identity of the honest clients performing write operations on the PW-PANDA, and so H3
0 , H

3
1 are

computationally indistinguishable by the security of the PW-PANDA scheme.

We now use Claim 4.8 to prove the following theorem.

Theorem 4.9 (Secret-Writes PANDA scheme). Suppose leveled FHE exists. Then for any constant
ε > 0 there is a SW-PANDA, for n clients, t collusion bound and database size L, where after W
write operations:

• The client and server complexity during each Read protocol is t · poly(λ, logL, logW ).

• The client complexity during each Write protocol is t ·poly (λ, logL, logW ), and the amortized
server complexity is t · (L+W )ε · poly (λ, logL, logW ).19

• The client keys are of size t · poly(λ, logL).

• The server state is t · (L+W )1+ε · poly (λ, logL, logW ).

Proof. We instantiate Construction 4.7 with the PW-PANDA scheme of Theorem 4.5 for dynamic
databases of size at most Lmax = 2λ, any PRF with poly (λ) overhead (and sufficiently large range),
and any secure symmetric encryption scheme with pseudorandom ciphertexts (see, e.g., [Gol04])
with poly (λ) overhead. Then correctness and security follow directly from Claim 4.8.

Regarding the complexity of the scheme, every execution of the Read protocol consists of a
binary search in the range 1, . . . ,W , where each read of the binary search calls ReadPW once on
a database of size L + W (so this step costs t · poly (λ, logL, logW )); and additionally requires
computing the PRF once and decrypting one value (both take poly (λ) time), so the client and
server complexity during the Read protocol is t · poly (λ, logL, logW ). Every execution of the Write
protocol consists of a single execution of the Read protocol (t·poly (λ, logL, logW ) time); computing
one PRF image and one encryption (poly (λ) time); and a single execution of the WritePW protocol
(poly (λ) time for the client, t · (L+W )ε · poly (λ, logL, logW ) amortized time for the server), so
the client (server) complexity during the Write protocol is t · poly (λ, logL, logW ) (t · (L+W )ε ·
poly (λ, logL, logW )). Regarding the client keys, they consist of a PW-PANDA key, and a PRF
and encryption key, so the client key has size t · poly (λ, logL). As for the server state, the server
stores a single PW-PANDA scheme for dynamic databases of size at most Lmax = 2λ, whose actual
size is L + W , and a counter (which requires at most O (logW ) bits), so the server storage is
t · (L+W )1+ε · poly (λ, logL, logW ).

19The server complexity can be de-amortized similarly to Theorem 4.4.
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5 Extensions and Additional Results

5.1 Adaptive Security

The adversarial model in the various PANDA notions considered in previous sections is selective,
where the adversary chooses the access pattern at the onset of the game. One could also consider a
stronger adversarial model in which the adversary chooses the access pattern adaptively during the
game. (We chose to define the weaker selective notion since it simplifies the definitions.) All our
constructions are also secure against adaptive adversaries. Concretely, for bounded RO-PANDA
(Construction 3.4), essentially the same proof as that of Claim 3.5 also shows adaptive security. The
notion of PE-PANDA is defined with an adaptive adversary (Definition 3.8). Finally, (unbounded)
RO-PANDA, PW-PANDA and SW-PANDA are adaptively secure since they are constructed using
PE-PANDA, which is adaptively secure.

5.2 Maliciously-Corrupted Parties

In previous sections we have focused on constructing PANDA schemes that are secure against semi-
honest coalitions consisting of the server and a (small) fraction of the clients, all of whom follow the
protocol honestly but try to learn sensitive information from their view of the protocol execution.
We now generalize our constructions to the setting of malicious corruptions, in which parties may
arbitrarily deviate from the protocol.

5.2.1 Read-Only PANDA

We begin by considering the case of unbounded-access read-only PANDA from Section 3.3.

Maliciously-corrupted clients. We first consider the setting in which the server remains semi-
honest but colludes with maliciously-corrupted clients. In particular, the server is still guaranteed
to follow the protocol, but clients may arbitrarily deviate from it. We note that our scheme remains
secure in this setting. Indeed, in our scheme, the actions of the clients do not have any effect on the
server state. Therefore, malicious behavior by the corrupted clients has no impact on the protocol
executions of the honest clients, or the view of the adversary. In other words, in our scheme there
is no real difference between semi-honest and fully malicious clients.

Maliciously-corrupted server. Next, we consider the setting in which the server is also ma-
licious (i.e., can arbitrarily deviate from the protocol), and may collude with malicious clients.
There are only two possible points during the protocol in which the server may deviate from the
specification and we discuss these separately.

Firstly, the server may lie about the epoch number, causing honest clients to perform too many
accesses in a single epoch. This would violate the security requirements of the underlying bounded-
access PANDA scheme, and would indeed lead to a loss of security. Recall that in our scheme the
clients simply ask the server for the epoch number. Since (honest) clients do not communicate
with each other, they have no way of knowing how many accesses were performed so far by other
honest clients, and therefore cannot easily verify the current epoch number on their own. However,
we may be able to assume some independent mechanism through which the number of accesses
performed so far, and therefore also the current epoch number, could be known. For example,
we may assume that some third party service can implement a “public counter” which clients can
anonymously increment after each access, and anybody can read to see how many accesses were
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performed so far.20 Alternately, we may assume that we know the rate at which accesses occur and
set the epochs to occur at regularly timed intervals, so that clients with synchronized clocks can
individually determine the current epoch number on their own. In such settings we do not need to
trust the server to provide the correct epoch number, and therefore resolve this problem.

Secondly, the server might send wrong values in the encoded database in response to client
queries. Not only could this cause the clients to recover incorrect data but, by seeing whether
clients succeed or fail in recovering the data, it also allows the server to perform Chosen-Ciphertext
Attacks (CCA) against the FHE scheme, and potentially break the privacy or anonymity of the
PANDA scheme. To solve this problem, whenever the client sends a query (q1, . . . , ql), we can have

the server send the corresponding positions of the encoded database ai = D̃Bqi , and also prove
that these values were computed correctly using a succinct interactive argument. One subtlety is
that, even if we use succinct arguments which are efficient for the client (who plays the role of the
verifier), we also need these arguments to be equally efficient for the server (who plays the role of
the prover). It turns out that we can make this work as described below.

We first augment the Setup procedure of the unbounded-access PANDA from Construction 3.13
to have each client store a collision-resistant hash σ = H(DB) of the database DB as well as
the public key pk of the underlying public-encoding PANDA. During the Read protocol, the client
sends queries (q1, . . . , ql), and the server sends the corresponding positions ai = D̃Bqi of the encoded

database. In addition, the server sends σ̃ = MH(D̃B), where MH denotes a Merkle-Tree Hash.

It then gives the path in the Merkle-Tree to succinctly show that ai = D̃Bqi is indeed the value in

position qi of the hashed D̃B. Finally the server uses a succinct interactive argument of knowledge to
prove that it knows some DB such that σ = H(DB) and σ̃ = MH(Encode (pk,DB, counte)), where
counte is the current epoch number. Since the adversary cannot break the collision resistance
of H,MH, this implies that ai must be the correctly computed value. Note that the statement
and witness in the interactive argument do not depend on ai, and are therefore the same for all
protocol executions throughout the epoch. For efficiency, we need a succinct interactive argument
of knowledge where, for a statement x in an NP-relation that can be verified in time T :

1. The complexity of the verifier is poly(λ, |x|, log T ).

2. The prover can perform a one-time pre-processing in time T · poly(λ, |x|, log T ), after which
it can run arbitrarily many executions of the interactive argument with a verifier, where the
complexity of each execution is poly(λ, |x|, log T ).

Using such an argument system, the server would perform the pre-processing step of the argument
system at the beginning of each epoch, as well as compute the Merkle-Tree corresponding to
σ̃ = H(D̃B). It would then execute proofs efficiently during each subsequent read access. It turns out
that such interactive proofs can be constructed using the paradigm of Kilian [Kil92] combined with
quasi-linear probabilistically checkable proofs (PCP), e.g., [BCGT13]. The pre-processing would

compute a PCP for the computation D̃B = Encode (pk,DB, counte) , σ = H(DB), σ̃ = MH(D̃B),
and store a Merkle-Tree Hash of this PCP. Since the approach of Kilian only relies on collision-
resistant hashing which is implied by FHE, this does not introduce any additional assumptions,
nor does it increase the asymptotic efficiency of our read-only solution.

20Note that there are no privacy requirements for this counter, and the only security requirement is that an
adversary cannot decrement it. The adversary could always artificially increment the count, but this does not violate
security.
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5.2.2 PANDA with Writes

We now consider malicious security for PANDA schemes with public and secret writes. In both
cases, we only consider the case of a semi-honest server colluding with fully malicious clients, and
we leave it as an open problem to consider a fully malicious server as well.

Public-Writes PANDA. In a public-writes PANDA, the Write protocol solely consists of clients
sending to the server, in the clear, the address and value being written. Therefore, there is no
difference between a fully malicious client, and a semi-honest client who follows the protocol with
some sequence of writes. Consequently, malicious client behavior does not affect the privacy or
anonymity of the honest clients. Note, however, that malicious clients can completely overwrite
all of the data in the database with arbitrary values! (Indeed, we want to allow clients to write
arbitrarily, so an honest client can do that as well.) Whether clients should be allowed to write
arbitrarily depends on the specific application scenario, but it is easy to imagine that this would
not be desirable. We can easily add restrictions to the allowed write operations by having the
server enforce them. For example, the server can only allow certain locations of the database to
be writable, while others are read-only; since the server sees the locations being written to, it can
simply ignore write requests to illegal locations.

Secret-Writes PANDA. In a secret-writes PANDA, each client has an individual database and
we certainly do not want malicious clients to be able to overwrite the data of honest clients. Recall
that in our construction, the Write protocol consists of the clients giving an (address, value) pair,
but this time the address consists of a PRF applied to the actual location being written and a
counter. There are two potential issues if malicious clients choose the addresses adversarially.

Firstly, a malicious client could potentially choose an address that “belongs” to some honest
client. To solve this, the server can simply check that every address ever being written is fresh
(which for honest clients will anyway be the case with overwhelming probability due to the pseu-
dorandomness of the PRF).

Secondly, a malicious client colluding with a semi-honest server could potentially choose ad-
dresses in an adversarial way to cause an overflow in some bucket.21 To solve this problem, we
require that each time a level is initialized, the server picks completely fresh hash functions (by
sampling randomness on the fly) that map addresses to buckets. That way, even if malicious clients
collude with the server and maliciously select the address, they will not know which hash function
will be used to map this address to buckets later on. We now need to modify the Read procedure
slightly so that the server also gives the client the description of the hash functions used at every
level at the start of every Read protocol.

5.3 Alternative Solutions Without Anonymity

When anonymity is not required, our techniques can be used to obtain simpler alternative con-
structions of multi-client read-only private database access schemes (without client anonymity). In
this setting, we can get a solution based only on one-way functions (OWFs) without relying on
fully homomorphic encryption (FHE).

A trivial solution in this case would be for each client to have its own ORAM stored on the
server (for which only the client knows the secret key), where to access the database the client only
needs to access her own ORAM scheme. (Note that this would reveal the identity of the client, but

21This can also occur in the public-writes setting, but in that case clients can anyway overwrite all the data so it
does not yield any additional attack.
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is not problematic when anonymity is not required.) Therefore, in the trivial solution the server
storage is linear in the number of clients, even though all clients access one shared, public, read-only
database.

Our techniques can be used to reduce server storage, making it sublinear in the number of
clients. The high-level idea is to store an LDC-encoding of the database at multiple virtual servers,
as in our bounded-access RO-PANDA scheme (Construction 3.4), but to implement each virtual
server using a standard ORAM scheme (instead of permuting the codeword using PRPs). As in
Construction 3.4, we will use an LDC with data-size L, smoothness s = λ and corresponding locality
k = poly(λ, logL), and codeword size M = L1+ε · poly(λ, logL). We will have k′ = k2t different
virtual servers, where each one consists of a separate ORAM containing the LDC codeword. Each
client will have a random committee consisting of k out of k′ virtual servers associated with her, for
which she will know the secret ORAM keys. To read from the database, the client generates the
queries of the LDC decoder (as in Construction 3.4), and reads these locations from the ORAMs of
the virtual servers on her committee (each ORAM is used to answer a single decoder query). Even
if the adversary corrupts t of the clients, and therefore implicitly corrupts all of the virtual servers
on their committees, with overwhelming probability every honest client’s committee will have at
most s corrupted virtual servers on it. Therefore, every honest client’s read remains private since
the adversary only sees the queries to the corrupted virtual server (by the security of the ORAM)
and these are uniformly random and independent of the location being read (by the smoothness of
the LDC).

The above solutions gives us a multi-client “private non-anonymous data access scheme” in
the read-only setting using only OWFs. Using an ORAM with poly-logarithmic overhead based
on OWFs (e.g., [GO96, SvDS+13]), for any ε > 0 we can get a scheme where for n clients, with
database size L, and collusion bound t:

• The client/server run-time for each read operation is t · poly(λ, logL).

• The client storage is t · poly(λ, logL).

• For any ε > 0, the server storage is t · L1+ε · poly(λ, logL).

5.4 Non-Client Writes

Our public-writes PANDA scheme (Construction 4.2) has the property that anyone can write to the
database even if they’re not one of the designated clients in the scheme. Still, only the designated
set of clients can privately read from the database. This is because writing to the PANDA scheme
requires no secret key, whereas reading from it requires knowing a secret key that was generated
(for a particular client) during the setup phase. Therefore, our public-writes PANDA scheme can
be used to implement a public bulletin board to which everyone can write, but from which only a
designated group of clients can read. This can be useful in several scenarios, e.g., when a company
wishes to implement an anonymous “suggestion box” to which everyone in the company can add
suggestions, but only the management can read.
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We show that Reed-Muller (RM) codes [Ree54, Mul54] can be encoded in quasilinear time (in
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in the algorithm used to prove [KU08, Theorem 3.1].)
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Recall from Section 2 that in RM codes we choose a subset H ⊆ F, the message DB is interpreted
as an m-variate function DB : Hm → Σ, and the codeword is the evaluation, on all Fm, of the low
degree extension D̃B : Fm → F of DB of individual degree< |H|. Therefore, encoding a message
DB requires: (1) interpolating the low-degree extension from its values on Hm; and (2) evaluating
the low-degree extension on all points in Fm.

First, we claim that if F has prime order q ∈ N, and H is chosen to be the set of |H|’th roots

of unity in F, then interpolation can be done in time Õ (|F|m) = Õ
(∣∣∣D̃B

∣∣∣). We prove this by

induction on m. For the base case, the univariate polynomial (of degree< q) can be evaluated
in time qpolylog (q) using Fast Fourier Transform (FFT). For the step, assume the claim holds
for (m − 1)-variate polynomials, and given an m-variate polynomial P (x1, . . . , xm) (of individual
degree< q), we write it as P (x1, . . . , xm) =

∑q−1
i=0 x

i
1 · Pi (x2, . . . , xm) (if P has degree lower than

q− 1 in x, then the leading coefficients are set to 0). The induction hypothesis guarantees that the
coefficients of each of P0, . . . , Pq−1 can be computed in time qm−1polylog (q), and these give all the
coefficients of P , so overall the coefficients of P are computable in time qmpolylog (q).

Second, we claim that if F has prime order q ∈ N then evaluating an m-variate polynomial
(of individual degree< q) on all Fm can be done in time m · qm · polylog (q). Again we prove
the claim by induction on m. The base case with m = 1 follows from the fact that univariate
multipoint evaluation can be done in time qpolylog (q) using FFT. For the step, assume the claim
holds for (m − 1)-variate polynomials, and again we write the polynomial P as P (x1, . . . , xm) =∑q−1

i=0 x
i
1 · Pi (x2, . . . , xm). For every β ∈ Fm−1, Pβ (x) =

∑q−1
i=0 x

i
1 · Pi (β) is a univariate polynomial

and so using FFT can be evaluated on all F in time qpolylog (q). Using the induction hypothesis,
each Pi can be evaluated on all β ∈ Fm−1 in time (m− 1) · qm−1 · polylog (q). Consequently, one
can evaluated P on all Fm in time

q · (m− 1) · qm−1 · polylog (q) + qpolylog (q) · qm−1 = m · qm · polylog (q) .

In summary, overall the RM encoding time is m · qmpolylog (q) = Õ(M).
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