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Abstract

We study secret sharing schemes for general (non-threshold) access structures. A general
secret sharing scheme for n parties is associated to a monotone function F : {0, 1}n → {0, 1}.
In such a scheme, a dealer distributes shares of a secret s among n parties. Any subset of
parties T ⊆ [n] should be able to put together their shares and reconstruct the secret s if
F(T ) = 1, and should have no information about s if F(T ) = 0. One of the major long-standing
questions in information-theoretic cryptography is to minimize the (total) size of the shares in
a secret-sharing scheme for arbitrary monotone functions F.

There is a large gap between lower and upper bounds for secret sharing. The best known
scheme for general F has shares of size 2n−o(n), but the best lower bound is Ω(n2/ log n). Indeed,
the exponential share size is a direct result of the fact that in all known secret-sharing schemes,
the share size grows with the size of a circuit (or formula, or monotone span program) for F.
Indeed, several researchers have suggested the existence of a representation size barrier which
implies that the right answer is closer to the upper bound, namely, 2n−o(n).

In this work, we overcome this barrier by constructing a secret sharing scheme for any access
structure with shares of size 20.994n and a linear secret sharing scheme for any access structure
with shares of size 20.999n. As a contribution of independent interest, we also construct a secret

sharing scheme with shares of size 2Õ(
√
n) for 2( n

n/2) monotone access structures, out of a total

of 2( n
n/2)·(1+O(logn/n)) of them. Our construction builds on recent works that construct better

protocols for the conditional disclosure of secrets (CDS) problem.
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1 Introduction

Secret sharing [Sha79, Bla79] is a powerful cryptographic technique that allows a dealer to distribute
shares of a secret to n parties such that certain authorized subsets of parties, and only they, can
recover the secret. The original definition of secret sharing is what we now call a (n, t)-threshold
secret sharing scheme, where any set of t or more parties can recover the secret, and no subset of
fewer than t parties can learn any information about the secret whatsoever.

Later on, this was generalized in [ISN89] to the notion of a secret-sharing scheme realizing a
monotone function F : {0, 1}n → {0, 1}. This is simply a randomized algorithm that on input
a secret s, outputs n shares s1, . . . , sn such that for any (x1, . . . , xn) ∈ {0, 1}n, the collection of
shares {si : xi = 1} determine the secret if F(x1, . . . , xn) = 1 and reveal nothing about the secret
otherwise.1 It is easy to see that (n, t)-threshold secret sharing corresponds to the special case
where F is the (monotone) threshold function that outputs 1 if and only if at least t of the n input
bits are 1.

While the landscape of threshold secret sharing is relatively well-understood, even very basic
information-theoretic questions about the more general notion of secret sharing remain embar-
rassingly open. It is simple to construct a secret sharing scheme realizing any monotone function
F : {0, 1}n → {0, 1} where each share is at most 2n bits; the share size can be improved to O(2n/

√
n)

bits [BL88]. We also know that there is an (explicit) monotone function F : {0, 1}n → {0, 1} that
requires a total share size of Ω(n2/ log n) bits [Csi97], a far cry from the upper bound. No bet-
ter lower bounds are known, even in a non-explicit sense (except for the restricted class of linear
secret-sharing schemes).

The Representation Barrier. Closing the exponential gap between the afore-mentioned upper
bounds and lower bounds is a long-standing open problem in cryptography. The general consen-
sus appears to be that the upper bound is almost tight; see, e.g., [Bei11]. The main reason for
this pessimism appears to be the fact that all known constructions of secret sharing schemes for
classes of access structures use a representation of the corresponding monotone function F in a
concrete computational model, be it (monotone) circuits, formulas, branching programs or span
programs [ISN89, KW93]. As a result, the share size in these schemes grows with the size of the
representation which, for general monotone functions, is 2Ω(n) in all these computational models
(and, for circuits and formulas, even 2n−o(n)).2

Very recently, a work by [LVW17b] achieved sub-exponential 2O(
√
n logn) share size for a large

number of monotone functions, namely 22n/2
out of a total of 2( n

n/2)·(1+O(logn/n)) ≈ 22n−O(log n)
of

them (where n is the number of parties) [KM75]. Still, the question of whether one can construct
secret sharing schemes supporting all monotone functions F with share size 2(1−ε)n for some constant
ε > 0 remained wide open. In this work, we resolve this open question.

Theorem 1.1 (Informal). For every monotone access structure (function), there is a secret sharing
scheme with total share size 20.994n.

1The typical formulation of secret-sharing refers to a dealer that holds a secret distributing shares to n parties,
such that only certain subsets of parties –described by a so-called access structure– can reconstruct the secret. In
our formulation, the randomized algorithm corresponds to the dealer, si corresponds to the share given to party i,
xi ∈ {0, 1} indicates whether party i is present in a subset, and F corresponds to the access structure.

2We remark that this state of affairs appears to be true even for the relaxed notion of computationally secure
secret sharing schemes.
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We remark that the constant in the exponent comes from a delicate balancing argument; we
have not made an attempt to optimize it.

1.1 An Overview of Our Techniques

Conditional Disclosure of Secrets and Its Connection to Secret Sharing. Our starting
point is the results of [LVW17a, LVW17b] who view the problem of secret sharing through the lens
of the conditional disclosure of secrets (CDS) problem introduced by Gertner, Ishai, Kushilevitz and
Malkin [GIKM00]. In the multiparty version of CDS associated to a (not necessarily monotone)
predicate F : {0, 1}n → {0, 1}, there are n + 1 parties, the first n of who each hold an input
bit xi and all of them have a secret bit s; the last party called a referee knows the entire input
x = (x1, x2, . . . , xn) but does not know s. In addition, the first n parties have access to a common
random string that is unknown to the referee. The goal is for the first n parties to each send a
single message to the referee such that: (a) the referee can recover s if F(x1, . . . , xn) = 1; and (b)
the referee has no information about s otherwise.

CDS looks superficially similar to secret sharing and indeed, it does give us a secret sharing
scheme for a limited class of access structures introduced by Beimel and Ishai [BI01] that we will
refer to as paired-up access structures. The collection of authorized sets in a paired-up access
structure corresponding to a (not necessarily monotone) predicate F have one of the following
two forms. Think of the n parties as split up into pairs (P1,0, P1,1), . . . , (Pn/2,0, Pn/2,1). (For this
discussion, assume that n is even.)

(a) any subset that contains both Pi,0 and Pi,1 is authorized; and

(b) any subset that contains a set {P1,x1 , P2,x2 , . . . , Pn/2,xn/2
} where F(x1, x2, . . . , xn/2) = 1 is

authorized as well.

Constructing a secret sharing scheme for a paired-up access structure using CDS is simple: the
dealer takes the secret bit s and computes all possible messages in a CDS protocol for the function
F. That is, the two messages mi,0 and mi,1 that each CDS party Pi computes given input bits
xi = 0 and xi = 1 respectively. Now, give mi,b as the share for the party Pi,b in the secret sharing
scheme. Additionally, the dealer additively shares s between every pair of parties Pi,0 and Pi,1.
It is not hard to see that this is indeed a secret sharing scheme for the access structure described
above.

There are a total of roughly 22n/2
paired-up access structures, out of the total possible 22n−O(log n)

monotone access structures. [LVW17b] constructed a CDS protocol with communication complexity

2Õ(
√
n) for all functions F which immediately translates to a secret sharing scheme with share

size 2Õ(
√
n) for all paired-up access structures. However, the fact remains that paired-up access

structures are but a really tiny fraction of all monotone access structures.
Looking ahead, we remark that a major limitation in translating CDS, a non-monotone notion,

into secret-sharing, a monotone notion, is that in a CDS scheme, the referee can reconstruct the
secret only if he receives messages from all the parties. On the other hand, if he catches hold of both
the possible messages mi,0 and mi,1 of any one party, the CDS privacy guarantee is null and void.
This will turn out to be the major impediment in converting a CDS scheme into a secret sharing
scheme, one that we take steps to overcome in this paper. Indeed, non-monotone models are known
to be (sometimes exponentially) more powerful than monotone models, and thus, constructing a
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secret-sharing scheme for any monotone access structure given a general-purpose CDS scheme seems
like a highly non-trivial endeavor.

We describe a simplified version of our techniques in this introduction.

Secret Sharing for Monotone Slice Functions. Our first step is to reduce secret sharing for
arbitrary (monotone) functions to ones for slice functions, defined as follows. A slice function on
n input bits assigns 0 to every input with Hamming weight n/2 − 1 or less, and 1 to every input
with Hamming weight n/2 + 1 or more. (In between, namely on inputs of Hamming weight exactly
n/2, the slice function is arbitrary.)

Slice functions are a generalization of paired-up access functions. Moreover, there are 2( n
n/2)

many slice functions out of a total of 2( n
n/2)·(1+O(logn/n))

monotone functions, which brings us much
closer to realizing a secret sharing scheme for all monotone access structures. Indeed, we will
construct a secret sharing scheme for all slice functions with share size 2Õ(

√
n).

Theorem 1.2 (Informal, [LVW17b, BKN18]). For every slice access structure (function), there is

a secret sharing scheme with total share size 2Õ(
√
n).

We will first go over how to construct a secret sharing scheme with share size 2Õ(
√
n) for all slice

functions (proving Theorem 1.2). We then show how to use secret sharing for fat-slice functions —
a generalization of slice functions — to construct a secret sharing scheme for all monotone functions
(proving Thoerem 1.1), in the process increasing the share size to 2(1−ε)n for some constant ε > 0.
Let us remark that it remains a major open question whether we can translate our gains for slice
functions to hold also for all monotone functions.

The first key idea in our construction for slice functions is the notion of being balanced w.r.t.
partitions. Let Π be an even partition of n parties into k =

√
n buckets each of size n/k =

√
n.

A set T ⊆ [n] with |T | = n/2 is balanced w.r.t. partition Π if each bucket of Π contains the same
number of parties from T (here and in the rest of the introduction, imagine that

√
n is an integer).

That is, each bucket contains
√
n/2 parties from T .

Given a monotone slice function F, define the monotone slice function FΠ corresponding to a
partition Π as follows:

FΠ(T ) =

{
0, if |T | = n/2 and T is not balanced w.r.t. Π

F(T ), otherwise

That is, FΠ “kills” all sets of size n/2 which are not balanced w.r.t. the partition Π but is otherwise
the same as F.

By a simple probabilistic argument, we show that there is a collection of L = 2Õ(
√
n) partitions

P = {Π1, . . . ,ΠL} such that every subset T ⊆ [n] with |T | = n/2 is balanced w.r.t. some partition
Π`. Therefore, F =

∨L
`=1 FΠ` . In other words, to construct a secret sharing scheme for F, it suffices

to construct a scheme for each of the FΠ` . Once we have such a scheme for all FΠ` , the dealer for
the F-secret sharing scheme simply shares the secret s w.r.t. each FΠ` .

The second key idea is to use a CDS scheme to construct a secret sharing scheme for each of the
functions FΠ` . Recall that Π` has k buckets with b parties in each bucket. To construct the scheme
to share a secret bit s, we use a CDS scheme with k =

√
n parties where each party has as input

a string x ∈ {0, 1}n/k, and all parties have the same bit (to be defined below). The construction
works as follows.
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• The dealer picks a random bit σj for each of the k buckets.

She shares σj using a b/2-out-of-b secret sharing scheme among parties in the bucket.

• The dealer then defines σ∗ = s⊕ σ1 ⊕ . . .⊕ σk. She chooses a common random string R for
the CDS protocol, and generates for each bucket j, the messages{

µj,x := CDS.Msgj(x, σ
∗;R)

}
j∈[k],x∈{0,1}b

That is, for each party j in the CDS protocol, enumerate over all its possible inputs x, using
the same bit σ∗ and the same randomness R.

She additively shares each µj,x among parties indexed by x in the bucket j.

• Finally, the dealer shares the secret s using a (n/2 + 1)-out-of-n threshold secret sharing
scheme.

So, why does this construction work? Let us first verify privacy. That is, consider a set T which
is either (a) too small, namely |T | < n/2; or (b) |T | = n/2 but it is not balanced w.r.t. Π`; or (c)
|T | = n/2 but it is not authorized w.r.t. F, namely F(T ) = 0.

• If |T | < n/2, at least one of the buckets j has fewer than b/2 parties, meaning that σj is
hidden. Since σj is hidden, so is s.

• If T = n/2 but not balanced w.r.t. Π`, it is the same story all over again. That is, at least one
of the buckets j has fewer than b/2 parties which means that σj , and therefore s, is hidden.

• The final case is that |T | = n/2 and it is balanced w.r.t. Π`, but F(T ) = 0. In this case,
the parties in T will manage to recover all σj , but the privacy guarantee of CDS implies that
they will have no information about σ∗.

It is absolutely crucial here that the parties in T will only manage to recover a single CDS
message per CDS party; that is a single message µj,x for any bucket j; without this property,
we would not have been able to invoke the CDS privacy guarantee.

We will leave it to the reader to verify correctness, which goes along much the same lines as our
argument for privacy.

The total share size in the scheme is

2Õ(
√
n)︸ ︷︷ ︸

# partitions

·
(

2O(
√
n)︸ ︷︷ ︸

# inputs per bucket

· 2Õ(
√
n)︸ ︷︷ ︸

CDS msg size

+O(n log n)︸ ︷︷ ︸
threshold SS

)
= 2Õ(

√
n)

Secret Sharing for All Monotone Functions via Fat-Slice Functions. Now, we would like
to convert the secret sharing scheme described above for slice functions into one for all monotone
functions. The initial idea is to partition each access structure A into two access structures: a slice
access structure A1; and a top-and-bottom access structure A2 which captures sets of size either
less or more than n/2. The plan then is to use our slice secret sharing scheme for A1 and a trivial
secret sharing scheme for A2 which has share size proportional to the number of sets in A2.

This runs into trouble right away because the top-and-bottom access structure A2 has way too
many sets; indeed about 2n · (1− 1/

√
n) many of them.

4



The solution is to mitigate this issue by implementing a more refined version of this program
where we construct a secret sharing scheme for what we call fat-slice functions. These are access
functions on n bits that assign 0 to all sets of size less than a and 1 for all sets of size more than b, for
some parameters a ≤ b. A slice function is the special case of a fat-slice function with a = b = n/2.
The size of the shares in our final secret sharing scheme come in because of a delicate balancing
between (a) the fat-slice secret sharing scheme which becomes more expensive as the size of the
slice b−a grows; and (b) the top-and-bottom secret sharing scheme which becomes more expensive
as b− a shrinks.

Inherently, for every monotone function, we construct a small (i.e. size 2(1−ε)n) constant-depth
monotone boolean formula computing it using AND gate, OR gate and all slice gates3. A slice
gate is an n-bit-to-1-bit monotone gate that computes a slice function. Such a formula can be
converted into a secret sharing scheme via composition in a standard way. Notice that previous
results constructing secret sharing scheme realizing slice functions follow the same paradigm. They
inherently construct small (i.e. size 2Õ(

√
n)) monotone formulas computing any slice functions using

AND gate, OR gate and all CDS gates, which can be formally defined as paired-up functions.

2 Preliminaries and Definitions

We start with some notation that we will use throughout the paper.

• For a positive integer m, let [m] := {1, . . . ,m}.

• For a set T , let 2T denote the set consisting of all subsets of T . For a set T and non-negative
integer k, let

(
T
k

)
be the set consisting of all size-k subsets of T .

2.1 Secret Sharing

Definition 1 (general secret sharing). A general secret sharing scheme over n parties is specified
by a a monotone boolean function F : 2[n] → {0, 1}. For any monotone F : 2[n] → {0, 1}, an
information-theoretic secret-sharing scheme realizing access function F is a randomized algorithm

Share : {0, 1} ×W → ({0, 1}ss)n

that on input a secret bit, outputs n shares s1, . . . , sn ∈ {0, 1}ss satisfying the following properties:

(correctness.) For all T ⊆ [n] that F(T ) = 1, there exists a reconstruction algorithm CT :
({0, 1}ss)|T | → {0, 1} such that for all σ ∈ {0, 1}, w ∈ W,

Share(σ;w) = (s1, . . . , sn) =⇒ CT ((xi)i∈T ) = σ.

(privacy.) For all T ⊆ [n] that F(T ) = 0, there exists a simulator whose output on empty input
is perfectly indistinguishable from the joint distribution of (si)i∈T for any secret σ ∈ {0, 1},
where (s1, . . . , sn) := Share(σ;w) and the randomness are taken over w

r←W and the coin
tosses of the simulator.

3Actually, the circuit implicitly constructed is made of AND/OR gates and CDS gates (mentioned later). But
slice gates has clearer definition, and they are equivalently powerful as CDS gates.
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ss is the share size of this secret sharing scheme Share.

Definition 2 (linear secret sharing). A linear secret sharing scheme is a secret sharing scheme
where all operations are linear. For example, Share : {0, 1} × W → ({0, 1}ss)n is a linear secret
sharing scheme over binary field if W is a vector space over binary field and Share is a linear
function.

Definition 3 (share size complexity). For any monotone boolean function F, the share size of F,
denoted by ss(F), is the minimum integer such that there exists a secret sharing scheme realizing F
whose share size is ss(F).

Similarly, the linear secret-sharing share size of F, denoted by sslin(F), is defined as the minimum
integer such that there exists a linear secret sharing scheme realizing F whose share size is sslin(F).
By definition, sslin(F) ≤ ss(F).

Definition 4 (minimal authorized sets, maximal unauthorized sets). For any monotone function F,
a subset T ⊆ [n] is an authorized set according to F if F(T ) = 1, and T is unauthorized set otherwise.
Let F−1(1) denote all authorized subsets according to F and F−1(0) denote all unauthorized subsets
according to F.

T is a minimal authorized set if T is an authorized set and all proper subsets of T are unau-
thorized sets. T is a maximal unauthorized set if T is an unauthorized set and all proper supersets
of T are authorized sets. Let minF−1(1) denote all minimal authorized subsets according to F and
maxF−1(0) denote all maximal unauthorized subsets according to F.

Access function families. An access function family over n parties is a collection of monotone
functions F : 2[n] → {0, 1}. For any access function family F, the share size of F, denoted by ss(F),
is defined as ss(F) := maxF∈F ss(F).

In the introduction, we already mentioned the following access function families. A few auxiliary
access function families will also be defined on demand in Section 3.

• All monotone functions: Fn contains all function F : 2[n] → {0, 1} satisfying ∀T ⊆ T ′ ⊆
[n],F(T ) ≤ F(T ′).

• Fat-slice functions: Fn[a,b] contains all monotone function F ∈ Fn such that ∀T ⊆ [n], (|T | <
a =⇒ F(T ) = 0) ∧ (|T | > b =⇒ F(T ) = 1).

• Threshold functions: Fnthrsh contains all threshold function Fthres-t for t ∈ [1, n] where
Fthres-t is defined as and ∀T ⊆ [n],Fthres-t(T ) = 1 ⇐⇒ |T | ≥ t.

Previous results on information-theoretic secret sharing.

Lemma 2.1 (conjunction and disjunction). For any access functions F1,F2 ∈ Fn,

ss(F1 ∨ F2) ≤ ss(F1) + ss(F2), ss(F1 ∧ F2) ≤ ss(F1) + ss(F2),

sslin(F1 ∨ F2) ≤ sslin(F1) + sslin(F2), sslin(F1 ∧ F2) ≤ sslin(F1) + sslin(F2).

Theorem 2.2 (threshold, [Sha79, KN90, BGK16]). For all n ∈ N, sslin(Fnthrsh) ≤ blog nc, which is
optimal as ss(Fnthrsh) = Θ(log n).
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Lemma 2.3. For any non-trivial access function F ∈ Fn, for each authorized set A according to F,
there exists a minimal authorized set A′ such that A′ ⊆ A. Symmetrically, for each unauthorized
set B according to F, there exists a maximal unauthorized set B′ such that B′ ⊇ B.

Lemma 2.4 (slice functions [LVW17b, BKN18]). For all n ∈ N, ss(Fn[n
2
,n
2

]) ≤ 2O(
√
n logn).

2.2 Conditional Disclosure of Secrets

In a k-party CDS scheme, there are k parties who know a secret message σ and jointly hold input
x. These parties cannot communicate with each other, but instead they have access to a common
random string (CRS). Their goal is to send a single message to the CDS referee Charlie, at the end
of which Charlie, who already knows x, should learn σ if and only if P(x) = 1, for a fixed predicate
P.

Definition 5 (conditional disclosure of secrets (CDS) [GIKM00]). Let input spaces X1, . . . ,Xk,
secret space {0, 1} and randomness spaceW be finite sets. Fix a predicate P : X1×X2× . . .×Xk →
{0, 1}. A cc-conditional disclosure of secrets (CDS) protocol for P is a tuple of deterministic
functions (B1, . . . ,Bk,C)

Transmitting functions Bi : {0, 1} × Xi ×W → {0, 1}cc

Reconstruction function C : X1 × . . .×Xk × {0, 1}cc×k → {0, 1}

satisfying the following properties:

(reconstruction.) For all (x1, . . . , xk) ∈ X1× . . .×Xk such that P(x1, . . . , xk) = 1, for all w ∈ W,
and for all σ ∈ {0, 1}:

C(x1, . . . , xk,B1(σ, x1;w), . . . ,Bk(σ, xk;w)) = σ .

(privacy.) There exists a randomized algorithm S such that for all input tuple (x1, . . . , xk) ∈
X1× . . .×Xk satisfying P(x1, . . . , xk) = 0 and for any secret σ ∈ {0, 1}, the joint distribution
of
(
B1(σ, x1;w), . . . ,Bk(σ, xk;w)

)
is perfectly indistinguishable from S(x1, . . . , xk), where the

randomness are taken over w
r←W and the coin tosses of S.

Definition 6 (linear CDS). An CDS scheme (B1, . . . ,Bk,C) is linear over binary field if the ran-
domness space W is a vector space over binary field and Bi is a linear function on the secret and
the randomness, i.e. for all i ∈ [k], xi ∈ Xi, the mapping (σ,w) 7→ Bi(σ, xi, w) is linear.

Previous results on CDS.

Theorem 2.5 ([LVW17b]). For any predicate P : X1 × . . . × Xk → {0, 1}, let X := X1 × . . . ×
Xk be the whole input space, there exists a CDS scheme for P with communication complexity

cc = 2O(
√

log |X | log log |X |), there exists a linear CDS scheme for P with communication complexity
cc = O(

√
|X |).
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2.3 Partitions

Definition 7. A k-partition of [n] is a tuple of d disjoint subsets P1, . . . , Pk ⊆ [n] such that⋃k
t=1 Pt = [n].

Definition 8. For an integer k divides n, an even k-partition of [n] is a k-partition (P1, . . . , Pk)
such that |P1| = . . . = |Pk| = n/k.

3 Proof of the Main Theorem: A Chain of Reductions

Our goal in this section is to show the following (main) theorem which constructs a secret sharing
scheme for any monotone access structure with shares of size 20.994n.

Theorem 3.1. For any access function F ∈ Fn, there exists a secret sharing scheme realizing F
with share size O(20.994n), and a linear secret sharing scheme realizing F with share size O(20.999n).

Along the way, we will also show a secret sharing scheme with sub-exponential share size for the
class of all fat-slice functions defined below. A fat-slice function is one which outputs 0 on all sets
of size less than a (that is, the access structure rejects all such sets) and outputs 1 on all sets of
size more than b (that is, the access structure accepts all such sets).

Theorem 3.2. For δ(n) = o(n/ log n), and for any access function F ∈ Fn[n
2
−δ(n),n

2
+δ(n)], there

exists a secret sharing scheme realizing F with share size ss = 2O(
√
nδ(n) logn+

√
n logn) = 2o(n), and

a linear secret sharing scheme realizing F with share size 2n/2+o(n).

The proof of Theorem 3.1 and 3.2 repeatedly reduce the secret sharing for a comparatively
general family to a more restricted family, by showing that any monotone function in the former
family can be computed by combining several functions in the latter family with basic boolean
operations (AND, OR), until the function family we need to deal with is so restricted that secret
sharing for it can be constructed using an existing conditional disclosure of secrets (CDS) scheme.

More precisely, in each of the monotone function families we considered, the input domain
{0, 1}n is inherently split into a restricted zone and an unrestricted zone. Functions in this family
can map inputs in the unrestricted zone any value, but are enforced to map all inputs in the
restricted zone according to a fixed simple formula. As the proof goes, we keep considering a more
restricted function family in the sense that its unrestricted zone is smaller than the former one. In
the most restricted function family we considered, all the inputs in the unrestricted zone has same
size. We have knowledge on how to construct non-trivial secret sharing for monotone functions in
such restricted family using CDS (e.g. Lemma 2.4 for slide functions [LVW17b, BKN18]).

The monotone function families we considered are (in the order from general to specific)

• Fn: The family of all monotone functions. That is, the unrestricted zone is the whole input
domain {0, 1}n.

• Fn[a,b] (fat-slice function family): The family of every monotone function F satisfying |T | <
a =⇒ F(T ) = 0 and |T | > b =⇒ F(T ) = 1. That is, the unrestricted zone consists of all
subsets of size between a and b.
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• Dn
a,b,k-part (auxiliary family formally defined in Section 3.2): Every function F ∈ Dn

a,b,k-part

is associated with an even k-partition Π = (P1, . . . , Pk). Besides the constraints enforced by
Fn[a,b], a function F ∈ Dn

a,b,k-part satisfies an extra constraint that if ∃t, |T ∩ Pt| < a/k, then

F(T ) = 0. Note that this constraint is not compatible with the constraint |T | > b =⇒
F(T ) = 1 introduced by Fn[a,b], these constraints actually have different priorities that will be
specified later in their formal definitions. In this family, the unrestricted zone consists of all
subsets that 1) the subset size is no greater than b, 2) the subset assigns at least a/k elements
to every bucket of Π.

• Cna,k-part,m (auxiliary family formally defined in Section 3.3): In addition to an even k-partition
Π = (P1, . . . , Pk), every function F ∈ Cna,k-part,m is also associated with subset Ω ⊆ [k]. Besides
the constraints enforced by Dn

a,b,k-part, a function F ∈ Cna,k-part,m satisfies an extra constraints
that if ∃t /∈ Ω, |T ∩Pt| > a/k, then F(T ) = 1. In this family, the unrestricted zone consists of
all subsets such that 1) the subset assign at least a/k elements to every bucket of Π, 2) the
subset assign exactly a/k elements to every bucket Pi that i /∈ Ω.

• Bn
a,k-part,m (auxiliary family formally defined in Section 3.4). In addition to an even k-partition

Π = (P1, . . . , Pk) and subset Ω ⊆ [k], every function F ∈ Bn
a,k-part,m is also associated with

subset A ⊆
⋃
i∈Ω Pi. Besides the constraints enforced by Cna,k-part,m, a function in Bn

a,k-part,m

satisfies extra constraints so that the unrestricted zone constraints of all subsets T that 1)
T ∩ Pi = A ∩ Pi for every i ∈ Ω, 2) T assign exactly a/k elements to every bucket Pi that
i /∈ Ω.

3.1 Reduction: Step 1

In the first step, we show how to construct a secret sharing scheme for any access structure in Fn

given a secret sharing scheme for all access structures in Fn[a,b].

Auxiliary access functions. For any S ⊆ [n], define monotone function E∧S as

E∧S(T ) = 1 ⇐⇒ T ⊇ S,

such that E∧S is the smallest4 monotone function satisfying E∧S(S) = 1. Then sslin(E∧S) = 1 as
there is a simple scheme realizing E∧S by additively share the secret bit σ among all parties in S:
Share(σ)→ (s1, . . . , sn) outputs a random vector satisfying

⊕
i∈S si = σ.

For any S ⊆ [n], define monotone function E∨S̄ as

E∨S̄(T ) = 1 ⇐⇒ T ∩ S̄ 6= ∅.

such that E∨S̄ is the greatest5 monotone function satisfying E∨S̄(S) = 0. Then sslin(E∨S̄) = 1
as there is a simple scheme realizing E∨S̄ by sending the secret bit σ to every party outside S:
Share(σ) = (s1, . . . , sn) that si = σ if i /∈ S and si = 0 otherwise.

4Formally, E∧S is the conjunction of all monotone function F satifying F(S) = 1, and it is easy to prove that the
conjunction also satifies E∧S(S) = 1.

5Formally, E∨S̄ is the disjunction of all monotone function F satifying F(S) = 0, and it is easy to prove that the
disjunction also satifies E∨S̄(S) = 0.
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Lemma 3.3. For any 0 < δ < n/2 and for any monotone function F ∈ Fn, there exist monotone
functions Ftop,Fmid,Fbot satisfying Fmid ∈ Fn[n

2
−δ,n

2
+δ] and sslin(Ftop), sslin(Fbot) ≤

(
n

n
2
−δ
)
such that

F = Ftop ∧ (Fmid ∨ Fbot).

Corollary 3.4. For any 0 < δ < n/2,

ss(Fn) ≤ ss(Fn[n
2
−δ,n

2
+δ]) + 2 ·

(
n

n
2
−δ
)
,

sslin(Fn) ≤ sslin(Fn[n
2
−δ,n

2
+δ]) + 2 ·

(
n

n
2
−δ
)
.

Proof of Lemma 3.3. For any F ∈ Fn, define Ftop,Fmid,Fbot as the following

• Ftop is the greatest monotone function satisfying Ftop(T ) = F(T ) for all |T | > n
2 + δ.

Ftop(T ) = 0 ⇐⇒ ∃T ′ ⊇ T, (|T ′| > n

2
+ δ) ∧ (F(T ′) = 0).

• Fbot is the smallest monotone function satisfying Fbot(T ) = F(T ) for all |T | < n
2 − δ.

Fbot(T ) = 1 ⇐⇒ ∃T ′ ⊆ T, (|T ′| < n

2
− δ) ∧ (F(T ′) = 1).

• Fmid is the unique monotone function in Fn[n
2
−δ,n

2
+δ] satisfying Ftop(T ) = F(T ) for all |T | ∈

[n2 − δ,
n
2 + δ].

Fmid(T ) =


1, if |T | > n

2 + δ

F(T ), if |T | ∈ [n2 − δ,
n
2 + δ]

0, if |T | < n
2 − δ

In order to prove Lemma 3.3, we first show F is a simple composition of Ftop,Fmid,Fbot

F = Ftop ∧ (Fmid ∨ Fbot). (1)

Then finish the proof by showing sslin(Ftop), sslin(Fbot) ≤
(

n
n
2
−δ
)
.

To prove equation (1), consider different cases depending on the size of the input set. For any
T ⊆ [n]

If |T | > n
2 + δ: We have Ftop(T ) = F(T ) and Fmid(T ) = 1, therefore

Ftop(T ) ∧ (Fmid(T ) ∨ Fbot(T )) = F(T ) ∧ (1 ∨ Fbot(T )) = F(T ).

If |T | ∈ [n2 − δ,
n
2 + δ]: We have Fmid(T ) = F(T ). Moreover, by definition, Fbot ≤ F ≤ Ftop. There-

fore
Ftop(T ) ∧ (Fmid(T ) ∨ Fbot(T )) = Ftop(T ) ∧ (F(T ) ∨ Fbot(T )) = F(T ).

If |T | < n
2 − δ: We have Fbot(T ) = F(T ) and Fmid(T ) = 0. Moreover, by definition, Ftop ≥ F.

Therefore
Ftop(T ) ∧ (Fmid(T ) ∨ Fbot(T )) = Ftop(T ) ∧ (0 ∨ F(T )) = F(T ).

10



As Ftop can be decomposed as

Ftop =
∧

S∈F−1(0)
|S|>n

2
+δ

E∨S̄ =
∧

S∈maxF−1(0)
|S|>n

2
+δ

E∨S̄ .

We have

sslin(Ftop) ≤
∣∣∣∣{S ∈ maxF−1(0)

∣∣∣|S| > n

2
+ δ
}∣∣∣∣ ≤ ( n

n
2 + δ

)
.

As Fbot can be decomposed as

Fbot =
∨

S∈F−1(1)
|S|<n

2
−δ

E∧S =
∨

S∈minF−1(1)
|S|<n

2
−δ

E∧S .

We have

sslin(Fbot) ≤
∣∣∣∣{S ∈ minF−1(1)

∣∣∣|S| < n

2
− δ
}∣∣∣∣ ≤ ( n

n
2 − δ

)
.

3.2 Reduction: Step 2

In the second step, we show how to construct a secret sharing scheme for any access structure in
Fn[a,b] given one for any access structure in Dn

a,b,k-part.

Auxiliary definitions and lemmas. Here we introduce notations to denote when a set is evenly
split among a partition. Informally, a subset T ⊆ [n] is balanced with respect to an even k-partition
(P1, . . . , Pk) if for all t ∈ [k], |Pt ∩ T | = |T |/k. Notice that this informal definition only works when
k divides |T |. We introduce an extra notation to describe the case where |T | is not divided by k
but the elements in T is almost evenly split among an even k-partition.

For integers a, k, t s.t. t ≤ k, define6

ba/ket :=

{
da/ke, if t ≤ a mod k

ba/kc, if t > a mod k.

Then a = ba/ke1 + . . .+ ba/kek is the most even way to split a as the sum of k integers.

Definition 9 (Balanced with respect to a partition.). Let (P1, . . . , Pk) be an even k-partition of
[n], a size-a subset T ⊆ [n] is balanced w.r.t. the partition (P1, . . . , Pk) if |T ∩ Pt| = ba/ket for all
t ∈ [k].

For integer n and real number α ∈ [0, n], let
(
n
α

)
denotes(

n

α

)
:=

(
n

dαe

)α−bαc( n

bαc

)1−(α−bαc)
,

which is a weighted geometric average of
(
n
dαe
)

and
(
n
bαc
)
.

6Notation “ba/ket” denotes a function of a, k and t. It should not be viewed as a function of a/k and t.
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Lemma 3.5. For integers n, k, a s.t. a ≤ n and k divides n, there exists a sequence of L =
O(n)·(na)

(n/k
a/k)

k

even k-partitions (P t1, . . . , P
t
k)
L
t=1 such that for any set T ⊆ [n] of size a, there exists t ≤ L such

that T is balanced w.r.t. (P t1, . . . , P
t
k).

Proof. Fix a set T ⊆ [n] s.t. |T | = a and sample a random even k-partition (P1, . . . , Pk). Then
probability that T is balance w.r.t. partition (P1, . . . , Pk) is∏k

t=1

( n/k
ba/ket

)(
n
a

) =

( n/k
da/ke

)a mod k( n/k
ba/kc

)k−(a mod k)(
n
a

) =

(n/k
a/k

)k(
n
a

) .

Therefore, by i.i.d. sampling L =
O(n)·(na)

(n/k
a/k)

k random even k-partition, T is balance w.r.t. one of the

partition is at least 1− 2−n. The proof is completed by a union bound over T .

Auxiliary access function families. For 0 ≤ a ≤ b ≤ n and k divides n, the function family
Dn
a,b,k-part contains all function F such that there exists Π = (P1, . . . , Pk) an even k-partition of [n]

and F satisfies

F(T ) =


1, if |T | > b

0, else if ∃t ∈ [k], |T ∩ Pt| < ba/ket
F(T ), otherwise

(2)

Lemma 3.6. For integers a ≤ b < n and k divides n, for any function F ∈ Fn[a,b], there exists a

sequence of L =
O(n)·(na)

(n/k
a/k)

k functions F1, . . . ,FL ∈ Dn
a,b,k-part such that F =

∨L
`=1 F`.

Corollary 3.7. For integers a ≤ b < n and k divides n,

ss(Fn[a,b]) ≤
O(n) ·

(
n
a

)
(n/k
a/k

)k · ss(Dn
a,b,k-part),

sslin(Fn[a,b]) ≤
O(n) ·

(
n
a

)
(n/k
a/k

)k · sslin(Dn
a,b,k-part).

Proof of Lemma 3.6. By Lemma 3.5, there exists L =
O(n)·(na)

(n/k
a/k)

k and L even k-partitions Π` =

(P `1 , . . . , P
`
k) for ` ∈ [L], such that for any set T ⊆

(
[n]
a

)
, set T is balanced w.r.t. Π` for some ` ∈ [L].

For any F ∈ Fn[a,b], and for any even k-partition Π = (P1, . . . , Pk), define FΠ as

FΠ(T ) =


1, if |T | > b

0, else if ∃t ∈ [k], |T ∩ Pt| < ba/ket
F(T ), otherwise

(3)

then FΠ ∈ Dn
a,b,k-part. Compare F with

∨L
`=1 FΠ` .

• On one hand, F ≥ FΠ` for each ` ∈ [L], thus F ≥
∨L
`=1 FΠ` .
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• On the other hand, for each T ⊆ [n] s.t. |T | ≤ b and F(T ) = 1, consider one size-a subset
T ′ ⊆ T . There exists `∗ ∈ [L] that T ′ is balanced w.r.t. Π`∗ , which implies |T ∩ P `∗t | ≥
|T ′ ∩ P `∗t | = ba/ket for all t ∈ [k], thus

∨L
`=1 FΠ`(T ) ≥ FΠ`∗ (T ) = 1.

Combining both directions, F =
∨L
`=1 FΠ` .

3.3 Reduction: Step 3

In the third step, we show how to construct a secret sharing scheme for any access structure in
Dn
a,b,k-part given one for any access structure in Cna,k-part,m (to be defined below).

Auxiliary access function families. For integers n, a, k,m s.t. a ≤ n and m ≤ k and k divides
n, the monotone function family Cna,k-part,m contains all monotone function F such that there exists

an even k-partition Π = (P1, . . . , Pk) and subset Ω ∈
(

[k]
m

)
such that

F(T ) =


0, if ∃t ∈ [k], |T ∩ Pt| < ba/ket
1, else if ∃t /∈ Ω, |T ∩ Pt| > ba/ket
F(T ), otherwise

(4)

Lemma 3.8. For n, a, b, k that a + k ≤ b ≤ n and k divides n, for any monotone function
F ∈ Dn

a,b,k-part, there exist L =
(
k
b−a
)
functions F1, . . . ,FL ∈ Cna,k-part,(b−a) such that F =

∧L
i=1 Fi ∨

Fthres-(b+1).

Corollary 3.9. For n, a, b, k that a+ k ≤ b ≤ n and k divides n

ss(Dn
a,b,k-part) ≤

(
k
b−a
)
· ss(Cna,k-part,(b−a)) + dlog ne,

sslin(Dn
a,b,k-part) ≤

(
k
b−a
)
· sslin(Cna,k-part,(b−a)) + dlog ne.

Proof of Lemma 3.8. For any F ∈ Dn
a,b,k-part, let Π = (P1, . . . , Pk) be its associated even k-partition.

For any Ω ∈
( [k]
b−a
)
, define FΩ as

FΩ(T ) :=


0, if ∃t ∈ [k], |T ∩ Pt| < ba/ket
1, else if ∃t /∈ Ω, |T ∩ Pt| > ba/ket
F(T ), otherwise

Then FΩ ∈ Cna,k-part,(b−a).

Compare F with
∧

Ω∈( [k]
b−a)

FΩ ∨ Fthres-(b+1).

• On one hand, for any Ω

FΩ(T ) ∨ Fthres-(b+1)(T ) =


1, if |T | > b

0, else if ∃t ∈ [k], |T ∩ Pt| < ba/ket
1, else if ∃t /∈ Ω, |T ∩ Pt| > ba/ket
F(T ), otherwise

≥


1, if |T | > b

0, else if ∃t ∈ [k], |T ∩ Pt| < ba/ket
F(T ), otherwise

= F(T ),
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thus F ≤
∧

Ω∈( [k]
b−a)

FΩ ∨ Fthres-(b+1).

• On the other hand, for every T ⊆ [n] that |T | ≤ b and F(T ) = 0: a) If ∃t ∈ [k], |T ∩
Pt| < ba/ket, then FΩ(T ) = 0 for any Ω. b) Otherwise ∀t ∈ [k], |T ∩ Pt| ≥ ba/ket, define
Ω′ := {t ∈ [k] : |T ∩ Pt| > ba/ket}. Then b ≥ |T | ≥ a + |Ω′|, which implies |Ω′| ≤ b − a. Let
Ω′′ be a size-(b− a) superset of Ω′, we have FΩ′′(T ) = F(T ) = 0.

Combining both directions, F =
∧

Ω∈( [k]
b−a)

FΩ ∨ Fthres-(b+1).

3.4 Reduction: Step 4

In the fourth step, we show how to construct a secret sharing scheme for any access structure in
Cna,k-part,m given one for any access structure in Bn

a,k-part,m (to be defined below).

Auxiliary definitions and lemmas. For any even k-partition Π = (P1, . . . , Pk) and subset
Ω ⊆ [k], define

PΩ :=
⋃
t∈Ω

Pt.

For any monotone function F ∈ Fn, for any A ⊆ B ⊆ [n], define Finter-B-eq-A as

Finter-B-eq-A(T ) :=

{
0, if A 6⊆ T
F(T \ (B \A)), otherwise

which is the smallest monotone function that satifies ∀T ⊆ [n], T ∩ B = A =⇒ Finter-B-eq-A(T ) =
F(T ).

Lemma 3.10. For any F ∈ Fn and any B ⊆ [n],

F =
∨
A⊆B

Finter-B-eq-A.

Proof. On one hand, Finter-B-eq-A ≤ F, thus
∨
A⊆B Finter-B-eq-A ≤ F.

On the other hand, for any T ⊆ [n],

Finter-B-eq-(B∩T )(T ) = F(T ).

Thus
∨
A⊆B Finter-B-eq-A ≥ F.

Auxiliary access function families. The function family Bn
a,k-part,m contains all monotone

function F such that there exists an even k-partition Π = (P1, . . . , Pk) and sets Ω ∈
(

[k]
m

)
, A ⊆ PΩ

such that

F(T ) =


0, if A 6⊆ T
0, else if ∃t /∈ Ω, |T ∩ Pt| < ba/ket
1, else if ∃t /∈ Ω, |T ∩ Pt| > ba/ket
F(T \ (PΩ \A)), otherwise

(5)

The first and last conditions in (5) imply the following in the secret sharing setting: to recover
the secret, every party in A is necessary, every party in PΩ \A is useless.
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Lemma 3.11. For any integers a ≤ n and k divides n and m ≤ k, for any function F ∈ Cna,k-part,m,

there exists a sequence of L ≤ 2mn/k monotone functions F1, . . . ,FL such that F =
∨L
i=1 Fi.

Corollary 3.12. For any integers a ≤ n and k divides n and m ≤ k,

ss(Cna,k-part,m) ≤ 2mn/kss(Bn
a,k-part,m),

sslin(Cna,k-part,m) ≤ 2mn/ksslin(Bn
a,k-part,m).

Proof of Lemma 3.11. For any F ∈ Cna,k-part,m, let Π = (P1, . . . , Pk) be its associated even k-

partition and Ω ∈
(

[k]
m

)
be its associated subset such that (4) is satisfied. For every A ⊆ PΩ

Finter-PΩ-eq-A(T ) :=



0, if A 6⊆ T
0, else if ∃t ∈ Ω, |A ∩ Pt| < ba/ket
0, else if ∃t /∈ Ω, |T ∩ Pt| < ba/ket
1, else if ∃t /∈ Ω, |T ∩ Pt| > ba/ket
F(T \ (PΩ \A)), otherwise

(6)

which is a function in Bn
a,k-part,m. The proof is completed by using Lemma 3.10.

The complexity can be improved slightly if we only enumerate Finter-PΩ-eq-A for A ⊆ PΩ such
that ∀t ∈ Ω, |A ∩ Pt| ≥ ba/ket.

3.5 Reduction to CDS

In the fifth and final step, we show how to construct a secret sharing scheme for any access structure
in Bn

a,k-part,m given a multiparty conditional disclosure of secrets (CDS) protocol as constructed in
[LVW17b].

Lemma 3.13. For k divides n and m ≤ k,

ss(Bn
a,k-part,m) ≤ 2n/k+O(

√
n logn),

sslin(Bn
a,k-part,m) ≤ 2n/k ·O(

(n/k
a/k

)k/2
).

Proof. For any F ∈ Bn
a,k-part,m, there exists an even k-partition Π = (P1, . . . , Pk) and set Ω ∈(

[k]
m

)
, A ⊆ PΩ such that (5) is satisfied.
W.l.o.g. assume Ω = {k−m+ 1, . . . , k}. Let k′ := k−m. Define a predicate for a k′-party CDS

as the following:

• The input space of the t-th party Xt =
(

Pt

ba/ket
)

• On input tuple (S1, . . . , Sk′) ∈ X =
(

P1

ba/ke1

)
× . . .×

( Pk′
ba/kek′

)
PF(S1, . . . , Sk′) := F(S1 ∪ . . . ∪ Sk′ ∪A).

By Theorem 2.5, there exists a CDS scheme (B1, . . . ,Bk′ ,C) realizing PF with communication com-
plexity cc = 2O(

√
logX log logX ) ≤ 2O(

√
n logn). A secret sharing scheme realizing F can be constructed

as the following,
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On input a secret bit σ ∈ {0, 1}

1. Sample random bits si for i ∈ A, let σ′ := σ ⊕
⊕

i∈A si.

2. Sample random bits µ1, . . . , µk′ , let σ′′ := σ′ ⊕ µ1 ⊕ . . .⊕ µk′ .
For each t ∈ [k′], let (θt,i)i∈Pt be ba/ket-out-of-nk threshold secret sharing of µt.

3. For each t ∈ [k′], let (θ′t,i)i∈Pt be (ba/ket + 1)-out-of-nk threshold secret sharing of σ′′.

4. Sample a random tape w.

For each t ∈ [k′], for each S ∈ Xt =
(

Pt

ba/ket
)
, compute

mt,S = Bt(σ, S;w),

let {αt,S,i}i∈S be additive secret sharing of mt,S .

5. Output shares (s1, . . . , sn) such that for t ∈ [n]:

If i ∈ A, si is a random bit sample in step 1;

If i ∈ PΩ \A, si is empty;

Otherwise, there exists unique t ∈ [k′] that i ∈ Pt,

st = (θt,i, θ
′
t,i, (αt,S,i)S∈Xt,S3i).

For every T ⊆ [n], the tuple (si)i∈T perfectly hides σ when F(T ) = 0 and reveals σ when
F(T ) = 1 as

• If A 6⊆ T , F(T ) = 0. In this case there exists i∗ ∈ A \ T and σ is perfectly hidden as it’s
one-time padded by si∗ .

• Otherwise A ⊆ T and σ ⊕ σ′ =
⊕

i∈A si can be learned from (si)i∈T . In such case, hiding
(revealing) σ is equivalent to hiding (revealing) σ′.

– If there exists t ∈ [k′] = Ω̄ that |T ∩ Pt| < ba/ket, then F(T ) = 0. In this case σ′ is
perfectly hidden as it’s one-time padded by µt.

– Otherwise, for all t ∈ [k′] = Ω̄ we have |T ∩ Pt| ≥ ba/ket and σ′ ⊕ σ′′ =
⊕

t∈[k′] µt
can be learned from (si)i∈T . In such case, hiding (revealing) σ′ is equivalent to hiding
(revealing) σ′′.

∗ If there ∃t ∈ [k′] = Ω̄ that |T ∩ Pt| > ba/ket, then F(T ) = 1. In such case, σ′′ can
be learned from (θ′t,i)i∈T∩Pt , which is contained by (si)i∈T .

∗ Otherwise, |T ∩ Pt| = ba/ket for all t ∈ [k′] = Ω̄. In such case, (θ′t,i)i∈T,Pt3i can be
simulated. And (αt,S,i)S3i,Xt3S reveals m1,T∩P1 , . . . ,mk′,T∩Pk′

and nothing else. As

PF(T ∩ P1, . . . , T ∩ Pk) = F(T \ PΩ ∪A) = F(T \ (PΩ \A)) = F(T ),

tuple (m1,T∩P1 , . . . ,mk′,T∩Pk′
) reveals σ′′ when F(T ) = 1 and perfectly hides σ′′

when F(T ) = 0.
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The sharing size complexity of F is bounded by

ss(F) ≤ dlog ne︸ ︷︷ ︸
θt,i

+ dlog ne︸ ︷︷ ︸
θ′t,i

+ 2n/k︸︷︷︸
enumerate
S∈Xt

· 2O(
√
n logn)︸ ︷︷ ︸

c.c. of CDS

≤ 2n/k+O(
√
n logn).

To construct a linear secret sharing scheme realizing F, we need a linear CDS scheme instead.
By Theorem 2.5, there exists a linear CDS scheme (B1, . . . ,Bk′ ,C) realizing PF with communication

complexity cc = O(
√
|X |) ≤ O(

(n/k
a/k

)k/2
). Thus

sslin(F) ≤ 2n/k ·O(
(n/k
a/k

)k/2
).

The complexity of the linear secret sharing scheme can be improved slightly if we compute |X |
more accurately. In the later part of this paper, we will choose n, k, a such that

( n/k
ba/kc

)
=
( n/k
da/ke

)
.

In such case, |X | =
(n/k
a/k

)k−m
.

3.6 Better secret sharing schemes

Finally, we put together all the steps to first prove Theorem 3.2 and then somewhat optimize the
parameters to obtain a proof of Theorem 3.1.

Proof of Theorem 3.2. Combine Lemma 3.13, Corollary 3.12, Corollary 3.9 and Corollary 3.7 se-
quentially, we get

ss(Cna,k-part,m) ≤ 2mn/k · ss(Bn
a,k-part,m) ≤ 2(m+1)n/k+O(

√
n logn)

ss(Dn
a,b,k-part) ≤

(
k

b− a

)
· ss(Cna,k-part,(b−a)) + dlog ne

≤
(

k

b− a

)
· 2(b−a+1)n/k+O(

√
n logn)

ss(Fn[a,b]) ≤
O(n) ·

(
n
a

)
(n/k
a/k

)k · ss(Dn
a,b,k-part)

≤
(
n
a

)
·
(
k
b−a
)

(n/k
a/k

)k · 2(b−a+1)n/k+O(
√
n logn) (7)

For any δ(n) = o(n/ log n), let k(n) =
√

nδ(n)
logn . Then

ss(Fn[n
2
−δ(n),n

2
+δ(n)]) ≤ (n/k)k ·

(
k

2δ(n)

)
· 2(2δ(n)+1)n/k+O(

√
n logn)

≤ 2k logn · 2k · 2(2δ(n)+1)n/k+O(
√
n logn)

≤ 2O(k logn+nδ(n)/k+
√
n logn)

≤ 2O(
√
nδ(n) logn+

√
n logn).
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Similar to (7), for linear secret sharing, we have

sslin(Fn[a,b]) ≤
(
n
a

)
·
(
k
b−a
)

(n/k
a/k

)k/2 · 2(b−a+1)n/k.

For any δ(n) = o(n/ log n), let k(n) =
√

nδ(n)
logn . Then

sslin(Fn[n
2
−δ(n),n

2
+δ(n)]) ≤

√(
n

n
2
−δ(n)

)
· (n/k)k/2 ·

(
k

2δ(n)

)
· 2(2δ(n)+1)n/k

≤ 2n/2+o(n).

Proof of Theorem 3.1. Combining formula (7) and Lemma 3.3, we get

ss(Fn) ≤ 2 ·
(

n

(1
2 + δ)n

)
+

(
n

( 1
2
−δ)n

)
·
(
k

2δn

)
( n/k

( 1
2
−δ)n/k

)k · 2(2δn+1)n/k+O(
√
n logn)

(8)

for any k divides n and 2δn ≤ k. By choosing k = n/C for a sufficiently large constant C, and
choosing δ be a sufficiently small constant, equation (8) would yields ss(Fn) ≤ 2(1−c)n for some
constant c > 0.

For example, let k = n/5, then δ need to satisfies δ < 1
10 , and we have(

n/k

(1
2 − δ)n/k

)
=

(
5

(1
2 − δ) · 5

)
= 10

as
(

5
( 1

2
−δ)·5

)
is a geometric average of

(
5
2

)
and

(
5
3

)
. Then

ss(Fn) ≤ 2 ·
(

n

(1
2 + δ)n

)
+

(
n

( 1
2
−δ)n

)
·
(
k

2δn

)
( n/k

( 1
2
−δ)n/k

)k · 2(2δn+1)n/k+O(
√
n logn)

≤ 2h( 1
2

+δ)·n+o(n) +
2h( 1

2
−δ)·n · 2h(10δ)·n/5

10n/5
· 210δn+o(n)

≤ 2h( 1
2

+δ)·n+o(n) + 2(h( 1
2
−δ)+ 1

5
h(10δ)+10δ− 1

5
log(10))n+o(n) (9)

By letting δ be a sufficiently small constant, we have h(1
2 + δ) = 1 − c for a constant c > 0 and

h(1
2 − δ) + 1

5h(10δ) + 10δ − 1
5 log(10) ≈ 1− 1

5 log(10), thus ss(Fn) ≤ 2(1−c)n+o(n).
The right side of the inequality (9) is minimized when δ ≈ 0.0465, which gives us ss(Fn) ≤

O(20.994n).
Similarly to (8), for linear secret sharing, we get

sslin(Fn) ≤ 2 ·
(

n

(1
2 + δ)n

)
+

(
n

( 1
2
−δ)n

)
·
(
k

2δn

)
( n/k

( 1
2
−δ)n/k

)k/2 · 2(2δn+1)n/k+O(1)
(10)

for any k divides n and 2δn ≤ k. Let k = n/5 and δ = 0.019, then (10) gives us sslin(Fn) ≤
O(20.999n).
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We did not make our best effort to optimize the constant factor. And we would like to point
out that the share size can not be improved to better than 2n/2 with minor improvements. In the
first step (Section 3.1), the monotone function computed by a circuit of size

(
n
a

)
+
(
n
b

)
with a single

call to a fat-slice function in F[a,b]. To make sure the circuit size is smaller than 2n/2, we have to
set a ≤ 11%n and b ≥ 89%n. In the second step (Section 3.2), to make sure we did not sample
more than 2n/2 partitions, we require the bucket size to be greater than 2, i.e. there are no more
than n/2 buckets in each partition. In later steps, in order to have non-trivial saving, we require
b − a to be smaller than the number of buckets. As 89%n − 11%n > n/2, such requirements can
not be satisfied simultaneously.
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