
Collusion Resistant Traitor Tracing from Learning with Errors

Rishab Goyal
UT Austin

rgoyal@cs.utexas.edu

Venkata Koppula
UT Austin

kvenkata@cs.utexas.edu

Brent Waters
UT Austin

bwaters@cs.utexas.edu∗

Abstract

In this work we provide a traitor tracing construction with ciphertexts that grow polynomially in
log(n) where n is the number of users and prove it secure under the Learning with Errors (LWE)
assumption. This is the first traitor tracing scheme with such parameters provably secure from a standard
assumption. In addition to achieving new traitor tracing results, we believe our techniques push forward
the broader area of computing on encrypted data under standard assumptions. Notably, traitor tracing
is substantially different problem from other cryptography primitives that have seen recent progress in
LWE solutions.

We achieve our results by first conceiving a novel approach to building traitor tracing that starts
with a new form of Functional Encryption that we call Mixed FE. In a Mixed FE system the encryption
algorithm is bimodal and works with either a public key or master secret key. Ciphertexts encrypted using
the public key can only encrypt one type of functionality. On the other hand the secret key encryption
can be used to encode many different types of programs, but is only secure as long as the attacker sees
a bounded number of such ciphertexts.

We first show how to combine Mixed FE with Attribute-Based Encryption to achieve traitor tracing.
Second we build Mixed FE systems for polynomial sized branching programs (which corresponds to
the complexity class logspace) by relying on the polynomial hardness of the LWE assumption with
super-polynomial modulus-to-noise ratio.

1 Introduction

In a (traitor) tracing [CFN94] system an authority runs a setup algorithm that takes in a security parameter
λ and the number, n, of users in the system. The setup outputs a public key pk, master secret key msk,
and n secret keys (sk1, sk2, . . . , skn). The system has an encryption algorithm that uses the public key pk to
create a ciphertext for a message m that is decryptable by any of the n secret keys, but where the message
will be hidden from any user who does not have access to the keys. Finally, suppose that some subset S of
users collude to create a decoding box D which is capable of decrypting ciphertexts with some non-negligible
probability. The tracing property of the system states that there exists an algorithm Trace, which given the
master secret and oracle access to D, outputs a set of users T where T contains at least one user from the
colluding set S and no users outside of S.

Existing approaches for achieving collusion resistant broadcast encryption can be fit in the framework of
Private Linear Broadcast Encryption (PLBE) introduced by Boneh, Sahai, and Waters (BSW) [BSW06]. In
a PLBE system the setup algorithm takes as input a security parameter λ and the number of users n. It
outputs a public key pk, master secret key msk, and n private keys sk1, sk2, . . . , skn where a user with index j
is given key skj . Any of the private keys is capable of decrypting a ciphertext ct created using pk. However,
there is an additional TrEncrypt algorithm that takes in the master secret key, a message and an index i.
This produces a ciphertext that only users with index j > i can decrypt. Moreover, any adversary produced

∗Supported by NSF CNS-1228599 and CNS-1414082. DARPA through the U.S. Office of Naval Research under Contract
N00014-11-1-0382, Google Faculty Research award, the Alfred P. Sloan Fellowship, Microsoft Faculty Fellowship, and Packard
Foundation Fellowship.

1

decryption box D that was created with private keys in the set of S will not be able to distinguish between
encryptions to index i − 1 or i, where i /∈ S. In addition, encryptions of two different messages m0,m1 to
index n must be indistinguishable.

The tracing system is setup by simply running the PLBE setup and distributing each PLBE key to the
corresponding user. To trace the set of colluding parties given a decoding box D, the tracing algorithm first
measures (with several samples) the probability that D correctly decrypts a ciphertext encrypted to index i
for all i ∈ [0, n]. If the box D originally decrypted with probability ε, then there must exists some index i
where the probability the box decrypts on index i− 1 is at least ε/n more than the probability it decrypts
on ciphertexts encrypted to index i, as by PLBE security D can not decrypt encryptions to index n with
non-negligible probability. At this point the tracing algorithm marks user i as a colluder.

Currently, there are three approaches to building PLBE. The most basic approach is to simply create n
public/private key pairs under a standard IND-CPA secure public key encryption system. A PLBE ciphertext
is formed by encrypting the message m to each user’s public key individually and concatenating all of the
sub-ciphertexts to form one long ciphertext ct = (ct1, ct2, . . . , ctn). A user with secret key ski in the system
will decrypt by running decryption on cti and ignore the rest of the ciphertext components. To TrEncrypt to
index i simply encrypt the all 0’s string in first i ciphertexts ct1, . . . , cti in place of the message. The index
hiding property follows directly from IND-CPA security of the underlying encryption scheme as without
secret key i no attacker can distinguish whether cti is an encryption of the message or all 0’s string.

The above approach works because there is a portion of the ciphertext cti dedicated to each user i in
the system which is not touched during the decryption process of other users with keys skj for j 6= i. This
dedicated ciphertext space strategy makes it easy to silently kill user i’s ability to access the message in a
way unnoticeable to other users, but also inherently requires a ciphertext size that grows linearly in n. In
order to achieve PLBE with sublinear size ciphertexts one needs to implement some form of computing on
encrypted data.

BSW [BSW06] provided the first construction that achieved PLBE with ciphertext growth that was sub-
linear in n. They leveraged composite order bilinear groups to achieve ciphertexts that grew proportionally
to
√
n. While future variants [BW06, GKSW10, Fre10] used bilinear maps to obtain additional properties,

the ciphertext size for all bilinear-map based constructions remained stuck at the
√
n mark.

Several years later Boneh and Zhandry [BZ14] showed how to utilize indistinguishability obfuscation and
apply punctured programming techniques to achieve the ideal case where ciphertexts grow polynomially in
log(n) and λ. The downside of applying indistinguishability obfuscation is that all current obfuscation candi-
dates are based on non-standard multilinear map group assumptions, and several such multilinear candidates
have been attacked (see [CLT14, CHL+15, CGH+15, BGH+15, CLLT16, CLLT17, BWZ14, HJ16, Hal15,
CFL+16, MSZ16, CJL16, ADGM16] and the references therein). (One could also achieve similar results from
using the functional encryption scheme of Garg et al. [GGH+13], but this also relies on multilinear maps.)
This leaves open the following question:

Can we build secure traitor tracing with poly(λ, log(n))-sized ciphertexts from standard assumptions?

Our Results

In this work we resolve the above question by providing a traitor tracing construction with ciphertexts
that grow polynomially in log(n) and λ and prove it secure under the Learning with Errors (LWE) assump-
tion. This is the first traitor tracing scheme with such parameters that is provably secure from a standard
assumption. In addition to achieving new traitor tracing results, we believe our techniques push forward
the broader area of computing on encrypted data under standard assumptions. Notably, traitor tracing is
substantially different problem from other cryptography primitives that have seen recent progress in LWE
solutions.

We achieve our result by first conceiving a novel approach to building traitor tracing that starts with a
new form of Functional Encryption that we call Mixed FE. In a Mixed FE system the encryption algorithm
is bimodal and works with either a public key or master secret key. Ciphertexts encrypted using the public
key can only encrypt one type of functionality. On the other hand the secret key encryption can be used to

2

encode many different types of programs, but is only secure as long as the attacker sees a bounded number
of such ciphertexts.

We first show how to combine Mixed FE with Attribute-Based Encryption to achieve traitor tracing.
Second we show under the LWE assumption how to construct Mixed FE systems for polynomial sized
branching programs (which corresponds to the complexity class logspace).

1.1 Technical Overview

We now give a technical overview of our work. This overview is broken into four parts. In the first part we
review the BSW notion of Private Linear Broadcast Encryption and its transformation into a traitor tracing
system. Along the way we discover that the PLBE definitions as presented in [BSW06] do not imply traitor
tracing. We then show how to repair the argument by giving the attacker an additional oracle encryption
query in the PLBE definitions. Second, we present the notion of Mixed FE and show how an ABE and
Mixed FE system (for the right functionalities) can be used to construct a PLBE system. The third part of
our overview describes a new LWE toolkit which includes “enhanced” versions of lattice trapdoor sampling
algorithms with additional security properties. Finally, we outline our main ideas for constructing the Mixed
FE system and proving it secure under the LWE assumption.

Part 1: Breaking and Repairing the PLBE to Tracing Argument. First, let us review the PLBE
algorithms as defined in [BSW06]. A PLBE scheme consists of a setup, encryption, decryption and trace-
encryption algorithm. The setup algorithm outputs a public key, a master secret key and n secret keys,
one for each index in [n]. The encryption/decryption algorithms are self-explanatory; the trace-encryption
algorithm is a special encryption algorithm that requires the master secret key, and can be used to encrypt a
message to any index i ∈ [0, n]. The output ciphertext can be decrypted only by secret keys for indices j > i.
BSW defined three security properties. The first security property (public to zero-index indistinguishability)
requires that a standard encryption of message m is indistinguishable from a trace-encryption of m to the
index 0, even when the adversary has all the n secret keys. The second security property (index hiding)
states that a trace-encryption of m to index i− 1 is indistinguishable from a trace-encryption of m to index
i, even when the adversary has all the secret keys except the ith one. Finally, the third security property
states that trace-encryption of m0 to index n is indistinguishable from trace-encryption of m1 to index n,
even when the adversary is given all n secret keys.

BSW argued that these three properties of PLBE are sufficient for constructing a traitor tracing (TT)
scheme. In their transformation, the TT public key and n secret keys are set to be the PLBE public
key and n secret keys, respectively. The TT encryption/decryption algorithms are identical to the PLBE
encryption/decryption algorithms. Finally, the tracing algorithm uses the PLBE trace-encryption algorithm.
Given a decoder box D, the tracing algorithm encrypts random messages to each index, and checks if D can
decrypt it correctly. If the decoder box is ε-successful1 in decrypting (standard) encryptions, then it is also
ε successful in decrypting trace-encryptions to index 0 (via the first security property). Next, note that the
decoder box cannot decrypt trace-encryptions to index n (via the message indistinguishability property).
Therefore, there must exist an index i∗ ∈ [n] where the success of the decoder box in decrypting trace-
encryptions to index i∗ − 1 is at least ε/n more than its success in decrypting trace-encryptions to i∗. This
index i∗ must be one of the indices queried by the adversary (since if the adversary does not have a key for
index i∗, then the decoder box must not be able to distinguish between trace-encryptions to i∗ − 1 and i∗).
For each index i, the tracing algorithm computes an estimate of the decoder box’s success probability in
decrypting random trace-encryptions for index i. For all indices i where the measured success probabilities
for i− 1 and i are substantially different, user i is declared to be a traitor.

At an intuitive level, it seems like the BSW transformation should work. However, here we argue that
it is indeed possible to have a PLBE scheme secure under the original BSW definition, but produce an
insecure TT scheme in this regard. The problem lies in the fact that there is a “semantic gap” between the

1A decoder box is said to be ε-successful if its probability of correctly decrypting a ciphertext is at least ε, where the
probability is taken over the choice of the ciphertext and D’s random coins.

3

TT definition and the PLBE definition. The TT definition considers an attacker that produces a (stateless)
decoder D whose success on decrypting multiple trace-encryptions is measured, whereas the PLBE definition
considers indistinguishability on a single ciphertext (in particular, no ciphertext queries). Diving deeper, we
show a separation by adding a feature to a PLBE scheme where the feature does not impact PLBE security,
but results in an insecure TT scheme.

Given any secure PLBE scheme P, consider a scheme P′ defined as follows. The setup algorithm of P′ is
similar to the setup of P, except it also samples an additional PRF key K as part of the master secret key
(we will assume the PRF has single bit output). The (standard) encryption algorithm computes a ciphertext
ct using the underlying scheme’s encryption algorithm, chooses a uniformly random bit b and outputs (ct, b).
The trace-encryption of message m is the ciphertext ct′ = (ct, y = PRFK(i)) where ct is the ciphertext
obtained from the trace-encryption algorithm of P. It is easy to see that the new scheme satisfies all three
PLBE security definitions, since there are no encryption queries allowed in the PLBE scheme beyond the
challenge ciphertext.

However, it is possible to construct a decoding box using only secret key for index n such that the trace
algorithm falsely accuses some user i < n. The decoder D, on input of a ciphertext ct′ = (ct, y), tests if
y = 1. If so, it decrypts the ciphertext using key skn; otherwise it outputs a random message. Using PRF
security, we can argue that there exists an index i < n such that PRFK(i − 1) = 1 and PRFK(i) = 0 with
high probability. In this case the probability that D decrypts ciphertexts for index i− 1 will be measurably
different than the case it decrypts ciphertext for index i. Thus user i will be flagged as a colluder.

We repair the BSW transformation from PLBE to TT by considering a modified set of PLBE security
definitions and prove that these do imply TT. We do so in two steps. First, we consider a decoder-based
version of the BSW PLBE definitions. For concreteness, let us consider the index hiding definition. The
decoder-based version of index hiding version states that no adversary, given all secret keys except the ith

one, can produce a decoder box D and a message m such that D can distinguish between trace-encryptions
of m to index i − 1 and trace-encryptions of m to index i. Decoder-based versions of the other properties
are defined similarly.

Now that we have decoder-based PLBE definitions that align with the decoder in the TT definitions, it
is fairly straightforward to prove that the BSW transformation implies TT. The downside of introducing
decoder-based PLBE definitions is that they are more difficult to work with as a target for a construction.
We address this issue by circling back to the original (BSW) PLBE definitions, and augmenting them by
allowing an attacker to make an apriori bounded number of queries to an encryption oracle. We show that
1-query PLBE implies decoder-based PLBE. This gives us an easier target (that is, 1-query PLBE).

Before describing the transformation from 1-query PLBE to decoder-based PLBE, we would like to
point out that if the BSW definitions were augmented to allow an unbounded number of ciphertext queries,
then decoder-based security follows immediately. For instance, let us consider the index hiding game. The
reduction algorithm (that reduces unbounded-query PLBE to decoder-based PLBE) receives a decoder box
D from the attacker. Given the unbounded queries, the reduction algorithm can measure (within reasonable
accuracy) the success probabilities of D for indices i − 1 and i, and therefore, whether it can use D to
distinguish between an encryption to index i − 1 and i. However, with only 1 encryption query no such
precise measurement is possible. Therefore, showing an attacker on decoder-based PLBE security implies
and attacker on 1-query PLBE is a bit tricky. The reduction algorithm, after receiving the decoder box
and message m from the adversary, chooses a random index i∗ ∈ {i − 1, i}, and queries the challenger for
encryption of m for index i∗. It receives a ciphertext ct. Next, it queries the challenger with challenge
message m, and receives a challenge ciphertext ct∗. The reduction algorithm checks if D(ct) = D(ct∗); if
so, it guesses that m was encrypted for index i∗. We would like to point out that choosing query index i∗

uniformly at random from {i− 1, i} (as opposed to just fixing one of the two) is important for our analysis.
The complete details of our analysis can be found in Section 4.1.

Impact on prior TT works using PLBE framework. Traitor tracing schemes that had secret key tracing
would need a new proof under the new PLBE definitions with 1-query allowed. We believe the bilinear map
constructions [BSW06, GKSW10, Fre10] are likely secure under this definition, but showing this is outside
scope of this paper. Note that same problem is not present in PLBE with public trace-encryption (e.g.

4

[BW06]), since the public key allows the reduction algorithm to generate ciphertexts.

Part 2: Constructing PLBE from Mixed FE. The hardness of constructing a PLBE scheme stems
from the fact that it needs to satisfy the following three properties at the same time. First, a PLBE scheme
needs to provide an Attribute-Based Encryption (ABE) like functionality where each secret key is associated
with an “index”, and each ciphertext is associated with an index comparison predicate. Second, the scheme
must provide a Broadcast Encryption (BE) like compactness guarantee which is that the size of ciphertexts
must be short. Third and most importantly, it must provide a Predicate Encryption (PE) like security, that
is the ciphertexts must not reveal any more information about the associated index comparison predicate
other than what can be learnt by running decryption.

In this work, instead of directly building a PLBE scheme, we further reduce the task to constructing a
new form of FE scheme called Mixed FE. We show how Mixed FE can be combined with ABE for circuits
to obtain PLBE. At a very high level, our approach is to decouple the functionality (delivering the message
to users) and security requirements of a PLBE scheme, and deal with them separately.

We begin by informally introducing the notion of Mixed FE. A Mixed FE scheme consists of a setup,
normal (or public key) encryption, secret key encryption , key generation, and decryption algorithm. The
setup algorithm takes as input the security parameter λ and description of the function class F , and outputs
the public parameters pp and the master secret key msk. The normal encryption algorithm only takes as
input the public parameters pp, and outputs a (normal) ciphertext ct. The secret key encryption algorithm
takes as input the master secret key msk and a function f ∈ F , and outputs a (secret key) ciphertext ct.
The key generation algorithm takes as input the master secret key msk and a message m, and outputs a
key skm. The decryption algorithm takes as input a ciphertext ct and a secret key skm, and outputs a
single bit. Now for correctness we require that decrypting a secret key encryption of any function f using
a secret key skm outputs the evaluation of function f on message m, i.e. f(m). Whereas the decryption
algorithm (almost) always outputs 1 when given a normal ciphertext as input, irrespective of the secret
key used. Thus, one could visualize the normal encryption algorithm as always encrypting a “canonical”
always-accepting function.

Intuitively, security states that no attacker should be able to distinguish between two ciphertexts that
decrypt to same values under all the secret keys in attacker’s possession. Now since there are two separate
encryption algorithms, we have two different security properties. The first property says that secret key
encryptions of two functions f0 and f1 should be indistinguishable if for every key in attacker’s possession,
the output of f0, f1 is identical. We call this function indistinguishability property. The second property says
that it should be hard to distinguish between a normal (public key) encryption and secret key encryption of
a function f , where f(m) must be equal to 1 for all keys skm in attacker’s possession. We call this accept
indistinguishability property.

We show that we can construct a PLBE scheme from a (key-policy) ABE scheme and a Mixed FE scheme.
The idea is to encrypt a message using the ABE system with attribute being set to be a Mixed FE ciphertext.
And, each user’s secret key will be an ABE private key for the policy circuit being the Mixed FE decryption
circuit with a Mixed FE secret key corresponding to user’s index hardwired. The high level intuition is that
when the attribute is a normal FE ciphertext then all Mixed FE keys decrypt it to 1, thus any user with
an appropriate ABE key could perform the decryption. Whereas if the attribute is set to be a secret key
ciphertext, then we can control the users who can decrypt it.

Formally, the scheme works as follows. During setup, the algorithm samples both ABE and Mixed FE key
pairs (abe.pp, abe.msk), (mixed.pp,mixed.msk). To compute the ith user’s private key, it samples a Mixed FE
secret key mixed.ski for input i, and also computes an ABE key abe.ski for predicate Mixed.Dec(mixed.ski, ·),
i.e. Mixed FE decryption circuit with key mixed.ski hardwired. And the ABE key abe.ski is set to be
the ith user’s private key. Now to encrypt a message m, the algorithm simply runs the ABE encryption
algorithm with attributes being set to be a Mixed FE ciphertext ctattr. For standard PLBE encryption, ctattr

is computed as a Mixed FE normal ciphertext. And for PLBE index encryption to some index i, ctattr is
computed as a Mixed FE secret key encryption of function greater than i. Lastly, the PLBE decryption is
same as the ABE decryption algorithm.

5

Correctness can be observed directly. For standard PLBE ciphertext, ctattr is a normal FE ciphertext
which decrypts to 1, thus the predicate Mixed.Dec(mixed.ski, ·) is satisfied for all i. Therefore, by ABE
correctness, the ABE decryption algorithm will output the message m. For PLBE index i ciphertext, ctattr

is a Mixed FE secret key encryption of function ‘> i’ which decrypts to 1 for all keys mixed.skj with j > i,
thus the predicate is satisfied for all users with indices larger than i. Therefore, by ABE correctness, ABE
decryption algorithm will output the message m whenever j > i. For proving security, we rely on the
fact that Mixed FE ciphertexts are indistinguishable to any adversary that does not have distinguishing
secret keys. For instance, suppose there exists an adversary that can distinguish between PLBE normal
encryptions and index 0 encryptions, then such an adversary can also be used to distinguish between Mixed
FE normal ciphertexts and secret key ciphertexts encrypting function ‘> 0’ (note that this is an always-
accepting function). Thus, such an attack can be used to break accept indistinguishability property of Mixed
FE scheme. Similarly, we can argue index hiding and message hiding security of the construction by reducing
to Mixed FE and ABE (selective) security, respectively. Now if the Mixed FE scheme is 1-query secure, then
so will be the PLBE scheme.

Now the size of ciphertexts has only poly-log dependence on the number of users n as required. Because
each user can be uniquely identified using a bit string of length log n, so the length of attribute (Mixed FE
ciphertext) will be polynomial in log n, and thus the PLBE ciphertext which is in turn an ABE ciphertext
will have length polynomial in logn as well. Also, note that to use the above transformation it is sufficient to
construct a Mixed FE scheme that supports comparison operation on log n bit strings. In this work, we show
how to construct a Mixed FE scheme for any class of polynomial sized branching program from the Learning
with Errors assumption.2 Our construction relies only on the polynomial hardness of LWE, although we
require super-polynomial modulus-to-noise ratio. Since we already have circuit ABE schemes from the LWE
assumption [GVW13, BGG+14], combining that with our Mixed FE construction we get collusion resistant
traitor tracing from the LWE assumption as well.

Looking back, it is easy to observe that Mixed FE for branching programs that supports comparison
functionality is sufficient for our application. However, as a design choice, here we instead chose to construct
Mixed FE for general polynomial length branching programs as it is possible that this generalization leads
to more applications in the future. Moreover, focusing on logarithmic length branching programs supporting
comparisons, instead of general branching programs, did not lead to any significant simplification in the
Mixed FE construction or its proof.

Part 3: An Enhanced LWE Toolkit. Before describing our LWE-based construction for Mixed FE, we
define new “enhanced” properties for lattice trapdoors that will be useful in our work and we believe it will
find more applications in the future. In many LWE-based works, in addition to the LWE assumption itself,
a critical tool has been the notion of lattice trapdoors [Ajt99, GPV08]. Lattice trapdoor samplers consist of
a pair of algorithms TrapGen and SamplePre. The trapdoor generation algorithm TrapGen outputs a matrix
A (that defines the lattice), and a trapdoor TA. The preimage sampling algorithm SamplePre takes as input
a matrix Z, a trapdoor for matrix A, a Gaussian parameter σ and outputs a matrix U such that U maps
A to Z (that is, A ·U = Z).3

These algorithms satisfy the following properties. The matrix A output by the trapdoor generation algo-
rithm ‘looks like’ a uniformly random matrix; we call this well-sampledness of matrix property. Secondly, the
matrix output by SamplePre is indistinguishable from a matrix drawn from a discrete Gaussian distribution
with parameter σ over the set of all matrices V such that A ·V = Z. In particular, if Z is chosen uniformly
at random, then the output of SamplePre ‘looks like’ a matrix U drawn from a discrete Gaussian distribution
with parameter σ; we call this the well-sampledness of preimage. Lattice trapdoors with these properties
have found a remarkable number of applications in building LWE-based cryptography.

In this work, we introduce two new enhanced properties for lattice trapdoors. The first property is the
row removal property, which can be intuitively described as follows. Consider a setting where an adversary

2Note that this also gives us an alternate construction for selectively-secure private-key FE with bounded collusions [SS10,
GVW12].

3Although the notion of preimage sampling is usually defined w.r.t. vectors instead of matrices, here we stick to using
matrices for technical reasons discussed later in Section 7.

6

specifies some ‘target vectors’, and the challenger must output a matrix A and a matrix U such that U maps
some of the rows of A to the target vectors, and maps the remaining rows to uniformly random vectors.
Then, these rows targetting uniformly random vectors can be removed from the trapdoor sampling. In
particular, the challenger can sample a shorter matrix B with trapdoor, extend B with uniformly random
vectors to get A, and set U to be a matrix that maps B to the target vectors. These two scenarios will be
indistinguishable for the PPT adversary.

The second property is called the target switching property. In this setting, consider an adversary that
specifies two matrices Z0,Z1 and a set of ‘target’ indices such that the rows of Z0 and Z1 agree on these
target indices. The challenger is supposed to sample a matrix A with a trapdoor, compute a matrix U
that maps A to Z0

4 and output U together with the rows of A corresponding to the target indices and
only those rows. Then, the challenger can switch the U to map A to Z1, and the target switching property
requires that this change is indistinguishable to the adversary (note that this would not be possible if the
adversary receives any of the non-target rows of A). Moreover, the adversary is allowed to adaptively query
for different target vectors/indices in both these games.

Now that we have these enhanced properties, let us discuss how to construct lattice trapdoors with these
enhanced properties (using standard lattice trapdoors). Our construction is similar to the SampleLeft/SampleRight
algorithms of [ABB10, CHKP10]. The enhanced trapdoor generation algorithm uses the standard trapdoor
sampling algorithm to sample two matrices A1,A2 together with the respective trapdoors TA1 , TA2 . It out-
puts A = [A1|A2] as the matrix, and TA = (TA1 , TA2) as the trapdoor. To sample a matrix U that maps A
to Z, the preimage sampling algorithm first chooses a uniformly random matrix W (of same dimensions as
Z). It then uses TA1

to compute a matrix U1 that maps A1 to W, and uses TA2
to compute a matrix U2

that maps A2 to Z−W. The final preimage matrix is set to be

[
U1

U2

]
. We use the matrix well-sampledness

and preimage well-sampledness of the standard lattice trapdoors to prove these enhanced properties; the
detailed proof can be found in Section 7.2.

Part 4: Constructing Mixed FE from LWE. Here we outline our Mixed FE construction for polyno-
mial sized (leveled) branching program from the Learning with Errors assumption. The main ingredient of
our construction is the “enhanced” lattice trapdoor sampling procedure LTen = (EnTrapGen,EnSamplePre)
discussed above.

First, let us recall the notion of leveled branching programs. A leveled branching program of length ` and
width w can be represented using w states per level, 2` state transition functions πj,b for each level j ≤ `, an
input-selector function inp(·) which determines the input read at each level, and an accepting and rejecting
state. The program execution starts at state st = 1 of level 1. Suppose the branching program reads the
first input bit (say b) at level 1 (i.e., inp(1) = 1). Then, the state of the program changes from st to π1,b(st).
Such a process is carried out (iteratively) until the program’s final state at level ` is computed. Depending
upon the final state, the program either accepts or rejects.

For ease of exposition we will start with a simpler goal of constructing a 0-query secure Mixed FE scheme
for class of width-w read-once branching programs where each input bit is read once and in an ascending
order. Below we first outline a construction for such a 0-query system as it contains most of the central
ideas, but is easier to digest. Later we discuss the modifications with which we can improve it to be a secure
1-query scheme (and more generally, q-query secure for any polynomial q) as well as expand the function
class to arbitrary polynomial sized branching programs.

Moving on to our 0-query Mixed FE construction, the master secret key consists of two sets of matrices
and some trapdoor information. The first set, labeled as ‘randomization’ matrices, consists of 4` matrices
{Bi,b,Ci,b}i,b for i ∈ [`], b ∈ {0, 1}. And, the second set, labeled as ‘program’ matrices, consists of w`

matrices {Pi,v}i,v for i ∈ [`], v ∈ [w]. Here the Ci,b matrices are sampled uniformly at random from Zn×mq ,

whereas the remaining (randomization and program matrices) are sampled jointly with common trapdoors

4Strictly speaking, we require U to map the target vectors of A to the target vectors of Z0, but the remaining vectors of A
approximately map to the corresponding vectors of Z0.

7

(per level). Basically, for each level i ∈ [`], we sample a (w + 2)n×m matrix Mi as

(Mi, Ti)← EnTrapGen(1(w+2)n, 1m, q).

Now each Mi matrix is parsed as four n×m matrices stacked on top of each other, where first two matrices
are the randomization matrices and the remaining w matrices are the program matrices for ith level. That
is, for each i, 

Bi,0

Bi,1

Pi,1

...
Pi,w

 = Mi.

All ` trapdoors T1, . . . , T` are stored as the trapdoor information in the master secret key. The public
parameters, on the other hand, only include the matrix dimensions, LWE modulus and noise parameters,
but none of these matrices or trapdoor information.

At a high level, the encryption and key generation algorithms will adhere to the following structure.
To (secret key) encrypt a branching program, the trapdoors will be used to sample 2` low norm matrices
{Ui,b}i,b (two per level) such that each matrix Ui,b encodes the corresponding state transition function by

mapping/targetting level i ‘program’ matrices to level i+1 ‘program’ matrices as per the transition function
πi,b. Now the secret key for an input x will consist of ` + 1 key vectors {ti}i. The first key component
t1 will contain the program matrix P1,1 (which represents the starting state) plus some randomization
component generated using the level 1 randomization matrix B1,b. The remaining ` key vectors will have
two components — the first component will cancel the previous randomization component, and the second
component will add new randomization terms.5 The idea is that if decryption is performed honestly, then
all the randomization terms will get cancelled and the final output will reflect the output of the branching
program.

So this way the program matrices will be tied in such a manner that they encode the state transition
information and they can be used to perform the branching program execution. And the randomization
matrices are added to make sure that — (1) the computation is hidden at each step, and (2) if ciphertext
matrices and key vectors are combined in any inadmissible way, then the randomization components do not
get cancelled. Let us now look at how to execute the above ideas.

Key Generation. The key generation algorithm takes as input a string x and generates key vectors {ti}i
as follows. It chooses ` uniform secret vectors si ∈ Znq for i ∈ [`] and `+1 noise vectors ei ∈ Zmq for i ∈ [`+1].
It also chooses a short secret vector s̃ ∈ Znq , and sets key vectors as:

∀ i ∈ [`+ 1], ti =


s1 ·B1,x1

+ s̃ ·P1,1 + e1 if i = 1

−si−1 ·Ci−1,xi−1 + si ·Bi,xi + ei if 1 < i ≤ `
−s` ·C`,x` + e`+1 if i = `+ 1

In words, the randomization component (likewise, cancellation component) added in the ith key vector
((i + 1)th key vector) is an LWE sample where the public matrix used depends on the ith bit of input x.
Looking ahead, choosing the ‘randomization’ matrices depending on the string x would assert that the ci-
phertext matrices can not be arbitrarily combined to learn meaningful terms.

Normal Encryption. The normal (public key) encryption algorithm simply samples 2` random short
matrices {Ui,b}i,b as Ui,b ← χm×m, where χ is the noise distribution chosen during setup.

5Technically, the last key vector will only remove the previous randomization component. It doesn’t add a new randomization
term.

8

Secret Key Encryption. Moving on to the secret key encryption algorithm, on input the master secret

key and a branching program BP =
(
{πi,b}i,b , acc, rej

)
, it samples low norm matrices {Ui,b} as follows. It

first chooses two ‘program’ matrices for last level ` + 1 as P`+1,rej = 0n×m and P`+1,acc ← Zn×mq . That is,
for accepting state, it chooses a random program matrix, and for rejecting state it sets the matrix to be all
zeros. Next, using the ith trapdoor Ti (included in the master secret key) it runs the EnSamplePre algorithm
to sample the ciphertext (transition) matrices Ui,0,Ui,1 such that they map/target matrix Mi as follows:

Bi,0

Bi,1

Pi,1

...
Pi,w


Ui,0−−−→


Ci,0

$
Pi+1,πi,0(1)

...
Pi+1,πi,0(w)

 ,


Bi,0

Bi,1

Pi,1

...
Pi,w


Ui,1−−−→


$

Ci,1

Pi+1,πi,1(1)

...
Pi+1,πi,1(w)

 .

Here we use ‘$’ to denote a uniformly random n×m matrix of appropriate dimension. In words, the structure
we enforce here is that the matrix Ui,b targets the Bi,b randomization matrix to its Ci,b counterpart, and
the Bi,1−b randomization matrix to a random matrix. Additionally, Ui,b encodes the information about
transition function πi,b by targetting the level i program matrices to their level i + 1 counterparts as per
πi,b. Thus, from the perspective of both correctness and security, this guarantees that a key vector ti for
some input x must be combined with ciphertext component Ui,xi as otherwise randomization matrix would
be mapped to a random matrix, thereby destroying the underlying structure.

Decryption. First, let us focus on decrypting a secret key encryption of branching program BP using a
secret key {ti}i corresponding to an input x. Intuitively, one could visualize the matrices {Ui,0,Ui,1}i in
the ciphertext as “encodings” of the branching program state transition functions πi,0, πi,1 (respectively).
Therefore, decrypting the ciphertext using secret key for some input x will be analogous to evaluating
the branching programs BP on input x directly. Recall that we assumed (for ease of exposition) that the
branching programs are read-once and input bits are read sequentially in ascending order. Thus, the first
input bit x1 is read at level 1. Then evaluation of BP at level 1 would map the state st1 = 1 at level 1 to
state st2 = π1,x1

(1) at level 2. Analogously, the decryptor can compute

t1 ·U1,x1
+ t2 ≈ (s1 ·B1,x1

+ s̃ ·P1,1) ·U1,x1
+ t2.

≈ s1 ·C1,x1
+ s̃ ·P2,st2 + t2.

≈ �����s1 ·C1,x1
+ s̃ ·P2,st2 +

(
�����−s1 ·C1,x1

+ s2 ·B2,x2

)
.

≈ s2 ·B2,x2
+ s̃ ·P2,st2 .

In general, if the program state at level i during execution is sti, then the decryptor will accumulate the
term of the form si · Bi,xi + s̃ · Pi,sti by successively summing and multiplying secret key and ciphertext
components as

(· · · ((t1 ·U1,x1
+ t2) ·U2,x2

+ t3) · · ·+ ti)

This can be verified as follows. We know that the bit read at level i is xi, thus the new state at level i+ 1
will be sti+1 = πi,xi(sti). Now the accumulated sum-product during decryption will be

(si ·Bi,xi + s̃ ·Pi,sti) ·Ui,xi + ti+1 ≈ ����si ·Ci,xi + s̃ ·Pi+1,sti+1
+
(
�����−si ·Ci,xi + si+1 ·Bi+1,xi+1

)
.

≈ si+1 ·Bi+1,xi+1
+ s̃ ·Pi+1,sti+1

.

Therefore, the invariant is maintained. Continuing this way, the decryptor can iteratively compute the sum-
product combining all key and ciphertext components. Note that (by definition) adding in the (`+ 1)th key
component t` does not introduce a term like s`+1 ·B`+1,x`+1

to the sum-product, thus the accumulated term
at the top will be ≈ s̃ ·P`+1,st`+1

, where st`+1 is either acc or rej depending on BP(x). Finally, the decryptor
simply checks whether the norm of the final sum-product term is small or not. Recall that the program

9

matrix for last level corresponding to rejecting state is set to be all zeros, i.e. P`+1,rej = 0n×m. Therefore,
if BP(x) = 0, then the norm of the final sum-product term will be small which the decryptor can test and
output 0. Otherwise, with high probability the final sum-product term will be large and it outputs 1.

By the above analysis, correctness follows in the case where ciphertext is a secret key encryption. The
correctness of decryption when the ciphertext is a normal (public key) ciphertext follows from the fact that
the ciphertext matrices {Ui,0,Ui,1}i are independently sampled random short matrices.

0-Query Security. To prove 0-query security of our construction, we need to argue that it satisfies both
function indistinguishability as well as accept indistinguishability properties. We start by proving function
indistinguishability security. Recall that in 0-query function indistinguishability security game, an adversary
submits two branching programs BP(0),BP(1) and is allowed to make a polynomial number of key queries
such that for each queried input x, BP(0)(x) = BP(1)(x) (i.e., every secret key given out has same output on

both the challenge programs). The adversary receives secret key encryption of either BP(0) or BP(1), and its
goal is to distinguish between them.

Although the full security proof is technically involved, the main ideas behind our proof are very intuitive.
Before diving into the proof structure, we point out that the construction described above has to be slightly
modified for proving security. Below we describe our proof ideas as well as discuss the modifications required
along the way.

At a high level, our idea is to “hardwire” the output of the challenge branching programs in every secret
key given to the adversary. Note that the security definition states that both challenge programs must
evaluate to the same value on all queried inputs, thus we only need to hardwire a single value in each key.
For ease of exposition, assume that the adversary makes exactly one secret key query. (In the general case
of polynomially many key queries, the proof proceeds by hardwiring the level 1 components in all secret
keys, followed by level 2 hardwiring and so on.) Let {Ui,b}i,b be the challenge ciphertext and {ti}i be the
secret key computed by the challenger. Our hardwiring strategy works as follows. We start by re-writing
the second secret key vector t2 in terms of t1 as follows:

t2 = −s1 ·C1,x1 + s2 ·B2,x2 + e2

= −s1 ·B1,x1 ·U1,x1 + s2 ·B2,x2 + e2

= −s1 ·B1,x1 ·U1,x1 − s̃ ·P2,st2 + s̃ ·P2,st2 + s2 ·B2,x2 + e2

= − (s1 ·B1,x1 + s̃ ·P1,1) ·U1,x1 + s̃ ·P2,st2 + s2 ·B2,x2 + e2

= −(t1 − e1) ·U1,x1 + s̃ ·P2,st2 + s2 ·B2,x2 + e2

Here st2 is the state of the challenge branching program encrypted (after one step is executed). Now in
the above term, we can smudge the term e1 ·U1,x1 by appropriately choosing the noise distributions, i.e.
e2 >> e1 ·U1,x1

.6 (Note that since we require smudging here, thus the LWE modulus q needs to be super-
polynomial in the lattice dimension.) Thus, the second key component can be indistinguishably computed
as follows without requiring any explicit knowledge of the C1,x1

matrix.

t1 = s1 ·B1,x1
+ s̃ ·P1,1 + e1.

t2 =
−(t1 − e1) ·U1,x1 + s̃ ·P2,st2

+ s2 ·B2,x2 + e2

Smudging−−−−−−−−−→ t2 =
−t1 ·U1,x1 + s̃ ·P2,st2

+ s2 ·B2,x2 + e2
.

Next, we use the row removal property of our enhanced trapdoor sampling algorithms to remove the
B1,0,B1,1 rows from the first matrix M1 and instead sample these randomly. To understand why this
can be done recall that in the actual construction the encryptor needs the ability to create a ciphertext
for any branching program that could be chosen even after all the keys have been distributed. That is,
the encryptor must be able to sample matrices U1,0,U1,1 such that they map level 1 program matrices
{P1,v}v to level 2 program matrices {P2,v}v as per some transition functions {π1,b}b as well as ensure that

6If we keep on smudging this way, then our noise distributions will have to grow by an exponential factor at each step. In
the main body, we show how to avoid this by a better smudging argument.

10

B1,b · U1,b = C1,b. Now since the keys contain the matrices C1,0,C1,1 and they could be given out even
before matrices U1,0,U1,1 are sampled, thus matrices B1,0,B1,1 must be sampled together with {P1,v}v
such that they share a common trapdoor.

However, at this stage in the proof the challenge branching program is (selectively) fixed ahead of any
secret key queries. Therefore, in this context we can sample matrices U1,0,U1,1 to only map level 1 program
matrices to their level 2 counterparts, and simply set the matrices C1,b as C1,b = B1,b ·U1,b and use these
to compute the secret keys. We would like to point out that in order to perform this row removal securely,
it is important that B1,b ·U1,1−b = $, that is matrices U1,0,U1,1 map both matrices B1,0,B1,1 to random
and uncorrelated matrices.

Now once we have removed the B1,0,B1,1 rows from the first matrix, we use the LWE assumption to
switch the first key component t1 to a random vector. Note that at this point since matrices B1,0,B1,1 are
sampled uniformly (i.e., are no longer sampled with trapdoor information) and secret vector s1 is not used
in computing the second key component t2, thus we can apply LWE to switch t1 to random, where the LWE
secret is s1 and LWE public matrix will be B1,x1

.7 Concretely, using LWE we can perform the following
switch which essentially erases the information about the level 1 program matrix P1,1 from the secret keys,
thereby rendering the program evaluation to start from level 2 and state st2 instead.

t1 = s1 ·B1,x1
+ s̃ ·P1,1 + e1

LWE−−−−−−→ t1 = $.

t2 = −t1 ·U1,x1
+ s̃ ·P2,st2 + s2 ·B2,x2

+ e2.

Now iteratively performing this hardwiring strategy (` times) we end up switching all but last key com-
ponents to be random vectors. Also, the last key component will contain the final program matrix which is
either a random matrix or a zero matrix, depending on the program output. Thus, the key vectors contain no
information about the ‘program’ matrices chosen during setup. At this point, the challenge matrices {Ui,b}i,b
still contain the information about the branching program encrypted in the form of mapping between level i
and i+1 ‘program’ matrices, i.e. the state transition functions {πi,b}i,b. Finally, to argue indistinguishability

here (i.e., between the challenge matrices) we use the target switching property of our enhanced trapdoors.
We apply a bottom-up approach to execute this change. First, note that the level 1 program matrices do not
explicitly appear anywhere, except that they are used to sample the level 1 ciphertext matrices U1,0,U1,1.
Thus, we can use the target switching property to switch the targets of matrices U1,0,U1,1. Observe that
this now removes the information about level 2 program matrices as well as the level 1 transition functions
of challenge branching programs. Next, by the same principle, we can perform the same target switching
step for U2,0,U2,1 and continue so on. If we keep on performing the target switching step this way until the
top, then the challenge ciphertext will contain no information about the challenge programs (i.e., their state
transition functions) thereby completing our claim of function indistinguishability.8 This completes the first
proof.

The proof of 0-query accept indistinguishability security of our construction is similar, but more technical
due to the fact that we need to argue that the challenge ciphertext is indistinguishable from random short
matrices.

However, for our PLBE construction, the Mixed FE scheme must handle one ciphertext query as well,
and it is not clear how to prove the above construction to be 1-query secure directly. The bottleneck is the
fact that in the above proof strategy we hardwire all secret key components to match the output of challenge
program. Now if the adversary is allowed to make a secret key encryption query, then it is not clear that how
would the challenger still program the secret key vectors. To get around this problem, we expand our system
such that it consists of λ pairs of 0-query sub-systems. Very briefly, during encryption, the algorithm now
also samples a λ-bit string tag randomly and depending on each bit of tag, it chooses one sub-system in each

7In the general case of multiple key queries the LWE public matrices will be both B1,0,B1,1 and LWE secret will consist of
all the secret key vectors si that are chosen independently and per key.

8Technically, we can not apply the target switching property here. Because the target switching property only guarantees
that targets being switched are approximately mapped, whereas here we target exactly. Therefore, we also need to add some
noise in the targetted ‘program’ matrices before running EnSamplePre algorithm. For simplicity, we avoid this modification.

11

pair and runs the 0-query encryption for that sub-system. Now during key generation, it (linearly) secret
shares the starting program across these λ pairs of sub-systems such that same secret share is used for both
sub-systems in each pair. Then, it runs the 0-query key generation algorithm for all these 2λ sub-systems
with their corresponding secret shares as the starting program matrices. For decryption, the sub-systems
chosen during encryption are combined with their counterparts in the secret keys and 0-query decryption is
performed in these sub-systems along with a (linear) reconstruction on top of the output. More details are
provided in the main body.9

This completes the technical overview of our construction.

Relation to recent LWE-based schemes. There have been several recent works that have advanced the
state of the art in computing branching programs on encrypted data with the goal of reducing security to
LWE or LWE-like assumptions [GGH15, BVWW16, BV15, GKW17b, CC17, GKW17a, WZ17]. While our
construction above benefits from that lineage we wish to briefly call out a few important distinctions.

First from a purely mechanical perspective, the construction of our Mixed FE scheme is structurally very
different from the constructions of the aforementioned primitives. Very briefly, in all previous constructions
the evaluator multiplies a set of matrices, and sums them up to get the final output. Whereas in our
construction, we do not use this ‘one-shot’ approach for evaluation. Instead, we multiply a component
from the ciphertext with a secret key component, then add in another secret key component, multiply this
sum with another ciphertext component and so on. Thus, our mechanism of combining the secret key and
ciphertext components is much different that what was used in prior works.10

Second we structure our proof of security to hardwire the outputs for keys one level at a time until we hit
the final output level in which we have the final outputs hardwired, but lost information about the program
that got us there. In this sense at a high level this leveled programming proof structure much more closely
resembles that of garbled circuit proofs. Thus, we need to develop new lower LWE specific techniques to
match these goals. In contrast works such as [BVWW16, GKW17b, GKW17a, WZ17] have a different aim
of loosing all meaningful information when a secret is not known.

1.2 Some Future Directions

Our construction of Mixed FE relied on the LWE assumption and leveraged certain algebraic properties in
that setting. An intriguing question is whether there are other avenues for achieving Mixed FE. A natural
path is to build Mixed FE with a garbled circuits [Yao86] backbone. If one starts with the bounded key FE
scheme of Gorbunov, Vaikuntanathan and Wee (GVW) [GVW12] and flips [AGVW13, BS15, KMUW17] the
semantics of message and function one can get a secret key FE scheme that is secure for an unbounded number
of private keys and bounded number of ciphertexts. To make it a Mixed FE system we would somehow
connect a public key mode of encryption to the scheme. One possible path is to use a “blinded” [BLSV17] form
of garbled circuits as the underlying 1-bounded scheme in the GVW transformation. (Building on [DG17a,
DG17b] blinded garbled circuits were recently used to give anonymous IBE from new assumptions). It
seems possible that this approach could lead to a scheme with the accept indistinguishability property if no
encryption oracle queries are allowed. However, there appears to be technical difficulties in making a public
key generated ciphertext indistinguishable from a master secret key generated ciphertext when the attacker
gets oracle queries. That being said, we believe that a garbled circuit approach remains a plausible future
direction.

We remark that even if a garbled circuit approach becomes possible, the requirement for an ABE scheme
supporting circuits will still indirectly require the LWE assumption given the state of the art. In addition,

9We would like to point out that the above idea could also be used to improve the Mixed FE construction to be q-query
secure for any polynomial q. The idea will be to sample tag strings tag from a larger alphabet instead of {0, 1}. However, we
only focus on 1-query security as it is sufficient for our result.

10Although one can always express such a nested matrix multiplication and addition mechanism using only a sequence of
matrix multiplications with much larger (and repetitive) matrices, we point out that the underlying structure of such matrices
as well as the modified evaluation algorithm will still be much different from those used in the previous works.

12

we expect that our LWE toolkit and underlying construction ideas will have future value in any case.
A second interesting direction is whether there are other applications that can leverage an FE system that

has a bimodal encryption where the public key and master secret key support different spaces of messages
or functions. In our Mixed FE system the public key only supported the always accept function, but there
could conceivably be other variants of interest.

Finally, a natural open question is to construct traitor tracing schemes with public traceability from
LWE. Currently, it is unclear if achieving public tracing is an easier task than building general public key
functional encryption.

1.3 Additional Related Work

Connections to differential privacy. Dwork et al. [DNR+09] showed that existence of collusion resistant
traitor tracing schemes implies hardness results for efficient differentially private [DMNS06] data sanitization.
In particular, they show that if there exists a traitor tracing scheme with ciphertexts of size s(λ, n), then
there exists a database of size n and a query class Q of size 2s(λ,n) such that it is hard to sanitize the database
D for query class Q in a differentially private manner. Combining our LWE based construction with the
result of Dwork et al. , we get an LWE-based hardness result for differentially private sanitization with query
space of size 2poly(λ,logn). We note that Goyal et al. [GKRW17] and Kowalczyk et al. [KMUW17] recently
achieved similar differential privacy impossibility results from the the security of bilinear map assumptions
and one way functions respectively.

Weaker notions of traitor tracing. Since the notion of traitor tracing was first proposed [CFN94],
several relaxed variants have been studied in order to achieve short ciphertexts. The first natural relaxation
is the bounded collusion setting, where we have an apriori bound k that is fixed during setup, and security
is guaranteed only if the adversary gets at most k secret keys. Collusion bounded systems can either be
constructed via combinatorial tools [CFN94, SW98, CFNP00, SSW01, PST06, BP08], or can be algebraic
and constructed under different cryptographic assumptions such as DDH [KD98, BF99, KY02a, KY02b],
bilinear DDH [CPP05, ADM+07, FNP07] and LWE [LPSS14]. Recently, Agrawal et al. [ABP+17] showed a
transformation from inner product FE to collusion-bounded TT, resulting in algebraic constructions based
on various assumptions such as DCR, DDH and LWE. In all the above works, the size of the ciphertext
grows with the collusion bound.

The second relaxation is called threshold TT, introduced by [NP98, CFNP00]. In a threshold TT scheme,
a threshold δ ∈ [0, 1] is chosen during setup, and the traceability guarantee only holds if the decoder box works
with probability at least δ. Boneh and Naor [BN08] showed a threshold TT scheme where the ciphertexts
have size O(λ) and the secret keys have size O(n2λ/δ2). While this scheme achieves collusion resistance,
the system must be configured with a specific δ value, and once it is set one will not necessarily be able to
identify a traitor from a box D that works with smaller probability. In practice, it can be tricky to ascertain
what threshold will actually be okay. This is because the encrypted messages could have redundancy, so
even a decoder box with a small fraction of success might allow attacker to learn the underlying message.

Finally, in a recent work, Goyal et al. [GKRW17] introduced a new relaxation called risky traitor tracing.
In this notion, the scheme is fully collusion resistant (and does not have the threshold restriction as above).
Instead, the probability of tracing a traitor, given a successful decoding box, can be substantially smaller than
1. For instance, [GKRW17] showed a bilinear maps based construction where the ciphertext size grows as
λ ·k, but the trace algorithm has only a k/n chance of catching a traitor. The authors show that this weaker
notion is actually enough to achieve strong hardness results for differential privacy [DMNS06, DNR+09], and
also argue that in a certain ‘continuous use’ setting, the probability of tracing can be amplified back up to
one. However, in general settings, the Goyal et al. tradeoff between the probability of catching a traitor and
the size of ciphertexts might be undesirable.

13

1.4 Organization

In Section 2, we present the preliminaries required for this work. Next, in Section 3, we have the traitor
tracing and PLBE definitions. This includes the new decoder-based and q-query PLBE definitions. In
Section 4, we show how 1-query PLBE implies decoder based PLBE, and how decoder-based PLBE suffices
for constructing traitor tracing schemes. Therefore, the problem of constructing a traitor tracing scheme
reduces to the problem of constructing a 1-query PLBE scheme. For this, we introduce a new primitive called
mixed FE in Section 5. In Section 6, we show how to construct 1-query PLBE using mixed FE and ABE
(the syntax and security definitions of ABE can be found in Section A). Finally, in Section 8, we present our
mixed FE construction (before presenting the mixed FE construction, in Section 7, we present new lattice
tools which are required for our construction).

2 Preliminaries

Notations. Let PPT denote probabilistic polynomial-time. We will use lowercase bold letters for vectors
(e.g. v), uppercase bold letters for matrices (e.g. A) and assume all vectors are row vectors. The jth row
of a matrix A is denoted by A[j]. For any integer q ≥ 2, we let Zq denote the ring of integers modulo
q. We represent Zq as integers in the range (−q/2, q/2]. For a vector v, we let ‖v‖ denote its `2 norm
and ‖v‖∞ denote its infinity norm. Similarly, for matrices ‖·‖ and ‖·‖∞ denote their `2 and infinity norms
(respectively).

We denote the set of all positive integers upto n as [n] := {1, . . . , n}. Throughout this paper, unless
specified, all polynomials we consider are positive polynomials. Also, we represent each a finite set on
integers S ⊂ N as an ordered set S = {i1, i2, . . . , in}, i.e. ij < ik for every 1 ≤ j < k ≤ n. For any finite set
S, x ← S denotes a uniformly random element x from the set S. Similarly, for any distribution D, x ← D
denotes an element x drawn from distribution D. The distribution Dn is used to represent a distribution
over vectors of n components, where each component is drawn independently from the distribution D.

For two distributions X,Y , over a finite domain Ω, the statistical distance between X and Y is defined as

SD(X,Y)
def
= 1

2

∑
ω∈Ω |X(ω)− Y (ω)|. A family of distributions D1 = {D1(λ)}λ and D2 = {D2(λ)}λ, param-

eterized by security parameter λ, are said to be statistically indistinguishable, represented by D1 ≈s D2,
if there exists a negligible function negl(·) such that for all λ ∈ N, SD(D1(λ),D2(λ)) ≤ negl(λ). For a
family of distributions D = {D(λ)}λ over the integers, and integers bounds B = {B(λ)}λ, we say that D is
B-bounded if Pr[|x| ≤ B(λ) : x← D(λ)] = 1. In words, a B-bounded distribution is supported only on the
range [−B,B]. Below we state the “smudging” lemma as it appears in prior works.

Lemma 2.1 (Smudging Lemma [AJW11, Lemma 2.1, paraphrased]). Let B1, B2 be two polynomials over
the integers and let D = {D(λ)}λ be any B1-bounded distribution family. Let U = {U(λ)}λ and U(λ)
denote the uniform distribution over integers [−B2(λ), B2(λ)]. The family of distributions D and U is
statistically indistinguishable, D + U ≈s U , if there exists a negligible function negl(·) such that for all
λ ∈ N, B1(λ)/B2(λ) ≤ negl(λ).

2.1 Lattice Preliminaries

An m-dimensional lattice L is a discrete additive subgroup of Rm. Given positive integers n,m, q and a
matrix A ∈ Zn×mq , we let Λ⊥q (A) denote the lattice {x ∈ Zm : A · xT = 0T mod q}. For u ∈ Znq , we let

Λu
q (A) denote the coset {x ∈ Zm : A · xT = uT mod q}.

Discrete Gaussians. Let σ be any positive real number. The Gaussian distribution Dσ with parameter
σ is defined by the probability distribution function ρσ(x) = exp(−π ‖x‖2 /σ2). For any set L ⊂ Rm, define
ρσ(L) =

∑
x∈L ρσ(x). The discrete Gaussian distribution DL,σ over L with parameter σ is defined by the

probability distribution function ρL,σ(x) = ρσ(x)/ρσ(L) for all x ∈ L.
The following lemma (Lemma 4.4 of [MR07], [GPV08]) shows that if the parameter σ of a discrete Gaus-

sian distribution is small, then any vector drawn from this distribution will be short (with high probability).

14

Lemma 2.2. Let m,n, q be positive integers with m > n, q ≥ 2. Let A ∈ Zn×mq be a matrix of dimensions

n×m, σ = Ω̃(n) and L = Λ⊥q (A). Then

Pr[‖x‖ >
√
m · σ : x← DL,σ] ≤ negl(n).

Truncated Discrete Gaussians. The truncated discrete Gaussian distribution over Zm with parameter
σ, denoted by D̃Zm,σ, is same as the discrete Gaussian distribution DZm,σ except it outputs 0 whenever the

`∞ norm exceeds
√
m · σ. Note that, by definition, D̃Zm,σ is

√
m · σ-bounded. Also, by the above lemma we

get that D̃Zm,σ ≈s DZm,σ.

2.1.1 Learning with Errors

The Learning with Errors (LWE) problem was introduced by Regev [Reg05], who showed that solving LWE
on average is as hard as quantumly solving several standard lattice based problems in the worst case. The
LWE assumption states that no polynomial time adversary can distinguish between the following oracles. In
one case, the oracle chooses a uniformly random secret s, and for each query, it chooses a vector a uniformly
at random, scalar e from a noise distribution and outputs (a, s ·aT +e). In the second case, the oracle simply
outputs a uniformly random vector a together with a uniformly random scalar u. Regev showed that if there
exists a polynomial time adversary that can break the LWE assumption, then there exists a polynomial time
quantum algorithm that can solve some hard lattice problems in the worst case.

Several works also explored different variants of the LWE assumption, where the secret vector s, public
vectors a and noise are drawn from different distributions. In this work, we will be using two of these variants.
First, we will be using the LWE version with short secrets (also known as the normal form), introduced by
Applebaum et al. [ACPS09]. In this variant, the secret vector s is also drawn from the noise distribution.
Applebaum et al. showed that this version is as hard as the LWE problem if the modulus is pe for some
prime p and integer e. This was later generalized to all moduli by Brakerski et al. [BLP+13]. The second
variant, which was proposed by Boneh et al. [BLMR13], allows the public vectors a to be chosen from the
noise distribution as well. Boneh et al. showed that this version of LWE is as hard as standard LWE.

We will first present the LWE assumption in a general framework,11 which captures the standard LWE,
LWE with short secrets and LWE with short public vectors. In this framework, we will have an explicit
security parameter λ, and the other parameters are allowed to grow as a function of the security parameter.

Definition 2.1 (Generalized Learning with Errors). Fix any polynomial n(·), function q(·), secret distri-
bution η(·), public vector distribution φ(·) and noise distribution χ(·), where n : N → N, q : N → N and

for each λ ∈ N, η(λ) and φ(λ) are distributions over Zn(λ)
q(λ) and χ(λ) is a distribution over Z. We say that

the generalized LWE assumption GLWEn,q,η,φ,χ holds if for any PPT adversary A, there exists a negligi-
ble function negl(·) such that for all λ ∈ N, q = q(λ), n = n(λ), η = η(λ), φ = φ(λ) and χ = χ(λ),

Advn,q,η,φ,χGLWE,A (λ) ≤ negl(λ), where

Advn,q,η,φ,χGLWE,A (λ) = Pr
[
AO

s
1()(1λ) = 1 : s← η

]
− Pr

[
AO2()(1λ = 1)

]
,

and oracles Os
1(), O2() are defined as follows: oracle Os

1() has s ∈ Znq hardwired, and on each query it chooses

a ← φ, e ← χ and outputs
(
a, s · aT + e mod q

)
, and oracle O2() (on each query) chooses a ← φ, u ← Zq

and outputs (a, u).

We now present different variants of LWE assumption, and discuss the parameters for which they are
believed to be secure.

11Canetti and Chen [CC17] proposed the General LWE problem. However, their version requires the public vectors be sampled
from a uniform distribution, whereas we require the public vectors to be sampled from non-uniform distributions. Also, it is
possible to generalize our version further. Here, we present the minimal generalization that suffices for our work.

15

Assumption 1 (Learning with Errors). Let n : N → N be a polynomial, and q : N → N, σ : N →
R+ be functions. The LWEn,q,σ assumption states that GLWEn,q,η,φ,χ holds, where η(λ), φ(λ) are uniform

distributions over Zn(λ)
q(λ) , and χ(λ) ≡ DZ,σ(λ).

The following theorem shows that breaking LWE is as hard as solving hard lattice problems. In particular,
given the current state of the art of lattice problems, the LWE assumption is believed to be true for any
polynomial n(·) and functions q(·), σ(·) such that for all λ ∈ N, n = n(λ), q = q(λ), σ = σ(λ), the following
constraints are satisfied: 0 < σ < q < 2n, n · q/σ < 2n

ε

(for any constant ε < 1/2) and σ > 2
√
n.

Theorem 2.1 (LWE to worst-case lattice problem [Reg05, Pei09, BLP+13]). Fix any polynomial n(·)
and functions q(·), σ(·) such that for all λ ∈ N, n = n(λ), q = q(λ), σ = σ(λ), 0 < σ < q < 2n and
σ > 2

√
n. For every λ ∈ N, let η = η(λ) and φ = φ(λ) denote the uniform distributions over Znq and

χ = χ(λ) ≡ DZ,σ. If there exists a PPT algorithm A and a non-negligible function εA(·) such that for all

λ ∈ N, Advn,q,η,φ,χGLWE,A (λ) ≥ εA(λ), then there exists a PPT algorithm B and a non-negligible function εB(·) such
that for all λ ∈ N and all instances X of GapSVPn,n·q/σ, B can solve X with probability at least εB(λ).

Assumption 2 (LWE with Short Secrets). Let n : N → N be a polynomial, and q : N → N, σ : N →
R+ be functions. The LWE-ssn,q,σ assumption states that GLWEn,q,η,φ,χ holds, where φ(λ) is the uniform

distributions over Zn(λ)
q(λ) , η(λ) ≡ DZn(λ),

√
2σ(λ) and χ(λ) ≡ DZ,σ(λ).

The next theorem shows that breaking LWE with short secrets is as hard as breaking (standard) LWE,
provided 0 < σ(λ) < q(λ) < 2n(λ) and σ(λ) > λ.

Theorem 2.2 (LWE with Short Secrets [ACPS09, Lemma 2],[BLP+13, Lemma 2.12]). Fix any polynomial
n(·) and functions q(·), σ(·) such that for all λ ∈ N, n = n(λ), q = q(λ), σ = σ(λ), 0 < σ < q < 2n and
σ > λ.12 For every λ ∈ N, let η(λ) ≡ DZnq ,

√
2σ, φ(λ) the uniform distribution over Znq and χ(λ) ≡ DZ,σ. If

there exists a PPT algorithm A and a non-negligible function εA(·) such that for all λ ∈ N, Advn,q,η,φ,χGLWE,A (λ) ≥
εA(λ), then there exists a PPT algorithm B and a non-negligible function εB(·) such that for all λ ∈ N,

Advn,q,φ,φ,χGLWE,B (λ) ≥ εB(λ).

Assumption 3 (LWE with Short Public Vectors). Let n : N→ N be a polynomial, q : N→ N, σ : N→ R+

be functions, and {χ(λ)}λ∈N family of distributions over Z. The LWE-spn,q,σ,χ assumption states that

GLWEn,q,η,φ,χ holds, where η(λ) is the uniform distributions over Zn(λ)
q(λ) , φ(λ) ≡ DZn(λ),σ(λ).

The last theorem in this sequence shows a reduction from LWE with short public vectors to (standard)
LWE with a lower dimension.

Theorem 2.3 (LWE with Short Public Vectors [BLMR13, Corollary 4.6]). Fix any polynomials n(·), k(·)
and functions q(·), σ(·) such that for all λ ∈ N, n = n(λ), q = q(λ), k = k(λ), σ = σ(λ), 0 < σ < q < 2n,
k ≥ 6n log q, and σ ≥

√
n log q. For every λ ∈ N, let φ(λ) ≡ DZkq ,σ, and let η(λ), φ′(λ) denote the uniform

distributions over Zkq and Znq , respectively. Now for any distribution χ(λ) over Z, if there exists a PPT

algorithm A and a non-negligible function εA(·) such that for all λ ∈ N, Advk,q,η,φ,χGLWE,A (λ) ≥ εA(λ), then there

exists a PPT algorithm B and a non-negligible function εB(·) such that for all λ ∈ N, Advn,q,φ
′,φ′,χ

GLWE,B (λ) ≥ εB(λ).

2.1.2 Lattice Trapdoors

Lattices with trapdoors are lattices that are indistinguishable from randomly chosen lattices, but have certain
‘trapdoors’ that allow efficient solutions to hard lattice problems.

A trapdoor lattice sampler [Ajt99, GPV08] consists of algorithms TrapGen and SamplePre with the fol-
lowing syntax and properties:

12Strictly speaking, it is only required that σ >
√

lnn+ ω(1) lnλ.

16

• TrapGen(1n, 1m, q)→ (A, TA): The lattice generation algorithm is a randomized algorithm that takes
as input the matrix dimensions n,m, modulus q, and outputs a matrix A ∈ Zn×mq together with a
trapdoor TA.

• SamplePre(A, TA, σ,u) → s: The presampling algorithm takes as input a matrix A, trapdoor TA, a
vector u ∈ Znq and a parameter σ ∈ R (which determines the length of the output vectors).13 It outputs

a vector s ∈ Zmq such that A · sT = uT and ‖s‖ ≤
√
m · σ.

We require these algorithms to satisfy the following well-sampledness properties. While these properties
are similar ‘in spirit’ to the ones in previous works on lattice trapdoors [Ajt99, GPV08, MP12], there are
a couple of differences. First, we present these properties as a security game between a challenger and a
computationally bounded adversary.14 Second, we separate out the dimensions of the matrix and the security
parameter.

The first property (well-sampledness of matrix) states that the matrix output by TrapGen should look
like a uniformly random matrix.

Definition 2.2 (Well-sampledness of Matrix). Fix any function q : N → N. A pair of trapdoor generation
algorithms T = (TrapGen,SamplePre) is said to satisfy the q-well-sampledness of matrix property if for any
stateful PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, q = q(λ),

prmatrix,q
T ,A (λ) = Pr[1← Exptmatrix,q

T ,A (λ)] ≤ 1/2 + negl(λ), where Exptmatrix,q
T ,A (λ) is defined in Figure 1.

Exptmatrix,q
T ,A (λ)

1. Adversary A receives input 1λ and sends 1n, 1m such that m > n log q(λ) + λ.

2. Challenger chooses b ← {0, 1} and (A0, TA) ← TrapGen(1n, 1m, q) and A1 ← Zn×mq . It sends Ab to
the adversary.

3. A outputs its guess b′. The experiment outputs 1 iff b = b′.

Figure 1: Experiment Exptmatrix,q
T ,A

The next property states that the preimage of a uniformly random vector/matrix is indistinguishable
from a matrix with entries drawn from Gaussian distribution.

Definition 2.3 (Well-sampledness of Preimage). Fix any functions q : N → N and σ : N → N. A pair
of trapdoor generation algorithms T = (TrapGen,SamplePre) is said to satisfy the (q, σ)-well-sampledness
of preimage property if for any stateful PPT adversary A, there exists a negligible function negl(·) such

that for all λ ∈ N, q = q(λ), σ = σ(λ), prpreimg,q,σ
T ,A (λ) = Pr[1 ← Exptpreimg,q,σ

T ,A (λ)] ≤ 1/2 + negl(λ), where

Exptpreimg,q,σ
T ,A (λ) is defined in Figure 2.

Exptpreimg,q,σ
T ,A (λ)

1. Adversary A receives input 1λ and sends 1n, 1m, 1k such that σ(λ) >
√
n · log q · logm + λ and m >

n log q(λ) + λ.

2. Challenger chooses b ← {0, 1} and (A, TA) ← TrapGen(1n, 1m, q); Z ← Zn×kq , U0 ←
SamplePre(A, TA, σ,Z) and U1 ← Dm×kZ,σ . It sends (A,Ub) to the adversary.

3. A outputs its guess b′. The experiment outputs 1 iff b = b′.

Figure 2: Experiment Exptpreimg,q,σ
T ,A

These properties are satisfied by the gadget-based trapdoor lattice sampler of [MP12].

13Note that the pre-image sampling algorithm could be easily generalized to generate pre-images of matrices in Zn×kq (for
any k) by independently running SamplePre algorithm on each column of the matrix. Throughout this work, we overload the

notation by directly giving matrices U ∈ Zn×kq as inputs to the SamplePre algorithm.
14In some cases, we can consider computationally unbounded adversaries if the inputs of the adversary are polynomially

bounded.

17

2.2 Branching Programs

Branching programs are a model of computation used to capture space-bounded computations [BDFP86,
Bar86]. In this work, we will be working with leveled branching programs.

Definition 2.4 (Leveled Branching Program). A leveled branching program of length L, width w and input
space {0, 1}n consists of a sequence of 2L functions πi,b : [w] → [w] for 1 ≤ i ≤ L, b ∈ {0, 1}, an input
selection function inp : [L] → [n], an accepting state acc ∈ [w] and a rejection state rej ∈ [w].The starting
state st0 is set to be 1 without loss of generality. The branching program evaluation on input x ∈ {0, 1}n
proceeds as follows:

• For i = 1 to L,

– Let pos = inp(i) and b = xpos. Compute sti = πi,b(sti−1).

• If stL = acc, output 1. If stL = rej, output 0, else output ⊥.

Additionally, we also define a notion of ‘input-circling’ (leveled) branching programs. In an input-circling
branching program, the input bits are read sequentially in an ascending order (i.e., 1, . . . , n, 1, . . .). Thus, the
input-selector function inp is fixed. Additionally, each bit must be read the same number of times. Formally,
we describe as follows.

Definition 2.5. A branching program BP =
(
{πi,b : [w]→ [w]}i∈[L],b∈{0,1} , acc ∈ [w], rej ∈ [w]

)
with input

space {0, 1}n is said to be a input-circling branching program if for all i ≤ L, inp(i) = ((i− 1) mod n) + 1,
and L mod n = 0.

Any leveled branching program of length L and input space {0, 1}n can be easily transformed to an
input-circling branching program of length n · L. In this work, we work with classes of branching programs
that all share the same input selector function inp(·) which is known during setup. The input selector as
described above is just one possibility, and we stick with it for simplicity. Note that we do not require the
transition functions πi,b to be permutations.

3 Traitor Tracing

In this section, we will first present the syntax and security definitions for traitor tracing schemes. Next, we
will introduce the notion of private linear broadcast encryption (PLBE), and finally show that PLBE implies
traitor tracing.

The notion of traitor tracing was introduced by Chor, Fiat and Naor [CFN94]. In a traitor tracing scheme
for n parties, the setup algorithm chooses a master secret key, a public key and n secret keys for the users.
Encryption can be performed using the public key, and each user can decrypt the ciphertext using his/her
secret key. There is also a trace algorithm that, given black box access to a successful pirate decoding box,
can catch the traitors who colluded to create the pirate decoding box. Traditional definitions of traitor
tracing [CFN94, BSW06] required that the trace algorithm must catch a traitor if a pirate decoding box
can decrypt an encryption of a random ciphertext. In this work, we will be using the indistinguishability
based definition introduced by Goyal et al. [GKRW17], which is itself based on the definition introduced by
Nishimaki, Wichs, and Zhandry [NWZ16]. In this definition, the trace algorithm must catch a traitor even
if the pirate decoder box can only distinguish between encryptions of two adversarially chosen messages.

3.1 Public Key Traitor Tracing

A traitor tracing scheme T with message spaceM = {Mλ}λ consists of four PPT algorithms Setup,Enc,Dec
and Trace with the following syntax:

• Setup(1λ, 1n) → (msk, pk, (sk1, . . . , skn)) . The setup algorithm takes as input the security parame-
ter λ, number of users n, and outputs a master secret key msk, a public key pk and n secret keys
sk1, sk2, . . . , skn.

18

• Enc(pk,m ∈ Mλ) → ct. The encryption algorithm takes as input a public key pk, message m ∈ Mλ

and outputs a ciphertext ct.

• Dec(sk, ct) → y. The decryption algorithm takes as input a secret key sk, ciphertext ct and outputs
y ∈Mλ ∪ {⊥}.

• TraceD(msk, 1y,m0,m1) → T. The trace algorithm has oracle access to a program D, it takes as
input a master secret key msk, parameter y (in unary) and two messages m0,m1. It outputs a set
T ⊂ {1, 2, . . . , n}.

Correctness. Informally, correctness requirement states decrypting an encryption of message m using any
one of the valid secret keys must output m. Formally, a traitor tracing scheme is said to be correct if there
exists a negligible function negl(·) such that for all λ ∈ N, n ∈ N, m ∈ Mλ, and i ∈ {1, 2, . . . , n}, the
following holds

Pr

[
Dec(ski, ct) = m :

(msk, pk, {ski}i∈[n])← Setup(1λ, 1n)
ct← Enc(pk,m)

]
≥ 1− negl(λ).

3.1.1 Security

There are two security requirements for a traitor tracing scheme. First, it is required that it satisfies IND-
CPA security. Second, it is required that the tracing algorithm must (almost always) correctly trace at least
one key used to create a pirate decoding box (whenever the pirate box successfully decrypts with noticeable
probability) as well as it should not falsely accuse any user of cheating. The formal definitions are provided
below.

Definition 3.1 (IND-CPA security). A traitor tracing scheme T = (Setup,Enc,Dec,Trace) is IND-CPA secure
if for every stateful PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, the
following holds

Pr

[
A(ct) = b :

1n ← A(1λ); (msk, pk, (sk1, . . . , skn))← Setup(1λ, 1n);
b← {0, 1}; (m0,m1)← A(pk); ct← Enc(pk,mb)

]
≤ 1

2
+ negl(λ).

Definition 3.2 (Ind-secure traitor tracing). Let T = (Setup,Enc,Dec,Trace) be a traitor tracing scheme.
For any non-negligible function ε(·) and PPT adversary A, consider the experiment Expt-TTTA,ε(λ) defined
as follows.

Experiment Expt-TTTA,ε(λ)

• 1n ← A(1λ)

• (msk, pk, (sk1, . . . , skn))← Setup(1λ, 1n).

• (D,m0,m1)← AO(·)(pk)

• T ← TraceD(msk, 11/ε(λ),m0,m1).

Here, O(·) is an oracle that has {ski}i∈[n] hardwired, takes as input an index i ∈ [n] and outputs ski. Let S
be the set of indices queried by A.

Figure 3: Experiment Expt-TT

Based on the above experiment, we now define the following (probabilistic) events and the corresponding
probabilities (which are a functions of λ, parameterized by A, ε):

• Good-Decoder : Pr[D(ct) = b : b← {0, 1}, ct← Enc(pk,mb)] ≥ 1/2 + ε(λ)
Pr -G-DA,ε(λ) = Pr[Good-Decoder].

19

• Cor-Tr : T 6= ∅ ∧ T ⊆ S
Pr -Cor-TrA,ε(λ) = Pr[Cor-Tr].

• Fal-Tr : T 6⊆ S
Pr -Fal-TrA,ε(λ) = Pr[Fal-Tr].

A traitor tracing scheme T is said to be ind-secure if for every PPT adversary A, polynomial q(·) and non-
negligible function ε(·), there exists negligible functions negl1(·), negl2(·) such that for all λ ∈ N satisfying
ε(λ) > 1/q(λ), the following holds

Pr -Fal-TrA,ε(λ) ≤ negl1(λ), Pr -Cor-TrA,ε(λ) ≥ Pr -G-DA,ε(λ)− negl2(λ).

3.2 Private Linear Broadcast Encryption

Next, we present the notion of private linear broadcast encryption (PLBE). PLBE was introduced by Boneh,
Sahai and Waters [BSW06] as a framework for constructing traitor tracing schemes. There are four algorithms
in a PLBE scheme — Setup,Enc,Enc-index,Dec. The setup algorithm outputs a master secret key, public
parameters and n secret keys, one for each user in the system. The public key encryption algorithm can be
used to encrypt messages, and ciphertexts can be decrypted using one of the n secret keys via the decryption
algorithm. In addition to these algorithms, there is also a special trace-encryption algorithm. This algorithm,
which uses the master secret key, can be used to encrypt messages to any index i ∈ {0, 1, . . . , n}. A secret
key for user j can decrypt a ciphertext for index i only if j > i.

Boneh, Sahai and Waters [BSW06] proposed three security definitions for PLBE schemes. The first one
requires that special-encryptions to index 0 must be indistinguishable from public key encryptions, even if
the adversary has all the secret keys. The next security requirement is that special encryptions to index
i− 1 must be indistinguishable from special encryptions to index i if the adversary does not have secret key
for user i. Finally, the third security property is that special encryption of message m0 to index n must
be indistinguishable from special encryption of message m1 to index n, even if the adversary has all secret
keys. However, as discussed in Section 1.1, the BSW definitions of PLBE do not suffice for constructing
traitor tracing schemes. Here, we first provide the PLBE syntax, and then present the decoder-based and
query-based security definitions of PLBE.

Syntax. A PLBE scheme PLBE = (Setup,Enc,Enc-index,Dec) for message space M = {Mλ}λ has the
following syntax.

• Setup(1λ, 1n) → (msk, pp, (sk1, . . . , skn)) . The setup algorithm takes as input the security parameter
λ, number of users n and outputs public parameters pp, master secret key msk and n secret keys
(sk1, sk2, . . . , skn).

• Enc(pp,m) → ct. The encryption algorithm takes as input public parameters pp, message m ∈ Mλ,
and outputs a ciphertext ct.

• Enc-index(msk,m, i ∈ {0, 1, 2, . . . , n})→ ct. The index-encryption algorithm takes as input the master
secret key msk, message m ∈Mλ, index i ∈ {0, 1, 2, . . . , n} and outputs a ciphertext ct.

• Dec(sk, ct) → y. The decryption algorithm takes as input a secret key sk, ciphertext ct and outputs
y ∈Mλ ∪ {⊥}.

20

Correctness. A PLBE scheme is said to be correct if there exists a negligible functions negl1(·), negl2(·),
negl3(·) such that for all λ ∈ N, n ∈ N, m ∈Mλ, and i ∈ {0, 1, . . . , n}, j ∈ {1, 2, . . . , n}, the following holds

Pr

[
Dec(skj , ct) = m :

(msk, pk, {skk}k∈[n])← Setup(1λ, 1n)
ct← Enc(pk,m)

]
≥ 1− negl1(λ),

i < j ⇒ Pr

[
Dec(skj , ct) = m :

(msk, pk, {skk}k∈[n])← Setup(1λ, 1n)
ct← Enc-index(msk,m, i)

]
≥ 1− negl2(λ),

i ≥ j ⇒ Pr

[
Dec(skj , ct) = ⊥ :

(msk, pk, {skk}k∈[n])← Setup(1λ, 1n)
ct← Enc-index(msk,m, i)

]
≥ 1− negl3(λ).

3.2.1 q-Bounded PLBE Security

In this section we extend the existing PLBE security definitions by allowing the adversary to make a bounded
number of index-encryption queries. Below we describe them in detail.

Definition 3.3 (q-bounded Normal Hiding Security). Let q(·) be any fixed polynomial. A PLBE scheme
is said to satisfy q-bounded normal hiding security if for every stateful PPT adversary A, there exists a
negligible function negl(·) such that for every λ ∈ N, the following holds:

pq,nrml
A (λ) = Pr

AEnc-index(msk,·,0)(ctb) = b :

1n ← A(1λ);
(
pp,msk, {ski}i∈[n]

)
← Setup(1λ, 1n)

m← AEnc-index(msk,·,0)
(
pp, {ski}i∈[n]

)
b← {0, 1}; ct0 ← Enc(pp,m)

ct1 ← Enc-index(msk,m, 0)

 ≤ 1

2
+ negl(λ)

where A can make at most q(λ) queries to Enc-index(msk, ·, 0) oracle. Note that here A is only allowed to
query for ciphertexts corresponding to index 0.

Definition 3.4 (q-bounded Index Hiding Security). Let q(·) be any fixed polynomial. A PLBE scheme is
said to satisfy q-bounded index hiding security if for every stateful PPT adversary A, there exists a negligible
function negl(·) such that for every λ ∈ N, every index i∗ ∈ {0, . . . , n− 1}, the following holds:

pq,ind
A (λ, i∗) = Pr

AEnc-index(msk,·,·)(ct) = b :
1n ← A(1λ);

(
pp,msk, {ski}i∈[n]

)
← Setup(1λ, 1n)

m← AEnc-index(msk,·,·) (pp, {ski}i∈{1,...,n}\{i∗+1}
)

b← {0, 1}; ct← Enc-index(msk,m, i∗ + b)

 ≤ 1

2
+ negl(λ)

where A can make at most q(λ) queries to Enc-index(msk, ·, ·) oracle. Note that here A can query the
encryption oracle on arbitrary message-index pairs.

Definition 3.5 (q-bounded Message Hiding Security). Let q(·) be any fixed polynomial. A PLBE scheme
is said to satisfy q-bounded message hiding security if for every stateful PPT adversary A, there exists a
negligible function negl(·) such that for every λ ∈ N, the following holds:

pq,msg
A (λ) = Pr

AEnc-index(msk,·,·)(ct) = b :
1n ← A(1λ);

(
pp,msk, {ski}i∈[n]

)
← Setup(1λ, 1n)

(m0,m1)← AEnc-index(msk,·,·) (pp, {ski}i∈[n]

)
b← {0, 1}; ct← Enc-index(msk,mb, n)

 ≤ 1

2
+ negl(λ)

where A can make at most q(λ) queries to Enc-index(msk, ·, ·) oracle. Note that here A can query the
encryption oracle on arbitrary message-index pairs.

3.2.2 Decoder-based PLBE Security

In this section we introduce new decoder-based security definitions for PLBE schemes. We start by formally
defining the notion of good distinguishers for PLBE schemes w.r.t. different encryption modes.

21

PLBE Distinguishers. For any γ ∈ [−1/2, 1/2], PPT algorithmD, λ, n ∈ N, params = (pp,msk, (sk1, . . . , skn))←
Setup(1λ, 1n) and message m ∈Mλ, we say D is γ-Distnrml,0

params for m if

Pr

[
D(ctb) = b :

b← {0, 1}; ct0 ← Enc(pp,m);
ct1 ← Enc-index(msk,m, 0);

]
≥ 1

2
+ γ,

where the probability is taken over the random coins used during encryption, the random coins of D and
the choice of b.
Similarly, for any i ∈ {0, . . . , n− 1} we can define D to be γ-Disti,i+1

params for m if

Pr

[
D(ctb) = b :

b← {0, 1}
ct← Enc-index(msk,m, i+ b)

]
≥ 1

2
+ γ.

Finally, we also define D to be γ-Distnparams for messages m0,m1 if

Pr

[
D(ctb) = b :

b← {0, 1}
ct← Enc-index(msk,mb, n)

]
≥ 1

2
+ γ.

Definition 3.6 (Decoder-based Normal Hiding Security). A PLBE scheme is said to satisfy decoder-based
normal hiding security if for any PPT adversary A, non-negligible function γ(·) and polynomial q(·), there
exists a negligible function negl(·) such that for all λ ∈ N satisfying γ(λ) > 1/q(λ),

pdec,nrml
A,γ,q (λ) = Pr

D is γ(λ)-Distnrml,0
params for m :

1n ← A(1λ);
params =

(
pp,msk, {ski}i∈[n]

)
← Setup(1λ, 1n)

(D,m)← A
(
pp, {ski}i∈[n]

)
 ≤ negl(λ).

Definition 3.7 (Decoder-based Index Hiding Security). A PLBE scheme is said to satisfy decoder-based
index hiding security if for any PPT adversary A, non-negligible function γ(·) and polynomial q(·) there
exists a negligible function negl(·) such that for all λ ∈ N satisfying γ(λ) > 1/q(λ) and all i∗ ∈ {0, . . . , n−1},

pdec,ind
A,γ,q (λ, i∗) = Pr

D is γ(λ)-Disti
∗,i∗+1

params for m :
1n ← A(1λ);

params =
(
pp,msk, {ski}i∈[n]

)
← Setup(1λ, 1n)

(D,m)← A
(
pp, {ski}i∈{1,...,n}\{i∗+1}

)
 ≤ negl(λ).

Definition 3.8 (Decoder-based Message Hiding Security). A PLBE scheme is said to satisfy decoder-based
message hiding security if for any PPT adversary A, non-negligible function γ(·) and polynomial q(·) there
exists a negligible function negl(·) such that for all λ ∈ N satisfying γ(λ) > 1/q(λ),

pdec,msg
A,γ,q (λ) = Pr

D is γ(λ)-Distnparams for m0,m1 :
1n ← A(1λ);

params =
(
pp,msk, {ski}i∈[n]

)
← Setup(1λ, 1n)

(D,m0,m1)← A
(
pp, {ski}i∈[n]

)
 ≤ negl(λ).

4 Traitor Tracing from 1-bounded secure PLBE

In this section, we show how to construct traitor tracing schemes from PLBE schemes that achieve 1-bounded
security. Our construction is divided in two components. First, we first show that PLBE schemes that achieve
1-bounded security also satisfy decoder-based security. Later, we show how to construct a traitor tracing
scheme from PLBE schemes that achieves decoder-based security.

4.1 Decoder-based PLBE from 1-bounded secure PLBE

Let PLBE = (Setup,Enc,Enc-index,Dec) be a PLBE scheme that satisfies 1-bounded security. We will show
that the same scheme also satisfies decoder-based security.

22

Lemma 4.1. If PLBE satisfies 1-bounded normal hiding security (Definition 3.3), then it also satisfies
decoder-based normal hiding security (Definition 3.6).

Proof. Suppose, on the contrary, there exists a PPT adversary A, non-negligible function γ(·), polynomials
q(·), r(·) and an infinite sequence of security parameters Λ = {λi}i∈N such that for all λ ∈ Λ, γ(λ) > 1/q(λ)

and pdec,nrml
A,γ,q (λ) ≥ 1/r(λ). We will use A that plays the 1-bounded normal hiding security game to build a

PPT reduction algorithm B that plays the decoder-based normal hiding security game as follows.
For any λ ∈ N, the reduction algorithm first receives 1n from A, which it forwards to the challenger. It

then receives pp and n secret keys sk1, . . . , skn from the challenger, which it forwards to A. The adversary
A outputs D and m. The reduction algorithm then queries the challenger for an encryption of m for index
0 (recall that the reduction algorithm is allowed one query). Let the challenger’s response be ct1. It then
computes ct0 ← Enc(pp,m). Next, it sends challenge message m, and receives ct∗, which is either a normal
encryption of m, or an encryption of m for index 0. The reduction algorithm chooses a random bit β ← {0, 1},
checks if D(ctβ) = D(ct∗). If so, it outputs b′ = β, else it outputs b′ = 1− β as its guess.

Let us now analyse B′s advantage. We need to show that there exists polynomials qB(·) and an infinite

sequence ΛB = {λi}i such that for all λ ∈ ΛB, p1,nrml
B ≥ 1/2 + 1/qB(λ). Let ΛB = Λ and qB(·) = q2(·) · r(·)/2.

Fix any λ ∈ Λ, and let γ = γ(λ), q = q(λ), r = r(λ). Let b denote the 1-bounded challenger’s choice (recall
the challenger chooses b← {0, 1}, if b = 0, it sends a normal encryption, else it sends an encryption to index

0). First, let us fix params = (pp, msk, {ski}i≤n)← Setup(1λ, 1n) and (D,m)← A
(

pp, {ski}i≤n
)

such that

Pr

[
D(ctb) = b :

b← {0, 1}; ct0 ← Enc(pp,m);
ct1 ← Enc-index(msk,m, 0);

]
=

1

2
+ αparams,D,m,

for some αparams,D,m ∈ [−1/2, 1/2]. Next, consider the following probability:

ρparams,D,m = Pr

b = b′ :
b← {0, 1}; ct∗0 ← Enc(pp,m); ct∗1 ← Enc-index(msk,m, 0);
β ← {0, 1}; ct0 ← Enc(pp,m); ct1 ← Enc-index(msk,m, 0);
b′ = β if D(ct∗b) = D(ctβ), else b′ = 1− β

 .
Since the decoder D is run on ciphertexts ct∗b , ctβ independently, we could rewrite the above probability as
follows:

ρparams,D,m = Pr

[
D(ct∗b) = b :

b← {0, 1}; ct∗0 ← Enc(pp,m);
ct∗1 ← Enc-index(msk,m, 0)

]
· Pr

[
D(ctβ) = β :

β ← {0, 1}; ct0 ← Enc(pp,m);
ct1 ← Enc-index(msk,m, 0)

]
+ Pr

[
D(ct∗b) 6= b :

b← {0, 1}; ct∗0 ← Enc(pp,m);
ct∗1 ← Enc-index(msk,m, 0)

]
· Pr

[
D(ctβ) 6= β :

β ← {0, 1}; ct0 ← Enc(pp,m);
ct1 ← Enc-index(msk,m, 0)

]
= Pr

[
D(ctb) = b :

b← {0, 1}; ct0 ← Enc(pp,m);
ct1 ← Enc-index(msk,m, 0)

]2

+ Pr

[
D(ctb) 6= b :

b← {0, 1}; ct0 ← Enc(pp,m);
ct1 ← Enc-index(msk,m, 0)

]2

=

(
1

2
+ αparams,D,m

)2

+

(
1

2
− αparams,D,m

)2

=
1

2
+ 2 · α2

params,D,m

Thus, we get that for any decoder D that is δ-Distnrml,0
params for message m,

ρparams,D,m = 1/2 + 2 · α2
params,D,m ≥ 1/2 + 2 · δ2.

Also, since α2
params,D,m ≥ 0, we get that for every decoder D, ρparams,D,m ≥ 1/2. Therefore, since adversary A

outputs a 1/q-Distnrml,0
params box with probability at least 1/r, we get that the reduction algorithm B’s winning

23

probability p1,nrml
B,n (as defined in Definition 3.3) is

p1,nrml
B,n ≥ 1

r
·
(

1

2
+

2

q2

)
+

(
1− 1

r

)
·
(

1

2

)
.

≥ 1

2
+

2

r · q2
.

This concludes our proof.

Lemma 4.2. If PLBE satisfies 1-bounded index hiding security (Definition 3.4), then it also satisfies decoder-
based index hiding security (Definition 3.7).

The proof of this lemma is identical to the proof of Lemma 4.1, except that the reduction algorithm
queries for either a special encryption of m for index i or a special encryption of m for index i+1 (depending
on β ← {0, 1}).

Lemma 4.3. If PLBE satisfies 1-bounded message hiding security (Definition 3.5), then it also satisfies
decoder-based message hiding security (Definition 3.8).

The proof of this lemma is identical to the proof of Lemma 4.1, except that the reduction algorithm
queries for either a special encryption of m0 for index n or a special encryption of m1 for index n (depending
on β ← {0, 1}).

4.2 Traitor Tracing from Decoder-based PLBE

Let PLBE = (PLBE.Setup,PLBE.Enc,PLBE.Enc-index,PLBE.Dec) be a PLBE scheme with decoder-based
security. We will use PLBE to construct a traitor tracing scheme T = (Setup,Enc,Dec,Trace) as follows. The
construction is identical to the transformation in [BSW06], however the security proof provided in [BSW06]
was not correct. Concretely, to argue correctness of tracing they incorrectly leveraged the indistinguishability-
based security of underlying PLBE scheme. We show that the same transformation could be proven to satisfy
correct tracing if one starts with a PLBE scheme that achieves decoder-based security.

Setup(1λ, 1n): The setup algorithm computes (pp,msk, (sk1, . . . , skn)) ← PLBE.Setup(1λ, 1n). The public
parameters are pp, master secret key is msk and the n secret keys are {sk1, . . . , skn}.

Enc(pp,m): The encryption algorithm outputs ct← PLBE.Enc(pp,m).

Dec(sk, ct): The decryption algorithm outputs PLBE.Dec(sk, ct).

TraceD(msk, 1y,m0,m1): Let ε = 1/y and W = λ · (n · y)2. For i = 0 to n, the trace algorithm does the
following:

1. It first sets counti = 0. For j = 1 to W , it does the following:

(a) It chooses bi,j ← {0, 1}, sets cti,j ← Enc-index(msk,mb, i). If D(cti,j) = bi,j , it sets counti =
counti + 1.

2. It sets p̂i = counti/W .

The trace algorithm outputs every index i ∈ {1, 2, . . . , n} such that p̂i−1 − p̂i ≥ ε/4n.

Correctness. This follows directly from the first correctness property of PLBE scheme.

24

4.2.1 IND-CPA Security

We would like to point out that the scheme PLBE is IND-CPA secure even if it only satisfies 0-bounded
security. In other words, we do not need the scheme to achieve stronger decoder-based security. Thus, the
proof of IND-CPA security is identical to that provided in [BSW06]. Below we provide a high level sketch.

Theorem 4.1. Assuming the PLBE scheme PLBE = (Setup,Enc,Enc-index,Dec) satisfies the security prop-
erties in Definition 3.6, Definition 3.7 and Definition 3.8, the traitor tracing scheme described above is
IND-CPA secure (Definition 3.1).

Proof. We will construct a sequence of 2n + 2 hybrid experiments to prove INDCPA security. The first
experiment, that is Hybrid H0, is exactly the IND-CPA game.

Hybrid H0 : In this experiment, the challenger sends public parameters pp, receives m0,m1 from A and
sends ct← Enc(pp,m0) to A.

Hybrid Hi,b (for i ≤ n, b ∈ {0, 1}) : This experiment is identical to the INDCPA experiment, except that
the adversary, after sending challenge messages m0,m1, receives ct← Enc-index(msk, i,mb).

Hybrid H1 : In this experiment, the challenger sends public parameters pp, receives m0,m1 from A and
sends ct← Enc(pp,m1) to A.

For any PPT adversary A, let pA,x(·) be a function of λ that denotes the probability of A outputting 0 in
Hx. Note that pA,0 − pA,1 is the advantage of A in the INDCPA security game.

Claim 4.1. Assuming PLBE satisfies Definition 3.6, for any PPT adversary A, there exists a negligible
function such that for all λ ∈ N and b ∈ {0, 1}, |pA,b − pA,0,b| ≤ negl(λ).

This follows from decoder-based indistinguishability of normal and 0-index encryptions (Definition 3.6) of
PLBE.

Claim 4.2. Assuming PLBE satisfies Definition 3.7, for any PPT adversary A, there exists a negligible
function such that for all λ ∈ N, b ∈ {0, 1} and i ∈ {1, 2, . . . , n}, pA,i−1,b − pA,i,b ≤ negl(λ).

This follows from the decoder-based index hiding security notion (Definition 3.7) of PLBE.

Claim 4.3. Assuming PLBE satisfies Definition 3.8, for any PPT adversary A, there exists a negligible
function such that for all λ ∈ N, pA,n,0 − pA,n,1 ≤ negl(λ).

This follows from the decoder-based message hiding security notion (Definition 3.8) of PLBE.
From the above claims, it follows that pA,0 − pA,1 is bounded by a negligible function.

4.2.2 Correctness of Tracing

Next, we will show that the false trace probability is bounded by a negligible function, and the correct trace
probability is close to the probability of A outputting an ε-successful decoding box.

First, we will introduce some notations. Given any pirate decoder box D and messages m0,m1, for any
i ∈ {0, 1, . . . , n}, let

pDi = Pr[D(ct) = b : b← {0, 1}, ct← Enc-index(msk, i,mb)]

where the probability is taken over random coins of decoder D as well as the randomness used during
encryption. Similarly, let pDnrml = Pr[D(ct) = b : b← {0, 1}, ct← Enc(msk,mb)].

25

False Trace Probability. First, we show that the tracing algorithm never falsely accuses any user. For-
mally, we prove the following.

Theorem 4.2. For every PPT adversary A, polynomial q(·) and non-negligible function ε(·), there exists a
negligible function negl(·) such that for all λ ∈ N satisfying ε(λ) > 1/q(λ),

Pr -Fal-TrA,ε(λ) ≤ negl(λ),

where Pr -Fal-TrA,ε(·) is as defined in Definition 3.2.

Proof. We will skip the dependence of ε(·) on λ for simplicity of notation. Let S be the set of keys queried
and D the decoder output by A. For i ∈ {1, 2, . . . , n}, we define events Diff-AdvDi : pDi−1 − pDi > ε/8n, and

Diff-AdvD :
∨
k∈{1,...,n}\S Diff-AdvDk .

First, note that the probability of the event false trace can be rewritten as follows by conditioning on the
events defined above

Pr[Fal-Tr] ≤ Pr[Fal-Tr | Diff-AdvD] +
∑

i∈{1,...,n}

Pr[i /∈ S ∧ Diff-AdvDi].

We will show that each of these terms is bounded by a negligible function.

Lemma 4.4. For every PPT adversary A, there exists a negligible function negl1(·) such that for all λ ∈ N,

Pr[Fal-Tr | Diff-AdvD] ≤ negl1(λ).

Proof. The proof of this lemma follows from Chernoff bounds. Let n be the number of users chosen by the
adversary A. Fix any i ∈ {1, . . . , n}\S and decoding box D. Let us consider the probability that the output
of Trace algorithm includes i, given that Diff-AdvDi does not occur. Note that the tracing algorithm includes
i in the traitor set if the estimates p̂i−1 and p̂i differ by at least ε/4n.

Let Xk,j denote the random variable that is 1 if D(ctk,j) = bk,j for k ∈ {i − 1, i} and j ∈ {1, 2, . . . ,W}
(here the randomness is over the choice of bk,j and the randomness used by Enc-index and D) and Zi,j =

Xi−1,j −Xi,j . Then (
∑W
j=1Xk,j)/W = p̂k and µi = E [Zi,j] = pDi−1 − pDi .

Since the Zis are independent samples, using Chernoff bounds, we get that Pr[
∑
j Zj/W > 2µi] ≤ 2−O(λ).

Using this we can write that for every i ∈ {1, . . . , n} \ S, Pr[Fal-Tr ∧ i ∈ T | Diff-AdvD] ≤ 2−O(λ), where T
denotes the set of indices output by Trace. Finally, using a union bound, we get that

Pr[Fal-Tr | Diff-AdvD] ≤ n · 2−O(λ) = negl1(λ).

Lemma 4.5. Assuming PLBE is a secure PLBE scheme satisfying the decoder based index hiding security
property (Definition 3.7), for every PPT adversary A, polynomial q(·) and non-negligible function ε(·), there
exists a negligible function negl2(·) such that for all λ ∈ N satisfying ε(λ) > 1/q(λ) and i ∈ {1, 2, . . . , n},

Pr[i /∈ S ∧ Diff-AdvDi] ≤ negl2(λ),

where n is the number of users, S is the set of key queries, and D is the decoder box sent by A.

Proof. Suppose, on the contrary, there exists a PPT adversary A, polynomial q(·) and non-negligible func-
tions ε(·), δ(·) such that for all λ ∈ N satisfying ε(λ) > 1/q(λ), there exists an i∗ ∈ {1, 2, . . . , n} s.t.
Pr[i∗ /∈ S ∧ Diff-AdvDi∗] ≥ δ(λ). Then we can use A to build a PPT reduction algorithm B that breaks the
index hiding security property of PLBE.

The reduction algorithm B first receives 1n from the adversary, which it forwards to the challenger. It then
receives the PLBE public parameters pp from the challenger, which it sends to A. Next, it chooses an index

26

i← {0, 1, . . . , n} and sends it to the PLBE challenger.15 It receives secret keys sk1, . . . , ski−1, ski+1, . . . , skn.
The adversary A queries for secret keys. If A queries for i, B sends an empty decoding box to the PLBE
challenger. Else, on receiving query j 6= i from A, it sends skj to A. After all queries, the adversary sends
a decoding box D and messages m0,m1 to B. The reduction algorithm chooses a uniformly random bit
b′ ← {0, 1} and sends D,mb′ to the PLBE challenger.

Let pDj,b = Pr[D(ct) = b : ct ← Enc-index(msk, j,mb)], where the probability is taken over the coins of
decoder D and encryption algorithm. Recall we have that Pr[i∗ /∈ S ∧Diff-Advi∗] ≥ δ(λ). Therefore, we can
write that

Pr
[
i∗ /∈ S ∧

(
(pDi∗−1,0 + pDi∗−1,1)/2− (pDi∗,0 + pDi∗,1)/2

)
≥ ε/8n

]
≥ δ(λ)

⇒Pr
[
i = i∗ ∧ i∗ /∈ S ∧

(
(pDi−1,0 + pDi−1,1)/2− (pDi,0 + pDi,1)/2

)
≥ ε/8n

]
≥ δ(λ)/n.

Thus, we can also write that there exists a bit b such that

Pr
[
i = i∗ ∧ i∗ /∈ S ∧

(
pDi−1,b − pDi,b

)
≥ ε/8n

]
≥ δ(λ)/n.

Now since the reduction algorithm B simply randomly guesses this bit b, thus we have that with probability at
least δ/2n, B outputs a decoding box D and a message mb such that D can distinguish between encryptions
of mb to indices i− 1 and i with advantage at least ε/8n. Thus, the lemma follows.

From the above lemmas, it follows that the probability of false trace is at most negl1(λ) + n · negl2(λ), thus
theorem follows.

Correct Trace Probability. Now we show that whenever the adversary outputs a good decoder, then
with all but negligible probability the tracing algorithm outputs a non-empty set T . Combining this with
Theorem 4.2, we get that the tracing algorithm correctly traces. Formally, we show the following.

Theorem 4.3. For every PPT adversary A, polynomial q(·) and non-negligible function ε(·), there exists a
negligible function negl(·) such that for all λ ∈ N satisfying ε(λ) > 1/q(λ),

Pr -Cor-TrA,ε(λ) ≥ Pr -G-DA,ε(λ)− negl(λ)

where Pr -Cor-TrA,ε(·) and Pr -G-DA,ε(·) are as defined in Definition 3.2.

Proof. Let us start by analyzing the probability that tracing algorithm outputs a non-empty set T . First, we
know that if event Good-Decoder occurs, then pDnrml ≥ 1/2 + ε. Next, let S be the set of indices i ∈ {1, . . . , n}
such that pDi−1 − pDi > ε/2n. Using Chernoff bounds, we get that

∀ i ∈ S, Pr
[
p̂Di−1 − p̂Di < ε/4n

]
≤ 2−O(λ) = negl1(λ). (1)

Note that by message hiding security of the underlying PLBE scheme, we have that pDn ≤ 1/2 + negl2(λ) for
some negligible function negl2(·). Also, by indistinguishability of normal and index 0 ciphertexts, we have
that pDnrml−pD0 ≤ negl3(λ) for some negligible function negl3(·). Thus, pD0 −pDn ≥ ε−negl2(λ)−negl3(λ) > ε/2.
Given this we can conclude that the set S as defined above (i.e., for i ∈ S, pDi−1 − pDi > ε/2n) must be non-
empty whenever event Good-Decoder occurs. Combining this with Equation (1), we get that

Pr[T 6= ∅] ≥ (1− negl1(λ)) · Pr -G-DA,ε(λ) ≥ Pr -G-DA,ε(λ)− negl(λ).

Finally, combining with Theorem 4.2, we get that

Pr -Cor-TrA,ε(λ) ≥ Pr -G-DA,ε(λ)− negl(λ).

This concludes the proof.

15In other words, the reduction algorithm randomly guesses the index hiding challenger with which it interacts.

27

5 Mixed Functional Encryption

A functional encryption scheme consists of a setup, encryption, key generation, and decryption algorithm.
The setup algorithm takes the security parameter and functionality index as inputs, and outputs public
parameters and a master secret key. The encryption algorithm uses the public parameters to encrypt a
message, while the key generation algorithm uses the master secret key to compute a secret key corresponding
to a function. The decryption algorithm takes as input a ciphertext and a secret key, and outputs the function
evaluation on the message.

In this work, we introduce the notion of mixed functional encryption (Mixed FE). A Mixed FE scheme
is defined as a dual of the standard FE (i.e., ciphertext-policy) in which the secrets keys are associated with
a message, and ciphertexts are associated with (boolean) functions. Additionally, in a Mixed FE system,
there are two encryption algorithms — Enc and SK-Enc. The normal encryption algorithm Enc takes as
input only the public parameters and outputs a encryption of a “canonical” always-accepting function. The
“secret key” encryption algorithm, on the other hand, takes as input the master secret key and a function
f , and encrypts f . The decryption algorithm in a Mixed FE system works similar to that in standard FE,
that is it outputs the evaluation of encrypted function f on the message m associated with the secret key.
Below we provide a formal definition.

Consider function classes F = {Fκ}κ and message spacesM = {Mκ}κ, where f : Mκ → {0, 1} for each
f ∈ Fκ.16 A mixed functional encryption scheme Mixed-FE, for function classes F and message spaces M,
consists of five polytime algorithms (Setup,Enc,SK-Enc,KeyGen,Dec) with the following syntax:

• Setup(1λ, 1κ)→ (pp,msk). The setup algorithm takes as input the security parameter λ and function-
ality index κ, and outputs the public parameters pp and the master secret key msk.

• Enc(pp) → ct. The normal encryption algorithm takes as input public parameters pp, and outputs a
ciphertext ct.

• SK-Enc(msk, f)→ ct. The secret key encryption algorithm takes as input master secret key msk and a
function f ∈ Fκ. It outputs a ciphertext ct.

• KeyGen(msk,m) → skm. The key generation algorithm takes as input master secret key msk and a
input/message m ∈Mκ. It outputs a secret key skm.

• Dec(skm, ct) → {0, 1}. The decryption algorithm takes as input a secret key skm and a ciphertext ct,
and it outputs a single bit.

Correctness. A mixed functional encryption scheme is said to be correct if there exists negligible functions
negl1(·),negl2(·) such that for all λ, κ ∈ N, for every f ∈ Fκ, m ∈Mκ, the following holds

Pr

[
Dec(skm, ct) = 1 :

(pp,msk)← Setup(1λ, 1κ);
skm ← KeyGen(msk,m); ct← Enc(pp)

]
≥ 1− negl1(λ),

Pr

[
Dec(skm, ct) = f(m) :

(pp,msk)← Setup(1λ, 1κ);
skm ← KeyGen(msk,m); ct← SK-Enc(msk, f)

]
≥ 1− negl2(λ).

Security. Informally, for security we require that no PPT adversary should be able to distinguish between
secret key encryptions of two functions f0 and f1 if for every key in its possession, the output of f0, f1 is
identical. Additionally, we also require that it should be hard to distinguish between normal encryptions
and secret key encryptions of the special always-accepting function. In this work, we are only interested in
mixed FE schemes that guarantees security against adversaries which make a bounded number of secret key
encryption queries. Below we formally define it.

16The following definition could be easily generalized for multi-bit function classes, but for simplicity we stick to boolean
functions.

28

Definition 5.1 (q-bounded Function Indistinguishability). Let q(·) be any fixed polynomial. A mixed
functional encryption scheme Mixed-FE = (Setup,Enc,SK-Enc,KeyGen,Dec) is said to satisfy q-bounded
function indistinguishability security if for every stateful PPT adversary A, there exists a negligible function
negl(·), such that for every λ ∈ N the following holds:

Pr

AKeyGen(msk,·),SK-Enc(msk,·)(ct) = b :

1κ ← A(1λ); (pp,msk)← Setup(1λ, 1κ)
(f (0), f (1))← AKeyGen(msk,·),SK-Enc(msk,·)(pp)

b← {0, 1}; ct← SK-Enc(msk, f (b))

 ≤ 1

2
+ negl(λ)

where

• A can make at most q(λ) queries to SK-Enc(msk, ·) oracle, and

• every secret key query m made by adversary A to the KeyGen(msk, ·) oracle must satisfy the condition
that f (0)(m) = f (1)(m).

We also define a restricted version of the function indistinguishability game in which the adversary must
declare its challenge functions (f (0), f (1)) at the beginning, and it must make all its q encryption queries
before any of its key generation queries.

Definition 5.2 (q-bounded Restricted Function Indistinguishability). Let q(·) be any fixed polynomial.
A mixed functional encryption scheme Mixed-FE = (Setup,Enc,SK-Enc,KeyGen,Dec) is said to satisfy q-
bounded selective function indistinguishability security if for every stateful PPT adversary A, there exists a
negligible function negl(·), such that for every λ ∈ N the following holds:

Pr

AKeyGen(msk,·),SK-Enc(msk,·)(pp, ct) = b :
(1κ, f (0), f (1))← A(1λ);

(pp,msk)← Setup(1λ, 1κ)
b← {0, 1}; ct← SK-Enc(msk, f (b))

 ≤ 1

2
+ negl(λ)

where

• A can make at most q(λ) queries to SK-Enc(msk, ·) oracle, and

• every secret key query m made by adversary A to the KeyGen(msk, ·) oracle must satisfy the condition
that f (0)(m) = f (1)(m), and

• Amust make all (at most q(λ)) SK-Enc(msk, ·) oracle queries before making any query to KeyGen(msk, ·)
oracle.

Definition 5.3 (q-bounded Accept Indistinguishability). Let q(·) be any fixed polynomial. A mixed func-
tional encryption scheme Mixed-FE = (Setup,Enc,SK-Enc,KeyGen,Dec) is said to satisfy q-bounded accept
indistinguishability security if for every stateful PPT adversary A, there exists a negligible function negl(·),
such that for every λ ∈ N the following holds:

Pr

AKeyGen(msk,·),SK-Enc(msk,·)(ctb) = b :

1κ ← A(1λ); (pp,msk)← Setup(1λ, 1κ)
f∗ ← AKeyGen(msk,·),SK-Enc(msk,·)(pp)
b← {0, 1}; ct1 ← SK-Enc(msk, f∗)

ct0 ← Enc(pp)

 ≤ 1

2
+ negl(λ)

where

• A can make at most q queries to SK-Enc(msk, ·) oracle,

• every secret key query m made by adversary A to the KeyGen(msk, ·) oracle must satisfy the condition
that f∗(m) = 1.

29

Additionally, we also define a restricted notion of the accept indistinguishability property for mixed functional
encryption schemes, in which the adversary must declare its challenge function f∗ at the beginning, and it
must make all its q encryption queries before any of its key generation queries, and it is restricted to only
make ciphertext queries for functions f such that all queried f evaluate to 1 on all (secret key) queried
messages m. Below we formally describe it.

Definition 5.4 (q-bounded Restricted Accept Indistinguishability). Let q(·) be any fixed polynomial.
A mixed functional encryption scheme Mixed-FE = (Setup,Enc,SK-Enc,KeyGen,Dec) is said to satisfy q-
bounded restricted accept indistinguishability security if for every stateful PPT adversary A, there exists a
negligible function negl(·), such that for every λ ∈ N the following holds:

Pr

AKeyGen(msk,·),SK-Enc(msk,·)(pp, ctb) = b :
(1κ, f∗)← A(1λ); (pp,msk)← Setup(1λ, 1κ)

b← {0, 1}; ct1 ← SK-Enc(msk, f∗)
ct0 ← Enc(pp)

 ≤ 1

2
+ negl(λ)

where

• A can make at most q(λ) queries to SK-Enc(msk, ·) oracle,

• every secret key query m made by adversary A to the KeyGen(msk, ·) oracle must satisfy the condition
that f∗(m) = 1 as well as f(m) = 1 for every ciphertext query f made by A to the SK-Enc(msk, ·)
oracle, and

• Amust make all (at most q(λ)) SK-Enc(msk, ·) oracle queries before making any query to KeyGen(msk, ·)
oracle.

6 Construction of PLBE from Mixed FE and ABE

In this section, we construct a private linear broadcast encryption (PLBE) scheme from any key-policy at-
tribute based encryption (KP-ABE) scheme and a mixed functional encryption (Mixed FE) scheme. Our
construction inherits the message space of the underlying KP-ABE scheme. Also, we show that if the un-
derlying ABE scheme is selectively-secure, and mixed FE scheme satisfies 1-bounded restricted function and
accept indistinguishability properties, then our PLBE scheme satisfies 1-bounded normal, index, and mes-
sage hiding security properties.

Outline. The idea is to use the ABE system to encrypt a message with attributes being set to be either the
“normal” ciphertext (i.e., encryption of the canonical always-accepting function), or a special (secret key)
ciphertext which encrypts the comparison function depending on the type of PLBE encryption operation
being performed. Now each user’s secret key will be an ABE private key for the policy circuit being the
mixed FE decryption circuit with a mixed FE secret key corresponding to user’s index hardwired. The high
level intuition is that when the attribute is a normal FE ciphertext then all keys decrypt it to 1, thus any user
with an appropriate ABE key could perform the decryption. And, when the attribute is set to be a special
ciphertext (that encrypts comparison with some index i), then only those users whose indices are larger
than the threshold i set can perform the decryption. For proving security, we rely on the fact that special
ciphertexts are indistinguishable to any adversary that does not have distinguishing secret keys. Below we
provide a detailed overview.

The PLBE setup algorithm starts by sampling an ABE key pair (abe.pp, abe.msk) and a mixed FE key
pair (mixed.pp,mixed.msk). To generate the private key for ith user, it first generates a mixed FE secret
key mixed.ski for message i, and later computes an ABE key abe.ski for predicate Mixed.Dec(mixed.ski, ·),
i.e. Mixed-FE decryption circuit with key mixed.ski hardwired. For PLBE normal encryption, one simply
computes ciphertext ct as an encryption of message m under attributes ctattr, where ctattr is a mixed FE
normal-ciphertext. For encrypting a message to index i, the encryption algorithm works identically except

30

now the attribute is set to be a special ciphertext corresponding to function greater than i. Finally, the
PLBE decryption is simply the ABE decryption algorithm.

Now correctness follows directly from the correctness of ABE and FE schemes. For proving security, the
main idea is that suppose there exists an adversary that can distinguish between PLBE normal encryptions
and index 0 encryptions, then it can be used to distinguish between mixed FE normal ciphertexts and
ciphertexts encrypting function greater than 0 (note that this is an always-accepting function). In other
words, such an attack can be used to break restricted accept indistinguishability property of mixed FE
scheme. Similarly, we can also reduce a successful attack on the index hiding, or message hiding security to
an attacker on restricted function indistinguishability of mixed FE, or ABE security, respectively. Below we
describe our construction PLBE = (Setup,Enc,Enc-index,Dec) for messages spaces {Mκ}κ in detail.

6.1 Construction

Let ABE = (ABE.Setup,ABE.Enc,ABE.KeyGen,ABE.Dec) be a key-policy attribute based encryption scheme
for set of attribute spaces {Xκ}κ, predicate classes {Cκ}κ and message spaces {Mκ}κ, and Mixed-FE =
(Mixed.Setup,Mixed.Enc,Mixed.SK-Enc,Mixed.KeyGen,Mixed.Dec) be a mixed functional encryption scheme,
for function classes {Fκ}κ and message space {Iκ}κ, with ciphertexts of length `(λ, κ). For every n, let
κ = κ(n) be the lexicographically smallest functionality index such that every string of length log(n) can
be uniquely represented in message space Iκ (i.e., {0, 1}log(n) ⊆ Iκ), and function class Fκ contains the
“comparison” (>) operator. Also, let κ̃ = κ̃(λ, κ) be the lexicographically smallest functionality index such
that every string of length `(λ, κ) can be uniquely represented in attribute class Xκ̃ (i.e., {0, 1}`(λ,κ) ⊆ Xκ̃),
and Cκ̃ contains mixed FE decryption circuit corresponding to functionality index κ. Below we describe our
construction.

• Setup(1λ, 1n)→
(

pp,msk, {ski}i≤n
)

. The setup algorithm runs ABE.Setup and Mixed.Setup to generate

ABE and mixed FE public parameters and master secret key as (abe.pp, abe.msk)← ABE.Setup(1λ, 1κ̃)
and (mixed.pp,mixed.msk) ← Mixed.Setup(1λ, 1κ). Next, it runs Mixed.KeyGen to generate n mixed
secret keys mixed.ski as

∀ i ≤ n, mixed.ski ← Mixed.KeyGen(mixed.msk, i).

Let Cmixed.ski denote the circuit Mixed.Dec(mixed.ski, ·), i.e. Mixed-FE decryption circuit with key
mixed.ski hardwired. Next, it computes n ABE secret keys abe.ski as

∀ i ≤ n, abe.ski ← ABE.KeyGen(abe.msk, Cmixed.ski).

Finally, it sets pp = (abe.pp,mixed.pp), msk = (abe.msk,mixed.msk) and ski = abe.ski for i ≤ n.

• Enc(pp,m) → ct. Let pp = (abe.pp,mixed.pp). The encryption algorithm first computes ctattr ←
Mixed.Enc(mixed.pp). Next, it encrypts message m as ct ← ABE.Enc(abe.pp, ctattr,m), and outputs
ciphertext ct.

• Enc-index(msk,m, i)→ ct. Let msk = (abe.msk,mixed.msk) and compi denote the comparison function
?
> i, i.e. compi(x) = 1 iff x > i. The encryption algorithm first computes ctattr ← Mixed.SK-Enc(mixed.msk,
compi). Next, it encrypts message m as ct← ABE.Enc(abe.pp, ctattr,m), and outputs ciphertext ct.

• Dec(sk, ct)→ m or ⊥ . The decryption algorithm runs ABE.Dec on ct using key sk as y = ABE.Dec(sk, ct),
and sets y as the output of decryption.

6.2 Correctness

For all λ, n ∈ N, messagem ∈Mλ, public parameters and master secret keys (abe.pp, abe.msk)← ABE.Setup(1λ,
1κ̃), (mixed.pp,mixed.msk) ← Mixed.Setup(1λ, 1κ), the secret keys ski for i ≤ n are simply the ABE keys
abe.ski ← ABE.KeyGen(abe.msk, Cmixed.ski). For any index i ≤ n, consider the following two cases:

31

1. Normal encryption. For any ciphertext ct computed as ct ← ABE.Enc(abe.pp, ctattr,m), where
ctattr ← Mixed.Enc(mixed.pp), we know that with all but negligible probability Mixed.Dec(mixed.ski, ctattr) =
1 by correctness of mixed scheme. In other words, Cmixed.ski(ctattr) = 1. Therefore, by correctness of
ABE scheme, we have that with all but negligible probability ABE.Dec(abe.ski, ct) = m.

2. Index encryption. For any index j ∈ {0, 1, . . . , n} and ciphertext ct computed as ct← ABE.Enc(abe.pp,
ctattr,m), where ctattr ← Mixed.SK-Enc(mixed.msk, compj), we know that with all but negligible prob-
ability

Mixed.Dec(mixed.ski, ctattr) =

{
1 if i > j

0 otherwise

by correctness of mixed scheme. In other words, Cmixed.ski(ctattr) = compj(i) = (i > j). Therefore, by
correctness of ABE scheme, we have that with all but negligible probability ABE.Dec(abe.ski, ct) = m
for i > j and ⊥ otherwise.

Therefore, PLBE satisfies the PLBE correctness condition.

6.3 Security

We will now show that the scheme described above is 1-bounded secure as per Definitions 3.3, 3.4 and 3.5.
In other words, it satisfies normal hiding, index hiding, and message hiding security properties. Formally,
we prove the following.

Theorem 6.1. If ABE = (ABE.Setup,ABE.Enc,ABE.KeyGen,ABE.Dec) is a selectively-secure attribute
based encryption for set of attribute spaces {Xκ}κ, predicate classes {Cκ}κ and message spaces {Mκ}κ
satisfying Definition A.2, and Mixed-FE = (Mixed.Setup,Mixed.Enc,Mixed.SK-Enc,Mixed.KeyGen,Mixed.Dec)
is a mixed functional encryption scheme, for function classes {Fκ}κ and message spaces {Iκ}κ, satisfying
1-bounded restricted function indistinguishability (Definition 5.2) and 1-bounded restricted accept indistin-
guishability (Definition 5.4) properties, then PLBE = (Setup,Enc,Enc-index,Dec) is a secure private linear
broadcast encryption scheme, for messages spaces {Mκ}κ, satisfying 1-bounded normal, index and message
hiding security properties as per Definitions 3.3, 3.4 and 3.5 (resp.).

Our proof is divided in three components/lemmas, one for each PLBE security property. Let A be any
PPT adversary that wins the normal/index/message hiding game with non-negligible advantage. We argue
that such an adversary must break security of at least one underlying primitive.

6.3.1 Normal Hiding Security

Lemma 6.1. If Mixed-FE = (Mixed.Setup,Mixed.Enc,Mixed.SK-Enc,Mixed.KeyGen,Mixed.Dec) is a mixed
functional encryption scheme satisfying 1-bounded restricted accept indistinguishability (Definition 5.4)
property, then PLBE = (Setup,Enc,Enc-index,Dec) is a private linear broadcast encryption scheme satis-
fying 1-bounded normal hiding security property as per Definition 3.3.

Proof. Suppose there exists an adversary A such that A’s advantage in 1-bounded normal hiding security
game is non-negligible. We construct an algorithm B that can distinguish normal encryptions from secret
key encryptions , therefore break 1-bounded restricted accept indistinguishability security of the mixed FE
scheme.

The reduction algorithm B receives 1n from A. It sets κ, κ̃ as in the construction, and sends κ as the
functionality index and comp0 (i.e., comparison with 0) as its challenge function to the mixed FE challenger.
The challenger generates a key pair (mixed.pp,mixed.msk) and sends mixed.pp as the public parameters and
challenge ciphertext ct∗attr to B. Next, B makes an encryption query for function comp0. Let the challenger’s
response be ciphertext ctattr. B then queries the challenger on n messages i(≤ n) for corresponding mixed
secret keys, and receives back keys mixed.ski for i ≤ n. It then chooses an ABE key pair (abe.pp, abe.msk)←
ABE.Setup(1λ, 1κ̃), and computes n ABE keys as abe.ski ← ABE.KeyGen(abe.msk, Cmixed.ski). Next, it sends

32

(abe.pp,mixed.pp) and {abe.ski}i≤n as the PLBE public parameters and secret keys to A. After receiving
all the keys, A sends its challenge message m∗ to B, and it can also make a single encryption query for
message m on index 0. Here A is allowed to make the encryption query either before or after challenge
query. The reduction algorithm B responds to each query as follows. B encrypts message m as ct ←
ABE.Enc(abe.pp, ctattr,m), and sends ct to A as its response to encryption query. Also, it computes ciphertext
ct∗ as ct∗ ← ABE.Enc(abe.pp, ct∗attr,m

∗), and sends ct∗ as the challenge ciphertext to A. Note that A could
instead have sent its challenge query before sending the index encryption query. Also, B does not need to
query mixed FE challenger for answering any query at this point at it already has ciphertexts ctattr, ct∗attr.
Finally, A sends its guess b to B, and B forwards b as its own guess.

First, note that both A and B are allowed to make at most 1 index encryption and secret key encryption
queries, respectively. Also, note that B sends its secret key encryption query as well as challenge query
before making making key generation queries, thus B is an admissible adversary in the 1-bounded restricted
accept indistinguishability game. Since A is only allowed to make encryption queries to index 0 (in the
1-bounded normal hiding security game), thus B queries mixed FE challenger on functions comp0 which
are always accepting functions and therefore admissible queries as per restricted accept indistinguishability
game. Next, for each query made by A, B queries mixed FE challenger exactly once, thus the all the queries
are honestly and exactly answered. Finally, note that if mixed FE challenger computed ct∗attr as a normal
FE ciphertext, then B computes ct∗ as a normal PLBE ciphertext, otherwise it computes ct∗ as a PLBE
ciphertext for index 0. Thus, B perfectly simulates the 1-bounded normal hiding security game for A. As
a result, if A’s advantage is non-negligible, then B breaks 1-bounded restricted accept indistinguishability
security with non-negligible advantage. This completes the proof.

6.3.2 Index Hiding Security

Lemma 6.2. If Mixed-FE = (Mixed.Setup,Mixed.Enc,Mixed.SK-Enc,Mixed.KeyGen,Mixed.Dec) is a mixed
functional encryption scheme satisfying 1-bounded restricted function indistinguishability (Definition 5.2)
property, then PLBE = (Setup,Enc,Enc-index,Dec) is a private linear broadcast encryption scheme satisfying
1-bounded index hiding security property as per Definition 3.4.

Proof. The proof of this lemma is similar to that of Lemma 6.1, with the additional modification that the
reduction algorithm now guesses the indices i, i∗ on which the PLBE adversary makes its encryption query
and challenge query, respectively. And, the reduction algorithm aborts if its guess is incorrect. This leads
to a polynomial loss (≈ 1/n2) in the reduction algorithm’s advantage.17

Suppose there exists an adversary A such that A’s advantage in 1-bounded index hiding security game
is non-negligible. We construct an algorithm B that can distinguish between two secret key encryptions ,
therefore break 1-bounded restricted function indistinguishability security of the mixed FE scheme.

The reduction algorithm B receives 1n from A. It sets κ, κ̃ as in the construction. Next, it guesses
the challenge index i∗ ∈ {0, . . . , n− 1} and query index i ∈ {0, . . . , n}.18 It sends κ as the functionality
index and (compi∗ , compi∗+1) (i.e., comparison with i∗ and i∗ + 1) as its challenge functions to the mixed
FE challenger. The challenger generates a key pair (mixed.pp,mixed.msk) and sends mixed.pp as the public
parameters and challenge ciphertext ct∗attr to B. Next, B makes an encryption query for function compi.
Letthe challenger’s response be ciphertext ctattr. B then queries the challenger on n − 1 messages j(∈
[n] \ {i∗ + 1}) for corresponding mixed secret keys, and receives back keys mixed.skj for each j. It then
chooses an ABE key pair (abe.pp, abe.msk)← ABE.Setup(1λ, 1κ̃), and computes n−1 ABE keys as abe.skj ←
ABE.KeyGen(abe.msk, Cmixed.skj). Next, it sends (abe.pp,mixed.pp) and {abe.skj}j∈[n]\{i∗+1} as the PLBE

public parameters and secret keys to A. After receiving all the keys, A sends its challenge message m∗ to

17Due to the fact that the reduction algorithm has to guess the index, we can only extend the current analysis to prove
q-bounded PLBE (adaptive) security assuming q-bounded mixed FE (restricted) security for constant q. However, we would
like to point out that one could prove q-bounded PLBE selective security directly from q-bounded mixed FE (restricted) security
without any security loss.

18Basically, the reduction algorithm guesses two things — first, it guesses the index hiding challenger with which A interacts
and wins with non-negligible probability; second, it guesses the index on which adversary A queries the PLBE challenger for
index encryption.

33

B, and it can also make an encryption query for message m on index ĩ. Here A is allowed to make the
encryption query either before or after challenge query. The reduction algorithm B proceeds as follows. If
i 6= ĩ, B aborts and sends a random bit as its guess to the mixed FE challenger. Otherwise, it responds
to each query as follows. B encrypts message m as ct ← ABE.Enc(abe.pp, ctattr,m), and sends ct to A as
its response to encryption query. Also, it computes ciphertext ct∗ as ct∗ ← ABE.Enc(abe.pp, ct∗attr,m

∗), and
sends ct∗ as the challenge ciphertext to A. Note that A could instead have sent its challenge query before
sending the index encryption query. Also, B does not need to query mixed FE challenger for answering any
query at this point at it already has ciphertexts ctattr, ct∗attr. Finally, A sends its guess b to B, and B forwards
b as its own guess.

First, note that both A and B are allowed to make at most 1 index encryption and secret key encryption
queries, respectively. Also, note that B sends its secret key encryption query as well as challenge query
before making making key generation queries, thus B is an admissible adversary in the 1-bounded restricted
function indistinguishability game. Next, for each query made by A, B queries mixed FE challenger exactly
once, thus the all the queries are honestly and exactly answered. Finally, note that if mixed FE challenger
computed ct∗attr as an secret key FE ciphertext for function compi∗ , then B computes ct∗ as a PLBE ciphertext
for index i∗, otherwise it computes ct∗ as a PLBE ciphertext for index i∗ + 1. Thus, B perfectly simulates
the 1-bounded index hiding security game for A. Also, since B randomly guesses the challenge index i∗

as well as query index i, therefore with at least 1/n(n + 1) probability B’s guess will be correct, thus if
A’s advantage is (non-negligible) ε, then B breaks 1-bounded restricted function indistinguishability security
with (non-negligible) advantage ε/n(n+ 1). This completes the proof.

6.3.3 Message Hiding Security

Lemma 6.3. If ABE = (ABE.Setup,ABE.Enc,ABE.KeyGen,ABE.Dec) is a selectively-secure attribute based
encryption as per Definition A.2, then PLBE = (Setup,Enc,Enc-index,Dec) is a private linear broadcast
encryption scheme satisfying 1-bounded message hiding security property as per Definition 3.5.

Proof. Suppose there exists an adversary A such that A’s advantage in 1-bounded message hiding security
game is non-negligible. We construct an algorithm B that can distinguish between ABE encryptions of two
different messages, therefore break security of the ABE scheme.

The reduction algorithm receives 1n from A. It sets κ, κ̃ as in the construction, and starts by choos-
ing mixed FE parameters as (mixed.pp,mixed.msk) ← Mixed.Setup(1λ, 1κ). It then computes ct∗attr ←
Mixed.SK-Enc(mixed.msk, compn), and sends to the ABE challenger 1κ̃ and ct∗attr as its challenge attribute.
The ABE challenger generates a key pair (abe.pp, abe.sk) and sends abe.pp to B. For i ≤ n, B generates
mixed FE secret keys as mixed.ski ← Mixed.KeyGen(mixed.msk, i), and sends Cmixed.ski as a predicate query to
the ABE challenger and receives back secret key abe.ski. Next, it sends (abe.pp,mixed.pp) and {abe.ski}i≤n
as the PLBE public parameters and secret keys to A. After receiving all the keys, A makes a single index en-
cryption query (m, j) to B. B answers it by computing ciphertexts ctattr ← Mixed.SK-Enc(mixed.msk, compj)
and ct← ABE.Enc(abe.pp, ctattr,m), and sends ct to A as its response. A also sends two challenge message
(m∗0,m

∗
1) to B. B then forwards (m∗0,m

∗
1) as its challenge messages to ABE challenger. Next, B forwards

the challenge ciphertext ct∗ it receives from ABE challenger to A. Note that A could instead have sent its
challenge query before sending the index encryption query. In that case, the reduction algorithm simply
answers that first. Finally, A sends its guess b to B, and B forwards b as its own guess.

First, note that the challenge attribute ct∗attr on each predicate (Cmixed.ski) queried made by B evaluates
to 0, with all but negligible probability. This follows from the correctness condition of mixed FE system
as ct∗attr encrypts function compn and for all i ≤ n, compn(i) = 0, thus decrypting ct∗attr using mixed.ski
outputs 0. Thus, with all-but-negligible probability, reduction algorithm B is an admissible adversary in the
ABE security game. Thus, B perfectly simulates the 1-bounded19 message hiding security game for A. As a

19We would like to point out that the current construction actually gives a PLBE scheme that satisfies q-bounded message
hiding security property for arbitrary q, i.e. the number of queries need not be bounded, as long as the ABE scheme is not
q-bounded selectively-secure.

34

result, if A’s advantage is non-negligible, then B breaks ABE security with non-negligible advantage. This
completes the proof.

7 A New LWE Toolkit

In Section 2, we defined the notion of lattice trapdoors along with certain well-sampledness properties. Recall
that using lattice trapdoors, it is easy to compute pre-image U of any matrix Z with respect to a matrix A
given the trapdoor information generated while sampling A. For any matrix U sampled as above, we say U
targets A to matrix Z. Now the well-sampledness properties (at a high level) state that a matrix sampled
using TrapGen algorithm looks uniformly random when not given the trapdoor information, and a pre-image
matrix that targets to a random matrix looks like a matrix with entries drawn from a Gaussian distribution.

In this section, we introduce certain enhanced security properties for lattice trapdoors that will be useful
later in proving security of our Mixed FE system. We also provide a generic construction of lattice trapdoors
that achieves these enhanced properties from any lattice trapdoor scheme that satisfies the well-sampledness
properties described above. At a very high level, the enhanced security properties state the following —
(1) For any matrix A that is sampled using TrapGen algorithm, all those rows of A which are only used to
target random rows look like random rows themselves (when not given the trapdoor information), (2) Two
pre-image matrices U0,U1 that target a matrix A to different matrices Z0,Z1 should look indistinguishable
to any adversary even when the adversary is given those rows of A where Z0,Z1 are identical. We point
out that due to technical constrainst in the proof of property (2) we chose to define the enhanced properties
w.r.t. matrices instead of vectors.

7.1 Enhanced Lattice Trapdoors

Let (EnTrapGen,EnSamplePre) be a pair of randomized algorithms with the following syntax:

EnTrapGen(1n, 1m, q) → (A, TA). The trapdoor generation algorithm takes as input n,m, q and outputs a
matrix A ∈ Zn×mq together with a trapdoor TA.

EnSamplePre(A, TA, σ, z) → u. The pre-image sampling algorithm takes as input a matrix A ∈ Zn×mq

together with its trapdoor TA, a target vector z ∈ Znq and a parameter σ.20 It outputs u ∈ Zmq such

that A · uT = zT and ‖u‖ ≤
√
m · σ.

We require these algorithms to satisfy the following properties. These properties are captured via security
games between a challenger and a computationally bounded adversary.

Notation. First, we introduce some more notation. We start by defining a matrix re-arrangement proce-
dure Arrange which takes as input dimensions n1, n2,m, and two matrices A ∈ Zn1×m

q ,B ∈ Zn2×m
q , and an

ordered set S ⊆ [n1 + n2] of size n1, and it outputs a larger combined matrix C ∈ Z(n1+n2)×m
q . Concretely,

C = Arrange(1n1 , 1n2 , 1m,A,B, S). The re-arrangement procedure is defined as follows.
Let S = {i1, i2, . . . , in1}, where ij < ik for every 1 ≤ j < k ≤ n1. Similarly, let S = ([n1 + n2] \ S) ={

i′1, i
′
2, . . . , i

′
n2

}
denote the (ordered) complement of set S. Now matrix C is obtained by appending rows of

matrices A and B as follows — for j ∈ [n1], C[ij] = A[j], and for j ∈ [n2], C[i′j] = B[j]. For simplicity of
notation, we drop the dimensions n1, n2,m as explicit inputs to Arrange procedure throughout this section
whenever clear from context.

Additionally, we define a matrix restriction procedure Restrict which takes as input dimensions n,m,
and matrix A ∈ Zn×mq , and an ordered set S ⊆ [n] of size `, and it outputs a smaller matrix C ∈ Z`×mq .
Concretely, C = Restrict(1n, 1m,A, S). The restriction procedure is defined as follows.

20As before, the pre-image sampling algorithm could be easily generalized to generate pre-images of matrices instead of
vectors by independently running EnSamplePre algorithm on each column of the matrix. Throughout this work, we overload
the notation by directly giving matrices U ∈ Zn×kq (for any k) as inputs to the SamplePre algorithm.

35

Let S = {i1, i2, . . . , in}, where ij < ik for every 1 ≤ j < k ≤ `. Now matrix C is obtained by removing
rows of matrix A which do not lie in set S. Formally, for j ∈ [`], C[j] = A[ij]. As before, for simplicity of
notation, we drop the dimensions n,m as inputs whenever clear from context.

7.1.1 Row Removal Property

The first property we introduce is called the row removal property. It is defined via as an interactive security
game between the challenger and an adversary. In the game, the adversary specifies matrix dimensions n,m,
a set of k (≤ n) indices, which represent the ‘target’ set, and the adversary must distinguish between the
following scenarios.

In the first scenario, the challenger chooses an n × m matrix A with a trapdoor, and sends A to the
adversary. The adversary then participates in a query phase. For each query, the adversary sends a set of k
target vectors. The challenger responds by outputting a matrix U such that for each index i in the target
set, U maps the ith row of A to one of the target vectors. The matrix U maps the remaining rows of A to
uniformly random vectors.

In the second scenario, the challenger chooses a k×m matrix A with a trapdoor, extends A to dimension
n × m by attaching uniformly random rows, and sends this extended matrix to the adversary. Next, the
adversary sends queries, each query consisting of k target vectors. The challenger outputs a matrix U such
that U maps the ith row of A to the ith target vector.21

Definition 7.1 (Row Removal Property). Fix any function q : N→ N and parameter σ : N→ R+. A pair
of trapdoor generation algorithms LT = (EnTrapGen,EnSamplePre) is said to satisfy the (q, σ)-row removal
property if for any PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,
q = q(λ), σ = σ(λ)

prrow−rem,q,σ
LT,A (λ) = Pr

[
1← Exptrow−rem,q,σ

LT,A (λ)
]
≤ 1/2 + negl(λ),

where Exptrow−rem,q,σ
LT,A (·) is defined in Figure 4.

Exptrow−rem,q,σ
LT,A (λ)

1. Setup Phase. The adversary A after receiving as input the security parameter λ, sends dimensions
1n, 1m, and a set S ⊆ [n] of size k, such that m > 2n log q + 2λ and σ >

√
n · log q · logm+ λ, to the

challenger. The challenger chooses a random bit b← {0, 1}, and proceeds as follows:

(a) If b = 0, it samples two matrices B,P as (B, TB)← EnTrapGen(1k, 1m, q), P← Z(n−k)×m
q . Next,

it sets A = Arrange(B,P, S), and sends A to the adversary.

(b) Otherwise, if b = 1, it chooses matrix A as (A, TA) ← EnTrapGen(1n, 1m, q). And, sends A to
the adversary.

2. Query Phase. The adversary makes a polynomial number of pre-image queries of the form (1t,C)
where C ∈ Zk×tq . The challenger responds to each query as follows.

(a) If b = 0, it samples matrix U as U← EnSamplePre(B, TB, σ,C). And, sends U to the adversary.

(b) Otherwise if b = 1, it chooses a random matrix Q as Q ← Z(n−k)×t
q , and sets matrix D as

D = Arrange(C,Q, S). Next, it samples matrix U as U← EnSamplePre(A, TA, σ,D), and sends
U to the adversary.

3. A sends its guess b′. The experiment outputs 1 iff b = b′.

Figure 4: Experiment Exptrow−rem,q,σ
LT,A

21Although one might observe some weak resemblance between our row removal property and lattice trapdoor properties
used in [ALS16, BF11], we would like to point out that after a closer inspection we observe that our row removal property is
different.

36

A weaker row removal property is one where, in each query, the adversary is restricted to choose a set S
of size n − 1 during setup phase, and now during query phase it must make pre-image queries of the form

(1t,C ∈ Z(n−1)×t
q). A different way to represent the set S in this case is by a single index i ∈ [n] such that

{i} = [n] \ S. We call this property, the single row removal property. In our construction, we will first show
a scheme that satisfies the single row removal property, and then show that single row removal property
implies row removal property via a simple hybrid argument.

7.1.2 Target Switching Property

Next, we introduce the target switching property. For any target Z, if we choose a matrix B with a trapdoor,
and output only the pre-image of Z with respect to B, then this pre-image looks like a random low-norm
matrix. The target switching property is an extension of this property, and is captured via a security game
between a challenger and an adversary. In this game, the challenger specifies the matrix dimensions n,m
and a set S ⊆ [n] of size k. The challenger chooses an n×m matrix B and sends the rows of B corresponding
to the set S. It also chooses a challenge bit b which is used in the query phase.

Next, the adversary is allowed polynomially many queries. In each query, the adversary specifies two
matrices Z0,Z1 such that for every index i ∈ S, the ith rows of Z0 and Z1 are identical. The challenger
outputs a matrix U such that for every i ∈ S, U maps the ith row of B to the ith row of Z0 (which is equal
to the ith row of Z1). For the remaining indices i /∈ S, U approximately maps the ith row of A to the ith

row of Zb. Intuitively, since the adversary does not have the rows indexed by S, the challenger can switch
the targets from rows of Z0 to Z1.

Definition 7.2 (Target Switching Property). Fix any function q : N → N, noise distribution family
{χ(λ)}λ∈N and parameter σ : N→ R+. A pair of trapdoor generation algorithms LT = (EnTrapGen,EnSamplePre)
is said to satisfy the (q, χ, σ)-target switching property if for any PPT adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N, q = q(λ), χ = χ(λ), σ = σ(λ),

prswitch,q,χ,σ
LT,A (λ) = Pr

[
1← Exptswitch,q,χ,σ

LT,A (λ)
]
≤ 1/2 + negl(λ),

where Exptswitch,q,χ,σ
LT,A (·) is defined in Figure 5.

Exptswitch,q,χ,σ
LT,A (·)

1. Setup Phase. The adversary A after receiving as input the security parameter λ, sends dimensions
1n, 1m, set S ⊆ [n] of size k, such that m > 2n log q+ 12λ · log q and σ >

√
n · log q · logm+ λ, to the

challenger. The challenger chooses a random bit b ∈ {0, 1}, and proceeds as follows:

(a) It samples matrix A as (A, TA)← EnTrapGen(1n, 1m, q).

(b) Next, it sets B = Restrict(A, S), and sends B to the adversary.

2. Query Phase. The adversary makes polynomially many queries of the form (1t,Z0,Z1), where
Z0,Z1 ∈ Zn×tq and Restrict(Z0, S) = Restrict(Z1, S). The challenger responds to each query as follows.

(a) It chooses matrix E as E← χ(n−k)×t, and sets F = Arrange(0k×t,E, S).

(b) Next, it samples matrix U as U← EnSamplePre(A, TA, σ,Zb+E), and sends U to the adversary.

3. A sends its guess b′, and the experiment outputs 1 iff b = b′.

Figure 5: Exptswitch,q,χ,σ
LT,A (·)

As before, we will introduce a weaker notion called single target switching property, where in each query,
the adversary is restricted to output only a single index i ∈ [n], and Z0 and Z1 must agree on all indices
j 6= i. We will first show that our construction satisfies the single target switching property, and then show
that single target switching implies target switching property via a hybrid argument.

37

7.2 Our Construction of Enhanced Lattice Trapdoors

Let q : N → N, σ : N → R+ be functions, and LT = (TrapGen,SamplePre) a pair of algorithms that satisfy
q-well sampledness of matrix (Definition 2.2), (q, σ)-well sampledness of preimage (Definition 2.3). We will
construct enhanced lattice trapdoors LTen = (EnTrapGen,EnSamplePre) using LT as follows. The construction
is reminiscient of the trapdoor extension algorithms of [ABB10, CHKP10].

EnTrapGen(1n, 1m, q) → (A, TA). The trapdoor generation algorithm samples two matrices A1,A2 of di-
mensions dm/2e × n and bm/2c × n as follows

(A1, TA1
)← TrapGen(1n, 1dm/2e, q),

(A2, TA2)← TrapGen(1n, 1bm/2c, q).

It appends both these matrices column-wise to obtain a larger matrix as A = [A1 |A2]. And, it sets
the trapdoor TA to be the combined trapdoor information TA = (TA1 , TA2).

EnSamplePre(A, TA,Z, σ)→ U. The pre-image sampling algorithm takes as input A = [A1 |A2], trapdoor
TA = (TA1

, TA2
), parameter σ and matrix Z ∈ Zn×kq . It chooses a uniformly random matrix W ←

Zn×kq , and sets Y = Z−W. Next, it computes matrices U1 ∈ Zdm/2e×kq ,U2 ∈ Zbm/2c×kq as

U1 ← SamplePre(A1, TA1
, σ,W),

U2 ← SamplePre(A2, TA2
, σ,Y).

Finally, it computes the final output matrix U ∈ Zm×kq by row-wise appending matrices U1 and U2.

Concretely, U =

[
U1

U2

]
.

Correctness. Correctness follows directly from the correctness of LT.

7.3 Proving Security of LTen

We will now prove that our enhanced trapdoor sampling scheme satisfies well-sampledness of preimage, row
removal and target switching properties. First, we show that it satisfies preimage well-sampledness property
if the underlying trapdoor scheme satisfies preimage well-sampledness property.

Theorem 7.1. Fix any functions q : N → N and σ : N → R+. If LT satisfies (q, σ)-well sampledness of
preimage (Definition 2.3), then LTen also satisfies (q, σ)-well sampledness of preimage.

Proof Sketch. This follows directly from our construction. The well-sampledness of preimage requires that
the pre-image of a uniformly random matrix Z looks like a Gaussian sample with parameter σ. In our
construction, the pre-image of a random matrix Z consists of pre-images of W and Z −W, where W is
uniformly random. Since Z is random, so is Z −W. As a result, using the well-sampledness of preimage

property of LT, we can argue that these two preimages look like two matrices drawn from Ddm/2e×kZ,σ and

Dbm/2c×kZ,σ respectively.

7.3.1 Row Removal Property

Now we prove that our trapdoor sampling scheme satisfies row removal property. Formally, we prove the
following.

Theorem 7.2. Fix any functions q : N → N and σ : N → R+. If LT satisfies (q, σ)-well sampledness
of preimage (Definition 2.3) and q-well sampledness of matrix (Definition 2.2), then LTen also satisfies the
(q, σ)-single row removal property (Definition 7.1).

38

Proof. Our proof follows from a sequence of hybrid experiments. We start by defining a sequence of hybrid
experiments such that the first and last experiments correspond to the original row removal security game
when the challenger chooses its challenge bit b to be 0 and 1, respectively. To complete the proof we show
that the adversary’s advantage must be negligible between any two consecutive hybrids.

We now define hybrids Hx for x ∈ {0, 1, . . . , 12}. In all the hybrid experiments below, we set q = q(λ)
and σ = σ(λ). Also, below in each successive hybrid step, we only describe the modifications. Later in
Section C.1, we provide the detailed hybrids.

Hybrid H0 : This corresponds to the original game (as per Definition 7.1, with the single row removal
restriction) with b = 0.

1. Setup Phase. The adversary A sends 1n, 1m, index i ∈ [n]. The challenger proceeds as follows.

(a) It first chooses (B1, TB1
) ← TrapGen(1n−1, 1dm/2e, q), (B2, TB2

) ← TrapGen(1n−1, 1bm/2c, q). It
sets B = [B1 |B2].

(b) It also chooses a vector p← Zmq , and sets matrix A ∈ Zn×mq as A = Arrange(B,p, [n] \ {i}).
(c) Finally, it sends A to A.

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,C)

where C ∈ Z(n−1)×t
q . The challenger responds to each query as follows.

(a) It chooses W← Z(n−1)×t
q and computes U1 ← SamplePre(B1, TB1

, σ,W).

(b) Next, it sets Y = C−B1·U1 (which is equal to C−W), and computes U2 ← SamplePre(B2, TB2
, σ,Y).

(c) Finally, it sends U =

[
U1

U2

]
to A.

3. The adversary outputs a bit b′.

Hybrid H1 : In this experiment, the challenger chooses U1 to be a random Gaussian matrix with parameter
σ for each query.

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,C)

where C ∈ Z(n−1)×t
q . The challenger responds to each query as follows.

(a) It samples U1 ← Ddm/2e×tZ,σ .

Hybrid H2 : In this hybrid, the challenger chooses B1 uniformly at random, instead of choosing it using
TrapGen. At this point, note that the left half of A is a uniformly random matrix.

1. Setup Phase. The adversary A sends 1n, 1m, index i ∈ [n]. The challenger proceeds as follows.

(a) It first chooses B1 ← Z(n−1)×dm/2e
q , (B2, TB2

)← TrapGen(1n−1, 1bm/2c, q). It sets B = [B1 |B2].

Hybrid H3 : This hybrid involves syntactic changes. The challenger chooses A1 ← Zn×dm/2eq , and derives
B1 by removing the ith row of A1.

1. Setup Phase. The adversary A sends 1n, 1m, index i ∈ [n]. The challenger proceeds as follows.

(a) It first chooses A1 ← Zn×dm/2eq , (B2, TB2
)← TrapGen(1n−1, 1bm/2c, q). It sets B1 = Restrict(A1, [n]\

{i}), and B = [B1 |B2].

(b) It also chooses a vector p2 ← Zbm/2cq , and sets A2 = Arrange(B2,p2, [n] \ {i}), A = [A1 |A2].

39

Hybrid H4 : In this hybrid, the challenger chooses the left half of A using TrapGen.

1. Setup Phase. The adversary A sends 1n, 1m, index i ∈ [n]. The challenger proceeds as follows.

(a) It first chooses A1 ← TrapGen
(
1n, 1dm/2e, q

)
, (B2, TB2) ← TrapGen(1n−1, 1bm/2c, q). It sets

B1 = Restrict(A1, [n] \ {i}), and B = [B1 |B2].

Hybrid H5 : In this hybrid, the challenger chooses U1 using SamplePre for each query.

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,C)

where C ∈ Z(n−1)×t
q . The challenger responds to each query as follows.

(a) It chooses W′ ← Zn×tq , sets W = Restrict(W′, [n]\{i}), and samples U1 ← SamplePre(A1, TA1
, σ,W′).

Hybrid H6 : This hybrid represents a syntactic change, in which the challenger, for each query, chooses
Y as a uniformly random matrix, and set W = C−Y = C−B2 ·U2.

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,C)

where C ∈ Z(n−1)×t
q . The challenger responds to each query as follows.

(a) It chooses Y ← Z(n−1)×t
q , and samples U2 ← SamplePre(B2, TB2 , σ,Y).

(b) Next, it sets W = C − B2 ·U2 (which is equal to C −Y), chooses a uniformly random vector
w← Ztq, sets W′ = Arrange(W,w, [n] \ {i}), and computes U1 ← SamplePre(A1, TA1 , σ,W

′).

Hybrid H7 : In this hybrid experiment, the challenger chooses U2 from a Gaussian distribution with
parameter σ.

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,C)

where C ∈ Z(n−1)×t
q . The challenger responds to each query as follows.

(a) It samples U2 ← Dbm/2c×tZ,σ .

Hybrid H8 : In this hybrid, the challenger chooses matrix B2 uniformly at random. Note that this means
A2 is uniformly random in this hybrid.

1. Setup Phase. The adversary A sends 1n, 1m, index i ∈ [n]. The challenger proceeds as follows.

(a) It first chooses A1 ← TrapGen
(
1n, 1dm/2e, q

)
, B2 ← Z(n−1)×bm/2c

q . It sets B1 = Restrict(A1, [n] \
{i}), and B = [B1 |B2].

Hybrid H9 : In this hybrid, the matrix A2 is chosen using TrapGen.

1. Setup Phase. The adversary A sends 1n, 1m, index i ∈ [n]. The challenger proceeds as follows.

(a) It first chooses A1 ← TrapGen
(
1n, 1dm/2e, q

)
, A2 ← TrapGen

(
1n, 1bm/2c, q

)
. It sets B1 =

Restrict(A1, [n] \ {i}), B2 = Restrict(A2, [n] \ {i}), and B = [B1 |B2].

Hybrid H10 : In this hybrid, the challenger chooses U2 using SamplePre for each query.

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,C)

where C ∈ Z(n−1)×t
q . The challenger responds to each query as follows.

(a) It chooses Y′ ← Zn×tq and samples U2 ← SamplePre(A2, TA2
, σ,Y′).

40

Hybrid H11 : This hybrid represents a syntactic change in which the ith row of matrix W′ is set as a
difference of random vector c and ith row of A2 ·U2 instead of being sampled uniformly at random directly.

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,C)

where C ∈ Z(n−1)×t
q . The challenger responds to each query as follows.

(b) Next, it chooses a uniformly random vector c ← Ztq, sets C′ = Arrange(C, c, [n] \ {i}), sets
W′ = C′ −A2 ·U2, and computes U1 ← SamplePre(A1, TA1

, σ,W′).

Hybrid H12 : This hybrid represents a syntactic change. It corresponds to the security game in Defini-
tion 7.1 with b = 1.

1. Setup Phase. The adversary A sends 1n, 1m, index i ∈ [n]. The challenger proceeds as follows.

(a) It first chooses A1 ← TrapGen
(
1n, 1dm/2e, q

)
, A2 ← TrapGen

(
1n, 1bm/2c, q

)
.

(b) It sets A = [A1 |A2].

(c) Finally, it sends A to A.

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,C)

where C ∈ Z(n−1)×t
q . The challenger responds to each query as follows.

(a) It chooses W′ ← Zn×tq and computes U1 ← SamplePre(A1, TA1 , σ,W).

(b) Next, it chooses a uniformly random vector c ← Ztq, sets C′ = Arrange(C, c, [n] \ {i}), sets
Y′ = C′ −A1 ·U1 (which is equal to C′ −W′), and computes U2 ← SamplePre(A2, TA2 , σ,Y

′).

(c) Finally, it sends U =

[
U1

U2

]
to A.

3. The adversary outputs a bit b′.

Analysis. We will now show that any PPT adversary has at most negligible advantage in distinguishing
any two consecutive hybrids. For any adversary A, let pA,i : N → [0, 1] denote the function such that for
all λ ∈ N, pA,i(λ) is the probability that A, on input 1λ, outputs 1 in hybrid experiment Hi. From the
definition of the hybrid experiments, it follows that for all λ ∈ N, pA,0(λ)− pA,12(λ) = 2prrow−rem,q,σ

LTen,A (λ)− 1.
Therefore, to show that LTen satisfies the (q, σ)-row removal property, it suffices to show that for all A and
i ∈ [12], there exist negligible functions negli such that for all λ ∈ N, pA,i−1(λ)− pA,i(λ) ≤ negli(λ).

Lemma 7.1. Assuming LT satisfies (q, σ)-well sampledness of preimage, for any PPT adversary A, there
exists a negligible function negl1(·) such that for all λ ∈ N, pA,0(λ)− pA,1(λ) ≤ negl1(λ).

Proof. Suppose there exists an adversary A and a non-negligible function η(·) such that for all λ ∈ N,
pA,0(λ) − pA,1(λ) ≥ η(λ). Moreover, let sA denote the number of queries made by A, and let tA denote
a bound on the number of columns in queried matrix C (note that the reduction algorithm is allowed to
depend on the adversary, therefore it knows sA and tA corresponding to A).22 Then we can construct a

reduction algorithm B such that prpreimg,q,σ
LT,B (λ) ≥ η(λ) for all λ ∈ N.

The reduction algorithm receives n,m, index i ∈ [n] from A such that m > 2n log q + 2λ and σ >√
n · log q · logm+ λ. It forwards 1n−1, 1dm/2e, 1sA·tA to the challenger.23It receives B1 ∈ Z(n−1)×dm/2e

q and

Ũ ∈ Zdm/2e×(sA·tA)
q . Note that the trapdoor for B1 is not used in hybrid H1. The reduction algorithm

22Througout this section, we construct non-uniform reduction algorithm as our reduction algorithms depends on the number
of queries made by the adversary as well as size of the matrices in each query. However, we would like to point out that the
reduction could be made uniform by simply guessing both these bounds. This would result in a polynomial loss in the reduction
algorithm’s advantage.

23Note that the reduction algorithm chooses admissible parameters, since dm/2e > n log q + λ > (n − 1) log q + λ and

σ >
√
n · log q · logm+ λ >

√
(n− 1) · log q · logm/2 + λ.

41

chooses (B2, TB2) using TrapGen, computes A as in H0 (and H1) and sends A to A. The challenger also

partitions Ũ =
[
Ũ1 | . . . | ŨsA

]
, where each Ũj ∈ Zdm/2e×tAq .

Next, the adversary sends queries. For the i∗th query, the adversary sends (1t,C) for some t ≤ tA.

The reduction algorithm sets U1 to be the first t columns of Ũi∗ . It computes Y = C − B1 · U1 and
U2 ← SamplePre(B2, TB2

, σ,Y). It sets U as in H0/H1 and sends U to A.

Finally, after all queries, if A outputs 1, B guesses that Ũ is sampled using SamplePre, else it guesses
that Ũ is a random Gaussian matrix sampled with parameter σ.

Note that depending on whether Ũ is sampled using SamplePre or sampled from Gaussian distribution,
B simulates either H0 or H1 perfectly. As a result, B′s advantage in the preimage well-sampledness game is
at least η(λ).

Lemma 7.2. Assuming LT satisfies q-well sampledness of matrix, for any adversary A, there exists a
negligible function negl2(·) such that for all λ ∈ N, pA,1(λ)− pA,2(λ) ≤ negl2(λ).

Proof. Suppose there exists an adversary A and a non-negligible function η(·) such that for all λ ∈ N,

pA,1(λ) − pA,2(λ) ≥ η(λ). Then we can construct a reduction algorithm B such that prmatrix,q,σ
LT,B (λ) ≥ η(λ)

for all λ ∈ N.
The reduction algorithm receives 1n, 1m, index i ∈ [n] from A. It forwards 1n−1, 1dm/2e to the chal-

lenger.24 It receives B1. The reduction algorithm chooses (B2, TB2
) using TrapGen, sets A as in H1 (and

H2) and sends A to A.

Next, the adversary sends queries. For each query C, the challenger chooses U1 ← Ddm/2e×tZ,σ , computes
Y = C−B1 ·U1 and U2 ← SamplePre(B2, TB2

, σ,Y). It chooses p, sets U as in H1/H2 and sends U to A.
After all the queries, if A outputs 1, B guesses that B1 is sampled using TrapGen, else it guesses that B1

is a uniformly random matrix. Note that depending on whether B1 is sampled using TrapGen or sampled
uniformly at random, B simulates either H1 or H2 perfectly. As a result, B′s advantage in the matrix
well-sampledness game is at least η(λ).

Lemma 7.3. For any adversary A, pA,2(λ) = pA,3(λ).

Since the only changes from H2 to H3 are syntactical, it follows that any adversary has identical behavior
in both hybrids.

Lemma 7.4. Assuming LT satisfies q-well sampledness of matrix, for any PPT adversary A, there exists a
negligible function negl4(·) such that for all λ ∈ N, pA,3(λ)− pA,4(λ) ≤ negl4(λ).

This proof is identical to the proof of Lemma 7.2, except that the reduction algorithm must send 1n, 1dm/2e

instead of 1n−1, 1dm/2e.

Lemma 7.5. Assuming LT satisfies (q, σ)-well sampledness of pre-image, for any PPT adversary A, there
exists a negligible function negl5(·) such that for all λ ∈ N, pA,4(λ)− pA,5(λ) ≤ negl5(λ).

This proof is identical to the proof of Lemma 7.1, except that the reduction algorithm must send
1n, 1dm/2e, 1sA·tA instead of 1n−1, 1dm/2e, 1sA·tA .

Lemma 7.6. For any adversary A, pA,5(λ) = pA,6(λ).

Note that the distributions in H5 and H6 are identical. In hybrid H5, the challenger chooses W′ ← Zn×mq ,

derives W from W′ by removing the ith row and sets Y = C−W. In hybrid H6, it chooses Y ← Z(n−1)×m
q ,

sets W = C −Y, and W′ to be a matrix extended from W by inserting a random vector at row i. The
distribution of (W,W′,Y) is identical in both the hybrid experiments.

24Note that the reduction algorithm chooses admissible parameters, since dm/2e > n log q + λ > (n− 1) log q + λ.

42

Lemma 7.7. Assuming LT satisfies (q, σ)-well sampledness of pre-image, for any PPT adversary A, there
exists a negligible function negl7(·) such that for all λ ∈ N, pA,6(λ)− pA,7(λ) ≤ negl7(λ).

This proof is identical to the proof of Lemma 7.1, except that the reduction algorithm must send
1n−1, 1bm/2c, 1sA·tA instead of 1n−1, 1dm/2e, 1sA·tA . It uses the challenger’s response for setting B2,U2,
and chooses the remaining components by itself.

Lemma 7.8. Assuming LT satisfies q-well sampledness of matrix, for any PPT adversary A, there exists a
negligible function negl8(·) such that for all λ ∈ N, pA,7(λ)− pA,8(λ) ≤ negl8(λ).

This proof is identical to the proof of Lemma 7.2, except that the reduction algorithm must send
1n−1, 1bm/2c instead of 1n−1, 1dm/2e. It uses the challenger’s response for setting B2, and chooses the re-
maining components by itself.

Lemma 7.9. Assuming LT satisfies q-well sampledness of matrix, for any adversary A, there exists a
negligible function negl9(·) such that for all λ ∈ N, pA,8(λ)− pA,9(λ) ≤ negl9(λ).

This proof is identical to the proof of Lemma 7.2, except that the reduction algorithm must send 1n, 1bm/2c

instead of 1n−1, 1dm/2e. It uses the challenger’s response for setting A2, and chooses the remaining compo-
nents by itself.

Lemma 7.10. Assuming LT satisfies (q, σ)-well sampledness of pre-image, for any PPT adversary A, there
exists a negligible function negl10(·) such that for all λ ∈ N, pA,9(λ)− pA,10(λ) ≤ negl10(λ).

This proof is identical to the proof of Lemma 7.1, except that the reduction algorithm must send 1n, 1bm/2c

instead of 1n−1, 1dm/2e. It uses the challenger’s response for setting A2,U2, and chooses the remaining
components by itself.

Lemma 7.11. For any adversary A, pA,10(λ) = pA,11(λ).

In hybrid experiment H10, the challenger chooses Y′ ← Zn×mq , derives Y′ by removing the ith row. It
sets W = C−Y, chooses a uniformly random vector w← Zmq and constructs W′ from W and w. In hybrid
H11, the challenger chooses Y′ uniformly at random, extends C′ from C by inserting a random vector at
ith row, and sets W′ = C′ − Y′. As a result, (Y′,W′) are identically distributed in both hybrids. The
remaining components in the hybrids are either identical, or can be derived from Y′,W′.

Lemma 7.12. For any adversary A, pA,11(λ) = pA,12(λ).

Note that the distributions in H11 and H12 are identical. The proof is identical to that of Lemma 7.6.

Using the above lemmas, it follows that the advantage of an adversary in the row removal experiment is at
most negl(λ).

Theorem 7.3. Fix any function q : N → N, σ : N → R+. Assuming LTen = (EnTrapGen,EnSamplePre)
satisfies the (q, σ)-single row removal property, LTen also satisfies the (q, σ)-row removal property.

Proof. This proof follows via a simple hybrid argument, where we gradually remove the non-targeted rows
from A one by one. Suppose A outputs set S of size k. We will define n− k+ 1 hybrids H1, . . . ,Hn−k+1 as
follows.

43

Hybrid Hi for 0 ≤ i ≤ n− k In hybrid Hi, the challenger does the following.

1. Let (1n, 1m, S ⊆ [n])← A(1λ), and let S = {i1, . . . , ik}, S = {i′1, . . . , i′n−k}. Let Si = S ∪{i′1, . . . , i′i} =

{̃i1, . . . , ĩk+i} and Si = [n] \ Si =
{
ĩ′1, . . . , ĩ′n−k−i

}
.

2. It chooses (B, TB)← EnTrapGen(1k+i, 1m, q), P← Z(n−k−i)×m
q .

3. It sets A ∈ Zn×mq where A[̃ij] = B[j] for all j ≤ k+ i, and A[ĩ′j] = P[j] for all j ≤ n− k− i, and
sends A to A.

4. Next, the adversary sends queries. For each query {cj}j∈S , the challenger first chooses cj ← Ztq for

each j ∈ Si \ S, sets C ∈ Z(k+i)×t
q where C[j] = cĩj for all j ≤ k + i.

5. Next, it chooses U← EnSamplePre(B, TB,C, σ) and sends (A,U).

6. Finally, after all queries, the adversary A outputs a bit b′.

Note that H0 and Hn−k correspond to b = 0 and b = 1 in the row removal experiment. For any adversary
A, let pA,i(λ) denote the probability of A outputting 1 in hybrid Hi. We will show that for any adversary
A, there exists a negligible function negl(·) such that pA,i(λ) and pA,i+1 differ by at most negl(λ).

Lemma 7.13. Fix any index i ∈ {0, 1, . . . , n − k − 1}. Assuming LTen satisfies the single row removal
property, for any PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,
pA,i(λ)− pA,i+1(λ) ≤ negl(λ).

Proof. Suppose there exists an adversary A and a non-negligible function η(·) such that for all λ ∈ N,
pA,i(λ) − pA,i+1(λ) ≥ η(λ). We can use A to build a reduction algorithm B that can break the single row
removal property with advantage η(·).

The reduction algorithm first receives 1n, 1m, S = {i1, . . . , ik}. It defines Si+1 = S ∪ {i′1, . . . , i′i+1} =

{̃i1, . . . , ĩk+i+1}, and let indx ∈ [k+ i+ 1] be the index such that ĩindx = i′i+1. The reduction algorithm sends
1k+i+1, 1m and indx.25 It receives B from the challenger. The reduction algorithm sets A ∈ Zn×mq such that

for each j ≤ k + i+ 1, A[̃ij] = B[j], and the remaining rows are chosen uniformly at random.
For each query {cj}j∈S , the reduction algorithm chooses vectors {ci′1 , . . . , ci′i} uniformly at random from

Ztq and sends {cĩj}j∈[k+i+1],j 6=indx to the challenger. The challenger sends U to the reduction algorithm. The
reduction algorithm forwards U to A. Finally, after all the queries, B outputs the adversary’s final output
bit.

Clearly, the reduction algorithm simulates either Hi or Hi+1 depending on the challenger’s output, and
therefore the advantage of B is pA,i(λ)− pA,i+1(λ).

7.3.2 Target Switching Property

Now we prove that our trapdoor sampling scheme satisfies target switching property. Formally, we prove
the following.

Theorem 7.4. Fix any functions q : N → N and σ : N → R+, and error distribution family {χ(λ)}λ. If
LT satisfies q-well distributedness of matrix (Definition 2.2), (q, σ)-well distributedness of preimage (Defini-
tion 2.3), and LWE-sp(d,q,σ,χ) holds (LWE with short public vectors : Assumption 3) where d(λ) = 6λ log q(λ),
then LTen satisfies (q, σ, χ)-single target switching property.

25Note that the reduction algorithm chooses admissible parameters, since m > n log q + λ > (k + i + 1) log q + λ and

σ >
√
n · log q · logm+ λ >

√
(k + i+ 1) · log q · logm+ λ.

44

Proof. To prove the above theorem, we first define a sequence of hybrid games where the first game is the
single target switching security game, and in the last game the adversary’s advantage is exactly 0. Later
we show that the adversary’s advantage in any two consecutive hybrid games is negligible. For simplicity of
notation, we will let d = d(λ), q = q(λ), σ = σ(λ) and χ = χ(λ). Below in each successive hybrid game, we
only describe the modifications. Later in Section C.2, we provide the detailed hybrid games.

Hybrid H0 : This corresponds to the single target switching security game.

1. Setup Phase. The adversary A sends 1n, 1m, index i ∈ [n]. The challenger proceeds as follows.

(a) It chooses (A1, TA1
) ← TrapGen(1n, 1dm/2e, q) and (A2, TA2

) ← TrapGen(1n, 1bm/2c, q). It also
chooses a random bit b← {0, 1}.

(b) Next, it sets B1 = Restrict(A1, [n] \ {i}), B2 = Restrict(A2, [n] \ {i}), and sends [B1 |B2] to A.

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,Z0,Z1)
where Z0,Z1 ∈ Zn×tq such that Restrict(Z0, [n] \ {i}) = Restrict(Z1, [n] \ {i}). The challenger responds
to each query as follows.

(a) It chooses W← Zn×tq , computes U1 ← SamplePre(A1, TA1 , σ,W).

(b) It also samples vector e← χt, and sets E = Arrange(0(n−1)×t, e, [n] \ {i}).
(c) Next, it sets Y = Zb − A1 · U1 + E (which is equal to Zb −W + E), and computes U2 ←

SamplePre(A2, TA2 , σ,Y).

(d) Finally, it sends U =

[
U1

U2

]
to A.

3. A outputs its guess b′.

Hybrid H1 : In this hybrid experiment, the challenger sets U1 to be a Gaussian matrix for each query.

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,Z0,Z1)
where Z0,Z1 ∈ Zn×tq such that Restrict(Z0, [n] \ {i}) = Restrict(Z1, [n] \ {i}). The challenger responds
to each query as follows.

(a) It computes U1 ← Ddm/2e×tZ,σ .

Hybrid H2 : In this hybrid experiment, the challenger sets A1 to be a uniformly random matrix (that is,
sampled without a trapdoor).

1. Setup Phase. The adversary A sends 1n, 1m, index i ∈ [n]. The challenger proceeds as follows.

(a) It chooses A1 ← Zn×dm/2eq and (A2, TA2
)← TrapGen(1n, 1bm/2c, q). It also chooses a random bit

b← {0, 1}.

Hybrid H3 : This hybrid is a syntactic change. Here, we express Y in terms of B1 and the ith row of A1.
Note that the ith row of A1 is used only for computing the ith row of Y.

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,Z0,Z1)
where Z0,Z1 ∈ Zn×tq such that Restrict(Z0, [n] \ {i}) = Restrict(Z1, [n] \ {i}). The challenger responds
to each query as follows.

(b) It also samples vector e← χt, and sets Z′b = Restrict(Zb, [n] \ {i}).
(c) Next, it sets Y′ = Z′b −B1 ·U1, y = Zb[i]−A1[i] ·U1 + e, and Y = Arrange(Y′,y, [n] \ {i}). It

then computes U2 ← SamplePre(A2, TA2
, σ,Y).

45

Hybrid H4 : In this hybrid experiment, the challenger sets the ith row of Y to be a uniformly random
vector.

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,Z0,Z1)
where Z0,Z1 ∈ Zn×tq such that Restrict(Z0, [n] \ {i}) = Restrict(Z1, [n] \ {i}). The challenger responds
to each query as follows.

(c) Next, it sets Y′ = Z′b − B1 ·U1, y ← Ztq, and Y = Arrange(Y′,y, [n] \ {i}). It then computes
U2 ← SamplePre(A2, TA2

, σ,Y).

Analysis. We will now analyse the adversary’s advantage in the single target switching experiment. Let
pA,l(λ) denote the probability of A guessing correctly (i.e. b′ = b) at the end of hybrid experiment Hl. We
will show that for every PPT adversary A and l ∈ [4] there exist negligible functions negll(·) such that for
all λ ∈ N, pA,l−1 − pA,l ≤ negli(λ).

Lemma 7.14. Assuming LT satisfies (q, σ)-well sampledness of preimage, for any adversary A, there exists
a negligible function negl1(·) such that for all λ ∈ N, pA,0 − pA,1 ≤ negl1(λ).

The proof of this lemma is similar to the proof of Lemma 7.1.

Lemma 7.15. Assuming LT satisfies q-well sampledness of matrix, for any adversary A, there exists a
negligible function negl2(·) such that for all λ ∈ N, pA,1 − pA,2 ≤ negl2(λ).

The proof of this lemma is similar to the proof of Lemma 7.2.

Lemma 7.16. For any adversary A, pA,2 = pA,3.

Note that the only differences in H2 and H3 are syntactic changes with respect to matrix Y. As a result,
the distributions in the two hybrids are identical.

Lemma 7.17. If LWE-sp(d,q,σ,χ) holds (Assumption 3) where d(λ) = 6λ log q(λ), then for any PPT adversary
A, there exists a negligible function negl4(·) such that for all λ ∈ N, pA,3 − pA,4 ≤ negl4(λ).

Proof. Suppose, on the contrary, there exists an adversary A and a non-negligible function η(·) such that

pA,3 − pA,4 ≥ η(λ) for all λ ∈ N. We will construct a reduction algorithm B such that AdvLWE-sp,d,q,σ,χ
B (λ) ≥

η(λ) for all λ ∈ N.
The reduction algorithm first receives 1n, 1m, i ∈ [n],Z0,Z1 from the adversary A (such that m >

2n log q + 12λ log q). The reduction algorithm chooses B1 ← Z(n−1)×m
q , (A2, TA2

)← TrapGen(1n, 1bm/2c, q)
and derives B2 from A2 by removing ith row. It defines B = [B1 |B2] and sends it to the adversary. It also
chooses a random bit b← {0, 1}.

Next, the reduction algorithm receives queries from the adversary, and it uses the LWE-sp challenger to
define matrices U1 and y. For each query, the adversary sends two matrices Z0,Z1 ∈ Zn×tq such that all

their rows are equal, except the ith one. The reduction algorithm queries the LWE-sp challenger for t queries,

and receives {(ar, ur)}r∈[t], where ar ∈ Zdq for each r ∈ [t]. It chooses ãr ← Ddm/2e−dZq,σ for each r ∈ [m],

s̃← Zdm/2e−dq .26 Next, it sets U1 ∈ Zdm/2e×mq to be a matrix whose rth column is [a | ãr]T for each r ∈ [m].
It sets y ∈ Zmq , where yr = Zb[i]r − ur − s̃ · ãTr .

Once y and U1 are determined, the reduction algorithm can compute U2 using B1,U1,Zb, TA2 . It sets
B and U as in H3/H4 and sends U to A.

Finally, after all the queries, the adversary outputs a bit b′. If b = b′, the reduction algorithm guesses 0
(i.e., ur is an LWE sample), otherwise it guesses 1 (i.e., ur is a uniformly random element).

26Since m > 2n log q + 12λ · log q and d = 6λ log q, thus dm/2e − d ≥ 0. Here we would like to point out that in our target
switching security game the adversary is allowed to choose the dimensions m,n; whereas as stated in our LWE assumption
framework, the lattice dimensions are not chosen by the adversary. Due to this definitional inconsistency, as a reduction
algorithm we always choose to attack the LWE problem for dimensions d(λ) = 6λ log q(λ). This could be avoided by adapting
the existing definitions.

46

Now note thatI if the LWE-sp challenger uses oracle O2(), then the reduction algorithm simulates H4,
else it simulates H3. Therefore, the advantage of B is at least pA,3 − pA,4.

Using the above lemmas, it follows that any PPT adversary has advantage at most negl(λ) in the single
target switching security game as in the last hybrid game (H4), the challenger’s response is independent of
bit b and thus any adversary advantage is exactly 0.

Theorem 7.5. Fix any function q : N → N, σ : N → R+ and distribution family {χ(λ)}λ. Assuming LTen

satisfies (q, σ, χ)-single target switching property, LTen also satisfies (q, σ, χ)-target switching property.

The proof of this theorem follows from a hybrid argument similar to that in proof of Theorem 7.3.

8 Constructing 1-bounded Mixed Functional Encryption

In this section we describe our construction of mixed FE for input-circling branching programs with poly-
nomial width and length. Concretely, Mκ = {0, 1}k and Fκ denotes the class of input-circling branching
programs with input space {0, 1}k, width w and length ` = k ·L, where κ = (k,w, L). In other words, every
branching program reads each input bit L times in a circular fashion. Before describing our construction,
we introduce some shorthand notation that we will use throughout this section.

8.1 Notation

Consider a set of 4`λ matrices
{

B
(j,β)
i,b

}
i∈[`],j∈[λ],β,b∈{0,1}

and w` matrices {Pi,v}i∈[`],v∈[w], where each indi-

vidual matrix lies in Zn×mq . For i ∈ [`], let Di be another matrix defined as below:

Di =



B
(1,0)
i,0

B
(1,0)
i,1

B
(1,1)
i,0
...

B
(λ,1)
i,1

Pi,1

...
Pi,w



The matrix Di consists of matrices B
(j,β)
i,b arranged as per adjoining well-defined

ordering. Concretely, let (i, j, β, b) be the indices of any B matrix. The ordering
we define is that

(i, j1, β1, b1) ≺ (i, j2, β2, b2) ⇐⇒


j1 < j2, or

j1 = j2 ∧ β1 < β2, or

j1 = j2 ∧ β1 = β2 ∧ b1 < b2.

Thus, as per our ordering (i, 1, 0, 0), (i, 1, 0, 1), (i, 1, 1, 0), (i, 1, 1, 1), . . . , (i, λ, 1, 1)
is an increasing sequence of indices. Similarly, we can define an ordering for
matrices Pi,v for v ∈ [w] (i.e., (i, v1) ≺ (i, v2) ⇐⇒ v1 < v2).

In words, the matrix Di is defined by row-wise appending matrices
{

B
(j,β)
i,b

}
j∈[λ],β,b∈{0,1}

and {Pi,v}v∈[w]

in an increasing order as per the ordering ‘≺’ defined above. We will use the following shorthand notation
for representing the above matrix more compactly.

Di =

{B
(j,β)
i,b

}
j∈[λ],β,b∈{0,1}

{Pi,v}v∈[w]


Similarly, for any (possibly empty) sets S1 ⊆ [λ]× {0, 1}2, S2 ⊆ [w], we will use the following shorthand

DS1,S2

i =

[{
B

(j,β)
i,b

}
(j,β,b)∈S1

{Pi,v}v∈S2

]

47

to represent the matrix generated by row-wise appending matrices
{

B
(j,β)
i,b

}
(j,β,b)∈S1

and {Pi,v}v∈S2
in an

increasing order as per the ordering ‘≺’.

8.2 Construction

In this section, we present our Mixed FE scheme. First, we provide the parameter constraints required by
our correctness and security proof. For functionality indices (k,w, L) (where k denotes the input length,
and w, ` (= k · L) is the width and length of branching programs), the setup algorithm chooses parameters
n,m, q, σ, and noise distributions χbig, χlast, χappr, χpre, χs, χlwe as follows.

Fix any ε < 1/2. Let χ1 be a B1-bounded discrete Gaussian distribution with parameter σ such that B1 =√
m·σ, and χ2 be a B2-bounded discrete Gaussian distribution with parameter

√
2·σ such that B2 =

√
2m·σ.

Also, for any B > 0, let UB denote the uniform distribution on Z ∩ [−B,B], i.e. integers between ±B. The
setup algorithm chooses parameters n,m, σ, q and sets noise distributions χbig, χlast, χappr, χpre, χs, χlwe with
the following constraints:

- n = poly(λ), χlwe = χ1, χs = χ2 and q ≤ 2n
ε

(for LWE security)

- m > 2(4λ+ w) · n · log q + 12λ · log q (for Enhanced Trapdoor Sampling)

- σ >
√

(4λ+ w) · n · log q · logm+ λ (for Enhanced Trapdoor Sampling)

- χpre = χ1, χappr = χ1 (for Enhanced Trapdoor Sampling)

- χbig = Uσbig
and χlast = Uσlast

where σbig = σ · 2λ, σlast = (m · σ)` · 2λ (for smudging/security)

- (m · (σbig + σpre))
` · (m · (σlast + σpre)) ≤ q/16 (for correctness)

-
√
n · σs · (m · (σpre + σappr))

` ≤ q/16 (for correctness)

First, note that it is not necessary to have distributions χlwe, χappr, χpre to be the same distribution. Keeping
all these to be different distributions will only affect the underlying assumptions to which we reduce security.
Also, one could also set χs to be χ1 if the LWE modulus is a prime power. One possible setting of parameters
is as follows: n = (2λ · `)1/ε, m = n1+2ε · w, q = 2n

ε

, and σ = n ·
√
w.

We will now describe our Mixed FE construction.

• Setup(1λ, (1k, 1w, 1L)) → (pp,msk). The setup algorithm takes as input the security parameter λ,
message length k, branching program width w and number of times it reads each bit L.27 It chooses an
LWE modulus q, dimensions n,m, and also distributions χbig, χs, χappr, χpre, χlast as described above.
Let ` = k · L and ñ = (4λ+ w)n. It runs the EnTrapGen algorithm ` times as follows:

∀ i ∈ [`], (Mi, Ti)← EnTrapGen(1ñ, 1m, q).

For each i ∈ [`], it interprets matrix Mi as 4λ+w matrices with dimensions n×m arranged as follows:

Mi =

{B
(j,β)
i,b

}
j∈[λ],β,b∈{0,1}

{Pi,v}v∈[w]


Also, it samples 4`λ matrices

{
C

(j,β)
i,b

}
i,j,β,b

uniformly at random as C
(j,β)
i,b ← Zn×mq for i ∈ [`], j ∈

[λ], β, b ∈ {0, 1}. Finally, it sets the public parameters and the master secret key as

pp = (λ, n,m, q, k, w, L, χpre), msk =

({
B

(j,β)
i,b ,C

(j,β)
i,b

}
i∈[`],j∈[λ],β,b∈{0,1}

, {Pi,v}i∈[`],v∈[w] , {Ti}i∈[`]

)
.

27Note that here we slightly deviate from our definition as here we have 3 separate functionality parameters instead of a
single index. This could simply be handled by extending the mixed FE definition to multiple indices.

48

• KeyGen(msk, x ∈ {0, 1}k)→ sk. The key generation algorithm takes as input the master secret key msk
and a message x ∈ {0, 1}k. Let

msk =

({
B

(j,β)
i,b ,C

(j,β)
i,b

}
i∈[`],j∈[λ],β,b∈{0,1}

, {Pi,v}i∈[`],v∈[w] , {Ti}i∈[`]

)
.

It chooses a secret vector s̃ of length n as s̃ ← χns and λ − 1 random vectors y(j) of length m as
y(j) ← Zmq for j ∈ [λ− 1]. Next, it sets vector y(λ) as

y(λ) = s̃ ·P1,1 −
∑

j∈[λ−1]

y(j).

The key generation algorithm then chooses 2`λ secret vectors
{

s
(j,β)
i

}
i,j,β

and 2(`+ 1)λ error vectors{
e

(j,β)
i

}
i,j,β

of length n and m (respectively) as

∀ i ∈ [`], j ∈ [λ], β ∈ {0, 1}, s
(j,β)
i ← Znq ,

∀ i ∈ [`], j ∈ [λ], β ∈ {0, 1}, e
(j,β)
i ← χmbig,

∀ j ∈ [λ], β ∈ {0, 1}, e
(j,β)
`+1 ← χmlast.

Let x̃ = xL, i.e. x̃ is a k · L-bit string obtained by appending string x to itself L times. Next, it

computes 2(`+ 1)λ key vectors
{

t
(j,β)
i

}
i,j,β

as follows.

∀ i ∈ [`+ 1], j ∈ [λ], β ∈ {0, 1}, t
(j,β)
i =


s

(j,β)
1 ·B(j,β)

1,x̃1
+ y(j) + e

(j,β)
1 if i = 1

−s
(j,β)
i−1 ·C

(j,β)
i−1,x̃i−1

+ s
(j,β)
i ·B(j,β)

i,x̃i
+ e

(j,β)
i if 1 < i ≤ `

−s
(j,β)
` ·C(j,β)

`,x̃`
+ e

(j,β)
`+1 if i = `+ 1

Finally, it outputs the secret key sk as

sk =

(
x,
{

t
(j,β)
i

}
i∈[`+1],j∈[λ],β∈{0,1}

)
.

• Enc(pp)→ ct. The encryption algorithm takes as input the public parameters pp = (λ, n,m, q, k, w, L, χpre).
It first chooses a λ-bit string tag← {0, 1}λ and 2` random short matrices {Ui,b}i,b as

∀ i ∈ [`], b ∈ {0, 1}, Ui,b ← χm×mpre .

Finally, it outputs the ciphertext ct as

ct =
(

tag, {Ui,b}i∈[`],b∈{0,1}

)
.

• SK-Enc(msk,BP)→ ct. The secret key encryption algorithm takes as input the master secret key msk
and an input-circling branching program BP. Let

msk =

({
B

(j,β)
i,b ,C

(j,β)
i,b

}
i∈[`],j∈[λ],β,b∈{0,1}

, {Pi,v}i∈[`],v∈[w] , {Ti}i∈[`]

)
,

BP =
(
{πi,b : [w]→ [w]}i∈[`],b∈{0,1} , acc ∈ [w], rej ∈ [w]

)
.

49

It first chooses a λ-bit string tag ← {0, 1}λ and samples 8`λ matrices

{
D

(j,β)
i,b , D̃

(j,β)

i,b

}
i,j,β,b

for i ∈

[`], j ∈ [λ], β, b ∈ {0, 1} as follows:

∀ i ∈ [`], j ∈ [λ], β, b ∈ {0, 1},
D

(j,β)
i,b =

{
C

(j,β)
i,b if β = tagj and b = 0(
← Zn×mq

)
otherwise.

D̃
(j,β)

i,b =

{
C

(j,β)
i,b if β = tagj and b = 1(
← Zn×mq

)
otherwise.

In the above cases, we use ‘
(
← Zn×mq

)
’ to denote the operation of uniformly sampling a dimension

n × m matrix in Zq. Note that here the sampling is performed uniformly and independently each
time. Next, the algorithm samples w matrices {P`+1,v}v∈[w] for the top level, and 2w` error matrices{

Ei,v, Ẽi,v

}
i∈[`],v∈[w]

as follows:

∀ v ∈ [w], P`+1,v =

{
0n×m if v = rej(
← Zn×mq

)
otherwise.

∀ i ∈ [`], v ∈ [w], Ei,v ← χn×mappr , Ẽi,v ← χn×mappr .

The algorithm then sets 2w` matrices
{

Qi,v, Q̃i,v

}
i∈[`],v∈[w]

as follows:

∀ i ∈ [`], v ∈ [w],
Qi,v = Pi+1,πi,0(v) + Ei,v,

Q̃i,v = Pi+1,πi,1(v) + Ẽi,v.

Next, for i ∈ [`], we use matrices Mi,Wi,W̃i to represent the following (4λ + w)n × m dimension
matrices:

Mi =

{B
(j,β)
i,b

}
j∈[λ],β,b∈{0,1}

{Pi,v}v∈[w]

 , Wi =

{D
(j,β)
i,b

}
j∈[λ],β,b∈{0,1}{

Qi,v

}
v∈[w]

 , W̃i =


{

D̃
(j,β)

i,b

}
j∈[λ],β,b∈{0,1}{

Q̃i,v

}
v∈[w]

 .
Now, the secret key encryption algorithm runs the EnSamplePre to compute 2` short matrices {Ui,b}i,b
as

∀ i ∈ [`],
Ui,0 ← EnSamplePre(Mi, Ti, σpre,Wi),

Ui,1 ← EnSamplePre(Mi, Ti, σpre,W̃i).

Finally, it outputs the ciphertext ct as

ct =
(

tag, {Ui,b}i∈[`],b∈{0,1}

)
.

• Dec(sk, ct)→ {0, 1}. The decryption algorithm takes as input a secret key sk and a ciphertext ct. Let

sk =

(
x,
{

t
(j,β)
i

}
i∈[`+1],j∈[λ],β∈{0,1}

)
, ct =

(
tag, {Ui,b}i∈[`],b∈{0,1}

)
.

We will assume the algorithm knows the LWE modulus q (i.e., for instance the public parameters could
be included in the secret keys). Let x̃ = xL, i.e. x̃ is a k · L-bit string obtained by appending string x
to itself L times. The decryption algorithm computes the following

z =

λ∑
j=1

`+1∑
i=1

(
t
(j,tagj)

i ·
∏̀
α=i

Uα,x̃α

)
.

Finally, if ‖z‖ ≤ q/8, it outputs 0, otherwise it outputs 1.

50

Theorem 8.1. Assuming the trapdoor sampling scheme LTen satisfies the (q, σpre)-well sampledness of preim-
age, (q, σpre)-row removal property and the (q, χlwe, σpre)-target switching property, assuming the LWEn,q,χlwe

,
LWE-ssn,q,χlwe

and LWE-spλ log q,σpre,χappr
assumptions hold (where n,m, q, σpre, χlwe, χappr are defined as in the

construction), for any PPT adversary A that outputs (1k, 1w, 1L) such that the parameter constraints as
provided in the construction are satisfied, then there exist negligible functions negl1(·),negl2(·) such that
for every λ ∈ N, A’s advantage in the 1-bounded restricted function indistinguishability security (see Defi-
nition 5.2) and 1-bounded restricted accept indistinguishability (see Definition 5.4) is at most negl1(λ) and
negl2(λ), respectively.

Remark 8.1 (Extending to r-bounded security). We would like to point out that the above construction
can be naturally extended to achieve r-bounded security for any a-priori fixed polynomial r. To understand
the modification, we will look ahead to the security proof. Specifically, we will focus on the importance of
the λ-bit string tag chosen during encryption. During the proof, we crucially rely on the tag strings tag
and tag∗ (first one chosen for answering the encryption query and second one used to answer the challenge
query) being distinct at at least one index. Since they are chosen uniformly at random each time, thus we
know that tag 6= tag∗ with probability 1 − 1

2λ
. Now if the challenger has to answer r encryption queries

instead of just 1, then the modification we consider is to increase the alphabet size of tags such that the
tag strings chosen during all encryption queries and the challenge query are distinct at at least one index.
(Note that this would also mean that we will have to likewise increase the number of underlying matrices
chosen and extend the trapdoor sampling procedure appropriately.) More formally, we will now sample tag

strings as a uniformly random 2r2-ary string of length-λ (i.e., tag←
{

1, . . . , 2r2
}λ

). With this modification
we can argue that, with all but negligible probability over the choice of tag strings tag1, . . . , tagr and tag∗,
there exists an index i ≤ λ such that the ith elements in all these tag strings are (pairwise-)distinct. With
this guarantee, the current proof could be extended to argue r-bounded security.

8.3 Correctness

We will prove that the mixed FE scheme described above satisfies the correctness property. Our correctness
proof is divided into two parts. First, we show that if ct is a mixed FE encryption of branching program BP,
then given any secret key skx, the decryption algorithm outputs BP(x) with all-but-negligible probability.
Second, we show that if ct is a normal FE ciphertext, then given any secret key skx, the decryption algorithm
outputs 1 with all-but-negligible probability.

Lemma 8.1. For every λ, k, w, L ∈ N, for every length k · L and width w input-circling branching program
BP with input space {0, 1}k, input x ∈ {0, 1}k, the following holds

Pr

[
Dec(skx, ct) = BP(x) :

(pp,msk)← Setup(1λ, (1k, 1w, 1L));
skx ← KeyGen(msk, x); ct← SK-Enc(msk,BP)

]
≥ 1− negl2(λ)

where negl2(·) is a negligible function.

Proof. Recall that the setup algorithm chooses matrices B
(j,β)
i,b ,C

(j,β)
i,b ,Pi,v for i ∈ [`], j ∈ [λ], β, b ∈ {0, 1}, v ∈

[w]. Here all matrices B
(j,β)
i,b ,Pi,v for any particular value i (i.e., any fixed level) are sampled along with

trapdoor information. Now for any input x ∈ {0, 1}k, the key generation algorithm chooses vectors y(j), s̃

such that s̃ is short and
∑
j y(j) = s̃ · P1,1. It also samples secret vectors s

(j,β)
i and error vectors e

(j,β)
i ,

and computes the secret key components t
(j,β)
i in the special way as described in the construction. Now the

mixed encryption algorithm samples a λ-bit tag string tag, and it uses the trapdoor information to target

B
(j,β)
i,b matrices to their corresponding C

(j,β)
i,b matrices only along the strands selected by the tag string tag.

Additionally, it also targets the program matrices Pi,v at each level to their counterparts in the next level
as per the branching program state transition function. For proving correctness we simply show that the
final program matrix reached after decryption is either short or random depending upon outcome of the

51

evaluation, and the B
(j,β)
i,b ,C

(j,β)
i,b matrices get cancelled at each step, and the error terms are appropriately

bounded.
We start by introducing some notations useful for the correctness proof.

• sti: the state of BP after i steps when evaluated on input x,

• t̃
(j,β)

i
def
=


s

(j,β)
1 ·B(j,β)

1,x̃1
+ y(j) if i = 1

−s
(j,β)
i−1 ·C

(j,β)
i−1,x̃i−1

+ s
(j,β)
i ·B(j,β)

i,x̃i
if 1 < i ≤ `

−s
(j,β)
` ·C(j,β)

`,x̃`
if i = `+ 1

: the error-free secret key components, i.e.

secret key vectors without adding error vectors e
(j,β)
i .

• ∆
(j)
i

def
=
∑i
γ=1 t

(j,tagj)
γ ·

∏i−1
α=γ Uα,x̃α : the partial sum computed during decryption after using first i

components of the secret key along only the (j, tagj)
th strand,

• ∆̃
(j)

i
def
=

{
s

(j,tagj)

i ·B(j,tagj)

i,x̃i
+ y(j) ·

∏i−1
α=1 Uα,x̃α if i ≤ `

y(j) ·
∏`
α=1 Uα,x̃α if i = `+ 1

: the expected sum during decryption in

absence of errors after using first i components of the secret key along the (j, tagj)
th strand,

• ∆i
def
=
∑λ
j=1 ∆

(j)
i , and ∆̃i =

∑λ
j=1 ∆̃

(j)

i ,

• err
(j)
i

def
= ∆

(j)
i − ∆̃

(j)

i , and erri
def
= ∆i − ∆̃i,

• Γi
def
= P1,1 ·

∏i
α=1 Uα,x̃α : the matrix denoting partial branching program evaluation after i decryption

steps, i.e. equal to ∆i term ignoring the
∑λ
j=1 s

(j,tagj)

i ·B(j,tagj)

i,x̃i
blinding component, and short secret

s̃ multiplied.

Observe that the decryption algorithm computes ∆`+1 and tests whether it is close to zero or not. We start

by proving that for all i, j, the error term err
(j)
i is small and bounded. This would help us in arguing that

for every i, erri is also small, thereby giving us that matrices ∆`+1 and ∆̃`+1 are very close to each other

as well. Combining this with the fact that ∆̃`+1 is either a random matrix or a short matrix depending
upon the output BP(x), we get that the sum ∆`+1 computed by decryption algorithm is close to zero if
BP(x) = 0, otherwise it is random vector with large entries.

Claim 8.1. There exists a negligible function negl(·) such that

∀ i ∈ [`], j ∈ [λ],
∥∥∥err

(j)
i

∥∥∥ ≤ (m · (σbig + σpre))
i

∀ j ∈ [λ],
∥∥∥err

(j)
`+1

∥∥∥ ≤ (m · (σbig + σpre))
` · (m · (σlast + σpre))

with probability 1− negl(λ).

Proof. We prove the above claim by inducting on the levels i. Our proof is insensitive to the choice of strand
index j, thus for the purposes of this proof, it could be fixed to an arbitrary value.

Base case (i = 1). Note that ∆
(j)
1 = t

(j,tagj)

1 = s
(j,tagj)

1 ·B(j,tagj)

1,x̃1
+ y(j) + e

(j,tagj)

1 , where e
(j,tagj)

1 is a short

error vector drawn from χmbig. Also, we have that ∆̃
(j)

1 = s
(j,tagj)

1 ·B(j,tagj)

1,x̃1
+ y(j) by definition. Thus, we get

that ∥∥∥err
(j)
1

∥∥∥ =

∥∥∥∥∆(j)
1 − ∆̃

(j)

1

∥∥∥∥ =
∥∥∥e(j,tagj)

1

∥∥∥ ≤ √m · σbig

with all-but-negligible probability. This completes the proof of base case. For the induction step, we assume
that the above lemma holds for i∗, and show that it holds for i∗ + 1 as well.

52

Induction Step. We know that ∆
(j)
i∗+1 = ∆

(j)
i∗ ·Ui∗,x̃i∗ + t

(j,tagj)

i∗ . Since ∆
(j)
i∗ = ∆̃

(j)

i∗ + err
(j)
i∗ , we get that

∆
(j)
i∗+1 = (∆̃

(j)

i∗ + err
(j)
i∗) ·Ui∗,x̃i∗ + t

(j,tagj)

i∗+1

= ∆̃
(j)

i∗ ·Ui∗,x̃i∗ + t
(j,tagj)

i∗+1 + err
(j)
i∗ ·Ui∗,x̃i∗

Now, from our construction we have that

s
(j,tagj)

i∗ ·B(j,tagj)

i∗,x̃i∗
·Ui∗,x̃i∗ = s

(j,tagj)

i∗ ·C(j,tagj)

i∗,x̃i∗

⇒ s
(j,tagj)

i∗ ·B(j,tagj)

i∗,x̃i∗
·Ui∗,x̃i∗ + t̃

(j,tagj)

i∗+1 = s
(j,tagj)

i∗+1 ·B(j,tagj)

i∗+1,x̃i∗+1

⇒ ∆̃
(j)

i∗ ·Ui∗,x̃i∗ + t̃
(j,tagj)

i∗+1 = ∆̃
(j)

i∗+1

Combining the fact that t
(j,tagj)

i∗+1 = t̃
(j,tagj)

i∗+1 +e
(j,tagj)

i∗+1 with above equations we get that, with all-but-negligible
probability, the following holds

err
(j)
i∗+1 = ∆

(j)
i∗+1 − ∆̃

(j)

i∗+1 = e
(j,tagj)

i∗+1 + err
(j)
i∗ ·Ui∗,x̃i∗

⇒
∥∥∥err

(j)
i∗+1

∥∥∥ ≤ ∥∥∥e(j,tagj)

i∗+1

∥∥∥+
∥∥∥err

(j)
i∗

∥∥∥ · ‖Ui∗,x̃i∗ ‖

≤
√
m · σ∗ + (m · (σbig + σpre))

i∗ · (m · σpre)

≤ (m · (σbig + σpre))
i∗ · (m · (σ∗ + σpre)) ,

where σ∗ = σbig if i∗ < `, otherwise σ∗ = σlast. This completes the proof of above claim.

From the above claim, we get that for every j ∈ [λ],
∥∥∥err

(j)
`+1

∥∥∥ ≤ (m · (σbig +σpre))
` · (m · (σlast +σpre)). Thus,

by triangle inequality we can claim that (with all-but-negligible probability)

‖err`+1‖ ≤ λ · (m · (σbig + σpre))
` · (m · (σlast + σpre)) ≤ q/16.

Next, we show that Γi is close to Pi+1,sti . In other words, the partial branching program evaluation is
correct.

Claim 8.2. For all i ∈ {0, . . . , `} , ‖Γi −Pi+1,sti‖ ≤ (m · (σpre + σappr))
i

with probability 1−negl(λ), where
negl(·) is a negligible function.

Proof. We prove the above claim by inducting on the levels i.

Base case (i = 0). Note that Γ0 is simply equal to P1,1 as starting state st0 = 1. Thus, we get that

‖Γ0 −P1,st0‖ = 0.

This completes the proof of base case. For the induction step, we assume that the above lemma holds for
i∗ − 1, and show that it holds for i∗ as well.

Induction Step. We know that Γi∗ = Γi∗−1 ·Ui∗,x̃i∗ . Recall that, as per our construction, Ui∗,x̃i∗ targets
Pi∗,sti∗−1

to Pi∗+1,sti∗ + Err1, where Err1 is a n ×m matrix sampled uniformly from χn×mappr . Concretely,
this gives that

Pi∗,sti∗−1
·Ui∗,x̃i∗ = Pi∗+1,sti∗ + Err1, where ‖Err1‖ ≤ m · σappr.

53

By our inductive hypothesis, we have that Γi∗−1 = Pi∗,sti∗−1
+Err2, where ‖Err2‖ ≤ (m · (σpre + σappr))

i∗−1
.

Thus, we can rewrite matrix Γi∗ as follows

Γi∗ =
(
Pi∗,sti∗−1

+ Err2

)
·Ui∗,x̃i∗

= Pi∗+1,sti∗ + (Err1 + Err2 ·Ui∗,x̃i∗) .

Now we have that

‖Err1 + Err2 ·Ui∗,x̃i∗‖ ≤ m · σappr + (m · (σpre + σappr))
i∗−1 ·m · σpre ≤ (m · (σpre + σappr))

i∗
.

Thus, the claim follows.

From the above claim, we get that (with all-but-negligible probability) ‖Γ` −P`+1,st`‖ ≤ (m · (σpre + σappr))
`
.

Next, we show that ∆̃`+1 has low norm if the output of branching program is 0, otherwise it is not upper-
bounded with all-but-negligible probability.

Claim 8.3. There exists a negligible function negl(·) such that
∥∥∥∆̃`+1

∥∥∥ =

{
≤ q/16 if BP(x) = 0

≥ q/4 if BP(x) = 1
with

probability 1− negl(λ).

Proof. We know that ∆̃`+1 could be written as follows

∆̃`+1 =

 λ∑
j=1

y(j)

 · ∏̀
α=1

Uα,x̃α .

Since
(∑λ

j=1 y(j)
)

= s̃ · P1,1, this gives that ∆̃`+1 = s̃ · P1,1 ·
∏`
α=1 Uα,x̃α = s̃ · Γ`. Using Claim 8.2, we

get that Γ` = P`+1,st` + Err, where ‖Err‖ ≤ (m · (σpre + σappr))
`
. Also, we know that P`+1,rej = 0n×m, and

P`+1,acc is a uniformly random n×m matrix. Thus, we get that with all-but-negligible probability

BP(x) = 0⇒
∥∥∥∆̃`+1

∥∥∥ = ‖s̃ ·Err‖ ≤ ‖s̃‖ · (m · (σpre + σappr))
` ≤
√
n · σs · (m · (σpre + σappr))

` ≤ q/16.

BP(x) = 1⇒
∥∥∥∆̃`+1

∥∥∥ = ‖s̃ ·P`+1,acc + s̃ ·Err‖ ≥ ‖s̃ ·P`+1,acc‖ − q/16 ≥ q/4,

where the last inequality follows from the fact that s̃ ·P`+1,acc is uniformly random vector. This completes
the proof of above claim.

By triangle inequality, we know that∥∥∥∆̃`+1

∥∥∥− ‖err`+1‖ ≤ ‖∆`+1‖ ≤
∥∥∥∆̃`+1

∥∥∥+ ‖err`+1‖ .

Combining this with above claims, we can conclude that with all-but-negligible probability

BP(x) = 0⇒ ‖∆`+1‖ ≤ q/16 + q/16 ≤ q/8.

BP(x) = 1⇒
∥∥∥∆̃`+1

∥∥∥ ≥ q/4− q/16 > q/8.

Thus, for any input x and branching program BP, the mixed encryption algorithm is correct with all-but-
negligible probability. This concludes the proof of Lemma 8.1.

54

Lemma 8.2. For every λ, k, w, L ∈ N, for every length k · L and width w input-circling branching program
BP with input space {0, 1}k, input x ∈ {0, 1}k, the following holds

Pr

[
Dec(skx, ct) = 1 :

(pp,msk)← Setup(1λ, (1k, 1w, 1L));
skx ← KeyGen(msk, x); ct← Enc(pp)

]
≥ 1− negl1(λ)

where negl1(·) is a negligible function.

Proof. Recall that the output of a normal encryption algorithm is simply independently drawn 2` short
gaussian matrices {Ui,b}. Now the decryption algorithm performs the following computation

z =

λ∑
j=1

`+1∑
i=1

(
t
(j,tagj)

i ·
∏̀
α=i

Uα,x̃α

)
.

Here we could rewrite z as

z =

λ∑
j=1

(
`−1∑
i=1

(
t
(j,tagj)

i ·
∏̀
α=i

Uα,x̃α

)
+ t

(j,tagj)

` ·U`,x̃` + t
(j,tagj)

`+1

)
.

From our construction we know that for any j,

t
(j,tagj)

` ·U`,x̃` + t
(j,tagj)

`+1 = − s
(j,tagj)

`−1 ·C(j,tagj)

`−1,x̃`−1
·U`,x̃` + e

(j,tagj)

` ·U`,x̃` + e
(j,tagj)

`+1

+ s
(j,tagj)

` ·
(
B

(j,tagj)

`,x̃`
·U`,x̃` −C

(j,tagj)

`,x̃`

)
.

Now note that since U`,x̃` is sampled independently from χm×mpre and C
(j,tagj)

`,x̃`
is uniform n×m matrix, thus

the matrix B
(j,tagj)

`,x̃`
· U`,x̃` − C

(j,tagj)

`,x̃`
is also a uniformly random matrix. Also, secret vector s

(j,tagj)

` is a

length n random vector, thus the component s
(j,tagj)

` ·
(
B

(j,tagj)

`,x̃`
·U`,x̃` −C

(j,tagj)

`,x̃`

)
is a random vector as

well. Now since this is independent of all other components as s
(j,tagj)

` and C
(j,tagj)

`,x̃`
both do not appear in

any other term in sum vector z, thus the distribution of z is that of a uniformly random vector over the
choice of coins used during setup, key generation, and encryption. Since we know that `2-norm of a random
vector in Zmq is at least q/8 with all-but-negligible probability, therefore the claim follows.

8.4 Security Proof

We now prove that the mixed FE scheme described in Section 8.2 satisfies 1-bounded restricted function
indistinguishability as well as 1-bounded restricted accept indistinguishability security properties. Our proof
is divided in two components where we first prove function indistinguishability, and later prove accept
indistinguishability. Both proofs proceed via a sequence of hybrid games.

8.4.1 1-Bounded Restricted Function Indistinguishability

Below we provide a sequence of hybrid games that we later use to argue function indistinguishability security.

Game 0 : This corresponds to the original 1-bounded restricted function indistinguishability security game.

• Setup Phase. The adversary sends the functionality index (k,w, L) and descriptions of two branching

programs (BP(0),BP(1)) to the challenger. Then the challenger proceeds as follows—

1. It chooses an LWE modulus q, dimensions n,m, and also distributions χbig, χs, χappr, χpre, χlast, χlwe

as described in the construction. Recall ` = k · L and ñ = (4λ+ w)n.

55

2. Next, it samples
{

B
(j,β)
i,b

}
i,j,β,b

, {Pi,v}i,v matrices as

∀ i ∈ [`],

{B
(j,β)
i,b

}
(j,β,b)∈[λ]×{0,1}2

{Pi,v}v∈[w]

 , Ti
← EnTrapGen(1ñ, 1m, q).

3. It then samples matrices C
(j,β)
i,b ← Zn×mq for i ∈ [`], j ∈ [λ], β, b ∈ {0, 1}.

4. Finally, it sends the public parameters pp = (λ, n,m, q, k, w, L, χpre) to the adversary.

• Challenge Phase. The challenger chooses a random bit γ ← {0, 1}, and a λ-bit string tag∗ ← {0, 1}λ.
Let

BP(γ) =

({
π

(γ)
i,b : [w]→ [w]

}
i∈[`],b∈{0,1}

, acc(γ) ∈ [w], rej(γ) ∈ [w]

)
,

S∗ = [`]× [λ]× {0, 1}2.

The challenger then runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`],
({

U∗α,0,U
∗
α,1

})
← Mixed-SubEnc

 tag∗, α, S∗,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S∗

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP(γ)

 .

Finally, it sends the challenge ciphertext as
(

tag∗,
{
U∗i,b

}
i∈[`],b∈{0,1}

)
.

• Post-Challenge Phase. The adversary is allowed make at most 1 secret key encryption query,
followed by polynomially many secret key queries. The challenger responds to each query as below.

1. Ciphertext Query. The adversary sends a branching program BP for encryption. The challenger
chooses a λ-bit string tag← {0, 1}λ, and responds as follows.

(a) Let S = [`]× [λ]× {0, 1}2. It runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`], ({Uα,0,Uα,1})← Mixed-SubEnc

 tag, α, S,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP

 .

(b) Finally, it sends the ciphertext as
(

tag, {Ui,b}i∈[`],b∈{0,1}

)
.

2. Secret Key Queries. The adversary queries the challenger on polynomially many messages for
corresponding secret keys. For each queried string x, the challenger responds as follows.

(a) It chooses a secret vector as s̃← χns and λ− 1 random vectors as y(j) ← Zmq for j ∈ [λ− 1].

Next, it sets vector y(λ) as

y(λ) = s̃ ·P1,1 −
∑

j∈[λ−1]

y(j).

(b) It then chooses secret vectors
{

s
(j,β)
i

}
i,j,β

and error vectors
{

e
(j,β)
i

}
i,j,β

as

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, s
(j,β)
i ← Znq ,

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, e
(j,β)
i ← χmbig,

∀ (j, β) ∈ [λ]× {0, 1}, e
(j,β)
`+1 ← χmlast.

56

(c) Let x̃ = xL. Next, it computes key vectors
{

t
(j,β)
i

}
i,j,β

as follows.

∀ (i, j, β) ∈ [`+ 1]× [λ]× {0, 1},

t
(j,β)
i =


s

(j,β)
1 ·B(j,β)

1,x̃1
+ y(j) + e

(j,β)
1 if i = 1

−s
(j,β)
i−1 ·C

(j,β)
i−1,x̃i−1

+ s
(j,β)
i ·B(j,β)

i,x̃i
+ e

(j,β)
i if 1 < i ≤ `

−s
(j,β)
` ·C(j,β)

`,x̃`
+ e

(j,β)
`+1 if i = `+ 1

(d) Finally, it sends the secret key as

(
x,
{

t
(j,β)
i

}
(i,j,β)∈[`+1]×[λ]×{0,1}

)
.

• Guess. The adversary finally sends the guess γ′, and wins if γ′ = γ.

Game 1 : This is identical to the previous game, except the challenger now chooses both tags tag∗ and tag
at the beginning during setup phase, and it aborts if tag∗ = tag.

• Setup Phase. The adversary sends the functionality index (k,w, L) and descriptions of two branching

programs (BP(0),BP(1)) to the challenger. Then the challenger proceeds as follows—

1. It chooses an LWE modulus q, dimensions n,m, and also distributions χbig, χs, χappr, χpre, χlast, χlwe

as described in the construction. Recall ` = k · L and ñ = (4λ + w)n. It also chooses two λ-bit
strings tag∗, tag ← {0, 1}λ. If tag∗ = tag, then it aborts and the adversary wins. Otherwise, the
challenger continues as below.

2. Next, it samples
{

B
(j,β)
i,b

}
i,j,β,b

, {Pi,v}i,v matrices as

∀ i ∈ [`],

{B
(j,β)
i,b

}
(j,β,b)∈[λ]×{0,1}2

{Pi,v}v∈[w]

 , Ti
← EnTrapGen(1ñ, 1m, q).

3. It then samples matrices C
(j,β)
i,b ← Zn×mq for i ∈ [`], j ∈ [λ], β, b ∈ {0, 1}.

4. Finally, it sends the public parameters pp = (λ, n,m, q, k, w, L, χpre) to the adversary.

• Challenge Phase. The challenger chooses a random bit γ ← {0, 1}. Let

BP(γ) =

({
π

(γ)
i,b : [w]→ [w]

}
i∈[`],b∈{0,1}

, acc(γ) ∈ [w], rej(γ) ∈ [w]

)
,

S∗ = [`]× [λ]× {0, 1}2.

The challenger then runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`],
({

U∗α,0,U
∗
α,1

})
← Mixed-SubEnc

 tag∗, α, S∗,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S∗

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP(γ)

 .

Finally, it sends the challenge ciphertext as
(

tag∗,
{
U∗i,b

}
i∈[`],b∈{0,1}

)
.

• Post-Challenge Phase. The adversary is allowed make at most 1 secret key encryption query,
followed by polynomially many secret key queries. The challenger responds to each query as below.

1. Ciphertext Query. The adversary sends a branching program BP for encryption. The challenger
responds as follows.

57

Mixed-SubEnc

Inputs:

- Tag tag, Level α, Set S ⊆ [`] × [λ] × {0, 1}2, Matrices
{
B

(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S

, {Pi,v}(i,v)∈[`]×[w],

Trapdoors {Ti}i∈[`],

- Branching program BP =
(
{πi,b : [w]→ [w]}(i,b)∈[`]×{0,1} , acc ∈ [w], rej ∈ [w]

)
.

Output: Matrices {U0,U1}.
Execution: Let Sα denote the following set:

Sα =
{

(j, β, b) ∈ [λ]× {0, 1}2 such that (α, j, β, b) ∈ S
}
.

Sample matrices
{
D

(j,β)
b , D̃

(j,β)

b

}
(j,β,b)∈Sα

as:

∀ (j, β, b) ∈ Sα,
D

(j,β)
b =

{
C

(j,β)
α,b if β = tagj and b = 0(
← Zn×mq

)
otherwise.

D̃
(j,β)

b =

{
C

(j,β)
α,b if β = tagj and b = 1(
← Zn×mq

)
otherwise.

Sample 2w error matrices as Ev ← χn×mappr , Ẽv ← χn×mappr for v ∈ [w]. Also, if α = `, sample w matrices
{P`+1,v}v∈[w] for the top level as:

∀ v ∈ [w], P`+1,v =

{
0n×m if v = rej(
← Zn×mq

)
otherwise.

Next, set 2w matrices
{
Qv, Q̃v

}
v∈[w]

as:

∀ v ∈ [w],
Qv = Pα+1,πα,0(v) + Ev,

Q̃v = Pα+1,πα,1(v) + Ẽv.

Let matrices M,W,W̃ represent the following (|Sα|+ w)n×m dimension matrices:

M =

{B(j,β)
i,b

}
(j,β,b)∈Sα

{Pi,v}v∈[w]

 , W =

{D(j,β)
b

}
(j,β,b)∈Sα{

Qi,v

}
v∈[w]

 , W̃ =


{
D̃

(j,β)

b

}
(j,β,b)∈Sα{

Q̃i,v

}
v∈[w]

 .
Run the EnSamplePre to compute matrices {U0,U1} as

U0 ← EnSamplePre(M, Tα, σpre,W),

U1 ← EnSamplePre(M, Tα, σpre,W̃).

Figure 6: Routine Mixed-SubEnc

(a) Let S = [`]× [λ]× {0, 1}2. It runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`], ({Uα,0,Uα,1})← Mixed-SubEnc

 tag, α, S,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP

 .

(b) Finally, it sends the ciphertext as
(

tag, {Ui,b}i∈[`],b∈{0,1}

)
.

2. Secret Key Queries. The adversary queries the challenger on polynomially many messages for
corresponding secret keys. For each queried string x, the challenger responds as follows.

58

(a) It chooses a secret vector as s̃← χns and λ− 1 random vectors as y(j) ← Zmq for j ∈ [λ− 1].

Next, it sets vector y(λ) as

y(λ) = s̃ ·P1,1 −
∑

j∈[λ−1]

y(j).

(b) It then chooses secret vectors
{

s
(j,β)
i

}
i,j,β

and error vectors
{

e
(j,β)
i

}
i,j,β

as

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, s
(j,β)
i ← Znq ,

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, e
(j,β)
i ← χmbig,

∀ (j, β) ∈ [λ]× {0, 1}, e
(j,β)
`+1 ← χmlast.

(c) Let x̃ = xL. Next, it computes key vectors
{

t
(j,β)
i

}
i,j,β

as follows.

∀ (i, j, β) ∈ [`+ 1]× [λ]× {0, 1},

t
(j,β)
i =


s

(j,β)
1 ·B(j,β)

1,x̃1
+ y(j) + e

(j,β)
1 if i = 1

−s
(j,β)
i−1 ·C

(j,β)
i−1,x̃i−1

+ s
(j,β)
i ·B(j,β)

i,x̃i
+ e

(j,β)
i if 1 < i ≤ `

−s
(j,β)
` ·C(j,β)

`,x̃`
+ e

(j,β)
`+1 if i = `+ 1

(d) Finally, it sends the secret key as

(
x,
{

t
(j,β)
i

}
(i,j,β)∈[`+1]×[λ]×{0,1}

)
.

• Guess. The adversary finally sends the guess γ′, and wins if γ′ = γ.

Notation. In all the following hybrid games, let j∗ denote the smallest index in {1, . . . , λ} such that
tag∗j∗ 6= tagj∗ , i.e. j∗ = min

{
j ∈ [λ] : tag∗j 6= tagj

}
. Since the challenger aborts whenever tag∗ = tag, thus

j∗ always exists whenever the challenger does not abort. Additionally, let β∗ = tag∗j∗ .

Game 2 : This is identical to the previous game, except the challenger while answering a secret key query
now puts the s̃ ·P1,1 component in y(j∗) instead of y(λ), and rest are sampled uniformly at random.

• Setup Phase. The adversary sends the functionality index (k,w, L) and descriptions of two branching

programs (BP(0),BP(1)) to the challenger. Then the challenger proceeds as follows—

1. It chooses an LWE modulus q, dimensions n,m, and also distributions χbig, χs, χappr, χpre, χlast, χlwe

as described in the construction. Recall ` = k · L and ñ = (4λ + w)n. It also chooses two λ-bit
strings tag∗, tag ← {0, 1}λ. If tag∗ = tag, then it aborts and the adversary wins. Otherwise, the
challenger continues as below.

2. Next, it samples
{

B
(j,β)
i,b

}
i,j,β,b

, {Pi,v}i,v matrices as

∀ i ∈ [`],

{B
(j,β)
i,b

}
(j,β,b)∈[λ]×{0,1}2

{Pi,v}v∈[w]

 , Ti
← EnTrapGen(1ñ, 1m, q).

3. It then samples matrices C
(j,β)
i,b ← Zn×mq for i ∈ [`], j ∈ [λ], β, b ∈ {0, 1}.

4. Finally, it sends the public parameters pp = (λ, n,m, q, k, w, L, χpre) to the adversary.

59

• Challenge Phase. The challenger chooses a random bit γ ← {0, 1}. Let

BP(γ) =

({
π

(γ)
i,b : [w]→ [w]

}
i∈[`],b∈{0,1}

, acc(γ) ∈ [w], rej(γ) ∈ [w]

)
,

S∗ = [`]× [λ]× {0, 1}2.

The challenger then runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`],
({

U∗α,0,U
∗
α,1

})
← Mixed-SubEnc

 tag∗, α, S∗,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S∗

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP(γ)

 .

Finally, it sends the challenge ciphertext as
(

tag∗,
{
U∗i,b

}
i∈[`],b∈{0,1}

)
.

• Post-Challenge Phase. The adversary is allowed make at most 1 secret key encryption query,
followed by polynomially many secret key queries. The challenger responds to each query as below.

1. Ciphertext Query. The adversary sends a branching program BP for encryption. The challenger
responds as follows.

(a) Let S = [`]× [λ]× {0, 1}2. It runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`], ({Uα,0,Uα,1})← Mixed-SubEnc

 tag, α, S,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP

 .

(b) Finally, it sends the ciphertext as
(

tag, {Ui,b}i∈[`],b∈{0,1}

)
.

2. Secret Key Queries. The adversary queries the challenger on polynomially many messages for
corresponding secret keys. For each queried string x, the challenger responds as follows.

(a) It chooses a secret vector as s̃← χns and λ−1 random vectors as y(j) ← Zmq for j ∈ [λ]\{j∗}.
Next, it sets vector y(j∗) as

y(j∗) = s̃ ·P1,1 −
∑

j∈[λ]\{j∗}

y(j).

(b) It then chooses secret vectors
{

s
(j,β)
i

}
i,j,β

and error vectors
{

e
(j,β)
i

}
i,j,β

as

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, s
(j,β)
i ← Znq ,

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, e
(j,β)
i ← χmbig,

∀ (j, β) ∈ [λ]× {0, 1}, e
(j,β)
`+1 ← χmlast.

(c) Let x̃ = xL. Next, it computes key vectors
{

t
(j,β)
i

}
i,j,β

as follows.

∀ (i, j, β) ∈ [`+ 1]× [λ]× {0, 1},

t
(j,β)
i =


s

(j,β)
1 ·B(j,β)

1,x̃1
+ y(j) + e

(j,β)
1 if i = 1

−s
(j,β)
i−1 ·C

(j,β)
i−1,x̃i−1

+ s
(j,β)
i ·B(j,β)

i,x̃i
+ e

(j,β)
i if 1 < i ≤ `

−s
(j,β)
` ·C(j,β)

`,x̃`
+ e

(j,β)
`+1 if i = `+ 1

(d) Finally, it sends the secret key as

(
x,
{

t
(j,β)
i

}
(i,j,β)∈[`+1]×[λ]×{0,1}

)
.

• Guess. The adversary finally sends the guess γ′, and wins if γ′ = γ.

Next, we have a sequence of 4` hybrid experiments Game 3.i∗. {1, 2, 3, 4} for i∗ = 1 to `.

60

Game 3.i∗.1 : In hybrids Game 3.i∗.1, the B
(j,β)
i,b ,C

(j,β)
i,b matrices for jth strands and levels i < i∗ are not

sampled (at all) along with other level i matrices (i.e., (j∗, β∗) and (j∗, 1 − β∗) strands). And, ciphertext
components for levels i < i∗ are used to only target remaining matrices, i.e. the ciphertext matrices do not

target B
(j,β)
i,b matrices for j = j∗ and i < i∗ to some pre-specified C

(j,β)
i,b or random matrices. Also, the first

i∗ − 1 components in each secret key are set to be uniformly random vectors, and the next component is
hardwired such that correctness holds as well as some smudge-able noise is introduced in these components.
Below we describe it in detail.

• Setup Phase. The adversary sends the functionality index (k,w, L) and descriptions of two branching

programs (BP(0),BP(1)) to the challenger. Then the challenger proceeds as follows—

1. It chooses an LWE modulus q, dimensions n,m, and also distributions χbig, χs, χappr, χpre, χlast, χlwe

as described in the construction. Recall ` = k · L and ñ = (4λ + w)n. It also chooses two λ-bit
strings tag∗, tag ← {0, 1}λ. If tag∗ = tag, then it aborts and the adversary wins. Otherwise, the
challenger continues as below. Let S(i) denote the following sets:

∀ i < i∗, S(i) = ([λ] \ {j∗})× {0, 1}2,
∀ i ≥ i∗, S(i) = [λ]× {0, 1}2.

Also, let ñi =

{
ñ− 4n for i < i∗

ñ for i ≥ i∗
, and set Ŝ =

{
(i, j, β, b) ∈ [`]× [λ]× {0, 1}2 : (j, β, b) ∈ S(i)

}
.

2. It samples
{

B
(j,β)
i,b

}
i,j,β,b

, {Pi,v}i,v matrices as

∀ i ∈ [`],

{B
(j,β)
i,b

}
(j,β,b)∈S(i)

{Pi,v}v∈[w]

 , Ti
← EnTrapGen(1ñi , 1m, q).

3. It then samples matrices C
(j,β)
i,b ← Zn×mq for (i, j, β, b) ∈ Ŝ.

4. Finally, it sends the public parameters pp = (λ, n,m, q, k, w, L, χpre) to the adversary.

• Challenge Phase. The challenger chooses a random bit γ ← {0, 1}. Let

BP(γ) =

({
π

(γ)
i,b : [w]→ [w]

}
i∈[`],b∈{0,1}

, acc(γ) ∈ [w], rej(γ) ∈ [w]

)
,

S∗ = Ŝ.

The challenger then runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`],
({

U∗α,0,U
∗
α,1

})
← Mixed-SubEnc

 tag∗, α, S∗,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S∗

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP(γ)

 .

Finally, it sends the challenge ciphertext as
(

tag∗,
{
U∗i,b

}
i∈[`],b∈{0,1}

)
.

• Post-Challenge Phase. The adversary is allowed make at most 1 secret key encryption query,
followed by polynomially many secret key queries. The challenger responds to each query as below.

1. Ciphertext Query. The adversary sends a branching program BP for encryption. The challenger
responds as follows.

61

(a) Let S = Ŝ. It runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`], ({Uα,0,Uα,1})← Mixed-SubEnc

 tag, α, S,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP

 .

(b) Finally, it sends the ciphertext as
(

tag, {Ui,b}i∈[`],b∈{0,1}

)
.

2. Secret Key Queries. The adversary queries the challenger on polynomially many messages for
corresponding secret keys. For each queried string x, the challenger responds as follows.

(a) It chooses a secret vector as s̃← χns and λ−1 random vectors as y(j) ← Zmq for j ∈ [λ]\{j∗}.

(b) It then chooses vectors s
(j,β)
i , e

(j,β)
i , t̃

(j,β)

i , ẽ
(j,β)
i as follows

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, s
(j,β)
i ← Znq ,

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, e
(j,β)
i ← χmbig,

∀ (j, β) ∈ [λ]× {0, 1}, e
(j,β)
`+1 ← χmlast,

∀ (i, β) ∈ [i∗ − 1]× {0, 1}, t̃
(j∗,β)

i ← Zmq ,

∀ β ∈ {0, 1}, ẽ
(j∗,β)
i∗ ← χmlwe.

(c) Let x̃ = xL, and st
(1−β∗)
i∗ , st

(β∗)
i∗ denote the state of branching programs BP, BP(γ) after i∗−1

steps (respectively). Also, let Γ, ỹ and U
(β)
i,b denote the following:

Γ = [`+ 1]× ([λ] \ {j∗})× {0, 1}, ỹ =
∑

j∈[λ]\{j∗}

y(j)

∀ (i, β, b) ∈ [`]× {0, 1}2, U
(β)
i,b =

{
U∗i,b if β = β∗

Ui,b if β = 1− β∗

Next, it computes key vectors
{

t
(j,β)
i

}
i,j,β

as follows.

∀ (i, j, β) ∈ Γ, t
(j,β)
i =


s

(j,β)
1 ·B(j,β)

1,x̃1
+ y(j) + e

(j,β)
1 if i = 1

−s
(j,β)
i−1 ·C

(j,β)
i−1,x̃i−1

+ s
(j,β)
i ·B(j,β)

i,x̃i
+ e

(j,β)
i if 1 < i ≤ `

−s
(j,β)
` ·C(j,β)

`,x̃`
+ e

(j,β)
`+1 if i = `+ 1

∀ (i, β) ∈ [i∗ − 1]× {0, 1}, t
(j∗,β)
i = t̃

(j∗,β)

i + e
(j∗,β)
i

∀ β ∈ {0, 1}, t
(j∗,β)
i∗ = −

i∗−1∑
α=1

(
t̃
(j∗,β)

α ·
i∗−1∏
δ=α

U
(β)
δ,x̃δ

)
− ỹ ·

i∗−1∏
δ=1

U
(β)
δ,x̃δ

+ s̃ ·P
i∗,st

(β)

i∗
+ s

(j∗,β)
i∗ ·B(j∗,β)

i∗,x̃i∗
+ ẽ

(j∗,β)
i∗ + e

(j∗,β)
i∗

∀ (i, β) ∈ ([`+ 1] \ [i∗])× {0, 1},

t
(j∗,β)
i =

{
−s

(j∗,β)
i−1 ·C(j∗,β)

i−1,x̃i−1
+ s

(j∗,β)
i ·B(j∗,β)

i,x̃i
+ e

(j∗,β)
i if i ≤ `

−s
(j∗,β)
` ·C(j∗,β)

`,x̃`
+ e

(j∗,β)
`+1 if i = `+ 1

(d) Finally, it sends the secret key as

(
x,
{

t
(j,β)
i

}
(i,j,β)∈[`+1]×[λ]×{0,1}

)
.

• Guess. The adversary finally sends the guess γ′, and wins if γ′ = γ.

62

Game 3.i∗.2 : This is identical to the previous game, except the (i∗+1)th key component in the j∗th strands
is also hardwired. Below we describe it in detail.

• Setup Phase. The adversary sends the functionality index (k,w, L) and descriptions of two branching

programs (BP(0),BP(1)) to the challenger. Then the challenger proceeds as follows—

1. It chooses an LWE modulus q, dimensions n,m, and also distributions χbig, χs, χappr, χpre, χlast, χlwe

as described in the construction. Recall ` = k · L and ñ = (4λ + w)n. It also chooses two λ-bit
strings tag∗, tag ← {0, 1}λ. If tag∗ = tag, then it aborts and the adversary wins. Otherwise, the
challenger continues as below. Let S(i) denote the following sets:

∀ i < i∗, S(i) = ([λ] \ {j∗})× {0, 1}2,
∀ i ≥ i∗, S(i) = [λ]× {0, 1}2.

Also, let ñi =

{
ñ− 4n for i < i∗

ñ for i ≥ i∗
, and set Ŝ =

{
(i, j, β, b) ∈ [`]× [λ]× {0, 1}2 : (j, β, b) ∈ S(i)

}
.

2. It samples
{

B
(j,β)
i,b

}
i,j,β,b

, {Pi,v}i,v matrices as

∀ i ∈ [`],

{B
(j,β)
i,b

}
(j,β,b)∈S(i)

{Pi,v}v∈[w]

 , Ti
← EnTrapGen(1ñi , 1m, q).

3. It then samples matrices C
(j,β)
i,b ← Zn×mq for (i, j, β, b) ∈ Ŝ.

4. Finally, it sends the public parameters pp = (λ, n,m, q, k, w, L, χpre) to the adversary.

• Challenge Phase. The challenger chooses a random bit γ ← {0, 1}. Let

BP(γ) =

({
π

(γ)
i,b : [w]→ [w]

}
i∈[`],b∈{0,1}

, acc(γ) ∈ [w], rej(γ) ∈ [w]

)
,

S∗ = Ŝ.

The challenger then runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`],
({

U∗α,0,U
∗
α,1

})
← Mixed-SubEnc

 tag∗, α, S∗,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S∗

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP(γ)

 .

Finally, it sends the challenge ciphertext as
(

tag∗,
{
U∗i,b

}
i∈[`],b∈{0,1}

)
.

• Post-Challenge Phase. The adversary is allowed make at most 1 secret key encryption query,
followed by polynomially many secret key queries. The challenger responds to each query as below.

1. Ciphertext Query. The adversary sends a branching program BP for encryption. The challenger
responds as follows.

(a) Let S = Ŝ. It runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`], ({Uα,0,Uα,1})← Mixed-SubEnc

 tag, α, S,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP

 .

(b) Finally, it sends the ciphertext as
(

tag, {Ui,b}i∈[`],b∈{0,1}

)
.

63

2. Secret Key Queries. The adversary queries the challenger on polynomially many messages for
corresponding secret keys. For each queried string x, the challenger responds as follows.

(a) It chooses a secret vector as s̃← χns and λ−1 random vectors as y(j) ← Zmq for j ∈ [λ]\{j∗}.

(b) It then chooses vectors s
(j,β)
i , e

(j,β)
i , t̃

(j,β)

i , ẽ
(j,β)
i as follows

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, s
(j,β)
i ← Znq ,

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, e
(j,β)
i ← χmbig,

∀ (j, β) ∈ [λ]× {0, 1}, e
(j,β)
`+1 ← χmlast,

∀ (i, β) ∈ [i∗ − 1]× {0, 1}, t̃
(j∗,β)

i ← Zmq ,

∀ β ∈ {0, 1}, ẽ
(j∗,β)
i∗ ← χmlwe.

(c) Let x̃ = xL, and st
(1−β∗)
i∗ , st

(β∗)
i∗ denote the state of branching programs BP, BP(γ) after i∗−1

steps (respectively). Also, let Γ, ỹ and U
(β)
i,b denote the following:

Γ = [`+ 1]× ([λ] \ {j∗})× {0, 1}, ỹ =
∑

j∈[λ]\{j∗}

y(j)

∀ (i, β, b) ∈ [`]× {0, 1}2, U
(β)
i,b =

{
U∗i,b if β = β∗

Ui,b if β = 1− β∗

Also, for β ∈ {0, 1}, let B
(j∗,β)
`+1,x̃`+1

= 0n×m, and t̃
(j∗,β)

i∗ denote the following vector.

t̃
(j∗,β)

i∗ = −
i∗−1∑
α=1

(
t̃
(j∗,β)

α ·
i∗−1∏
δ=α

U
(β)
δ,x̃δ

)
− ỹ ·

i∗−1∏
δ=1

U
(β)
δ,x̃δ

+ s̃ ·P
i∗,st

(β)

i∗
+ s

(j∗,β)
i∗ ·B(j∗,β)

i∗,x̃i∗
+ ẽ

(j∗,β)
i∗ .

Next, it computes key vectors
{

t
(j,β)
i

}
i,j,β

as follows.

∀ (i, j, β) ∈ Γ, t
(j,β)
i =


s

(j,β)
1 ·B(j,β)

1,x̃1
+ y(j) + e

(j,β)
1 if i = 1

−s
(j,β)
i−1 ·C

(j,β)
i−1,x̃i−1

+ s
(j,β)
i ·B(j,β)

i,x̃i
+ e

(j,β)
i if 1 < i ≤ `

−s
(j,β)
` ·C(j,β)

`,x̃`
+ e

(j,β)
`+1 if i = `+ 1

∀ (i, β) ∈ [i∗ − 1]× {0, 1}, t
(j∗,β)
i = t̃

(j∗,β)

i + e
(j∗,β)
i

∀ β ∈ {0, 1}, t
(j∗,β)
i∗ = t̃

(j∗,β)

i∗ + e
(j∗,β)
i∗

∀ β ∈ {0, 1}, t
(j∗,β)
i∗+1 = −

i∗∑
α=1

(
t̃
(j∗,β)

α ·
i∗∏
δ=α

U
(β)
δ,x̃δ

)
− ỹ ·

i∗∏
δ=1

U
(β)
δ,x̃δ

+ s̃ ·P
i∗+1,st

(β)

i∗+1

+ s
(j∗,β)
i∗+1 ·B

(j∗,β)
i∗+1,x̃i∗+1

+ e
(j∗,β)
i∗+1

∀ (i, β) ∈ ([`+ 1] \ [i∗ + 1])× {0, 1},

t
(j∗,β)
i =

{
−s

(j∗,β)
i−1 ·C(j∗,β)

i−1,x̃i−1
+ s

(j∗,β)
i ·B(j∗,β)

i,x̃i
+ e

(j∗,β)
i if i ≤ `

−s
(j∗,β)
` ·C(j∗,β)

`,x̃`
+ e

(j∗,β)
`+1 if i = `+ 1

(d) Finally, it sends the secret key as

(
x,
{

t
(j,β)
i

}
(i,j,β)∈[`+1]×[λ]×{0,1}

)
.

• Guess. The adversary finally sends the guess γ′, and wins if γ′ = γ.

64

Game 3.i∗.3 : This is identical to the previous game, except the matrices B
(j,β)
i,b ,C

(j,β)
i,b for strands j = j∗

and levels i = i∗ are not sampled along with other level i∗ matrices, but instead they are sampled uniformly
at random. Also, ciphertext components for level i∗ are used to only target remaining matrices. Below we
describe it in detail.

• Setup Phase. The adversary sends the functionality index (k,w, L) and descriptions of two branching

programs (BP(0),BP(1)) to the challenger. Then the challenger proceeds as follows—

1. It chooses an LWE modulus q, dimensions n,m, and also distributions χbig, χs, χappr, χpre, χlast, χlwe

as described in the construction. Recall ` = k · L and ñ = (4λ + w)n. It also chooses two λ-bit
strings tag∗, tag ← {0, 1}λ. If tag∗ = tag, then it aborts and the adversary wins. Otherwise, the
challenger continues as below. Let S(i) denote the following sets:

∀ i < i∗ + 1, S(i) = ([λ] \ {j∗})× {0, 1}2,
∀ i ≥ i∗ + 1, S(i) = [λ]× {0, 1}2.

Also, let ñi =

{
ñ− 4n for i < i∗ + 1

ñ for i ≥ i∗ + 1
, and set Ŝ =

{
(i, j, β, b) ∈ [`]× [λ]× {0, 1}2 : (j, β, b) ∈ S(i)

}
.

2. It samples
{

B
(j,β)
i,b

}
i,j,β,b

, {Pi,v}i,v matrices as

∀ i ∈ [`],

{B
(j,β)
i,b

}
(j,β,b)∈S(i)

{Pi,v}v∈[w]

 , Ti
← EnTrapGen(1ñi , 1m, q),

∀ (β, b) ∈ {0, 1}2, B
(j∗,β)
i∗,b ← Zn×mq .

3. It then samples matrices C
(j,β)
i,b ← Zn×mq for (i, j, β, b) ∈ Ŝ.

4. Finally, it sends the public parameters pp = (λ, n,m, q, k, w, L, χpre) to the adversary.

• Challenge Phase. The challenger chooses a random bit γ ← {0, 1}. Let

BP(γ) =

({
π

(γ)
i,b : [w]→ [w]

}
i∈[`],b∈{0,1}

, acc(γ) ∈ [w], rej(γ) ∈ [w]

)
,

S∗ = Ŝ.

The challenger then runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`],
({

U∗α,0,U
∗
α,1

})
← Mixed-SubEnc

 tag∗, α, S∗,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S∗

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP(γ)

 .

Finally, it sends the challenge ciphertext as
(

tag∗,
{
U∗i,b

}
i∈[`],b∈{0,1}

)
.

• Post-Challenge Phase. The adversary is allowed make at most 1 secret key encryption query,
followed by polynomially many secret key queries. The challenger responds to each query as below.

1. Ciphertext Query. The adversary sends a branching program BP for encryption. The challenger
responds as follows.

(a) Let S = Ŝ. It runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`], ({Uα,0,Uα,1})← Mixed-SubEnc

 tag, α, S,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP

 .

65

(b) Finally, it sends the ciphertext as
(

tag, {Ui,b}i∈[`],b∈{0,1}

)
.

2. Secret Key Queries. The adversary queries the challenger on polynomially many messages for
corresponding secret keys. For each queried string x, the challenger responds as follows.

(a) It chooses a secret vector as s̃← χns and λ−1 random vectors as y(j) ← Zmq for j ∈ [λ]\{j∗}.

(b) It then chooses vectors s
(j,β)
i , e

(j,β)
i , t̃

(j,β)

i , ẽ
(j,β)
i as follows

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, s
(j,β)
i ← Znq ,

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, e
(j,β)
i ← χmbig,

∀ (j, β) ∈ [λ]× {0, 1}, e
(j,β)
`+1 ← χmlast,

∀ (i, β) ∈ [i∗ − 1]× {0, 1}, t̃
(j∗,β)

i ← Zmq ,

∀ β ∈ {0, 1}, ẽ
(j∗,β)
i∗ ← χmlwe.

(c) Let x̃ = xL, and st
(1−β∗)
i∗ , st

(β∗)
i∗ denote the state of branching programs BP, BP(γ) after i∗−1

steps (respectively). Also, let Γ, ỹ and U
(β)
i,b denote the following:

Γ = [`+ 1]× ([λ] \ {j∗})× {0, 1}, ỹ =
∑

j∈[λ]\{j∗}

y(j)

∀ (i, β, b) ∈ [`]× {0, 1}2, U
(β)
i,b =

{
U∗i,b if β = β∗

Ui,b if β = 1− β∗

Also, for β ∈ {0, 1}, let B
(j∗,β)
`+1,x̃`+1

= 0n×m, and t̃
(j∗,β)

i∗ denote the following vector.

t̃
(j∗,β)

i∗ = −
i∗−1∑
α=1

(
t̃
(j∗,β)

α ·
i∗−1∏
δ=α

U
(β)
δ,x̃δ

)
− ỹ ·

i∗−1∏
δ=1

U
(β)
δ,x̃δ

+ s̃ ·P
i∗,st

(β)

i∗
+ s

(j∗,β)
i∗ ·B(j∗,β)

i∗,x̃i∗
+ ẽ

(j∗,β)
i∗ .

Next, it computes key vectors
{

t
(j,β)
i

}
i,j,β

as follows.

∀ (i, j, β) ∈ Γ, t
(j,β)
i =


s

(j,β)
1 ·B(j,β)

1,x̃1
+ y(j) + e

(j,β)
1 if i = 1

−s
(j,β)
i−1 ·C

(j,β)
i−1,x̃i−1

+ s
(j,β)
i ·B(j,β)

i,x̃i
+ e

(j,β)
i if 1 < i ≤ `

−s
(j,β)
` ·C(j,β)

`,x̃`
+ e

(j,β)
`+1 if i = `+ 1

∀ (i, β) ∈ [i∗ − 1]× {0, 1}, t
(j∗,β)
i = t̃

(j∗,β)

i + e
(j∗,β)
i

∀ β ∈ {0, 1}, t
(j∗,β)
i∗ = t̃

(j∗,β)

i∗ + e
(j∗,β)
i∗

∀ β ∈ {0, 1}, t
(j∗,β)
i∗+1 = −

i∗∑
α=1

(
t̃
(j∗,β)

α ·
i∗∏
δ=α

U
(β)
δ,x̃δ

)
− ỹ ·

i∗∏
δ=1

U
(β)
δ,x̃δ

+ s̃ ·P
i∗+1,st

(β)

i∗+1

+ s
(j∗,β)
i∗+1 ·B

(j∗,β)
i∗+1,x̃i∗+1

+ e
(j∗,β)
i∗+1

∀ (i, β) ∈ ([`+ 1] \ [i∗ + 1])× {0, 1},

t
(j∗,β)
i =

{
−s

(j∗,β)
i−1 ·C(j∗,β)

i−1,x̃i−1
+ s

(j∗,β)
i ·B(j∗,β)

i,x̃i
+ e

(j∗,β)
i if i ≤ `

−s
(j∗,β)
` ·C(j∗,β)

`,x̃`
+ e

(j∗,β)
`+1 if i = `+ 1

(d) Finally, it sends the secret key as

(
x,
{

t
(j,β)
i

}
(i,j,β)∈[`+1]×[λ]×{0,1}

)
.

• Guess. The adversary finally sends the guess γ′, and wins if γ′ = γ.

66

Game 3.i∗.4 : This is identical to the previous game, except the i∗th level key component in j∗th strands
is a uniformly random n length vector, i.e. all first i∗ level components in j∗th strand are random elements.

Also, we no longer sample the matrices B
(j,β)
i,b ,C

(j,β)
i,b for strands j = j∗ and levels i = i∗ at all. Below we

describe it in detail.

• Setup Phase. The adversary sends the functionality index (k,w, L) and descriptions of two branching

programs (BP(0),BP(1)) to the challenger. Then the challenger proceeds as follows—

1. It chooses an LWE modulus q, dimensions n,m, and also distributions χbig, χs, χappr, χpre, χlast, χlwe

as described in the construction. Recall ` = k · L and ñ = (4λ + w)n. It also chooses two λ-bit
strings tag∗, tag ← {0, 1}λ. If tag∗ = tag, then it aborts and the adversary wins. Otherwise, the
challenger continues as below. Let S(i) denote the following sets:

∀ i < i∗ + 1, S(i) = ([λ] \ {j∗})× {0, 1}2,
∀ i ≥ i∗ + 1, S(i) = [λ]× {0, 1}2.

Also, let ñi =

{
ñ− 4n for i < i∗ + 1

ñ for i ≥ i∗ + 1
, and set Ŝ =

{
(i, j, β, b) ∈ [`]× [λ]× {0, 1}2 : (j, β, b) ∈ S(i)

}
.

2. It samples
{

B
(j,β)
i,b

}
i,j,β,b

, {Pi,v}i,v matrices as

∀ i ∈ [`],

{B
(j,β)
i,b

}
(j,β,b)∈S(i)

{Pi,v}v∈[w]

 , Ti
← EnTrapGen(1ñi , 1m, q).

3. It then samples matrices C
(j,β)
i,b ← Zn×mq for (i, j, β, b) ∈ Ŝ.

4. Finally, it sends the public parameters pp = (λ, n,m, q, k, w, L, χpre) to the adversary.

• Challenge Phase. The challenger chooses a random bit γ ← {0, 1}. Let

BP(γ) =

({
π

(γ)
i,b : [w]→ [w]

}
i∈[`],b∈{0,1}

, acc(γ) ∈ [w], rej(γ) ∈ [w]

)
,

S∗ = Ŝ.

The challenger then runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`],
({

U∗α,0,U
∗
α,1

})
← Mixed-SubEnc

 tag∗, α, S∗,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S∗

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP(γ)

 .

Finally, it sends the challenge ciphertext as
(

tag∗,
{
U∗i,b

}
i∈[`],b∈{0,1}

)
.

• Post-Challenge Phase. The adversary is allowed make at most 1 secret key encryption query,
followed by polynomially many secret key queries. The challenger responds to each query as below.

1. Ciphertext Query. The adversary sends a branching program BP for encryption. The challenger
responds as follows.

(a) Let S = Ŝ. It runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`], ({Uα,0,Uα,1})← Mixed-SubEnc

 tag, α, S,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP

 .

67

(b) Finally, it sends the ciphertext as
(

tag, {Ui,b}i∈[`],b∈{0,1}

)
.

2. Secret Key Queries. The adversary queries the challenger on polynomially many messages for
corresponding secret keys. For each queried string x, the challenger responds as follows.

(a) It chooses a secret vector as s̃← χns and λ−1 random vectors as y(j) ← Zmq for j ∈ [λ]\{j∗}.

(b) It then chooses vectors s
(j,β)
i , e

(j,β)
i , t̃

(j,β)

i , ẽ
(j,β)
i as follows

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, s
(j,β)
i ← Znq ,

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, e
(j,β)
i ← χmbig,

∀ (j, β) ∈ [λ]× {0, 1}, e
(j,β)
`+1 ← χmlast,

∀ (i, β) ∈ [i∗]× {0, 1}, t̃
(j∗,β)

i ← Zmq ,

∀ β ∈ {0, 1}, ẽ
(j∗,β)
i∗ ← χmlwe.

(c) Let x̃ = xL, and st
(1−β∗)
i∗ , st

(β∗)
i∗ denote the state of branching programs BP, BP(γ) after i∗−1

steps (respectively). Also, let Γ, ỹ and U
(β)
i,b denote the following:

Γ = [`+ 1]× ([λ] \ {j∗})× {0, 1}, ỹ =
∑

j∈[λ]\{j∗}

y(j)

∀ (i, β, b) ∈ [`]× {0, 1}2, U
(β)
i,b =

{
U∗i,b if β = β∗

Ui,b if β = 1− β∗

Also, for β ∈ {0, 1}, let B
(j∗,β)
`+1,x̃`+1

= 0n×m. Next, it computes key vectors
{

t
(j,β)
i

}
i,j,β

as

follows.

∀ (i, j, β) ∈ Γ, t
(j,β)
i =


s

(j,β)
1 ·B(j,β)

1,x̃1
+ y(j) + e

(j,β)
1 if i = 1

−s
(j,β)
i−1 ·C

(j,β)
i−1,x̃i−1

+ s
(j,β)
i ·B(j,β)

i,x̃i
+ e

(j,β)
i if 1 < i ≤ `

−s
(j,β)
` ·C(j,β)

`,x̃`
+ e

(j,β)
`+1 if i = `+ 1

∀ (i, β) ∈ [i∗]× {0, 1}, t
(j∗,β)
i = t̃

(j∗,β)

i + e
(j∗,β)
i

∀ β ∈ {0, 1}, t
(j∗,β)
i∗+1 = −

i∗∑
α=1

(
t̃
(j∗,β)

α ·
i∗∏
δ=α

U
(β)
δ,x̃δ

)
− ỹ ·

i∗∏
δ=1

U
(β)
δ,x̃δ

+ s̃ ·P
i∗+1,st

(β)

i∗+1

+ s
(j∗,β)
i∗+1 ·B

(j∗,β)
i∗+1,x̃i∗+1

+ e
(j∗,β)
i∗+1

∀ (i, β) ∈ ([`+ 1] \ [i∗ + 1])× {0, 1},

t
(j∗,β)
i =

{
−s

(j∗,β)
i−1 ·C(j∗,β)

i−1,x̃i−1
+ s

(j∗,β)
i ·B(j∗,β)

i,x̃i
+ e

(j∗,β)
i if i ≤ `

−s
(j∗,β)
` ·C(j∗,β)

`,x̃`
+ e

(j∗,β)
`+1 if i = `+ 1

(d) Finally, it sends the secret key as

(
x,
{

t
(j,β)
i

}
(i,j,β)∈[`+1]×[λ]×{0,1}

)
.

• Guess. The adversary finally sends the guess γ′, and wins if γ′ = γ.

68

Game 4 : This is identical to the previous game, i.e. Game 3.`.4. For the ease of exposition, we describe in
it detail below.

• Setup Phase. The adversary sends the functionality index (k,w, L) and descriptions of two branching

programs (BP(0),BP(1)) to the challenger. Then the challenger proceeds as follows—

1. It chooses an LWE modulus q, dimensions n,m, and also distributions χbig, χs, χappr, χpre, χlast, χlwe

as described in the construction. Recall ` = k · L and ñ = (4λ + w)n. It also chooses two λ-bit
strings tag∗, tag ← {0, 1}λ. If tag∗ = tag, then it aborts and the adversary wins. Otherwise, the
challenger continues as below. Let S(i) denote the following sets:

∀ i ∈ [`], S(i) = ([λ] \ {j∗})× {0, 1}2.

Also, let ñi = ñ− 4n for all i ∈ [`], and set Ŝ =
{

(i, j, β, b) ∈ [`]× [λ]× {0, 1}2 : (j, β, b) ∈ S(i)
}

.

2. It samples
{

B
(j,β)
i,b

}
i,j,β,b

, {Pi,v}i,v matrices as

∀ i ∈ [`],

{B
(j,β)
i,b

}
(j,β,b)∈S(i)

{Pi,v}v∈[w]

 , Ti
← EnTrapGen(1ñi , 1m, q).

3. It then samples matrices C
(j,β)
i,b ← Zn×mq for (i, j, β, b) ∈ Ŝ.

4. Finally, it sends the public parameters pp = (λ, n,m, q, k, w, L, χpre) to the adversary.

• Challenge Phase. The challenger chooses a random bit γ ← {0, 1}. Let

BP(γ) =

({
π

(γ)
i,b : [w]→ [w]

}
i∈[`],b∈{0,1}

, acc(γ) ∈ [w], rej(γ) ∈ [w]

)
,

S∗ = Ŝ.

The challenger then runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`],
({

U∗α,0,U
∗
α,1

})
← Mixed-SubEnc

 tag∗, α, S∗,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S∗

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP(γ)

 .

Finally, it sends the challenge ciphertext as
(

tag∗,
{
U∗i,b

}
i∈[`],b∈{0,1}

)
.

• Post-Challenge Phase. The adversary is allowed make at most 1 secret key encryption query,
followed by polynomially many secret key queries. The challenger responds to each query as below.

1. Ciphertext Query. The adversary sends a branching program BP for encryption. The challenger
responds as follows.

(a) Let S = Ŝ. It runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`], ({Uα,0,Uα,1})← Mixed-SubEnc

 tag, α, S,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP

 .

(b) Finally, it sends the ciphertext as
(

tag, {Ui,b}i∈[`],b∈{0,1}

)
.

2. Secret Key Queries. The adversary queries the challenger on polynomially many messages for
corresponding secret keys. For each queried string x, the challenger responds as follows.

69

(a) It chooses a secret vector as s̃← χns and λ−1 random vectors as y(j) ← Zmq for j ∈ [λ]\{j∗}.

(b) It then chooses vectors s
(j,β)
i , e

(j,β)
i , t̃

(j,β)

i as follows

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, s
(j,β)
i ← Znq ,

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, e
(j,β)
i ← χmbig,

∀ (j, β) ∈ [λ]× {0, 1}, e
(j,β)
`+1 ← χmlast,

∀ (i, β) ∈ [`]× {0, 1}, t̃
(j∗,β)

i ← Zmq .

(c) Let x̃ = xL, and st
(1−β∗)
`+1 , st

(β∗)
`+1 denote the state of branching programs BP, BP(γ) after `

steps (respectively). Also, let Γ, ỹ and U
(β)
i,b denote the following:

Γ = [`+ 1]× ([λ] \ {j∗})× {0, 1}, ỹ =
∑

j∈[λ]\{j∗}

y(j)

∀ (i, β, b) ∈ [`]× {0, 1}2, U
(β)
i,b =

{
U∗i,b if β = β∗

Ui,b if β = 1− β∗

For v ∈ [w], let P
(β∗)
`+1,v be the top level matrices chosen while computing challenge ciphertext.

Similarly, P
(1−β∗)
`+1,v be the top level matrices chosen while computing query ciphertext. Next,

it computes key vectors
{

t
(j,β)
i

}
i,j,β

as follows.

∀ (i, j, β) ∈ Γ, t
(j,β)
i =


s

(j,β)
1 ·B(j,β)

1,x̃1
+ y(j) + e

(j,β)
1 if i = 1

−s
(j,β)
i−1 ·C

(j,β)
i−1,x̃i−1

+ s
(j,β)
i ·B(j,β)

i,x̃i
+ e

(j,β)
i if 1 < i ≤ `

−s
(j,β)
` ·C(j,β)

`,x̃`
+ e

(j,β)
`+1 if i = `+ 1

∀ (i, β) ∈ [`]× {0, 1}, t
(j∗,β)
i = t̃

(j∗,β)

i + e
(j∗,β)
i

∀ β ∈ {0, 1}, t
(j∗,β)
`+1 = −

∑̀
α=1

(
t̃
(j∗,β)

α ·
∏̀
δ=α

U
(β)
δ,x̃δ

)
− ỹ ·

∏̀
δ=1

U
(β)
δ,x̃δ

+ s̃ ·P(β)

`+1,st
(β)
`+1

+ e
(j∗,β)
`+1

(d) Finally, it sends the secret key as

(
x,
{

t
(j,β)
i

}
(i,j,β)∈[`+1]×[λ]×{0,1}

)
.

• Guess. The adversary finally sends the guess γ′, and wins if γ′ = γ.

Next, we have a sequence of ` hybrid experiments Game 4.i∗ for i∗ = 1 to `.

Game 4.i∗ : This is identical to the previous game, except the challenger uses Mixed-SubEnc∗ routine to
generate the first i∗ components of both the challenge as well as query ciphertext.

• Setup Phase. The adversary sends the functionality index (k,w, L) and descriptions of two branching

programs (BP(0),BP(1)) to the challenger. Then the challenger proceeds as follows—

1. It chooses an LWE modulus q, dimensions n,m, and also distributions χbig, χs, χappr, χpre, χlast, χlwe

as described in the construction. Recall ` = k · L and ñ = (4λ + w)n. It also chooses two λ-bit

70

Mixed-SubEnc∗

Inputs:

- Tag tag, Level α, Set S ⊆ [`] × [λ] × {0, 1}2, Matrices
{
B

(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S

, {Pi,v}(i,v)∈[`]×[w],

Trapdoors {Ti}i∈[`],
Output: Matrices {U0,U1}.
Execution: Let Sα denote the following set:

Sα =
{

(j, β, b) ∈ [λ]× {0, 1}2 such that (α, j, β, b) ∈ S
}
.

Sample matrices
{
D

(j,β)
b , D̃

(j,β)

b

}
(j,β,b)∈Sα

as:

∀ (j, β, b) ∈ Sα,
D

(j,β)
b =

{
C

(j,β)
α,b if β = tagj and b = 0(
← Zn×mq

)
otherwise.

D̃
(j,β)

b =

{
C

(j,β)
α,b if β = tagj and b = 1(
← Zn×mq

)
otherwise.

Sample 2w matrices matrices
{
Qv, Q̃v

}
v∈[w]

as:

∀ v ∈ [w],
Qv ← Zn×mq ,

Q̃v ← Zn×mq .

Let matrices M,W,W̃ represent the following (|Sα|+ w)n×m dimension matrices:

M =

{B(j,β)
i,b

}
(j,β,b)∈Sα

{Pi,v}v∈[w]

 , W =

{D(j,β)
b

}
(j,β,b)∈Sα{

Qi,v

}
v∈[w]

 , W̃ =


{
D̃

(j,β)

b

}
(j,β,b)∈Sα{

Q̃i,v

}
v∈[w]

 .
Run the EnSamplePre to compute matrices {U0,U1} as

U0 ← EnSamplePre(M, Tα, σpre,W),

U1 ← EnSamplePre(M, Tα, σpre,W̃).

Figure 7: Routine Mixed-SubEnc∗

strings tag∗, tag ← {0, 1}λ. If tag∗ = tag, then it aborts and the adversary wins. Otherwise, the
challenger continues as below. Let S(i) denote the following sets:

∀ i ∈ [`], S(i) = ([λ] \ {j∗})× {0, 1}2.

Also, let ñi = ñ− 4n for all i ∈ [`], and set Ŝ =
{

(i, j, β, b) ∈ [`]× [λ]× {0, 1}2 : (j, β, b) ∈ S(i)
}

.

2. It samples
{

B
(j,β)
i,b

}
i,j,β,b

, {Pi,v}i,v matrices as

∀ i ∈ [`],

{B
(j,β)
i,b

}
(j,β,b)∈S(i)

{Pi,v}v∈[w]

 , Ti
← EnTrapGen(1ñi , 1m, q).

3. It then samples matrices C
(j,β)
i,b ← Zn×mq for (i, j, β, b) ∈ Ŝ.

4. Finally, it sends the public parameters pp = (λ, n,m, q, k, w, L, χpre) to the adversary.

71

• Challenge Phase. The challenger chooses a random bit γ ← {0, 1}. Let

BP(γ) =

({
π

(γ)
i,b : [w]→ [w]

}
i∈[`],b∈{0,1}

, acc(γ) ∈ [w], rej(γ) ∈ [w]

)
,

S∗ = Ŝ.

The challenger then runs the Mixed-SubEnc and Mixed-SubEnc∗ routines (described in Figure 6 and
Figure 7) as

∀ α ∈ [i∗],
({

U∗α,0,U
∗
α,1

})
← Mixed-SubEnc∗

 tag∗, α, S∗,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S∗

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`]

 ,

∀ α ∈ [`] \ [i∗],
({

U∗α,0,U
∗
α,1

})
← Mixed-SubEnc

 tag∗, α, S∗,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S∗

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP(γ)

 .

Finally, it sends the challenge ciphertext as
(

tag∗,
{
U∗i,b

}
i∈[`],b∈{0,1}

)
.

• Post-Challenge Phase. The adversary is allowed make at most 1 secret key encryption query,
followed by polynomially many secret key queries. The challenger responds to each query as below.

1. Ciphertext Query. The adversary sends a branching program BP for encryption. The challenger
responds as follows.

(a) Let S = Ŝ. It runs the Mixed-SubEnc and Mixed-SubEnc∗ routines (described in Figure 6 and
Figure 7) as

∀ α ∈ [i∗], ({Uα,0,Uα,1})← Mixed-SubEnc∗

 tag, α, S,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`]

 ,

∀ α ∈ [`] \ [i∗], ({Uα,0,Uα,1})← Mixed-SubEnc

 tag, α, S,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP

 .

(b) Finally, it sends the ciphertext as
(

tag, {Ui,b}i∈[`],b∈{0,1}

)
.

2. Secret Key Queries. The adversary queries the challenger on polynomially many messages for
corresponding secret keys. For each queried string x, the challenger responds as follows.

(a) It chooses a secret vector as s̃← χns and λ−1 random vectors as y(j) ← Zmq for j ∈ [λ]\{j∗}.

(b) It then chooses vectors s
(j,β)
i , e

(j,β)
i , t̃

(j,β)

i as follows

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, s
(j,β)
i ← Znq ,

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, e
(j,β)
i ← χmbig,

∀ (j, β) ∈ [λ]× {0, 1}, e
(j,β)
`+1 ← χmlast,

∀ (i, β) ∈ [`]× {0, 1}, t̃
(j∗,β)

i ← Zmq .

(c) Let x̃ = xL, and st
(1−β∗)
`+1 , st

(β∗)
`+1 denote the state of branching programs BP, BP(γ) after `

steps (respectively). Also, let Γ, ỹ and U
(β)
i,b denote the following:

Γ = [`+ 1]× ([λ] \ {j∗})× {0, 1}, ỹ =
∑

j∈[λ]\{j∗}

y(j)

∀ (i, β, b) ∈ [`]× {0, 1}2, U
(β)
i,b =

{
U∗i,b if β = β∗

Ui,b if β = 1− β∗

72

For v ∈ [w], let P
(β∗)
`+1,v be the top level matrices chosen while computing challenge ciphertext.

Similarly, P
(1−β∗)
`+1,v be the top level matrices chosen while computing query ciphertext. 28

Next, it computes key vectors
{

t
(j,β)
i

}
i,j,β

as follows.

∀ (i, j, β) ∈ Γ, t
(j,β)
i =


s

(j,β)
1 ·B(j,β)

1,x̃1
+ y(j) + e

(j,β)
1 if i = 1

−s
(j,β)
i−1 ·C

(j,β)
i−1,x̃i−1

+ s
(j,β)
i ·B(j,β)

i,x̃i
+ e

(j,β)
i if 1 < i ≤ `

−s
(j,β)
` ·C(j,β)

`,x̃`
+ e

(j,β)
`+1 if i = `+ 1

∀ (i, β) ∈ [`]× {0, 1}, t
(j∗,β)
i = t̃

(j∗,β)

i + e
(j∗,β)
i

∀ β ∈ {0, 1}, t
(j∗,β)
`+1 = −

∑̀
α=1

(
t̃
(j∗,β)

α ·
∏̀
δ=α

U
(β)
δ,x̃δ

)
− ỹ ·

∏̀
δ=1

U
(β)
δ,x̃δ

+ s̃ ·P(β)

`+1,st
(β)
`+1

+ e
(j∗,β)
`+1

(d) Finally, it sends the secret key as

(
x,
{

t
(j,β)
i

}
(i,j,β)∈[`+1]×[λ]×{0,1}

)
.

• Guess. The adversary finally sends the guess γ′, and wins if γ′ = γ.

Game 5 : This is identical to the previous game, i.e. Game 4.`. For the ease of exposition, we describe in
it detail below.

• Setup Phase. The adversary sends the functionality index (k,w, L) and descriptions of two branching

programs (BP(0),BP(1)) to the challenger. Then the challenger proceeds as follows—

1. It chooses an LWE modulus q, dimensions n,m, and also distributions χbig, χs, χappr, χpre, χlast, χlwe

as described in the construction. Recall ` = k · L and ñ = (4λ + w)n. It also chooses two λ-bit
strings tag∗, tag ← {0, 1}λ. If tag∗ = tag, then it aborts and the adversary wins. Otherwise, the
challenger continues as below. Let S(i) denote the following sets:

∀ i ∈ [`], S(i) = ([λ] \ {j∗})× {0, 1}2.

Also, let ñi = ñ− 4n for all i ∈ [`], and set Ŝ =
{

(i, j, β, b) ∈ [`]× [λ]× {0, 1}2 : (j, β, b) ∈ S(i)
}

.

2. It samples
{

B
(j,β)
i,b

}
i,j,β,b

, {Pi,v}i,v matrices as

∀ i ∈ [`],

{B
(j,β)
i,b

}
(j,β,b)∈S(i)

{Pi,v}v∈[w]

 , Ti
← EnTrapGen(1ñi , 1m, q).

3. It then samples matrices C
(j,β)
i,b ← Zn×mq for (i, j, β, b) ∈ Ŝ.

4. Finally, it sends the public parameters pp = (λ, n,m, q, k, w, L, χpre) to the adversary.

• Challenge Phase. The challenger chooses a random bit γ ← {0, 1}. Let

BP(γ) =

({
π

(γ)
i,b : [w]→ [w]

}
i∈[`],b∈{0,1}

, acc(γ) ∈ [w], rej(γ) ∈ [w]

)
,

S∗ = Ŝ.

28Technically, in Game 4.(`+ 1), P
(β)

`+1,st
(β)
`+1

is not sampled during Mixed-SubEnc∗. For that experiment, we will assume these

matrices are chosen for the first key query and used for all remaining keys.

73

The challenger then runs the Mixed-SubEnc∗ routine (described in Figure 7) as

∀ α ∈ [`],
({

U∗α,0,U
∗
α,1

})
← Mixed-SubEnc∗

 tag∗, α, S∗,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S∗

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`]

 .

Finally, it sends the challenge ciphertext as
(

tag∗,
{
U∗i,b

}
i∈[`],b∈{0,1}

)
.

• Post-Challenge Phase. The adversary is allowed make at most 1 secret key encryption query,
followed by polynomially many secret key queries. The challenger responds to each query as below.

1. Ciphertext Query. The adversary sends a branching program BP for encryption. The challenger
responds as follows.

(a) Let S = Ŝ. It runs the Mixed-SubEnc∗ routine (described in Figure 7) as

∀ α ∈ [`], ({Uα,0,Uα,1})← Mixed-SubEnc∗

 tag, α, S,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`]

 .

(b) Finally, it sends the ciphertext as
(

tag, {Ui,b}i∈[`],b∈{0,1}

)
.

2. Secret Key Queries. The adversary queries the challenger on polynomially many messages for
corresponding secret keys. For each queried string x, the challenger responds as follows.

(a) It chooses a secret vector as s̃← χns and λ−1 random vectors as y(j) ← Zmq for j ∈ [λ]\{j∗}.

(b) It then chooses vectors s
(j,β)
i , e

(j,β)
i , t̃

(j,β)

i as follows

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, s
(j,β)
i ← Znq ,

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, e
(j,β)
i ← χmbig,

∀ (j, β) ∈ [λ]× {0, 1}, e
(j,β)
`+1 ← χmlast,

∀ (i, β) ∈ [`]× {0, 1}, t̃
(j∗,β)

i ← Zmq .

(c) Let x̃ = xL, and st
(1−β∗)
`+1 , st

(β∗)
`+1 denote the state of branching programs BP, BP(γ) after `

steps (respectively). Also, let Γ, ỹ and U
(β)
i,b denote the following:

Γ = [`+ 1]× ([λ] \ {j∗})× {0, 1}, ỹ =
∑

j∈[λ]\{j∗}

y(j)

∀ (i, β, b) ∈ [`]× {0, 1}2, U
(β)
i,b =

{
U∗i,b if β = β∗

Ui,b if β = 1− β∗

For the first key query, it samples matrices P
(β)
`+1,v for v ∈ [w], β ∈ {0, 1} as follows. 29

P
(β)

`+1,st
(β)
`+1

=

{
0n×m if v = rej(
← Zn×mq

)
otherwise.

29Recall, as defined in Game 4.(`+ 1), these matrices are sampled only for the first key query, and all remaining key queries
use the same matrices.

74

Next, it computes key vectors
{

t
(j,β)
i

}
i,j,β

as follows.

∀ (i, j, β) ∈ Γ, t
(j,β)
i =


s

(j,β)
1 ·B(j,β)

1,x̃1
+ y(j) + e

(j,β)
1 if i = 1

−s
(j,β)
i−1 ·C

(j,β)
i−1,x̃i−1

+ s
(j,β)
i ·B(j,β)

i,x̃i
+ e

(j,β)
i if 1 < i ≤ `

−s
(j,β)
` ·C(j,β)

`,x̃`
+ e

(j,β)
`+1 if i = `+ 1

∀ (i, β) ∈ [`]× {0, 1}, t
(j∗,β)
i = t̃

(j∗,β)

i + e
(j∗,β)
i

∀ β ∈ {0, 1}, t
(j∗,β)
`+1 = −

∑̀
α=1

(
t̃
(j∗,β)

α ·
∏̀
δ=α

U
(β)
δ,x̃δ

)
− ỹ ·

∏̀
δ=1

U
(β)
δ,x̃δ

+ s̃ ·P(β)

`+1,st
(β)
`+1

+ e
(j∗,β)
`+1

(d) Finally, it sends the secret key as

(
x,
{

t
(j,β)
i

}
(i,j,β)∈[`+1]×[λ]×{0,1}

)
.

• Guess. The adversary finally sends the guess γ′, and wins if γ′ = γ.

8.4.2 Indistinguishability of Hybrid Games in Section 8.4

We will now show that the hybrid experiments described above are computationally indistinguishable. For
any PPT adversary A, let AdvA,x(·) denote the advantage of A in Game x.

Lemma 8.3. There exists a negligible function negl(·) such that for any adversary A and λ ∈ N, AdvA,0(λ)−
AdvA,1(λ) ≤ negl(λ).

Proof. The only difference between Game 0 and Game 1 is that the challenger aborts if tag∗ = tag. The
probability of this event is 2−λ, and it is independent of the adversary’s choice of (k,w, L) and BP(0),BP(1)

in the setup phase. As a result, for any adversary A, AdvA,0(λ)− AdvA,1(λ) ≤ 2−λ.

Lemma 8.4. For any adversary A and λ ∈ N, AdvA,1(λ) = AdvA,2(λ).

Proof. The only difference between the two hybrids is with respect to the keys. In Game 1, for each key
query, the challenger chooses λ − 1 uniformly random vectors y(j) ← Zmq for j < λ, and sets y(λ) =

s̃ · P1,1 −
∑
j∈[λ−1] y

(j). In Game 2, the challenger chooses y(j) ← Zmq for j ∈ [λ] \ {j∗}, and sets y(j∗) =

s̃ · P1,1 −
∑
j∈[λ]\{j∗} y(j). Fix all y(j) for j /∈ {j∗, λ} and s̃ · P1,1. Then, the following distributions are

identical:{(
y(j∗),y(λ)

)
:

y(j∗) ← Zmq ;

y(λ) = s̃ ·P1,1 −
∑
j∈[λ−1] y

(j)

}
≡
{(

y(j∗),y(λ)
)

:
y(λ) ← Zmq ;

y(j∗) = s̃ ·P1,1 −
∑
j∈[λ]\{j∗} y(j)

}
This implies that the distributions in Game 1 and Game 2 are identical.

Lemma 8.5. For any PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,
AdvA,2(λ)− AdvA,3.1.1(λ) ≤ negl(λ).

Proof. Let us first consider the differences between Game 2 and Game 3.1.1. The setup and challenge phase
is identical in both games. The post-challenge ciphertext query is also handled identically in both games.
The only difference in the two games is with respect to the key queries. In particular, for each key query x,

the key components {t(j∗,β)
1 }β∈{0,1} are computed differently in the two games. In Game 2, the challenger

sets t
(j∗,β)
1 = −ỹ+ s̃ ·P1,1 +s

(j∗,β)
1 ·B(j∗,β)

1,x̃1
+e

(j∗,β)
1 while in Game 3.1.1, it sets t

(j∗,β)
1 = −ỹ+ s̃ ·P1,1 +s

(j∗,β)
1 ·

75

B
(j∗,β)
1,x̃1

+ ẽ
(j∗,β)
1 + e

(j∗,β)
1 . Using the smuding lemma (Lemma 2.1), since σbig/σlwe ≥ 2λ, we can argue that

there exists a negligible function neglsmud(·) such that for all λ ∈ N, m ∈ N, SD(D1,D2) ≤ 2m · neglsmud(λ),
where

D1 ≡
{(

e
(j∗,0)
1 , e

(j∗,1)
1

)
: e

(j∗,β)
1 ← χmbig for β ∈ {0, 1}

}
;

D2 ≡

{(
ẽ

(j∗,0)
1 + e

(j∗,0)
1 , ẽ

(j∗,0)
1 + e

(j∗,0)
1

)
:

e
(j∗,β)
1 ← χmbig for β ∈ {0, 1};

ẽ
(j∗,β)
1 ← χmlwe for β ∈ {0, 1};

}

As a result, if an adversary A makes qkeys(λ) key queries, then for any λ ∈ N, AdvA,2(λ)−AdvA,3.1.1(λ) ≤
qkeys(λ) · (2m · neglsmud(λ)).

Lemma 8.6. For any PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,
AdvA,3.i∗.1(λ)− AdvA,3.i∗.2(λ) ≤ negl(λ).

Proof. The main difference in these two games is in the key generation phase. In particular, for each key, the

terms
(
t
(j∗,0)
i∗+1 , t

(j∗,1)
i∗+1

)
are computed differently in both games. In Game 3.i∗.1, t

(j∗,β)
i∗+1 = −s

(j∗,β)
i∗ ·C(j∗,β)

i∗,x̃i∗
+

s
(j∗,β)
i∗+1 ·B

(j∗,β)
i∗,x̃i∗+1

+ e
(j∗,β)
i∗+1 , while in Game 3.i∗.2, the challenger sets

t
(j∗,β)
i∗+1 = −

i∗∑
α=1

(
t̃
(j∗,β)

α ·
i∗∏
δ=α

U
(β)
δ,x̃δ

)
− ỹ ·

i∗∏
δ=1

U
(β)
δ,x̃δ

+ s̃ ·P
i∗+1,st

(β)

i∗+1

+ s
(j∗,β)
i∗+1 ·B

(j∗,β)
i∗+1,x̃i∗+1

+ e
(j∗,β)
i∗+1

= −s
(j∗,β)
i∗ ·C(j∗,β)

i∗,x̃i∗
+ s

(j∗,β)
i∗+1 ·B

(j∗,β)
i∗,x̃i∗+1

+ e
(j∗,β)
i∗+1 + ẽ

(j∗,β)
i∗+1 ·U

(β)
i∗,x̃i∗

+ s̃ ·E

where in the second equality, ẽ
(j∗,β)
i∗+1 ← χlwe, s̃← χns , E is sampled by Mixed-SubEnc from χn×mappr . The second

equality follows by substituting the value of t̃
(j∗,β)

i∗ = −
∑i∗−1
α=1

(
t̃
(j∗,β)

α ·
∏i∗−1
δ=α U

(β)
δ,x̃δ

)
− ỹ ·

∏i∗−1
δ=1 U

(β)
δ,x̃δ

+ s̃ ·

P
i∗,st

(β)

i∗
+ s

(j∗,β)
i∗ ·B(j∗,β)

i∗,x̃i∗
+ ẽ

(j∗,β)
i∗ (note that this is how t̃

(j∗,β)

i∗ is defined in Game 3.i∗.2).

To prove this lemma, we will use the following fact, which follows from the smudging lemma (Lemma 2.1).

Fact 8.1. Let χbig, χs, χappr, χlwe be families of distributions over Z as defined in the construction. For
any polynomials n(·),m(·), there exists a negligible function negl8.1(·) such that for all λ ∈ N, n = n(λ),
m = m(λ), χbig = χbig(λ), χs = χs(λ), χappr = χappr(λ), χlwe = χlwe(λ), SD(D1,D2) ≤ negl8.1(λ), where

D1 = {e : e← χbig} ; D2 =

{
e1 + e2 + e3 :

e1 ← χmbig; s← χns ; E← χn×mappr ;

e2 = s ·E; e3 ← χmlwe

}
As a result, if an adversaryAmakes qkeys(λ) key queries, then for any λ ∈ N, AdvA,3.i∗.1(λ)−AdvA,3.i∗.2(λ) ≤

qkeys(λ) · (2 · negl8.1(λ)).

Lemma 8.7. Assuming the trapdoor generation algorithms LTen satisfy (q, σpre)-row removal property,
for any PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, i∗ ∈ [`],
AdvA,3.i∗.2(λ)− AdvA,3.i∗.3(λ) ≤ negl(λ).

Proof. First, let us consider the differences between Game 3.i∗.2 and Game 3.i∗.3.

1. Set S(i∗) : In Game 3.i∗.2, the challenger sets S(i∗) = [λ] × {0, 1}2, while in Game 3.i∗.3, S(i∗) =
([λ] \ {j∗})× {0, 1}2 (tag∗, tag are chosen at the start of the security game, so j∗ is well defined here).
Also, ñi∗ = ñ = (4λ+ w)n in Game 3.i∗.2, while ñi∗ = ñ− 4n in Game 3.i∗.3.

76

2.
{

B
(j,β)
i,b

}
i=i∗

matrices : In Game 3.i∗.2, the challenger chooses (Mi∗ , Ti∗) ← EnTrapGen(1ñ, 1m, q),

while in Game 3.i∗.3, it chooses (Mi∗ , Ti∗)← EnTrapGen(1ñ−4n, 1m, q). As a result, in Game 3.i∗.2, it

derives all
{

B
(j,β)
i∗,b

}
(j,β,b)∈[λ]×{0,1}2

from Mi∗ . In Game 3.i∗.3, the challenger chooses
{

B
(j∗,β)
i∗,b

}
b,β∈{0,1}

uniformly at random, while the remaining are derived from Mi∗ .

3. Ciphertexts: Since the set S(i∗) is different in both games, the challenge and query ciphertexts are
constructed differently in both games.

Let us now discuss why the row removal property is applicable here. In particular, we will focus on(
U∗i∗,0,U

∗
i∗,1,Ui∗,0,Ui∗,1

)
. In Game 3.i∗.2, each of these four matrices maps

[
B

(j∗,0)
i∗,0 | B(j∗,0)

i∗,1 | B(j∗,1)
i∗,0 | B(j∗,1)

i∗,1

]
to a uniformly random matrix. To see why, let us suppose tag∗j∗ = β∗ and tagj∗ = 1− β∗. Then

• B
(j∗,β∗)
i∗,0 ·U∗i∗,0 = C

(j∗,β∗)
i∗,0 , the rest are mapped to random matrices.

• B
(j∗,β∗)
i∗,1 ·U∗i∗,1 = C

(j∗,β∗)
i∗,1 , the rest are mapped to random matrices.

• B
(j∗,1−β∗)
i∗,0 ·Ui∗,0 = C

(j∗,1−β∗)
i∗,0 , the rest are mapped to random matrices.

• B
(j∗,1−β∗)
i∗,1 ·Ui∗,1 = C

(j∗,1−β∗)
i∗,1 , the rest are mapped to random matrices.

Also, it is important to note that the
{

C
(j∗,β)
i∗,b

}
b,β∈{0,1}

are not used for responding to key generation queries.

Therefore, we can use the row removal property to remove the rows corresponding to B
(j∗,b)
i∗,β from the level

i∗ matrices.
Suppose, on the contrary, there exists an adversary A and a non-negligible function η(·) such that for all

λ ∈ N, AdvA,3.i∗.2(λ) − AdvA,3.i∗.3(λ) ≥ η(λ). We will use this adversary to build a reduction algorithm B
that breaks the (q, σpre)-row removal property of LTen.

The reduction algorithm first receives functionality index (k,w, L) from A. Depending on the function-
ality index, the reduction algorithm sets ` = k ·L, n, m, ñ = (4λ+w)n as in Game 3.i∗.2 (and Game 3.i∗.3)
and sends these parameters to A.

The reduction algorithm chooses tag∗, tag and defines j∗ as the first index where the two tags differ. For

all i 6= i∗, B defines sets S(i), and samples

{{
B

(j,b)
i,β

}
(j,β,b)∈S(i)

, {Pi,v}v∈[w] , Ti

}
i 6=i∗

as in Game 3.i∗.2 (and

Game 3.i∗.3). The reduction algorithm defines a set SB which represents the set of rows that are removed in
the transition between the two games. Formally, the reduction algorithm defines the following sets

pos = {j : b, β ∈ {0, 1}, (i∗, j∗, b, β) is at position j in the set {i∗} × [λ]× {0, 1}2}

SB =
⋃
j∈pos

{n(j − 1) + 1, n(j − 1) + 2, . . . , nj}.

It sends 1ñ, 1m, SB to the row removal property challenger. It receives A from the challenger, which it parses
as

A =

{B
(j,β)
i∗,b

}
(j,β,b)∈[λ]×{0,1}2

{Pi∗,v}v∈[w]


The reduction algorithm also chooses (4λ+w − 4) matrices {C(j,β)

i,b }i 6=i∗,j 6=j∗ uniformly at random from

Zn×mq .

Next, it receives the challenge programs BP(0),BP(1). It chooses γ ← {0, 1}. For all i 6= i∗, it computes
(U∗i,0,U

∗
i,1) components by itself (this step is identical in both games). For i = i∗, it uses the row removal

77

property challenger. It sets matrices D
(j,β)
b and D̃

(j,β)

b as below.

∀ (j, β, b) ∈ ([λ] \ {j∗})× {0, 1}2,
D

(j,β)
b =

{
C

(j,β)
i,b if β = tagj and b = 0(
← Zn×mq

)
otherwise.

D̃
(j,β)

b =

{
C

(j,β)
i,b if β = tagj and b = 1(
← Zn×mq

)
otherwise.

Next, it sets matrices
{
Qi,v

}
v∈[w]

,
{

Q̃i,v

}
v∈[w]

as in Figure 6, and sets matrices W and W̃ as

W =

{D
(j,β)
b

}
(j,β,b)∈Sα{

Qi,v

}
v∈[w]

 , W̃ =


{

D̃
(j,β)

b

}
(j,β,b)∈Sα{

Q̃i,v

}
v∈[w]

 .
It sends them as queries to the row removal challenger (note that C

(j∗,β)
i∗,b is not required for defining W and

W̃). The challenger responds by sending U∗i∗,0 and U∗i∗,1 respectively. The reduction algorithm forwards{(
U∗i,0,U

∗
i,1

)}
i∈[`]

to the adversary. The ciphertext query is handled similarly, and the reduction algorithm

receives {(Ui,0,Ui,1)}i∈[`], which it forwards to A (the remaining ciphertext components can be computed

by the reduction algorithm).
Next, the adversary sends polynomially many key queries. Note that the keys are generated in an identical

manner in both games. Moreover, these keys can be generated without having {C(j∗,β)
i∗,b }b,β and the trapdoor

for Mi∗ .
Finally, the adversary sends its guess, which the reduction algorithm forwards to the row removal property

challenger. Clearly, if the row removal challenger chose b = 0, then the reduction algorithm perfectly
simulates Game 3.i∗.3. If the challenger chose b = 1, then the reduction algorithm perfectly simulates
Game 3.i∗.2 (here we use the fact that in Game 3.i∗.2, each of the matrices

{
U∗i∗,0,U

∗
i∗,1,Ui∗,0,Ui∗,1

}
maps[

B
(j∗,0)
i∗,0 | B(j∗,0)

i∗,1 | B(j∗,1)
i∗,0 | B(j∗,1)

i∗,1

]
to a uniformly random matrix.

Therefore, the reduction algorithm has advantage at least η(·).

Lemma 8.8. Assuming the (n, q, σlwe)-LWE assumption, for any PPT adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N, i∗ ∈ [`], AdvA,3.i∗.3(λ)− AdvA,3.i∗.4(λ) ≤ negl(λ).

Proof. In Game 3.i∗.3, for each key query x, for each β ∈ {0, 1}, the component t̃
(j∗,β)

i∗ = −
∑i∗−1
α=1

(
t̃
(j∗,β)

α ·
∏i∗−1
δ=α U

(β)
δ,x̃δ

)
−

ỹ·
∏i∗−1
δ=1 U

(β)
δ,x̃δ

+ s̃·P
i∗,st

(β)

i∗
+s

(j∗,β)
i∗ ·B(j∗,β)

i∗,x̃i∗
+ẽ

(j∗,β)
i∗ . In Game 3.i∗.4, t̃

(j∗,β)

i∗ ← Zmq . Let qkeys = qkeys(λ) denote

the number of keys queried by A(1λ). To prove that these two games are computationally indistinguishable,
we will define qkeys hybrid experiments.

Hybrid Ho,0 for o ∈ {0, 1, . . . , qkeys} : In this hybrid, for the first o keys, the t̃
(j∗,0)

i∗ components are sampled

uniformly at random in the first o queries, while the t̃
(j∗,1)

i∗ components are sampled as in Game 3.i∗.3. For
the remaining qkeys − o key queries, the keys are generated as in Game 3.i∗.3 in the remaining queries.

Hybrid Ho,1 for o ∈ {0, 1, . . . , qkeys} : In this hybrid, for all keys, the t̃
(j∗,0)

i∗ components are sampled

uniformly at random. For the first o queries, the t̃
(j∗,1)

i∗ components are sampled uniformly at random, while
the remaining are sampled as in Game 3.i∗.3.

78

Clearly, H0,0 corresponds to Game 3.i∗.3, while Hqkeys,1 is identical to Game 3.i∗.4, and Hqkeys,0 ≡ H0,1. Let
aA,i,b(λ) denote the advantage of A in Hi,b.

Claim 8.4. Assuming the (n, q, σlwe)-LWE assumption, for any PPT adversary A making qkeys(·) key queries,
there exists a negligible function no,0(·) such that for all λ ∈ N, qkeys = qkeys(λ) and all indices o ∈ [qkeys],
aA,o−1,0 − aA,o,0 ≤ no,0(λ).

Proof. Suppose there exists an adversary making qkeys key queries, and a non-negligible function η(·) such
that for all λ ∈ N, there exists an index o ∈ [qkeys] such that aA,o−1,0− aA,o,0 ≥ η(λ). We will use A to build
a reduction algorithm B that breaks the (n, q, σlwe)-LWE assumption.

The reduction algorithm first receives (1k, 1w, 1L) fromA. It sets ñ = (4λ+w)·n. The reduction algorithm
queries the LWE challenger m times, and receives {(ai, ui)}i≤m. It sets a matrix A = [aT1 aT2 . . .a

T
m] (that

is, A ∈ Zn×mq), and u = [u1u2 . . . um] (that is, u ∈ Zmq).

The reduction algorithm then chooses two tags tag∗, tag ← {0, 1}λ, and let j∗ be the first index where

they differ. Next, the reduction algorithm defines set S(i) for each i, set Ŝ, matrices {B(j,β)
i,b }(i,j,β,b)∈Ŝ ,

{Pi,v}i∈[`],v∈[w] and {Ti}i∈[`] as in 3.i∗.3 (and 3.i∗.4). Note that (i∗, j∗, β, b) /∈ Ŝ for b, β ∈ {0, 1}. The

reduction algorithm chooses B
(j∗,1)
i∗,b ← Zn×mq for b ∈ {0, 1}. It sends the public parameters to A.

The adversary sends two challenge functions BP(0),BP(1), and a ciphertext query BP. Note that in
Game 3.i∗.3 (and Game 3.i∗.4), the challenge and query ciphertext are computed identically, and the reduction
algorithm has all the matrices/trapdoors required for computing the ciphertext components.

Next, after receiving the challenge ciphertext and the query ciphertext, the adversary queries for secret
keys. For the first o − 1 secret keys, the reduction algorithm responds as in Ho−1,0 (which is identical to
the response in Ho,0). In particular, to handle these key queries, the reduction algorithm does not require

B
(j∗,b)
i∗,β , since in both hybrids, t̃

(j∗,β)

i∗ ← Zmq . For the oth query, the reduction algorithm receives x ∈ {0, 1}k.

It sets x̃ by repeating the input L times, and sets B
(j∗,0)
i∗,x̃i∗

= A (the LWE public matrix) and chooses

B
(j∗,0)
i∗,1−x̃i∗ ← Zn×mq (this might be used for the later key queries). The reduction algorithm sets

t̃
(j∗,0)

i∗ = −
i∗−1∑
α=1

(
t̃
(j∗,0)

α ·
i∗−1∏
δ=α

U
(0)
δ,x̃δ

)
− ỹ ·

i∗−1∏
δ=1

U
(0)
δ,x̃δ

+ s̃ ·P
i∗,st

(0)

i∗
+ u.

It computes t̃
(j∗,1)

i∗ as in Ho−1,0 (and Ho,0). All the remaining key queries are handled identically in Ho−1,0

and Ho,0, and the reduction algorithm has all the matrices required to compute them (in particular, after

responding to the oth query, all {B(j∗,β)
i∗,b }(b,β)∈{0,1}2 are well-defined).

Finally, the adversary sends its guess, and the reduction algorithm forwards it to the LWE challenger.

Clearly, if u is a uniformly random vector, then so is the t̃
(j∗,0)

i∗ component for oth query, and therefore

B perfectly simulates Ho,0. If t̃
(j∗,0)

i∗ = s · B(j∗,0)
i∗,x̃i

+ ẽ
(j∗,0)
i∗ , then the reduction algorithm implicitly sets

s
(j∗,0)
i∗ = s. Also, note that s

(j∗,0)
i∗ is chosen afresh for each key query, and hence s will not be required

anywhere else in simulating Ho−1,0. Therefore the reduction algorithm perfectly simulates Ho−1,0. As a
result, it breaks the LWE assumption with advantage η.

Claim 8.5. Assuming the (n, q, σlwe)-LWE assumption, for any PPT adversary A making qkeys(·) key queries,
there exists a negligible function no,1(·) such that for all λ ∈ N, qkeys = qkeys(λ) and all indices o ∈ [qkeys],
aA,o−1,1 − aA,o,1 ≤ no,1(λ).

This proof is identical to the proof of Claim 8.4.
Using the above claims, it follows that for any PPT adversary, there exists a negligible function negl3.i∗.4

such that for all λ ∈ N, AdvA,3.i∗.3(λ)− AdvA,3.i∗.4(λ) ≤ negl3.i∗.4(λ).

79

Lemma 8.9. For any PPT adversary A, there exists a negligible function negl3.(i∗+1).1(·) such that for all
λ ∈ N, AdvA,3.i∗.4(λ)− AdvA,3.(i∗+1).1(λ) ≤ negl3.(i∗+1).1(λ).

Proof. The only difference between Game 3.i∗.4 and Game 3.(i∗ + 1).1 is that for each key query, the com-

ponents
(
t
(j∗,0)
i∗+1 , t

(j∗,1)
i∗+1

)
are computed differently. In particular, in Game 3.(i∗ + 1).1, the term t̃

(j∗,β)

i∗+1 has

an additional term ẽ
(j∗,β)
i∗+1 which is drawn from the χmlwe distribution.

The proof of this lemma is identical to the proof of Lemma 8.5 by setting negl3.(i∗+1).1(·) = qkeys(·) · (2m ·
neglsmud(·)) (recall neglsmud(·) is the negligible function given by Lemma 2.1).

Next, we will look at Game 4.i for i ∈ [`]. For notational convenience, we call Game 4 to be Game 4.0.
First, recall that Game 4.0 is identical to 3.`.4. Note that in Game 4.0, the challenger uses {P1,v}v∈[w] only

for computing
(
U∗1,0,U

∗
1,1

)
(for the challenge ciphertext) and (U1,0,U1,1) (for the ciphertext query). In

particular, it is not used in the key generation phase. More generally, for all i ∈ [`], {Pi,v}v∈[w] is used in

Game 4.(i− 1) only for computing
(
U∗i,0,U

∗
i,1

)
and (Ui,0,Ui,1). This observation is useful for the following

lemma.

Lemma 8.10. Assuming LTen satisfies the (q, χappr, σpre)-target switching property, then for any PPT ad-
versary A, there exists a negligible function negl4.i∗(·) such that for all λ ∈ N and i∗ ∈ [`], AdvA,4.(i∗−1) −
AdvA,4.i∗ ≤ negl4.i∗(λ).

Proof. The only difference between Game 4.(i∗−1) and Game 4.i∗ is with respect to the matrices
(
U∗i∗,0,U

∗
i∗,1

)
(in the challenge ciphertext) and (Ui∗,0,Ui∗,1) (in the ciphertext query). In Game 4.(i∗ − 1), these matrices
are computed using Mixed-SubEnc, while they are computed using Mixed-SubEnc∗ in Game 4.i∗. The only dif-
ference between the Mixed-SubEnc and Mixed-SubEnc∗ ciphertext components is that the Mixed-SubEnc∗ out-
puts map the {Pi∗,v}v∈[w] matrices to uniformly random matrices (instead of mapping to

{
Pi∗+1,π(v)

}
v∈[w]

as in Mixed-SubEnc). An important point to note is that the {Pi∗,v}v∈[w] matrices are not used anywhere

else in the security game in both games. In particular, note that {Pi∗,v}v∈[w] are not used for computing{
U∗i∗−1,b,Ui∗−1,b

}
b∈{0,1}.

Suppose there exists an adversaryA and a non-negligible function η(·) such that Adv4.i∗−1(λ)−Adv4.i∗(λ) ≥
η(λ). We will construct a reduction algorithm that breaks the target switching property with advantage η(·).

Setup Phase The reduction algorithm first performs the following steps from the setup phase, which are
common for both Game 4.(i∗− 1) and Game 4.i∗. It defines ñi, S

(i) for all i ∈ [`], chooses tag∗, tag← {0, 1}λ

and defines j∗ as the first index where tag∗ and tag differ. Next, it defines

{{
B

(j,β)
i,b

}
(j,β,b)∈S(i)

, {Pi,v}v∈[w] , Ti

}
i6=i∗

as in Game 4.(i∗ − 1). It also defines Ŝ and chooses
{

C
(j,β)
i,b

}
(i,j,β,b)∈Ŝ

as in Game 4.(i∗ − 1).

The reduction algorithm sets k̃ = ñi − w · n and queries the target switching property challenger by

sending 1ñi , 1m and set SB = [k̃]. It receives a matrix A ∈ Zk̃×mq , and parses A as follows :

A =

[{
B

(1,β)
j,b

}
(j,β,b)∈S(i∗)

]
Challenge Phase The reduction algorithm receives BP(1), BP(2). It chooses γ ← {0, 1}, and for all

α < i∗, it computes
(
U∗α,0,U

∗
α,1

)
using Mixed-SubEnc∗ (as in Game 4.(i∗ − 1) and Game 4.i∗). Note in

particular that {Pi∗,v}v∈[w] are not used for computing these matrices. It then sends its target switching
property query matrices Z∗0,b,Z

∗
1,b of dimensions ñi ×m defined below.

Z∗0,b =


{

C
(j,β)
i∗,b

}
(j,β,b)∈S(i∗){

Pi∗,πγ
i∗,b(v)

}
v∈[w]

Z∗1,b =

[{
C

(j,β)
i∗,b

}
(j,β,b)∈S(i∗)

← Zw·n×mq

]

80

It receives U∗i∗,b from the challenger.
Query Phase The ciphertext query is handled similar to the challenge ciphertext. The key queries are

handled identically in both Game 4.(i∗ − 1) and Game 4.i∗.

Lemma 8.11. For any adversary A, AdvA,5 = 0.

Proof. We will argue that any adversary A has advantage 0 in Game 5. First, note that the challenge phase
uses Mixed-SubEnc∗. As a result, it does not have any information about the choice γ ← {0, 1}. Next, in the

key query phase, for each key query, the challenger chooses P
(β)

`+1,st
(β)
`+1

, which might depend on γ. However,

the important point here is that for each key query x, both the challenge programs have identical output.

Therefore, the P
(β)

`+1,st
(β)
`+1

matrices are independent of γ. As a result, the adversary has zero advantage in

Game 5.

8.4.3 1-Bounded Restricted Accept Indistinguishability

To prove restricted accept indistinguishability security, we take a slighty different approach. First, we show
that our construction achieves complete accept indistinguishability security which is defined as follows.

Definition 8.1 (q-bounded Complete Accept Indistinguishability). Let q(·) be any fixed polynomial. A
mixed functional encryption scheme Mixed-FE = (Setup,Enc,SK-Enc,KeyGen,Dec) is said to satisfy q-
bounded complete accept indistinguishability security if there exists algorithms SK-Enc∗,KeyGen∗ such that
for every stateful PPT adversary A, there exists a negligible function negl(·), such that for every λ ∈ N the
following holds:

Pr

AOb1(·),Ob2(·)(pp, ctb) = b :
(1κ, f∗)← A(1λ); (pp,msk)← Setup(1λ, 1κ)

b← {0, 1}; ct1 ← SK-Enc(msk, f∗)
ct0 ← Enc(pp)

 ≤ 1

2
+ negl(λ)

where

• oraclesOb1(·), Ob2(·) are defined asO0
1(·) = KeyGen∗(pp, ·), O1

1(·) = KeyGen(msk, ·), O0
2(·) = SK-Enc∗(pp, ·),

O1
2(·) = SK-Enc(msk, ·).

• A can make at most q(λ) queries to Ob2(·) oracle,

• every secret key query m made by adversary A to the Ob1(·) oracle must satisfy the condition that
f∗(m) = 1 as well as f(m) = 1 for every ciphertext query f made by A to the Ob2(·) oracle, and

• A must make all (at most q(λ)) Ob2(·) oracle queries before making any query to Ob1(·) oracle.

At a high level, it says that if the adversary only queries for keys for inputs m and ciphertexts for
functions f such that f(m) = 1 on all combinations, then there exists special encryption and key generation
algorithms (SK-Enc∗,KeyGen∗) such that they only take public parameters as inputs and the adversary can
not distinguish between correctly computed keys and ciphertexts from these (simulated) special keys and
ciphertexts.
Below we provide a sequence of hybrid games that we later use to argue complete accept indistinguisha-
bility security. To complete the argument, later (in Section 8.4.5) we simply argue that complete accept
indistinguishability implies restricted accept indistinguishability.

Game 0 : This corresponds to the original 1-bounded restricted accept indistinguishability security game
in which the challenger encrypts the challenge branching program BP∗ sent by the adversary.

• Setup Phase. The adversary sends the functionality index (k,w, L) and description of branching
program BP∗ to the challenger. Then the challenger proceeds as follows—

81

1. It chooses an LWE modulus q, dimensions n,m, and also distributions χbig, χs, χappr, χpre, χlast, χlwe

as described in the construction. Recall ` = k · L and ñ = (4λ+ w)n.

2. Next, it samples
{

B
(j,β)
i,b

}
i,j,β,b

, {Pi,v}i,v matrices as

∀ i ∈ [`],

{B
(j,β)
i,b

}
(j,β,b)∈[λ]×{0,1}2

{Pi,v}v∈[w]

 , Ti
← EnTrapGen(1ñ, 1m, q).

3. It then samples matrices C
(j,β)
i,b ← Zn×mq for i ∈ [`], j ∈ [λ], β, b ∈ {0, 1}.

4. Finally, it sends the public parameters pp = (λ, n,m, q, k, w, L, χpre) to the adversary.

• Challenge Phase. The challenger chooses a random λ-bit string tag∗ ← {0, 1}λ. Let

BP∗ =
({
π∗i,b : [w]→ [w]

}
i∈[`],b∈{0,1} , acc∗ ∈ [w], rej∗ ∈ [w]

)
,

S∗ = [`]× [λ]× {0, 1}2.

The challenger then runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`],
({

U∗α,0,U
∗
α,1

})
← Mixed-SubEnc

 tag∗, α, S∗,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S∗

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP∗

 .

Finally, it sends the challenge ciphertext as
(

tag∗,
{
U∗i,b

}
i∈[`],b∈{0,1}

)
.

• Post-Challenge Phase. The adversary is allowed make at most 1 secret key encryption query,
followed by polynomially many secret key queries. The challenger responds to each query as below.

1. Ciphertext Query. The adversary sends a branching program BP for encryption. The challenger
chooses a λ-bit string tag← {0, 1}λ, and responds as follows.

(a) Let S = [`]× [λ]× {0, 1}2. It runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`], ({Uα,0,Uα,1})← Mixed-SubEnc

 tag, α, S,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP

 .

(b) Finally, it sends the ciphertext as
(

tag, {Ui,b}i∈[`],b∈{0,1}

)
.

2. Secret Key Queries. The adversary queries the challenger on polynomially many messages for
corresponding secret keys. For each queried string x, the challenger responds as follows.

(a) It chooses a secret vector as s̃← χns and λ− 1 random vectors as y(j) ← Zmq for j ∈ [λ− 1].

Next, it sets vector y(λ) as

y(λ) = s̃ ·P1,1 −
∑

j∈[λ−1]

y(j).

(b) It then chooses secret vectors
{

s
(j,β)
i

}
i,j,β

and error vectors
{

e
(j,β)
i

}
i,j,β

as

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, s
(j,β)
i ← Znq ,

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, e
(j,β)
i ← χmbig,

∀ (j, β) ∈ [λ]× {0, 1}, e
(j,β)
`+1 ← χmlast.

82

(c) Let x̃ = xL. Next, it computes key vectors
{

t
(j,β)
i

}
i,j,β

as follows.

∀ (i, j, β) ∈ [`+ 1]× [λ]× {0, 1},

t
(j,β)
i =


s

(j,β)
1 ·B(j,β)

1,x̃1
+ y(j) + e

(j,β)
1 if i = 1

−s
(j,β)
i−1 ·C

(j,β)
i−1,x̃i−1

+ s
(j,β)
i ·B(j,β)

i,x̃i
+ e

(j,β)
i if 1 < i ≤ `

−s
(j,β)
` ·C(j,β)

`,x̃`
+ e

(j,β)
`+1 if i = `+ 1

(d) Finally, it sends the secret key as

(
x,
{

t
(j,β)
i

}
(i,j,β)∈[`+1]×[λ]×{0,1}

)
.

• Guess. The adversary finally sends the guess γ′.

Game 1 : This is identical to the previous game, except the challenger now chooses both tags tag∗ and tag
at the beginning during setup phase, and it aborts if tag∗ = tag.

• Setup Phase. The adversary sends the functionality index (k,w, L) and description of branching
program BP∗ to the challenger. Then the challenger proceeds as follows—

1. It chooses an LWE modulus q, dimensions n,m, and also distributions χbig, χs, χappr, χpre, χlast, χlwe

as described in the construction. Recall ` = k · L and ñ = (4λ + w)n. It also chooses two λ-bit
strings tag∗, tag ← {0, 1}λ. If tag∗ = tag, then it aborts and the adversary wins. Otherwise, the
challenger continues as below.

2. Next, it samples
{

B
(j,β)
i,b

}
i,j,β,b

, {Pi,v}i,v matrices as

∀ i ∈ [`],

{B
(j,β)
i,b

}
(j,β,b)∈[λ]×{0,1}2

{Pi,v}v∈[w]

 , Ti
← EnTrapGen(1ñ, 1m, q).

3. It then samples matrices C
(j,β)
i,b ← Zn×mq for i ∈ [`], j ∈ [λ], β, b ∈ {0, 1}.

4. Finally, it sends the public parameters pp = (λ, n,m, q, k, w, L, χpre) to the adversary.

• Challenge Phase. Let

BP∗ =
({
π∗i,b : [w]→ [w]

}
i∈[`],b∈{0,1} , acc∗ ∈ [w], rej∗ ∈ [w]

)
,

S∗ = [`]× [λ]× {0, 1}2.

The challenger then runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`],
({

U∗α,0,U
∗
α,1

})
← Mixed-SubEnc

 tag∗, α, S∗,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S∗

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP∗

 .

Finally, it sends the challenge ciphertext as
(

tag∗,
{
U∗i,b

}
i∈[`],b∈{0,1}

)
.

• Post-Challenge Phase. The adversary is allowed make at most 1 secret key encryption query,
followed by polynomially many secret key queries. The challenger responds to each query as below.

1. Ciphertext Query. The adversary sends a branching program BP for encryption. The challenger
responds as follows.

83

(a) Let S = [`]× [λ]× {0, 1}2. It runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`], ({Uα,0,Uα,1})← Mixed-SubEnc

 tag, α, S,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP

 .

(b) Finally, it sends the ciphertext as
(

tag, {Ui,b}i∈[`],b∈{0,1}

)
.

2. Secret Key Queries. The adversary queries the challenger on polynomially many messages for
corresponding secret keys. For each queried string x, the challenger responds as follows.

(a) It chooses a secret vector as s̃← χns and λ− 1 random vectors as y(j) ← Zmq for j ∈ [λ− 1].

Next, it sets vector y(λ) as

y(λ) = s̃ ·P1,1 −
∑

j∈[λ−1]

y(j).

(b) It then chooses secret vectors
{

s
(j,β)
i

}
i,j,β

and error vectors
{

e
(j,β)
i

}
i,j,β

as

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, s
(j,β)
i ← Znq ,

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, e
(j,β)
i ← χmbig,

∀ (j, β) ∈ [λ]× {0, 1}, e
(j,β)
`+1 ← χmlast.

(c) Let x̃ = xL. Next, it computes key vectors
{

t
(j,β)
i

}
i,j,β

as follows.

∀ (i, j, β) ∈ [`+ 1]× [λ]× {0, 1},

t
(j,β)
i =


s

(j,β)
1 ·B(j,β)

1,x̃1
+ y(j) + e

(j,β)
1 if i = 1

−s
(j,β)
i−1 ·C

(j,β)
i−1,x̃i−1

+ s
(j,β)
i ·B(j,β)

i,x̃i
+ e

(j,β)
i if 1 < i ≤ `

−s
(j,β)
` ·C(j,β)

`,x̃`
+ e

(j,β)
`+1 if i = `+ 1

(d) Finally, it sends the secret key as

(
x,
{

t
(j,β)
i

}
(i,j,β)∈[`+1]×[λ]×{0,1}

)
.

• Guess. The adversary finally sends the guess γ′.

Notation. In all the following hybrid games, let diff denote the set of indices j such that tag∗j 6= tagj .
Similarly, let comm denote the set of indices j such that tag∗j = tagj . Concretely, in all the following hybrids
sets diff and comm are defined as follows:

diff
def
=
{
j ∈ [λ] : tag∗j 6= tagj

}
, comm

def
= comm.

Additionally, let j∗ denote the smallest index in diff (i.e. j∗ = minj j ∈ diff), and β∗ = tag∗j∗ . Note that
since the challenger aborts whenever tag∗ = tag, thus j∗, β∗ always exist whenever the challenger does not

abort. Also, we will use d̂iff to denote the set diff excluding index j∗, i.e. d̂iff = diff \ {j∗}.

Game 2 : This is identical to the previous game, except the challenger while answering a secret key query
now puts the s̃ ·P1,1 component in y(j∗) instead of y(λ), and rest are sampled uniformly at random.

• Setup Phase. The adversary sends the functionality index (k,w, L) and description of branching
program BP∗ to the challenger. Then the challenger proceeds as follows—

84

1. It chooses an LWE modulus q, dimensions n,m, and also distributions χbig, χs, χappr, χpre, χlast, χlwe

as described in the construction. Recall ` = k · L and ñ = (4λ + w)n. It also chooses two λ-bit
strings tag∗, tag ← {0, 1}λ. If tag∗ = tag, then it aborts and the adversary wins. Otherwise, the
challenger continues as below.

2. Next, it samples
{

B
(j,β)
i,b

}
i,j,β,b

, {Pi,v}i,v matrices as

∀ i ∈ [`],

{B
(j,β)
i,b

}
(j,β,b)∈[λ]×{0,1}2

{Pi,v}v∈[w]

 , Ti
← EnTrapGen(1ñ, 1m, q).

3. It then samples matrices C
(j,β)
i,b ← Zn×mq for i ∈ [`], j ∈ [λ], β, b ∈ {0, 1}.

4. Finally, it sends the public parameters pp = (λ, n,m, q, k, w, L, χpre) to the adversary.

• Challenge Phase. Let

BP∗ =
({
π∗i,b : [w]→ [w]

}
i∈[`],b∈{0,1} , acc∗ ∈ [w], rej∗ ∈ [w]

)
,

S∗ = [`]× [λ]× {0, 1}2.

The challenger then runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`],
({

U∗α,0,U
∗
α,1

})
← Mixed-SubEnc

 tag∗, α, S∗,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S∗

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP∗

 .

Finally, it sends the challenge ciphertext as
(

tag∗,
{
U∗i,b

}
i∈[`],b∈{0,1}

)
.

• Post-Challenge Phase. The adversary is allowed make at most 1 secret key encryption query,
followed by polynomially many secret key queries. The challenger responds to each query as below.

1. Ciphertext Query. The adversary sends a branching program BP for encryption. The challenger
responds as follows.

(a) Let S = [`]× [λ]× {0, 1}2. It runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`], ({Uα,0,Uα,1})← Mixed-SubEnc

 tag, α, S,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP

 .

(b) Finally, it sends the ciphertext as
(

tag, {Ui,b}i∈[`],b∈{0,1}

)
.

2. Secret Key Queries. The adversary queries the challenger on polynomially many messages for
corresponding secret keys. For each queried string x, the challenger responds as follows.

(a) It chooses a secret vector as s̃← χns and λ−1 random vectors as y(j) ← Zmq for j ∈ [λ]\{j∗}.
Next, it sets vector y(j∗) as

y(j∗) = s̃ ·P1,1 −
∑

j∈[λ]\{j∗}

y(j).

(b) It then chooses secret vectors
{

s
(j,β)
i

}
i,j,β

and error vectors
{

e
(j,β)
i

}
i,j,β

as

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, s
(j,β)
i ← Znq ,

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, e
(j,β)
i ← χmbig,

∀ (j, β) ∈ [λ]× {0, 1}, e
(j,β)
`+1 ← χmlast.

85

(c) Let x̃ = xL. Next, it computes key vectors
{

t
(j,β)
i

}
i,j,β

as follows.

∀ (i, j, β) ∈ [`+ 1]× [λ]× {0, 1},

t
(j,β)
i =


s

(j,β)
1 ·B(j,β)

1,x̃1
+ y(j) + e

(j,β)
1 if i = 1

−s
(j,β)
i−1 ·C

(j,β)
i−1,x̃i−1

+ s
(j,β)
i ·B(j,β)

i,x̃i
+ e

(j,β)
i if 1 < i ≤ `

−s
(j,β)
` ·C(j,β)

`,x̃`
+ e

(j,β)
`+1 if i = `+ 1

(d) Finally, it sends the secret key as

(
x,
{

t
(j,β)
i

}
(i,j,β)∈[`+1]×[λ]×{0,1}

)
.

• Guess. The adversary finally sends the guess γ′.

Next, we have a sequence of 4` hybrid experiments Game 3.i∗. {1, 2, 3, 4} for i∗ = 1 to `.

Game 3.i∗.1 : In hybrids Game 3.i∗.1, the B
(j,β)
i,b ,C

(j,β)
i,b matrices for all diff strands and levels i < i∗ are

not sampled (at all) along with other level i matrices. And, ciphertext components for levels i < i∗ are used

to only target remaining matrices, i.e. the ciphertext matrices do not target B
(j,β)
i,b matrices for j ∈ diff and

i < i∗ to some pre-specified C
(j,β)
i,b or random matrices. Also, the first i∗ − 1 components in each secret key

are set to be uniformly random vectors, and the next component is hardwired such that correctness holds
as well as some smudge-able noise is introduced in these components. Below we describe it in detail.

• Setup Phase. The adversary sends the functionality index (k,w, L) and description of branching
program BP∗ to the challenger. Then the challenger proceeds as follows—

1. It chooses an LWE modulus q, dimensions n,m, and also distributions χbig, χs, χappr, χpre, χlast, χlwe

as described in the construction. Recall ` = k · L and ñ = (4λ + w)n. It also chooses two λ-bit
strings tag∗, tag ← {0, 1}λ. If tag∗ = tag, then it aborts and the adversary wins. Otherwise, the
challenger continues as below. Let S(i) denote the following sets:

∀ i < i∗, S(i) = comm× {0, 1}2,
∀ i ≥ i∗, S(i) = [λ]× {0, 1}2.

Also, let ñi =

{
ñ− |diff| · 4n for i < i∗

ñ for i ≥ i∗
, and set Ŝ =

{
(i, j, β, b) ∈ [`]× [λ]× {0, 1}2 : (j, β, b) ∈ S(i)

}
.

2. It samples
{

B
(j,β)
i,b

}
i,j,β,b

, {Pi,v}i,v matrices as

∀ i ∈ [`],

{B
(j,β)
i,b

}
(j,β,b)∈S(i)

{Pi,v}v∈[w]

 , Ti
← EnTrapGen(1ñi , 1m, q).

3. It then samples matrices C
(j,β)
i,b ← Zn×mq for (i, j, β, b) ∈ Ŝ.

4. Finally, it sends the public parameters pp = (λ, n,m, q, k, w, L, χpre) to the adversary.

• Challenge Phase. Let

BP∗ =
({
π∗i,b : [w]→ [w]

}
i∈[`],b∈{0,1} , acc∗ ∈ [w], rej∗ ∈ [w]

)
,

S∗ = Ŝ.

86

The challenger then runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`],
({

U∗α,0,U
∗
α,1

})
← Mixed-SubEnc

 tag∗, α, S∗,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S∗

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP∗

 .

Finally, it sends the challenge ciphertext as
(

tag∗,
{
U∗i,b

}
i∈[`],b∈{0,1}

)
.

• Post-Challenge Phase. The adversary is allowed make at most 1 secret key encryption query,
followed by polynomially many secret key queries. The challenger responds to each query as below.

1. Ciphertext Query. The adversary sends a branching program BP for encryption. The challenger
responds as follows.

(a) Let S = Ŝ. It runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`], ({Uα,0,Uα,1})← Mixed-SubEnc

 tag, α, S,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP

 .

(b) Finally, it sends the ciphertext as
(

tag, {Ui,b}i∈[`],b∈{0,1}

)
.

2. Secret Key Queries. The adversary queries the challenger on polynomially many messages for
corresponding secret keys. For each queried string x, the challenger responds as follows.

(a) It chooses a secret vector as s̃← χns and λ−1 random vectors as y(j) ← Zmq for j ∈ [λ]\{j∗}.

(b) It then chooses vectors s
(j,β)
i , e

(j,β)
i , t̃

(j,β)

i , ẽ
(j,β)
i as follows

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, s
(j,β)
i ← Znq ,

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, e
(j,β)
i ← χmbig,

∀ (j, β) ∈ [λ]× {0, 1}, e
(j,β)
`+1 ← χmlast,

∀ (i, j, β) ∈ [i∗ − 1]× diff × {0, 1}, t̃
(j,β)

i ← Zmq ,

∀ (j, β) ∈ diff × {0, 1}, ẽ
(j,β)
i∗ ← χmlwe.

(c) Let x̃ = xL, and st
(1−β∗)
i∗ , st

(β∗)
i∗ denote the state of branching programs BP, BP∗ after i∗ − 1

steps (respectively). Also, let Γ, ỹ and U
(β)
i,b denote the following:

Γ = [`+ 1]× comm× {0, 1}, ỹ =
∑

j∈[λ]\{j∗}

y(j)

∀ (i, β, b) ∈ [`]× {0, 1}2, U
(β)
i,b =

{
U∗i,b if β = β∗

Ui,b if β = 1− β∗

Next, it computes key vectors
{

t
(j,β)
i

}
i,j,β

as follows.

∀ (i, j, β) ∈ Γ, t
(j,β)
i =


s

(j,β)
1 ·B(j,β)

1,x̃1
+ y(j) + e

(j,β)
1 if i = 1

−s
(j,β)
i−1 ·C

(j,β)
i−1,x̃i−1

+ s
(j,β)
i ·B(j,β)

i,x̃i
+ e

(j,β)
i if 1 < i ≤ `

−s
(j,β)
` ·C(j,β)

`,x̃`
+ e

(j,β)
`+1 if i = `+ 1

87

∀ (i, j, β) ∈ [i∗ − 1]× diff × {0, 1}, t
(j,β)
i = t̃

(j,β)

i + e
(j,β)
i

∀ (j, β) ∈ d̂iff × {0, 1}, t
(j,β)
i∗ = −

i∗−1∑
α=1

(
t̃
(j,β)

α ·
i∗−1∏
δ=α

U
(β)
δ,x̃δ

)
+ y(j) ·

i∗−1∏
δ=1

U
(β)
δ,x̃δ

+ s
(j,β)
i∗ ·B(j,β)

i∗,x̃i∗
+ ẽ

(j,β)
i∗ + e

(j,β)
i∗

∀ β ∈ {0, 1}, t
(j∗,β)
i∗ = −

i∗−1∑
α=1

(
t̃
(j∗,β)

α ·
i∗−1∏
δ=α

U
(β)
δ,x̃δ

)
− ỹ ·

i∗−1∏
δ=1

U
(β)
δ,x̃δ

+ s̃ ·P
i∗,st

(β)

i∗
+ s

(j∗,β)
i∗ ·B(j∗,β)

i∗,x̃i∗
+ ẽ

(j∗,β)
i∗ + e

(j∗,β)
i∗

∀ (i, j, β) ∈ ([`+ 1] \ [i∗])× diff × {0, 1},

t
(j,β)
i =

{
−s

(j,β)
i−1 ·C

(j,β)
i−1,x̃i−1

+ s
(j,β)
i ·B(j,β)

i,x̃i
+ e

(j,β)
i if i ≤ `

−s
(j,β)
` ·C(j,β)

`,x̃`
+ e

(j,β)
`+1 if i = `+ 1

(d) Finally, it sends the secret key as

(
x,
{

t
(j,β)
i

}
(i,j,β)∈[`+1]×[λ]×{0,1}

)
.

• Guess. The adversary finally sends the guess γ′.

Game 3.i∗.2 : This is identical to the previous game, except the (i∗+ 1)th key component in all diff strands
is also hardwired. Below we describe it in detail.

• Setup Phase. The adversary sends the functionality index (k,w, L) and description of branching
program BP∗ to the challenger. Then the challenger proceeds as follows—

1. It chooses an LWE modulus q, dimensions n,m, and also distributions χbig, χs, χappr, χpre, χlast, χlwe

as described in the construction. Recall ` = k · L and ñ = (4λ + w)n. It also chooses two λ-bit
strings tag∗, tag ← {0, 1}λ. If tag∗ = tag, then it aborts and the adversary wins. Otherwise, the
challenger continues as below. Let S(i) denote the following sets:

∀ i < i∗, S(i) = comm× {0, 1}2,
∀ i ≥ i∗, S(i) = [λ]× {0, 1}2.

Also, let ñi =

{
ñ− |diff| · 4n for i < i∗

ñ for i ≥ i∗
, and set Ŝ =

{
(i, j, β, b) ∈ [`]× [λ]× {0, 1}2 : (j, β, b) ∈ S(i)

}
.

2. It samples
{

B
(j,β)
i,b

}
i,j,β,b

, {Pi,v}i,v matrices as

∀ i ∈ [`],

{B
(j,β)
i,b

}
(j,β,b)∈S(i)

{Pi,v}v∈[w]

 , Ti
← EnTrapGen(1ñi , 1m, q).

3. It then samples matrices C
(j,β)
i,b ← Zn×mq for (i, j, β, b) ∈ Ŝ.

4. Finally, it sends the public parameters pp = (λ, n,m, q, k, w, L, χpre) to the adversary.

• Challenge Phase. Let

BP∗ =
({
π∗i,b : [w]→ [w]

}
i∈[`],b∈{0,1} , acc∗ ∈ [w], rej∗ ∈ [w]

)
,

S∗ = Ŝ.

88

The challenger then runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`],
({

U∗α,0,U
∗
α,1

})
← Mixed-SubEnc

 tag∗, α, S∗,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S∗

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP∗

 .

Finally, it sends the challenge ciphertext as
(

tag∗,
{
U∗i,b

}
i∈[`],b∈{0,1}

)
.

• Post-Challenge Phase. The adversary is allowed make at most 1 secret key encryption query,
followed by polynomially many secret key queries. The challenger responds to each query as below.

1. Ciphertext Query. The adversary sends a branching program BP for encryption. The challenger
responds as follows.

(a) Let S = Ŝ. It runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`], ({Uα,0,Uα,1})← Mixed-SubEnc

 tag, α, S,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP

 .

(b) Finally, it sends the ciphertext as
(

tag, {Ui,b}i∈[`],b∈{0,1}

)
.

2. Secret Key Queries. The adversary queries the challenger on polynomially many messages for
corresponding secret keys. For each queried string x, the challenger responds as follows.

(a) It chooses a secret vector as s̃← χns and λ−1 random vectors as y(j) ← Zmq for j ∈ [λ]\{j∗}.

(b) It then chooses vectors s
(j,β)
i , e

(j,β)
i , t̃

(j,β)

i , ẽ
(j,β)
i as follows

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, s
(j,β)
i ← Znq ,

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, e
(j,β)
i ← χmbig,

∀ (j, β) ∈ [λ]× {0, 1}, e
(j,β)
`+1 ← χmlast,

∀ (i, j, β) ∈ [i∗ − 1]× diff × {0, 1}, t̃
(j,β)

i ← Zmq ,

∀ (j, β) ∈ diff × {0, 1}, ẽ
(j,β)
i∗ ← χmlwe.

(c) Let x̃ = xL, and st
(1−β∗)
i∗ , st

(β∗)
i∗ denote the state of branching programs BP, BP∗ after i∗ − 1

steps (respectively). Also, let Γ, ỹ and U
(β)
i,b denote the following:

Γ = [`+ 1]× comm× {0, 1}, ỹ =
∑

j∈[λ]\{j∗}

y(j)

∀ (i, β, b) ∈ [`]× {0, 1}2, U
(β)
i,b =

{
U∗i,b if β = β∗

Ui,b if β = 1− β∗

Also, for (j, β) ∈ diff × {0, 1}, let B
(j,β)
`+1,x̃`+1

= 0n×m, and t̃
(j,β)

i∗ denote the following vector.

∀ j ∈ d̂iff, t̃
(j,β)

i∗ = −
i∗−1∑
α=1

(
t̃
(j,β)

α ·
i∗−1∏
δ=α

U
(β)
δ,x̃δ

)
− y(j) ·

i∗−1∏
δ=1

U
(β)
δ,x̃δ

+ s
(j,β)
i∗ ·B(j,β)

i∗,x̃i∗
+ ẽ

(j,β)
i∗ .

t̃
(j∗,β)

i∗ = −
i∗−1∑
α=1

(
t̃
(j∗,β)

α ·
i∗−1∏
δ=α

U
(β)
δ,x̃δ

)
− ỹ ·

i∗−1∏
δ=1

U
(β)
δ,x̃δ

+ s̃ ·P
i∗,st

(β)

i∗
+ s

(j∗,β)
i∗ ·B(j∗,β)

i∗,x̃i∗
+ ẽ

(j∗,β)
i∗ .

89

Next, it computes key vectors
{

t
(j,β)
i

}
i,j,β

as follows.

∀ (i, j, β) ∈ Γ, t
(j,β)
i =


s

(j,β)
1 ·B(j,β)

1,x̃1
+ y(j) + e

(j,β)
1 if i = 1

−s
(j,β)
i−1 ·C

(j,β)
i−1,x̃i−1

+ s
(j,β)
i ·B(j,β)

i,x̃i
+ e

(j,β)
i if 1 < i ≤ `

−s
(j,β)
` ·C(j,β)

`,x̃`
+ e

(j,β)
`+1 if i = `+ 1

∀ (i, j, β) ∈ [i∗ − 1]× diff × {0, 1}, t
(j,β)
i = t̃

(j,β)

i + e
(j,β)
i

∀ (j, β) ∈ d̂iff × {0, 1}, t
(j,β)
i∗ = t̃

(j,β)

i∗ + e
(j,β)
i∗

∀ β ∈ {0, 1}, t
(j∗,β)
i∗ = t̃

(j∗,β)

i∗ + e
(j∗,β)
i∗

∀ (j, β) ∈ d̂iff × {0, 1}, t
(j,β)
i∗+1 = −

i∗∑
α=1

(
t̃
(j,β)

α ·
i∗∏
δ=α

U
(β)
δ,x̃δ

)
+ y(j) ·

i∗∏
δ=1

U
(β)
δ,x̃δ

+ s
(j,β)
i∗+1 ·B

(j,β)
i∗+1,x̃i∗+1 + e

(j,β)
i∗+1

∀ β ∈ {0, 1}, t
(j∗,β)
i∗+1 = −

i∗∑
α=1

(
t̃
(j∗,β)

α ·
i∗∏
δ=α

U
(β)
δ,x̃δ

)
− ỹ ·

i∗∏
δ=1

U
(β)
δ,x̃δ

+ s̃ ·P
i∗+1,st

(β)

i∗+1

+ s
(j∗,β)
i∗+1 ·B

(j∗,β)
i∗+1,x̃i∗+1 + e

(j∗,β)
i∗+1

∀ (i, j, β) ∈ ([`+ 1] \ [i∗ + 1])× diff × {0, 1},

t
(j,β)
i =

{
−s

(j,β)
i−1 ·C

(j,β)
i−1,x̃i−1

+ s
(j,β)
i ·B(j,β)

i,x̃i
+ e

(j,β)
i if i ≤ `

−s
(j,β)
` ·C(j,β)

`,x̃`
+ e

(j,β)
`+1 if i = `+ 1

(d) Finally, it sends the secret key as

(
x,
{

t
(j,β)
i

}
(i,j,β)∈[`+1]×[λ]×{0,1}

)
.

• Guess. The adversary finally sends the guess γ′.

Game 3.i∗.3 : This is identical to the previous game, except the matrices B
(j,β)
i,b ,C

(j,β)
i,b for diff strands and

levels i = i∗ are not sampled along with other level i∗ matrices, but instead they are sampled uniformly
at random. Also, ciphertext components for level i∗ are used to only target remaining matrices. Below we
describe it in detail.

• Setup Phase. The adversary sends the functionality index (k,w, L) and description of branching
program BP∗ to the challenger. Then the challenger proceeds as follows—

1. It chooses an LWE modulus q, dimensions n,m, and also distributions χbig, χs, χappr, χpre, χlast, χlwe

as described in the construction. Recall ` = k · L and ñ = (4λ + w)n. It also chooses two λ-bit
strings tag∗, tag ← {0, 1}λ. If tag∗ = tag, then it aborts and the adversary wins. Otherwise, the
challenger continues as below. Let S(i) denote the following sets:

∀ i < i∗ + 1, S(i) = comm× {0, 1}2,
∀ i ≥ i∗ + 1, S(i) = [λ]× {0, 1}2.

Also, let ñi =

{
ñ− |diff| · 4n for i < i∗ + 1

ñ for i ≥ i∗ + 1
, and set Ŝ =

{
(i, j, β, b) ∈ [`]× [λ]× {0, 1}2 : (j, β, b) ∈ S(i)

}
.

90

2. It samples
{

B
(j,β)
i,b

}
i,j,β,b

, {Pi,v}i,v matrices as

∀ i ∈ [`],

{B
(j,β)
i,b

}
(j,β,b)∈S(i)

{Pi,v}v∈[w]

 , Ti
← EnTrapGen(1ñi , 1m, q),

∀ (j, β, b) ∈ diff × {0, 1}2, B
(j,β)
i∗,b ← Zn×mq .

3. It then samples matrices C
(j,β)
i,b ← Zn×mq for (i, j, β, b) ∈ Ŝ.

4. Finally, it sends the public parameters pp = (λ, n,m, q, k, w, L, χpre) to the adversary.

• Challenge Phase. Let

BP∗ =
({
π∗i,b : [w]→ [w]

}
i∈[`],b∈{0,1} , acc∗ ∈ [w], rej∗ ∈ [w]

)
,

S∗ = Ŝ.

The challenger then runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`],
({

U∗α,0,U
∗
α,1

})
← Mixed-SubEnc

 tag∗, α, S∗,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S∗

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP∗

 .

Finally, it sends the challenge ciphertext as
(

tag∗,
{
U∗i,b

}
i∈[`],b∈{0,1}

)
.

• Post-Challenge Phase. The adversary is allowed make at most 1 secret key encryption query,
followed by polynomially many secret key queries. The challenger responds to each query as below.

1. Ciphertext Query. The adversary sends a branching program BP for encryption. The challenger
responds as follows.

(a) Let S = Ŝ. It runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`], ({Uα,0,Uα,1})← Mixed-SubEnc

 tag, α, S,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP

 .

(b) Finally, it sends the ciphertext as
(

tag, {Ui,b}i∈[`],b∈{0,1}

)
.

2. Secret Key Queries. The adversary queries the challenger on polynomially many messages for
corresponding secret keys. For each queried string x, the challenger responds as follows.

(a) It chooses a secret vector as s̃← χns and λ−1 random vectors as y(j) ← Zmq for j ∈ [λ]\{j∗}.

(b) It then chooses vectors s
(j,β)
i , e

(j,β)
i , t̃

(j,β)

i , ẽ
(j,β)
i as follows

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, s
(j,β)
i ← Znq ,

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, e
(j,β)
i ← χmbig,

∀ (j, β) ∈ [λ]× {0, 1}, e
(j,β)
`+1 ← χmlast,

∀ (i, j, β) ∈ [i∗ − 1]× diff × {0, 1}, t̃
(j,β)

i ← Zmq ,

∀ (j, β) ∈ diff × {0, 1}, ẽ
(j,β)
i∗ ← χmlwe.

91

(c) Let x̃ = xL, and st
(1−β∗)
i∗ , st

(β∗)
i∗ denote the state of branching programs BP, BP∗ after i∗ − 1

steps (respectively). Also, let Γ, ỹ and U
(β)
i,b denote the following:

Γ = [`+ 1]× comm× {0, 1}, ỹ =
∑

j∈[λ]\{j∗}

y(j)

∀ (i, β, b) ∈ [`]× {0, 1}2, U
(β)
i,b =

{
U∗i,b if β = β∗

Ui,b if β = 1− β∗

Also, for (j, β) ∈ diff × {0, 1}, let B
(j,β)
`+1,x̃`+1

= 0n×m, and t̃
(j,β)

i∗ denote the following vector.

∀ j ∈ d̂iff, t̃
(j,β)

i∗ = −
i∗−1∑
α=1

(
t̃
(j,β)

α ·
i∗−1∏
δ=α

U
(β)
δ,x̃δ

)
− y(j) ·

i∗−1∏
δ=1

U
(β)
δ,x̃δ

+ s
(j,β)
i∗ ·B(j,β)

i∗,x̃i∗
+ ẽ

(j,β)
i∗ .

t̃
(j∗,β)

i∗ = −
i∗−1∑
α=1

(
t̃
(j∗,β)

α ·
i∗−1∏
δ=α

U
(β)
δ,x̃δ

)
− ỹ ·

i∗−1∏
δ=1

U
(β)
δ,x̃δ

+ s̃ ·P
i∗,st

(β)

i∗
+ s

(j∗,β)
i∗ ·B(j∗,β)

i∗,x̃i∗
+ ẽ

(j∗,β)
i∗ .

Next, it computes key vectors
{

t
(j,β)
i

}
i,j,β

as follows.

∀ (i, j, β) ∈ Γ, t
(j,β)
i =


s

(j,β)
1 ·B(j,β)

1,x̃1
+ y(j) + e

(j,β)
1 if i = 1

−s
(j,β)
i−1 ·C

(j,β)
i−1,x̃i−1

+ s
(j,β)
i ·B(j,β)

i,x̃i
+ e

(j,β)
i if 1 < i ≤ `

−s
(j,β)
` ·C(j,β)

`,x̃`
+ e

(j,β)
`+1 if i = `+ 1

∀ (i, j, β) ∈ [i∗ − 1]× diff × {0, 1}, t
(j,β)
i = t̃

(j,β)

i + e
(j,β)
i

∀ (j, β) ∈ d̂iff × {0, 1}, t
(j,β)
i∗ = t̃

(j,β)

i∗ + e
(j,β)
i∗

∀ β ∈ {0, 1}, t
(j∗,β)
i∗ = t̃

(j∗,β)

i∗ + e
(j∗,β)
i∗

∀ (j, β) ∈ d̂iff × {0, 1}, t
(j,β)
i∗+1 = −

i∗∑
α=1

(
t̃
(j,β)

α ·
i∗∏
δ=α

U
(β)
δ,x̃δ

)
+ y(j) ·

i∗∏
δ=1

U
(β)
δ,x̃δ

+ s
(j,β)
i∗+1 ·B

(j,β)
i∗+1,x̃i∗+1 + e

(j,β)
i∗+1

∀ β ∈ {0, 1}, t
(j∗,β)
i∗+1 = −

i∗∑
α=1

(
t̃
(j∗,β)

α ·
i∗∏
δ=α

U
(β)
δ,x̃δ

)
− ỹ ·

i∗∏
δ=1

U
(β)
δ,x̃δ

+ s̃ ·P
i∗+1,st

(β)

i∗+1

+ s
(j∗,β)
i∗+1 ·B

(j∗,β)
i∗+1,x̃i∗+1 + e

(j∗,β)
i∗+1

∀ (i, j, β) ∈ ([`+ 1] \ [i∗ + 1])× diff × {0, 1},

t
(j,β)
i =

{
−s

(j,β)
i−1 ·C

(j,β)
i−1,x̃i−1

+ s
(j,β)
i ·B(j,β)

i,x̃i
+ e

(j,β)
i if i ≤ `

−s
(j,β)
` ·C(j,β)

`,x̃`
+ e

(j,β)
`+1 if i = `+ 1

(d) Finally, it sends the secret key as

(
x,
{

t
(j,β)
i

}
(i,j,β)∈[`+1]×[λ]×{0,1}

)
.

• Guess. The adversary finally sends the guess γ′.

92

Game 3.i∗.4 : This is identical to the previous game, except the i∗th level key component in diff strands is
a uniformly random n length vector, i.e. all first i∗ level components in diff strands are random elements.

Also, we no longer sample the matrices B
(j,β)
i,b ,C

(j,β)
i,b for diff strands and levels i = i∗ at all. Below we

describe it in detail.

• Setup Phase. The adversary sends the functionality index (k,w, L) and description of branching
program BP∗ to the challenger. Then the challenger proceeds as follows—

1. It chooses an LWE modulus q, dimensions n,m, and also distributions χbig, χs, χappr, χpre, χlast, χlwe

as described in the construction. Recall ` = k · L and ñ = (4λ + w)n. It also chooses two λ-bit
strings tag∗, tag ← {0, 1}λ. If tag∗ = tag, then it aborts and the adversary wins. Otherwise, the
challenger continues as below. Let S(i) denote the following sets:

∀ i < i∗ + 1, S(i) = comm× {0, 1}2,
∀ i ≥ i∗ + 1, S(i) = [λ]× {0, 1}2.

Also, let ñi =

{
ñ− |diff| · 4n for i < i∗ + 1

ñ for i ≥ i∗ + 1
, and set Ŝ =

{
(i, j, β, b) ∈ [`]× [λ]× {0, 1}2 : (j, β, b) ∈ S(i)

}
.

2. It samples
{

B
(j,β)
i,b

}
i,j,β,b

, {Pi,v}i,v matrices as

∀ i ∈ [`],

{B
(j,β)
i,b

}
(j,β,b)∈S(i)

{Pi,v}v∈[w]

 , Ti
← EnTrapGen(1ñi , 1m, q).

3. It then samples matrices C
(j,β)
i,b ← Zn×mq for (i, j, β, b) ∈ Ŝ.

4. Finally, it sends the public parameters pp = (λ, n,m, q, k, w, L, χpre) to the adversary.

• Challenge Phase. Let

BP∗ =
({
π∗i,b : [w]→ [w]

}
i∈[`],b∈{0,1} , acc∗ ∈ [w], rej∗ ∈ [w]

)
,

S∗ = Ŝ.

The challenger then runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`],
({

U∗α,0,U
∗
α,1

})
← Mixed-SubEnc

 tag∗, α, S∗,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S∗

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP∗

 .

Finally, it sends the challenge ciphertext as
(

tag∗,
{
U∗i,b

}
i∈[`],b∈{0,1}

)
.

• Post-Challenge Phase. The adversary is allowed make at most 1 secret key encryption query,
followed by polynomially many secret key queries. The challenger responds to each query as below.

1. Ciphertext Query. The adversary sends a branching program BP for encryption. The challenger
responds as follows.

(a) Let S = Ŝ. It runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`], ({Uα,0,Uα,1})← Mixed-SubEnc

 tag, α, S,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP

 .

93

(b) Finally, it sends the ciphertext as
(

tag, {Ui,b}i∈[`],b∈{0,1}

)
.

2. Secret Key Queries. The adversary queries the challenger on polynomially many messages for
corresponding secret keys. For each queried string x, the challenger responds as follows.

(a) It chooses a secret vector as s̃← χns and λ−1 random vectors as y(j) ← Zmq for j ∈ [λ]\{j∗}.

(b) It then chooses vectors s
(j,β)
i , e

(j,β)
i , t̃

(j,β)

i , ẽ
(j,β)
i as follows

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, s
(j,β)
i ← Znq ,

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, e
(j,β)
i ← χmbig,

∀ (j, β) ∈ [λ]× {0, 1}, e
(j,β)
`+1 ← χmlast,

∀ (i, j, β) ∈ [i∗]× diff × {0, 1}, t̃
(j,β)

i ← Zmq ,

∀ (j, β) ∈ diff × {0, 1}, ẽ
(j,β)
i∗ ← χmlwe.

(c) Let x̃ = xL, and st
(1−β∗)
i∗ , st

(β∗)
i∗ denote the state of branching programs BP, BP∗ after i∗ − 1

steps (respectively). Also, let Γ, ỹ and U
(β)
i,b denote the following:

Γ = [`+ 1]× comm× {0, 1}, ỹ =
∑

j∈[λ]\{j∗}

y(j)

∀ (i, β, b) ∈ [`]× {0, 1}2, U
(β)
i,b =

{
U∗i,b if β = β∗

Ui,b if β = 1− β∗

Also, for (j, β) ∈ diff×{0, 1}, let B
(j,β)
`+1,x̃`+1

= 0n×m. Next, it computes key vectors
{

t
(j,β)
i

}
i,j,β

as follows.

∀ (i, j, β) ∈ Γ, t
(j,β)
i =


s

(j,β)
1 ·B(j,β)

1,x̃1
+ y(j) + e

(j,β)
1 if i = 1

−s
(j,β)
i−1 ·C

(j,β)
i−1,x̃i−1

+ s
(j,β)
i ·B(j,β)

i,x̃i
+ e

(j,β)
i if 1 < i ≤ `

−s
(j,β)
` ·C(j,β)

`,x̃`
+ e

(j,β)
`+1 if i = `+ 1

∀ (i, j, β) ∈ [i∗]× diff × {0, 1}, t
(j,β)
i = t̃

(j,β)

i + e
(j,β)
i

∀ (j, β) ∈ d̂iff × {0, 1}, t
(j,β)
i∗+1 = −

i∗∑
α=1

(
t̃
(j,β)

α ·
i∗∏
δ=α

U
(β)
δ,x̃δ

)
+ y(j) ·

i∗∏
δ=1

U
(β)
δ,x̃δ

+ s
(j,β)
i∗+1 ·B

(j,β)
i∗+1,x̃i∗+1 + e

(j,β)
i∗+1

∀ β ∈ {0, 1}, t
(j∗,β)
i∗+1 = −

i∗∑
α=1

(
t̃
(j∗,β)

α ·
i∗∏
δ=α

U
(β)
δ,x̃δ

)
− ỹ ·

i∗∏
δ=1

U
(β)
δ,x̃δ

+ s̃ ·P
i∗+1,st

(β)

i∗+1

+ s
(j∗,β)
i∗+1 ·B

(j∗,β)
i∗+1,x̃i∗+1 + e

(j∗,β)
i∗+1

∀ (i, j, β) ∈ ([`+ 1] \ [i∗ + 1])× diff × {0, 1},

t
(j,β)
i =

{
−s

(j,β)
i−1 ·C

(j,β)
i−1,x̃i−1

+ s
(j,β)
i ·B(j,β)

i,x̃i
+ e

(j,β)
i if i ≤ `

−s
(j,β)
` ·C(j,β)

`,x̃`
+ e

(j,β)
`+1 if i = `+ 1

(d) Finally, it sends the secret key as

(
x,
{

t
(j,β)
i

}
(i,j,β)∈[`+1]×[λ]×{0,1}

)
.

• Guess. The adversary finally sends the guess γ′.

94

Game 4 : This is similar to Game 3.`.4, except that except that the terms t
(j∗,β)
`+1 have an additional small

error ẽ
(j∗,β)
`+1 , which is smudged by the main error term e

(j∗,β)
`+1 .

• Setup Phase. The adversary sends the functionality index (k,w, L) and description of branching
program BP∗ to the challenger. Then the challenger proceeds as follows—

1. It chooses an LWE modulus q, dimensions n,m, and also distributions χbig, χs, χappr, χpre, χlast, χlwe

as described in the construction. Recall ` = k · L and ñ = (4λ + w)n. It also chooses two λ-bit
strings tag∗, tag ← {0, 1}λ. If tag∗ = tag, then it aborts and the adversary wins. Otherwise, the
challenger continues as below. Let S(i) denote the following sets:

∀ i ∈ [`], S(i) = comm× {0, 1}2.

Also, let ñi = ñ−|diff|·4n for all i ∈ [`] , and set Ŝ =
{

(i, j, β, b) ∈ [`]× [λ]× {0, 1}2 : (j, β, b) ∈ S(i)
}

.

2. It samples
{

B
(j,β)
i,b

}
i,j,β,b

, {Pi,v}i,v matrices as

∀ i ∈ [`],

{B
(j,β)
i,b

}
(j,β,b)∈S(i)

{Pi,v}v∈[w]

 , Ti
← EnTrapGen(1ñi , 1m, q).

3. It then samples matrices C
(j,β)
i,b ← Zn×mq for (i, j, β, b) ∈ Ŝ.

4. Finally, it sends the public parameters pp = (λ, n,m, q, k, w, L, χpre) to the adversary.

• Challenge Phase. Let

BP∗ =
({
π∗i,b : [w]→ [w]

}
i∈[`],b∈{0,1} , acc∗ ∈ [w], rej∗ ∈ [w]

)
,

S∗ = Ŝ.

The challenger then runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`],
({

U∗α,0,U
∗
α,1

})
← Mixed-SubEnc

 tag∗, α, S∗,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S∗

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP∗

 .

Finally, it sends the challenge ciphertext as
(

tag∗,
{
U∗i,b

}
i∈[`],b∈{0,1}

)
.

• Post-Challenge Phase. The adversary is allowed make at most 1 secret key encryption query,
followed by polynomially many secret key queries. The challenger responds to each query as below.

1. Ciphertext Query. The adversary sends a branching program BP for encryption. The challenger
responds as follows.

(a) Let S = Ŝ. It runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`], ({Uα,0,Uα,1})← Mixed-SubEnc

 tag, α, S,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP

 .

(b) Finally, it sends the ciphertext as
(

tag, {Ui,b}i∈[`],b∈{0,1}

)
.

2. Secret Key Queries. The adversary queries the challenger on polynomially many messages for
corresponding secret keys. For each queried string x, the challenger responds as follows.

95

(a) It chooses a secret vector as s̃← χns and λ−1 random vectors as y(j) ← Zmq for j ∈ [λ]\{j∗}.

(b) It then chooses vectors s
(j,β)
i , e

(j,β)
i , t̃

(j,β)

i , ẽ
(j,β)
i as follows

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, s
(j,β)
i ← Znq ,

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, e
(j,β)
i ← χmbig,

∀ (j, β) ∈ [λ]× {0, 1}, e
(j,β)
`+1 ← χmlast,

∀ (i, j, β) ∈ [`]× diff × {0, 1}, t̃
(j,β)

i ← Zmq ,

∀β ∈ {0, 1}, ẽ
(j∗,β)
`+1 ← χmlwe.

(c) Let x̃ = xL, and st
(1−β∗)
`+1 , st

(β∗)
`+1 denote the state of branching programs BP, BP∗ after ` steps

(respectively). Also, let Γ, ỹ and U
(β)
i,b denote the following:

Γ = [`+ 1]× comm× {0, 1}, ỹ =
∑

j∈[λ]\{j∗}

y(j)

∀ (i, β, b) ∈ [`]× {0, 1}2, U
(β)
i,b =

{
U∗i,b if β = β∗

Ui,b if β = 1− β∗

For v ∈ [w], let P
(β∗)
`+1,v be the top level matrices chosen while computing challenge ciphertext.

Similarly, P
(1−β∗)
`+1,v be the top level matrices chosen while computing query ciphertext. Next,

it computes key vectors
{

t
(j,β)
i

}
i,j,β

as follows.

∀ (i, j, β) ∈ Γ, t
(j,β)
i =


s

(j,β)
1 ·B(j,β)

1,x̃1
+ y(j) + e

(j,β)
1 if i = 1

−s
(j,β)
i−1 ·C

(j,β)
i−1,x̃i−1

+ s
(j,β)
i ·B(j,β)

i,x̃i
+ e

(j,β)
i if 1 < i ≤ `

−s
(j,β)
` ·C(j,β)

`,x̃`
+ e

(j,β)
`+1 if i = `+ 1

∀ (i, j, β) ∈ [`]× diff × {0, 1}, t
(j,β)
i = t̃

(j,β)

i + e
(j,β)
i

∀ (j, β) ∈ d̂iff × {0, 1}, t
(j,β)
`+1 = −

∑̀
α=1

(
t̃
(j,β)

α ·
∏̀
δ=α

U
(β)
δ,x̃δ

)
+ y(j) ·

∏̀
δ=1

U
(β)
δ,x̃δ

+ e
(j,β)
`+1

∀ β ∈ {0, 1}, t
(j∗,β)
`+1 = −

∑̀
α=1

(
t̃
(j∗,β)

α ·
∏̀
δ=α

U
(β)
δ,x̃δ

)
− ỹ ·

∏̀
δ=1

U
(β)
δ,x̃δ

+ s̃ ·P(β∗)

`+1,st
(β)
`+1

+ e
(j∗,β)
`+1 + ẽ

(j∗,β)
`+1

(d) Finally, it sends the secret key as

(
x,
{

t
(j,β)
i

}
(i,j,β)∈[`+1]×[λ]×{0,1}

)
.

• Guess. The adversary finally sends the guess γ′.

Game 5 : This is identical to the previous game, except the (`+ 1)th key components in the special strand
(i.e., j∗th strand) are random elements. we describe in it detail below.

• Setup Phase. The adversary sends the functionality index (k,w, L) and description of branching
program BP∗ to the challenger. Then the challenger proceeds as follows—

96

1. It chooses an LWE modulus q, dimensions n,m, and also distributions χbig, χs, χappr, χpre, χlast, χlwe

as described in the construction. Recall ` = k · L and ñ = (4λ + w)n. It also chooses two λ-bit
strings tag∗, tag ← {0, 1}λ. If tag∗ = tag, then it aborts and the adversary wins. Otherwise, the
challenger continues as below. Let S(i) denote the following sets:

∀ i ∈ [`], S(i) = comm× {0, 1}2.

Also, let ñi = ñ−|diff|·4n for all i ∈ [`] , and set Ŝ =
{

(i, j, β, b) ∈ [`]× [λ]× {0, 1}2 : (j, β, b) ∈ S(i)
}

.

2. It samples
{

B
(j,β)
i,b

}
i,j,β,b

, {Pi,v}i,v matrices as

∀ i ∈ [`],

{B
(j,β)
i,b

}
(j,β,b)∈S(i)

{Pi,v}v∈[w]

 , Ti
← EnTrapGen(1ñi , 1m, q).

3. It then samples matrices C
(j,β)
i,b ← Zn×mq for (i, j, β, b) ∈ Ŝ.

4. Finally, it sends the public parameters pp = (λ, n,m, q, k, w, L, χpre) to the adversary.

• Challenge Phase. Let

BP∗ =
({
π∗i,b : [w]→ [w]

}
i∈[`],b∈{0,1} , acc∗ ∈ [w], rej∗ ∈ [w]

)
,

S∗ = Ŝ.

The challenger then runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`],
({

U∗α,0,U
∗
α,1

})
← Mixed-SubEnc

 tag∗, α, S∗,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S∗

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP∗

 .

Finally, it sends the challenge ciphertext as
(

tag∗,
{
U∗i,b

}
i∈[`],b∈{0,1}

)
.

• Post-Challenge Phase. The adversary is allowed make at most 1 secret key encryption query,
followed by polynomially many secret key queries. The challenger responds to each query as below.

1. Ciphertext Query. The adversary sends a branching program BP for encryption. The challenger
responds as follows.

(a) Let S = Ŝ. It runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`], ({Uα,0,Uα,1})← Mixed-SubEnc

 tag, α, S,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP

 .

(b) Finally, it sends the ciphertext as
(

tag, {Ui,b}i∈[`],b∈{0,1}

)
.

2. Secret Key Queries. The adversary queries the challenger on polynomially many messages for
corresponding secret keys. For each queried string x, the challenger responds as follows.

(a) It chooses a secret vector as s̃← χns and λ−1 random vectors as y(j) ← Zmq for j ∈ [λ]\{j∗}.

(b) It then chooses vectors s
(j,β)
i , e

(j,β)
i , t̃

(j,β)

i , ẽ
(j,β)
i as follows

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, s
(j,β)
i ← Znq ,

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, e
(j,β)
i ← χmbig,

∀ (j, β) ∈ [λ]× {0, 1}, e
(j,β)
`+1 ← χmlast,

∀ (i, j, β) ∈ [`]× diff × {0, 1}, t̃
(j,β)

i ← Zmq ,

∀ β ∈ {0, 1}, t̃
(j∗,β)

`+1 ← Zmq .

97

(c) Let x̃ = xL, and st
(1−β∗)
`+1 , st

(β∗)
`+1 denote the state of branching programs BP, BP∗ after ` steps

(respectively). Also, let Γ and U
(β)
i,b denote the following:

Γ = [`+ 1]× comm× {0, 1}

∀ (i, β, b) ∈ [`]× {0, 1}2, U
(β)
i,b =

{
U∗i,b if β = β∗

Ui,b if β = 1− β∗

For v ∈ [w], let P
(β∗)
`+1,v be the top level matrices chosen while computing challenge ciphertext.

Similarly, P
(1−β∗)
`+1,v be the top level matrices chosen while computing query ciphertext. Next,

it computes key vectors
{

t
(j,β)
i

}
i,j,β

as follows.

∀ (i, j, β) ∈ Γ, t
(j,β)
i =


s

(j,β)
1 ·B(j,β)

1,x̃1
+ y(j) + e

(j,β)
1 if i = 1

−s
(j,β)
i−1 ·C

(j,β)
i−1,x̃i−1

+ s
(j,β)
i ·B(j,β)

i,x̃i
+ e

(j,β)
i if 1 < i ≤ `

−s
(j,β)
` ·C(j,β)

`,x̃`
+ e

(j,β)
`+1 if i = `+ 1

∀ (i, j, β) ∈ [`]× diff × {0, 1}, t
(j,β)
i = t̃

(j,β)

i + e
(j,β)
i

∀ (j, β) ∈ d̂iff × {0, 1}, t
(j,β)
`+1 = −

∑̀
α=1

(
t̃
(j,β)

α ·
∏̀
δ=α

U
(β)
δ,x̃δ

)
+ y(j) ·

∏̀
δ=1

U
(β)
δ,x̃δ

+ e
(j,β)
`+1

∀ β ∈ {0, 1}, t
(j∗,β)
`+1 = t̃

(j∗,β)

`+1 + e
(j∗,β)
`+1

(d) Finally, it sends the secret key as

(
x,
{

t
(j,β)
i

}
(i,j,β)∈[`+1]×[λ]×{0,1}

)
.

• Guess. The adversary finally sends the guess γ′.

Next, we have a sequence of ` hybrid experiments Game 5.i∗ for i∗ = 1 to `.

Game 5.i∗ : This is identical to the previous game, except the matrices B
(j,β)
i,b ,C

(j,β)
i,b for j ∈ comm, β =

1− tagj strands (i.e., strands in which B
(j,β)
i,b were targetting random matrices themselves) and levels i ≤ i∗

are not sampled along with other level i ≤ i∗ matrices, but instead they are sampled uniformly at random.
Also, ciphertext components for levels i ≤ i∗ are used to only target remaining matrices. Below we describe
it in detail.

• Setup Phase. The adversary sends the functionality index (k,w, L) and description of branching
program BP∗ to the challenger. Then the challenger proceeds as follows—

1. It chooses an LWE modulus q, dimensions n,m, and also distributions χbig, χs, χappr, χpre, χlast, χlwe

as described in the construction. Recall ` = k · L and ñ = (4λ + w)n. It also chooses two λ-bit
strings tag∗, tag ← {0, 1}λ. If tag∗ = tag, then it aborts and the adversary wins. Otherwise, the
challenger continues as below. Let S(i) denote the following sets:

∀ i ≤ i∗, S(i) =
{

(j, β, b) ∈ [λ]× {0, 1}2 : j ∈ comm ∧ β = tagj
}
,

∀ i > i∗, S(i) = comm× {0, 1}2.

Also, let ñi =

{
(2 · |comm|+ w)n for i ≤ i∗

ñ− |diff| · 4n for i > i∗
, and set Ŝ = {(i, j, β, b) ∈ [`]× [λ] × {0, 1}2 :

(j, β, b) ∈ S(i)}.

98

2. It samples
{

B
(j,β)
i,b

}
i,j,β,b

, {Pi,v}i,v matrices as

∀ i ∈ [`],

{B
(j,β)
i,b

}
(j,β,b)∈S(i)

{Pi,v}v∈[w]

 , Ti
← EnTrapGen(1ñi , 1m, q),

∀ (i, j, β, b) ∈ ([i∗]× comm× {0, 1}2) \ Ŝ, B
(j,β)
i,b ← Zn×mq .

3. It then samples matrices C
(j,β)
i,b ← Zn×mq for (i, j, β, b) ∈ Ŝ.

4. Finally, it sends the public parameters pp = (λ, n,m, q, k, w, L, χpre) to the adversary.

• Challenge Phase. Let

BP∗ =
({
π∗i,b : [w]→ [w]

}
i∈[`],b∈{0,1} , acc∗ ∈ [w], rej∗ ∈ [w]

)
,

S∗ = Ŝ.

The challenger then runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`],
({

U∗α,0,U
∗
α,1

})
← Mixed-SubEnc

 tag∗, α, S∗,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S∗

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP∗

 .

Finally, it sends the challenge ciphertext as
(

tag∗,
{
U∗i,b

}
i∈[`],b∈{0,1}

)
.

• Post-Challenge Phase. The adversary is allowed make at most 1 secret key encryption query,
followed by polynomially many secret key queries. The challenger responds to each query as below.

1. Ciphertext Query. The adversary sends a branching program BP for encryption. The challenger
responds as follows.

(a) Let S = Ŝ. It runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`], ({Uα,0,Uα,1})← Mixed-SubEnc

 tag, α, S,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP

 .

(b) Finally, it sends the ciphertext as
(

tag, {Ui,b}i∈[`],b∈{0,1}

)
.

2. Secret Key Queries. The adversary queries the challenger on polynomially many messages for
corresponding secret keys. For each queried string x, the challenger responds as follows.

(a) It chooses a secret vector as s̃← χns and λ−1 random vectors as y(j) ← Zmq for j ∈ [λ]\{j∗}.

(b) It then chooses vectors s
(j,β)
i , e

(j,β)
i , t̃

(j,β)

i , ẽ
(j,β)
i as follows

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, s
(j,β)
i ← Znq ,

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, e
(j,β)
i ← χmbig,

∀ (j, β) ∈ [λ]× {0, 1}, e
(j,β)
`+1 ← χmlast,

∀ (i, j, β) ∈ [`]× diff × {0, 1}, t̃
(j,β)

i ← Zmq ,

∀ β ∈ {0, 1}, t̃
(j∗,β)

`+1 ← Zmq .

99

(c) Let x̃ = xL, and st
(1−β∗)
`+1 , st

(β∗)
`+1 denote the state of branching programs BP, BP∗ after ` steps

(respectively). Also, let Γ and U
(β)
i,b denote the following:

Γ = [`+ 1]× comm× {0, 1}

∀ (i, β, b) ∈ [`]× {0, 1}2, U
(β)
i,b =

{
U∗i,b if β = β∗

Ui,b if β = 1− β∗

For v ∈ [w], let P
(β∗)
`+1,v be the top level matrices chosen while computing challenge ciphertext.

Similarly, P
(1−β∗)
`+1,v be the top level matrices chosen while computing query ciphertext. Next,

it computes key vectors
{

t
(j,β)
i

}
i,j,β

as follows.

∀ (i, j, β) ∈ Γ, t
(j,β)
i =


s

(j,β)
1 ·B(j,β)

1,x̃1
+ y(j) + e

(j,β)
1 if i = 1

−s
(j,β)
i−1 ·C

(j,β)
i−1,x̃i−1

+ s
(j,β)
i ·B(j,β)

i,x̃i
+ e

(j,β)
i if 1 < i ≤ `

−s
(j,β)
` ·C(j,β)

`,x̃`
+ e

(j,β)
`+1 if i = `+ 1

∀ (i, j, β) ∈ [`]× diff × {0, 1}, t
(j,β)
i = t̃

(j,β)

i + e
(j,β)
i

∀ (j, β) ∈ d̂iff × {0, 1}, t
(j,β)
`+1 = −

∑̀
α=1

(
t̃
(j,β)

α ·
∏̀
δ=α

U
(β)
δ,x̃δ

)
+ y(j) ·

∏̀
δ=1

U
(β)
δ,x̃δ

+ e
(j,β)
`+1

∀ β ∈ {0, 1}, t
(j∗,β)
`+1 = t̃

(j∗,β)

`+1 + e
(j∗,β)
`+1

(d) Finally, it sends the secret key as

(
x,
{

t
(j,β)
i

}
(i,j,β)∈[`+1]×[λ]×{0,1}

)
.

• Guess. The adversary finally sends the guess γ′.

Next, we have a sequence of ` hybrid experiments Game 6.i∗ for i∗ = 2 to `+ 1.

Game 6.i∗ : This is identical to the previous game (i.e. Game 5.`), except in the comm strands, for which

we sample B
(j,β)
i,b ,C

(j,β)
i,b matrices uniformly at random, the key components for levels i ≤ i∗ are random

elements. Below we describe in it detail.

• Setup Phase. The adversary sends the functionality index (k,w, L) and description of branching
program BP∗ to the challenger. Then the challenger proceeds as follows—

1. It chooses an LWE modulus q, dimensions n,m, and also distributions χbig, χs, χappr, χpre, χlast, χlwe

as described in the construction. Recall ` = k · L and ñ = (4λ + w)n. It also chooses two λ-bit
strings tag∗, tag ← {0, 1}λ. If tag∗ = tag, then it aborts and the adversary wins. Otherwise, the
challenger continues as below. Let S(i) denote the following sets:

∀ i ∈ [`], S(i) =
{

(j, β, b) ∈ [λ]× {0, 1}2 : j ∈ comm ∧ β = tagj
}
.

Also, let ñi = (2 · |comm| + w)n for all i ∈ [`], and set Ŝ = {(i, j, β, b) ∈ [`]× [λ] × {0, 1}2 :
(j, β, b) ∈ S(i)}.

2. It samples
{

B
(j,β)
i,b

}
i,j,β,b

, {Pi,v}i,v matrices as

∀ i ∈ [`],

{B
(j,β)
i,b

}
(j,β,b)∈S(i)

{Pi,v}v∈[w]

 , Ti
← EnTrapGen(1ñi , 1m, q),

∀ (i, j, β, b) ∈ ([`]× comm× {0, 1}2) \ Ŝ, B
(j,β)
i,b ← Zn×mq .

100

3. It then samples matrices C
(j,β)
i,b ← Zn×mq for (i, j, β, b) ∈ Ŝ.

4. Finally, it sends the public parameters pp = (λ, n,m, q, k, w, L, χpre) to the adversary.

• Challenge Phase. Let

BP∗ =
({
π∗i,b : [w]→ [w]

}
i∈[`],b∈{0,1} , acc∗ ∈ [w], rej∗ ∈ [w]

)
,

S∗ = Ŝ.

The challenger then runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`],
({

U∗α,0,U
∗
α,1

})
← Mixed-SubEnc

 tag∗, α, S∗,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S∗

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP∗

 .

Finally, it sends the challenge ciphertext as
(

tag∗,
{
U∗i,b

}
i∈[`],b∈{0,1}

)
.

• Post-Challenge Phase. The adversary is allowed make at most 1 secret key encryption query,
followed by polynomially many secret key queries. The challenger responds to each query as below.

1. Ciphertext Query. The adversary sends a branching program BP for encryption. The challenger
responds as follows.

(a) Let S = Ŝ. It runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`], ({Uα,0,Uα,1})← Mixed-SubEnc

 tag, α, S,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP

 .

(b) Finally, it sends the ciphertext as
(

tag, {Ui,b}i∈[`],b∈{0,1}

)
.

2. Secret Key Queries. The adversary queries the challenger on polynomially many messages for
corresponding secret keys. For each queried string x, the challenger responds as follows.

(a) It chooses a secret vector as s̃← χns and λ−1 random vectors as y(j) ← Zmq for j ∈ [λ]\{j∗}.

(b) It then chooses vectors s
(j,β)
i , e

(j,β)
i , t̃

(j,β)

i , ẽ
(j,β)
i as follows

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, s
(j,β)
i ← Znq ,

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, e
(j,β)
i ← χmbig,

∀ (j, β) ∈ [λ]× {0, 1}, e
(j,β)
`+1 ← χmlast,

∀ (i, j, β) ∈ [`]× diff × {0, 1}, t̃
(j,β)

i ← Zmq ,

∀ (i, j) ∈ [i∗]× comm, t̃
(j,1−tagj)

i ← Zmq ,

∀ β ∈ {0, 1}, t̃
(j∗,β)

`+1 ← Zmq .

(c) Let x̃ = xL, and st
(1−β∗)
`+1 , st

(β∗)
`+1 denote the state of branching programs BP, BP∗ after ` steps

(respectively). Also, let Γ and U
(β)
i,b denote the following:

Γ = ([`+ 1] \ [i∗])× comm× {0, 1} ∪
{

(i, j, β) ∈ [i∗]× comm× {0, 1} : β = tagj
}

∀ (i, β, b) ∈ [`]× {0, 1}2, U
(β)
i,b =

{
U∗i,b if β = β∗

Ui,b if β = 1− β∗

101

For v ∈ [w], let P
(β∗)
`+1,v be the top level matrices chosen while computing challenge ciphertext.

Similarly, P
(1−β∗)
`+1,v be the top level matrices chosen while computing query ciphertext. Next,

it computes key vectors
{

t
(j,β)
i

}
i,j,β

as follows.

∀ (i, j, β) ∈ Γ, t
(j,β)
i =


s

(j,β)
1 ·B(j,β)

1,x̃1
+ y(j) + e

(j,β)
1 if i = 1

−s
(j,β)
i−1 ·C

(j,β)
i−1,x̃i−1

+ s
(j,β)
i ·B(j,β)

i,x̃i
+ e

(j,β)
i if 1 < i ≤ `

−s
(j,β)
` ·C(j,β)

`,x̃`
+ e

(j,β)
`+1 if i = `+ 1

∀ (i, j) ∈ [i∗]× comm, t
(j,1−tagj)

i = t̃
(j,1−tagj)

i + e
(j,1−tagj)

i

∀ (i, j, β) ∈ [`]× diff × {0, 1}, t
(j,β)
i = t̃

(j,β)

i + e
(j,β)
i

∀ (j, β) ∈ d̂iff × {0, 1}, t
(j,β)
`+1 = −

∑̀
α=1

(
t̃
(j,β)

α ·
∏̀
δ=α

U
(β)
δ,x̃δ

)
+ y(j) ·

∏̀
δ=1

U
(β)
δ,x̃δ

+ e
(j,β)
`+1

∀ β ∈ {0, 1}, t
(j∗,β)
`+1 = t̃

(j∗,β)

`+1 + e
(j∗,β)
`+1

(d) Finally, it sends the secret key as

(
x,
{

t
(j,β)
i

}
(i,j,β)∈[`+1]×[λ]×{0,1}

)
.

• Guess. The adversary finally sends the guess γ′.

Next, we have a sequence of `+ 1 hybrid experiments Game 7.i∗ for i∗ = 1 to `+ 1.

Game 7.i∗ : This is identical to the previous game (i.e. Game 6.(` + 1)), except in the comm strands, for

which we still sample B
(j,β)
i,b ,C

(j,β)
i,b matrices using EnTrapGen, the key components for levels i ≤ i∗ are

random elements. Also, we no longer sample the matrices B
(j,β)
i,b ,C

(j,β)
i,b at all which were sampled uniformly

at random in the previous game. Below we describe in it detail.

• Setup Phase. The adversary sends the functionality index (k,w, L) and description of branching
program BP∗ to the challenger. Then the challenger proceeds as follows—

1. It chooses an LWE modulus q, dimensions n,m, and also distributions χbig, χs, χappr, χpre, χlast, χlwe

as described in the construction. Recall ` = k · L and ñ = (4λ + w)n. It also chooses two λ-bit
strings tag∗, tag ← {0, 1}λ. If tag∗ = tag, then it aborts and the adversary wins. Otherwise, the
challenger continues as below. Let S(i) denote the following sets:

∀ i ∈ [`], S(i) =
{

(j, β, b) ∈ [λ]× {0, 1}2 : j ∈ comm ∧ β = tagj
}
.

Also, let ñi = (2 · |comm| + w)n for all i ∈ [`], and set Ŝ = {(i, j, β, b) ∈ [`]× [λ] × {0, 1}2 :
(j, β, b) ∈ S(i)}.

2. It samples
{

B
(j,β)
i,b

}
i,j,β,b

, {Pi,v}i,v matrices as

∀ i ∈ [`],

{B
(j,β)
i,b

}
(j,β,b)∈S(i)

{Pi,v}v∈[w]

 , Ti
← EnTrapGen(1ñi , 1m, q).

3. It then samples matrices C
(j,β)
i,b ← Zn×mq for (i, j, β, b) ∈ Ŝ.

4. Finally, it sends the public parameters pp = (λ, n,m, q, k, w, L, χpre) to the adversary.

102

• Challenge Phase. Let

BP∗ =
({
π∗i,b : [w]→ [w]

}
i∈[`],b∈{0,1} , acc∗ ∈ [w], rej∗ ∈ [w]

)
,

S∗ = Ŝ.

The challenger then runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`],
({

U∗α,0,U
∗
α,1

})
← Mixed-SubEnc

 tag∗, α, S∗,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S∗

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP∗

 .

Finally, it sends the challenge ciphertext as
(

tag∗,
{
U∗i,b

}
i∈[`],b∈{0,1}

)
.

• Post-Challenge Phase. The adversary is allowed make at most 1 secret key encryption query,
followed by polynomially many secret key queries. The challenger responds to each query as below.

1. Ciphertext Query. The adversary sends a branching program BP for encryption. The challenger
responds as follows.

(a) Let S = Ŝ. It runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`], ({Uα,0,Uα,1})← Mixed-SubEnc

 tag, α, S,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP

 .

(b) Finally, it sends the ciphertext as
(

tag, {Ui,b}i∈[`],b∈{0,1}

)
.

2. Secret Key Queries. The adversary queries the challenger on polynomially many messages for
corresponding secret keys. For each queried string x, the challenger responds as follows.

(a) It chooses a secret vector as s̃← χns and λ−1 random vectors as y(j) ← Zmq for j ∈ [λ]\{j∗}.

(b) It then chooses vectors s
(j,β)
i , e

(j,β)
i , t̃

(j,β)

i , ẽ
(j,β)
i as follows

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, s
(j,β)
i ← Znq ,

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, e
(j,β)
i ← χmbig,

∀ (j, β) ∈ [λ]× {0, 1}, e
(j,β)
`+1 ← χmlast,

∀ (i, j, β) ∈ [`]× diff × {0, 1}, t̃
(j,β)

i ← Zmq ,

∀ (i, j) ∈ [`+ 1]× comm, t̃
(j,1−tagj)

i ← Zmq ,

∀ (i, j) ∈ [i∗]× comm, t̃
(j,tagj)

i ← Zmq ,

∀ β ∈ {0, 1}, t̃
(j∗,β)

`+1 ← Zmq .

(c) Let x̃ = xL, and st
(1−β∗)
`+1 , st

(β∗)
`+1 denote the state of branching programs BP, BP∗ after ` steps

(respectively). Also, let Γ and U
(β)
i,b denote the following:

Γ =
{

(i, j, β) ∈ ([`+ 1] \ [i∗])× comm× {0, 1} : β = tagj
}

∀ (i, β, b) ∈ [`]× {0, 1}2, U
(β)
i,b =

{
U∗i,b if β = β∗

Ui,b if β = 1− β∗

103

For v ∈ [w], let P
(β∗)
`+1,v be the top level matrices chosen while computing challenge ciphertext.

Similarly, P
(1−β∗)
`+1,v be the top level matrices chosen while computing query ciphertext. Next,

it computes key vectors
{

t
(j,β)
i

}
i,j,β

as follows.

∀ (i, j) ∈ [i∗]× comm, t
(j,tagj)

i = t̃
(j,tagj)

i + e
(j,tagj)

i

∀ (i, j, β) ∈ Γ, t
(j,β)
i =

{
−s

(j,β)
i−1 ·C

(j,β)
i−1,x̃i−1

+ s
(j,β)
i ·B(j,β)

i,x̃i
+ e

(j,β)
i if 1 < i ≤ `

−s
(j,β)
` ·C(j,β)

`,x̃`
+ e

(j,β)
`+1 if i = `+ 1

∀ (i, j) ∈ [`+ 1]× comm, t
(j,1−tagj)

i = t̃
(j,1−tagj)

i + e
(j,1−tagj)

i

∀ (i, j, β) ∈ [`]× diff × {0, 1}, t
(j,β)
i = t̃

(j,β)

i + e
(j,β)
i

∀ (j, β) ∈ d̂iff × {0, 1}, t
(j,β)
`+1 = −

∑̀
α=1

(
t̃
(j,β)

α ·
∏̀
δ=α

U
(β)
δ,x̃δ

)
+ y(j) ·

∏̀
δ=1

U
(β)
δ,x̃δ

+ e
(j,β)
`+1

∀ β ∈ {0, 1}, t
(j∗,β)
`+1 = t̃

(j∗,β)

`+1 + e
(j∗,β)
`+1

(d) Finally, it sends the secret key as

(
x,
{

t
(j,β)
i

}
(i,j,β)∈[`+1]×[λ]×{0,1}

)
.

• Guess. The adversary finally sends the guess γ′.

Game 8 : This is identical to the previous game (i.e. Game 7.(`+1)). For the ease of exposition, we describe
in it detail below.

• Setup Phase. The adversary sends the functionality index (k,w, L) and description of branching
program BP∗ to the challenger. Then the challenger proceeds as follows—

1. It chooses an LWE modulus q, dimensions n,m, and also distributions χbig, χs, χappr, χpre, χlast, χlwe

as described in the construction. Recall ` = k · L and ñ = (4λ + w)n. It also chooses two λ-bit
strings tag∗, tag ← {0, 1}λ. If tag∗ = tag, then it aborts and the adversary wins. Otherwise, the
challenger continues as below. Let S(i) denote the following sets:

∀ i ∈ [`], S(i) =
{

(j, β, b) ∈ [λ]× {0, 1}2 : j ∈ comm ∧ β = tagj
}
.

Also, let ñi = (2 · |comm| + w)n for all i ∈ [`], and set Ŝ = {(i, j, β, b) ∈ [`]× [λ] × {0, 1}2 :
(j, β, b) ∈ S(i)}.

2. It samples
{

B
(j,β)
i,b

}
i,j,β,b

, {Pi,v}i,v matrices as

∀ i ∈ [`],

{B
(j,β)
i,b

}
(j,β,b)∈S(i)

{Pi,v}v∈[w]

 , Ti
← EnTrapGen(1ñi , 1m, q).

3. It then samples matrices C
(j,β)
i,b ← Zn×mq for (i, j, β, b) ∈ Ŝ.

4. Finally, it sends the public parameters pp = (λ, n,m, q, k, w, L, χpre) to the adversary.

• Challenge Phase. Let

BP∗ =
({
π∗i,b : [w]→ [w]

}
i∈[`],b∈{0,1} , acc∗ ∈ [w], rej∗ ∈ [w]

)
,

S∗ = Ŝ.

104

The challenger then runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`],
({

U∗α,0,U
∗
α,1

})
← Mixed-SubEnc

 tag∗, α, S∗,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S∗

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP∗

 .

Finally, it sends the challenge ciphertext as
(

tag∗,
{
U∗i,b

}
i∈[`],b∈{0,1}

)
.

• Post-Challenge Phase. The adversary is allowed make at most 1 secret key encryption query,
followed by polynomially many secret key queries. The challenger responds to each query as below.

1. Ciphertext Query. The adversary sends a branching program BP for encryption. The challenger
responds as follows.

(a) Let S = Ŝ. It runs the Mixed-SubEnc routine (described in Figure 6) as

∀ α ∈ [`], ({Uα,0,Uα,1})← Mixed-SubEnc

 tag, α, S,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP

 .

(b) Finally, it sends the ciphertext as
(

tag, {Ui,b}i∈[`],b∈{0,1}

)
.

2. Secret Key Queries. The adversary queries the challenger on polynomially many messages for
corresponding secret keys. For each queried string x, the challenger responds as follows.

(a) It chooses |diff| − 1 random vectors as y(j) ← Zmq for j ∈ d̂iff.

(b) It then chooses vectors e
(j,β)
i , t̃

(j,β)

i , ẽ
(j,β)
i as follows

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, e
(j,β)
i ← χmbig,

∀ (j, β) ∈ [λ]× {0, 1}, e
(j,β)
`+1 ← χmlast,

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, t̃
(j,β)

i ← Zmq ,

∀ (j, β) ∈ comm× {0, 1}, t̃
(j,β)

`+1 ← Zmq ,

∀ β ∈ {0, 1}, t̃
(j∗,β)

`+1 ← Zmq .

(c) Let x̃ = xL, and let U
(β)
i,b denote the following:

∀ (i, β, b) ∈ [`]× {0, 1}2, U
(β)
i,b =

{
U∗i,b if β = β∗

Ui,b if β = 1− β∗

Next, it computes key vectors
{

t
(j,β)
i

}
i,j,β

as follows.

∀ (i, j, β) ∈ [`+ 1]× comm× {0, 1}, t
(j,β)
i = t̃

(j,β)

i + e
(j,β)
i

∀ (i, j, β) ∈ [`]× diff × {0, 1}, t
(j,β)
i = t̃

(j,β)

i + e
(j,β)
i

∀ (j, β) ∈ d̂iff × {0, 1}, t
(j,β)
`+1 = −

∑̀
α=1

(
t̃
(j,β)

α ·
∏̀
δ=α

U
(β)
δ,x̃δ

)
+ y(j) ·

∏̀
δ=1

U
(β)
δ,x̃δ

+ e
(j,β)
`+1

∀ β ∈ {0, 1}, t
(j∗,β)
`+1 = t̃

(j∗,β)

`+1 + e
(j∗,β)
`+1

(d) Finally, it sends the secret key as

(
x,
{

t
(j,β)
i

}
(i,j,β)∈[`+1]×[λ]×{0,1}

)
.

• Guess. The adversary finally sends the guess γ′.

Next, we have a sequence of ` hybrid experiments Game 8.i∗ for i∗ = 1 to `.

105

Game 8.i∗ : This is identical to the previous game, except now the challenger samples the first i∗ ciphertext
components (both challenge and queried) as random gaussian matrices. Below we describe in it detail.

• Setup Phase. The adversary sends the functionality index (k,w, L) and description of branching
program BP∗ to the challenger. Then the challenger proceeds as follows—

1. It chooses an LWE modulus q, dimensions n,m, and also distributions χbig, χs, χappr, χpre, χlast, χlwe

as described in the construction. Recall ` = k · L and ñ = (4λ + w)n. It also chooses two λ-bit
strings tag∗, tag ← {0, 1}λ. If tag∗ = tag, then it aborts and the adversary wins. Otherwise, the
challenger continues as below. Let S(i) denote the following sets:

∀ i ∈ [`], S(i) =
{

(j, β, b) ∈ [λ]× {0, 1}2 : j ∈ comm ∧ β = tagj
}
.

Also, let ñi = (2 · |comm| + w)n for all i ∈ [`], and set Ŝ = {(i, j, β, b) ∈ [`]× [λ] × {0, 1}2 :
(j, β, b) ∈ S(i)}.

2. It samples
{

B
(j,β)
i,b

}
i,j,β,b

, {Pi,v}i,v matrices as

∀ i ∈ [`],

{B
(j,β)
i,b

}
(j,β,b)∈S(i)

{Pi,v}v∈[w]

 , Ti
← EnTrapGen(1ñi , 1m, q).

3. It then samples matrices C
(j,β)
i,b ← Zn×mq for (i, j, β, b) ∈ Ŝ.

4. Finally, it sends the public parameters pp = (λ, n,m, q, k, w, L, χpre) to the adversary.

• Challenge Phase. Let

BP∗ =
({
π∗i,b : [w]→ [w]

}
i∈[`],b∈{0,1} , acc∗ ∈ [w], rej∗ ∈ [w]

)
,

S∗ = Ŝ.

The challenger then runs the Mixed-SubEnc routine (described in Figure 6) as

∀ (α, b) ∈ [i∗]× {0, 1}, U∗α,b ← χm×mpre ,

∀ α ∈ [`] \ [i∗],
({

U∗α,0,U
∗
α,1

})
← Mixed-SubEnc

 tag∗, α, S∗,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S∗

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP∗

 .

Finally, it sends the challenge ciphertext as
(

tag∗,
{
U∗i,b

}
i∈[`],b∈{0,1}

)
.

• Post-Challenge Phase. The adversary is allowed make at most 1 secret key encryption query,
followed by polynomially many secret key queries. The challenger responds to each query as below.

1. Ciphertext Query. The adversary sends a branching program BP for encryption. The challenger
responds as follows.

(a) Let S = Ŝ. It runs the Mixed-SubEnc routine (described in Figure 6) as

∀ (α, b) ∈ [i∗]× {0, 1}, Uα,b ← χm×mpre ,

∀ α ∈ [`] \ [i∗], ({Uα,0,Uα,1})← Mixed-SubEnc

 tag, α, S,
{

B
(j,β)
i,b ,C

(j,β)
i,b

}
(i,j,β,b)∈S

,

{Pi,v}(i,v)∈[`]×[w] , {Ti}i∈[`] ,BP

 .

(b) Finally, it sends the ciphertext as
(

tag, {Ui,b}i∈[`],b∈{0,1}

)
.

106

2. Secret Key Queries. The adversary queries the challenger on polynomially many messages for
corresponding secret keys. For each queried string x, the challenger responds as follows.

(a) It chooses |diff| − 1 random vectors as y(j) ← Zmq for j ∈ d̂iff.

(b) It then chooses vectors e
(j,β)
i , t̃

(j,β)

i , ẽ
(j,β)
i as follows

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, e
(j,β)
i ← χmbig,

∀ (j, β) ∈ [λ]× {0, 1}, e
(j,β)
`+1 ← χmlast,

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, t̃
(j,β)

i ← Zmq ,

∀ (j, β) ∈ comm× {0, 1}, t̃
(j,β)

`+1 ← Zmq ,

∀ β ∈ {0, 1}, t̃
(j∗,β)

`+1 ← Zmq .

(c) Let x̃ = xL, and let U
(β)
i,b denote the following:

∀ (i, β, b) ∈ [`]× {0, 1}2, U
(β)
i,b =

{
U∗i,b if β = β∗

Ui,b if β = 1− β∗

Next, it computes key vectors
{

t
(j,β)
i

}
i,j,β

as follows.

∀ (i, j, β) ∈ [`+ 1]× comm× {0, 1}, t
(j,β)
i = t̃

(j,β)

i + e
(j,β)
i

∀ (i, j, β) ∈ [`]× diff × {0, 1}, t
(j,β)
i = t̃

(j,β)

i + e
(j,β)
i

∀ (j, β) ∈ d̂iff × {0, 1}, t
(j,β)
`+1 = −

∑̀
α=1

(
t̃
(j,β)

α ·
∏̀
δ=α

U
(β)
δ,x̃δ

)
+ y(j) ·

∏̀
δ=1

U
(β)
δ,x̃δ

+ e
(j,β)
`+1

∀ β ∈ {0, 1}, t
(j∗,β)
`+1 = t̃

(j∗,β)

`+1 + e
(j∗,β)
`+1

(d) Finally, it sends the secret key as

(
x,
{

t
(j,β)
i

}
(i,j,β)∈[`+1]×[λ]×{0,1}

)
.

• Guess. The adversary finally sends the guess γ′.

Game 9 : This is identical to the previous game (i.e., Game 8.`), except the last secret key components in

all d̂iff strands also include an additional noise term which is much smaller than the overall noise added in
those components. Below we describe in it detail.

• Setup Phase. The adversary sends the functionality index (k,w, L) and description of branching
program BP∗ to the challenger. Then the challenger proceeds as follows—

1. It chooses an LWE modulus q, dimensions n,m, and also distributions χbig, χs, χappr, χpre, χlast, χlwe

as described in the construction. Recall ` = k · L and ñ = (4λ + w)n. It also chooses two λ-bit
strings tag∗, tag ← {0, 1}λ. If tag∗ = tag, then it aborts and the adversary wins. Otherwise, the
challenger continues as below. Let S(i) denote the following sets:

∀ i ∈ [`], S(i) =
{

(j, β, b) ∈ [λ]× {0, 1}2 : j ∈ comm ∧ β = tagj
}
.

Also, let ñi = (2 · |comm| + w)n for all i ∈ [`], and set Ŝ = {(i, j, β, b) ∈ [`]× [λ] × {0, 1}2 :
(j, β, b) ∈ S(i)}.

107

2. It samples
{

B
(j,β)
i,b

}
i,j,β,b

, {Pi,v}i,v matrices as

∀ i ∈ [`],

{B
(j,β)
i,b

}
(j,β,b)∈S(i)

{Pi,v}v∈[w]

 , Ti
← EnTrapGen(1ñi , 1m, q).

3. It then samples matrices C
(j,β)
i,b ← Zn×mq for (i, j, β, b) ∈ Ŝ.

4. Finally, it sends the public parameters pp = (λ, n,m, q, k, w, L, χpre) to the adversary.

• Challenge Phase. The challenger generates ciphertext components as

∀ (i, b) ∈ [`]× {0, 1}, U∗i,b ← χm×mpre .

Finally, it sends the challenge ciphertext as
(

tag∗,
{
U∗i,b

}
i∈[`],b∈{0,1}

)
.

• Post-Challenge Phase. The adversary is allowed make at most 1 secret key encryption query,
followed by polynomially many secret key queries. The challenger responds to each query as below.

1. Ciphertext Query. The adversary sends a branching program BP for encryption. The challenger
responds as follows.

(a) It generates ciphertext components as

∀ (i, b) ∈ [`]× {0, 1}, Ui,b ← χm×mpre .

(b) Finally, it sends the ciphertext as
(

tag, {Ui,b}i∈[`],b∈{0,1}

)
.

2. Secret Key Queries. The adversary queries the challenger on polynomially many messages for
corresponding secret keys. For each queried string x, the challenger responds as follows.

(a) It chooses |diff| − 1 random vectors as y(j) ← Zmq for j ∈ d̂iff.

(b) It then chooses vectors e
(j,β)
i , t̃

(j,β)

i , ẽ
(j,β)
i as follows

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, e
(j,β)
i ← χmbig,

∀ (j, β) ∈ [λ]× {0, 1}, e
(j,β)
`+1 ← χmlast,

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, t̃
(j,β)

i ← Zmq ,

∀ (j, β) ∈ comm× {0, 1}, t̃
(j,β)

`+1 ← Zmq ,

∀ β ∈ {0, 1}, t̃
(j∗,β)

`+1 ← Zmq ,

∀ (j, β) ∈ d̂iff × {0, 1}, ẽ
(j,β)
`+1 ← χmlwe.

(c) Let x̃ = xL, and let U
(β)
i,b denote the following:

∀ (i, β, b) ∈ [`]× {0, 1}2, U
(β)
i,b =

{
U∗i,b if β = β∗

Ui,b if β = 1− β∗

108

Next, it computes key vectors
{

t
(j,β)
i

}
i,j,β

as follows.

∀ (i, j, β) ∈ [`+ 1]× comm× {0, 1}, t
(j,β)
i = t̃

(j,β)

i + e
(j,β)
i

∀ (i, j, β) ∈ [`]× diff × {0, 1}, t
(j,β)
i = t̃

(j,β)

i + e
(j,β)
i

∀ (j, β) ∈ d̂iff × {0, 1}, t
(j,β)
`+1 = −

∑̀
α=1

(
t̃
(j,β)

α ·
∏̀
δ=α

U
(β)
δ,x̃δ

)
+ y(j) ·

∏̀
δ=1

U
(β)
δ,x̃δ

+ ẽ
(j,β)
`+1 ·

∏̀
δ=2

U
(β)
δ,x̃δ

+ e
(j,β)
`+1

∀ β ∈ {0, 1}, t
(j∗,β)
`+1 = t̃

(j∗,β)

`+1 + e
(j∗,β)
`+1

(d) Finally, it sends the secret key as

(
x,
{

t
(j,β)
i

}
(i,j,β)∈[`+1]×[λ]×{0,1}

)
.

• Guess. The adversary finally sends the guess γ′.

Game 10 : This is identical to the previous game, except the last secret key components in all d̂iff strands
are random vectors as well. Below we describe in it detail.

• Setup Phase. The adversary sends the functionality index (k,w, L) and description of branching
program BP∗ to the challenger. Then the challenger proceeds as follows—

1. It chooses an LWE modulus q, dimensions n,m, and also distributions χbig, χs, χappr, χpre, χlast, χlwe

as described in the construction. Recall ` = k · L and ñ = (4λ + w)n. It also chooses two λ-bit
strings tag∗, tag ← {0, 1}λ. If tag∗ = tag, then it aborts and the adversary wins. Otherwise, the
challenger continues as below. Let S(i) denote the following sets:

∀ i ∈ [`], S(i) =
{

(j, β, b) ∈ [λ]× {0, 1}2 : j ∈ comm ∧ β = tagj
}
.

Also, let ñi = (2 · |comm| + w)n for all i ∈ [`], and set Ŝ = {(i, j, β, b) ∈ [`]× [λ] × {0, 1}2 :
(j, β, b) ∈ S(i)}.

2. It samples
{

B
(j,β)
i,b

}
i,j,β,b

, {Pi,v}i,v matrices as

∀ i ∈ [`],

{B
(j,β)
i,b

}
(j,β,b)∈S(i)

{Pi,v}v∈[w]

 , Ti
← EnTrapGen(1ñi , 1m, q).

3. It then samples matrices C
(j,β)
i,b ← Zn×mq for (i, j, β, b) ∈ Ŝ.

4. Finally, it sends the public parameters pp = (λ, n,m, q, k, w, L, χpre) to the adversary.

• Challenge Phase. The challenger generates ciphertext components as

∀ (i, b) ∈ [`]× {0, 1}, U∗i,b ← χm×mpre .

Finally, it sends the challenge ciphertext as
(

tag∗,
{
U∗i,b

}
i∈[`],b∈{0,1}

)
.

• Post-Challenge Phase. The adversary is allowed make at most 1 secret key encryption query,
followed by polynomially many secret key queries. The challenger responds to each query as below.

109

1. Ciphertext Query. The adversary sends a branching program BP for encryption. The challenger
responds as follows.

(a) It generates ciphertext components as

∀ (i, b) ∈ [`]× {0, 1}, Ui,b ← χm×mpre .

(b) Finally, it sends the ciphertext as
(

tag, {Ui,b}i∈[`],b∈{0,1}

)
.

2. Secret Key Queries. The adversary queries the challenger on polynomially many messages for
corresponding secret keys. For each queried string x, the challenger responds as follows.

(a) It chooses |diff| − 1 random vectors as y(j) ← Zmq for j ∈ d̂iff.

(b) It then chooses vectors e
(j,β)
i , t̃

(j,β)

i , ẽ
(j,β)
i as follows

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, e
(j,β)
i ← χmbig,

∀ (j, β) ∈ [λ]× {0, 1}, e
(j,β)
`+1 ← χmlast,

∀ (i, j, β) ∈ [`]× [λ]× {0, 1}, t̃
(j,β)

i ← Zmq ,

∀ (j, β) ∈ comm× {0, 1}, t̃
(j,β)

`+1 ← Zmq ,

∀ β ∈ {0, 1}, t̃
(j∗,β)

`+1 ← Zmq ,

∀ (j, β) ∈ d̂iff × {0, 1}, t̃
(j,β)

`+1 ← Zmq .

(c) Let x̃ = xL. Next, it computes key vectors
{

t
(j,β)
i

}
i,j,β

as follows.

∀ (i, j, β) ∈ [`+ 1]× comm× {0, 1}, t
(j,β)
i = t̃

(j,β)

i + e
(j,β)
i

∀ (i, j, β) ∈ [`]× diff × {0, 1}, t
(j,β)
i = t̃

(j,β)

i + e
(j,β)
i

∀ (j, β) ∈ d̂iff × {0, 1}, t
(j,β)
`+1 = t̃

(j,β)

`+1 + e
(j,β)
`+1

∀ β ∈ {0, 1}, t
(j∗,β)
`+1 = t̃

(j∗,β)

`+1 + e
(j∗,β)
`+1

(d) Finally, it sends the secret key as

(
x,
{

t
(j,β)
i

}
(i,j,β)∈[`+1]×[λ]×{0,1}

)
.

• Guess. The adversary finally sends the guess γ′.

8.4.4 Indistinguishability of Hybrid Games in Section 8.4.3

Now we show that the hybrid experiments described in Section 8.4.3 are computationally indistinguishable.
For any PPT adversary A, let pA,x(·) denote the probability that adversary A outputs γ′ = 1 in Game x.

Lemma 8.12. There exists a negligible function negl(·) such that for any adversary A and λ ∈ N, pA,0(λ)−
pA,1(λ) ≤ negl(λ).

Proof. The proof of this lemma is identical to that of Lemma 8.3.

Lemma 8.13. For any adversary A and λ ∈ N, pA,1(λ) = pA,2(λ).

Proof. The proof of this lemma is identical to that of Lemma 8.4.

Lemma 8.14. For any PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,
AdvA,2(λ)− AdvA,3.1.1(λ) ≤ negl(λ).

110

Proof. First, let us list the differences between Game 2 and Game 3.1.1. The setup, challenge phase and
ciphertext query are handled in an identical manner. The key queries, however, are handled differently.

For each key query x, the challenger outputs
{

t
(j,β)
i

}
(i,j,β)∈[`]×[λ]×{0,1}

as the secret key. The components

{t(j,β)
1 }j∈diff,β∈{0,1} are computed differently in Game 2 and Game 3.1.1. In particular, in Game 3.1.1, the

challenger adds an additional error term ẽ
(j,β)
1 ← χmlwe in t

(j,β)
1 .

The proof of this lemma is similar to the proof of Lemma 8.5, (and uses the smudging lemma —
Lemma 2.1). Therefore, AdvA,2(λ)−AdvA,3.1.1(λ) ≤ qkeys(λ)·(2·|diff|·neglsmud(λ)) ≤ qkeys(λ)·(2λ·neglsmud(λ)),
and the lemma follows by setting negl3.1.1 = (2λ · neglsmud).

Lemma 8.15. For any PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N
and i∗ ∈ [`], AdvA,3.i∗.1(λ)− AdvA,3.i∗.2(λ) ≤ negl(λ).

Proof. Let us first consider the differences between Game 3.i∗.1 and Game 3.i∗.2. The setup, challenge phase
and ciphertext query are handled in an identical manner in both games. The key generation queries are

computed differently (in particular the components
{

t
(j,β)
i∗+1

}
j∈diff,β∈{0,1}

in each secret key).

The proof of this lemma is similar to the proof of Lemma 8.6, and the main idea is to use 8.1 to argue

that e
(j,β)
i∗+1 drowns ẽ

(j,β)
i∗+1 ·U

(β)
i∗,x̃i∗

and ẽ
(j,β)
i∗+1.

Lemma 8.16. Assuming the trapdoor generation algorithms LTen satisfy (q, σpre)-row removal property,
for any PPT adversary A and i∗ ∈ [`], there exists a negligible function negl(·) such that for all λ ∈ N,
AdvA,3.i∗.2(λ)− AdvA,3.i∗.3(λ) ≤ negl(λ).

Proof. This proof is similar to the proof of Lemma 8.7, and we will be using the row removal property to
prove it. We will first present the differences between the two games and then discuss why row removal
property is applicable here. The exact reduction from the row removal property to indistinguishability of
Game 3.i∗.2 and Game 3.i∗.3 can be found in the proof of Lemma 8.7.

Differences between Game 3.i∗.2 and Game 3.i∗.3:

1. Set S(i∗) : In Game 3.i∗.2, the challenger sets S(i∗) = [λ] × {0, 1}2, while in Game 3.i∗.3, S(i∗) =
comm × {0, 1}2 (tag∗, tag are chosen at the start of the security game, so the set diff is well defined
here). Also, ñi∗ = ñ = (4λ+ w)n in Game 3.i∗.2, while ñi∗ = ñ− |diff| · 4n in Game 3.i∗.3.

2.
{

B
(j,β)
i,b

}
i=i∗

matrices : In Game 3.i∗.2, the challenger chooses (Mi∗ , Ti∗) ← EnTrapGen(1ñ, 1m, q),

while in Game 3.i∗.3, it chooses (Mi∗ , Ti∗)← EnTrapGen(1ñ−|diff|·4n, 1m, q). As a result, in Game 3.i∗.2,

it derives all
{

B
(j,β)
i∗,b

}
(j,β,b)∈[λ]×{0,1}2

from Mi∗ . In Game 3.i∗.3, the challenger chooses
{

B
(j,β)
i∗,b

}
j∈diff,b,β∈{0,1}

uniformly at random, while the remaining are derived from Mi∗ .

3. Ciphertexts: Since the set S(i∗) is different in both games, the challenge and query ciphertexts are con-
structed differently in both games. In particular, the challenge ciphertext components (U∗i∗,0,U

∗
i∗,1)

and the ciphertext query components (Ui∗,0,Ui∗,1) are computed using Mi∗ and Ti∗ , which are com-
puted differently in Game 3.i∗.2 and Game 3.i∗.3.

Let us now discuss why row removal property suffices for proving this lemma.

• Consider the four matrices
(
U∗i∗,0,U

∗
i∗,1,Ui∗,0,Ui∗,1

)
. Fix any j ∈ diff, and let tag∗j = β and tagj =

1− β. Then, from the definition of D
(j,β)
b and D̃

(j,β)

b in Mixed-SubEnc, it follows that

– B
(j,β)
i∗,0 ·U

∗
i∗,0 = C

(j,β)
i∗,0 , the rest are mapped to random matrices.

– B
(j,β)
i∗,1 ·U

∗
i∗,1 = C

(j,β)
i∗,1 , the rest are mapped to random matrices.

111

– B
(j,1−β)
i∗,0 ·Ui∗,0 = C

(j,1−β)
i∗,0 , the rest are mapped to random matrices.

– B
(j,1−β)
i∗,1 ·Ui∗,1 = C

(j,1−β)
i∗,1 , the rest are mapped to random matrices.

• Next, note that the
{

C
(j,β)
i∗,b

}
j∈diff,b,β∈{0,1}

are not used for responding to key generation queries.

• Using the above points, we can conclude that in Game 3.i∗.2, for each j ∈ diff, each of these four matrices(
U∗i∗,0,U

∗
i∗,1,Ui∗,0,Ui∗,1

)
maps

[
B

(j,0)
i∗,0 | B

(j,0)
i∗,1 | B

(j,1)
i∗,0 | B

(j,1)
i∗,1

]
to a uniformly random matrix.

The proof of this lemma therefore follows using the row removal property.

Lemma 8.17. Assuming the LWEn,q,σlwe
assumption, for any PPT adversary A and i∗ ∈ [`], there exists a

negligible function negl3.i∗.4(·) such that for all λ ∈ N, AdvA,3.i∗.3(λ)− AdvA,3.i∗.4(λ) ≤ negl3.i∗.4(λ).

Proof. The proof of this lemma is similar to the proof of Lemma 8.8, except that it involves more hybrid
experiments.

In Game 3.i∗.3, for each key query x, for each β ∈ {0, 1} and j ∈ diff, the component t̃
(j,β)

i∗ =

−
∑i∗−1
α=1

(
t̃
(j,β)

α ·
∏i∗−1
δ=α U

(β)
δ,x̃δ

)
− ỹ ·

∏i∗−1
δ=1 U

(β)
δ,x̃δ

+ s̃ · P
i∗,st

(β)

i∗
+ s

(j,β)
i∗ · B(j,β)

i∗,x̃i∗
+ ẽ

(j,β)
i∗ . In Game 3.i∗.4,

t̃
(j,β)

i∗ ← Zmq . Let qkeys = qkeys(λ) denote the number of keys queried by A(1λ). To prove that these two
games are computationally indistinguishable, we will define qkeys · λ hybrid experiments.

Hybrid Ho,ĵ,0 for o ∈ {0, 1, . . . , qkeys}, ĵ ∈ [λ] : In this hybrid, for the first o keys, for j ∈ diff ∩ [ĵ],

the t̃
(j,0)

i∗ components are sampled uniformly at random, while the remaining components are sampled as in
Game 3.i∗.3.

Hybrid Ho,ĵ,1 for o ∈ {0, 1, . . . , qkeys} , ĵ ∈ [λ] : In this hybrid, for all keys and j ∈ diff, the t̃
(j,0)

i∗

components are sampled uniformly at random. For the first o queries and j ∈ diff ∩ [ĵ], the t̃
(j,1)

i∗ components
are sampled uniformly at random, while the remaining are sampled as in Game 3.i∗.3.

Clearly, H0,0,0 corresponds to Game 3.i∗.3, Hqkeys,λ,1 is identical to Game 3.i∗.4, Ho−1,λ,b ≡ Ho,0,b and
Hqkeys,λ,0 ≡ H0,0,1. Let aA,i,ĵ,b(λ) denote the advantage of A in Hi,ĵ,b.

Claim 8.6. Assuming the LWEn,q,σlwe
assumption, for any PPT adversary A making qkeys(·) key queries,

there exists a negligible function no,ĵ,0(·) such that for all λ ∈ N, qkeys = qkeys(λ) and all indices o ∈ [qkeys]

and ĵ ∈ [λ], aA,o,j−1,0 − aA,o,j,0 ≤ no,ĵ,0(λ).

Claim 8.7. Assuming the LWEn,q,σlwe
assumption, for any PPT adversary A making qkeys(·) key queries,

there exists a negligible function no,0,0(·) such that for all λ ∈ N, qkeys = qkeys(λ) and all indices o ∈ [qkeys]

and ĵ ∈ [λ], aA,o,ĵ−1,1 − aA,o,ĵ,1 ≤ no,ĵ,1(λ).

The proofs of these claims are similar to the proof of Claim 8.4. If ĵ /∈ diff, then Ho,ĵ−1,b ≡ Ho,ĵ,b. Else,
we can reduce LWE to the indistinguishability of these two hybrids.

Lemma 8.18. For any PPT adversary A and i∗ ∈ [`−1], there exists a negligible function negl(·) such that
for all λ ∈ N, AdvA,3.i∗.4(λ)− AdvA,3.(i∗+1).1(λ) ≤ negl(λ).

This proof is identical to the proof of Lemma 8.14.

Lemma 8.19. For any PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,
AdvA,3.`.4(λ)− AdvA,4(λ) ≤ negl(λ).

112

Proof. The only difference between Game 3.`.4 and Game 4 is that the t
(j∗,β)
`+1 terms contain an additional

noise term ẽ
(j∗,β)
`+1 . The proof of this lemma is identical to the proof of Lemma 8.14 and follows via the

smudging lemma (Lemma 2.1).

Lemma 8.20. Let σ : N → R+ and q : N → N be functions, and χs(λ) ≡ D√2σ(λ) and χlwe(λ) ≡ Dσ(λ) for
each λ ∈ N. Assuming the LWE-ss(n,q,σlwe) assumption, for any PPT adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N, AdvA,4(λ)− AdvA,5(λ) ≤ negl(λ).

Proof. The only difference between Game 4 and Game 5 is in the key generation phase. In Game 4, for each key

query, the term t
(j∗,β∗)
`+1 = −

∑`
α=1

(
t̃
(j∗,β∗)

α ·
∏`
δ=α U

(β∗)
δ,x̃δ

)
+ ỹ ·

∏`
δ=1 U

(β)
δ,x̃δ

+ s̃ ·P(β∗)

`+1,st
(β∗)
`+1

+ ẽ
(j∗,β∗)
`+1 +e

(j∗,β∗)
`+1 ,

and similarly the term t
(j∗,1−β∗)
`+1 = s̃ · P(1−β∗)

`+1,st
(1−β∗)
`+1

+ ẽ
(j∗,1−β∗)
`+1 + other terms . In Game 5, for each key

query, both t
(j∗,0)
`+1 and t

(j∗,1)
`+1 are set to be uniformly random. Using the short secrets version of LWE, we

can switch both s̃ ·P(β∗)

`+1,st
(β∗)
`+1

+ ẽ
(j∗,β∗)
`+1 and s̃ ·P(1−β∗)

`+1,st
(1−β∗)
`+1

+ ẽ
(j∗,1−β∗)
`+1 to uniformly random matrices. This

switch is possible because

• s̃ is chosen from χns , ẽ
(j∗,β∗)
`+1 , ẽ

(j∗,1−β∗)
`+1 are chosen from χmlwe

• s̃, ẽ
(j∗,β∗)
`+1 and ẽ

(j∗,1−β∗)
`+1 are not required anywhere else in Game 4 or Game 5. Each of these three

terms is chosen afresh for each key query.

• P
(β∗)

`+1,st
(β∗)
`+1

and P
(1−β∗)
`+1,st

(1−β∗)
`+1

are uniformly random matrices.

Formally, we will show that Game 4 and Game 5 are computationally indistinguishable via a sequence of
hybrid experiments. Let qkeys = qkeys(λ) denote the number of keys queried by A(1λ). To prove that these
two games are computationally indistinguishable, we will define qkeys hybrid experiments.

Hybrid Ho for o ∈ {0, 1, . . . , qkeys} : In this hybrid, for the first o keys, the t
(j∗,0)
i∗+1 , t

(j∗,1)
lvl+1 components are

sampled uniformly at random in the first o queries. For the remaining qkeys − o key queries, the keys are
generated as in Game 4 in the remaining queries.

Clearly, H0 corresponds to Game 4, while Hqkeys
is identical to Game 5. Let aA,i(λ) denote the advantage

of A in Hi.

Claim 8.8. Let σ : N → R+ and q : N → N be functions, and χs(λ) ≡ D√2σ(λ) and χlwe(λ) ≡ Dσ(λ) for

each λ ∈ N. Assuming the LWE-ss(n,q,σlwe) assumption, for any PPT adversary A making qkeys(·) key queries,
there exists a negligible function negl(·) such that for all λ ∈ N, qkeys = qkeys(λ) and all indices o ∈ [qkeys],
aA,o−1 − aA,o ≤ negl(λ).

Proof. Suppose there exists an adversary making qkeys key queries, and a non-negligible function η(·) such
that for all λ ∈ N, there exists an index o ∈ [qkeys] such that aA,o−1 − aA,o ≥ η(λ). We will use A to build a
reduction algorithm B that breaks the LWE-ss(n,q,σlwe) assumption.

The reduction algorithm receives (k,w, L) from the adversary, and sets the parameters as in Ho−1/Ho.
It makes 2m queries to the LWE-ss challenger, and receives {(aj , uj)}j≤2m. It chooses tag∗, tag ← {0, 1}λ
and j∗ is the first position where tag∗ and tag differ. Next, it sets ñi as in Ho−1/Ho, chooses (Mi, Ti) ←
EnTrapGen(1ñi , 1m, q).

Challenge Phase The reduction algorithm receives challenge ciphertext BP∗, which specifies the reject
state rej∗, and uses Mixed-SubEnc for computing the challenge ciphertext. Note that Mixed-SubEnc chooses
P`+1,v uniformly at random. The reduction algorithm sets P`+1,rej∗ to be a matrix whose jth column is aTj .
All other P`+1,v are chosen uniformly at random.

113

Ciphertext Query The reduction algorithm receives ciphertext query BP, and uses Mixed-SubEnc for
computing the ciphertext query. Let rej denote the reject state of BP. It sets P`+1,rej to be a matrix whose
jth column is aTm+j . The remaining P`+1,v matrices are chosen uniformly at random.

Key Queries The reduction algorithm first sets uβ
∗

= [u1 . . . um] and u1−β∗ = [um+1 . . . u2m]. For the

first o − 1 key queries, the t
(j∗,β)
`+1 components are chosen uniformly at random. For the oth key query, the

reduction algorithm sets t
(j∗,β∗)
`+1 = −

∑`
α=1

(
t̃
(j∗,β∗)

α ·
∏`
δ=α U

(β∗)
δ,x̃δ

)
+ ỹ ·

∏`
δ=1 U

(β∗)
δ,x̃δ

+ e
(j∗,β∗)
`+1 + uβ

∗
, and

t
(j∗,1−β∗)
`+1 = −

∑`
α=1

(
t̃
(j∗,1−β∗)
α ·

∏`
δ=α U

(1−β∗)
δ,x̃δ

)
+ ỹ ·

∏`
δ=1 U

(1−β∗)
δ,x̃δ

+ e
(j∗,1−β∗)
`+1 + u1−β∗ . The remaining

key queries are handled as in Ho−1/Ho.

Now, if all the uj terms output by the LWE challenger are uniformly random, then t
(j∗,β∗)
`+1 and t

(j∗,1−β∗)
`+1

are uniformly random, and hence the reduction algorithm simulates Ho. If each uj = s̃ · aTj + ẽj , then the
reduction algorithm simulates Ho−1.

Lemma 8.21. Assuming the trapdoor system LTen satisfies (q, σpre)-row removal property, for any PPT
adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, AdvA,5(λ) − AdvA,5.1(λ) ≤
negl(λ).

Proof. Let us first consider the differences between Game 5 and Game 5.1.

• Set S(1) : In Game 5, the challenger sets S(1) = comm × {0, 1}2, while in Game 5.1, S(1) = {(j, β, b) :
j ∈ comm ∧ β = tagj} (tag∗, tag are chosen at the start of the security game, so these sets are well
defined here). Also, ñ1 = (4|comm|+ w)n in Game 5, while ñ1 = (2|comm|+ w)n in Game 5.1.

•
{

B
(j,β)
i,b

}
i=1

matrices : In Game 5, the challenger chooses (M1, T1)← EnTrapGen(1(4|comm|+w)n, 1m, q),

while in Game 3.i∗.3, it chooses (M1, T1)← EnTrapGen(1(2|comm|+w)n, 1m, q). As a result, in Game 5, it

derives all
{

B
(j,β)
1,b

}
(j,β,b)∈comm×{0,1}2

from M1. In Game 5.1, the challenger chooses
{

B
(j,β)
1,b

}
j∈comm,β 6=tagj ,b∈{0,1}

uniformly at random, while the remaining are derived from M1.

• Ciphertexts: Since the set S(1) is different in both games, the challenge ciphertext components
(U∗1,0,U

∗
1,1) and the ciphertext query components (U1,0,U1,1) are computed using M1 and T1, which

are computed differently in Game 5 and Game 5.1.

Let us now discuss why row removal property suffices for proving this lemma. Consider any matrix U ∈{
U∗1,0,U

∗
1,1,U1,0,U1,1

}
, fix any j ∈ comm, and let β = tagj . Then, from the definition of D

(j,β)
b and D̃

(j,β)

b

in Mixed-SubEnc, it follows that B
(j,1−β)
1,b ·U is a random matrix for both b ∈ {0, 1} (because tag∗j = β).

The proof of this lemma therefore follows using the row removal property (the reduction algorithm is
similar to the one described in the proof of Lemma 8.7).

Lemma 8.22. Assuming the trapdoor system LTen satisfies (q, σpre)-row removal property, for any PPT
adversary A, there exists a negligible function negl(·) such that for all λ ∈ N and i∗ ∈ [`] , AdvA,5.(i∗−1)(λ)−
AdvA,5.`(λ) ≤ negl(λ).

The proof of this lemma is identical to the proof of Lemma 8.22.

Lemma 8.23. Assuming the LWEn,q,σlwe
assumption, for any PPT adversary A, there exists a negligible

function negl(·) such that for all λ ∈ N, AdvA,5.`(λ)− AdvA,6.2(λ) ≤ negl(λ).

114

Proof. The proof of this lemma is similar to the proof of Lemma 8.8.

In Game 5.`, for each key query x, for each j ∈ comm, the component t
(j,β)
1 = s

(j,β)
1 B

(j,β)
1,x̃1

+ y(j) + e
(j,β)
1

and t
(j,β)
2 = −s

(j,β)
1 ·C(j,β)

1,x̃1
+ s

(j,β)
2 ·B(j,β)

2,x̃2
+ e

(j,β)
2 . In Game 6.1, then t

(j,1−tagj)

1 , t
(j,1−tagj)

2 ← Zmq . Let qkeys =

qkeys(λ) denote the number of keys queried by A(1λ). To prove that these two games are computationally
indistinguishable, we will define qkeys · λ hybrid experiments.

Hybrid Ho,ĵ,0 for o ∈ {0, 1, . . . , qkeys}, ĵ ∈ [λ] : In this hybrid, for the first o keys, for j ∈ comm ∩ [ĵ],

the t
(j,1−tagj)

1 , t
(j,1−tagj)

2 components are sampled uniformly at random, while the remaining components are
sampled as in Game 5.`.

Hybrid Ho,ĵ,1 for o ∈ {0, 1, . . . , qkeys} , ĵ ∈ [λ] : This hybrid is similar to the previous one, except that for

j = ĵ + 1, it adds an additional χlwe noise to t
(j,1−tagj)

1 and t
(j,1−tagj)

2 .

Clearly, H0,0,0 corresponds to Game 5.`, Hqkeys,λ,1 is identical to Game 6.2, and Ho−1,λ,0 ≡ Ho,0,0. Let
aA,o,ĵ,b(λ) denote the advantage of A in Ho,ĵ,b.

Claim 8.9. For every PPT adversary A making qkeys queries, there exists a negl(·) such that for all λ ∈ N,
o ∈ [qkeys] and j ∈ [λ], aA,o,ĵ,0 − aA,o,ĵ,1 ≤ negl(λ).

The proof of this claim follows via the smudging lemma (Lemma 2.1).

Claim 8.10. Assuming the LWEn,q,σlwe
assumption, for any PPT adversary A making qkeys(·) key queries,

there exists a negligible function negl(·) such that for all λ ∈ N, qkeys = qkeys(λ) and all indices o ∈ [qkeys] and

ĵ ∈ [λ], aA,o,ĵ−1,1 − aA,o,ĵ,0 ≤ negl(λ).

Proof. The proof of this claim follows from the LWE assumption. The reduction algorithm makes 4m

queries to the LWE challenger, and receives {aj , uj}j∈4m. It sets B
(ĵ,1−tagĵ)

1,0 = [aT1 . . .a
T
m], C

(ĵ,1−tagĵ)

1,0 =

[aTm+1 . . .a
T
2m], B

(ĵ,1−tagĵ)

1,1 = [aT2m+1 . . .a
T
3m], C

(ĵ,1−tagĵ)

1,1 = [aT3m+1 . . .a
T
4m]. It also sets u1,0 = [u1 . . . um],

u2,0 = [um+1 . . . u2m], u1,1 = [u2m+1 . . . u3m], u2,1 = [u3m+1 . . . u4m].

For the oth key query x, the reduction algorithm sets t
(ĵ,1−tagĵ)

1 = u1,x̃1
+y(ĵ)+e

(ĵ,1−tagĵ)

1 and t
(ĵ,1−tagĵ)

2 =

u2,x̃1
+ e

(ĵ,1−tagĵ)

2 . The rest of the key components can be handled without the LWE challenge terms.

Lemma 8.24. Assuming the LWEn,q,σlwe
assumption, for any PPT adversary A, there exists a negligible

function negl(·) such that for all λ ∈ N and i∗ ∈ {3, . . . , `}, AdvA,6.i∗−1(λ)− AdvA,6.i∗(λ) ≤ negl(λ).

Proof. The only difference between Game 6.(i∗ − 1) and Game 6.i∗ is with respect to the key queries. In

Game 6.(i∗ − 1), for each j ∈ comm, the challenger sets t
(j,1−tagj)

i∗ = −s
(j,1−tagj)

i∗−1 · C(j,1−tagj)

i∗−1,x̃i−1
+ s

(j,1−tagj)

i∗ ·

B
(j,1−tagj)

i∗,x̃i
+ e

(j,1−tagj)

i∗ , while it switches these terms to random in Game 6.i∗.

The proof of this lemma uses (standard) LWE, similar to the proof of Lemma 8.23. One minor difference

between this lemma and Lemma 8.23 is that in the previous lemma, the challenger switches both t
(j,1−tagj)

1

and t
(j,1−tagj)

2 (this is because the vector s
(j,1−tagj)

1 is used for computing both these components). However,

in this lemma, the reduction algorithm sets the LWE challenge’s public vectors as the rows of C
(j,1−tagj)

i∗,0

and C
(j,1−tagj)

i∗,1 , and the LWE challenge for setting t
(j,1−tagj)

i∗ .

Lemma 8.25. For any adversary A and any λ ∈ N, AdvA,6.(`+1)(λ) = AdvA,7.1(λ).

115

Proof. The only difference between Game 6.(` + 1) and Game 7.1 is with respect to the {t(j,tagj)

1 }j∈comm

components in key queries. In Game 6, for each key query x, the challenger chooses
{
y(j)

}
j 6=j∗ and sets

t
(j,tagj)

1 = s
(j,tagj)

1 ·B(j,tagj)

1,x̃1
+ y(j) + e

(j,tagj)

1 for each j ∈ comm. In Game 7.1, the {t(j,tagj)

1 }j∈comm vectors are
set to be uniformly random vectors.

Note that in Game 6.(` + 1), the y(j) terms are chosen afresh for each key, and y(j) is only used in

constructing t
(j,tagj)

1 (recall t
(j,1−tagj)

1 is uniformly random). As a result, the components {t(j,tagj)

1 }j∈comm

are uniformly random vectors and therefore the secret keys in the two games are identically distributed.

Lemma 8.26. Assuming the LWEn,q,σlwe
assumption, for any PPT adversary A, there exists a negligible

function negl(·) such that for all λ ∈ N and i∗ ∈ {2, . . . , `}, AdvA,7.i∗−1(λ)− AdvA,7.i∗(λ) ≤ negl(λ).

Proof. The only difference between Game 7.(i∗ − 1) and Game 7.i∗ is with respect to the {t(j,tagj)

i∗ }j∈comm

components in key queries. In Game 7.(i∗− 1), for each key query x, the challenger sets t
(j,tagj)

i∗ = −s
(j,tagj)

i∗−1 ·
C

(j,tagj)

i∗,x̃i∗−1
+ s

(j,tagj)

i∗ ·B(j,tagj)

i∗,x̃i∗
+ e

(j,tagj)

i∗ for each j ∈ comm. In Game 7.i∗, the {t(j,tagj)

i∗ }j∈comm vectors are set

to be uniformly random vectors. We will show that these two games are computationally indistinguishable
via a hybrid argument. First, we will define qkeys · λ hybrid experiments.

Hybrid Ho,ĵ,0 for o ∈ {0, 1, . . . , qkeys}, ĵ ∈ [λ] : In this hybrid, for the first o keys, for j ∈ comm∩ [ĵ], the

t
(j,tagj)

i∗ components are sampled uniformly at random, while the remaining components are sampled as in
Game 7.i∗.

Hybrid Ho,ĵ,1 for o ∈ {0, 1, . . . , qkeys} , ĵ ∈ [λ] : This hybrid is similar to the previous one, except that for

j = ĵ + 1, it adds an additional χlwe noise to t
(j,tagj)

i∗ .

Clearly, H0,0,0 corresponds to Game 7.(i∗ − 1), Hqkeys,λ,1 is identical to Game 7.i∗ and Ho−1,λ,0 ≡ Ho,0,0.
Let aA,o,ĵ,b(λ) denote the advantage of A in Ho,ĵ,b.

Claim 8.11. For every PPT adversary A making qkeys queries, there exists a negl(·) such that for all λ ∈ N,
o ∈ [qkeys] and j ∈ [λ], aA,o,ĵ,0 − aA,o,ĵ,1 ≤ negl(λ).

The proof of this claim follows via the smudging lemma (Lemma 2.1).

Claim 8.12. Assuming the LWEn,q,σlwe
assumption, for any PPT adversary A making qkeys(·) key queries,

there exists a negligible function negl(·) such that for all λ ∈ N, qkeys = qkeys(λ) and all indices o ∈ [qkeys] and

ĵ ∈ [λ], aA,o,ĵ−1,1 − aA,o,ĵ,0 ≤ negl(λ).

Proof. The proof of this claim follows from the LWE assumption, where the reduction algorithm sets the

LWE public vectors to be columns of C
(ĵ,tagĵ)

i∗,0 ,C
(ĵ,tagĵ)

i∗,1 , and the LWE challenge is used to set t
(ĵ,tagĵ)

i∗ . Note

that the vector s
(ĵ,tagĵ)

i∗−1 is used only for defining t
(ĵ,tagĵ)

i∗ . This is because this vector is chosen afresh for each

key query, and in hybrids Ho,ĵ−1,1/Ho,ĵ,0, the key component t
(ĵ,tagĵ)

i∗−1 is already random. 30

30If t
(ĵ,tag

ĵ
)

i∗−1 was not already switched to random, then s
(ĵ,tag

ĵ
)

i∗−1 would have been used to define it.

116

Lemma 8.27. Assuming LTen satisfies the (q, χappr, σpre)-target switching property and (q, σpre)-well sam-
pledness of preimage, for any PPT adversary A, there exists a negligible function negl(·) such that for all
λ ∈ N and i∗ ∈ [`], AdvA,8.(i∗−1)(λ)− AdvA,8.i∗(λ) ≤ negl(λ).

Lemma 8.28. First, let us discuss the differences between Game 8.(i∗−1) and Game 8.i∗. In Game 8.(i∗−1),
the challenge ciphertext components {U∗i,b}i≥i∗,b∈{0,1} and query ciphertext components {Ui,b}i≥i∗,b∈{0,1}
are computed using Mixed-SubEnc, while the remaining are chosen from Gaussian distribution with parameter
χpre. Game 8.i∗ is similar to Game 8.(i∗− 1), except for the challenge ciphertext components U∗i∗,0,U

∗
1,1 and

the query ciphertext components U1,0,U1,1 are chosen from the Gaussian distribution with parameter σpre.
To show that these games are indistinguishable, we will define a hybrid experiments H.

Hybrid H This hybrid is similar to Game 8.(i∗−1), except that the challenger computes {U∗i∗,b,Ui∗,b}b∈{0,1}
such that they map Mi∗ to uniformly random matrices.

Let AdvA,H denote the advantage of adversary A in hybrid H.

Claim 8.13. Assuming LTen satisfies the (q, χappr, σpre)-target switching property, for any PPT adversary A,
there exists a negligible function negl(·) such that for all λ ∈ N and i∗ ∈ [`], AdvA,8.(i∗−1)(λ)−AdvA,H(λ) ≤
negl(λ).

Proof. The proof of this claim is similar to the proof of Lemma 8.10. First, let us discuss the reasons why
the target switching property is applicable here. Let S(i∗) be defined as in Game 8.(i∗ − 1)/Game 8.i∗,
BP∗ = {π∗i,b}(i,b)∈[`]×{0,1} and BP = {πi,b}(i,b)∈[`]×{0,1} the challenge/query programs.

1. In both Game 8.(i∗ − 1) and hybrid H, the components
{
U∗i,b,Ui,b

}
i∈[i∗−1],b∈{0,1} are chosen from a

Gaussian distribution, and therefore these terms do not contain any information about the {Pi∗,v}v∈[w]

or
{

B
(j,β)
i∗,b

}
(j,β,b)∈S(i∗)

matrices.

2. The components
{
U∗i,b,Ui,b

}
i>i∗,b∈{0,1} do not contain any information about the {Pi∗,v}v∈[w] or{

B
(j,β)
i∗,b

}
(j,β,b)∈S(i∗)

matrices (this follows from the construction).

3. The keys are all either random vectors, or computed in terms of the challenge/query ciphertext com-

ponents, and therefore do not explicitly require {Pi∗,v}v∈[w] or
{

B
(j,β)
i∗,b

}
(j,β,b)∈S(i∗)

matrices.

Consider matrices
{

Z∗0,b,Z
∗
1,b,Z0,b,Z1,b

}
b∈{0,1}

defined as follows:

Z∗0,b =


{

C
(j,β)
i∗,b

}
(j,β,b)∈S(i∗){

Pi∗,π∗
i∗,b(v)

}
v∈[w]

Z∗1,b =
[
← Zñi×mq

]

Z0,b =


{

C
(j,β)
i∗,b

}
(j,β,b)∈S(i∗){

Pi∗,πi∗,b(v)

}
v∈[w]

Z1,b =
[
← Zñi×mq

]
The reduction algorithm sends

(
1ñi , 1m, ∅

)
to the target switching property challenger 31. It does not

receive any matrix from the challenger (since the challenge set is empty). Next, it chooses (Mi, Ti) ←
EnTrapGen(1ñi , 1m, q) for all i > i∗, and parses Mi as in Game 8.(i∗−1)/Game 8.i∗ to obtain

{
B

(j,β)
i,b

}
(j,β,b)∈S(i)

and {Pi,v}v∈[w] for all i > i∗. It receives BP∗ as the challenge query from the adversary. The reduction

algorithm sends Z∗0,b,Z
∗
1,b to the target switching property challenger, and receives Ui∗,b in response. It

31Note that the set specified by the adversary in the target switching property game can be empty.

117

chooses the remaining components as in Game 8.(i∗ − 1)/Game 8.i∗ and sends the challenge ciphertext to
the adversary.

Next, it receives the ciphertext query BP. It sends Z0,b,Z1,b to the target switching property challenger,
and receives Ui∗,b. The remaining ciphertext components are chosen as in Game 8.(i∗ − 1)/Game 8.i∗ and
sends the challenge ciphertext to the adversary. Finally, the adversary makes key queries. For each key query,

the reduction algorithm sets
{

t
(j,β)
i

}
(i,j,β)∈[`+1]×[λ]×{0,1}

as in Game 8.(i∗− 1)/Game 8.i∗ and sends them to

the adversary. The adversary sends its guess, which the reduction algorithm forwards to the challenger.
Therefore, if there exists a PPT adversary A and a non-negligible function η such that AdvA,8.(i∗−1)(λ)−

AdvA,H(λ) ≥ η(λ) for all λ, then there exists a PPT algorithm B that breaks the target switching property.

Claim 8.14. Assuming LTen satisfies the (q, σpre)-well sampledness of pre-image, for any PPT adversary A,
there exists a negligible function negl(·) such that for all λ ∈ N, AdvA,H(λ)− AdvA,8.i∗(λ) ≤ negl(λ).

Proof. This proof follows directly from the (q, σ)-well sampledness of pre-image property. Suppose there
exists a PPT adversary A and a reduction algorithm η(·) such that AdvA,H(λ) − AdvA,8.i∗(λ) ≥ η(λ) for
all λ ∈ N. Then there exists a reduction algorithm that breaks the (q, σ)-well sampledness of pre-image
property.

The reduction algorithm sends 1ñi , 1m, 14m to the challenger. Note that m > ñi log q + λ and σ >√
n · log q · logm+λ as required. It receives a matrix U ∈ Zm×4m

q , which it parses as U =
[
U∗i∗,0 | U

∗
i∗,1 | Ui∗,0 | Ui∗,1

]
.

The reduction algorithm also chooses (Mi, Ti)← EnTrapGen(1ñi , 1m, q) for all i 6= i∗.
On receiving the challenge ciphertext, it chooses the remaining ciphertext components as in Game 8.(i∗−

1)/Game 8.i∗, and sends them to the adversary. Similarly, it handles the ciphertext query. Finally, for the
key queries, the reduction algorithm handles them as in Game 8.(i∗ − 1)/Game 8.i∗.

Using these two claims, it follows that AdvA,8.(i∗−1)(λ)−AdvA,8.i∗(λ) is bounded by a negligible function.

Lemma 8.29. For any PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,
AdvA,8.`(λ)− AdvA,9(λ) ≤ negl(λ).

Proof. The only difference between these two hybrids is with respect to the key components
{

t
(j,β)
`

}
j∈d̂iff,β∈{0,1}

.

In Game 8.`, these vectors are computed as
∑`
α=1

(
t̃
(j,β)

α ·
∏`
δ=α U

(β)
δ,x̃δ

)
+ y(j) ·

∏`
δ=1 U

(β)
δ,x̃δ

+ e
(j,β)
`+1 , while in

Game 9, this vector is set to be
∑`
α=1

(
t̃
(j,β)

α ·
∏`
δ=α U

(β)
δ,x̃δ

)
+ y(j) ·

∏`
δ=1 U

(β)
δ,x̃δ

+ ẽ
(j,β)
`+1 ·

∏`
δ=2 U

(β)
δ,x̃δ

+ e
(j,β)
`+1 ,

where ẽ
(j,β)
`+1 ← χmlwe. Note that the Ui,b matrices are all drawn from the Gaussian distribution with param-

eter σpre, and therefore, with all but negligible probability,
∥∥∥ẽ(j,β)

`+1 ·
∏`
δ=2 U

(β)
δ,x̃δ

∥∥∥ ≤ mσlwe · (mσpre)
`−1. Since

σlast/mσlwe · (mσpre)
`−1 ≥ 2λ, we can use the smudging lemma to argue that the statistical distance between

these two games is at most m · qkeys · neglsmud(λ).

Lemma 8.30. Assuming the LWE-spd,q,σpre,χlwe
assumption (see Assumption 3) holds (where d(λ) = 6λ · q),

for any PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, AdvA,9(λ) −
AdvA,10(λ) ≤ negl(λ).

Proof. The only difference between Game 9 and Game 10 is with respect to the key components
{

t
(j,β)
`+1

}
j∈d̂iff,β∈{0,1}

.

In Game 9, for each key, these are computed as t
(j,β)
`+1 =

∑`
α=1

(
t̃
(j,β)

α ·
∏`
δ=α U

(β)
δ,x̃δ

)
+
(
y(j) ·U(β)

1,x̃1
+ ẽ

(j,β)
`+1

)∏`
δ=2 U

(β)
δ,x̃δ

+

e
(j,β)
`+1 , while in Game 10, these vectors are uniformly random. To prove this claim, it suffices to switch(
y(j) ·U(β)

1,x̃1
+ ẽ

(j,β)
`+1

)
to a uniformly random vector. Since y(j) ← Zmq , U

(β)
1,x̃1
← Dm×mZ,σpre

and ẽ
(j,β)
`+1 ← χmlwe,

we can use LWE-sp assumption as in the proof of Theorem 7.4.

118

8.4.5 Proving 1-Bounded Restricted Accept Indistinguishability

First, note that using the lemmas provided in Section 8.4.4, we can conclude that our construction satisfies
1-bounded complete accept indistinguishability security. Concretely, algorithms SK-Enc∗ and KeyGen∗, that
take as input the public parameters, are defined as follows: SK-Enc∗ is same as the standard encryption
algorithm Enc (that is, it outputs random Gaussian matrices), and KeyGen∗ on input x outputs secret key

as

(
x,
{

t
(j,β)
i

}
(i,j,β)∈[`+1]×[λ]×{0,1}

)
, where all t

(j,β)
i are sampled uniformly at random from Zmq . Since in

Game 10 the challenger is already using SK-Enc∗ and KeyGen∗ to answer corresponding queries, therefore
using lemmas in Section 8.4.4 we can argue 1-bounded complete accept indistinguishability security.

Lastly, to finish the proof we only need to argue that the probability adversary outputs 1 in the 1-bounded
restricted accept indistinguishability security game, when the challenger computes challenge ciphertext as a
normal FE ciphertext instead of encrypting BP∗, is negligibly close to the probability adversary outputs 1
in Game 10. Note that this again follows from the lemmas in Section 8.4.4. Or in other words, it follows
from the fact that our construction satisfies 1-bounded complete accept indistinguishability security. This
is because if an adversary can distinguish Game 10 from the scenario described above, then we could come
up with a reduction algorithm that breaks 1-bounded complete accept indistinguishability security of our
construction.

The idea is straightforward. The reduction algorithm will simply forwards messages (back and forth)
between the attacker and complete accept indistinguishability challenger, except the following changes:

• The reduction algorithm does not forward the adversary’s challenge program BP∗ as its challenge query
to complete accept indistinguishability challenger. Instead it runs the normal encryption algorithm
Enc and sends the output back to adversary as its challenge ciphertext.

• Also, the reduction algorithm sends the adversary’s post-challenge encryption query (if any) to the
challenger as its challenge query and forwards challenger’s response to the adversary.

• And, the reduction algorithm does not make any post-challenge encryption query.

• Finally, it outputs whatever the adversary outputs.

Clearly the reduction algorithm perfectly simulates the indistinguishability experiment (between Game 10 and
the scenario described above), thus if adversary’s advantage is non-negligible, then the reduction algorithm
also breaks 1-bounded complete accept indistinguishability security with non-negligible probability. This
completes the proof.

Acknowledgements

We thank Chris Peikert for useful discussions about the Micciancio-Peikert lattice trapdoors [MP12].

References

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical ibe. In Proceedings of the 30th annual conference on Advances
in cryptology, CRYPTO’10, pages 98–115, Berlin, Heidelberg, 2010. Springer-Verlag.

[ABP+17] Shweta Agrawal, Sanjay Bhattacherjee, Duong Hieu Phan, Damien Stehlé, and Shota Yamada.
Efficient public trace and revoke from standard assumptions: Extended abstract. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017, pages 2277–2293, 2017.

119

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In CRYPTO, pages 595–618,
2009.

[ADGM16] Daniel Apon, Nico Döttling, Sanjam Garg, and Pratyay Mukherjee. Cryptanalysis of indistin-
guishability obfuscations of circuits over ggh13. Cryptology ePrint Archive, Report 2016/1003,
2016.

[ADM+07] Michel Abdalla, Alexander W. Dent, John Malone-Lee, Gregory Neven, Duong Hieu Phan, and
Nigel P. Smart. Identity-based traitor tracing. In Public Key Cryptography - PKC 2007, 10th
International Conference on Practice and Theory in Public-Key Cryptography, Beijing, China,
April 16-20, 2007, Proceedings, pages 361–376, 2007.

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional en-
cryption: New perspectives and lower bounds. In Advances in Cryptology - CRYPTO 2013 -
33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceed-
ings, Part II, pages 500–518, 2013.

[Ajt99] Miklós Ajtai. Generating hard instances of the short basis problem. In Automata, Languages
and Programming, 26th International Colloquium, ICALP’99, Prague, Czech Republic, July
11-15, 1999, Proceedings, pages 1–9, 1999.

[AJW11] Gilad Asharov, Abhishek Jain, and Daniel Wichs. Multiparty computation with low commu-
nication, computation and interaction via threshold fhe. Cryptology ePrint Archive, Report
2011/613, 2011. http://eprint.iacr.org/2011/613.

[ALS16] Shweta Agrawal, Benôıt Libert, and Damien Stehlé. Fully secure functional encryption for inner
products, from standard assumptions. In Annual Cryptology Conference, 2016.

[Bar86] D A Barrington. Bounded-width polynomial-size branching programs recognize exactly those
languages in nc1. In Proceedings of the eighteenth annual ACM symposium on Theory of com-
puting, STOC ’86, 1986.

[BDFP86] Allan Borodin, Danny Dolev, Faith E. Fich, and Wolfgang J. Paul. Bounds for width two
branching programs. SIAM J. Comput., 15(2):549–560, 1986.

[BF99] Dan Boneh and Matthew K. Franklin. An efficient public key traitor tracing scheme. In Advances
in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 15-19, 1999, Proceedings, pages 338–353, 1999.

[BF11] Dan Boneh and David Mandell Freeman. Linearly homomorphic signatures over binary fields
and new tools for lattice-based signatures. In International Workshop on Public Key Cryptog-
raphy, 2011.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod
Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arith-
metic circuit ABE and compact garbled circuits. In Advances in Cryptology - EUROCRYPT
2014 - 33rd Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, pages 533–556, 2014.

[BGH+15] Zvika Brakerski, Craig Gentry, Shai Halevi, Tancrède Lepoint, Amit Sahai, and Mehdi Tibouchi.
Cryptanalysis of the quadratic zero-testing of GGH. IACR Cryptology ePrint Archive, 2015.

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key homo-
morphic prfs and their applications. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I,
pages 410–428, 2013.

120

http://eprint.iacr.org/2011/613

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical
hardness of learning with errors. In Symposium on Theory of Computing Conference, STOC’13,
Palo Alto, CA, USA, June 1-4, 2013, pages 575–584, 2013.

[BLSV17] Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan. Anonymous ibe, leak-
age resilience and circular security from new assumptions. Cryptology ePrint Archive, Report
2017/967, 2017. http://eprint.iacr.org/2017/967.

[BN08] Dan Boneh and Moni Naor. Traitor tracing with constant size ciphertext. In Proceedings of
the 2008 ACM Conference on Computer and Communications Security, CCS 2008, Alexandria,
Virginia, USA, October 27-31, 2008, pages 501–510, 2008.

[BP08] Olivier Billet and Duong Hieu Phan. Efficient traitor tracing from collusion secure codes. In
Information Theoretic Security, Third International Conference, ICITS 2008, Calgary, Canada,
August 10-13, 2008, Proceedings, pages 171–182, 2008.

[BS15] Zvika Brakerski and Gil Segev. Function-private functional encryption in the private-key setting.
In Theory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015, Warsaw,
Poland, March 23-25, 2015, Proceedings, Part II, pages 306–324, 2015.

[BSW06] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor tracing with short
ciphertexts and private keys. In EUROCRYPT, pages 573–592, 2006.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional en-
cryption. In IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015,
Berkeley, CA, USA, 17-20 October, 2015, pages 171–190, 2015.

[BVWW16] Zvika Brakerski, Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Obfuscating con-
junctions under entropic ring lwe. In Proceedings of the 2016 ACM Conference on Innovations
in Theoretical Computer Science, 2016.

[BW06] Dan Boneh and Brent Waters. A fully collusion resistant broadcast, trace, and revoke system.
In Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS
2006, Alexandria, VA, USA, Ioctober 30 - November 3, 2006, pages 211–220, 2006.

[BWZ14] Dan Boneh, David J. Wu, and Joe Zimmerman. Immunizing multilinear maps against zeroizing
attacks. Cryptology ePrint Archive, Report 2014/930, 2014.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more
from indistinguishability obfuscation. In Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I,
pages 480–499, 2014.

[CC17] Ran Canetti and Yilei Chen. Constraint-hiding constrained prfs for nc1 from lwe. In EURO-
CRYPT, 2017.

[CFL+16] Jung Hee Cheon, Pierre-Alain Fouque, Changmin Lee, Brice Minaud, and Hansol Ryu. Crypt-
analysis of the new clt multilinear map over the integers. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, 2016.

[CFN94] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In CRYPTO, pages 257–270, 1994.

[CFNP00] Benny Chor, Amos Fiat, Moni Naor, and Benny Pinkas. Tracing traitors. IEEE Trans. Infor-
mation Theory, 46(3):893–910, 2000.

121

http://eprint.iacr.org/2017/967

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K. Maji, Eric
Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing without low-level zeroes:
New MMAP attacks and their limitations. In Advances in Cryptology - CRYPTO 2015 - 35th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,
Part I, 2015.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate
a lattice basis. In Advances in Cryptology - EUROCRYPT 2010, 29th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, May
30 - June 3, 2010. Proceedings, pages 523–552, 2010.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé. Crypt-
analysis of the multilinear map over the integers. In Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, pages 3–12, 2015.

[CJL16] Jung Hee Cheon, Jinhyuck Jeong, and Changmin Lee. An algorithm for ntru problems and
cryptanalysis of the ggh multilinear map without a low-level encoding of zero. LMS Journal of
Computation and Mathematics, 2016.

[CLLT16] Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi. Cryptanalysis
of GGH15 multilinear maps. In Advances in Cryptology - CRYPTO 2016 - 36th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings,
Part II, 2016.

[CLLT17] Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi. Zeroizing
attacks on indistinguishability obfuscation over CLT13. In Public-Key Cryptography - PKC
2017 - 20th IACR International Conference on Practice and Theory in Public-Key Cryptography,
Amsterdam, The Netherlands, March 28-31, 2017, Proceedings, Part I, 2017.

[CLT14] Jean-Sebastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. Cryptanalysis of two candidate
fixes of multilinear maps over the integers. Cryptology ePrint Archive, Report 2014/975, 2014.

[CPP05] Hervé Chabanne, Duong Hieu Phan, and David Pointcheval. Public traceability in traitor
tracing schemes. In Advances in Cryptology - EUROCRYPT 2005, 24th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark,
May 22-26, 2005, Proceedings, pages 542–558, 2005.

[DG17a] Nico Döttling and Sanjam Garg. Identity-based encryption from the diffie-hellman assumption.
In Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I, pages 537–569, 2017.

[DG17b] Nico Dttling and Sanjam Garg. From selective ibe to full ibe and selective hibe. TCC, 2017.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating noise to
sensitivity in private data analysis. In Theory of Cryptography, Third Theory of Cryptography
Conference, TCC 2006, New York, NY, USA, March 4-7, 2006, Proceedings, pages 265–284,
2006.

[DNR+09] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil Vadhan. On the
complexity of differentially private data release: Efficient algorithms and hardness results. In
Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing, STOC ’09,
pages 381–390, New York, NY, USA, 2009. ACM.

[FNP07] Nelly Fazio, Antonio Nicolosi, and Duong Hieu Phan. Traitor tracing with optimal transmission
rate. In Information Security, 10th International Conference, ISC 2007, Valparáıso, Chile,
October 9-12, 2007, Proceedings, pages 71–88, 2007.

122

[Fre10] David Mandell Freeman. Converting pairing-based cryptosystems from composite-order groups
to prime-order groups. In Proceedings of the 29th Annual International Conference on Theory
and Applications of Cryptographic Techniques, EUROCRYPT’10, pages 44–61, Berlin, Heidel-
berg, 2010. Springer-Verlag.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indstinguishability obfuscation and functional encryption for all circuits. In FOCS,
2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from lattices.
In TCC, 2015.

[GKRW17] Rishab Goyal, Venkata Koppula, Andrew Russell, and Brent Waters. Risky traitor tracing and
new differential privacy negative results. Cryptology ePrint Archive, Report 2017/1117, 2017.

[GKSW10] Sanjam Garg, Abishek Kumarasubramanian, Amit Sahai, and Brent Waters. Building efficient
fully collusion-resilient traitor tracing and revocation schemes. In Proceedings of the 17th ACM
Conference on Computer and Communications Security, CCS ’10, pages 121–130, New York,
NY, USA, 2010. ACM.

[GKW17a] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, pages 612–621, 2017.

[GKW17b] Rishab Goyal, Venkata Koppula, and Brent Waters. Separating semantic and circular security
for symmetric-key bit encryption from the learning with errors assumption. In EUROCRYPT,
2017.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In STOC, pages 197–206, 2008.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with
bounded collusions via multi-party computation. In CRYPTO, 2012.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for
circuits. In STOC, 2013.

[Hal15] Shai Halevi. Graded encoding, variations on a scheme. Cryptology ePrint Archive, Report
2015/866, 2015.

[HJ16] Yupu Hu and Huiwen Jia. Cryptanalysis of ggh map. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, 2016.

[KD98] Kaoru Kurosawa and Yvo Desmedt. Optimum traitor tracing and asymmetric schemes. In
Advances in Cryptology - EUROCRYPT ’98, International Conference on the Theory and Ap-
plication of Cryptographic Techniques, Espoo, Finland, May 31 - June 4, 1998, Proceeding,
pages 145–157, 1998.

[KMUW17] Lucas Kowalczyk, Tal Malkin, Jonathan Ullman, and Daniel Wichs. Hardness of non-interactive
differential privacy from one-way functions. Cryptology ePrint Archive, Report 2017/1107, 2017.

[KY02a] Aggelos Kiayias and Moti Yung. Traitor tracing with constant transmission rate. In Advances in
Cryptology - EUROCRYPT 2002, International Conference on the Theory and Applications of
Cryptographic Techniques, Amsterdam, The Netherlands, April 28 - May 2, 2002, Proceedings,
pages 450–465, 2002.

[KY02b] Kaoru Kurosawa and Takuya Yoshida. Linear code implies public-key traitor tracing. In Public
Key Cryptography, 5th International Workshop on Practice and Theory in Public Key Cryp-
tosystems, PKC 2002, Paris, France, February 12-14, 2002, Proceedings, pages 172–187, 2002.

123

[LPSS14] San Ling, Duong Hieu Phan, Damien Stehlé, and Ron Steinfeld. Hardness of k-lwe and applica-
tions in traitor tracing. In Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, pages 315–334,
2014.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
In Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012.
Proceedings, pages 700–718, 2012.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on gaussian
measures. SIAM J. Comput., 37(1):267–302, April 2007.

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear maps: Crypt-
analysis of indistinguishability obfuscation over ggh13. In Annual Cryptology Conference, 2016.

[NP98] Moni Naor and Benny Pinkas. Threshold traitor tracing. In Advances in CryptologyCRYPTO’98,
pages 502–517. Springer, 1998.

[NWZ16] Ryo Nishimaki, Daniel Wichs, and Mark Zhandry. Anonymous traitor tracing: How to embed
arbitrary information in a key. In Advances in Cryptology - EUROCRYPT 2016 - 35th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Vienna,
Austria, May 8-12, 2016, Proceedings, Part II, pages 388–419, 2016.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended
abstract. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC
2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 333–342, 2009.

[PST06] Duong Hieu Phan, Reihaneh Safavi-Naini, and Dongvu Tonien. Generic construction of hybrid
public key traitor tracing with full-public-traceability. In Automata, Languages and Program-
ming, 33rd International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings,
Part II, pages 264–275, 2006.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD,
USA, May 22-24, 2005, pages 84–93, 2005.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with public
keys. In Proceedings of the 17th ACM conference on Computer and communications security,
CCS ’10, pages 463–472, New York, NY, USA, 2010. ACM.

[SSW01] Jessica Staddon, Douglas R. Stinson, and Ruizhong Wei. Combinatorial properties of frameproof
and traceability codes. IEEE Trans. Information Theory, 47(3):1042–1049, 2001.

[SW98] Douglas R. Stinson and Ruizhong Wei. Combinatorial properties and constructions of trace-
ability schemes and frameproof codes. SIAM J. Discrete Math., 11(1):41–53, 1998.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs under LWE.
In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, pages
600–611, 2017.

[Yao86] Andrew Yao. How to generate and exchange secrets. In FOCS, pages 162–167, 1986.

124

A Background: Attribute-Based Encryption

A.1 Key-Policy Attribute Based Encryption

A key-policy attribute based encryption (KP-ABE) scheme ABE , for set of attribute spaces X = {Xκ}κ,
predicate classes C = {Cκ}κ and message spaces M = {Mκ}κ, consists of four polytime algorithms
(Setup,Enc,KeyGen,Dec) with the following syntax:

• Setup(1λ, 1κ) → (pp,msk). The setup algorithm takes as input the security parameter λ and a func-
tionality index κ, and outputs the public parameters pp and the master secret key msk.

• Enc(pp, x,m)→ ct. The encryption algorithm takes as input public parameters pp, an attribute x ∈ Xκ
and a message m ∈Mκ. It outputs a ciphertext ct.

• KeyGen(msk, C) → skC . The key generation algorithm takes as input master secret key msk and a
predicate C ∈ Cκ. It outputs a secret key skC .

• Dec(skC , ct)→ m or ⊥. The decryption algorithm takes as input a secret key skC and a ciphertext ct.
It outputs either a message m ∈Mκ or a special symbol ⊥.

Correctness. A key-policy attribute based encryption scheme is said to be correct if there exists negligible
functions negl1(·),negl2(·) such that for all λ, κ ∈ N, for all x ∈ Xκ, C ∈ Cκ, m ∈Mκ, the following holds

C(x) = 1⇒ Pr

[
Dec(skC , ct) = m :

(pp,msk)← Setup(1λ, 1κ);
skC ← KeyGen(msk, C); ct← Enc(pp, x,m)

]
≥ 1− negl1(λ),

C(x) = 0⇒ Pr

[
Dec(skC , ct) = ⊥ (pp,msk)← Setup(1λ, 1κ);

skC ← KeyGen(msk, C); ct← Enc(pp, x,m)

]
≥ 1− negl2(λ).

Security. The standard notion of security for a KP-ABE scheme is that of full or adaptive security. It is
formally defined as follows.

Definition A.1. A key-policy attribute based encryption scheme ABE = (Setup,Enc,KeyGen,Dec) is said
to be fully secure if for every stateful PPT adversary A, there exists a negligible function negl(·), such that
for every λ ∈ N the following holds:∣∣∣∣∣∣Pr

AKeyGen(msk,·)(ct) = b :
1κ ← A(1λ); (pp,msk)← Setup(1λ, 1κ)

((m0,m1), x)← AKeyGen(msk,·)(pp)
b← {0, 1}; ct← Enc(pp, x,mb)

− 1

2

∣∣∣∣∣∣ ≤ negl(λ)

where every predicate query C, made by adversary A to the KeyGen(msk, ·) oracle, must satisfy the condition
that C(x) = 0.

In this work, we only require the scheme to achieve selective security, which is formally defined as follows.

Definition A.2. A key-policy attribute based encryption scheme ABE = (Setup,Enc,KeyGen,Dec) is said
to be selectively secure if for every stateful PPT adversary A, there exists a negligible function negl(·), such
that for every λ ∈ N the following holds:∣∣∣∣∣∣Pr

AKeyGen(msk,·)(ct) = b :
(1κ, x)← A(1λ); (pp,msk)← Setup(1λ, 1κ)

(m0,m1)← AKeyGen(msk,·)(pp)
b← {0, 1}; ct← Enc(pp, x,mb)

− 1

2

∣∣∣∣∣∣ ≤ negl(λ)

where every predicate query C, made by adversary A to the KeyGen(msk, ·) oracle, must satisfy the condition
that C(x) = 0.

125

B ABE and Mixed FE to PLBE: Preserving Perfect Correctness

In this section, we give an alternate construction for constructing PLBE such that if the underlying ABE
scheme achieves perfect correctness, then so does the PLBE scheme even if the mixed FE scheme is not
perfectly correct. Since existing ABE schemes [GVW13, BGG+14] can be made perfectly correct by appro-
priately truncating noise distributions used, thus this gives a pathway to get perfect correctness under LWE.
Note that in the construction described in Section 6.1 only achieves perfect correctness when both underlying
ABE and mixed FE scheme are perfectly correct. This is because the policy circuit is the mixed FE decryp-
tion circuit, and thus in order to guarantee perfect correctness, we need the minimum requirement that the
mixed FE normal ciphertexts always decrypt to 1. Below we give the main idea to obtain perfect correctness.

Outline. At a very high level, the idea is to encrypt the message m under two independent ABE systems such
that at least one of ciphertext components can always be decrypted to obtain the underlying message. To this
end, during setup we sample two ABE key pairs (abe.ppb, abe.mskb) (for b ∈ {0, 1}) and a mixed FE key pair
(mixed.pp,mixed.msk). To generate the secret key for ith user, we generate a mixed FE secret key mixed.ski
for message i, and later compute two ABE keys abe.ski,0, abe.ski,1 for predicates Mixed.Dec(mixed.ski, ·)
and Mixed.Dec(mixed.ski, ·) using abe.msk0, abe.msk1, respectively. Here Mixed.Dec(mixed.ski, ·) denotes the
circuit that first decrypts the input using key mixed.ski and later applies a “not” gate (i.e., outputs the
complement). Now the PLBE ciphertexts will consist of two parts, one for each ABE sub-system. For PLBE
normal encryption, one computes two ciphertexts ctb (for b ∈ {0, 1}) as encryptions of message m under
attributes ctattr using parameters abe.ppb, where ctattr is computed as before. Now for encrypting a message
to index i, the encryption algorithm behaves differently in that it computes ct0 as before, but ct1 will now
be an encryption of message 0 under the same attributes. The reason for not encrypting the message m in
the second component of the index ciphertext becomes clear while proving security.

Now for arguing perfect correctness, we observe that it should be the case that either Mixed.Dec(mixed.ski,
ctattr) = 0 or = 1. Thus, at least one of the PLBE normal ciphertext components could be correctly decrypted.
Note that for such an argument we only require that ABE is perfectly correct. Next, the security proof is
similar to that in Section 6.3, except for arguing normal hiding security of our construction we need to rely
on both the ABE security as well as the weak accept indistinguishability property of mixed FE scheme. The
main idea is that by correctness of FE scheme, we can say that with all but negligible probability the attribute
used in the second component of challenge ciphertext is not satisfied by any of the ABE keys queried. Thus,
as our first hybrid argument, we could use ABE security to switch second challenge ciphertext component to
an encryption of 0 instead of message m. The remaining is identical to as before with the only modification
being that the reduction algorithm needs to generate the ABE keys for the second component on its own
during the entire reduction. Below we describe our construction PLBE = (Setup,Enc,Enc-index,Dec) for
messages spaces {Mκ}κ in detail.

B.1 Construction

Let ABE = (ABE.Setup,ABE.Enc,ABE.KeyGen,ABE.Dec) be a key-policy attribute based encryption scheme
for set of attribute spaces {Xκ}κ, predicate classes {Cκ}κ and message spaces {Mκ}κ, and Mixed-FE =
(Mixed.Setup,Mixed.Enc,Mixed.SK-Enc,Mixed.KeyGen,Mixed.Dec) be a mixed functional encryption scheme,
for function classes {Fκ}κ and message space {Iκ}κ, with ciphertexts of length `(λ, κ). For every n, let
κ = κ(n) be the lexicographically smallest functionality index such that every string of length log(n) can
be uniquely represented in message space Iκ (i.e., {0, 1}log(n) ⊆ Iκ), and function class Fκ contains the
“comparison” (>) operator. Also, let κ̃ = κ̃(λ, κ) be the lexicographically smallest functionality index such
that every string of length `(λ, κ) can be uniquely represented in attribute class Xκ̃ (i.e., {0, 1}`(λ,κ) ⊆ Xκ̃),
and Cκ̃ contains mixed FE decryption circuit (as well its complement circuit) corresponding to functionality
index κ. Below we describe our construction.

• Setup(1λ, 1n)→
(

pp,msk, {ski}i≤n
)

. The setup algorithm runs ABE.Setup and Mixed.Setup to generate

ABE and mixed FE public parameters and master secret key as (abe.pp, abe.msk)← ABE.Setup(1λ, 1κ̃)

126

and (mixed.pp,mixed.msk) ← Mixed.Setup(1λ, 1κ). Next, it runs Mixed.KeyGen to generate n mixed
secret keys mixed.ski as

∀ i ≤ n, mixed.ski ← Mixed.KeyGen(mixed.msk, i).

Let C0
mixed.ski

denote the circuit Mixed.Dec(mixed.ski, ·), and C1
mixed.ski

denote the circuit Mixed.Dec(mixed.ski, ·),
i.e. C1

mixed.ski
is the Mixed-FE decryption circuit with key mixed.ski hardwired and a “not” gate applied

on the output of decryption. Next, it computes 2n ABE secret keys abe.ski,b as

∀ i ≤ n, b ∈ {0, 1}, abe.ski,b ← ABE.KeyGen(abe.mskb, C
b
mixed.ski).

Finally, it sets pp = (abe.pp0, abe.pp1,mixed.pp), msk = (abe.msk0, abe.msk1,mixed.msk) and ski =
(abe.ski,0, abe.ski,1) for i ≤ n.

• Enc(pp,m) → ct. Let pp = (abe.pp0, abe.pp1,mixed.pp). The encryption algorithm first computes
ctattr ← Mixed.Enc(mixed.pp). Next, it encrypts message m as ctb ← ABE.Enc(abe.ppb, ctattr,m) for
b ∈ {0, 1}, and outputs ciphertext ct = (ct0, ct1).

• Enc-index(msk,m, i) → ct. Let msk = (abe.msk0, abe.msk1,mixed.msk) and compi denote the com-

parison function
?
> i, i.e. compi(x) = 1 iff x > i. The encryption algorithm first computes ctattr ←

Mixed.SK-Enc(mixed.msk, compi). Next, it encrypts message m as ct0 ← ABE.Enc(abe.pp0, ctattr,m)
and ct1 ← ABE.Enc(abe.pp1, ctattr, 0), and outputs ciphertext ct = (ct0, ct1).

• Dec(sk, ct)→ m or ⊥ . Let sk = (sk0, sk1) and ct = (ct0, ct1). The decryption algorithm runs ABE.Dec
on ciphertexts ctb using key skb as yb = ABE.Dec(skb, ctb) for b ∈ {0, 1}. If y0 6= ⊥, it outputs y0.
Otherwise, it sets y1 as the output of decryption.

B.2 Correctness

For all λ, n ∈ N, message m ∈ Mλ, public parameters and master secret keys (abe.ppb, abe.mskb) ←
ABE.Setup(1λ, 1κ̃) (for b ∈ {0, 1}), (mixed.pp,mixed.msk) ← Mixed.Setup(1λ, 1κ), the secret keys ski,b for
i ≤ n, b ∈ {0, 1} are simply the ABE keys abe.ski,b ← ABE.KeyGen(abe.mskb, C

b
mixed.ski

). For any index i ≤ n,
consider the following two cases:

1. Normal encryption. For any ciphertext ct = (ct0, ct1) computed as ctb ← ABE.Enc(abe.ppb, ctattr,m)
(for b ∈ {0, 1}), where ctattr ← Mixed.Enc(mixed.pp), we know that either Mixed.Dec(mixed.ski, ctattr) =
1 or Mixed.Dec(mixed.ski, ctattr) = 0. In other words, either Cbmixed.ski

(ctattr) = 1 for some bit b ∈ {0, 1}.
Therefore, by perfect correctness of ABE scheme, we have that ABE.Dec(abe.ski,b, ctb) = m for some
bit b ∈ {0, 1}. Therefore, the PLBE decryption algorithm always decrypts the normal ciphertexts
correctly.

2. Index encryption. This is identical to the argument provided in Section 6.2. Note that perfect
correctness for PLBE only requires perfect decryption in the case of normal encryption. Thus, it is
sufficient to prove statistical correctness in the case of index encryption.

Therefore, PLBE scheme is perfectly correct.

B.3 Security

The proof of security is almost identical to that provided in Section 6.3, except to argue normal hiding
security of our construction, we first need to use ABE security of the auxiliary sub-system (for b = 1) and
statistical correctness property of underlying Mixed FE scheme simultaneously to switch the encryption of
challenge message m∗ to 0. Rest of the proof is identical.

127

C Hybrids

C.1 Detailed Hybrid Experiments for Theorem 7.2

Hybrid H0 : This corresponds to the original game (as per Definition 7.1, with the single row removal
restriction) with b = 0.

1. Setup Phase. The adversary A sends 1n, 1m, index i ∈ [n]. The challenger proceeds as follows.

(a) It first chooses (B1, TB1) ← TrapGen(1n−1, 1dm/2e, q), (B2, TB2) ← TrapGen(1n−1, 1bm/2c, q). It
sets B = [B1 |B2].

(b) It also chooses a vector p← Zmq , and sets matrix A ∈ Zn×mq as A = Arrange(B,p, [n] \ {i}).
(c) Finally, it sends A to A.

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,C)

where C ∈ Z(n−1)×t
q . The challenger responds to each query as follows.

(a) It chooses W← Z(n−1)×t
q and computes U1 ← SamplePre(B1, TB1

, σ,W).

(b) Next, it sets Y = C−B1·U1 (which is equal to C−W), and computes U2 ← SamplePre(B2, TB2 , σ,Y).

(c) Finally, it sends U =

[
U1

U2

]
to A.

3. The adversary outputs a bit b′.

Hybrid H1 : In this experiment, the challenger chooses U1 to be a random Gaussian matrix with parameter
σ for each query.

1. Setup Phase. The adversary A sends 1n, 1m, index i ∈ [n]. The challenger proceeds as follows.

(a) It first chooses (B1, TB1
) ← TrapGen(1n−1, 1dm/2e, q), (B2, TB2

) ← TrapGen(1n−1, 1bm/2c, q). It
sets B = [B1 |B2].

(b) It also chooses a vector p← Zmq , and sets matrix A ∈ Zn×mq as A = Arrange(B,p, [n] \ {i}).
(c) Finally, it sends A to A.

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,C)

where C ∈ Z(n−1)×t
q . The challenger responds to each query as follows.

(a) It samples U1 ← Ddm/2e×tZ,σ .

(b) Next, it sets Y = C−B1 ·U1, and computes U2 ← SamplePre(B2, TB2 , σ,Y).

(c) Finally, it sends U =

[
U1

U2

]
to A.

3. The adversary outputs a bit b′.

Hybrid H2 : In this hybrid, the challenger chooses B1 uniformly at random, instead of choosing it using
TrapGen. At this point, note that the left half of A is a uniformly random matrix.

1. Setup Phase. The adversary A sends 1n, 1m, index i ∈ [n]. The challenger proceeds as follows.

(a) It first chooses B1 ← Z(n−1)×dm/2e
q , (B2, TB2

)← TrapGen(1n−1, 1bm/2c, q). It sets B = [B1 |B2].

(b) It also chooses a vector p← Zmq , and sets matrix A ∈ Zn×mq as A = Arrange(B,p, [n] \ {i}).
(c) Finally, it sends A to A.

128

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,C)

where C ∈ Z(n−1)×t
q . The challenger responds to each query as follows.

(a) It samples U1 ← Ddm/2e×tZ,σ .

(b) Next, it sets Y = C−B1 ·U1, and computes U2 ← SamplePre(B2, TB2
, σ,Y).

(c) Finally, it sends U =

[
U1

U2

]
to A.

3. The adversary outputs a bit b′.

Hybrid H3 : This hybrid involves syntactic changes. The challenger chooses A1 ← Zn×dm/2eq , and derives
B1 by removing the ith row of A1.

1. Setup Phase. The adversary A sends 1n, 1m, index i ∈ [n]. The challenger proceeds as follows.

(a) It first chooses A1 ← Zn×dm/2eq , (B2, TB2)← TrapGen(1n−1, 1bm/2c, q). It sets B1 = Restrict(A1, [n]\
{i}), and B = [B1 |B2].

(b) It also chooses a vector p2 ← Zbm/2cq , and sets A2 = Arrange(B2,p2, [n] \ {i}), A = [A1 |A2].

(c) Finally, it sends A to A.

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,C)

where C ∈ Z(n−1)×t
q . The challenger responds to each query as follows.

(a) It samples U1 ← Ddm/2e×tZ,σ .

(b) Next, it sets Y = C−B1 ·U1, and computes U2 ← SamplePre(B2, TB2
, σ,Y).

(c) Finally, it sends U =

[
U1

U2

]
to A.

3. The adversary outputs a bit b′.

Hybrid H4 : In this hybrid, the challenger chooses the left half of A using TrapGen.

1. Setup Phase. The adversary A sends 1n, 1m, index i ∈ [n]. The challenger proceeds as follows.

(a) It first chooses A1 ← TrapGen
(
1n, 1dm/2e, q

)
, (B2, TB2) ← TrapGen(1n−1, 1bm/2c, q). It sets

B1 = Restrict(A1, [n] \ {i}), and B = [B1 |B2].

(b) It also chooses a vector p2 ← Zbm/2cq , and sets A2 = Arrange(B2,p2, [n] \ {i}), A = [A1 |A2].

(c) Finally, it sends A to A.

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,C)

where C ∈ Z(n−1)×t
q . The challenger responds to each query as follows.

(a) It samples U1 ← Ddm/2e×tZ,σ .

(b) Next, it sets Y = C−B1 ·U1, and computes U2 ← SamplePre(B2, TB2
, σ,Y).

(c) Finally, it sends U =

[
U1

U2

]
to A.

3. The adversary outputs a bit b′.

129

Hybrid H5 : In this hybrid, the challenger chooses U1 using SamplePre for each query.

1. Setup Phase. The adversary A sends 1n, 1m, index i ∈ [n]. The challenger proceeds as follows.

(a) It first chooses A1 ← TrapGen
(
1n, 1dm/2e, q

)
, (B2, TB2) ← TrapGen(1n−1, 1bm/2c, q). It sets

B1 = Restrict(A1, [n] \ {i}), and B = [B1 |B2].

(b) It also chooses a vector p2 ← Zbm/2cq , and sets A2 = Arrange(B2,p2, [n] \ {i}), A = [A1 |A2].

(c) Finally, it sends A to A.

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,C)

where C ∈ Z(n−1)×t
q . The challenger responds to each query as follows.

(a) It chooses W′ ← Zn×tq , sets W = Restrict(W′, [n]\{i}), and samples U1 ← SamplePre(A1, TA1
, σ,W′).

(b) Next, it sets Y = C−B1 ·U1, and computes U2 ← SamplePre(B2, TB2 , σ,Y).

(c) Finally, it sends U =

[
U1

U2

]
to A.

3. The adversary outputs a bit b′.

Hybrid H6 : This hybrid represents a syntactic change, in which the challenger, for each query, chooses
Y as a uniformly random matrix, and set W = C−Y = C−B2 ·U2.

1. Setup Phase. The adversary A sends 1n, 1m, index i ∈ [n]. The challenger proceeds as follows.

(a) It first chooses A1 ← TrapGen
(
1n, 1dm/2e, q

)
, (B2, TB2

) ← TrapGen(1n−1, 1bm/2c, q). It sets
B1 = Restrict(A1, [n] \ {i}), and B = [B1 |B2].

(b) It also chooses a vector p2 ← Zbm/2cq , and sets A2 = Arrange(B2,p2, [n] \ {i}), A = [A1 |A2].

(c) Finally, it sends A to A.

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,C)

where C ∈ Z(n−1)×t
q . The challenger responds to each query as follows.

(a) It chooses Y ← Z(n−1)×t
q , and samples U2 ← SamplePre(B2, TB2 , σ,Y).

(b) Next, it sets W = C − B2 ·U2 (which is equal to C −Y), chooses a uniformly random vector
w← Ztq, sets W′ = Arrange(W,w, [n] \ {i}), and computes U1 ← SamplePre(A1, TA1

, σ,W′).

(c) Finally, it sends U =

[
U1

U2

]
to A.

3. The adversary outputs a bit b′.

Hybrid H7 : In this hybrid experiment, the challenger chooses U2 from a Gaussian distribution with
parameter σ.

1. Setup Phase. The adversary A sends 1n, 1m, index i ∈ [n]. The challenger proceeds as follows.

(a) It first chooses A1 ← TrapGen
(
1n, 1dm/2e, q

)
, (B2, TB2

) ← TrapGen(1n−1, 1bm/2c, q). It sets
B1 = Restrict(A1, [n] \ {i}), and B = [B1 |B2].

(b) It also chooses a vector p2 ← Zbm/2cq , and sets A2 = Arrange(B2,p2, [n] \ {i}), A = [A1 |A2].

(c) Finally, it sends A to A.

130

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,C)

where C ∈ Z(n−1)×t
q . The challenger responds to each query as follows.

(a) It samples U2 ← Dbm/2c×tZ,σ .

(b) Next, it sets W = C − B2 · U2, chooses a uniformly random vector w ← Ztq, sets W′ =
Arrange(W,w, [n] \ {i}), and computes U1 ← SamplePre(A1, TA1

, σ,W′).

(c) Finally, it sends U =

[
U1

U2

]
to A.

3. The adversary outputs a bit b′.

Hybrid H8 : In this hybrid, the challenger chooses matrix B2 uniformly at random. Note that this means
A2 is uniformly random in this hybrid.

1. Setup Phase. The adversary A sends 1n, 1m, index i ∈ [n]. The challenger proceeds as follows.

(a) It first chooses A1 ← TrapGen
(
1n, 1dm/2e, q

)
, B2 ← Z(n−1)×bm/2c

q . It sets B1 = Restrict(A1, [n] \
{i}), and B = [B1 |B2].

(b) It also chooses a vector p2 ← Zbm/2cq , and sets A2 = Arrange(B2,p2, [n] \ {i}), A = [A1 |A2].

(c) Finally, it sends A to A.

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,C)

where C ∈ Z(n−1)×t
q . The challenger responds to each query as follows.

(a) It samples U2 ← Dbm/2c×tZ,σ .

(b) Next, it sets W = C − B2 · U2, chooses a uniformly random vector w ← Ztq, sets W′ =
Arrange(W,w, [n] \ {i}), and computes U1 ← SamplePre(A1, TA1

, σ,W′).

(c) Finally, it sends U =

[
U1

U2

]
to A.

3. The adversary outputs a bit b′.

Hybrid H9 : In this hybrid, the matrix A2 is chosen using TrapGen.

1. Setup Phase. The adversary A sends 1n, 1m, index i ∈ [n]. The challenger proceeds as follows.

(a) It first chooses A1 ← TrapGen
(
1n, 1dm/2e, q

)
, A2 ← TrapGen

(
1n, 1bm/2c, q

)
. It sets B1 =

Restrict(A1, [n] \ {i}), B2 = Restrict(A2, [n] \ {i}), and B = [B1 |B2].

(b) It sets A = [A1 |A2].

(c) Finally, it sends A to A.

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,C)

where C ∈ Z(n−1)×t
q . The challenger responds to each query as follows.

(a) It samples U2 ← Dbm/2c×tZ,σ .

(b) Next, it sets W = C − B2 · U2, chooses a uniformly random vector w ← Ztq, sets W′ =
Arrange(W,w, [n] \ {i}), and computes U1 ← SamplePre(A1, TA1 , σ,W

′).

(c) Finally, it sends U =

[
U1

U2

]
to A.

3. The adversary outputs a bit b′.

131

Hybrid H10 : In this hybrid, the challenger chooses U2 using SamplePre for each query.

1. Setup Phase. The adversary A sends 1n, 1m, index i ∈ [n]. The challenger proceeds as follows.

(a) It first chooses A1 ← TrapGen
(
1n, 1dm/2e, q

)
, A2 ← TrapGen

(
1n, 1bm/2c, q

)
. It sets B1 =

Restrict(A1, [n] \ {i}), B2 = Restrict(A2, [n] \ {i}), and B = [B1 |B2].

(b) It sets A = [A1 |A2].

(c) Finally, it sends A to A.

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,C)

where C ∈ Z(n−1)×t
q . The challenger responds to each query as follows.

(a) It chooses Y′ ← Zn×tq and samples U2 ← SamplePre(A2, TA2
, σ,Y′).

(b) Next, it sets W = C − B2 · U2, chooses a uniformly random vector w ← Ztq, sets W′ =
Arrange(W,w, [n] \ {i}), and computes U1 ← SamplePre(A1, TA1 , σ,W

′).

(c) Finally, it sends U =

[
U1

U2

]
to A.

3. The adversary outputs a bit b′.

Hybrid H11 : This hybrid represents a syntactic change in which the ith row of matrix W′ is set as a
difference of random vector c and ith row of A2 ·U2 instead of being sampled uniformly at random directly.

1. Setup Phase. The adversary A sends 1n, 1m, index i ∈ [n]. The challenger proceeds as follows.

(a) It first chooses A1 ← TrapGen
(
1n, 1dm/2e, q

)
, A2 ← TrapGen

(
1n, 1bm/2c, q

)
. It sets B1 =

Restrict(A1, [n] \ {i}), B2 = Restrict(A2, [n] \ {i}), and B = [B1 |B2].

(b) It sets A = [A1 |A2].

(c) Finally, it sends A to A.

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,C)

where C ∈ Z(n−1)×t
q . The challenger responds to each query as follows.

(a) It chooses Y′ ← Zn×tq and samples U2 ← SamplePre(A2, TA2
, σ,Y′).

(b) Next, it chooses a uniformly random vector c ← Ztq, sets C′ = Arrange(C, c, [n] \ {i}), sets
W′ = C′ −A2 ·U2, and computes U1 ← SamplePre(A1, TA1

, σ,W′).

(c) Finally, it sends U =

[
U1

U2

]
to A.

3. The adversary outputs a bit b′.

Hybrid H12 : This hybrid represents a syntactic change. It corresponds to the security game in Defini-
tion 7.1 with b = 1.

1. Setup Phase. The adversary A sends 1n, 1m, index i ∈ [n]. The challenger proceeds as follows.

(a) It first chooses A1 ← TrapGen
(
1n, 1dm/2e, q

)
, A2 ← TrapGen

(
1n, 1bm/2c, q

)
. It sets B1 =

Restrict(A1, [n] \ {i}), B2 = Restrict(A2, [n] \ {i}), and B = [B1 |B2].

(b) It sets A = [A1 |A2].

(c) Finally, it sends A to A.

132

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,C)

where C ∈ Z(n−1)×t
q . The challenger responds to each query as follows.

(a) It chooses W′ ← Zn×tq and computes U1 ← SamplePre(A1, TA1
, σ,W).

(b) Next, it chooses a uniformly random vector c ← Ztq, sets C′ = Arrange(C, c, [n] \ {i}), sets
Y′ = C′ −A1 ·U1 (which is equal to C′ −W′), and computes U2 ← SamplePre(A2, TA2

, σ,Y′).

(c) Finally, it sends U =

[
U1

U2

]
to A.

3. The adversary outputs a bit b′.

C.2 Detailed Hybrid Experiments for Theorem 7.4

Hybrid H0 : This corresponds to the single target switching security game.

1. Setup Phase. The adversary A sends 1n, 1m, index i ∈ [n]. The challenger proceeds as follows.

(a) It chooses (A1, TA1
) ← TrapGen(1n, 1dm/2e, q) and (A2, TA2

) ← TrapGen(1n, 1bm/2c, q). It also
chooses a random bit b← {0, 1}.

(b) Next, it sets B1 = Restrict(A1, [n] \ {i}), B2 = Restrict(A2, [n] \ {i}), and sends [B1 |B2] to A.

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,Z0,Z1)
where Z0,Z1 ∈ Zn×tq such that Restrict(Z0, [n] \ {i}) = Restrict(Z1, [n] \ {i}). The challenger responds
to each query as follows.

(a) It chooses W← Zn×tq , computes U1 ← SamplePre(A1, TA1
, σ,W).

(b) It also samples vector e← χt, and sets E = Arrange(0(n−1)×t, e, [n] \ {i}).
(c) Next, it sets Y = Zb − A1 · U1 + E (which is equal to Zb −W + E), and computes U2 ←

SamplePre(A2, TA2
, σ,Y).

(d) Finally, it sends U =

[
U1

U2

]
to A.

3. A outputs its guess b′.

Hybrid H1 : In this hybrid experiment, the challenger sets U1 to be a Gaussian matrix for each query.

1. Setup Phase. The adversary A sends 1n, 1m, index i ∈ [n]. The challenger proceeds as follows.

(a) It chooses (A1, TA1) ← TrapGen(1n, 1dm/2e, q) and (A2, TA2) ← TrapGen(1n, 1bm/2c, q). It also
chooses a random bit b← {0, 1}.

(b) Next, it sets B1 = Restrict(A1, [n] \ {i}), B2 = Restrict(A2, [n] \ {i}), and sends [B1 |B2] to A.

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,Z0,Z1)
where Z0,Z1 ∈ Zn×tq such that Restrict(Z0, [n] \ {i}) = Restrict(Z1, [n] \ {i}). The challenger responds
to each query as follows.

(a) It computes U1 ← Ddm/2e×tZ,σ .

(b) It also samples vector e← χt, and sets E = Arrange(0(n−1)×t, e, [n] \ {i}).
(c) Next, it sets Y = Zb −A1 ·U1 + E, and computes U2 ← SamplePre(A2, TA2 , σ,Y).

(d) Finally, it sends U =

[
U1

U2

]
to A.

3. A outputs its guess b′.

133

Hybrid H2 : In this hybrid experiment, the challenger sets A1 to be a uniformly random matrix (that is,
sampled without a trapdoor).

1. Setup Phase. The adversary A sends 1n, 1m, index i ∈ [n]. The challenger proceeds as follows.

(a) It chooses A1 ← Zn×dm/2eq and (A2, TA2
)← TrapGen(1n, 1bm/2c, q). It also chooses a random bit

b← {0, 1}.
(b) Next, it sets B1 = Restrict(A1, [n] \ {i}), B2 = Restrict(A2, [n] \ {i}), and sends [B1 |B2] to A.

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,Z0,Z1)
where Z0,Z1 ∈ Zn×tq such that Restrict(Z0, [n] \ {i}) = Restrict(Z1, [n] \ {i}). The challenger responds
to each query as follows.

(a) It computes U1 ← Ddm/2e×tZ,σ .

(b) It also samples vector e← χt, and sets E = Arrange(0(n−1)×t, e, [n] \ {i}).
(c) Next, it sets Y = Zb −A1 ·U1 + E, and computes U2 ← SamplePre(A2, TA2 , σ,Y).

(d) Finally, it sends U =

[
U1

U2

]
to A.

3. A outputs its guess b′.

Hybrid H3 : This hybrid is a syntactic change. Here, we express Y in terms of B1 and the ith row of A1.
Note that the ith row of A1 is used only for computing the ith row of Y.

1. Setup Phase. The adversary A sends 1n, 1m, index i ∈ [n]. The challenger proceeds as follows.

(a) It chooses A1 ← Zn×dm/2eq and (A2, TA2
)← TrapGen(1n, 1bm/2c, q). It also chooses a random bit

b← {0, 1}.
(b) Next, it sets B1 = Restrict(A1, [n] \ {i}), B2 = Restrict(A2, [n] \ {i}), and sends [B1 |B2] to A.

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,Z0,Z1)
where Z0,Z1 ∈ Zn×tq such that Restrict(Z0, [n] \ {i}) = Restrict(Z1, [n] \ {i}). The challenger responds
to each query as follows.

(a) It computes U1 ← Ddm/2e×tZ,σ .

(b) It also samples vector e← χt, and sets Z′b = Restrict(Zb, [n] \ {i}).
(c) Next, it sets Y′ = Z′b −B1 ·U1, y = Zb[i]−A1[i] ·U1 + e, and Y = Arrange(Y′,y, [n] \ {i}). It

then computes U2 ← SamplePre(A2, TA2
, σ,Y).

(d) Finally, it sends U =

[
U1

U2

]
to A.

3. A outputs its guess b′.

Hybrid H4 : In this hybrid experiment, the challenger sets the ith row of Y to be a uniformly random
vector.

1. Setup Phase. The adversary A sends 1n, 1m, index i ∈ [n]. The challenger proceeds as follows.

(a) It chooses A1 ← Zn×dm/2eq and (A2, TA2
)← TrapGen(1n, 1bm/2c, q). It also chooses a random bit

b← {0, 1}.
(b) Next, it sets B1 = Restrict(A1, [n] \ {i}), B2 = Restrict(A2, [n] \ {i}), and sends [B1 |B2] to A.

134

2. Query Phase. The adversary makes a polynomial number of preimage queries of the form (1t,Z0,Z1)
where Z0,Z1 ∈ Zn×tq such that Restrict(Z0, [n] \ {i}) = Restrict(Z1, [n] \ {i}). The challenger responds
to each query as follows.

(a) It computes U1 ← Ddm/2e×tZ,σ .

(b) It sets Z′b = Restrict(Zb, [n] \ {i}).
(c) Next, it sets Y′ = Z′b − B1 ·U1, y ← Ztq, and Y = Arrange(Y′,y, [n] \ {i}). It then computes

U2 ← SamplePre(A2, TA2 , σ,Y).

(d) Finally, it sends U =

[
U1

U2

]
to A.

3. A outputs its guess b′.

135

	Introduction
	Technical Overview
	Some Future Directions
	Additional Related Work
	Organization

	Preliminaries
	Lattice Preliminaries
	Learning with Errors
	Lattice Trapdoors

	Branching Programs

	Traitor Tracing
	Public Key Traitor Tracing
	Security

	Private Linear Broadcast Encryption
	q-Bounded PLBE Security
	Decoder-based PLBE Security

	Traitor Tracing from 1-bounded secure PLBE
	Decoder-based PLBE from 1-bounded secure PLBE
	Traitor Tracing from Decoder-based PLBE
	IND-CPA Security
	Correctness of Tracing

	Mixed Functional Encryption
	Construction of PLBE from Mixed FE and ABE
	Construction
	Correctness
	Security
	Normal Hiding Security
	Index Hiding Security
	Message Hiding Security

	A New LWE Toolkit
	Enhanced Lattice Trapdoors
	Row Removal Property
	Target Switching Property

	Our Construction of Enhanced Lattice Trapdoors
	Proving Security of LTen
	Row Removal Property
	Target Switching Property

	Constructing 1-bounded Mixed Functional Encryption
	Notation
	Construction
	Correctness
	Security Proof
	1-Bounded Restricted Function Indistinguishability
	Indistinguishability of Hybrid Games in Section 8.4
	1-Bounded Restricted Accept Indistinguishability
	Indistinguishability of Hybrid Games in Section 8.4.3
	Proving 1-Bounded Restricted Accept Indistinguishability

	Background: Attribute-Based Encryption
	Key-Policy Attribute Based Encryption

	ABE and Mixed FE to PLBE: Preserving Perfect Correctness
	Construction
	Correctness
	Security

	Hybrids
	Detailed Hybrid Experiments for Theorem 7.2
	Detailed Hybrid Experiments for Theorem 7.4

