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Abstract

A number of works have focused on the setting where an adversary tampers with the shares
of a secret sharing scheme. This includes literature on verifiable secret sharing, algebraic ma-
nipulation detection(AMD) codes, and, error correcting or detecting codes in general. In this
work, we initiate a systematic study of what we call non-malleable secret sharing. Very roughly,
the guarantee we seek is the following: the adversary may potentially tamper with all of the
shares, and still, either the reconstruction procedure outputs the original secret, or , the original
secret is “destroyed” and the reconstruction outputs a string which is completely “unrelated”
to the original secret. Recent exciting work on non-malleable codes in the split-state model led
to constructions which can be seen as 2-out-of-2 non-malleable secret sharing schemes. These
constructions have already found a number of applications in cryptography. We investigate
the natural question of constructing t-out-of-n non-malleable secret sharing schemes. Such a
secret sharing scheme ensures that only a set consisting of t or more shares can reconstruct the
secret, and, additionally guarantees non-malleability under an attack where potentially every
share maybe tampered with. Techniques used for obtaining split-state non-malleable codes (or
2-out-of-2 non-malleable secret sharing) are (in some form) based on two-source extractors and
seem not to generalize to our setting.
• Our first result is the construction of a t-out-of-n non-malleable secret sharing scheme

against an adversary who arbitrarily tampers each of the shares independently. Our con-
struction is unconditional and features statistical non-malleability.

• As our main technical result, we present t-out-of-n non-malleable secret sharing scheme in
a stronger adversarial model where an adversary may jointly tamper multiple shares. Our
construction is unconditional and the adversary is allowed to jointly-tamper subsets of up
to (t − 1) shares. We believe that the techniques introduced in our construction may be
of independent interest.

Inspired by the well studied problem of perfectly secure message transmission introduced in
the seminal work of Dolev et. al (J. of ACM’93), we also initiate the study of non-malleable
message transmission. Non-malleable message transmission can be seen as a natural general-
ization in which the goal is to ensure that the receiver either receives the original message, or,
the original message is essentially destroyed and the receiver receives an “unrelated” message,
when the network is under the influence of an adversary who can byzantinely corrupt all the
nodes in the network. As natural applications of our non-malleable secret sharing schemes, we
propose constructions for non-malleable message transmission.
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1 Introduction

Secret sharing is a fundamental primitive in cryptography which allows a dealer to distribute shares
of a secret among several parties, such that only authorized subsets of parties can recover the secret;
the secret is “hidden” from all the unauthorized set of parties. Shamir [Sha79] and Blakley [Bla79]
initiated the study of secret sharing by constructing threshold secret sharing schemes that only
allows at least t-out-of-n parties to reconstruct the secret.

Secret sharing schemes as envisioned originally were concerned with the privacy of the secret,
however, what if the primary goal of the adversary is to tamper with the secret instead? Here
one could ask for a number of different guarantees. For example, one could ask that the correct
secret is recovered even when some number of shares are arbitrarily corrupted. Concepts from
error correcting codes have been useful in obtaining such robust secret sharing schemes. Similar
related guarantees can be found in the lines of work on: error detecting codes such as algebraic
manipulation detection(AMD) codes [CDF+08], and, verifiable secret sharing [RBO89]. A more
detailed overview of the related works can be found later in this section.

Non-malleable secret sharing. In this work, we initiate a systematic study of what we call
non-malleable secret sharing. Very roughly, the guarantee we seek is the following: the adversary
may potentially tamper with all of the shares, and still, either the reconstruction procedure outputs
the original secret, or , the original secret is “destroyed” and the reconstruction outputs a string
which is completely “unrelated” to the original secret. This is a natural guarantee which is inspired
by applications in cryptography. Before giving more details, a discussion of the relationship of this
notion with split state non-malleable codes is in order.

Non-malleable codes in the split state model. In a beautiful work Dziembowski et al.
[DPW10] introduced non-malleable codes and showed the existence of such codes against a broad
family of tampering functions. Non-malleable codes guarantee that tampering with the code can
only cause the reconstruction procedure to either output the original message or an “unrelated” one.
A number of subsequent works have continued to study non-malleable codes in various tampering
models. Perhaps the most well-known of these models is the so called split state model. At a high
level this means that the codeword has two parts and the adversary is allowed to tamper with both
the parts arbitrarily and independently. This model was proposed by Liu and Lysyanskaya [LL12]
who also presented a construction based on (strong) cryptographic assumptions.

Constructing split state non-malleable codes without cryptographic assumptions proved to be
surprisingly hard. Dziembowski et al. [DKO13] proposed a construction which could encode single
bit messages. A subsequent brilliant lines of works resulted in constructions for multi-bit messages
as well [ADL14,CGL16,Li17].

Split state non-malleable codes do not explicitly require that the message remain a secret given
only one of the two states. However, it is not difficult to see that any 2 split-state non-malleable
code is also a 2-out-of-2 secret sharing scheme. Thus, the perspective we follow in our work would
be to view the above constructions as 2-out-of-2 non-malleable secret sharing schemes. Note that
such an implication may not hold if the number of states is more than 2. To see this, consider
a contrived example of a 3 split-state non-malleable code where the encoding functions encodes
the message using a 2 split-state non-malleable code to obtain the first two states and outputs the
message (in the clear) in the third state. The decoding function simply ignores the third state
and uses the first two states to decode the message. Such a construction is a valid 3 split-state
non-malleable code that is not a 3-out-of-3 secret sharing scheme (in fact, it has no secrecy at all).
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Even though non-malleable code is a relatively new primitive, it has already found a number of
applications in cryptography including in tamper-resilient cryptography [DPW10], designing multi-
prover interactive proof systems [GJK15] and obtaining efficient encryption schemes [CDTV16].
Very recently, non-malleable codes in the split-state model were used as 2-out-of-2 non-malleable
secret sharing scheme to obtain 3-round protocol for non-malleable commitments [GPR16] (a prob-
lem which was open for a while).

Our Question. We study the following natural question in this work:
Can we get t-out-of-n non-malleable secret sharing schemes in which adversary can tamper (in

some form) with all the shares?
As noted before, split state non-malleable codes provide a positive answer to the above question

for the special case of t = n = 2. These constructions have already found a number of applications
in cryptography. However to our knowledge, a construction for general values of t and n is currently
unknown (even from cryptographic assumptions).

The techniques used for obtaining 2-out-of-2 non-malleable secret sharing schemes are, in some
form or the other, based on 2-source (or multi-source) extractors, and, seem not to generalize to our
case. Almost by definition, all the sources are required to compute the extractor output (which,
presumably would be used in the reconstruction phase of the non-malleable secret sharing). Such
an idea would fail in our setting where all the sources (i.e., shares) may not be available during
reconstruction.

Existing secret-sharing schemes. Most of the secret sharing schemes known are linear [Bei,
chapter 4] and have nice algebraic and geometric properties, which are harnessed to obtain efficient
sharing and reconstruction procedures. Non-malleable secret sharing schemes on the other hand
cannot be linear. To see this, consider a linear secret sharing scheme, in which the secret is a linear
combination of the authorized shares. Now if an adversary multiplies each of the authorized shares
by 2, the secret, which is a linear combination, also gets multiplied by 2 and non-malleability is
lost. In fact, it is easy to see that for any authorized set of shares of linear schemes, the adversary
can add an arbitrary value of its choice to the secret by changing only one of the shares. Indeed,
the malleability of linear secret sharing schemes, such as polynomials based Shamir’s secret sharing
scheme [Sha79], forms the basis of secure multi-party computation protocols [BOGW88]. For
our purposes, any such alteration is an “attack” and we try to build secret sharing schemes that
necessarily prohibit any such attacks.

1.1 Our Results

As our first technical contribution, we construct t-out-of-n non-malleable secret sharing scheme
that allows a computationally unbounded adversary to arbitrarily tamper with each of the shares
independently. We note that prior to this work, even for computationally bounded adversaries, no
threshold (i.e. t-out-of-n) non-malleable secret sharing schemes were known.

(Informal) Theorem 1. For any threshold t ≥ 2, any number of parties n ≥ t, there exists
an efficient1 t-out-of-n statistical secret sharing scheme that is statistically non-malleable against a
computationally unbounded adversary who tampers each of the shares arbitrarily and independently.

1A statistical secret sharing scheme is efficient if the sharing and reconstruction functions run in poly
(
n, k,

log(1/ε)
)

time where k is the size of the message and ε > 0 is the statistical error. For concrete parameters, please
see section 3.
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In the above model, the adversary specifies a separate tampering function for each of the t
shares that it tampers with. The reconstruction function takes the t tampered shares and outputs
a message (which should either be identical or unrelated to the original one). We refer to this as
the individual tampering model. Next, we consider what we call the joint tampering model where
the adversary may tamper jointly with several shares. It is easy to see that if the adversary can
tamper jointly with t or more shares, it can simply reconstruct the original message, and, replace
the original shares with the shares of a related message of its choice. Thus, one could hope to
achieve non-malleability only if the adversary can jointly tamper up to t− 1 shares.

As our main technical contribution, we obtain the following result in the joint tampering model.

(Informal) Theorem 2. For any threshold t ≥ 2 and number of parties n ≥ t, there exists an
efficient t-out-of-n statistical secret sharing scheme that is statistically non-malleable against a com-
putationally unbounded adversary who chooses any arbitrary authorized set of t shares, partitions
it into two unequal non-empty subsets2 and then jointly tampers the shares in each of these subsets
arbitrarily and independently.

While theorem 1 is subsumed by theorem 2, it nonetheless serves as a useful starting point for
illustrating our ideas. We also remark that our construction for individual tampering features a
significantly better rate than the one for joint tampering.

Leakage Resilient Non-Malleable Codes. To achieve our results on joint tampering, we need
non-malleable codes that satisfy a strong leakage-resilience requirement. Specifically, we need 2
split-state non-malleable codes, where the tampering of first part (i.e. state) not only depends
on the first part, but also on bounded information (leakage) from the second part. The non-
trivial part is that the bound on the bits of leakage from the second part can be as large as the
size of the first part. Unfortunately, all known constructions of split-state non-malleable codes
[DKO13,ADL14,CGL16,Li17] (even leakage-resilient ones [ADKO15,GKP+18]) have two parts of
equal size and can be trivially broken in our leakage model. We construct such codes and believe
that it will be useful in other cryptographic applications. 3

(Informal) Theorem 3. For any polynomial p, there exists an efficient coding scheme that encodes
a message into two parts (l, r) and is statistically non-malleable against an adversary who tampers
the first share as f(l, leak(r)) and the second share as g(r), where f and g are arbitrary tampering
functions and leak(r) is an arbitrary function that outputs p(|l|) bits of information about r.

Non-Malleable Message Transmission. As an application of non-malleable secret sharing
schemes, we initiate the study of non-malleable message transmission. While the existing works on
message transmission have been primarily concerned with ensuring reliability and secrecy of the
message when a bounded number of nodes are corrupted [DDWY93,SNR04,WD08,KS09,KKVS18],
non-malleable message transmission tries to ensure non-malleability against adversaries which can
corrupt the entire network. In other words, it ensures that the receiver either receives the original
message, or, the original message is essentially destroyed and the receiver receives an “unrelated”

2One cannot hope to achieve any non-malleability in case adversary gets all the t shares entirely. Therefore, we
make the necessary assumption that subsets are non-empty (proper). Further, we need these subsets to have different
number of shares for our techniques to work. It is easy to see that if either the threshold t is odd or the number of
subsets is more than two, then such a requirement is trivially satisfied.

3Very recently, Goyal et al. [GKP+18] crucially used a weaker version of leakage-resilient non-malleable codes to
obtain a three round concurrent non-malleable commitment protocol that is non-malleable w.r.t. replacement.
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message, when the network is under the influence of an adversary who can execute arbitrary protocol
on each of the nodes in the network (apart from the sender and the receiver).

We even allow the adversary to add a bounded number of arbitrary hidden links which it can
use in addition to the original links for communicating amongst corrupt nodes. We now informally
define non-malleable paths to help us obtain our protocol which not only ensures non-malleability
against such an adversary, but also guarantees that only the receiver learns the secret. For a
network represented by an undirected graph G, let G′ be the induced subgraph of G with sender S
and R removed. We define a collection of paths from S to R to be non-malleable if in the induced
subgraph G′ any node is reachable by nodes present on at most one of these paths.

(Informal) Lemma 1. In any network, with a designated sender S and receiver R, if there exists
a collection of n non-malleable paths from S to R, then non-malleable secure message transmission
protocol is possible with respect to an adversary which adds at most n− 3 arbitrary hidden links in
the network and byzantinely corrupts all nodes other than S and R 4.

We have used our n-out-of-n scheme to arrive at the above result. We can use our threshold
non-malleable secret sharing schemes, and extend the above protocol to additionally ensure that
message is correctly recovered in case the adversary only crashes a bounded number of nodes.

1.2 Our Techniques

There are a number of constructions of non-malleable codes in the split-state model, all having in-
tricate proofs of non-malleability [DKO13,ADL14,CGL16,Li17]. All of these constructions crucially
use techniques from 2-source or multi-source extractors. Almost by definition, all the sources are
required to compute the extractor output (which, presumably would be used in the reconstruction
phase of the non-malleable code). Such an idea would fail in our setting where all the sources (i.e.,
shares) may not be available during reconstruction.

Non-Malleable Secret Sharing with respect to individual tampering. We highlight the
main technical ideas, while trying to build a t-out-of-n secret sharing that is non-malleable with
respect to individual tampering. As a building block, we use a split-state non-malleable code that
encodes a message into two parts, say l and r. As these codes are only secure if the two parts are
tampered independently, we have to ensure that independent tampering of shares of our scheme
can be transformed to an independent tampering of l and r. As a first attempt, such independence
can be achieved if for a given set of t shares used for reconstruction, the first share has information
of l, while the other t− 1 shares has information about r. However upon realizing that any set of t
shares should allow for reconstruction, such approaches break down. This hints towards a possible
approach in which each of n shares of the secret sharing scheme has shares of both l and r. We
describe the two main ideas behind our construction:

1. Getting non-malleability from secret sharing schemes with different parameters.
We observe that two secret sharing schemes requiring different number of shares for recon-
struction have “some” non-malleability with respect to each other. In more detail, suppose
the adversary is given shares of a secret s1 under a t-out-of-n secret sharing scheme, and, is
required to output shares of a secret s2 under (t − 1)-out-of-n secret sharing scheme, such
that each share of s2 is obtained by tampering a single share of s1. Then, we can conclude
that s2 is independent of s1. This is because (t−1) shares of s2 can depend only upon (t−1)

4We in fact allow the adversary to add 2dn
2
e − 3 hidden links, which is tight for odd values of n
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shares of s1 (which in turn would have no information about s1). This can be also be seen
as concluding that polynomials of different degree have “some” non-malleability w.r.t. each
other. This is a very natural (and yet powerful) idea, and to our knowledge has not been
exploited before. Now we provide further details.
We wish to to build a t-out-of-n non-malleable secret sharing scheme. Say t > 2. To share m,
we encode m using the encoder of non-malleable code to obtain l, r. We share l using a t-out-
of-n secret sharing scheme to obtain n shares l1, . . . , ln. We share r using a 2-out-of-n secret
sharing scheme to obtain n shares r1, . . . , rn. We set each of the n shares as sharei ← (li, ri).

For reconstruction, given any t tampered shares of the form s̃harei ← (l̃i, r̃i), we reconstruct
l̃ using the t shares. In the reconstruction of r̃, we use only 2 shares, which is allowed since
r was shared using a 2-out-of-n scheme. We notice, that in case of individual tampering, the
reconstructed r̃ can only depend on 2 shares of l, and is independent of the value of l. This
follows from the security of the t-out-of-n secret sharing scheme when t > 2.

2. Getting non-malleability from leakage-resilient secret sharing. Using the previous
technique only gives us one direction of independence, that is, r̃ cannot depend on the value
of l. We need a new approach to ensure that l̃, which is reconstructed using all the t shares,
cannot depend on the value of r. Approaches to use the same technique one more time
unfortunately fail. To this end, we share r using a leakage-resilient secret sharing scheme
(which we construct), which ensures that the secret r is statistically hidden even when each
of the n shares of r leak |l| bits of information. More specifically, we define a set of leakage
functions, where each function takes as input a share ri and li to obtain sharei ← (li,

ri), tampers using the tampering function fi to obtain the tampered s̃harei ← fi(sharei),

parses s̃harei as l̃i, r̃i, and outputs l̃i as the leakage. The leakage-resilience ensures that r
is statistically independent of the joint distribution of n leakages, namely l̃1, . . . , l̃n. We get
the other direction of independence, that is, the reconstructed l̃ is statistically independent
of the value r, on observing that any reconstruction function for l only uses values from the
joint distribution l̃1, . . . , l̃n.
The k-out-of-n leakage-resilient secret sharing scheme (used as a building block in the above
construction) may be a primitive of independent interest. Such a secret sharing scheme
guarantees secrecy of the share even if the adversary partitions the n shares into parts of
size at most k − 1 and obtains obtains individual leakage from each of the parts. To our
knowledge, k-out-of-n leakage-resilient secret sharing schemes have not appeared so far in the
literature (although the construction for k = 2 required for this work follows from standard
techniques).

Observe that this approach fails when t = 2, as we cannot apply the first technique when both
the schemes require the same number of shares for reconstruction. To this end, we separately build
a 2-out-of-n non-malleable secret sharing scheme from standard techniques in appendix A.

Non-Malleable Secret Sharing with respect to Joint Tampering. Let us try to use our
ideas to construct a t-out-of-n secret sharing scheme that is non-malleable against joint tampering.
Notice that, in our previous constructions, if we allow the adversary to jointly tamper any two shares
then it can simply reconstruct r (which is shared under a 2-out-of-n leakage-resilient secret sharing
scheme) and use r to change the shares of l disabling us from obtaining a split-state reduction
to the underlying non-malleable code. One way to fix this problem would be to use a k-out-of-n
leakage-resilient scheme that ensures secrecy of r against joint-leakage from less than k shares and
we might hope to achieve joint tampering of subsets containing less than k shares. Therefore, it
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appears that the threshold k could be set to a value up to t− 1 allowing for joint tampering of up
to t− 2 shares.

Unfortunately, apart from the fact that this approach disallows for joint tampering of t − 1
shares, there is a more fundamental limitation: even when k is less than t, the k tampered shares
(used for reconstructing r) may now depend on all the t shares (of l). In more detail, as our re-
construction procedure will always use the first k 5 out of the t shares to reconstruct r, and if the
threshold k is too high, then the adversary may partition the t shares in a way that allows it to
make the first k shares depend on all the t shares of l. For example, consider the simple case when
k = t− 1 and the adversary tampers the last two shares together, and all other shares individually.
In such a situation the first t− 1 tampered shares of r may have information of all the t shares of
l (in particular, the tampered r̃ may depend on l). Towards solving this problem, we take another
approach and use the following additional techniques:

1. Continue using secret-sharing schemes with different parameters for ensuring that
tampering of r is independent of l. Without loss of generality we can assume that the
adversary partitions the shares into two subsets. Our key idea will be to choose k s.t. one of
the two subsets has full information about r. As r is shared using a k-out-of-n secret-sharing
scheme, any subset which has at least k shares fixes a value of tampered r̃. Moreover, as no
subset can have all the t shares, we can argue that the fixed value of tampered r̃ (for that
subset) has to be independent of the value of l.
While we partially get one direction of independence, such an approach inherently breaks
the other direction of independence required for non-malleability. In particular, the tam-
pering function for the subset containing k shares can simply reconstruct r even if one uses
a leakage-resilient secret-sharing scheme. Thus, the tampered shares of l could now depend
on r (unlike the previous construction). Thus, it may seem like we have not made any progress.

2. Getting non-malleability from leakage-resilient non-malleable codes. Use tradi-
tional k-out-of-n secret sharing schemes for sharing r (as opposed to a leakage-resilient one)
and instead derive leakage-resilience from the underlying non-malleable code. This allows
the tampering of l to potentially depend on O(|l|) bits of information about r (earlier the
tampering of l could not depend on even a single bit of r). Observe that even if the adver-
sary reconstructs r, and uses its value in tampering the shares of l, the tampered shares of
l can only contain a bounded amount of information about r, and we may hope to leverage
the leakage-resilience of the underlying non-malleable code that allows for such a bounded
amount of leakage from r.
To make the above approach work, the leakage must not be a function of l, and tampering
of l should only be a function of l and the leakage obtained from r (and not the entire r).
However note that the tampering function gets the entire r as input (since it can reconstruct
and obtain r)! We solve this issue by assuming that the two subsets have different sizes and
setting k to be 1 + b t2c. Observe that such a setting ensures that exactly one of the two
subsets will have k (or more) shares. In other words, r will be hidden in the smaller subset,
and therefore, the tampered shares of l of the smaller subset will be independent of the value
of r. Now, instead of treating all the t tampered shares of l as leakage from r, we only consider
the tampered shares of l present in the larger subset as leakage from r. Notice, as the larger
subset has less than t shares, we have ensured that this leakage will be independent of the

5The reconstruction function for our t-out-of-n non-malleable secret-sharing scheme fixes which k-out-of-t shares
will be used for calculating r. Recall that our previous construction only used the first two shares of r.
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value of l.
The above approach relies on a leakage resilient non-malleable code in the split state model
(where the two parts are necessarily of unequal length). All existing non-malleable codes
break down in this setting, and, natural approaches to extend them to our setting seem not
to work. Towards that end, we propose a new construction based on [CGL16], and outline
our ideas behind it later in this subsection.

3. The “selective bot” problem. One remaining problem that we ignored in the description
of above techniques is the following. Suppose the reconstruction function only uses some fixed
k (out of t) shares to reconstruct r. Then what if the adversary partitions in such a way that
these k shares are spread across both the subsets? Thus, potentially the tampered versions
of these shares (and hence tampered r̃) could depend on all the t shares of l. To solve this
problem, our new reconstruction will make use of all the t shares of r and check that they are
consistent under a k-out-of-n scheme. The reconstruction procedure outputs ⊥ if the check
fails.
Trying to make this idea work, we run into the following “selective bot” problem: to know if
our reconstruction outputs ⊥ (bot) or not, all the t tampered shares of r must be used (which
in turn may depend overall on all t shares of l). This leads to the following possibility: the
probability that the tampered shares reconstruct to ⊥ might depend upon what the original
message was. This breaks the non-malleability guarantee of our scheme. Our ideas to solve
the problem are as follows:
• Further rely on leakage of the non-malleable codes. Interestingly, we solve this

issue by relying on the leakage resilience of the underlying non-malleable code one more
time. In particular, we design an efficient randomized protocol for detection of ⊥ with
communication complexity much lower than the size of r (if fact, lower than |l| bits).
Moreover our protocol only requires sending a single string from the larger subset to the
smaller subset, and this communication can be modeled as additional leakage from the
r to l. More details follow.
• Interpolate the values of consistent shares. Recall that our sharing procedure

shared r using a k-out-of-n Shamir’s secret sharing scheme [Sha79]. As the larger subset
has at least k tampered shares of r, using the properties of Shamir’s secret sharing
scheme, it is possible to interpolate the unique value of each of the t shares that will
be consistent with these k shares. In particular, even if the larger subset has no idea
of shares of l in the smaller subset, it knows what the tampered shares of r in the
smaller subset would like in case ⊥ does not happen. Lets concatenate these shares
(corresponding to the smaller subset) to obtain an “interpolated string”. On the other
hand, the smaller subset concatenates its share of r (in the same order) to obtain the
“real string”. Notice that we have reduced the problem of detecting ⊥ to an “easier”
problem of detecting inequality in between the two strings.
• Scatter the error and perform random-sampling. Now each of the two subsets

encodes its string using some high-distance error-correcting code to scatter the error
and guarantee that even if the inputs differed in a single position, the output binary
strings will differ in at least a constant fraction of bits. Now notice that comparing
the two encodings at a random location will detect any difference (in inputs) with at
least a constant probability. In particular, for any ε, by executing O(log(1/ε)) such
checks in parallel, we can reduce the chance of not detecting the ⊥ to lower than ε.
That is, we can use uniform randomness to sample random locations from the encoded
“interpolated string” and send the sampled bits as an additional leakage from (only) r.
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The other subset can also use the same uniform randomness to sample at exactly the
same locations from the encoded “real string” and can detect any ⊥ with probability at
least 1− ε, allowing us the invoke the non-malleability of the underlying non-malleable
code.

Leakage Resilient Non-Malleable Codes. Unfortunately, all known constructions of 2 split-
state statistical non-malleable codes can be trivially broken in our leakage model. All existing
constructions use inner-product as a two-source extractor, and further rely on the linearity of
inner-product for obtaining an efficient encoding procedure for the non-malleable code. In our
leakage-model, the adversary can fully leak one of the sources of the inner-product, and there
will be no randomness left to invoke the properties of the two-source extractor. Therefore, in our
constructions we need to use some two-source extractor for which the two sources have unequal
lengths. While the literature on extractors is very rich, most of the works focus on the improving
the parameters of seeded-extractors (weaker objects than two-source extractors) or improving the
parameters for multi-source extractors (which generally have sources of equal length). One notable
exception is the beautiful construction of Raz [Raz05] which constructs two-source extractors for
uneven length sources. Unfortunately, it does not have the linearity property that has been used
for efficient encoding. Another possible way of generating two-source extractors is via generalized
left-over hash lemma of Lee et al. [LLTT05]. This lemma does not seem to help in obtaining the
parameters we seek .

To construct the required leakage-resilient non-malleable code, our starting point would be the
non-malleable extractor of Chattopadhyay et al. [CGL16] hereby referred to as the CGL construc-
tion. We modify their construction to build the first 2-source non-malleable extractor with uneven
length sources. We use the following additional ideas 6

• Redesign the advice generator. The CGL construction is based on alternating extraction
from 2 sources (with each source representing one part of the code in case of split state
of non-mallaeble code). A crucial step in this construction requires constructing an advice
generator by “slicing” from each of the two sources. However now one of the “slices” would
need to be much longer than the other. This would lead to an unacceptable blow up in
the size of the generated advice. To solve this problem, we redesign the construction of the
advice generator. The advice that we generate no longer contains the “slices” explicitly. In
our advice generator we use Raz’s two-source extractor [Raz05] (instead of inner-product),
and rely on its “strongness” (and ideas from the beautiful work of Cohen [Coh16]) for the
new analysis.
• Inject leakage-resilience in each step to obtain overall leakage-resilience. After

the advice is generated, CGL construction can be seen as a sequential invocations of seeded
extractors, where the first seed is generated using another two-source extractor. As extractors
are naturally leakage-resilient (leakage from the source can be seen as loss of min-entropy
from the source, and extractors work with smaller min-entropy as well, as observed in [DP07,
DORS08]), we adjust the parameters of linear seeded extractors to handle the leakage, and
use Raz’s extractor to generate the first seed. In this way we achieve global leakage-resilience
by achieving leakage-resilience in each of the intermediate steps.
• Redesign the encoding procedure. The encoding procedure of CGL proceeds by ran-

domly sampling all the seeds corresponding to each of the seeded extractors. It then uses
the linearity of seeded-extractor to uniformly sample the value of the source given the output
and seed . After which, it uses the linearity of inner-product (two-source extractor), to uni-

6We give more intuition behind the construction of [CGL16] in section 5.
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formly sample two “slices” which encode the first seed. Unfortunately, we do not know how
to uniformly sample from the pre-image of the output of Raz’s extractor, and this approach
of encoding breaks down. Instead of first sampling all the seeds and then the value of sources,
we interleave this process. In particular, we randomly sample the value of these two “slices”
(which fixes the first and third seed), and carefully sample (adjust) other sources based on
fixed output and randomly chosen value of other seeds. At the same time, using properties
of Reed-Solomon codes (extending the technique of [CGL16]), we show that everything is
consistent with the new advice generator.

Open problems. We see this as the beginning of a rich line of research inspired by non-malleable
codes. We mention some natural research directions :
• Handing general access structures. An interesting future direction is to consider even

more general access structures such as those represented by monotone span programs or even
monotone polynomial size circuits.
• More advanced joint-tampering. An even stronger model of joint tampering would be

one where the different subset of shares (being jointly tampered) need not be disjoint. In
particular, what if the tampering of any share can depend on any unauthorized set of shares?
For the case of t-out-of-n schemes, it allows the tampering of any share to depend on any
t-1 (out of n) shares. A construction of even n-out-of-n non-malleable secret sharing scheme
in this stronger tampering model would be interesting. Another open problem would be to
construct t-out-of-n schemes where the adversary can tamper with two subsets of size exactly
t
2

7.
• Construction with improved rate. While our focus has not been to optimize the rate

of our constructions, we believe it is an interesting problem to improve the rate of non-
malleable secrets sharing schemes. As our results use natural primitives in a black-box way,
an improvement in the construction of these primitives directly improves the rate of the
final secret-sharing scheme. It may also be possible to further improve the rate by designing
computational non-malleable secret-sharing schemes.
• Explore newer applications. It would be interesting to explore further applications of non-

malleable secret sharing. In particular for non-malleable message transmission, an interesting
direction is to assume that the network is synchronous and we can leverage the global clock
to achieve non-malleability in a much larger class of graphs (and natural networks).

Paper organization. We formally define non-malleable codes and secret sharing schemes in
section 2. We give our construction for the individual tampering model in section 3. As our main
result, we construct non-malleable secret sharing schemes against joint-tampering in section 4. We
construct our leakage-resilient non-malleable code in section 5. As an application of our schemes, we
introduce non-malleable message transmission in section 6. We construct 2-out-of-n non-malleable
(resp. leakage-resilient) secret sharing schemes in appendix A. We also mentions why some simple
approaches do not work in appendix B.

Related Works. A number of works in the literature ensure that the correct secret is recov-
ered even when some number of shares are arbitrarily corrupted. Concepts from error correcting
codes have been useful in obtaining such schemes. McEliece and Sarwate [MS81] noticed that, the
polynomial based Shamir’s secret sharing scheme [Sha79] is very closely related to Reed-Solomon

7We have crucially used unequal sized subsets in our techniques. In more detail, while we needed the larger subset
to have full information of r, we also crucially relied on r being statistically hidden in the smaller subset
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codes, and allows for correct reconstruction of the secret even if less than one third of the shares
are altered.

In a seminal work [RBO89], Rabin and Ben-Or introduced verifiable secret sharing, which
allowed the adversary to tamper almost half the shares, and still ensured that the adversary cannot
cause the reconstruction procedure to output an incorrect message (except with exponentially small
error probability). Cramer et al. [CDF+08], in a beautiful work introduced algebraic manipulation
detection(AMD) codes and gave almost optimal constructions for them. These codes allow the
adversary to “blindly” add any value to the codeword, and ensure that any such algebraic tampering
will be detected with high probability. Moreover, they elegantly used these codes to arrive at
robust linear secret sharing schemes, that allowed the adversary to arbitrarily tamper with any
unauthorized set of shares, with a guarantee that any such tampering will be detected with high
probability. As an example, consider the n-out-of-n linear secret sharing scheme constructed using
AMD codes that allows the adversary to tamper n−1 shares arbitrarily, and ensures that any such
tampering will be detected with high probability. The notion of non-malleability was introduced
in the seminal work of Dolev et al. [DDN91].

2 Definitions

We use capital letters to denote distributions and their support, and corresponding small letters
to denote a sample from the distribution. Let [m] denote the set {1, 2, . . . ,m}, and Ur denote the
uniform distribution over {0, 1}r. For any set B ∈ [n], let ⊗i∈BSi denote the Cartesian product
Si1 × Si2 × . . .× Si|B| , where i1, i2 . . . i|B| are ordered elements of B, such that ij < ij+1.

Definition 1. (Statistical Distance) Let D1 and D2 be two distributions on a set S. The
statistical distance between D1 and D2 is defined to be :

|D1 −D2| = max
T⊆S
|D1(T )−D2(T )| = 1

2

∑
s∈S
|Pr[D1 = s]− Pr[D2 = s]|

We say D1 is ε-close to D2 if |D1 −D2| ≤ ε. Sometimes we represent the same using D1 ≈ε D2.

2.1 Non-Malleable Codes

Definition 2. (Coding Schemes)( [DPW10]). A coding scheme consists of two functions : an
encoding function (possibly randomized) Enc : M → C, and a deterministic decoding function
Dec : C → M ∪ {⊥} such that , for each m ∈ M, Pr(Dec(Enc(m)) = m) = 1 (over the
randomness of the encoding function).

Definition 3. (Non-Malleable Codes) ( [DPW10]). Let F be some family of tampering func-
tions. For each f ∈ F , and m ∈M, define the tampering experiment

Tamperfm =


c← Enc(m)
c̃← f(c)

m̃← Dec(c̃)
Output : m̃


which is random variable over the randomness of the encoding function Enc. We say a coding
scheme (Enc,Dec) is ε-non-malleable w.r.t F if for each f ∈ F , there exists a distribution Df
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(corresponding to the simulator) over M∪{same∗,⊥} such that, for all m ∈M, we have that the
statistical distance between Tamperfm and

Simf
m =

{
m̃← Df

Output : m if m̃ = same∗, or m̃, otherwise

}
is at most ε. Additionally, Df should be efficiently samplable given oracle access to f(.).

2.2 Secret Sharing Schemes

The following definitions are inspired from the survey [Bei11].

Definition 4. (Sharing function ) Let [n] = {1, 2, . . . , n} be a set of identities of n parties.
Let M be the domain of secrets. A sharing function Share is a randomized mapping from
M to S1 × S2 × . . . × Sn, where Si is called the domain of shares of party with identity j. A
dealer distributes a secret m ∈M by computing the vector Share(m) = (s1, . . . , sn), and privately
communicating each share sj to the party j. For a set S ⊆ [n], we denote Share(m)S to be a
restriction of Share(m) to its S entries.

Definition 5. ((t, n, ε)-Secret Sharing Scheme [Bei11] ). Let M be a finite set of secrets,
where |M| ≥ 2. Let [n] = {1, 2, . . . , n} be a set of identities (indices) of n parties. A sharing
function Share with domain of secrets M is a (t, n, ε)-Secret Sharing Scheme if the following
two properties hold :

1. Correctness. The secret can be reconstructed by any t-out-of-n parties. That is, for any
set T ⊆ [n] such that |T | ≥ t, there exists a deterministic reconstruction function Rec :
⊗i∈TSi →M such that for every m ∈M,

Pr[Rec(Share(m)T ) = m] = 1

(over the randomness of the Sharing function)
2. Statistical Privacy. Any collusion of less than t parties should have “almost” no informa-

tion about the underlying secret. More formally, for any unauthorized set U ⊆ [n] such that
|U | < t, and for every pair of secrets a, b ∈M, for any distinguisher D with output in {0, 1},
the following holds :

|Prshares←Share(a)[D(sharesU ) = 1]− Prshares←Share(b)[D(sharesU ) = 1]| ≤ ε

The special case of ε = 0, is known as Perfect Privacy. We also state (Share,Rec) as a
(t, n, ε)-secret sharing scheme.

Definition 6. (Non-Malleable Secret Sharing Schemes) Let (Share,Rec) be a (t, n, ε)-secret
sharing scheme for message spaceM. Let F be some family of tampering functions. For each f ∈ F ,
m ∈M and authorized set T ⊆ [n] containing t indices, define the tampering experiment

STamperf ,Tm =


shares← Share(m)

s̃hares← f(shares)

m̃← Rec(s̃haresT )
Output : m̃


which is a random variable over the randomness of the sharing function Share. We say that
the (t, n, ε)-secret sharing scheme, (Share,Rec) is ε′-non-malleable w.r.t F if for each f ∈ F
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and authorized set T containing t indices, there exists a distribution SDf ,T (corresponding to the
simulator) over M∪ {same∗,⊥} such that, for all m ∈ M , we have that the statistical distance

between STamperf ,Tm and

SSimf ,T
m =

{
m̃← SDf ,T

Output : m if m̃ = same∗, or m̃, otherwise

}
is at most ε′. Additionally, SDf ,T should be efficiently samplable given oracle access to f(.)

3 Non-Malleable Secret Sharing against Individual Tampering

In this section we show how to convert any t-out-of-n secret sharing scheme into a non-malleable
one against an adversary who arbitrarily tampers each of the shares independently. We have tried
to keep the construction as modular as possible, and have used various components in a black-
box way. This approach not only makes the construction more accessible, but also enables one to
improve the final construction by improving one or more of the sub-components. We begin with
formal definition of the split-state (individual) tampering family:

Split-State Tampering Family Fsplitn

Let Share be a sharing function that takes as input a message m ∈M and outputs shares shares ∈
⊗i∈[n]Si. Parse the output shares into n blocks, namely share1, share2, . . . , sharen where each
sharei ∈ Si. For each i ∈ [n], let fi : Si → Si be an arbitrary tampering function, that takes as

input sharei, the ith share. Let Fsplitn be a family of such n functions (f1, f2, . . . , fn).
Note that above definition is written with respect to a sharing function. It is just for ease of

presentation, we can use this family of tampering functions with respect to a coding scheme, by
treating the encoding procedure as a sharing function. We also recall a lemma, which can be used
to show that every 2 split-state non-malleable code is a 2-out-of-2 non-malleable secret sharing
scheme.

Lemma 1. ( [ADKO15, Lemma 6.1]) Let Enc :M→ C2 be the encoding function, and Dec : C2 →
M∪ {⊥} be a deterministic decoding function. If a coding scheme (Enc,Dec) is ε-non-malleable

w.r.t. Fsplit2 then (Enc,Dec) is also a (2, 2ε)-secret sharing scheme that is ε-non-malleable w.r.t.

Fsplit2 , where Enc acts as a sharing function.

Leakage Family. As one of our building blocks, we use a 2-out-of-n leakage-resilient secret-
sharing scheme, we begin with the formal definition of such schemes and then formally state our
split-state leakage family.

Definition 7. (Leakage-Resilient Secret Sharing Schemes) Let M be any message space.
Let L be some family of leakage functions. We say that the (t, n, ε)-secret sharing scheme, (Share,
Rec) is ε′-leakage-resilient w.r.t. L if for each f ∈ L, and for any two messages a, b ∈ M, any
distinguisher D with output in {0, 1}, the following holds :

|Prshares←Share(a)[D(f(shares)) = 1]− Prshares←Share(b)[D(f(shares)) = 1]| ≤ ε′
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Leakage Family Lsplitµ

Lsplitµ consists of the family of all leakage functions of the form f = (f1, f2, . . . , fn) and any index
j ∈ [n]. Specifically, for the chosen j ∈ [n], the function fj on input sharej outputs the whole
sharej . While for each i ∈ [n]\{j}, function fi computes an arbitrary function of input sharei and
outputs at most µ bits.

Main result for individual tampering.

Theorem 1. For any message space M, any threshold t ≥ 2, any number of parties n ≥ t, if we
have the following primitives :

1. For any ε1 ≥ 0, let (NMEnc,NMDec) be any coding scheme that is ε1-non-malleable w.r.t.

Fsplit2 , which encodes an element of M into two elements of F1.
2. For any ε2 ≥ 0, let (TSharetn,TRectn) be any (t, n, ε2)-secret sharing scheme that shares an

element of F1 into n elements of F2.
3. Let µ ← log |F2|. For any ε3 ≥ 0, let (LRShare2n,LRRec2n), be any (2, n, ε3)-secret sharing

scheme that is ε3-leakage-resilient w.r.t. Lsplitµ , that shares an element of F1 into n elements
of F3.

then there exists (t, n, 2ε1 + ε2)-secret sharing scheme that is (2ε1 + ε2 + ε3)-non-malleable w.r.t.

Fsplitn . The resulting scheme, (NMSharetn,NMRectn), shares an element of M into n shares
where each share is an element of (F2 × F3). Furthermore, if the three primitives have efficient
construction, then the constructed scheme is also efficient.

Proof. In case threshold t is equal to two, we use the scheme constructed in theorem 7 in appendix
A. Otherwise, we give our construction of (NMSharetn,NMRectn) :

1. Sharing Function(NMSharetn)
On input a secret m ∈ M, encode m using the encoding procedure of the non-malleable
code. Let l, r ← NMEnc(m). Use the sharing procedure TSharetn to share l. Let ((l1, . . . ,
ln)← TSharetn(l). Use the sharing function of the leakage-resilient secret sharing scheme to
share r. Let (r1, . . . , rn) ← LRShare2n(r). For each i ∈ [n], construct the ith share of our
scheme as follows : sharei = (li, ri). Output (share1, . . . , sharen)

2. Reconstruction Function(NMRectn)
Without loss of generality assume that the authorized set T has exactly t elements, as we only
use the first t elements of T and can ignore all other shares. Let {i1, i2, . . . , it} be ordered
indices of T such that ij < ij+1 for each j ∈ [t− 1]. On input the shares ⊗i∈T sharei, for each
i ∈ T , parse sharei as (li, ri). Run the reconstruction procedure TRectn on t shares of l, to
obtain l ← TRectn(⊗i∈T li). Run the reconstruction procedure of the leakage-resilient secret
sharing scheme on the first two shares of r, to obtain r ← LRRec2n(ri1 , ri2). Decode l and
r using decoding process of underlying non-malleable code to obtain : m ← NMDec(l, r).
Output m.

Let us show that (NMSharetn,NMRectn) as constructed above satisfies the three properties
required for a non-malleable secret sharing scheme :

Correctness and Efficiency : Trivially follows from the construction.
Statistical Privacy : We prove statistical privacy using hybrid argument. For ease of under-

standing, let sharei be of the form ali, ari when the secret a is encoded by the sharing procedure
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NMSharetn. Similarly, let sharei be of the form bli, bri when the secret b is encoded. Let U be an
unauthorized set containing less than t indices. We describe the hybrids below :

1. Hybrid1 : for each i ∈ U , sharei is of the form ali, ari. The distribution of these shares is
identical to distribution obtained on running the NMSharetn on input a. Output ⊗i∈Usharei.

2. Hybrid2 : Sample the shares as in Hybrid1, the previous hybrid. For each i ∈ U , replace
ali with bli to obtain share of the form bli, ari. Output ⊗i∈Usharei.

3. Hybrid3 : Sample the shares as in Hybrid2, the previous hybrid. For each i ∈ U , replace
ari with bri to obtain share of the form bli, bri. The distribution of these shares is identical
to distribution obtained on running the NMSharetn on input b. Output ⊗i∈Usharei.

Claim: For any pair of secrets a, b ∈ M, any unauthorized set U , the statistical distance between
Hybrid1 and Hybrid2 is at most ε2.
Proof: The two hybrids only differ in the shares of l. The claim follows from the statistical privacy
of the scheme (TSharetn,TRectn). That is for any c, d ∈ F1, any U containing less than t indices,
any distinguisher D with output ∈ {0, 1},

|Prsh←TSharetn(c)[D(shU ) = 1]− Prsh←TSharetn(d)[D(shU ) = 1]| ≤ ε2

�

Claim: For any pair of secrets a, b ∈ M, any unauthorized U , the statistical distance between
Hybrid2 and Hybrid3 is at most 2ε1.
Proof: Assume towards contradiction that there exists a, b ∈ M, an unauthorized set U , and
a distinguisher D that is successful in distinguishing the hybrids with probability greater than
2ε1. We use distinguisher D to construct another distinguisher D1 which violates the property of
statistical privacy satisfied by the underlying non-malleable code for the message pair a and b, as
proved in Lemma 1.

The distinguisher D1 is defined as follows : On input a share r, run the sharing function of the
leakage-resilient scheme to obtain r1, r2, . . . , rn ← LRShare2n(r). Sample ⊗i∈Usharei according to
Hybrid2. For each i ∈ U , replace ari with ri in sharei to obtain a share of form ali, ri, bpi. Invoke
the distinguisher D with the modified ⊗i∈Usharei and output its output.

Notice, in the case r was sampled while encoding a, then D will be invoked with input distributed
according to Hybrid2. Otherwise, it will be invoked with distributed according to Hybrid3.
Therefore the success probability of D1 will be equal to the advantage of D in distinguishing these
two hybrids, which is greater than 2ε1. We have arrived at a contradiction to (2, 2ε1)-secret sharing
of (NMEnc,NMDec).

�

By repeated application of triangle inequality, we get that for any a, b ∈ M, any unauthorized
U containing less than t shares, the statistical distance between Hybrid1 and Hybrid3 is at most
2ε1 + ε2. This proves the statistical privacy of our scheme.

Statistical Non Malleability : To prove non malleability of the current secret sharing scheme,
we need to give a simulator for every admissible tampering attack on the scheme. To this end,
we transform an admissible tampering attack on the current scheme into an equivalent split-state
attack on the underlying non-malleable code. We know by the properties of the non-malleable
code, that for every split-state tampering attack there exists a simulator whose output distribution
is similar to the one obtained in real tampering experiment. We use the simulator of the underlying
non-malleable code as the simulator of our scheme, and the non malleability of our scheme follows
from the equivalence of the tampering attacks. Now we present the formal proof.
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As the adversary belongs to Fsplitn , it specifies a set of n tampering functions {fi : i ∈ [n]}. All
these functions act on their respective shares independently of the other shares, i.e. every fi takes

sharei as input and outputs the tampered s̃harei. We can also assume without loss of generality
that all these tampering functions are deterministic, as the computationally unbounded adversary
can compute the optimal randomness. Further, we can also assume that adversary chooses an au-
thorized set T that contains exactly t indices, as we will only use the first t shares for reconstruction.
Let T = {i1, i2 . . . it} be an ordered set of t indices, such that ij < ij+1. We now give the formal
reduction, in which we use the tampering functions {fi : i ∈ T} that tamper with the shares of
our scheme (NMSharetn,NMRectn) to create explicit tampering functions F and G that tamper

with the two parts of non-malleable code. Recall that as Fsplit2 allows arbitrary computation, the
functions F and G are allowed to brute force over any finite subset.

1. (Initial Setup) : Fix l$ and r$ encoding any m$ ← NMDec(l$, r$). Run the sharing func-
tion TSharetn with input l$ to obtain ⊗i∈[n]tli. Run the sharing function LRShare2n(r$) to
obtain ⊗i∈[n]tri. For each i ∈ [n], create tSharei as tli, tri. For each i ∈ T \ {it}, run fi on

tSharei to obtain ˜tSharei ← fi(tSharei). Parse ˜tSharei as t̃li, t̃ri. Fix li ← tli and l̃i ← t̃li.
For the last share corresponding to index it, fix rit ← trit .

2. The tampering function F(l) is defined as follows : On input l, sample the value of lit such
that the shares {li : i ∈ T} hide the secret l and the distribution of sampled lit is identical
to the distribution of lit produced on running TSharetn with input l conditioned on fixing
{li : i ∈ T \ {it}}. In case such a sampling is not possible, then abort. Otherwise, construct
shareit as lit , rit using the fixed value of rit . Run the tampering function fit on shareit to

obtain tampered ˜shareit . Parse ˜shareit as l̃it , r̃it . Run the reconstruction function TRectn
with input ⊗i∈T l̃i to obtain l̃. Output l̃.

3. The tampering function G(r) is defined as follows : On input r, sample the values of t− 1
shares of r, namely {ri : i ∈ T \ {it}} satisfying the following constraints :-
• The t shares, namely, {ri : i ∈ T} should be distributed according to the distribution of

output of LRShare2n on input r. In other words, these shares should correspond to the
t shares of the scheme (LRShare2n,LRRec2n), in which any two of these shares can be
used to reconstruct r.
• For each i ∈ T \ {it}, let sharei be li, ri, run fi on sharei to obtain s̃harei. Parse s̃harei

as ñli, ñri. The value of ñli should be equal to l̃i (the value that was fixed in the initial
step of reduction).

In case such a sampling is not possible, then abort. Otherwise, run the reconstruction pro-
cedure of the leakage-resilient scheme to obtain r̃, using the tampered values of first 2 shares

of r. That is r̃ ← LRRec2n
{i1,i2}(ñri1 , ñri2). Output r̃.

The reduction given above creates t shares corresponding to indices in T . To ensure the sanity
of t tampering functions, we need to prove that for a given l and r, the distribution of the t shares
created by the reduction is statistically close to the distribution of t shares which are obtained on
running NMSharetn conditioned on output of NMEnc(m) being l, r. Otherwise, the tampering
functions may detect a change in distribution and stop working.

We achieve this using a hybrid argument described below. For ease of understanding, let sharei
be of the form ali, ari when the shares are produced by the reduction on input l and r, with the
fixing of l$ and r$. Similarly, let sharei be of the form bli, bri when the secret m is encoded by the
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sharing procedure NMSharetn conditioned on output of NMEnc(m) being l, r.
1. Hybrid1 : for each i ∈ T , sharei is of the form ali, ari. The distribution of these t shares is

identical to distribution of the shares produced by the reduction on input l and r, with the
fixing of l$ and r$. Output ⊗i∈T sharei.

2. Hybrid2 : Fix l$ ← l in the initial setup phase. Proceed with the reduction to create the t
shares. Output ⊗i∈T sharei.

3. Hybrid3 : Fix l$ ← l and fix r$ ← r in the initial setup phase. Proceed with the reduction
to create the t shares. Output ⊗i∈T sharei.

4. Hybrid4 : For each i ∈ [n], let sharei be of the form bli, bri. The distribution of these t
shares is identical to distribution obtained on running the NMSharetn conditioned on output
of NMEnc(m) being l, r. Output ⊗i∈T sharei.

Claim: For any l, l$, any authorized set T containing t indices, the statistical distance between
Hybrid1 and Hybrid2 is at most ε2.
Proof: The two hybrids differ in the initial setup phase. In Hybrid1, t − 1 shares of l$ are fixed,
while in Hybrid2 t−1 shares of l are fixed. By the statistical secrecy of TSharetn, for any l, l$ ∈ F1,
any T \ {it}, any distinguisher D with binary output, we know that

|Prsh←TSharetn(l)[D(shT\{it}) = 1]− Prsh←TSharetn(l$)[D(shT\{it}) = 1]| ≤ ε2

Now, assume towards contradiction that the t shares created by our reduction in the two hybrids
are not statistically close, and there exists a l, l$ and there exists a distinguisher D which differen-
tiates the two distributions with probability greater than ε2. In this case, we create a distinguisher
D1 which violates the statistical privacy property of TSharetn mentioned above. More formally,
given a set of t − 1 shares of l or l$, namely li1 , . . . , lit−1 , the new distinguisher D1 uses these
li1 , . . . , lit−1 , instead of running TSharetn on l$ in the initial setup phase and proceeds in a manner
similar to Hybrid1. Then it invokes the distinguisher D with the sampled shares and outputs it
output. Notice, in case li1 , . . . , lit−1 encoded the message l$, we are in a distribution identical to
Hybrid1. Otherwise, if they encoded the secret l, we are in Hybrid2. Therefore, the distinguish-
ing advantanges are of both the distinguishers is the same, and we have arrived at the contradiction
of statistical privacy of (t, n, ε2)-secret sharing scheme (TSharetn,TRectn). �

The above also shows that the function F in the reduction aborts with probability less than ε2.
Claim: For any r, r$, any authorized set T containing t indices, the statistical distance between
Hybrid2 and Hybrid3 is at most ε3.
Proof: Assume towards contradiction that there exists r, r$ ∈ F1, and a distinguisher D that is
successful in distinguishing Hybrid2 and Hybrid3 with probability greater than ε3. We use
distinguisher D to construct another distinguisher D1 and a leak function g ∈ Lsplitµ which violates
the property of leakage-resilience satisfied by the scheme (LRShare2n,LRRec2n) for the secrets
r, r$. The reduction is described below :

1. (Initial Setup) : Run the sharing function TSharetn with input l to obtain ⊗i∈[n]tli. For
each i ∈ T \ {it}, fix li ← tli.

2. (Leak function g) : We define a specific leakage function g = (g1, . . . ,gn) which leaks
independently from the n shares.
• For each i ∈ [n] \ T , define gi as a vacuous function that takes as input ri and outputs

0 bits.
• Define git as identity function, it outputs the whole rit .
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• For each i ∈ T \ {it}, define gi as the following function. Create tSharei as li, ri. Run

fi on tSharei to obtain ˜tSharei ← fi(tSharei). Parse ˜tSharei as t̃li, t̃ri. Output t̃li.
As t̃li is an element of F2, it can be represented by at most log |F2| bits, which is equal to µ.

This shows that the above leak function g belongs to the class Lsplitµ which allows one share
to be fully leaked and µ bits of leakage from each of the other shares.

3. (Distinguisher D1) : The distinguisher D1 is defined as follows : On input g(r1, . . . ,

rn), parse it as t̃li1 , t̃li2 , . . . , t̃lit−1 , rit . For each i ∈ T \ {it}, fix l̃i ← t̃li. For the last
share corresponding to index it, fix rit . This completes the initial setup of our original
reduction. Now invoke F with input l and G with input r to create the set of t shares,
namely {sharei : i ∈ T}. Invoke the distinguisher D with these t shares and output its
output.

Notice, in the case the secret hidden by the leakage-resilient scheme was r$, D will be invoked
with input distributed according to Hybrid2. In the other case, in which r was hidden, D will
be invoked with distributed according to Hybrid3. Therefore the success probability of D1 will
be equal to the advantage of D in distinguishing these two hybrids, which is greater than ε3 by
assumption. Hence, we have arrived at a contradiction to statistical leakage-resilience property of
the scheme (LRShare2n,LRRec2n). �

The above also shows that the function G in the reduction aborts with probability less than ε3.
Claim: For any l, r, Hybrid3 is identical to Hybrid4.
Proof: In Hybrid3, the shares of r$ that are sampled in the initial setup already encode the value
r (as r$ = r). Recall that these shares are used for fixing the tampered shares of l, but now as
the unfixed shares of r$ are already from the correct distribution, the tampering function G(r)
can trivially use the same shares, and all the leakages (deterministic function computing tampered
shares of l̃) will be trivially satisfied. Similarly, F(l) can use the value of unfixed share tlit , because
the t shares of l already encode l ( as l$ = l in Hybrid3). (Basically, (F,G) will be always success-
ful in finding such satisfying shares by brute-force.) Therefore, all the t shares created in Hybrid3

will be identically distributed to the ones produced while executing NMSharetn with the output
of NMEnc being (l, r). �

By repeated application of triangle inequality, we get that for any a, b ∈ M, the statistical
distance between Hybrid1 and Hybrid4 is at most ε2 + ε3. This proves that the set of shares
created by our reduction is statistically close the set of shares created during the real sharing by
the scheme, and thus the tampering functions f = {fi : i ∈ T} can be successfully invoked.

From our construction of F and G, it is clear that for any l and r, if the reduction is successful
in creating the t shares, then the secret hidden is these t shares is the same as the message encoded
by l and r (under non-malleable code). That is,

NMRectn({sharei : i ∈ T}) = NMDec(l, r)

Similarly, we can say that the secret hidden is the t tampered shares is the same as the message
encoded by tampered l̃ and tampered r̃. That is,

NMRectn({fi(sharei) : i ∈ T}) = NMDec(F(l),G(r))

Therefore, the tampering experiments of non-malleable codes (see definition 3) and non-malleable
secret-sharing schemes (see definition 6) are statistically indistinguishable, specifically,

STamperf ,Tm ≈ε2+ε3 TamperF,Gm
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By the ε1-non malleability of the scheme (NMEnc,NMDec), we know that there exists a
distribution DF,G such that

TamperF,Gm ≈ε1 SimF,G
m

Using the underlying distribution DF,G as our distribution SDf ,T we get our simulator.

SimF,G
m ≡ SSimf ,T

m

Applying triangle inequality to the above relations we prove the statistical non malleability of our
scheme.

STamperf ,Tm ≈ε1+ε2+ε3 SSimf ,T
m

Corollary 1. For any threshold t ≥ 2, any number of parties n ≥ t, any ε > 0, there exists an
efficient (t, n, ε)-secret sharing scheme that is ε-non-malleable w.r.t. Fsplitn . The sharing function
of the constructed scheme shares a m bit secret into n shares such that the length of each share is
O(nm logm) bits with error ε = n2−Ω(m).

Proof. If threshold t is greater than two, we instantiate the primitives in theorem 1 using the
following constructions :

1. We use split-state non-malleable code constructed by Li [Li17] (LiNMEnc,LiNMDec).
LiEnc encodes a m bit message to two shares each of length k ← O(m logm) bits and has
error ε1 = 2−Ω(m). We set ε1 = ε

2 .
2. We use the t-out-of-n Shamir’s secret sharing scheme [Sha79] (TSharetn,TRectn). The shar-

ing function TSharetn shares a k bit secret into n shares each of size k bits.
3. We use the 2-out-of-n split-state leakage-resilient secret sharing scheme created in appendix A.

Specifically, using lemma 14, and leakage-parameter µ← k, we get an efficient construction of
a 2-out-of-2 secret sharing scheme that ε3

n2 -leakage-resilient w.r.t. Lsplitµ . We use this scheme
in theorem 6, to construct our 2-out-of-n secret sharing scheme that is ε3-leakage-reslient
w.r.t. to Lsplitµ and encodes a k bit secret into n shares, where each share has length O(nk).
We set ε3 = ε

2
In case threshold t is equal to two, we use the scheme constructed in theorem 7 in appendix A

with the split-state non-malleable code constructed by Li [Li17] (LiNMEnc,LiNMDec) to arrive
at our t-out-of-n non-malleable secret-sharing schemes.

4 Non-Malleable Secret Sharing against Joint Tampering

While our previous constructions allowed the adversary to tamper each share independently, in this
section, we relax this requirement and construct t-out-of-n non-malleable secret sharing sharing
schemes that allow the tampering of each share to depend on the values of multiple shares. In more
detail, we want our non-malleable secret-sharing schemes to handle the following class of tampering
functions.

Joint Tampering Family F jointt,n

For any t-out-of-n secret sharing scheme, the adversary chooses any t-out-of-n shares to obtain an
authorized set T , partitions the set T into any two non-empty subsets which have different car-
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dinalities 8, and jointly tampers with shares in each of the two subsets arbitrarily and independently.

To construct such schemes we make black-box use of non-malleable codes that have a strong
leakage-resilience property. We formally define the property that we need below, and construct
non-malleable codes satisfying it in section 5 9.

Definition 8. (Leakage-Resilient Non-Malleable Codes) Let M be any message space. Let
(Enc,Dec) be any coding scheme, such that Enc : M → L × R encodes any message into two
parts. Let Leak : R → {0, 1}µ be any leakage function that outputs µ bits of arbitrary information
about its input. Similarly, let F : L× {0, 1}µ → L and G : R → R be any two tampering functions
that arbitrarily uses its input to output the tampered parts (Without loss of generality, we can
assume that all these functions specified by the adversary are deterministic, as the adversary being
computationally unbounded can compute the optimal randomness). For any message m ∈ M, we
define

LTamperF,G,Leakm =



l, r ← Enc(m)
a← Leak(r)

l̃← F(l, a)
r̃ ← G(r)

m̃← Dec(l̃, r̃)
Output : m̃


which is random variable over the randomness of the encoding function Enc. We say a coding
scheme (Enc,Dec) is µ-leakage resilient ε-non-malleable if for any such F,G,Leak, there
exists a distribution DF,G,Leak (corresponding to the simulator) over M∪ {same∗,⊥} such that,

for all m ∈M, we have that the statistical distance between LTamperF,G,Leakm and

LSimF,G,Leak
m =

{
m̃← DF,G,Leak

Output : m if m̃ = same∗, or m̃, otherwise

}
is at most ε. Additionally, DF,G,Leak should be efficiently samplable given oracle access to F,G,
Leak.

We now give the main result of this section.

Theorem 2. Assume that for any message space M, any threshold t ≥ 2 , any number of parties
n ≥ t, any ε > 0, there exists an efficient coding scheme (NMEnc,NMDec) that encodes a message
m ∈ M into two shares in L × R and is (log(|L|) + log(1

ε ))-leakage resilient ε-non-malleable (as
defined in def 8).

Then there exists an efficient (t, n, 2ε)-secret sharing scheme that is 2ε-non-malleable w.r.t
F jointt,n . The resulting scheme, (JNMSharetn, JNMRectn), shares an element of M into n shares,
where each share is an element of L ×R.

8We need the subsets to have different number of shares for our techniques to work. It is easy to see that if the
threshold t is odd, or number of subsets is more than two, then such a requirement is trivially satisfied.

9More general definition of multi-round leakage-resilient non-malleable codes can be found in the beautiful work
of Aggarwal et al. [ADKO15]. Unfortunately, we cannot use their codes because of our leakage parameters. While it
is possible to extend the number of rounds of leakage in our constructions (and definitions) (using known techniques
of [DP07, DP08, ADKO15]), for the sake of clarity of exposition, we restrict our model to only include one-round of
leakage, as it suffices for arriving at goal of achieving joint-tampering.
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Proof. The case of threshold t = 2 follows from the previous theorem 1. Otherwise, we begin with
defining our building blocks :
• Let (TSharetn,TRectn) denote t-out-of-n Shamir’s secret sharing scheme [Sha79] that shares

an element of field L into n elements of L ( We can choose our non-malleable code such that
L and R are fields and |L| > n as Shamir’s secret-sharing scheme needs it).
• Let k ← 1 + bt/2c. Let (TSharekn,TReckn) denote k-out-of-n Shamir’s secret sharing scheme

that shares an element of field R into n elements of R .

The construction of our scheme is given below :
1. Sharing Function(JNMSharetn)

On input a secret m ∈ M, encode m using the encoding procedure of the non-malleable
code. Let l, r ← NMEnc(m). Use the sharing function of the t-out-of-n threshold secret
sharing scheme to share l. Let (l1, . . . , ln) ← TSharetn(l). Use the sharing function of the
k-out-of-n threshold secret sharing scheme to share r. Let (r1, . . . , rn) ← TSharekn(r). For
each i ∈ [n], construct the ith share of our scheme as follows : sharei = (li, ri). Output
(share1, . . . , sharen)

2. Reconstruction Function(JNMRectn)
Without loss of generality assume that the authorized set T has exactly t elements, as we only
use the first t elements of T and can ignore all other shares. On input (sharei1 , . . . , shareit),
for each i ∈ T , parse sharei as (li, ri). Verify that all the t shares of r, namely (ri1 , . . . , rit)
are consistent under k-out-of-n Shamir’s secret sharing scheme. In case this verification fails,
output ⊥. Otherwise, reconstruct l by running the reconstruction procedure of the t-out-of-n
threshold secret sharing scheme, TRectn on the t shares of l, namely, (li1 , . . . , lit). Recon-
struct r by running the reconstruction procedure of the k-out-of-n threshold secret sharing
scheme, TReckn on the t shares of r, namely, (ri1 , . . . , rit). Then decode l and r using de-
coding process of underlying non-malleable code to obtain : m← NMDec(l, r) and outputm.

Correctness, efficiency and statistical privacy : Correctness and efficiency trivially fol-
lows. A proof similar to one given for theorem 1 shows statistical privacy.

Statistical Non Malleability : The adversary specifies an authorized set T of cardinality t.
As the adversary is in F jointt,n , it also specifies a partition A and B of T . Without loss of generality,
let A be the set containing larger number of shares. In fact, by our choice of k, only A has at
least k shares. The adversary also specifies the two tampering functions, namely FA and FB,
corresponding to two subsets. That is, FA (resp. FB) takes shares corresponding to set A (resp.
B) and outputs their tampered versions.

We follow a similar proof strategy as of theorem 1, and use the tampering functions provided by
the adversary to create explicit tampering functions of the underlying non-malleable code. While in
the previous proofs, the tampering of the each part was independent of the value of the other part,
it is no longer the case in our current construction. In fact, to create a tampering function for one of
the parts, we need information about the other part. We obtain the required information, by giving
explicit leakage-function which leaks from the other part, and use the output of leakage-function in
giving explicit tampering function. The underlying non-malleable code has been strengthened to
handle such leakages. We then argue that any attack on our non-malleable secret-sharing scheme
corresponds to an equivalent tampering attack on the underlying leakage-resilient non-malleable
code, and can use the latter’s simulator in designing our simulator. Now we give the formal reduc-
tion which explicitly defines F,G,Leak.
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1. (Initial Setup): For each i ∈ A, fix li randomly (this is okay, since A has less than t shares).
For each, i ∈ B, fix ri randomly (this is okay, since B has less than k shares). Choose and
fix randomness $A, $B and $C uniformly and independently.

2. (Sub-routine Error-Correcting Codes ECC): Let ECC : R|B| → {0, 1}p be any error-
correcting code having distance p

2 . We will use randomness $C to sample log(1
ε ) random

locations from the encoded string of length p. (Note that ECC need not be efficient as the
reduction is allowed to perform arbitrary computations. Also, any constant distance would
also work, we have chosen these parameter for the ease of exposition. One could even use
Hadamard encoding.)

3. (Leak Function : Leak(r)) : On input r, use randomness $A and the value of the fixed shares
of r, namely {ri : i ∈ B}, to interpolate {ri : i ∈ A}. For each i ∈ A, create sharei ← (li, ri)
using the fixed li. Run the tampering function FA on the set of shares {sharei : i ∈ A} to

obtain tampered shares {s̃harei : i ∈ A}. For each i ∈ A, parse s̃harej as l̃j , r̃j . Using the
tampered shares of l compute the following :

sum←
∑
i∈A

αi × l̃i

where each αi is the coefficient for Lagrangian interpolation at 0 of the unique t − 1 degree
polynomial passing through the points in set T (this can be seen as partial reconstruction
of the t-out-of-n Shamir’s secret sharing scheme [Sha79] where one obtains the secret as
l̃←

∑
i∈A∪B αi × l̃i).

If the tampered shares of r, namely {r̃i : i ∈ A}, are inconsistent under a k-out-of-n Shamir’s
secret sharing scheme, then let samples ← ⊥, otherwise use Shamir’s secret sharing scheme
interpolation operation to obtain the consistent values of the other tampered shares of r̃,
namely {c̃ri : i ∈ B}. Now concatenate all these (interpolated) values to obtain a string
c̃r ← c̃ri1 ◦ c̃ri2 ◦ . . . ◦ c̃ri|B| , where (i1, . . . , i|B|) are ordered indices present in the set B.

Encode the string c̃r ∈ R|B| using ECC to obtain cr ← ECC(c̃r). Use randomness $C to
sample log(1

ε ) locations from the binary string cr to obtain

samples← cr
∣∣
$C

Output (sum ◦ samples).

4. (Tampering function F(l,Leak(r))): On input l and Leak(r), interpolate the values of
{li : i ∈ B} using the input l, the fixed values of {li : i ∈ A} and the fixed randomness $B.
Using the fixed value of {ri : i ∈ B} construct the shares {sharei = (li, ri) : i ∈ B}. Run the

tampering function FB on this set of shares to obtain {s̃harej : j ∈ B}. For each {i ∈ B},
parse s̃harej as l̃j , r̃j .
Concatenate all the tampered shares of r, namely {r̃i : i ∈ B}, to obtain a string r̃B ←
r̃i1 ◦ r̃i2 ◦ . . . ◦ r̃i|B| , where (i1, . . . , i|B|) are ordered indices present in the set B. Encode the

string r̃B ∈ R|B| using ECC to obtain rB ← RS(r̃B). Use randomness $C to sample log(1
ε )

locations from the binary string rB to obtain

samplesB ← rB
∣∣
$C

21



Parse Leak(r) as (sum◦samples). If the string samples does not match the string samplesB,
then output ⊥, otherwise use the tampered shares of l to compute (and output) the following
:

l̃← sum+
∑
i∈B

αi × l̃i

where αi is the Lagrangian’s coefficient (as in the Leak(r) function above).

5. (Tampering function G(r)) : On input r, proceed as in leakage function Leak(r) to com-
pute tampered shares of r, namely {r̃i : i ∈ A}. Verify that all these tampered shares of r
are consistent under k-out-of-n Shamir’s secret sharing scheme. In case this verification fails,
output ⊥, otherwise reconstruct the tampered r̃ by running TReckn on {r̃i ∈ A}. Output r̃.

This completes the description of our reduction. Now we show that the reduction creates shares
from the correct distribution. As the number of fixed shares of l and r are less than the respective
thresholds of t and k, on receiving the actual values of l and r, the remaining shares can be sam-
pled from a distribution identical to the real sharing experiment (from perfect secrecy of Shamir’s
secret sharing scheme). It is also clear that if some message is hidden in the challenge (l, r) (under
the non-malleable code) then the same message is hidden in the t shares created by our reduction
(under our non-malleable secret sharing scheme). As the distribution of the t shares created in
the reduction is identical to the distribution in real-experiment, we can successfully invoke the
tampering functions, namely FA and FB, on these t shares.

Now let us argue that the secret hidden in our t tampered shares (under our secret-sharing
scheme) will almost always be equal to the message hidden by l̃ ← F(l,Leak(r)) and r̃ ← G(r)
(under non-malleable code). This will establish that the two tampering attacks are equivalent, and
will allow us to use the simulator of the non-malleable code while creating our simulator. Notice
that we used the same randomness $A to sample the shares of r to ensure consistency in between
the functions Leak and G.

In case the t tampered shares of r, namely {r̃i : i ∈ T} , are consistent under a k-out-of-n
Shamir’s secret sharing scheme, then any k shares can be used for reconstructing r̃. In particular,
in this case, the value of r̃ ← G(r) will be equal to the value of r̃ calculated while executing
JNMRectn, the reconstruction procedure of our non-malleable secret-sharing scheme. Moreover,
in this case, as sum =

∑
i∈A αi × l̃i, the value calculated by F(l,Leak(r))) can be interpreted as

l̃ ←
∑

i∈A αi × l̃i +
∑

i∈B αi × l̃i. On observing that the sets A and B are disjoint, we get that∑
i∈A αi × l̃i +

∑
i∈B αi × l̃i =

∑
i∈A∪B αi × l̃i. The latter expression is identical to the reconstruc-

tion formula for t-out-of Shamir’s secret sharing scheme, which is used in JNMRectn. Therefore,
in this case, both l̃ and r̃ calculated by our reduction equals the values obtained while executing
JNMRectn on the t tampered shares.

Now we argue the trickier case, in which the t tampered shares of r are inconsistent and therefore
JNMRectn always outputs ⊥. If the inconsistency is in the shares of subset A, then the function
G trivially detects it and outputs ⊥. Otherwise, the inconsistency is introduced because of the
tampered shares of r in set B. In such a case, we use properties of Error-correcting coding scheme
ECC to argue that the tampering function F outputs ⊥ with probability at least 1− ε. As ECC
has distance p

2 , for any two different inputs, the encoded outputs will differ in at least p
2 out of p

locations. Now if we randomly sample one of these p locations, we will hit a location for which
the two encodings differ with probability at least 1

2 . By repeating with uniform randomness ($C),
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the probability that we would pick at least one differing location in log(1
ε ) independent repetitions

is at least 1 − ε. Therefore, if the strings c̃r and r̃B differ, then with probability at least 1 − ε,
the strings samples and samplesB will not match and the tampering function F will output ⊥.
Otherwise, with probability at most ε, our reduction fails to detect a ⊥ and outputs valid values of
tampered l̃ and r̃. Therefore, overall the statistical distance in between message encoded between
l̃ and r̃ constructed by reduction and the secret computed by the reconstruction JNMRectn can
be at most ε.

We can now say that the tampering experiments for the non-malleable secret-sharing schemes
(see definition 6) and the underlying leakage-resilient non-malleable codes (see definition 8) are
statistically indistinguishable, specifically,

STamper
(FA,FB),T
m ≈ε LTamperF,G,Leakm

As we know by the properties of leakage-resilient non-malleable codes (8),

LTamperF,G,Leakm ≈ε LSimF,G,Leak
m

We use the simulator of the underlying non-malleable code as the simulator of our non-malleable
secret sharing scheme. That is, we let

SSim
(FA,FB),T
m ≡ LSimF,G,Leak

m

By applying triangle inequality to above relations we complete the proof of non-malleability.

STamper
(FA,FB),T
m ≈2ε SSim

(FA,FB),T
m

5 Leakage Resilient Non-Malleable Codes

In this section, we build 2 split-state non-malleable codes that satisfy a strong leakage-resilience
property. In particular, we allow the leakage-from the second part of non-malleable code to be
as large as the size of the first part, and allow the tampering of the first part to depend on this
additional leakage. As the existing 2 split-state non-malleable codes have the two parts of equal
length, they are insufficient for our needs.

There are two major approaches to construct 2 split-state non-malleable codes, one uses the
properties of inner-product (as a two-source extractor [DKO13], further rely on additive combi-
natorics for analysis [ADL14]) and other proceeds by constructing 2-source non-malleable extrac-
tor [CGL16,Li17]. Unfortunately, we cannot directly use inner-product as a result of our leakage-
model, and it is not clear how to extend the highly non-trivial analysis of [ADL14] to work with
other two-source extractors (like Raz’s extractor [Raz05]).

Therefore, we take the second approach and modify the construction of Chattopadhyay et
al. [CGL16] to incorporate leakage-resilience. Their construction constructs 2-source non-malleable
extractors with efficient pre-image sampler to obtain a split-state non-malleable code (using the
reduction of Cheraghchi and Guruswami [CG14]).We follow their approach and first construct a
leakage-resilient 2-source non-malleable extractor that works with different length sources and then
giving a pre-image sampler for this extractor to arrive at the non-malleable codes completing the
proof of Theorem 3. As the construction of [CGL16] is very complex, we describe the main ideas
below. In the next subsections, we formally define all these objects, and give the full construction :
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Construction of the decoder

As we will be modifying the 2-source non-malleable extractor construction of Chattopadhyay et
al. [CGL16], we try to give some intuition behind their construction. At a very high level, given
two sources, CGL first generates an advice using these two sources and guarantees that any (in-
dependent) tampering of these two sources will almost always result in a different advice being
generated. Then they run a sequence of extractors on these two sources, and the executed sequence
depends on the advice. That is, different values of advice necessarily lead to different sequence of
extractor invocations. They utilize this difference in achieving the non-malleability property and
guarantee that any tampering will force the extractor to have an “unrelated” output.

Unfortunately, the two sources in their construction (also of [GKP+18]) are of equal lengths and
the adversary can simply leak the entire second source in our leakage-model. Therefore to make
their construction work in our model, we have to make the following changes :
• Use Raz’s extractor instead of inner-product. In CGL, in the intial phases, there

are two invocations of inner-product as a two-source extractor. As inner-product cannot
work in our case, we use Raz’s extractor [Raz05] that works with uneven length sources.
Now the leakage from the larger source can be thought of as a loss of min-entropy from it,
and Raz’s extractor can handle slightly lower min-entropy as well, we can use it to obtain
uniform-randomness even in our leakage-model.
• Change the parameters of linear-seeded extractor. We change the parameters of

seeded extractors, to increase the min-entropy and length of the source to handle the loss
of min-entropy caused by leakage. We need not worry about the seed being leaked, because
the seed is never present in any of the two-sources, and is always uniformly random, as it
is output of either a leakage-resilient two-source extractor or some other leakage-resilient
seeded-extractor. 10

• Modify advice generator. The advice generator in CGL works by slicing each of the two-
sources, and executing an inner-product on the two-slices to obtain a uniform output (recall
that the two-sources are independent). Then they use the generated randomness to randomly
sample from some encoding of both the sources (with slices removed). Then they use the high
distance of the encoding, to guarantee that any tampering of the source(with slice removed),
will lead to a very different encoding, and will be caught by the random sampling. The final
tag they generate has the two slices, and the random sampling from the encodings (of the
sources). They get the required property by noticing that any change in the source, will either
change the slice or the random sampling, and this will result in a different tag.

As already noted, we will use Raz’s extractor instead of inner-product for generating random-
ness from the two slices. While the output will be uniformly random, the length of our tag
will be unacceptably large (the second slice needs to be at least as large as the first source
because of our leakage-model). This breaks the construction, as the length of the advice
dictates the number of following executions of the seeded-extractor, and it is trivial to see
that number of extractions from the first source cannot be larger than the number of bits in
the first source. Therefore, instead of having these slices explicitly in our generated advice,
we only have the output of the Raz’s extractor (which can be much smaller than the larger
slice). We extend the argument of sampling from the source(with slice removed) to sampling
from the full source (including the slice). This makes the analysis slightly more non-trivial,

10Note that the use of inner-product in the construction of CGL’s linear-seeded extractor (lemma. 5) is fine because
one of the sources of inner product is a slice of the seed (that is always unifrom), and the other source of inner product
is randomly sampled from a very large-source that cannot be fully leaked.
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as we are now using the value of the source to generate uniform randomness, and then we
are crucially using this randomness to sample from the same source. Fortunately, these two
sources are independent, and the ideas present in the analysis of [CGL16, Coh16] can be
extended to work in our case as well.

Construction of the encoder

For constructing the encoder of the non-malleable code, [CGL16] provides a procedure to uniformly
pre-image sample from the output of the 2-source non-malleable extractor. As their extractor
construction is highly complex, uniformly inverting the same requires delicate care. To this end,
they device an efficient inverter for each of the components of their final extractor. This includes,
uniformly sampling the value of the source, given the value of output and seed for the linear seeded
extractors. Similarly, they need to invert the inner-product (which can be done efficiently) and
uniformly sample the two sources which encode the given output. They also have to ensure that
the sources that they have sampled is consistent with advice (in particular the random-sampling
present in the advice). Once they have an efficient pre-image sampling procedure for each of the
sub-components, they invert the whole non-malleable extractor by first randomly sampling the
advice and all the seeds, after which they can uniformly sample the value of sources which lead to
these seeds and output.

Unfortunately, we run into two more problems, firstly, unlike inner-product, it is not clear
how to uniformly and efficiently invert Raz’s extractor 11. Secondly, a little more care is required
while encoding because we have changed the construction of the advice generator. Fortunately,
the techniques of [CGL16] can be extended to solve the second issue. We solve the first issue, by
interleaving the process of sampling seeds and source. In particular, we ensure that we do not need
to invert Raz’s extractor, and adjust the procedure of [CGL16] accordingly. While we make specific
changes in various parts of the encoding and decoding procedures, for the sake of completeness
we give the entire procedure. To ensure consistency, some of the unchanged parts are verbatim as
in [CGL16].

5.1 Preliminaries

Before constructing leakage-resilient non-malleable extractors we recall some useful definitions and
lemmas from the literature.

Definition 9. (min-entropy). The min-entropy of a source X is defined as

H∞(X) = min
x∈Support(X)

{
1

log(Pr[X = x])

}
A (n, k)-source is a distribution on {0, 1}n with min-entropy k. A distribution D is flat if it is
uniform over a set S.

Definition 10. (Strong seeded extractor) A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is
called a strong seeded extractor for min-entropy k and error ε if for any (n, k)-source X and an
independent uniformly random string Ud, we have

|Ext(X,Ud) ◦ Ud − Um ◦ Ud| < ε,

11Raz’s extractor uses a “merger” as one of its sub-components, which performs an “indexing operation” that
is a non-linear operation. [CGL16] crucially used the linearity property of the inner-product for efficient pre-image
sampling.
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where Um is independent of Ud. Further if the function Ext(·, u) is a linear function over F2 for
every u ∈ {0, 1}d, then Ext is called a linear seeded extractor.

Definition 11. (Two Source Extractor) A function IExt : ({0, 1}n1 ×{{0, 1}n2})→ {0, 1}m is
an 2 source extractor for min-entropy (k1, kt) and error ε, if for any independent (ni, ki)-sources
for each i ∈ [2] we have

|IExt(X1, X2)− Um| ≤ ε

Further, IExt is called a strong two source extractor if its output is uniform even if one of the two
sources is given. More formally,

|IExt(X1, X2), X1 − Um, X1| ≤ ε and |IExt(X1, X2), X2 − Um, X2| ≤ ε

As we need two source extractors with uneven length sources and exponentially small error, we
recall a theorem proved by Raz in [Raz05].

Theorem 3. ( [Raz05]) For any n1, n2, k1, k2,m and 0 < δ < 1/2, such that

n1 ≥ 6 log n1 + 2 log n2,

k1 ≥ (0.5 + δ) · n1 + 3 log n1 + log n2,

k2 ≥ 5 log(n1 − b1),

m ≤ δ ·min[n1/8, k2/40]− 1

then there exists an explicit strong 2 source extractor RExt : {0, 1}n1 × {0, 1}n2 → {0, 1}m, for
min-entropy (k1, k2) and error ε = 2−1.5m.

As we will be handling leakages, it will convenient to define the following notion, which helps
to argue how much “min-entropy” will be left in a variable even after knowing the value of another
“dependent” variable.

Definition 12. ( [DORS08]) (average conditional min-entropy). The average conditional
min-entropy is defined as

H̃∞(X|W ) = −log
(
Ew←W

[
max
x

Pr[X = x|W = w]

])
= −log Ew←W

[
2−H∞(X|W=w)

]
It is sometimes convenient to work with average case seeded extractors, where if a source X has

average case conditional min-entropy H̃∞(X|Z) ≥ k then the output of the extractor is uniform
even when Z is given.

Lemma 2. ( [DORS08]) If a random variable B can take at most l values, then H̃∞(A|B) ≥
H∞(A)− log l.

Lemma 3. ( [DORS08]) For and δ > 0, if Ext is a (k, ε)-strong seeded extractor then it is also a
(k + log(1/δ), ε+ δ)-strong seeded average case extractor.

A corresponding analog for two-source extractors is the following.

Lemma 4. Let Ext : {0, 1}n × {0, 1}n → {0, 1}m be a 2-source extractor for min-entropy k and
error ε. Then for any δ > 0, Ext is µ-leakage resilient for min entropy k+ t sec + log(1

δ ) and error
ε+ δ.

Now we recall the building blocks used in the non-malleable code construction of Chattopadhyay
et al. in [CGL16].
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Averaging Sampler Samp. Let f : [n]→ [0, 1] be an arbitrary function. An averaging sampler
Samp is an algorithm that takes a random string as input and outputs distinct samples (a1, · · · , at)
where each ai ∈ [n] and t = o(n). The property of these samples is that (1/t)

∑t
i=1 f(ai) is “close”

to the actual mean with some probability.

Definition 13 (Averaging sampler [Vad04]). A function Samp : {0, 1}r → [n]t is a (µ, θ, γ) av-
eraging sampler if for every function f : [n] → [0, 1] with average value 1

n

∑
i f(i) ≥ µ, it holds

that

Pr
i1,...,it←Samp(UR)

[
1

t

∑
i

f(i) ≤ µ− θ

]
≤ γ.

Samp has distinct samples if for every x ∈ {0, 1}r, the samples produced by Samp(x) are all distinct.

Corollary 2. ( [CGL16]) For any constants δSamp, νSamp > 0, there exist constants α, β < νSamp

such that for all n > 0 and any r ≥ nα there exists a polynomial time computable function Samp : {0,
1}r → [n]tSamp tSamp = O(nβ) satisfying the following property: for any set S ⊂ [n] of size δSampn,

Pr[|Samp(Ur) ∩ S| ≥ 1] ≥ 1− 2−Ω(nα).

Further Samp has distinct samples.

Definition 14. ( [CGL16]) For any seeded extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m, any s ∈ {0,
1}d and r ∈ {0, 1}m, we define:
• Ext(·, s) : {0, 1}n → {0, 1}m to be the map Ext(·, s)(x) = Ext(x, s).
• Ext−1(r) to be the set {(x, y) ∈ {0, 1}n × {0, 1}d : Ext(x, y) = r}.
• Ext−1(·, s) to be the set {x : Ext(x, s) = r}.

Lemma 5. ( [CGL16] Lemma 8.5) There exists an efficient deterministic function iExt : {0, 1}n×
{0, 1}d → {0, 1}m, such that, if X is a (n, 0.9n) source and S is an independent uniform seed on
{0, 1}d, then the following holds:

|iExt(X,S), S − Um, S| < 2−n
Ω(1)

.

Further for any r ∈ {0, 1}m and any s ∈ {0, 1}d, |iExt(·, s)−1(r)| = 2n−m. Moreover, there exists a
polynomial time algorithm Samp1 that takes as input r ∈ {0, 1}m, and samples from a distribution
that is uniform on iExt−1(r).

5.2 Decoder (two-source non-malleable extractor)

Below we modify the parameters of [CGL16] and then modify their construction to make it leakage-
resilient.

Parameters

Along with the parameters in [CGL16], we introduce more parameters to take care of the leakage.
Suppose the length of the left source is n, to not complicate the parameters further, we just multiply
the length of each of the nω(1) blocks of the right source by n. Such an increase (instead of an
additive increase of n + log(1

ε )) allows for leakage of much more than n bits. This idea can be
generalized to any poly(n) for any (a-priori) fixed poly, and in such a case, length of each block will
be increased by poly(n) + log(1

ε ).
1. Let n be the bit-length of the first source x, and p = n2 be the bit-length of the second source.
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2. Let γ be a small enough constant and C a large one. Let t = nγ/C .
3. Let n1 = nβ1 , β1 = 10γ. Let p1 = n× n1. Let n2 = n− n1 and p2 = p− p1. Let LExt1 : {0,

1}n1 × {0, 1}p1 → {0, 1}2n3 , n3 = n1
20 be the strong two-source extractor from Theorem 3.

4. Let F1 be the finite field F2log(n+1) . Let n4 = n
log(n+1) . Let RS1 : Fn4

1 → Fn1 be the Reed-

Solomon code encoding n4 symbols of F1 to n symbols in F1 (we overload the use of RS,
using it to denote both the code and the encoder). Thus RS1 is a [n, n4, n − n4 + 1]n error
correcting code.

5. Let F2 be the finite field F
2log(n2+1) . Let p4 = p

log(n2+1)
. Let RS2 : Fp4

2 → Fp2 be the Reed-

Solomon code encoding p4 symbols of F2 to p symbols in F2 (we overload the use of RS,
using it to denote both the code and the encoder). Thus RS2 is a [p, p4, p − p4 + 1]n2 error
correcting code.

6. Let Samp1 : {0, 1}n3 → [n]n5 be a (µ, 1
10 , 2

−nΩ(1)
) averaging sampler with distinct samples.

We set n5 = nβ2 , β2 < β1/2.

7. Let Samp2 : {0, 1}n3 → [n2]n5 be a (µ, 1
10 , 2

−nΩ(1)
) averaging sampler with distinct samples.

8. Let ` = n3 + 3n5 log n < 5nβ1 . Thus ` ≤ n11γ .
9. Let n6 = 50Ct`. Let p6 = n× n6. Let LExt2 : {0, 1}n6 × {0, 1}p6 → {0, 1}2nq , nq = 3Ct`, be

the strong two-source extractor from Theorem 3.
10. Let n7 = n− n1 − n6 and p7 = p− p1 − p6. Let nx = n7

8` . Let ny = p7

16Ct` . Thus nx ≥ n1−15γ .
11. Let d1 = 80`.
12. Let iExt1 : {0, 1}nx × {0, 1}d1 → {0, 1}d2 , d2 = 40`, be the extractor from Lemma 5.
13. Let iExt2 : {0, 1}nq × {0, 1}d2 → {0, 1}d3 , d3 = 20`, be the extractor from Lemma 5.
14. Let iExt3 : {0, 1}nx × {0, 1}d3 → {0, 1}d4 , d4 = 10` be the extractor from Lemma 5.
15. Let iExt4 : {0, 1}ny × {0, 1}d4 → {0, 1}d5 , d5 = 5`, be the extractor from Lemma 5.
16. Let LExt : {0, 1}4Ctny × {0, 1}d4 → {0, 1}2nq be defined in the following way. Let v1, . . . , v4t

be strings, each of length ny. Define Ext(v1 ◦ . . . ◦ v4Ct, s) = iExt4(v1, s) ◦ . . . ◦ iExt4(v4Ct, s).

Algorithm 1 NMExt(x,y)

Input: Bit strings x, y of length n and n2 respectively.
Output: A bit string of length m.

1: procedure NMExt(x,y)
2: Let x1 = Slice(x, n1), y1 = Slice(y, p1). Compute ν = (ν1 ◦ ν2) = LExt1(x1, y1).
3: Let x2, y2 be the strings formed by removing x1, y1 from x, y respectively.
4: Let T1 = Samp1(ν1) ⊂ [n].
5: Let T2 = Samp2(ν2) ⊂ [n2].
6: Interpret x, y as elements in Fn4

1 and Fp4
2 .

7: Let x = RS1(x), y = RS2(y).
8: Let x1 = (x){T1}, y1 = (y){T2}, interpreting x2 ∈ Fn and y2 ∈ Fn2

.
9: Let z = ν ◦ x1 ◦ y1, where z is interpreted as a binary string.

10: Interpret x2, y2 as binary strings.
11: Output nmExt1(x2, y2, z).
12: end procedure

Analysis of new advice generator. Before we analyse the new advice geneator, let us recall a
simple lemma from [Coh16] (with variables renamed).

Lemma 6. ( [Coh16]) Let V,X1, X
′
1 be random variables such that for any x1 ∈ support(X1), the

random variables (V |X1 = x1) and (X ′1|X1 = x1) are independent. Assume that V is supported on
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Algorithm 2 nmExt1(x2, y2, z)

1: procedure nmExt1(x2, y2, z)
2: Let x3 = Slice(x2, n6), y3 = Slice(y2, p6). Let w, v be the remaining parts of x2, y2 respec-

tively.
3: Let LExt2(x3, y3) = (q1,1, q1,2), where each of q1 is of length nq.
4: Let w1, . . . , w8` be an equal sized partition of the string w into 8` strings.
5: Let v1, . . . , v16Ct` be an equal sized partition of the string v into 16Ct` strings.
6: for h = 1 to ` do
7: (qh+1,1, qh+1,2) = 2ilaExt(v[8C(h−1)t+1,8Cht], w[4h−3,4h], qh,1, qh,2, z{h})
8: end for
9: Output (q`+1,1, q`+1,2).

10: end procedure

Algorithm 3 2ilaExt(v[8C(h−1)t+1,8Cht], w[4h−3,4h], qh,1, qh,2, b)

1: procedure 2ilaExt(v[8C(h−1)t+1,8Cht], w[4h−3,4h], qh,1, qh,2, b)
2: Let sh,1 = Slice(qh,1, d1), rh,1 = iExt1(w4h−3, sh,1), sh,2 = iExt2(qh,2, rh,1), rh,2 =

iExt3(w4h−2, sh,2).
3: if b = 0 then
4: Let rh = Slice(rh,1, |rh,2|).
5: else
6: Let rh = rh,2
7: end if
8: Let (qh,1, qh,2) := LExt(v[8C(h−1)t+1,8(h−1)t+4Ct], rh).
9: Let sh,1 = Slice(qh,1, d1), rh,1 = iExt1(w4h−3, sh,1), sh,2 = iExt2(qh,2, rh,1), rh,2 =

iExt3(w4h−2, sh,2).
10: if b = 0 then
11: Let rh = rh,2
12: else
13: Let rh = Slice(rh,1, |rh,2|).
14: end if
15: Let (qh+1,1, qh+1,2) := LExt(v[8C(h−1)t+4Ct+1,8(h−1)t], rh).
16: Output (qh+1,1, qh+1,2).
17: end procedure
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{0, 1}n. Then,
|(V,X1, X

′
1)− (Un, X1, X

′
1)| = |(V,X1)− (Un, X1)|

where |A−B| denotes the statistical distance between the distributions A and B.

Now we show that our advice generator detect tampering of any of the two sources with high
probability.

Lemma 7. In case an adversary tampers the left source X to X ′ ← f(X) and the right source Y

to Y ′ ← g(Y ), with probability at least 1− 2−n
Ω(1)

, the tags Z 6= Z ′.

Proof. If f has no fixed points, then X 6= X ′, where X = X1 ◦X2. Let V ′ ← LExt1(X ′1, Y
′

1). Recall
that in our construction the tag is computed as Z ← V ◦ X1 ◦ Y 1. Therefore, if V 6= V ′, then
Z 6= Z ′. Now using the strongness of two-source extractor, and properties of averaging sampler we
will handle the case of V = V ′.As LExt1 is a strong two-source extractor(Theorem 3), we get

V,X1 ≈2−Ω(n1) Un2 , X1

Further by lemma 6,
V,X1, X

′
1 ≈2−Ω(n1) Un2 , X1, X

′
1

Indeed the hypothesis of lemma 6 is met as conditioned on fixing of X1, V becomes a deterministic
function of Y and is independent of X ′1 which is a deterministic function of X.

Thus, even after fixing x1, x
′
1, V is 2−Ω(n1) close to uniform (with probability at least 1−2−Ω(n1)).

As V is now a deterministic function of Y , it can be used to sample from the X which is independent
of V conditioned on this fixing. Also note that V = V ′.

Since f has no fixed points, it follows that since E is an encoder of a code with relative distance
distance 1

10 , ∆(E(X), E(X ′)) ≥ n
10 . Let D = {j ∈ [n] : E(X){j} 6= E(X ′){j}}. Thus |D| ≥ n

10 .

Using Corollary 2, it follows that with probability at least 1 − 2−Ω(n1), |D ∩ Samp(V )| ≥ 1, and
thus X1 6= X ′1 (since Samp(V ) = Samp(V (i))). This proves the lemma when f has no fixed points.
In a similar manner the case when g has no fixed points can be handled.

Leakage-resilient 2-source non-malleable extractor. We define leakage-resilient strong non-
malleable extractors, the object we want to construct. We use the definition given by Goyal et
al. [GKP+18]. We note that they only needed to leak a-priori bounded λ bits of information about
the second source, where λ did not depend on n.

Definition 15. A 2-source non-malleable extractor nmExt : {0, 1}n1 × {0, 1}n2 → {0, 1}m is said
to be µ-leakage resilient for min-entropy k1, k2 and error ε if it satisfies the following: if X is an
(n1, k1)-source and Y is an independent (n2, k2)-sources, A = (f, g) is an arbitrary 2-split-state
tampering functions and {Leak : {0, 1}n2 → {0, 1}µ} is an arbitrary leakage function, then there
exists a random variable D~f,~g,

−−→
Leak

on ({0, 1}m ∪ {same?}) which is independent of the sources X

and Y such that

|nmExt(X,Y ), nmExt(f(X, Leak(Y )), g(Y ))− Um, Y, copy(D~f,~g,
−−→
Leak

, Um)| < ε

where both Um’s refer to the same uniform m-bit string.

Using the proof technique of [CGL16], we can arrive at the following result. As the full proof
is quite long, we only give a very brief sketch below. For full proof, please refer [CGL16].

Theorem 4. Let NMExt be the function computed by Algorithm 1. Then NMExt is a (µ)-leakage
resilient 2-source non-malleable extractor for min-entropy (n − nΩ(1), n2 − n − nΩ(1)) with error

2−n
Ω(1)

.
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Proof Sketch. Suppose there was n bits of leakage from the second source. We fix this leakage.
By fixing the leakage, by lemma 2, we know that the second source looses at most n+ log(1/ε) bits
of min-entropy except with probability ε. After the advice has been generated, the non-malleable
extractor only performs extractor operations using chunks of the two sources. For ensuring the
sanity of the non-malleable extractor, the proof of [CGL16] only requires that the output of each
of these invocations is uniform (even after having fixed previous outputs). Now notice, that we
have not changed anything, apart from increasing the sizes of each of the chunks of the second
source. The sizes of the chunk has been changed to ensure that even after fixing the leakage from
the second source, we will have enough min-entropy in each of the chunks. Therefore, we can
successfully invoke Raz’s two-source extractor to generate uniform seed for alternating extraction.
Subsequently, this uniform seed can be used to extract uniform bits from the chunks of the two-
sources using a strong seeded extractor. Therefore, one can duplicate the analysis of [CGL16] and
prove that such a construction is in fact a 2-source non-malleable extractor.

5.3 Encoder (Pre-Image sampler for non-malleable extractor)

As in [CGL16], we follow a similar sampling strategy and first argue about the invertibility of each of
the sub-algorithms and then show a way to compose these sampling procedure to sample uniformly
from the pre-image of nmExt. We refer to all the variables, sub-routines and notations introduced
in these algorithms while developing the sampling procedures. Unless we state otherwise, by a
subspace we mean a subspace over F2, the finite field with cardinality two.

We first show how to sample uniformly from the pre-image of 2ilaExt (Algorithm 3 ), since it
is a crucial sub-part of nmExt. We have the following lemma.

Lemma 8. For any fixing of the variables q1,1, q1,2, {r1,i, s1,i, r1,i : i ∈ {1, 2}}, and any b ∈ {0, 1}
define the set:

2ilaExt−1(q2,1, q2,2) = {(v[1,8Ct], w[1,4]) ∈ {0, 1}8Ctny+4nx :

2ilaExt(v[1,8Ct], w[1,4], q1,1, q1,2, b) = (q2,1, q2,2)}

There exists an efficient algorithm Samp2 that takes as input q2,1, q2,2, q1,1, q1,2, b, {r1,i, s1,i, r1,i : i ∈
{1, 2}}, and samples uniformly from 2ilaExt−1(q2,1, q2,2).

Further, the set 2ilaExt−1(q2,1, q2,2) is a subspace over F2, and its size does not depend on the
inputs to Samp2.

Proof. We being by showing that fixing the variables q1,1, q1,2, r1,1 also fixes s1,1 and s1,2 uniquely.
Recall that, q1,1 is sliced to obtain s1,1 ← Slice(q1,1, d1). Also, q1,2 and r1,1 are used to obtain the
value for s1,2 ← iExt2(q1,2, r1,1). As Slice,LExt2 and iExt2 are efficient deterministic functions, for
a fixed x3, y3, r1,1, the values of s1,1 and s1,2 are fixed and can be efficiently computed.

Note that now all the seeds for alternating extraction have been fixed, and we can follow the
proof strategy of [CGL16].

Since r1,1 = iExt1(w1, s1,1), it follows that w1 is restricted to the set iExt1(·, s1,1)−1(r1,1).
Further, it follows by Lemma 5 that this is a subspace of size 2nx−d2 irrespective of the value of
s1,1. As r1,2 = iExt3(w2, s1,2), similar argument shows that w2 is restricted to a subspace of size
2nx−d4 irrespective of the value of s1,2. Further, we note that as w1 and w2 are different blocks,
these variables have no correlation.

By repeating this argument for the next two rounds of alternating extraction, it follows that
q1,1 is restricted to a subspace of size 2nq−d1 , w3 is restricted to a subspace of size 2nx−d2 , q1,2 is

restricted to a subspace of size 2nq−d3 , and w4 is restricted to a subspace of size 2nx−d4 .
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As (q1,1, q1,2) = Ext(v[1,4Ct], r1) = iExt4(v1, r1)◦ . . .◦ iExt4(v4Ct, r1), it follows by an application

of Lemma 5 that for any q1,1, we that v[1,2Ct] is restricted to a subspace of size 22Ct(ny−d5). A

similar argument shows that for any q1,2, v[2Ct+1,4Ct] is restricted to a subspace of size 22Ct(ny−d5).
Further since (q2,1, q2,2) = Ext(v[4Ct+1,8t], r1) = iExt4(v4Ct+1, r1) ◦ . . . ◦ iExt4(v8Ct, r1), using a

similar argument, we have that for any fixed q2,1, we get that v[4Ct+1,6Ct] is restricted to a subspace

of size 22Ct(ny−d5). A similar argument shows that for any fixed q2,2, v[6Ct+1,8Ct] is restricted to a

subspace of size 22Ct(ny−d5).
It is clear from the arguments that we did not use any specific values of the inputs given to the

algorithm Samp1 (including the value of the bit b) to argue about the size of 2ilaExt−1(q2,1, q2,2).
Also note that each of v[1,4Ct], w[1,4] is restricted to some subspace. Since 2ilaExt−1(q2,1, q2,2) is the
cartesian product of these subspaces, it follows that it is a subspace over F2. Thus the lemma now
follows since we can efficiently sample from a given subspace.

Lemma 9. ( [CGL16]) For any h ∈ {2, . . . , `}, any fixing of the variables {sh,i, rh,i, sh,i, rh,i : i ∈ {1,
2}}, and any b ∈ {0, 1} define the set:

2ilaExt−1(qh+1,1, qh+1,2) = {(qh,1, qh,2, v[8C(h−1)t+1,8C(h)t], w[4h−3,4h]) ∈ {0, 1}2nq+8Ctny+4nx :

2ilaExt(v[8C(h−1)t+1,8Cht], w[4h−3,4h], qh,1, qh,2, b) = (qh+1,1, qh+1,2)}.

There exists an efficient algorithm Samph+1 that takes as input qh+1,1, qh+1,2, b, {sh,i, rh,i, sh,i, rh,i :
i ∈ {1, 2}}, and samples uniformly from 2ilaExt−1(qh+1,1, qh+1,2).

Further, 2ilaExt−1(qh+1,1, qh+1,2) is a subspace over F2, and its size does not depend on the
inputs to Samph+1.

We now adapt the procedure of [CGL16] to work with the changed advice generator.

Lemma 10. For any fixing of the variables α, {sh,i, rh,i, sh,i, rh,i : h ∈ [`], i ∈ {1, 2}} \ {s1,1, s1,2},
define the set:

nmExt−1
1 (q`+1,1, q`+1,2) = {(x2, y2) ∈ {0, 1}2n2 : nmExt1(x2, y2, α) = (q`+1,1, q`+1,2)}.

There exists an efficient algorithm Sampnm1
that takes as input {sh,i, rh,i, sh,i, rh,i : h ∈ [`], i ∈ {1,

2}} \ {s1,1, s1,2}, α, q`+1,1, q`+1,2, and samples uniformly from nmExt−1
1 (q`+1,1, q`+1,2).

Further, nmExt−1
1 (q`+1,1, q`+1,2) is a subspace over F2, and its size does not depend on the inputs

to Sampnm1
.

Proof. We have q`+1,1, q`+1,2 and {sh,i, rh,i, sh,i, rh,i : h ∈ [`] \ {1}, i ∈ {1, 2}} \ {s1,1, s1,2}.
For h = `, ` − 1, . . . , 2, in reverse order, use 2ilaExt−1(qh+1,1, qh+1,2) to sample (qh,1, qh,2,

v[8C(h−1)t+1,8C(h)t], w[4h−3,4h]) from lemma 9.
Sample x3, y3 uniformly and compute q1,1, q1,2 ← LExt2(x3, y3). Using the value of q1,1, q1,2 and

{r1,i, s1,i, r1,i : i ∈ {1, 2}}, sample the value of w[1,4], v[1,8Ct] using lemma 8.
Since x2, y2 are concatenations of uniformly chosen x3, y3 and the blocks sampled above, we

can indeed sample efficiently from a distribution uniform on {(x2, y2) ∈ {0, 1}2n2 : nmExt(x, y,
α) = (q`+1,1, q`+1,2)}. Further since by lemma 8 and lemma 9, the size of the pre-images of each
of the blocks generated do not depend on the inputs (and is also a subspace), it follows that
2nmExt−1

1 (q`+1,1, q`+1,2) is a subspace, and its size does not depend on the inputs to Sampnm1
.
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We now proceed to construct an algorithm to uniformly sample from the pre-image of any
output of the function nmExt (Algorithm 6), which will yield the required efficient encoder for the
resulting one-many non-malleable codes.

Lemma 11. For any fixing of the variables, {sh,i, rh,i, sh,i, rh,i : h ∈ [`], i ∈ {1, 2}} \ {s1,1, s1,2} and
x1, y1, x3, y3, x1, y1, define the set:

nmExt−1(q`+1,1, q`+1,2) = {(x, y) ∈ {0, 1}2n : nmExt(x, y) = (q`+1,1, q`+1,2)}.

There exists an efficient algorithm Sampnm that takes as input {sh,i, rh,i, sh,i, rh,i : h ∈ [`], i ∈
{1, 2}} \ {s1,1, s1,2}, x1, y1, x3, y3, x1, y1, q`+1,1, q`+1,2, and samples uniformly from nmExt−1(q`+1,1,
q`+1,2).

Further, nmExt−1(q`+1,1, q`+1,2) is a subspace over F2, and its size does not depend on the inputs
to Sampnm.

Proof. Let T be any set of n5 distinct elements of F. We think of x as an element in Fn4 , F =
F2log(n+1) . Let x = (x1, . . . , xn4), where each xi is in F. Recall that the n4 × n generator matrix G
of the code RS is the following:

G =


1 1 · · · 1
α1 α2 · · · αn
...

...
. . .

...

αn4−1
1 αn4−1

2 · · · αn4−1
n


where α1, . . . , αn are distinct non-zero field elements of F.

Let

GT =


1 1 · · · 1
αt1 αt2 · · · αtn5
...

...
. . .

...

αn4−1
t1

αn4−1
t2

· · · αn4−1
tn5


Since x1 = RS(x){T}, we have the following identity:(

x1 · · · xn4
)
GT = x1 (1)

Thus, for any fixing of x1, the variable x is restricted to a subspace of dimension (n4−n5) over the
field F.

Now, let j ∈ [n4] be such that (x1, . . . , xj) is the string (x1, x3, w[1,4`]), and (xj+1, . . . , xn4) is
the string w[4`+1,8`]. Clearly, (n4 − j) log n = 4`nx, and thus by our choice of parameters it follows

that j = n4 − 4`nx
logn = n4

2 + n1+n6
log(n+1) <

n4
2 + n

6log(n+1) <
2n4
3 < n4 − n5.

We further note since any n5×n5 sub-matrix of GT has full rank (since it is the Vandermonde’s
matrix), it follows by the rank-nullity thorem that any j × n5 sub-matrix of GT has null space of
dimension exactly j − n5. Thus for any λ ∈ Fn5 , the equation:

(
xj+1 · · · xn4

)
αjt1 αjt2 · · · αjtn5
...

...
. . .

...

αn4−1
t1

αn4−1
t2

· · · αn4−1
tn5

 = x1 + λ (2)

has exactly |F|(j−n5) solution.
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Thus, for any fixing of the variables, x1, . . . , xj , equation (1) has exactly |F|j−n5 solutions. In
other words, for any fixing of x1, x3, w[1,4`], x1, the variable w[4`+1,8`] is restricted to a subspace, and
the size of the subspace does not depend on the fixing of x1, x3, w[1,4`], x1. We note that the above
argument works for any set T which has n5 distinct elements of F. Using, a similar argument,
we can show that for any fixing of y1, y3, v[1,8Ct`], y1, the variable v[8Ct`+1,16Ct`] is restricted to a
subspace, and the size of the subspace does not depend on the fixing of y1, y3, v[1,8Ct`], y1.

Now consider any fixing of the variables {sh,i, rh,i, sh,i, rh,i : h ∈ [`], i ∈ {1, 2}} \ {s1,1, s1,2}, x1,
y1, x3, y3, x1, y1. This fixes ν(= ν1, ν2) ← LExt1(x1, y1) and z ← v ◦ x1 ◦ y1 as well. As proved in
the lemma 10, we can efficiently sample the variables w[1,4`], v[1,8Ct`]. Let T1 = Samp(ν1) = {t1,
. . . , tn5} be the set of n5 distinct elements of F. By the above argument, which works for any set T
of size n5, we get that for the constructed T1, the variables v[4`+1,8`] and w[8Ct`+1,16Ct`] now lie in
a subspace, and hence we can efficiently sample these variables as well. Thus we have an efficient
procedure Sampnm for uniformly sampling (x, y) from the set nmExt−1(q`+1,1, q`+1,2) .

It also follows by lemma 10, that the total size of the pre-image of the variables x3, w[1,4`],
y3, v[1,8Ct`] does not depend on z or the variables {sh,i, rh,i, sh,i, rh,i : h ∈ [`], i ∈ {1, 2}} \ {s1,1,
s1,2}. Further, for any fixing of x3, w[1,4`], v[1,8Ct`], y3, z, as argued above, the variables v[4`+1,8`]

and w[8Ct`+1,16Ct`] now lie in a subspace, whose size does not depend on the fixed variables. Thus,
overall the size of the total pre-image of x, y does not depend on the inputs to Sampnm.

We now state the main result of this section.

Theorem 5. There exists an efficient procedure that given an input (q`+1,1, q`+1,2) ∈ {0, 1}nq ×{0,
1}nq , samples uniformly from the set {(x, y) : NMExt(x, y) = (q`+1,1, q`+1,2)}.

Proof. We use the following simple strategy.
1. Uniformly sample the variables {sh,i, rh,i, sh,i, rh,i : h ∈ [`], i ∈ {1, 2}} \ {s1,1, s1,2} and x1, y1,
x3, y3, x1, y1.

2. Use the variables sampled in step (1) as input to the algorithm Sampnm to sample (x, y).
The correctness of this procedure follows directly from lemma 11, since it was proved that for any
fixing of the variables of Step 1, the size of pre-image of NMExt is the same.

6 Non-Malleable Message Transmission

As an application of non-malleable secret sharing schemes, we initiate the study of non-malleable
message transmission. While the existing works on message transmission have been primarily
concerned with ensuring reliability and secrecy of the message [DDWY93, SNR04, WD08, KS09,
KKVS18], the new model introduced here tries to obtain non-malleability against much more
threatening adversaries which can corrupt all the nodes of the network (apart from the sender and
the receiver). We formally define our setting below.

General Network Model and Definitions

We model our communication network as an undirected graph G(V,E), where each edge is private,
authentic and a (bi-directional) reliable channel. In the network, adversary can only corrupt the
nodes, and not the edges. This is without loss of generality, as an edge can be further split into a
node with one incoming edge and outgoing edge. There is a designated sender S and receiver R.
We assume that there is no edge from sender to receiver, as otherwise the problem becomes trivial.
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Every player on the network, knows the topology of the network. We also assume that every
player including the adversary knows the full protocol specifications. The faults in the network
is characterized by a central (fictitious) adversary who can byzantinely corrupt all the nodes of
the network, other than the sender S and receiver R. We also assume that the adversary cannot
communicate using a hidden network, as otherwise, the adversary controlling all nodes can simply
pool all the ongoing transmission in the network at a single node (using hidden links), and break
all possible security. We slightly relax this requirement by allowing the adversary to add a bounded
number of hidden links of its choice to the network.

Definition 16. (Byzantine fault) A node P is said to be Byzantine corrupted if the adversary fully
controls the actions of P. The adversary will have full access to the computation and communication
of P and can force P to deviate from the protocol in any arbitrary manner.

Definition 17. (Protocol π(G)) Given a network, represented by an graph G = 〈V,E〉, consider
each node v ∈ V as an interactive Turing Machine. A protocol π(G) is the specification of the
code running on each of these nodes. Specifically, consider π(G) as a set of turning machines
{πv(G) : v ∈ G}, where πv(G) specifies the behavior of the node v during the execution of the
protocol.

Definition 18. (Secure Non-Malleable Message Transmission) Given a network, repre-
sented by an graph G = 〈V,E〉, with a designated Sender S and receiver R. Let C be some family
of corruptions. Let M be the message space from which the sender wishes to transmit a message m
to the receiver. The protocol π(G,S,R) is said to be a ε-secure non-malleable message transmission
protocol wrt Adv, if the following properties hold.
• Correctness : Suppose the sender wishes to transmit message m ∈ M, and all the nodes

follow that protocol π(G,S,R) honestly ( node v executes πv(G,S,R)), then at the end of the
protocol the receiver R outputs the transmitted message m with probability 1.

• Statistical Privacy : During the execution of the protocol, any node v ∈ V , other than the
receiver R, should not learn any information about the message m. More formally, for all
m1,m2 ∈ M, and any node v(6= R) ∈ V , any distinguisher D which outputs in {0, 1}, the
following holds :

|Prviewv←πviewv (G,S,R)(m1)[D(viewv) = 1]− Prviewv←πviewv (G,S,R)(m2)[D(viewv) = 1]| ≤ ε

where πviewv denotes the view of the node v during the execution of the protocol, and πviewv (G,
S,R)(m1) denotes the view of v in the protocol with senders private input as m1.
• Statistical Non Malleability : For each c ∈ C, for each m ∈ M, define Tamperfm as the

output of the receiver R when all the nodes behave according to c instead of following protocol
π(G,S,R), that is each node v ∈ V executes cv rather than πv(G,S,R). For each f ∈ C, there
exists a distribution Df (corresponding to simulator) over M∪{same∗,⊥} such that, for all
m ∈M, we have that the statistical distance between Tamperfm and

Simf
m =

{
m̃← Df

Output : m if m̃ = same∗, or m̃, otherwise

}
is at most ε. Additionally, Df should be efficiently samplable given oracle access to f(.).

Definition 19. (Path and Induced Subgraph). For an graph G = 〈V,E〉, for any u,w ∈ V ,
a sequence u → v1 → v2 → . . . → vi → w is called a path from u to v of length i + 1 if (u,
v1) ∈ E ∧ (vi, w) ∈ E and for all j ∈ [i− 1], (vi, vi+1) ∈ E. We say that a node v is reachable by u
if there exists a path u→ v in graph G.
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We define G[V′] as the induced subgraph of G which has vertex set V ′ and edge set E′ ← {(u,
v) ∈ E : u ∈ V ′ ∧ v ∈ V ′}.

Definition 20. (Collection of k Non-Malleable Paths) Consider a network represented by an
graph G = 〈V,E〉, with a designated sender S and receiver R. Let there be k paths from sender S
to receiver R. The set of these paths is called a collection of k non-malleable paths from S to
R if any node in the induced graph G[V \ {S,R}](graph left after removing sender S and receiver
R from G) is reachable by nodes present on at most one of these k paths.

We note that it is easy to find such a collection of paths for graphs by just prunning away all
the vertices which do not have a path to receiver or are unreachable by the sender from the graph.
We further remove sender and receiver, and run connected components algorithm [Cor09], using
which we obtain the required paths.

Corruption family Ct

Ct represents the family of corruptions in which all the nodes of the network (except S and R)
can be byzantine corrupted by the adversary. The adversary has the power to add t hidden
(bidirectional) links in the network. All the corrupted nodes can deviate arbitrarily from the
protocol and communicate with each other using less than t hidden links in addition to the original
edges E of the network. Formally, for a network represented by graph G = 〈V,E〉, for any protocol
π(G,S,R), the adversary specifies a set Et containing less than t new hidden links, and specifies
a protocol c = {cv : v ∈ V } ∈ Ct, where cS = πS(G,S,R) and cR = πR(G,S,R). During the
corrupted execution, the protocol c is executed.

Lemma 12. In any network represented by an graph G = 〈V,E〉, with a designated sender S and
receiver R, if there exists a collection of t non-malleable paths from S to R, then non-malleable
secure message transmission protocol wrt Ck is possible where k ← 2dt/2e − 3.12

Proof. We begin with the description of the protocol. Let JNMSharett be a (t, t, ε)-non-malleable
secret sharing sharing scheme wrt. F jointt,n as constructed in the proof of theorem 2. Let p1,
p2, . . . , pt be the t non-malleable paths from S to R. Sender computes {Sharei : i ∈ [t]} ←
JNMSharett(m) using the non-malleable secret sharing scheme. Sender sends Sharei using pi

for each i ∈ [t]. Receiver receives S̃harei from each of the paths {pi : i ∈ [t]}, and computes

m̃← JNMRectt({s̃harei : i ∈ [t]}) and outputs m̃.
Correctness : Trivially follows from the correctness of secret-sharing scheme.

Statistical Privacy : Notice that by adding k hidden links in the network, the adversary
can merge at most k + 1 non-malleable paths, in other words, it can pool together at most k + 1
shares. Secrecy of our protocol follows from the statistical secrecy of the underlying t-out-of-n
non-malleable secret-sharing scheme (as k + 1 < t).

Statistical Non Malleabilty (Proof Sketch): As there are t non-malleable paths from S to
R, an addition of a hidden link can only decrease the number of non-malleable paths by at most
one. Another way to see this would be to see in terms of connected components in the induced
graph (after removing S and R), and new edge can possible merge only two disjoint components.
Therefore, by adding at most k edges, the adversary can merge at most k+1 connected components

12Optimal value is t− 2, so for the odd values of t, our construction is optimal, for even values, it is one less than
the optimal.
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into a single one (or more components). This merging gives adversary the power to jointly tamper
subsets of shares in the protocol. Notice that if the adversary add 2dt/2e − 3 links, and we will
always be able to create two non-empty subsets containing different number of non-malleable paths.
This allows us to use the non-malleability of the underlying scheme to show non-malleability of this
protocol.

References

[ADKO15] Divesh Aggarwal, Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski.
Leakage-resilient non-malleable codes. In Twelfth IACR Theory of Cryptography Con-
ference (TCC 2015), 2015.

[ADL14] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from
additive combinatorics. In Proceedings of the 46th Annual ACM Symposium on Theory
of Computing, pages 774–783. ACM, 2014.

[Bei] Amos Beimel. Secure schemes for secret sharing and key distribution, PhD Thesis.

[Bei11] Amos Beimel. Secret-sharing schemes: a survey. In International Conference on Coding
and Cryptology, pages 11–46. Springer Berlin Heidelberg, 2011.

[Bla79] G. R. Blakley. Safeguarding cryptographic keys. In AFIPS National Computer Con-
ference (NCC ’79), pages 313–317, Los Alamitos, CA, USA, 1979. IEEE Computer
Society.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In Proceedings of the twen-
tieth annual ACM symposium on Theory of computing, pages 1–10. ACM, 1988.

[CDF+08] Ronald Cramer, Yevgeniy Dodis, Serge Fehr, Carles Padró, and Daniel Wichs. De-
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A 2-out-of-n Secret Sharing Schemes

A.1 2-out-of-n Leakage-Resilient Secret Sharing Schemes

In this subsection, we use a (2, 2, ε)-secret sharing scheme that is leakage-resilient w.r.t. Lsplitµ to

construct a (2, n, ε′)-secret sharing scheme that is leakage-resilient w.r.t. Lsplitµ (see 3 for definition).
In the next subsection, we give an efficient construction of a (2, 2, ε)-secret sharing scheme that is

leakage-resilient w.r.t. to Lsplitµ .

Theorem 6. Assume that for any ε > 0, let (Share,Rec), be any efficient (2, 2, ε)-secret sharing

scheme that is ε-leakage-resilient w.r.t. Lsplitµ and encodes an element of M into two elements of F.
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Then for any number of parties n, there exists an efficient (2, n, n2ε)-secret sharing scheme that

is (n2ε)-leakage-resilient w.r.t. Lsplitµ . The resulting scheme, (LRShare2n,LRRec2n), shares an
element of M into n shares, where each share is an element of the (F)n.

Proof. The efficient construction of (LRShare2n,LRRec2n) is given below:
• Sharing function (LRShare2n).

On input a secret message m ∈M, for each {i, j} ∈ Amin such that i < j, share m using the
sharing procedure of underlying leakage-resilient scheme, as uji , u

i
j ← Share(m). For each

i ∈ [n], let uii ← 0. Finally, for each i ∈ [n], construct sharei as u1
i , u

2
i , . . . , u

n
i .

• Reconstruction function (LRRec2n).
Let i and j be the first two indices of T such that i < j. Parse sharei as u1

i , u
2
i , . . . , u

n
i

and parse sharej as u1
j , u

2
j , . . . , u

n
j . Using the reconstruction procedure of underlying leakage

resilient scheme compute, m← Rec(uji , u
i
j). Output m.

Correctness, Efficiency and Statistical Privacy: Correctness and efficiency trivially fol-
lows from construction. Statistical privacy follows as a corollary to leakage-resilience proved below.

Leakage-Resilience: We prove leakage-resilience by contradiction. Assume, that there exists
a leakage function f = (f1, f2, . . . , fn) ∈ Lsplitµ , a pair of message a, b ∈ M, and a distinguisher D
such that

|Prshares←LRShare2n(a)[f(shares) = 1]− Prshares←LRShare2n(b)[f(shares) = 1]| > n2ε

then we create a leakage function g = (gp1, gp2) ∈ Lsplitµ , and a distinguisher D1 which violates
the leakage-resilient of ε-secret sharing scheme (Share,Rec) w.r.t. to secrets a and b. We achieve
this using a hybrid argument. Let sharei be of the form au1

i , au
2
i , . . . , au

n
i when secret a is encoded

by the sharing procedure LRShare2n. Similarly, let sharei be of the form bu1
i , bu

2
i , . . . , bu

n
i when

secret b is encoded.

0,0. Hybrid0,0 : for each i ∈ [n], sharei is of the form au1
i , au

2
i , . . . , au

n
i . This is similar to the

set of n shares obtained on running the LRShare2n on input a. Output (f1(share1), . . . ,
fn(sharen)).

1,1. Hybrid1,1 : Similar to previous hybrid Hybrid0,0, with au1
1 replaced by bu1

1. share1 is of
the form bu1

1, au
2
1, . . . , au

n
1 . Output (f1(share1), . . . , fn(sharen)).

...
1,n. Hybrid1,n : Similar to previous hybrid Hybrid1,n−1, with aun1 and au1

n replaced by bun1 and
bu1
n respectively. share1 is of the form bu1

1, bu
2
1, . . . , bu

n
1 . sharen is of the form bu1

n, au
2
n, . . . ,

aunn. Note that the distribution of share1 is similar to the share1 obtained on running the
LRShare2n on input b. Output (f1(share1), . . . , fn(sharen)).

2,2. Hybrid2,2 : Similar to previous hybrid Hybrid1,n, with au2
2 replaced by bu2

2. share2 is of
the form bu1

2, bu
2
2, au

3
2 . . . , au

n
2 . Output (f1(share1), . . . , fn(sharen)).

...
n,n. Hybridn,n : Similar to previous hybrid Hybridn,n−1,with aunn replaced by bunn. sharen is

of the form bu1
n, bu

2
n, . . . , bu

n
n. In this hybrid, the distribution of n shares is identical to the

one obtained on running the LRShare2n on input b. Output (f1(share1), . . . , fn(sharen)).
The number of hybrids is n(n − 1)/2 + 1. As the distinguisher D can distinguish between

Hybrid0,0 and Hybridn,n with probability greater than n2ε, by averaging argument we know that

40



there exists a j and k such 0 ≤ j ≤ n and j < k ≤ n, such that D can distinguish Hybridj,k and
the next hybrid Hybridj,k+1 with probability greater than n2ε/(n(n − 1)) ≥ ε (as n ≥ 2). Note
that we can assume that such a j cannot be equal to k, as both aukj and bukj will be equal to 0

in such a case. We give a reduction by creating explicit leak function g = (g1,g2) ∈ Lsplitµ and
dinstinguisher D1.

1. Initial setup : Sample sharei for all i ∈ [n] according to Hybridj,k. For each i ∈ [n] \{j, k}
compute fi(sharei).

2. Leakage function g1(l) : On input l replace aukj with l in sharej , compute fj on the modified
sharej and output fj(sharej).

3. Leakage function g2(r): On input r replace aujk with r in sharek, compute fk on modified
sharek and output fk(sharek).

4. Distinguisher D1(g1(l), g2(r)) : On input g1(l), g2(r) replace fj(sharej) and fk(sharek) with
g1(l) and g2(r) to obtain (f1(share1), . . . , fn(sharen)). Invoke the distinguisher D with the
modified (f1(share1), . . . , fn(sharen)) and output its output.

Notice, in case l, r was encoding a, then (f1(share1), . . . , fn(sharen)) will be distributed ac-
cording to Hybridj,k. Otherwise, (f1(share1), . . . , fn(sharen)) will be distributed according to
Hybridj,k+1. Therefore the success probablity of D1 will be equal to the advantage of D in distin-
guishing Hybridj,k and Hybridj,k+1. As the latter probablity is greater than ε, we have arrived
at a contradiction to ε-leakage-resilience of the secret sharing scheme (Share,Rec).

2-out-of-2 Leakage-Resilient Secret-Sharing

In this section we construct efficient construction of (Share,Rec), the secret sharing scheme re-

alizing access structure A2
2 that is leakage-resilient w.r.t. to Lsplitµ . We use one of the primitives

of Goldwasser and Rothblum ( [GR15]) which they used to construct a 2-out-of-2 secret-sharing
scheme that allowed λ bits of leakage from each of shares. Using the strongness property of two-
source extractors, we give an analysis which allows one of the sides to be fully leaked. There are lot
of interesting works on constructing leakage-resilient secret-sharing schemes, which handle much
more advanced form of leakages. ( [DP07,DP08,DLWW11]).

We recall Hadamard matrix based folklore construction of two source extractors before giving
our construction.

Lemma 13. ( [CG88]) Let IP be the inner product function. Let L and R be independent random
variables over Fnp . If

H∞(L) +H∞(R) ≥ (n+ 1) log p+ 2 log(
1

ε
)

then
|(L, IP(L,R))− (L,UFp)| ≤ ε and |(R, IP(L,R))− (R,UFp)| ≤ ε

Lemma 14. For ε > 0, any leak function (f ,g) ∈ Lsplitµ , there exists an efficient (2, 2, ε)-secret

sharing scheme that is (ε)-leakage-resilient w.r.t. Lsplitµ . The resulting scheme, (Share,Rec) ,
shares a m bit secret into two n bit shares, where n = m+ µ+ 3 log 4

ε .

Proof. Let n = m + µ + 3 log 4
ε . Let IP : {0, 1}n × {0, 1}n → {0, 1}m represent the inner product

function. The leakage-resilient scheme is defined as :
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1. The sharing function Share, on input a secret s, samples a random l, r such that IP(l,
r) = s, and outputs (l, r).

2. The reconstruction function Rec, parses the input as two n bit strings l and r, computes
s← IP(l, r) and outputs s.

The correctness follows trivially. The statistical privacy can be obtained on observing that inner
product is strong 2 source extractor, and the output remains statistically hidden even if one of the
two sources is given (lemma 13), or from the leakage-resilience proved below.

Consider any leakage functions f ,g ∈ Lsplitµ . Without loss of generality assume these functions
are deterministic, and as the sharing scheme is symmetric, assume f outputs µ bits of information
about l, while g outputs the whole share r. Using lemma 13, we get that IP is a (m + 2log 4

ε ,
ε
4)

strong two-source extractor. We note that if R is chosen uniformly at random (which is true in
our construction), we can treat IP as a strong seeded extractor. By lemma 3, we know that a(
m+ 2log 4

ε ,
ε
4

)
seeded extractor is also a

(
m+ 3log 4

ε ,
ε
2

)
average-case seeded extractor.

We know H∞(L) = n, as l is a random n bit string. We know by applying lemma 2, that
H̃∞(L|f(L)) ≥ H∞(L) − µ = n − µ, as the output of f is at most µ bits. To be able to use the
average case seeded extractor property of IP, we need n−µ ≥ m+3log 4

ε (this is true for our setting
of n). Therefore, we get that output of IP(L,R) is ε

2 -close to uniform, even when R and f(L) is
given. Therefore, we can say that for any two messages a and b, no distinguisher can distinguish
with probability more than ε.

A.2 2-out-of-n Non-Malleable Secret Sharing Schemes

Theorem 7. Assume that for any number of parties n, any ε ≥ 0, there exists an efficient coding
scheme, (NMEnc,NMDec), that is ε-non-malleable wrt Fsplit2 that encodes an element ofM into
two elements of F.

Then there exists an efficient (n, 4nε)-secret sharing scheme realizing paired access structure A
that is (4nε)-non-malleable w.r.t Fsplitn . The resulting scheme, (NMShare2n,NMRec2n), shares an
element of M into n shares where each share is an element of (F)n.

Proof. The construction of the scheme (NMShare2n,NMRec2n) is given below :
1. Sharing Function(NMShare2n)

For each {i, j} ∈ [n] such that i < j, encode m using the encoding procedure of non-malleable
code to obtain vji , v

i
j ← NMEnc(m). For each {i, j} 6∈ [n] such that i ≤ j, let vji , v

i
j ← 0. For

each i ∈ [n], construct the ith share of the scheme as follows : sharei = (v1
i , . . . , v

n
i ). Output

(share1, . . . , sharen)

2. Reconstruction Function(NMRec2n)
Let i and j be the first two indices of T such that i < j. On input the shares ⊗i∈T sharei, for
each i ∈ T , parse sharei as v1

i , . . . , v
n
i . Use the decoding procedure NMDec to obtain the

hidden secret m← NMDec(vji , v
i
j). Output m.

Correctness trivially follows from the construction. Statistical privacy follows from a simple
hybrid argument that uses the fact that every 2 split-state non-malleable code is also a 2-out-of-2
secret-sharing scheme (see lemma 1).

Statistical Non Malleability : Using the tampering functions {fi : i ∈ [n]} belonging to

Fsplitn , we give a reduction, by creating explicit function (F,G) ∈ Fsplit2 that tampers with the two
shares of the split-state non-malleable code. Let T be an authorized set containing two elements i
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and j such that i < j. The reduction giving explicit (F,G) ∈ Fsplit2 is described below.

1. (Initial Setup) : Randomly choose a message m$ ∈ M, and run the sharing function
NMShare2n to obtain temporary shares. That is, (tShare1, . . . , tSharen)← NMShare2n(m$).
For each i ∈ [n], parse tSharei as tv1

i , . . . , tv
n
i .

2. The tampering function F(l) is defined as follows : On input l ∈ F, replace tvji by l in

tSharei to obtain sharei. Run fi on sharei to obtain s̃harei. Parse s̃harei as ṽ1
i , . . . , ṽ

n
i . Let

l̃← ṽji . Output l̃.
3. The tampering function G(r) is defined as follows : On input r, replace tvij by r in tSharej

to obtain sharej . Run fj on sharej to obtain s̃harej . Parse s̃harej as l̃j , r̃j , ṽ1
j , . . . , ṽ

n
j . Let

r̃ ← ṽij . Output r̃.
The functions F and G have been defined in this way to ensure that the message encoded by

l and r of the coding cheme (NMEnc,NMDec) is the same as the secret hidden by sharei and
sharej of the secret sharing scheme (NMShare2n,NMRec2n). We can employ a hybrid argument
similar to the one in proof of statistical privacy to argue that the statistical distance in between
the distribution of sharei, sharej generated while executing NMShare2n(m) and the two shares
generated by the reduction is at most 4(n − 1)ε. Therefore, the tampering experiments of non-
malleable codes (see definition 3) and non-malleable secret-sharing schemes (see definition 6) are
statistically indistinguishable, specifically,

STamperf ,Tm ≈4(n−1)ε TamperF,Gm

By the ε-non malleability of the scheme (NMEnc,NMDec), we know that there exists a distri-
bution DF,G such that

TamperF,Gm ≈ε SimF,G
m

Using the underlying distribution DF,G as our distribution SDf ,T we get our simulator.

SimF,G
m ≡ SSimf ,T

m

Applying triangle inequality to the above relations we prove the statistical non malleability of our
scheme.

STamperf ,Tm ≈4nε SSimf ,T
m

B Why simple approaches do not work ?

We would like to mention why some of the simple approaches do not work :

• First attempt : Can we build computational non-malleable secret-sharing schemes from
signatures schemes? It is easy to see that any construction of non-malleable secret-sharing
implies a construction of (some form of) split-state non-malleable code. So even before con-
structing such secret-sharing schemes, it may be natural goal to build computational non-
malleable codes. Unfortunately, as far as we know, the only computational split-state non-
malleable code built without using additive combinatorics (or alternating extraction) is the
one of Liu and Lysyanskaya [LL12], which ensures non-malleability only in the CRS model.
So in fact, as far as we know, it is an open problem to obtain a “simple” construction of com-
putational split state non-malleable codes from standard computational assumptions in the
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plain model. We try to highlight why it might be hard to build non-malleable codes in a black-
box way from signatures. While it is true that signatures guarantee some non-malleability,
but this guarantee only holds when the “verification key” remains unaltered (we might have
to additionally deal with tampering of “signing key” as well). So if we wish to construct
non-malleable codes in plain-model, we would have to embed this “verification key” somehow
into the two states of non-malleable code. Unfortunately, this allows the adversary to change
the “verification key” and we can no longer rely on the non-malleability of signatures (in a
black-box way). The construction of Liu and Lysyanskaya instead relies on non-malleable
non-interactive zero-knowledge which necessarily relies on a trusted CRS: something we wish
to avoid in the current work.
• Second attempt : What about a tree-based construction? Consider, for example, a complete

binary tree with 2k leaves corresponding to 2k parties. To share a secret, we put the secret at
the root of this tree, and encode it using a non-malleable code to obtain the value of nodes at
level 1 ( children of root). We can recursively apply this process to obtain the value of all the
2k leaves, and these values correspond to the shares of 2k parties (this gives us a 2k-out-of-2k

secret sharing scheme). While this seems like a promising approach, there a couple of basic
issues. As constant rate statistical non-malleable codes are not yet constructed, the sizes of
shares will blow up expondentially with the depth of the tree k. The best known statistical
non-malleable code of Li [Li17] has rate 1

log(n) , and therefore can only support O(log n / loglog

n) depth, while we need Ω(log(n)). However even more fundamentally, we were unable to
reduce the security of such a construction to that of the underlying 2-out-of-2 non-malleable
code. As a concrete example, consider a simple depth 2 tree having 4 leaves and 3 AND gates.
Suppose the first subset chosen by the adversary includes the first and the last leaf of the
tree while the second one includes the second and the third leaf. It seems hard to come up
with a reduction to the underlying split state non-malleable code, and it seems that we need
stronger variants of non-malleable code (while still maintaining constant rate). Note that the
property required from the underlying non-malleable code may also vary with different choice
of partioning, for example, consider this partition {1} and {2, 3, 4}.
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