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Abstract. Vehicular communication (V2X) technologies allow vehicles to exchange
information about the road conditions and their own status, and thereby enhance
transportation safety and efficiency. For broader deployment, however, such tech-
nologies are expected to address security and privacy concerns, preventing abuse by
users and by the system’s entities. In particular, the system is expected to enable
the revocation of malicious vehicles, e.g., in case they send invalid information to
their peers or to the roadside infrastructure; it should also prevent the system from
being misused for tracking honest vehicles. Both features are enabled by Vehicular
Public Key Infrastructure (VPKI) solutions such as Security Credential Management
Systems (SCMS), one of the leading candidates for protecting V2X communication
in the United States. Unfortunately, though, SCMS’s original revocation mechanism
can lead to large Certification Revocation Lists (CRLs), which in turn impacts the
bandwidth usage and processing overhead of the system. In this article, we propose a
novel design called Activation Codes for Pseudonym Certificates (ACPC), which can
be integrated into SCMS to address this issue. Our proposal is based on activation
codes, short bitstrings without which certificates previously issued to a vehicle cannot
be used by the latter, which are periodically distributed to non-revoked vehicles using
an efficient broadcast mechanism. As a result, the identifiers of the corresponding
certificates do no need to remain on the CRL for a long time, reducing the CRLs’
size and streamlining their distribution and verification of any vehicle’s revocation
status. Besides describing ACPC in detail, we also compare it to similar-purpose
solutions such as Issue First Activate Later (IFAL) and Binary Hash Tree based
Certificate Access Management (BCAM). This analysis shows that our proposal not
only brings security improvements (e.g., in terms of resilience against colluding system
authorities), but also leads to processing and bandwidth overheads that are orders of
magnitude smaller than those observed in the state of the art.
Keywords: Vehicular communications · certificate revocation · activation codes ·
Security Credential Management System (SCMS) · Security · Privacy

1 Introduction
The longstanding pursuit for Intelligent Transportation Systems (ITS) [9] has been leading
the automotive industry to expand the variety of computing and communication capabilities
in vehicles, as well as in the roadside infrastructure. In particular, the increasing support
to the so-called V2X communications technologies – including vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I) mechanisms – allows the development of many ITS-oriented
applications [15, 13]. Usually, such applications involve acquiring information about road
conditions (e.g., its slope and current traffic load) and about the vehicles’ state (e.g.,
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velocity, acceleration, position and distance to other cars) [27]. Such information can then
be shared among vehicles and also relayed to drivers, so adequate actions can then be
taken manually or (semi-)automatically. The expected results include a reduction on traffic
congestion, transportation delays, pollution emissions and waste of fuel, as well as increase
safety for both vehicles and pedestrians [9, 7].

To become largely deployed and achieve their full potential, ITS technologies need to
address some important concerns, in particular those related to security and privacy [30, 10].
Specifically, the authenticity of data exchanged via V2X is critical to prevent malicious users
of abusing the system, such as forcing a target vehicle to stop by simulating an accident
ahead. This can be accomplished via digital signatures computed over the broadcast
messages, as well as with the revocation of a vehicle’s certificates whenever misbehavior is
detected. By relying on such Vehicular Public Key Infrastructure (VPKI), vehicles would
only trust in, and act upon, authentic messages signed by non-revoked peers. However, to
avoid privacy issues, the certificates employed by vehicles should not have the long lifespan
typical of certificates traditionally employed on the Internet. Otherwise, the certificates
themselves could be employed by eavesdroppers to track the mobility patterns of vehicles
periodically broadcasting their positions. Actually, even when the broadcast messages do
not contain a vehicle’s exact position, tracking is still possible if the eavesdropper can
pinpoint the origin of each message and the time in which it was sent.

A potential solution for these issues is the Security Credential Management System
(SCMS) [34, 5], which is currently one of the leading VPKI candidate designs in the United
States. Basically, SCMS proposes that each vehicle should carry multiple pseudonym
certificates, i.e., certificates carrying no identifier of their owners. Even though each
individual pseudonym certificate is short-lived, the batch of certificates carried by each
vehicle is expected to cover a long time (e.g., a few years). As a result, messages signed
by the same vehicle using different pseudonyms cannot be linked together, so privacy
is preserved as long as its certificates are managed properly (e.g., a given certificate is
not reused too often). Besides enabling the efficient generation of pseudonym certificates,
SCMS also enables their revocation and linkage in case of misbehavior, thus facilitating
investigations by law enforcement authorities whenever necessary. This revocation process
is such that, with a single piece of information placed on a Certificate Revocation List
(CRL), multiple certificates from a revoked vehicle can be identified as invalid.

One of the main advantages of SCMS’s revocation procedure is that CRLs’ size grows
with the number of revoked vehicles, not with the number of certificates revoked. This
is an important feature in the context of V2X due to the large number of pseudonym
certificates carried by each vehicle. However, this benefit also comes with a drawback: a
CRL entry’s lifespan corresponds to the duration of the batch of pseudonym certificates
carried by the revoked vehicle, meaning that those entries are not as short-lived as the
certificates themselves. Since the batches are expected to cover 1-3 years [34], but this
coverage may reach as much as 30 years [18], this is likely to lead to large CRLs, As a
result, the bandwidth usage for the distribution of CRLs can become a burden if many
vehicles are revoked. In addition, since SCMS’s design is such that the cost of checking
a certificate’s revocation status is proportional to the number of entries in the CRL, the
latter’s growth also impacts the processing overhead at the vehicles.

Aiming to tackle this CRL expansion issue, in this article we improve SCMS’s revocation
process with the adoption of activation codes: small pieces of information without which
pseudonym certificates previously issued become useless. Hence, by preventing revoked
vehicles from obtaining those codes, the entries associated to those certificates can be
safely removed from CRLs. The proposed design, named Activation Codes for Pseudonym
Certificates (ACPC), builds upon previous works such as Issue First Activate Later
(IFAL) [33] and Binary Hash Tree based Certificate Access Management (BCAM) [18].
Nevertheless, it addresses security and performance issues in both solutions, leading to a
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more robust key revocation process for V2X communications.
The remainder of this document is organized as follows. Section 2 describes the SCMS

architecture in further detail. Section 3 reviews related works aimed specifically at reducing
CRL sizes in V2X communications. We then present the proposed ACPC solution is
Section 4. Section 5 analyzes the security of ACPC’s certificate issuance and revocation
procedures. Section 6 compares our solution with related works, in terms of security and
efficiency, from a theoretical and experimental perspective. Finally, Section 7 concludes
the discussion.

1.1 General Notation

For convenience of the reader, Table 1 lists the main symbols and notation that appear along
this document. Whenever pertinent, we assume standard algorithms for data encryption
hashing and digital signatures. In particular, we assume that the following algorithms
are employed: symmetric encryption (i.e., using shared keys) is done with the AES block
cipher [23] whereas asymmetric encryption (i.e., involving public/private key pairs) is
performed with ECIES [14]; hashing is performed with SHA-2 [25] or SHA-3 [26]; and
the creation and verification of digital signatures uses algorithms such as ECDSA [24] or
EdDSA [3, 16].

Table 1: General notation and symbols

Symbol Meaning
G The generator of an elliptic curve group
sig A digital signature
cert A digital certificate
U,U Public signature keys (stylized U : reserved for PCA)
u, U Private keys corresponding to U and U , respectively
S, s Public and private caterpillar signature keys, respectively
E, e Public and private caterpillar encryption keys, respectively
Ŝ, ŝ Public and private cocoon signature keys, respectively
Ê, ê Public and private cocoon encryption keys, respectively
f1, f2, fa Pseudorandom functions
V Implicit certificate credential
la_id ID of a Linkage Authority (LA)
cam_id ID of a Certificate Access Manager (CAM)
lsi Linkage seed
plvi Pre-linkage value
lv Linkage value
β Number of cocoon keys in pseudonym certificates batch
τ Number of time periods in pseudonym certificate batch
σ Number of certificates valid at any time period
α Number of time periods covered by an activation period
tree A binary hash tree
node(depth, count) The count-th node at level depth in tree
Hash(str) Hash of bitstring str
Enc(K, str) Encryption of bitstring str with key K
Dec(K, str) Decryption of bitstring str with key K
Sign(K, str) Signature of bitstring str, using key K
Verif(K, str) Verification of signature on str, using key K
|str| The length of bitstring str, in bits.
str1 ‖ str2 Concatenation of bitstrings str1 and str2
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2 The Security Credential Management System (SCMS)
The Security Credential Management System (SCMS) [34, 5] provides efficient mechanisms
for the provisioning and revocation of pseudonym certificates in V2X communications.
Combined, these mechanisms enable revocable privacy while ensuring that no single
entity in the system can track honest vehicles. As a result, it addresses the needs of the
“honest-but-curious” security model [17], in which the system’s entities are expected to
follow the correct protocols, but may engage in passive attacks such as trying to infer
sensitive information from the exchanged data (e.g., aiming to track vehicles). Actually,
it also takes into account attacks in a security model slightly more powerful than the
“honest-but-curious” approach, which we call “dishonest-if-allowed”: the system’s entities
may engage in active attacks, subverting the protocols’ execution, but only if (1) this would
bring them some advantage (e.g., the ability to track vehicles) and (2) if such misbehavior
can go undetected.

After SMCS was published and became one of the leading candidate designs for
protecting V2X security in the US [34, 5], different improvements to its design have been
proposed [18, 32, 31]. Since the proposal hereby presented builds upon SCMS and can also
take advantage of the aforementioned improvements, in what follows we describe SCMS in
some detail, giving an overview of the state of the art and of the limitations targeted by
our solution.

2.1 Overview
In SCMS, each vehicle receives two types of certificates: one enrollment certificate, which
identifies authorized devices and is expected to have a long lifespan (e.g., years) before
expiring; and multiple pseudonym certificates, each having a short validity (e.g., a few
days), so σ > 1 certificates of this type are valid simultaneously. For protecting their
privacy, vehicles may alternate the pseudonym certificates employed when sending different
messages, thus avoiding tracking by nearby vehicles or by roadside units. In practice,
however, it is important that σ remains small to limit the effects of “sybil-like” attacks [8],
in which one vehicle poses as a platoon by sending multiple messages signed with different
pseudonym certificates. Otherwise, a vehicle abusing its pseudonymity in this manner
could, for example, receive preferential treatment from traffic lights programmed to give
higher priority to congested roads [22].

As previously mentioned, SCMS was designed to allow the distribution of multiple
pseudonym certificates to vehicles in an efficient manner, while providing mechanisms for
easily revoking them if their owners misbehave. For this purpose, SCMS relies basically on
the following entities (see Figure 1 for a complete architecture and [34] for the description
of all of its elements):

• Pseudonym Certificate Authority (PCA): responsible for issuing pseudonym certifi-
cates to devices.

• Registration Authority (RA): receives and validates requests for batches of pseudonym
certificates from devices, identified by their enrollment certificates. Those requests
are individually forwarded to the PCA, in such a manner that requests associated to
different devices are shuffled together so the PCA cannot link a set of requests to a
same device.

• Linkage Authority (LA): generate random-like bitstrings that are added to certificates
so they can be efficiently revoked (namely, multiple certificates belonging to a same
device can be linked together by adding a small amount of information to certificate
revocation lists – CRLs). SCMS uses two LAs, even though its architecture supports
additional LAs.
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• Misbehavior Authority (MA): identify misbehavior by devices and, whenever neces-
sary, revokes them by placing their certificate identifiers into a CRL.
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Figure 1: SCMS overview. Source:[34].

These entities play different roles in the two main procedures provided by SCMS: the
butterfly key expansion, which allows pseudonym certificates to be issued; and key linkage,
which allows the efficient revocation of malicious vehicles. Both are described in the
following subsections.

2.2 The butterfly key expansion
The butterfly key expansion enables vehicles to obtain arbitrarily large sets of (short-lived)
pseudonym certificates by means of a single, small-sized request message from vehicles.
Figure 2 illustrates this process, whereas Table 2 lists the corresponding operations,
explained in what follows.

The vehicle starts by picking two random caterpillar private keys, s and e, from which
the corresponding public caterpillar keys S = s ·G and E = e ·G are computed. It also
picks two random seeds for initializing pseudorandom functions f1 and f2. The quadruple
(S, f1, E, f2) is then sent to the Registration Authority (RA).

The RA then generates β public cocoon signature keys Ŝi = S + f1(i) · G, where
0 6 i < β. Analogously, the RA uses E for generating β public cocoon encryption keys
Êi = E + f2(i) ·G. Pairs of public cocoon keys (Ŝi, Êi) from different vehicles are then
shuffled together, and sent individually to the Pseudonym Certificate Authority (PCA) for
the generation of the corresponding pseudonym certificates.

The subsequent procedure followed by the PCA when processing (Ŝi, Êi) depends on
whether explicit or implicit certificates [6] are employed. For explicit certificates, the PCA
picks a random ri and computes the vehicle’s public signature key as Ui = Ŝi + ri · G.
The PCA then digitally signs this public key together with any required metadata meta
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Figure 2: SCMS’s butterfly key expansion and pseudonym certificate generation.

(e.g., that key’s validity period), obtaining the signature sigi, so the resulting explicit
pseudonym certificate certi is given by the triple (Ui, meta, sigi). For implicit certificates,
this process is slightly different: the PCA starts by computing a credential Vi = Ŝi + ri ·G,
once again for a random ri, so the implicit certificate certi is defined as the pair (Vi, meta).
The PCA then signs this certificate to obtain sigi = hi · ri + U, where hi = Hash(certi).
Whichever the certification model adopted, the resulting certificate and its companion data
(namely, ri for explicit certificates, and sigi for implicit ones) is encrypted with Êi. To
avoid Man-in-the-Middle attacks by the RA, this encrypted package is also signed with the
PCA’s own private key U. The PCA’s response is then sent to the RA, which gathers and
de-shuffles them before relaying the corresponding certificates to the requesting vehicle.

Finally, the vehicle verifies the PCA’s signature on the encrypted certificates, uses the
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Table 2: The butterfly key expansion process for issuing pseudonym certificates.

Vehicle → RA → PCA -RA Vehicle

SCMS
(ex-
plicit)

s,

S=s·G

e,

E=e·G

S,

f1

E,

f2

Ŝi = S+
f1(i)·G

Êi = E+
f2(i)·G

(0 6 i < β)

Ŝi,

Êi

Ui = Ŝi + ri·G
sigi =Sign(U, {Ui, meta})
certi ={Ui, meta, sigi}
pkg=Enc(Êi, {certi,ri})
res={pkg, Sign(U, pkg)}

res

êi = e+ f2(i)
Verif(U , res)

{certi,ri}=Dec(êi, pkg)
Verif(U , certi)

ui = s+ f1(i) + ri

ui·G
?= Ui

SCMS
(im-
plicit)

Vi = Ŝi + ri·G
certi ={Vi, meta}

sigi =Hash(certi)·ri+U
pkg=Enc(Êi, {certi,sigi})
res = {pkg, Sign(U, pkg)}

êi = e+ f2(i)
Verif(U , res)

{certi, sigi}=Dec(êi, pkg)
hi = Hash(certi)

ui = hi·(s+ f1(i)) + sigi

Ui = ui·G
?= hi · Vi + U

private cocoon encryption key êi = e+ f2(i) to decrypt the PCA’s response, and verifies
the validity of the pseudonym certificate thereby enclosed. For explicit certificates, this
verification consists in checking that the certificate’s signature is valid and that the public
key Ui was indeed derived from s and ri, i.e. that Ui = (s+ f1(i) + ri) ·G; in that case,
the vehicle’s private key is set to ui = s+ f1(i) + ri. When the certificates are implicit, the
vehicle simply follows the regular implicit verification protocol described in [6]: it computes
its own private key as ui = hi · (s + f1(i)) + sigi, sets the corresponding public key to
Ui = ui ·G, and verifies that Ui = hi · Vi + U , where U is the PCA’s public signature key.

Independently of the type of certificate adopted, the vehicles’ privacy is protected in
this process as long as there is no collusion between RA and PCAṠpecifically, the shuffling
of public cocoon keys performed by the RA prevents the PCA from learning whether or
not a group of keys received belong to a same device. Unlinkability of public keys towards
the RA, in turn, is obtained because the latter does not learn the value of certi in the
PCA’s encrypted response.

2.3 Key linkage
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Figure 3: SCMS’s key linkage process: generation, by LAi, of pre-linkage values employed
for certificate revocation.

To avoid large certificate revocation lists (CRLs), revocation in SCMS is done in such
a manner that many certificates from a same user can be linked together by inserting only
a small amount of information into a CRL. For this purpose, each pseudonym certificate
generated by the PCA includes a linkage value lv, computed by XORing two pre-linkage
values, plv1 and plv1, provided by two different Linkage Authorities (LA). The generation
of plvi by LAi is done upon request by the RA, as follows (see Figure 3).

First, LAi picks a random, 128-bit linkage seed lsi(0). Next, if the RA’s request covers
τ certificate time periods, LAi iteratively computes a τ -long hash chain [19] lsi(t) =
Hash(la_idi ‖ lsi(t− 1)), where la_idi is LAi’s identity string and 1 6 t < τ . Each lsi(t)
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is then used in the computation of σ pre-linkage values plvi(t, c) = Enc(lsi(t), la_idi ‖ c),
for 0 6 c < σ. Finally, every plvi(t, c) is truncated to a suitable length, individually
encrypted and authenticated using a key shared between the PCA and LAi, and then
sent to the RA. The RA simply includes this encrypted information, together with the
corresponding cocoon keys, in the requests sent to the PCA. As a result, the latter can
compute the linkage value to be included in the the c-th certificate valid in time period t
as lv(t, c) = plv1(t, c) ⊕ plv2(t, c).

Whenever the Misbehavior Authority (MA) identifies a malicious vehicle, its non-
expired certificates can be revoked altogether. This is accomplished via the collaboration
among PCA, RA, and LAs. Namely, the PCA can associate the lv informed by the MA to
the original pseudonym certificate request received from the RA. The PCA then provides
this information, together with the corresponding pre-linkage values plvi(t, c), to the
RA. The RA, in turn, can (1) identify the vehicle/driver behind that certificate request,
placing the corresponding enrollment certificate in a blacklist for preventing its owner from
obtaining new pseudonym certificates, and (2) ask LAi to identify the linkage seed lsi(0)
from which plvi(t, c) was computed. Finally, each LAi provides RA with lsi(ts), where ts
is the time period from which the revocation starts being valid (e.g., the time period when
the misbehavior first occurred, or the current one). The set of lsi(ts) received from the
LAs can then be placed in a CRL to be distributed throughout the system, allowing any
entity to compute lv(t, c) for time periods t > ts, linking the corresponding certificates to
a single CRL entry. Consequently, the misbehaving vehicle’s future certificates are revoked
and can be linked together; past certificates remain protected, though, preserving the
vehicle’s privacy prior to the detection of the malicious activity.

In terms of computational costs, this revocation process is such that each revoked
device contributes with 2 pre-linkage values to the CRL. Hence, the CRL grows linearly
with the number of revoked vehicles, not with the number of revoked certificates. The
main drawback of this gain in size is that checking whether a given certificate is in the
CRL requires the verification of every CRL entry against that certificate’s linkage value.
More precisely, for each CRL entry published at time period ts, the verification of whether
it covers a given certificate involves basically the computation of two components:

a) lsi(tc): it takes 2 · (tc − ts) hashes to compute lsi(tc) from lsi(ts), where i = {1, 2}
and tc is the time period when the verification is performed. This cost may be reduced
by means of pre-computation, i.e., if the vehicles always keeps the updated version of
the linkage seeds, lsi(tc), besides the original ones provided in the CRL. Nevertheless,
to cope with the lack of a system-wide time synchronization [33], vehicles may actually
need to keep a slightly older linkage seed in memory; for example, by keeping lsi(tc− ε)
for a small ε, it is possible to compute lsi(tc) with only ε hashes.

b) plvi(tc, c): since the certificate under analysis may be any out of σ that are valid
in the current time period, it takes up to σ encryptions to compute each plvi(tc, c)
from lsi(tc). With enough memory, the latency of this process can be reduced via the
pre-computation of a look-up table with all possible σ entries for each lsi(tc) in the
CRL.

3 Related works
As discussed in Section 2.3, the cost of checking a certificate’s revocation status given
a CRL is linearly dependent on the number of entries in that CRL. Therefore, keeping
this number low is important not only to save bandwidth when distributing CRLs, but
also to allow a faster and more energy-efficient verification of a certificate’s revocation
status. Unfortunately, however, the same mechanism proposed in SCMS for shortening
CRLs, which associates several certificates to a same entry, also extends the lifetime of
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those entries: after all, linkage seeds placed into a CRL can only be safely removed from it
after all certificates associated to those seeds have expired. Consequently, even if device
revocation events occur at a low frequency, CRLs may actually grow big because the
corresponding entries remain in the CRL for a duration comparable to that of certificate
batches (e.g., years). Actually, this issue is present even in recently proposed improvements
to SCMS’s key-revocation process. For example, in [5], the pre-linkage values are computed
using a Davies-Meyer construction [28] aiming to avoid possible vulnerabilities related to
the reversibility of encryption, a modification that does not affect the longevity of the
CRLs’ entries. As another example, in [31] the linkage and pre-linkage values are computed
with suffix-free hashes, which improves the system’s resilience against birthday attacks,
and another layer in the hash tree is added to simplify the temporary linkage/revocation
of vehicles. Even though entries for temporarily revoked vehicles can be swiftly removed
from CRLs, this facility does not apply to entries related to permanent revocations.

One possible approach for reducing the size of CRLs is to rely on Bloom Filters [29, 11].
More precisely, this probabilistic data structure allows the CRL list to be compressed,
although this comes at the cost of false-positives (but no false-negatives) on the pertinence
test. Although potentially useful for reducing CRL sizes when many certificates need to
be revoked, this approach is likely to be inefficient when applied to the revocation of only
a few vehicles. The reason is that the filter’s size depends on the maximum number of
certificate revocations supported, so the CRL always maintains its full size despite the
actual number of revoked certificates. Given the large number of pseudonym certificates
per vehicle, Bloom filters are potentially more efficient than placing in the CRL every single
certificate belonging to a revoked vehicle. However, such technique is not as appealing
when combined with solutions such as SCMS, in which all certificates from a single vehicle
can be revoked altogether with a single CRL entry. In this scenario, Bloom filters are
useful mostly to store multiple certificate identifiers at the vehicles’ side, as proposed in
[12], which makes this solution complementary to activation codes.

A more promising approach, which is also adopted in ACPC, is to prevent a revoked
vehicle from accessing its pseudonym certificates. This is the basic idea behind the Issue
First Activate Later (IFAL) scheme [33]. In IFAL, non-revoked vehicles can periodically
query the system for the “activation codes”, small pieces of information required to com-
pute the private keys for their own certificates. As a result, the identifiers for revoked
certificates that have been activated need to remain in the CRL only until their corre-
sponding expiration dates, since subsequent certificates issue to the same vehicle cannot
be activated. Albeit interesting, IFAL suffers from a significant security issue: since the
PCA communicates directly with the vehicles, it can link the pseudonym certificates it
issues to the corresponding vehicle’s enrollment certificates, even without colluding with
any other entity. The only protection offered by IFAL against such linkability risk is that
it requires the PCA to delete the information produced during the certificate issuance
process [33, Sec. 3.2]; however, such requirement can be easily ignored by a dishonest
PCA. Unfortunately, this makes the IFAL less secure than SCMS itself, hindering an
eventual integration between the two solutions.

The Binary Hash Tree based Certificate Access Management (BCAM) scheme [18] is
another scheme that uses activation codes for reducing CRL sizes. Unlike IFAL, however,
BCAM was designed to interoperate with the SCMS architecture, inheriting its ability
to protect the privacy of honest users against a dishonest PCA as long as it does not
collude with other system entities. More precisely, in BCAM the RA does not simply relay
the PCA-encrypted certificate batches to the requesting vehicle, but first sends them to
a Certificate Access Manager (CAM), which encrypts those batches using a symmetric
cipher. The CAM-encrypted batches can only be decrypted by vehicles that are able to
compute corresponding activation codes, called device specific values (DSVs). Instead of
requiring vehicles to explicitly request their DSVs, though, the CAM builds a binary hash
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tree whose leaves allow the DSVs to be computed, and then broadcasts the nodes of the
tree that allow non-revoked vehicles (and only them) to recover their own DSVs. As a
result, the distribution of activation codes in BCAM is considerably more efficient that
the one in IFAL. Nevertheless, and even though BCAM does improve SCMS’s revocation
process, it can be further improved in terms of security and efficiency. Namely, one security
drawback of BCAM’s design is that it creates an extra point of collusion in the SCMS
architecture: the CAM, like the RA, learns which batch of PCA-encrypted certificates
belong to a same vehicle; consequently, the CAM can collude with the PCA to violate those
certificates’ unlinkability and, hence, the users’ privacy. In addition, during the butterfly
key expansion, the CAM encrypts certificates that have already been encrypted by the
PCA; therefore, this process can be further optimized if those two encryption processes
are combined into one. Both issues are addressed in the proposed ACPC solution.

4 Proposal: Activation Codes for Pseudonym Certificates
(ACPC)
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              a: 0                                                                       a: 1                                              …                  a: (τ-1)/3

Activation period
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Time
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No activation codes: revocation data remains in CRL until time period τ-1

With activation codes: revocation data remains in CRL until next undisclosed activation period

disclosure of codes for 
next activation period

Figure 4: Activation codes and permanence of revocation data (e.g., linkage seeds) in
CRLs.

To avoid the growth of CRLs while preserving the performance gains associated with
the butterfly key derivation, we build upon the concept of activation codes: bitstrings
without which certificates previously acquired cannot be used (namely, in the proposed
solution, they cannot be decrypted). Each activation code enables the usage of certificates
corresponding to a certain activation period, which spans α > 1 certificate time periods.
This is illustrated in Figure 4, for activation periods covering α = 3 time periods.

Those codes are then periodically disclosed to non-revoked vehicles before the start
of the corresponding time periods to allow a timely activation of their own certificates.
Revoked vehicles are prevented from obtaining activation codes for their certificates, at
least until this revocation status is removed. As a result, identifiers of revoked certificates
that cannot be activated do not need to remain in CRLs, reducing the sizes of the latter.
For example, certificates could be valid for 1 week, whereas the activation period could
be set to 3 weeks and be disclosed 1 week before they are actually required. In this case,
identifiers for certificates from revoked vehicles would have to remain in CRLs for at most
4 weeks: if the codes for the next activation period have not yet been disclosed, then the
CRL needs to cover only the current activation period (at most 3 weeks); otherwise, the
CRL needs to cover the next activation period (3 weeks) and the remainder of the current
one (at most 1 week). After that, revoked devices do not receive new activation codes.
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The proposed solution, named ACPC (Activation Codes for Pseudonym Certificates), is
inspired by works such as IFAL [33] and BCAM [18]. However, it innovates by addressing
the main shortcomings of these solutions in terms of performance and security, as further
discussed in Section 6.

4.1 Generating activation codes: binary hash trees
Similarly to BCAM, we assume the existence of one or more Certificate Access Managers
(CAM), each having a different identifier cam_id. CAMs are entities responsible for
creating and distributing activation codes. For this purpose, a CAM creates a binary hash
tree treet for each time period t, using a pre-image resistant hash function, as illustrated
in Figure 5. If the activation period spans n+ 1 time periods, then treet = . . . = treet+n.

Hash Hash

Hash Hash

Hash

Hash

Hash

Hash

Hash HashHash Hash Hash Hash

Time period: t
nodet(0,0)

nodet(1,0) nodet(1,1)

nodet(2,0) nodet(2,1) nodet(2,2) nodet(2,3)

nodet(3,0) nodet(3,1) nodet(3,2) nodet(3,3) nodet(3,4) nodet(3,5) nodet(3,6) nodet(3,7)

codet,0 codet,1 codet,7

=             =             =             =              =              =              =              =  
codet,2 codet,3 codet,4 codet,5 codet,6

CAM

Figure 5: Activation tree generated by CAM. The activation codes correspond to the
leaves of the binary hash tree.

The tree’s nodes are denoted nodet(depth, count), where depth > 0 and 0 6 count 6
2depth−1 indicate the node’s position inside the tree. The height of the tree must match the
length of the vehicles’ identifiers (VID), in bits. As a result, each leaf nodet(depth, count)
can be used to represent a single vehicle in the system: the one with VID = count. In [18],
for example, the suggested length of VID is 40 bits, which is enough to cover more than 1
trillion vehicles. For brevity of notation, we denote by codet,VID the leaf of treet whose
index corresponds to a given VID, i.e., codet,VID = nodet(|VID|,VID).

The nodes of treet are assumed to be k-bit long, yielding a k-bit security level (e.g.,
in modern deployments one would expect k = 128). The tree is built in the following
manner. First, its root nodet(0, 0) is set to a (pseudo)random bitstring, unique for each
activation period. Every other node is then computed from its parent node combined with
a “security string” I, i.e., a different suffix for each node. More precisely, we have:

nodet(depth, count) = Hash(nodet(depth− 1, bcount/2c) ‖ I)

where the security string I is defined as

I = (cam_id ‖ t ‖ depth ‖ count)

If the activation period spans multiple time periods, then t is set to the first time period
covered by that activation period. This approach gives the system enough flexibility to
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increase or reduce the length of the activation periods without incurring the repetition of
security strings. As further discussed in A, such non-repeatable security strings are useful
to thwart birthday attacks analogous to those described in [4, 31].

Table 3 shows suggested lengths for the fields that compose those security strings in
ACPC, leading to |I| = 104. This composition is designed to support 40-bit long VIDs
for 224 time periods, which means more than 300.000 years if the time periods are 1 week
long. At the same time, it is unlikely to have any perceptible impact on the computation
of activation trees, as long as the hash function’s input fits its block size. For example,
SHA-256 operates on 512-bit blocks, appending at least 65 bits to its input message (a bit
‘1’ for padding, and a 64-bit length indicator) [25]; therefore, a single call to its underlying
compression function is enough to process a 128-bit node value value even when it is
combined with a 319-bit or smaller security string.

Table 3: Components of the security strings employed in ACPC’s activation trees.

Field Suggested Description
length (bits)

depth 8 Node’s depth in tree, starting at 0. Mandatory:
|depth| > lg(|VID|).

count 40 Node’s index in the depth, starting at 0.
Mandatory: |count| > |VID|.

t 24 Time period to which the tree is associated
cam_id 32 CAM’s identifier

4.2 Issuing pseudonym certificates with activation codes
Figure 6 illustrates ACPC’s pseudonym certificate issuance, in which the binary hash tree
generated by the CAM is integrated into SCMS’s butterfly key expansion process. As
shown in this figure, when a vehicle with a given VID requests a batch of pseudonym
certificates, it still provides the quadruple (S, f1, E, f2) to the RA as described in Section
2.2. This should then lead to the generation of β = τ · σ certificates, so a total of σ
certificates are valid for each of the τ time periods covered in the batch.

Upon reception of the vehicle’s request, the RA queries the CAM for the blinded
activation codes At = fa(codet,VID, t,VID)·G. This operation uses a pseudorandom
function fa that is public, i.e., whose seed does not need to be kept secret. Nevertheless,
its output at this point is unpredictable: after all, it involves the activation tree’s leaf
codet,VID, which has not yet been disclosed by the CAM. In addition, fa’s output is
blinded by the CAM via the multiplication by the elliptic curve generator G, so the actual
activation codes cannot be learned by the RA from the CAM’s response.

The RA then proceeds with the butterfly key expansion process in a manner that is
very similar to the process described in Section 2.2, except for one important difference:
the blinded codes provided by the CAM are added to the computation of the public
cocoon encryption keys. More precisely, let Êt,c denote the c-th public cocoon encryption
key that belongs to time period t. Each of those keys is then computed by the RA as
Êt,c = E + At + f2(t·σ + c) ·G, where 0 6 c < σ and 0 6 t < τ . As usual, the resulting
cocoon keys are shuffled together with keys from other vehicles, before being sent to the
PCA. By using f2 in the computation of cocoon encryption keys, the RA ensures that they
cannot be later correlated by the CAM or by the PCA, even for groups of keys computed
using the same At. Therefore, this process preserves the unlinkability of pseudonym
certificate requests, whether or not there is a collusion between CAM and PCA.
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Figure 6: Issuing pseudonym certificates with activation codes. For simplicity, we assume
that each activation period covers a single time period.

Finally, the PCA computes the vehicle’s (implicit or explicit) pseudonym certificate,
which is encrypted with Êt,c before being sent back to the RA. The RA, in turn, simply
relays those certificates to the corresponding vehicle, without contacting the CAM once
again. Since this procedure is identical to the one proposed in SCMS, the processing
costs and bandwidth usage at the PCA remain unchanged. In addition, the underlying
security properties discussed in Section 2.2 still apply, including the protection against
MitM attacks performed by the RA and the unlinkability among certificates unless PCA
and RA collude.

The result of this process is that the encrypted certificates obtained by the vehicle can
only be decrypted if the associated codet,VID is also obtained. After all, the decryption
key corresponding to Êt,c is now computed as êt,c = e+ fa(codet,VID,VID, t) + f2(t·σ+ c).
Therefore, to keep a vehicle with identifier V IDr from activating its own certificates, it
suffices to prevent it from obtaining codet,V IDr . In that case, entries for that vehicles’
certificates do not need to remain in CRLs for too long.

As a final remark, we note that the activation codes as hereby described can also
combined with the optimized, unified butterfly key expansion process proposed in [32].
More precisely, this alternate design achieves better performance by replacing the pair of
caterpillar keys (S,E) with a a single key X = x ·G. Therefore, since the corresponding
public cocoon keys X̂ are employed by PCA for encrypting its response, the RA simply
needs to include the blinded activation codes in their computation by making X̂t,c =
X +At + f1(t·σ + c) ·G.

4.3 Distributing activation codes for non-revoked devices
In ACPC, like in BCAM, activation codes can be broadcast by the CAM to all non-revoked
vehicles rather than individually sent to them upon request. This eliminates the need for
bidirectional connectivity between vehicles and CAMs when distributing activation codes.

The tree’s nodes that must be broadcast depend on which nodes are currently re-
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voked/suspended, taking into account that every node of a binary hash tree can be
computed from its parent. For example, given the root of the tree, all of its leaves can be
computed and, thus, all vehicles can obtain their corresponding activation codes. Hence, if
no vehicle is revoked in time period t, the CAM only needs to broadcast nodet(0, 0) to
allow all certificates in the system to be activated. This leads to optimal performance
when distributing activation codes.

When a vehicle needs to be revoked, however, the CAM must not reveal any of the
nodes in the path between the corresponding leaf and the tree’s root. This prevents
the computation of that leaf not only by the revoked vehicle, but also by non-revoked
vehicle that might try to collude with revoked ones to allow the activation of the latter’s
certificates. For example, consider the tree shown in Figure 5. To revoke the vehicle whose
VID is 4, the CAM would have to broadcast only the following nodes (shown with ticker
borders in that figure): node(1, 0), which enables the computation of leaves node(3, 0)
through node(3, 3); node(2, 3), used to compute leaves node(3, 6) and node(3, 7); and the
leaf node(3, 5). More generally, and as mentioned in [18], when nr users out of nt are
revoked, the number of nodes included in the message broadcast by the CAM is on average
nr · lg(nt/nr) for 1 6 nr 6 nt/2 (cf. Theorem 1 of [1]). Hence, albeit more expensive than
the scenario in which no revocation occurs, this approach scales quite well, and is still
more efficient than the individual delivery of each activation code. Actually, there are also
efficient methods for encoding binary hash trees such as those hereby described, so the
index of each node included in the broadcast message can be represented with less than
|VID| bits (cf. Section 4.4 of [18]), saving some bandwidth.

5 Security analysis
In this section, we discuss the security of ACPC’s certificate issuance and revocation
procedures.

5.1 Security of the certificate issuance process
In ACPC, a collusion between CAM and PCA (resp. RA) reveals as much information
as the PCA (resp. RA) had available in the original SCMS. Indeed, if we remove the
influence of At over the public cocoon keys computed as described in Section 4.2, the result
matches the public cocoon keys in SCMS. Therefore, a collusion with the CAM can only
remove the entropy introduced by this entity, while still preserving the security properties
discussed in Section 2.2.

In particular, a vehicle’s private caterpillar key x remains protected by the elliptic curve
discrete logarithm problem (ECDLP) during the whole execution of the protocol. Hence,
RA, PCA and CAM are unable to recover the signature or decryption private keys derived
from it, even if they collude. Unlinkability among certificates is similarly preserved, as
long as the RA and PCA do not collude: the shuffling done by the RA still hides from the
PCA any relationship between certificate requests intended for a same vehicle; meanwhile,
the PCA’s encrypted response prevents anyone but the appropriate vehicle from learning
certi. Finally, since the butterfly key expansion process grants vehicles the ability to verify
whether or not the received certificates were generated in a fair manner, MitM attacks
(e.g., by the RA) are averted.

It is worth mentioning that the aforementioned CAM’s inability to create a new
threat via collusion with other entities is not just a fortunate coincidence. Actually, the
(unblinded) activation codes codet,VID are the only information initially kept secret by
the CAM and, thus, that could be contributed in such collusion. Since those codes are
periodically disclosed to allow vehicles to activate their certificates, though, by design
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such public disclosure should not negatively impact the system’s security. Consequently, a
“private disclosure” during a collusion is expected to have an equivalent result.

5.2 Security of the revocation procedure
The security of ACPC’s revocation procedure relies on the first pre-image resistance of
the hash function employed for the construction of activation trees, as well as the proper
disclosure of its nodes by the CAM. In principle, following a dishonest-if-allowed model,
this means that the choice of a secure hash function is enough to enforce revocation. At
least this should be the case if we assume that the system’s entities would gain nothing by
illegitimately un-revoking vehicles, i.e., without authorization from the MA. Nonetheless,
it is useful to evaluate what happens when one of the system’s entities is compromised and,
as a result, its capabilities are misused aiming to allow the activation of revoked devices.

On the one hand, a rogue/compromised CAM could disclose the roots of every activation
tree to all vehicles, even revoked ones, allowing all certificates in the system to be activated.
This would not give the attacker any advantage, though, besides disrupting the system’s
ability to revoke devices in an efficient manner. In particular, in consonance with the
discussion in Section 5.1, this would not grant the CAM or any other entity the ability to
track devices. Consequently, in a dishonest-if-allowed scenario, it is unlikely that the CAM
itself would go rogue and engage in such malicious activity. Furthermore, if the CAM’s
storage is somehow compromised, the leakage of codes can still be contained by keeping
the revoked vehicles’ data in CRLs, just like in the original SCMS. Hence, the attack
would not result in any catastrophic security breach, but only nullify the performance
gains provided by activation codes.

On the other hand, a security breach at the RA or PCA should not reveal any
information about activation codes. The reason is that these entities never learn those
codes, which are only known by the CAM. Nevertheless, if any of these entities goes
rogue or is compromised at a level that allows its behavior to be controlled by attackers,
it can provide valid certificates to revoked vehicles independently of activation codes.
Specifically, a dishonest PCA can always issue new pseudonym certificates for vehicles,
including revoked ones, at least until the PCA itself is revoked. A compromised RA could
act similarly, e.g., by requesting pseudonym certificates for a non-revoked V IDd, and then
delivering those certificates to a revoked vehicle whose identifier is V IDr 6= V IDd. Such
misbehavior is likely to go unnoticed because the certificates do not carry any VID on
them. In addition, if V IDd corresponds to a valid vehicle whose pseudonym certificates
have not been requested yet, the CAM would not be able to notice the fraud by the RA:
from the CAM’s perspective, this is simply a new vehicle in the system.

Actually, even if V IDd has already been requested in the past, it would be difficult
for the CAM to use this knowledge to prevent such attack. The reason is that, if the
CAM is configured to refuse a second request for the same V IDd, management issues are
likely to arise. For example, the processing of the initial request for V IDd may naturally
fail, so an honest RA would actually need to send a second request referring to the same
V IDd. As another example, a dishonest RA might abuse this process by performing a
“denial-of-certification” attack: the RA queries the CAM requesting the caterpillar keys for
a non-revoked V IDd, but it does not execute the pseudonym certificate issuance process;
future requests referring to V IDd, potentially by honest RAs, would then fail.

These observations indicate that, even if a rogue RA or PCA never gains access to
activation codes, their roles in the system still enable them to provide valid certificates for
revoked vehicles. Actually, a similar discussion also applies to the original BCAM protocol,
in which a rogue RA or PCA could provision revoked vehicles with the PCA-encrypted
certificates, before they are once again encrypted by the CAM. Even though ACPC’s
approach of ensuring that only the CAM is able to distribute activation codes does not
actually prevent such threats, it was adopted because it does reduce the system’s attack
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surface. For example, suppose that RA and/or PCA store the (PCA-encrypted) certificates
generated for the purposes of disaster recovery, as proposed in [18, Section 5.3.3]. In this
case, a data breach disclosing the certificates issued for a vehicle that is now revoked
does not create any security concern, since that vehicle remains unable to decrypt those
certificates.

6 Comparison with related works: IFAL and BCAM
When compared to IFAL, ACPC differs in at least two important aspects. First, IFAL
allows an “honest but curious” PCA to link several certificates to a same device; this privacy
issue is absent in the solution hereby described if we assume, like in the original SCMS,
that PCA and RA do not collude. Second, ACPC allows vehicles to obtain activation
much more efficiently than IFAL’s strategy, using binary hash trees to broadcast activation
codes rather than requiring vehicles to individually request them.

Architecturally, ACPC shares more similarities with BCAM than with IFAL, in partic-
ular because both BCAM and our proposal use binary hash trees for the distribution of
activation codes. However, ACPC provides better security, for at least two reasons. First
and foremost, the fact that the CAM does not receive certificates from the RA prevents the
former from learning which PCA-encrypted certificates belong to a same device; therefore,
and unlike BCAM, a collusion between CAM and PCA does not allow those entities to
track vehicles. Second, as discussed at the end of Section 5.2, ACPC also reduces the
revocation procedure’s attack surface by a rogue RA or PCA, so it is able to protect the
vehicle’s privacy even if PCA and CAM collude or are compromised.

As another relevant benefit, ACPC is more efficient than BCAM in terms of processing
and bandwidth usage, as discussed in the following subsections.

6.1 Bandwidth usage
By integrating security strings into the activation trees, the nodes of those trees can be
128-bit long while still preserving a 128-bit security level, despite the number of revoked
devices. When compared to BCAM, which uses 256-bit nodes for achieving the same
security level (see A), this represents a 50% bandwidth gain for the distribution of activation
trees.

In addition, ACPC also saves bandwidth between RA and CAM during the pseudonym
certificate issuance process, because these entities only exchange data that represent nodes
from activation trees, rather than batches of certificates. More precisely, assume that SCMS
adopts implicit certificates, which are usually shorter that explicit ones, and employs the
optimizations described in [32], which removes the need of signing the encrypted package
pkg. In that case, each PCA-encrypted response pkg = Enc(Êi, {certi, sigi}) is expected
to be such that |pkg| > 6k bits for a security level of k: (1) 2k bits for the implicit
credential Vi enclosed in certi, since it corresponds to an elliptic curve point; (2) 2k bits for
the random elliptic curve point that is generated during any ECIES-based encryption; (3)
2k bits for the signature sigi; and (4) some extra bits for the certificate’s metadata (e.g., a
linkage value and an expiration date), as well as for the authentication tag resulting from
the ECIES-based encryption, which we ignore in our calculations. Hence, for a batch size
β = τ ·σ, in BCAM the total bandwidth usage at the RA and CAM would be 2 · (6k) · (τ ·σ)
bits, where the “2” multiplication factor is due to the fact that this cost is paid both
downstream and upstream: the RA sends PCA-encrypted batches to the CAM, and then
receives CAM-encrypted batches.

In comparison, in ACPC the CAM simply sends τ/α blinded activation codes to the
RA, where α > 1 is the number of time periods covered by each activation period. Since
each blinded activation code A is an elliptic curve point (i.e., 2k bits), this corresponds to
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an upstream (resp. downstream) cost at the CAM (resp. RA) of 2k · τ/α bits. Therefore,
ACPC is expected to use approximately 1/(6σ · α) of the bandwidth required by BCAM
during the pseudonym certificate issuance process. To give a numeric example, suppose
that the system is configured in such a manner that 20 certificates are valid per time
period (as in [18]), and each activation period covers 4 time periods (e.g., for certificates
valid for a week, the activation period would correspond to a month). In this case, issuing
batches of certificates with ACPC would take 1/480 of the bandwidth required by BCAM.

6.2 Processing costs
Another improvement of ACPC over BCAM is that, in the latter, the CAM is responsible
for encrypting the batches received from the RA, after they are delivered by the PCA.
Consequently, the CAM ends up encrypting certificates that have already been encrypted
by the PCA: the latter process is intended to preserve the vehicles’ privacy, and the
former is executed for the purpose of preventing their activation in case of revocation. The
proposed approach integrates both purposes into a single encryption process, performed
by the PCA, which was already present in SCMS itself.

In terms of processing at the CAM, BCAM is such that the number of encryptions
performed grows proportionally to the size of the batches, which depends on the size of
pkg and on the number of certificates per time period (σ). In comparison, ACPC’s design
is such that each activation period requires one PRF execution combined with an elliptic
curve scalar multiplication, for computing the corresponding blinded activation codes
At = fa(codet,VID, t,VID)·G. Therefore, many symmetric encryption operations can be
replaced by a single computation of a blinded activation code. Since scalar multiplications
over elliptic curves are known to be considerably more expensive than symmetric encryption,
however, the actual benefits of ACPC depends on the system parameters. More precisely,
for a given value of |pkg|, the larger the number of time periods covered by each activation
period (α), the larger the number of encryptions replaced by the computation of a blinded
activation code and, hence, the better the processing times of ACPC when compared to
BCAM.

To give some concrete numbers, we have implemented our proposal using the RELIC
cryptography library version 0.4.1 [2] running on an Intel i5 4570 processor. In this setting,
the computation of one blinded activation code takes 242,822 cycles. This is approximately
300 times the cost of one single AES encryption, which takes only 832 cycles. Based on
these numbers, Figure 7 shows the total processing costs at the CAM when we assume
pseudonym certificate batches that span a period of 3-years, which corresponds to 156
one-week long time periods. The smallest number of encryption for BCAM, 12480, refers
to a scenario where σ = 20 and |pkg| = 512 bits, meaning that 156 ∗ 20 = 3120 pseudonym
certificates are encrypted by the CAM and each encryption takes 512/128 = 4 calls to a
128-bit block cipher such as AES. The largest number of encryptions, 199680, is obtained
when σ = 40 and |pkg| = 4096 bits, so the encryption of each of the 156 ∗ 20 = 6240
certificates requires 4096/128 = 32 calls to the underlying 128-bit block cipher. As observed
in this figure, the performance of ACPC is comparable to BCAM’s, and usually surpasses
it, in particular for larger numbers of α. For instance, when each activation period spans 4
certificate time periods, only 156/4 = 39 blinded activation codes are computed, so the
corresponding ACPC-4 curve always remains below BCAM’s curve.

Even more importantly, the fact that the CAM does not re-encrypt batches in ACPC
means that the vehicles do not need to remove this additional encryption layer when
processing the received pseudonym certificates. Instead, the only decryption operation
performed at the vehicle’s side is the one originally present in SCMS itself, which reverses
the encryption done by the PCA. Therefore, the total overhead incurred by ACPC refers
to the computation of one (unblinded) activation code fa(codet,VID, t,VID) per activation
period, so it can be included in the computation of the decryption key êt,c. When compared
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Figure 7: Processing costs at the Certificate Access Manager (CAM) for BCAM and
ACPCẆe denote by ACPC-α the setting in which the number of time periods covered by
each activation period is α.

to BCAM, this means that |pkg|/128 encryptions are replaced by τ/α invocations of a
PRF at the vehicle’s side. Even if we consider the scenario from Figure 7 in which the
benefits of ACPC are less pronounced at the CAM’s side (namely, α = 1 and |pkg| = 512),
this still means that ACPC trades 12480 decryptions for 156 PRF executions. In practice,
assuming that one PRF execution takes roughly as much processing as one decryption,
this means that the overhead added by ACPC’s activation codes is approximately 1/80 of
the overhead incurred by BCAM at the vehicles’ side.

Finally, the usage of activation codes is transparent from the PCA’s perspective, so its
processing costs remain unchanged. For the RA, in turn, a single elliptic curve addition
per activation period is necessary, to compute E+At, from which the corresponding public
cocoon keys Êt,c can be obtained. Therefore, the overhead incurred by ACPC at the RA
is expected to be negligible.

7 Conclusions
Security and privacy mechanisms are essential for preventing drivers from abusing V2X
communications to gain unwarranted advantages over their peers, and also for limiting any
entity’s ability to track honest vehicles. A promising solution to address such requirements
is the Security Credential Management System (SCMS), which provides efficient and
privacy-preserving mechanisms for issuing pseudonym certificates to vehicles and revoking
them in case of misbehavior. As a drawback, however, SCMS’s revocation procedure is
such that, after certificate identifiers are included in a CRL, it may take a long time for the
corresponding CRL entries to be removed. This incurs not only in bandwidth overheads
for the CRL distribution, but also increases the processing cost at vehicles for verifying a
certificate’s revocation status.
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Aiming to address these issues, in this article we present improvements on SCMS’s
pseudonym certificate revocation process. The proposed design, named Activation Codes for
Pseudonym Certificates (ACPC), is based on activation codes, small pieces of information
without which pseudonym certificates previously issued become useless. Consequently, by
ensuring that only non-revoked vehicles are periodically provided with those codes, entries
associated with revoked vehicle’s certificates can be safely removed from CRLs.

Even though ACPC builds upon ideas originally discussed in recent works, in particular
IFAL [33] and BCAM [18], it leads to a significantly more security and efficient pseudonym
certificate system. More precisely, SCMS’s design is such that a dishonest PCA would
have to collude with the RA to be able to track vehicles, and ACPC does not increase
this vulnerability surface. In contrast, in IFAL a dishonest PCA could track vehicles
without colluding with any other entities, whereas in BCAM a collusion between CAM and
PCA would enable them to similarly violate the drivers’ privacy, In terms of performance,
one advantage of ACPC over IFAL refers to the distribution of activation codes: the
CAM can broadcast codes to all non-revoked vehicles, so no bidirectional connectivity is
required between vehicles and CAM. Even though such distribution process is as efficient
as BCAM’s, ACPC leads to a much more efficient certificate issuance process than BCAM:
since the proposed design avoids the re-encryption of pseudonym certificates by the CAM,
the CAM-RA bandwidth usage in ACPC is expected to be lower than 1/480 of BCAM’s,
and the processing overhead added by ACPCś activation codes at the vehicle’s side is
expected to be 1/80 or less than what is observed with BCAM.
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A Birthday attack against BCAM’s hash trees
The structure of BCAM’s binary hash trees is such that their k-bit nodes are computed
via iterative hashing, using a constant suffix for each branch. More precisely, starting from
a random root nodet(0, 0), each node nodet(depth, count) of treet is computed from its
parent as follows:

nodet(depth, count) = Hash(nodet(depth− 1, bcount/2c) ‖ bp),

where b = 0 (resp. b = 1) if the node is a left (resp. right) child, and p > 1 is a suitable
padding length. For example, when k = 256 and the hash function employed is SHA-256,
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adopting 1 6 p < 192 would allow the underlying compression function to be called only
once when computing any node of the tree.

Suppose that a vehicle with identifier V IDr is revoked. In that case, the leaf
nodet(|VID|, V IDr) should not be computed from the message broadcast by the CAM, for
every future value of t. This means that the set Nr of all nodes in the path between the root
and that leaf must remain secret. To accomplish this, the CAM only broadcasts children
of the nodes in Nr. For example, as mentioned in Section 4.3, the revocation of nodet(3, 4)
leads to the disclosure of the set Nd = {nodet(1, 0), nodet(2, 3), nodet(3, 5)}. As long as
the tree is built using a secure hash function, it is not straightforward to use any node
in Nd to compute nodes in the set Nr = {nodet(0, 0), nodet(1, 1), nodet(2, 2), nodet(3, 4)}.
Indeed, doing so corresponds to finding pre-images for nodes in the set Nd.

To overcome the security of BCAM’s activation trees, the following attack strategy can
be employed to recover activation codes for revoked vehicles. First, the attacker picks an
arbitrary, k-bit long link0, and arbitrarily chooses between b = 0 or b = 1. The value of
link0 is then used as the anchor for a hash chain of the form linkj = Hash(linkj−1 ‖ bp),
until 2n hashes are performed. For simplicity, we assume that no collision occurs during
this process, i.e., that linkj 6= linkj′ for all j 6= j′. Nevertheless, this simplification comes
without loss of generality because, whenever there is a collision, the attacker could simply
(1) save the current chain, (2) pick a new anchor distinct from any previously computed
linkj, and then (3) start a new chain from this anchor. Actually, picking different anchors
for building multiple chains is likely advantageous anyway, because this facilitates the
parallel processing of hashes. As long as 2n different hashes are made available in this
manner, the attack can proceed.

Due to the birthday paradox, an attacker that gathers 2m nodes disclosed by the CAM
has a high probability to find a match between at least one of those nodes and some of the
2n previously computed linkj if m+ n > k. Suppose that a match occurs between linkj

and nodet(depth, count). In this case, linkj−1 is a valid pre-image for nodet(depth, count)
with padding bp. Hence, if the attacker picked b = 0 and nodet(depth, count) is a left child,
it is very likely that linkj−1 will match the parent of nodet(depth, count) in the activation
tree — unless linkj−1 is a second pre-image rather than the actual pre-image. If the
parent of nodet(depth, count) is also a left child, its own parent is also likely to match
linkj−2, and so forth. An analogous argument applies if b = 1 and nodet(depth, count)
is a right child. As a result, such collisions have roughly 50% of chance of giving the
attacker access to nodes belonging to the revoked set Nr. All certificates whose revocation
depended on those nodes can then be activated.

Considering this attack scenario, the growth of the number of revoked devices has two
negative effects on the system’s security. First, the recovery of one node from the set Nr

becomes more likely to give access to activation codes of multiple revoked devices. The
reason is that a node in a given position of the tree always allow the computation of a
same number of leafs (the lower the depth, the higher this number). When the number of
revoked devices increase, so does the number of leaves covered by that node that should
remain concealed to prevent the corresponding activation codes from being recovered.
Second, the number of nodes disclosed by the CAM that would lead to useful collisions
also grows, i.e., the value of m becomes larger.

Since such attacks trade time for space, one possible defense strategy is to adopt a large
enough k parameter. For example, the authors of BCAM suggest k = 256 (cf. [18], Section
4.1.3), meaning that the attacker would have to compute, say, 2n = 2128 hashes and then
gather 2m = 2128 nodes from the CAM before a collision actually occurs. Therefore, in
practice, the attacks hereby described do not pose an actual security threat to BCAM.

Nevertheless, there is a more efficient defense strategy for this issue, originally discussed
by Leighton and Micali [20] in the context of hash-based signatures [21] and also proposed for
use with SCMS’s linkage trees [31]: to use a different suffix for each node computation. This
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strategy comes from the observation that collisions between linkj and nodet(depth, count)
are useless if they are computed with different suffixes. After all, in that case linkj−1 will
not match the parent of nodet(depth, count), i.e., it will necessarily be a second pre-image
rather than the actual pre-image of that node. At the same time, attackers are unable
to gather more than 1 value of nodet(depth, count) for any given suffix. Consequently, to
obtain a high probability of collisions for that suffix, the attacker would have to build a
table with 2n = 2k−m = 2k entries. In other words, the approach adopted in ACPC leads
to a 128-bit security level even when the nodes themselves are 128-bit long.
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