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Abstract. MDS matrices are an important element for the design of block ciphers such
as the AES. In recent years, there has been a lot of work on the construction of MDS
matrices with a low implementation cost, in the context of lightweight cryptography.
Most of the previous efforts focused on local optimization, constructing MDS matrices
with coefficients that can be efficiently computed. In particular, this led to a matrix
with a direct xor count of only 106, while a direct implementation of the MixColumn
matrix of the AES requires 152 bitwise xors.

More recently, techniques based on global optimization have been introduced, were
the implementation can reuse some intermediate variables. In particular, Kranz et
al. used optimization tools to a find good implementation from the description of an
MDS matrix. They have lowered the cost of implementing the MixColumn matrix to
97 bitwise xors, and proposed a new matrix with only 72 bitwise xors, the lowest cost
known so far.

In this work we propose a different approach to global optimization. Instead of
looking for an optimized circuit of a given matrix, we run a search through a space of
circuits, to find optimal circuits yielding MDS matrices. This results in MDS matrices
with an even lower cost, with only 67 bitwise xors.

Keywords: MDS matrix - lightweight cryptography

1 Introduction

Since the 1990s, Substitution-Permutation Networks have been a prominent structure to
build symmetric-key ciphers. These networks have been thoroughly studied and extensively
instantiated, as in the current standard AES (Advanced Encryption Standard) [DR02].
SPNs are made of three main components: a key schedule, a small (typically 4- or 8-bit)
non-linear function called S-Box, and a large (typically 128-bit) linear function called the
diffusion matrix. The role of the S-Box is to mix the bits inside 4- or 8-bit words and the
role of the diffusion matrix is to mix words.

The security of SPN ciphers against classical attacks (differential and linear in particular)
can be reduced to criteria on its components, following the wide trail design strategy [DRO1].
The S-Box needs to have a small differential uniformity and a large non-linearity; optimal
S-Boxes are called APN (Almost Perfect Nonlinear). The diffusion matrix needs to
create dependency between input and output words, with a high branch number; optimal
diffusion matrices are called MDS (because they are related to a Maximum Distance
Separable code). MDS matrices are not only widely used in SPN ciphers but also in Feistel
ciphers (Camellia [ATKT01], Twofish [SKWT99]), in hash functions (Whirlpool [RB01],
Grost][GKM™]) and even in stream ciphers (MUGI [WFYT02]).

Over the last decade, the urge for increasingly smaller electronic devices manipulating
private data has triggered the exploration of novel cryptographic primitives with low
implementation costs. Indeed, despite the standardization of resilient primitives, such as
the AES [DRO02], constrained environments require some lighter crypytographic primitives.
In particular, a natural means of lowering the cost of the SPN structure is to lower the
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cost of its main components: the S-Box and the diffusion matrix. Considerable effort has
been dedicated to finding such light components, for S-Boxes in [UDI*11, LW14, CDL16]
and for diffusion matrices in [SDMS12, WWW13, AF13, SKOP15, BKL16, LS16, LW16,
SS16]. Such improvements of the building blocks allowed for some new cipher proposals
(such as Noekeon [DPVARO0], Present [BKL107], HIGHT [HSH*06], KATAN [CDK09],
LED [GPPR11], LBlock [WZ11], Twine [SMMK13], Prince [BCG"12], Fantomas [GLSV15],
Skinny [BJKT16] and many others), which are candidates to achieve security in constrained
environments.

In this article, we consider the problem of building lightweight linear layers for SPN
ciphers. More precisely we look for new MDS matrices allowing a very efficient implemen-
tation; these matrices can be used in future cipher designs to reduce the implementation
cost. We focus on hardware implementation, and assume that the full MDS matrix will be
implemented so that it can be computed in a single cycle.

Our contributions. While there has been a number of works on the topic already
[SKOP15, BKL16, LS16, LW16, SS16], most of them focus on the coefficients of the
matrix, looking for MDS matrices with many coefficients that are easy to evaluate (such
as 1 or 2). The underlying assumption is that, for each line of the matrix, a circuit will
evaluate all the coefficients and add them together, resulting in a minimal cost of k x (k—1)
XORs on words for a k x k matrix.

This assumption was recently challenged by Kranz et al. [KLSW17]. They applied
off-the-shelf optimization tools to classes of previously proposed MDS matrices, and the
global optimization performed by the tools gave a very significant improvement compared
to previous local optimization. In particular, these circuits are much smaller than the
k x (k—1) XORs on words that was considered a minimum in previous works.

In this work we take a different approach to find MDS matrices with a globally optimized
implementation. Instead of optimizing a given MDS matrix, we run a search through a
set of circuits, ordered by hardware cost, until we find a circuit corresponding to an MDS
matrix. The circuit can reuse some intermediate values, which leads to global optimization
reducing the number of gates required. Because the circuit for a full 32-bit linear layer is
quite large, we consider a class of circuits that can be represented at the word level, using
XORs and fixed linear mappings. The computational cost of the exploration is still high
(in particular, in terms of memory usage), but with some optimization we can reach MDS
matrices of sizes 3 x 3 and 4 x 4 over any word size. By construction, these matrices are
optimal in the class of matrices considered, and they improve significantly over previous
results, as seen in Table 1.

Our work combines ideas coming from different lines of research. The idea of exploring
implementations until a suitable cryptographic component is found was notably applied to
S-Boxes by Ullrich et al. in [UDI*11] and to linear functions for instance in [ADK'14],
while the class of matrices we consider is inspired by previous works on recursive MDS
matrices [SDMS12, WWW13, AF13].

Organization of the paper. We begin with preliminaries in Section 2, to define MDS
matrices and cost metrics, and review previous works. In Section 3 we discuss the AES
MixColumn matrix, and compare the effect of local and global optimization. We then
explain our search algorithm in Section 4 and present results in Section 5. Finally, we
discuss concrete instantiation of our results in Section 6.

2 Preliminaries

In this work we focus on the linear layer used in SPN ciphers. We consider that the linear
layer operates on k words of n bits; the state is an element of (F%)*, but we can also
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Table 1: Comparison of the lightest MDS matrices (A4 is the companion matrix of
X%+ X +1, Ag is the companion matrix of X8 + X2 +1 = (X* + X +1)?).

Cost
Size Ring Matrix Naive Best Depth Ref
My(F§) GF(2%)  Mags 152 97 3 [KLSWI17]
Fy[a] Mags 136 100 3  Section 3
GL(8,Fy) Circulant 106 [LW16]
GL(8,Fy) Subfield 72 6 [KLSW17]
Fao] Mye 161 67 6 Fig. 7 with a = Ag or Ag'
Fao] MP? 202 68 5 Fig. 9 with o, B,y = As, A5 ", A5
Fy[a] Mpy 198 70 4 Fig. 12 with a = Ag
Fala M3 154 77T 3 Fig 15 with a = Ag or Ag'
My(F3) GF(2') Myn,a 58 58 3 [JPSTLT]
GF(2%) Toeplitz 58 58 3  [SS16]
GF(2*) Hadamard 36 6 [KLSW17]
Folo] Mi’g 80 35 6 Fig. 7witha= Ay or Ay'
Fola] M2 114 36 5 Fig 9 with o, 8,y = Ay, A7, A7
Fy[a] My 110 38 4 Fig 12 witha =4,
Fy[a] M3 82 41 3 Fig 15 witha= Ay or A;"

consider it as a vector of nk bits in F3*. Similarly, the linear layer can be represented by
a square nk X nk binary matrix — i.e. an element of M, (F3) — or by a square k x k
matrix whose coeflicients are linear mappings over F§ — i.e. an element of Mj (Mn(]Fg))

2.1 Branch number and MDS matrices

For a given k-word state x € (F%)* we define its weight w(z) as the number of non-zero
words. Following [DRO01], the differential branch number and linear branch number of a
linear mapping L € M, (Mn(]Fg)) are defined as:

Ba(L) = min{w(z) + w(L(z))}

By(L) = min{w(z) +w(L" (2))},

x#0
where LT is the linear mapping whose binary matrix representation is the transposed of
that of L.

These notions are important in the context of linear and differential cryptanalysis: the
number of non-zero elements in a state difference, or in a linear mask, corresponds to the
number of active S-Boxes; and the differential (resp. linear) branch number corresponds
to the minimum number of active S-Boxes in two consecutive rounds of an SPN cipher for
differential (resp. linear) cryptanalysis. In particular the branch number is at most k + 1,
and the differential branch number is maximal if and only if the linear branch number is
maximal.

Since linear mappings with maximum branch number can be built from MDS codes
(Maximum Distance Separable), the matrix of a linear mapping with maximum branch
number is called an MDS matrix. In particular, as MDS codes are defined over a field, we
usually consider linear mappings over the field GF(2"), i.e. the coefficients of the matrix
are multiplications by an element of the field, rather than arbitrary linear mappings in
M,,(F2). In this case, an efficient characterization is that a matrix in M}, (GF(2")) is MDS
if and only if all the minors (determinants of square submatrices) are non-zero.
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A similar characterization is also valid over a commutative ring: a linear mapping
has maximal branch number as long as all the minors are invertible [AF13]. When the
elements of the matrix are arbitrary linear mappings in M, (Fs), we have to compute
the determinants of the square submatrices as binary matrices, rather than as matrices
over M, (F3); again the mapping has maximum branch number if and only if all the
determinants are non-zero.

2.2 Lightweight MDS matrices

Since the linear layer of a cipher represents a significant part of the implementation cost,
much effort has been made to reduce the implementation cost of MDS matrices. There
are two main approaches towards lightweight MDS matrices. On the one hand, one can
start from a given MDS matrix (for instance, the matrix used by the AES MixColumn
operation) and lower its cost by finding a better implementation. On the other hand one
can look for new matrices that allow a good implementation by design. The first approach
is used to optimize the implementation of a standardized cipher, while the second can lead
to new ciphers with better implementation properties.

In this paper we mostly focus on the cost of a hardware implementation, estimated
as the number of bitwise xor gates necessary to implement the linear mapping. We also
focus on hardware implementations where the full MDS matrix is implemented (i.e. the
datapath of the implementation is larger than the size of the MDS matrix). This is usually
the case for implementations targeting a good ratio between the size and the speed of the
implementation.

2.2.1 Previous works.

MDS matrices have a long history in cryptography, and there have been a number of
articles devoted to finding efficient MDS matrices. In particular, a common theme is to
find MDS matrices with many coefficients that can be computed efficiently (such as 1, 2,
or 4).

Recursive MDS matrices. An important idea to reduce the implementation footprint
of MDS matrices was introduced by Guo, Peyrin and Poschmann in the lightweight hash
function PHOTON [GPP11], and later used in the lightweight block cipher LED [GPPR11].
They proposed to design an MDS matrix M that can be written as M = A* for some
efficiently implementable matrix A (and some integer k). This allows to trade some
implementation speed against implementation size: instead of implementing directly M,
one can implement the lighter matrix A, and iterate it over k clock cycles.

This idea was later revisited to further reduce the cost of the implementation of A. In
particular, a series of works [SDMS12, WWW13, AF13] introduce the notion of a formal
MDS matrix, where the coefficients are written as an abstract expression of an undefined
linear function «. This allows to derive a set of conditions on « such that the matrix is
MDS, and to select an « with very low implementation cost (typically a single bitwise xor).
In particular, this generalizes the MDS notion from matrices over a field to general linear
mappings.

Optimizing coefficients. In the context where the full MDS matrix will be implemented,
several works looked for efficient MDS matrices in some special classes of matrices, such
as circulant, Hadamard, or Toeplitz matrices [SKOP15, LS16, SS16], using coeflicients
that can be efficiently computed. In particular, some of these results consider involutory
matrices, that are equal to their inverse.

Moreover, the idea of moving away from finite field operations to more general linear
operations has also been applied [BKL16, LW16], and leads to the lightest reported
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MDS matrix in My (Ms(F2)) at the time, with 106 bitwise xors [LW16]. In particular,
the techniques of Li and Wang can be used when the coefficients in the matrix do not
commute.

Search of lightweight implementations. In the design of PRIDE [ADK™14], the authors
used a search over small hardware implementations using operations on bits to find an
efficient matrix on 16 bits with branch number 4 (not MDS).

Optimizing the implementation with automatic tools. Another approach is to use tools
to automatically find lightweight implementations of a linear function. This kind of tools
was first used for the implementation of cryptographic functions in [BMP13], where the
authors used linear straight line programs to globally optimize the implementation of a
predefined linear function. In this paper, the authors show that finding the optimal imple-
mentation for a given linear function is NP-hard, and they develop heuristics to optimize
an implementation using linear operations at the bit level which allows cancellations (of
variables in Fy).

There had been early attempts to use synthesis tools to optimize existing MDS matrices
(in particular, the AES MixColumn matrix [SMTMO01, ZWZZ16]), but a large step was
made very recently by Kranz, Leander, Stoffelen and Wiemer [KLSW17]. They applied
straight line programs optimization tools to the AES MixColumn matrix, and to a number of
known MDS matrices, and obtained significantly improved implementations. In particular,
they reduced the cost of the AES MixColumn matrix from 103 to 97 bitwise xors, and
found an MDS matrix that can be implemented with 67 bitwise xors while the best previous
result required 106 bitwise xors.

Our approach. Our work starts from the same observation as the work of [KLSW17],
and was done independently. We observe that most of the previous works consider the
cost of an MDS matrix as the sum of the costs of evaluating each coefficient on the one
hand, and the cost of k x (k — 1) XORs on n-bit words on the other hand. While this is a
valid upper bound on the cost, a globally optimized implementation can be significantly
cheaper, because common intermediate values can be computed once and reused.

In [KLSW17], the authors used automatic tools to optimize previously proposed MDS
matrices. On the other hand, we aim to design a better MDS matrix while looking for
a globally optimized implementation. Therefore, our goal will be to find a strategy to
build new MDS matrices with a globally optimized implementation. As can be seen in
Table 1, we very significantly improved previous results using local optimizations, but we
also obtain better results than [KLSW17].

In some way, our work can be seen as finding good linear straight line programs, however
we limit the number of simultaneously available variables and only use operations on words
rather than on bits (alternatively, we could say that we find straight line programs on
a ring using additions in the ring and multiplications by constants). We note that our
straight line programs also use cancellations.

Contrarily to previous works on searches of small implementations such as [ADK™14],
we focus on a word-wise level rather than on bits, without fixing the word size.

2.2.2 Metrics used.

In order to estimate the hardware cost of a linear operation, we count the number of
bitwise xors used in an implementation. In general, an implementation can be described as
a sequence of operations x; < x,, ® xp, with a;, b; < i, where x1, .. .2, is the input, and
the output is some subset of the x;’s. This corresponds to a linear straight line program.
Ideally, we would like to compute the minimum cost of any implementation, but this is
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not always achievable in practice, and more practical metrics evaluate the number of xors
in a more restricted class of implementations.

Direct xor count. A direct xor count was introduced by Sim, Khoo, Oggier and Peyrin
in [SKOP15]. It corresponds to counting the number of gates used in a naive implementation
of the linear mapping. When considering the binary matrix representing the linear mapping
in M,,x(IF3), each line gives a formula to compute one output bit, and if there are ¢ non-zero
bits in a line, this formula is computed with ¢ — 1 xor gates. Therefore, the direct xor
count is defined as the number of 1 bits in the binary matrix, minus k& x n.

The above metric was used in many works on lightweight MDS matrices, such
as [SKOP15, LS16, LW16, SS16]. Interestingly, with this metric, the cost of an MDS
matrix is equal to the cost of the evaluation of each coefficient plus the cost of k x (k — 1)
XORs on n-bit words

Sequential xor count. A better approximation of the optimal implementation cost is the
sequential xor count defined in [JPST17], and used to optimize the field multiplications
used in an MDS matrix [BKL16, JPST17]. The sequential xor count is the number of
bitwise xors in a sequential program limited to in-place operations without extra registers.
This can be significantly lower than the direct xor count, but the restriction to in-place
operations is still a strong one.

In the context of MDS matrices, this metric has been used to optimize the cost of field
multiplications, but due to the computational cost it has not been used to optimize full
MDS matrices (In [JPST17], the cost is still computed as the cost of each coefficient, plus
the cost of the n-bit word XORs).

Global optimization. More recently, heuristic tools to find good straight line programs
have been used to find good implementations of a given MDS matrix [KLSW17]. This leads
to much better results than the previous implementation with only local optimization.
In our work we consider a slightly restricted class of implementations. We decompose
the evaluation of an MDS matrix as a sequence of simple steps: word-wise xors and simple
linear operations generalizing multiplication by a field element. We will also use some
extra registers, to allow the reuse of intermediate values. We then perform an exhaustive
search in this class of implementations, looking for an MDS matrix. As we will see, this
class contains implementations of MDS matrices much lighter than those previously used.

Metric comparison. In order to compare some of these metrics, we consider two MDS
matrices in M3(F4) in Table 2. The first matrix is optimal for the direct xor count and
for any metric that considers the coefficients independently, with a cost of 3 + 4 x 3,
while the second matrix is one of the matrices discovered by our tool, Mgi , that can be
implemented efficiently as shown in Figure 3. For each matrix, we evaluate the direct xor
count (corresponding to a naive implementation), the sequential xor count given by the
LIGHTER tool [JPST17] (since the size is small, we can compute the sequential xor count
of the full matrix, rather than just the field multiplications), and the cost of the naive
optimization after processing by synthesis tools Yosys and ABC. For the second matrix,
we evaluate the implementation found by our tool, and we try to further optimize it with
synthesis tools Yosys and ABC.

We can see several important results in the table. First, performing global optimization
of the matrix, rather than optimization of the coefficients only, has a huge impact, reducing
the xor count from 21 or 15 to 10. In particular, the best implementations we found require
fewer bitwise xors than the 6 XORs on 2-bit words that are considered a fixed cost in many

1When we mention registers, we use the term in the software sense: a register is used to keep track of
some intermediate computation. In our hardware implementations this just corresponds to a wire.
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Table 2: Comparison of metrics. Results shown as “4Yosys” have been optimized with
synthesis tool Yosys (using ABC as a subroutine).

Matrix Xor count
GF(4) Fy Naive Naive+Yosys  LIGHTER Ours Ours+Yosys
-~ _ [o1]to]|to]
211 110 1]01
121 | oS00 15 12 10
112 10[/10[01
- < lo1]o 1|1 1]
-~ _ [11]o1]o 17
322 1o0/11)11
232 [7ilisly: 21 14 11 11 10
223 0 1[0 1]1 1
- < Lttt 1|1 0]

previous works. We also see that using additional registers can be helpful: the second
matrix has an optimum cost of 11 without extra registers, but there is an implementation
with only 10 xors using extra registers. Finally, we note that our new constructions are
similar to previous MDS matrices in this small scale comparison, but the advantage of our
approach is that it can be scaled up to matrices of size 4 over 8-bit words, while LIGHTER
can only optimize linear layers with up to 8 inputs.

Limitations. Unfortunately, counting the number of xor gates of a circuit is not necessarily
a good estimation of the true hardware cost of an implementation, for several reasons.
First, the hardware design tools try to optimize the circuit. In particular, all the metrics
considered are an overestimation of the minimal number of bitwise xors, and the relative
cost of two circuits can change if further optimizations are found (as a concrete example, a
naive implementation of the AES MDS matrix requires 152 bitwise xors, but synthesis
tools Yosys and ABC can reduce it to 115 bitwise xors). Secondly, hardware circuits can
use other gates than two-input xors. In particular, modern FPGA have relatively large
LUT (look-up tables), so that a multi-input xor gate is not much more expensive than
a two-input one. Again, this can change the relative cost of two circuits, but we expect
this effect to be rather limited in the case of ASIC synthesis (where a three-input xor gate
is almost twice as big as a two-input xor gate). Finally, another important criterion is
the depth of the circuit. It impacts the propagation delay of signals, which defines the
maximum frequency at which a circuit can be run, and strongly impacts performances (in
particular, the throughput per area). This will be addressed in our work by proposing
several MDS matrices reaching various trade-offs between the xor count and the depth of
the implementation.

In general, our constructions offer a significant gain over previous proposals, and we
expect to see real gains in concrete implementations, despite the limitations discussed
above. We will use the number of xor gates as an evaluation metric in this paper because
it has been widely used in previous work on lightweight MDS matrices, and it is hard to
define a better estimation generically. We leave a more accurate comparison with real
hardware implementations of various matrices to future work.

2.3 Notations

We denote the size of the MDS matrix as k, and the size of the words as n (e.g. the matrix
of the AES MixColumn corresponds to k = 4 and n = 8). We use “XOR” to denote the
addition of n-bit words, and “bitwise xor” to denote a single xor gate. In particular, the
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implementation of an XOR operation requires n bitwise xors.

Instead of considering MDS matrices over a field (i.e. each coefficient is a multiplication
by a field element), we consider a more general class of matrices where each coefficient
corresponds to a linear operation in M, (Fs). For technical reasons, and following previous
works [SDMS12, WWW13, AF13], we restrict the coeflicients to powers of a single linear
operation (in particular, this ensures that the coefficients commute). Therefore, the
coefficients can be written as polynomials in Fs[a], where the unknown « represents an
undefined linear operation.

Our search of MDS matrices has two steps: we first look for a formal MDS matrix M
with coefficients in Fy[a] (as explained in Section 4), and we later select a suitable linear
mapping A so that M(A) (the matrix where « is replaced by A) is MDS (as explained in
Section 6).

In particular, if « is instantiated by the multiplication F' by a generator of a field,
Fy[F] is isomorphic to the corresponding field. For a compact notation, we represent
a polynomial by the integer with the same bit representation; for instance 2 represents
element o and 3 represents o + 1.

3 On the AES MixColumn matrix

An important MDS matrix is the one used as the MixColumn operation in Rijndael,
standardized as the AES. This matrix is defined as:

2311
1231
1123]|’
3112

Mags =

where 1, 2 and 3 represent elements of the finite field GF(2®). More precisely, the finite
field is built as Fa[a]/(a® + a* + a® + a + 1), and 2 and 3 denote elements « and « + 1,
respectively.

A naive implementation of this matrix requires 1 multiplication by 2, 1 multiplication
by 3, and 3 XORs for each row. In hardware, a simple implementation of these operations
requires respectively 3 and 11 bitwise xors, leading to a full cost of 4 x (3+11+3 x 8) = 152
bitwise xors.

However, the best known implementations of the multiplication by 3 in the AES
field requires only 9 bitwise xors [JPST17], leading to a full cost of 144 bitwise xors.
Alternatively, Zhao, Wu, Zhang and Zhang used a heuristic approach to find a good
sequence of bitwise xors to evaluate the AES MDS matrix (seen as a Boolean 32 x 32
matrix). They found a representation with only 132 bitwise xors in [ZWZZ16].

Actually, we can get better results just by looking for common sub-expressions in the
computation. Indeed, an evaluation of Mags can be written as:

a 2311] [a 20®3bP ¢c® d 20020DbDcDd

o bl (t231] |b] | a®20@3ce d|  |a®2bD2cDc@d
ABS el T 11123 |e] T | a® bd2c®3d| ~ |ladbe2cd2dad
d 3112 |d 3ad b® cd2d 20D aDbDcd 2d

With this expression, the evaluation of Mags requires only 4 multiplications by 2 (the
values 2a, 2b, 2¢, 2d are used twice) and 16 XORs; this translates to 140 bitwise xors,
which is lower than a naive implementation. Furthermore, some intermediate values can
also be reused. In particular, each of the values a® b, b® ¢, c® d, and d P a is used twice
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if we slightly rewrite the output:

20B3b@ cd d 2(a ® (c
a®2®3c® d 2b®c) @ (d
a® b®2e®3d 2c®d) B de (a
3a® bD cd2d 2(d®a)®ad (b

With this formula, the matrix can be evaluated with just 12 XORs and 4 multiplications
by 2, leading to a full cost of only 108 bitwise xors. As far as we can tell, this trick was first
described in 2001 [SMTMO1], and is used in the Atomic-AES implementation [BBR16].

For reference, the best currently known 4 x 4 MDS matrix over 8-bit words obtained
without global optimizations requires 106 bitwise xors [LW16]. This shows that optimizing
the implementation of an MDS matrix can have a similar effect to optimizing the choice of
the MDS matrix.

Choice of the field or ring. The choice of the field — or ring — also plays an important
role in the implementation cost of an MDS matrix. MDS matrices are typically defined over
a finite field (as mentioned above, the AES MixColumn matrix is defined over GF(2%)),
but this is not necessary and better results can be achieved over commutative rings.

In particular, the sub-field construction used in [BBGT09, BNNT10, KPPY14] corre-
sponds to using a product ring. It can be applied to Mags as follows: the inputs are
considered as elements of the ring GF(2%) x GF(2%), and the coefficients 1 in the matrix
are interpreted as (1,1), 2 as (o, ) and 3 as (a ® 1, @ 1), with « a generator of the
field. This actually corresponds to applying two copies of Mags defined over GF(24),
independently on each nibble of the input. It is interesting because multiplication by
a in GF(2%) requires a single bitwise xor (there exist irreducible trinomials of degree 4
in F3[X]), while multiplication by 2 in GF(28) requires three bitwise xors (there are no
irreducible trinomials of degree 8 in F3[X]). Therefore multiplication by 2 in the ring
requires only 2 bitwise xors rather than 3 in GF(2%).

More generally, we can consider the matrix Mags as a formal matrix, where 1 represents
the identity, 2 an arbitrary linear operation «, and 3 the linear operation x — a(x) ® x
(using ideas and formalism from [SDMS12, WWW13, AF13, BKL16]). The coefficients
of the matrix are now polynomials in «, i.e. elements of Fo[a]. When instantiating the
matrix with a given transformation «, the matrix will be MDS if and only if all the minors
are invertible. The minors can be easily evaluated as polynomials; in this case they are:
Laa®l,a?,62@1,0°®ad1,°®1,620a® 1,02 @2 P 1,0 D’ a.

In particular, if all the irreducible factors of the minimal polynomial of « are of degree
4 or higher, then all the minors will be invertible. Concretely, if « is the multiplication by
a primitive element of a finite field GF(2"), the minimal polynomial of « is irreducible
and of degree n, therefore the matrix will be MDS as long as n > 4. In the AES, « is not
a primitive element, but its minimal polynomial is still irreducible and of degree 8.

We can now use even more efficient linear operations. For instance, the operation
a:xz— (1)@ ((x > 1) A1) can be implemented very efficiently in hardware,
using just wires and a single bitwise xor. When used in Magg, it also generates an MDS
matrix, because its minimum polynomial is (z* @ 2 @ 1)2. This new MDS matrix can be
implemented with just 100 bitwise xors using the previous trick.

Surprisingly, this simple construction based on M 4pg actually has a lower implementa-
tion cost than the best previously known lightweight MDS matrix in My (Mg (F2)) (apart
from ones obtained using global optimizations in [KLSW17]), and the same ideas also
lead to a matrix in My (M;;(]F%)) with a lower implementation cost than previously known
constructions. This example motivates the approach taken in this paper. We will consider
MDS matrices defined over a ring, and study a circuit implementing the matrix, instead
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of just counting the 1’s in the binary matrix. We will search for new matrices with an
efficient implementation, using a representation as a series of field (or ring) operations,
and try to minimize the number of xors and linear operations « required to reach an MDS
matrix.

4 Graph-based Search for Efficient Implementations

One possible approach to find efficient implementations is to run an exhaustive search
over a class of implementations and to test whether each implementation corresponds
to the target function. In particular, several previous works used a graph approach to
perform this search [UDIT11, JPST17]. An implementation is represented as a sequence of
operations, and this implicitly defines a graph where the nodes are sequences of operations.
More precisely, there is an edge L R L between the sequences of operations L1 and Lo
when Lo = L1, 0p. In addition, sequences of operations defining the same function up to
reordering of the inputs and outputs are considered equivalent.

Finding the optimal implementation of a given function (in the class of implementations
corresponding to the operations used) corresponds to finding the shortest path between
the empty circuit (corresponding to the identity) and the objective. Alternatively, this
approach can be used to find an optimal member of a class of functions with some predefined

property.

4.1 Previous works

This approach was first used to design cryptographic components by Ullrich et al. [UDIT11],
in the context of 4-bit S-Boxes. They work on 5 bit registers, and spawn a tree of
implementations in which a transition consists in adding an operation in the set of AND,
OR, XOR, NOT and COPY. The NOT operation takes one parameter, and the other
operations take two parameters (for instance, the AND operation implements x < x A y)),
so that there are 85 possible operations at each step. The extra register can store some
intermediate values, so that the use of non-invertible operations does not necessarily lead
to a non-invertible S-Box. Instead of looking for the implementation of the fixed S-Box,
they look for the best implementation of any S-Box in a given equivalence class (up to
affine equivalence).

They use several rules in order to reduce the branching factor; in particular, they
verify that there is always a subset of the registers which encodes a permutation, and
detect when two nodes are equivalent. Those rules strongly reduce the branching, and
they manage to find a 9-instruction implementation of a 4-bit permutation with the best
reachable differential and linear properties.

The metric they use to compare implementations is the number of operations, so that
they can use a simple depth-first search to find the shortest path between the identity and
a class of S-Boxes.

Bidirectional search. Recently, Jean, Peyrin and Sim [JPST17] used a variant of this
algorithm with a bidirectional search. They focus on optimizing the implementation of a
given function, and they grow a tree in the forward direction starting from the identify,
and in the backward direction starting from the target function. They also use different
weights for the instructions, therefore their search algorithm is a bidirectional variant of
Dijkstra’s algorithm, where they use a priority queue to grow each tree.

This allows a more efficient search than the depth-first search of Ullrich et al., but
they have to use only invertible operations. In particular, they cannot use any extra
register, and they have to combine elementary gates into invertible operations (such as
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x < =@ (y A z)). Because of those restrictions, the class of implementations considered is
smaller, and the implementations obtained can potentially be worse.

4.2 Application to MDS search

In our work, since we look for MDS matrices, we use r registers representing words in Fy
(rather than bits), and we consider only linear operations:

e XOR of two words (z < = @ y);
e Copy of a register (z < y);

e Application of an abstract linear mapping « to a register z + a(z).
(This generalizes multiplication by a generator « of a finite field)

We can represent the linear mapping corresponding to a sequence of instructions with a
k x r matrix with coefficients in M,,(F2). The empty implementation corresponds to the
identity matrix with extra zero columns, and every operation of an implementation can be
translated to the corresponding operation on the columns of the matrix.

Since Fa[a] is a commutative ring, we can test whether the matrix is MDS by computing
the minors and testing whether they are the zero polynomnial. If a minor equals zero,
then any choice of « will give a zero minor, therefore the corresponding linear mapping
has a branch number smaller than k. However, if all the minors are non-zero, then some
choices of a will give a linear mapping with maximum branch number, when n is large
enough? (See Section 6 for more details).

Use of A* algorithm. We decided to use extra registers to enable better implementations.
This prevents us from using a bidirectional search, but the strong properties of the set
of MDS matrices allows us to use the A* algorithm to guide the search towards MDS
matrices.

The A* algorithm [HNRGS] is an extension of Dijkstra’s path finding algorithm [Dij59].
It is specialized in finding a path between a single source and destination, and uses a
heuristic estimation h of the remaining distance between a node and the destination. A*
iteratively explores the node that minimizes g(x) + h(z), where g(x) is the distance from
the source to z.

The heuristic A must be admissible, i.e. it must never overestimate the remaining
distance, otherwise the algorithm might find a sub-optimal path. In addition, the heuristic
is called monotone if h(x) < h(y) + d for every pair of nodes x,y with an edge of weight d.
When the heuristic is monotone, nodes only need to be explored once.

Heuristic. In our case, we need a heuristic to estimate the number of remaining operations
before reaching an MDS matrix. Since the operations affect the columns of the matrix, we
count how many columns of the current state matrix could be part of an MDS matrix.
Clearly, every column that contains a zero coefficient can not be part of an MDS matrix.
Moreover, columns that are linearly dependent can not be part of an MDS matrix together.
Therefore we let m be the rank of the submatrix composed of all the columns with no zero
coefficients. Our heuristic considers that we need at least & —m XOR operations to reach
a k x k MDS matrix.

It is easy to see that this heuristic never overestimates the number of remaining
operations, but we couldn’t prove that it is monotone. However, our code tests the
monotony condition every time it processes a node, and we never encountered a situation
where it was violated.?

2Note that if n is too small, there are no MDS matrices of size k.
3If it were to happen, we would just need to process the node a second time.
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The use of A* with this heuristic significantly improves the performance of our search,
compared to the more simple algorithm of Dijkstra.

4.3 Search algorithm

From a high level, our algorithm spans a massive tree of functions on which we test the
MDS property. We start from the identity function, and every time we process a node, we
test whether the corresponding matrix is MDS, and we spawn one child for each operation
in our set.

We keep track of all the created nodes inside of two structures: the first structure
(TestedStates) holds all nodes that have already been processed, while the second
(UntestedStates) holds all the nodes that have been created but not yet processed.
At each step of the algorithm, we select an element of minimum estimated weight in
UntestedStates, and test whether it is already in TestedStates.

Following A*, the estimated weight of a node is defined as the sum of the weight of the
operations already performed, plus an estimation of the remaining operations to reach an
MDS matrix.

Note that several paths in the tree can lead to the same state. Therefore, when we
pick a new node, we first test if it belongs to TestedStates. Since we open the nodes
by order of estimated weight and the heuristic for the remaining weight (experimentally)
satisfies the monotony condition, the first time we process a node corresponds to an optimal
implementation.

4.3.1 Reducing the search space.

In order to reduce the time and memory used by the search, we use some optimizations to
reduce branching during the construction of the tree.

First, we notice that permuting the inputs or outputs of a circuit does not affect its cost,
and preserves the MDS property. Therefore, we consider that matrices are equivalent up to
reordering of the inputs and outputs. In practice, we associate to each matrix an identifier
that is unique up to reordering of input/output words: we consider all permutations of
the lines and columns, and use the largest matrix (for some ordering) as the identifier. In
particular the TestedStates structure is replaced by a set of identifiers TestedIDs. Every
time we select a node from UntestedStates, we compute its identifier, and test whether
it is already in TestedIDs.

We also limit the use of copy operations, and consider only circuits where the next
operation is a linear mapping or an XOR that overwrites the copied value. This does
not limit the set of states that can be reached (circuits can be rewritten to obey this
restriction), but it limits the branching at every step. In addition, after a copy operation,
we test whether the circuit is still injective, and stop the exploration when it is not. Indeed,
an MDS matrix is necessarily injective, and all the intermediate steps of the circuits must
also be injective.

Finally we use a limit in the cost and depth of the circuits, so that we do not generate
nodes that are too costly. When looking for minimal-cost MDS matrices, we repeatedly run
the algorithm with increased limits, until the search succeeds with the minimal possible
cost.

The resulting algorithm is given as Algorithm 1, in Appendix A.

An other important question is that of the cost of operations. We considered the cost
of the copy to be 0, the cost of a to be 1, and the cost of the word-wise XOR to be
variable. We mostly considered an XOR of cost 8 (i.e. 8 times more costly than a, which
corresponds for instance to the case of F§ with o a multiplication by the primitive element)
and an XOR of cost 2 (lowest possible but higher than the cost of «, for performances
reasons).
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4.4 Extensions

On top of the main algorithm, we added some extensions. These consist in extensions of
the set of operations, which broaden the class of matrices that we consider. Of course, a
larger class means more matrices to test, thus we can find new (and sometimes better)
matrices, but the algorithm also requires more resources. These extensions can be used
separately but combinations of extensions are possible. The first extensions adds more
registers, while the others include several linear mappings instead of a single one.

4.4.1 Additional read-only registers (RO_IN).

The first extension adds extra input registers to store the k input words (k new registers
for matrices of size k). To limit the branching factor, these registers are used as input of
an XOR or copy operation, but are never modified. In particular, with this extension, the
full state is always injective.

4.4.2 Using a—! (INV).

When we instantiate a with a concrete linear mapping, we will usually choose the companion
matrix of a sparse polynomial (or equivalently, an LFSR) because of its low xor count. This
implies that a1 also has a low xor count [BKL16], therefore it is interesting to add a~!
to the set of operations. This restricts instantiation choices to invertible linear mappings,
but we can still compute the minors as polynomials in o and a~', and there exist good
instantiations if and only if all the minors are non-zero polynomials (See Section 6).

4.4.3 Using small powers of o (MAX_POW).

When o is instantiated with the companion matrix of a sparse polynomial, o also has a
low xor count, therefore it is interesting to consider small powers of a (in particular, a?)
as extra operations.

When combined with the INV extension, small powers of a1 (e.g. a~2) will also be
added.

4.4.4 Assuming independent linear operations (INDEP).

More generally, we can assume that all the linear operations are independent, and write the
coefficients of the matrix as multivariate polynomials in «, 3, 7, ... Each linear operation
is used only once, so that the polynomials are of degree at most one in each variable.
Furthermore, we assume that all the mappings commute so that we can test efficiently the
MDS property.

In practice, we instantiate «, 3, 7, ... as powers of a single linear mapping, but the
search space is smaller using the extension than using INV and MAX_POW because a single
linear mapping is considered at every step of the algorithm.

For implementation reasons, our code is limited to three linear operations in this case
(for more details, see Section 4.5).

4.5 Implementation choices

Memory. When it comes to the implementation of this algorithm, the main issue is
memory. Indeed, the algorithm spawns a huge tree. Each node consumes little memory
(about 768 bits), but the number of nodes grows exponentially in the size of the set of
operations. As seen in Table 4, the program requires hundreds of gigabytes of memory to
find 4 x 4 MDS matrices, and even more with some extensions.
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To reduce the memory needed, we store only the minimal required information in a
node (the father and the last operation), and recompute other properties (e.g. the matrix
representation and the identifier) when needed. This allows to trade time for memory.

MDS test. In order to test whether a node corresponds to an MDS matrix, we have
to build the matrix and compute its minors. As mentioned already, the elements of the
matrix are polynomials in Fa[a]. The empty implementation corresponds to the identity
with extra zero columns,* and we apply each operation to the columns of the matrix to
build the matrix of a given implementation: copy and XOR operations correspond to the
same operations, while the linear operation a corresponds to multiplying the polynomials
by a.

In our implementation, we store a polynomial as a bitfield, with each bit corresponding
to a coefficient. In particular, multiplication by « corresponds to a bit shift, and the
carry less multiplication instruction of recent x86 processors (pclmulqgdq) corresponds to
multiplication of two polynomial of degree 64 (with an output of degree 128).

In practice, we build the matrix using 32-bit words (i.e. polynomials of degree at most
32), and the determinant of the full matrix is considered as a polynomial of degree 128
(our code only supports matrices of size k < 4). We compute the minors with Laplace
extension, because minors of smaller order have to be computed anyway.

INV extension. With the INV extension, we have to deal with a~! operations in the
circuit. Therefore the coefficients of the matrix are polynomials with both positive and
negative powers of « (Laurent polynomials). For our implementation, we assume that the
polynomials only contain terms between o~ !¢ and o'®, and store them shifted by 16 bits,
i.e. multiplied by «!®. In particular, all the code testing the MDS property is still valid,
working with those shifted polynomials.

INDEP extension. With the INDEP extension, we have to deal with three linear mappings
a, B, v, and the coefficients of the matrix are multivariate polynomials in Fa[a, 8,7]. As
explained, we assume that each linear operation is only used once, so that the coefficients
of the matrix have degree at most one in each variable. During the computation of the
determinants, we have to multiply at most k coefficients, so that all the terms have degree at
most k in each variable. Therefore we can use an encoding as univariate polynomials in X,
where a is encoded as X, § as X*t1, v as X+ and so forth. With this encoding, there
is no ambiguity to represent terms of degree at most k in each variable, and multiplying
two univariate polynomials corresponds to multiplying the related multivariate polynomials

In terms of implementation, this means that a corresponds to a shift by 1 bit, 5 by
k + 1 bits, v by (k + 1)? bits ... The rest of the implementation stays the same, and the
code testing the MDS property remains valid with this representation. With k = 4, the
matrix contains terms up to afy, encoded as X - X° - X2 = X3! and they all fit in a
32-bit word.

5 Results

We ran the algorithm for £ = 3 and k = 4, using several sets of extensions.

The results for £ = 3 ran within microseconds on a common laptop. They are summed
up in Table 3. The least costly matrix, M§’41 , uses 5 XORs on F% plus 1 linear operation.
Interestingly, this is cheaper than the minimum cost of 6 XORs for a naive implementation.

00
00
10

1
4With k = 3 and 4 registers, we start from [8

oro
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Figure 1: 4 x 4 MDS with depth 5: M5, Figure 2: 4x 4 MDS with depth 5: M$¥ .

With minimum depth (i.e. depth 2), our best result, Mgg’, takes 6 XORs on F% plus 3
linear operations, which does not improve over a naive implementation.

For k = 4, however, the memory requirements are huge: some tests could not be
performed because they require more than 2.5TB of memory. We used a machine with
4 Intel Xeon E7-4860 v2 CPUs (48 cores in total) running at 2.60GHz, with a total of
2.5TB of RAM. We parallelized the code and none of the runs took more than 24h in
real time (the ones that could take longer ran out of memory beforehand). We note that
parallelizing the code is rather easy, since we only need to share the structures which store
the tested and untested states. The most interesting results are summed up in Table 4.
The least costly matrix, M, f,’g , requires 8 XORs on F% and 3 linear operations. At depth 3,

our best result, M f”?‘? , requires 9 XORs on F§ and 5 linear operations. Both results are
significantly cheaper than the minimum of 12 XORs required in a naive implementation.

We note that we somewhat reached the limits, since running the algorithm with k = 4
to find circuits of depth 6 with a lesser cost than the solution given in the table found
no results and took 2.4TB of memory (using extensions RO_IN and INDEP). Similarly, we
could not find any circuit of depth 3 less costly than the one given, despite running the
algorithm with multiple extensions and limits.

These results are formal matrices: instantiations on F3 and F§ are discussed in Section 6.
Figures of the circuits are given in Appendix D (some of the circuits have been reorganized
to make them easier to understand).

Implementation of the inverse matrix. When implementing the inverse of an SPN cipher,
the inverse of the MDS matrix will be needed, and matrices whose inverse can also be
implemented efficiently are desirable. In particular, a number of lightweight ciphers use
an involutory matrix, so that the same implementation can be used for encryption and
decryption. Our search algorithm does not allow us to look specifically for involutions
(or even for matrices that are easy to invert), but several of our results allow an efficient
implementation of the inverse.

Actually, most of the matrices in the table are easy to invert because their additional
register only serves to build Feistel-like operations (this is not the case in general). In terms
of implementation cost, it holds that the inverse matrix has the same implementation
cost as the direct matrix. In terms of depth, however, there is no conservation between a
matrix and its inverse.

To illustrate this, let us consider the example of M f,’g’ , and M f”g’ - shown in Figures 1
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Table 3: Optimal 3 x 3 MDS matrices (all results are obtained in less than 1 second,
memory is given in MB).

Depth Cost Extensions Memory M Fig.
322 213
4 5XOR, 1LIN 14 Mjt=l232|, My =|111] 3,4
223 312
313
3 5 XOR, 2 LIN 5 M3 =112 5
211
211
2 6 XOR,3LIN RO_IN 4 M3 =121 6
112

and 2.5 Mi’g has depth 5 and costs 9 XORs and 3 linear operations. Over F§, the
instantiation discussed in 6 gives that both M f}’g’ over F§ and its inverse have the same

depth (as well as the same cost). On the other hand, over F3, the instantiation of M, i’g

-1
requires the use of Ay, A4_1 and A2, so that Mi’g uses Ay, AZl and AZQ, given as:
b o [1
0] Ay = [
0

Ay and A;' have the same cost and depth, but A7 can only be implemented by 2
iterations of A4, thus a depth 2 implementation, while AZ2 has an implementation with
depth 1. Summing up, over F3, both M, f,’g’ and its inverse have the same cost, but M, i’g

-1
has depth 6 while M} has depth 5.
In addition some matrices are almost involutive. In particular one of the optimal

. . . . 5,17 213 . . . 571/71
matrices we have found in size 3 is M3, = [é 11]5 we note that its inverse is M3, =

31
11
21

Details on the tables All results are given supposing that the depth of o, 5 and ~ is 1.
The matrices given in these tables are ezamples. Our intention was in no way to be
exhaustive in this table, the algorithm outputs many more formal matrices.

0100 !
Ay = 0010 4 =
1100

W N

} , it can obviously be computed with the same circuit and an extra wire crossing.

On the structure of the resulting circuits Although we did not find much structure in
the results, it may be of interest that several circuits take the shape of a generalized Feistel
network (as originally defined in [Nyb96] based on the work by Feistel, and studied in
many works since), namely Figures 7, 9, 12, 13 and 14.

We would like to underline that the figures given in Appendix D have been intensively
modified from the original output of the algorithm. We have reordered the input and
output variables as well as some operations which commute in order to render the figures
more readable and to put forward the structure.

On top of this, when it was possible, we replaced the use of an additional register by
Feistel-like operations to ease the reading.

These are of course only examples of the outputs of the algorithm.

5Note that the corresponding figure in Appendix D has been rearranged by permuting input and output
variables
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Table 4: Optimal 4 x 4 MDS matrices.

Fig.
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6 Instantiation

When we have a formal matrix M in o with all the minors being non-zero polynomials, we
can look for concrete choices of « with a low implementation cost that give a linear mapping
with maximum branch number. For a given matrix A € M, (F2), we can build M (A) by
substituting « by A, and test whether the resulting linear mapping in My (Mn(IFQ)) has
maximum branch number. As seen in Section 2, the linear mapping has maximum branch
number if and only if all square sub-matrices following the n x n blocks are non-singular.
Moreover, since all the blocks are polynomials in A, they commute, and we can compute
the determinants by blocks [Sil00]. Indeed, with I, J subsets of the lines and columns, and
my,j = detg,[o](M);, ;) the corresponding minor in Fy[a], we have:

detF2 (M(A)HJ) = deth (detMn(]Fz)(M(A)u’J)) = detF2 (m[’J(A)).

Therefore, M(A) is MDS if and only if all the my ;(A) (the formal minors evaluated on
A) are non-singular.

Finally, let g4 be the minimal polynomial of A (a minimal degree polynomial such
that pa(A) = 0). We have the following characterization of A

Proposition 1. Let M € M(Fz[a]) be a formal matriz, with formal minors my y, and
A € M, (Fs) a linear mapping.

Then M(A) is MDS if and only if pua is relatively prime with all the formal minors
my.J-

Proof. If ged(pa, mr,7) = 1, there exist polynomials u, v such that ups +vmyr ;=1 from
Bezout identity. In particular

u(A)pa(A) +v(A)my g (A) = v(A)mr s (A) =1,

therefore m; j(A) is non-singular. If this holds for all m; ; then M (A) is MDS.
Reciprocally, we assume that there exist I,J such that p = ged(pa, my,y) is non-
constant. Then p(A) must be singular (otherwise, we have pa = pg with g(A) = 0 which
contradicts the definition of the minimal polynomial p4). Therefore, my j(A) is also
singular and M (A) is not MDS. O O

In particular, if all the minors are of degree strictly lower than n, and 7 is an irreducible
polynomial of degree n, then we can use the companion matrix of = as A, and this yields
an MDS matrix M (A). In this case, A actually corresponds to multiplication in a finite
field. More generally, we can use this construction even if 7 is not irreducible. As long
as 7 is relatively prime with all the formal minors my s, the resulting matrix M (A) will
be MDS. In terms of implementation cost, choosing a trinomial for 7 will result in an
optimal implementation for the evaluation of A: a single xor gate and only wire crossings
in hardware, or a shift and conditional xor in software.

6.1 With inverse

When we also use the inverse of a to construct the matrix M, the coefficients of the matrix,
and the formal minors m;y_y, will be Laurent polynomials in Fa[cr, «~1], rather than plain
polynomials. In order to instantiate such a matrix M, we must use a non-singular matrix
A, and we still have the property that M(A) is MDS if and only if all the m; j(A) are
non-singular. Moreover, we can write my j = 7y j X o*’7 with 7y ; a polynomial (z; ;
is chosen to minimize the degree of M s), and mr j(A) is non-singular if and only if
my,7(A) is non-singular, because A is necessarily non-singular. Therefore, we can still use
a characterization based on the minimal polynomial pa: M(A) is MDS if and only if 4
is relatively prime with all the my ;.
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6.2 With independent multiplications

When we use the independent multiplications extension of the algorithm, the result is a
formal matrix with coefficients in Fs[a, 3, 7], whose minors are non-zero polynomials in
Fa[a, 8,7]. Since the polynomial computations only make sense when «, 8 and v commute,
we will instantiate it with linear mappings that commute. If we use mappings A, B, C
with AB = BA, AC = CA, BC = CB, polynomials evaluated in A, B, C' commute, and
M(A, B,C) is MDS if and only if all the m ;(A, B,C) (the formal minors evaluated in
A, B, () are non-singular.

In particular, if we instantiate a, 5 and ~y as powers of a fixed linear mapping A, we
can use the previous results to characterize the mappings A that yield an MDS matrix
from their minimal polynomials.

6.3 Low xor count instantiations

In practice, we want to choose A so that M (A) is MDS, and A also has a low implementation
cost. Following the results of Beierle, Kranz, and Leander [BKL16], we know that
multiplication by an element « in GF(2") can be implemented with a single bitwise xor if
and only if the minimal polynomial of « is a trinomial of degree n. Moreover, their proof
can be generalized to arbitrary mappings A in M, (Fs), with the following result: if A can
be implemented with a single xor then either A is singular (i.e. a|pa), A+ 1 is singular
(i.e. (a+1)|pa) or 4 is a trinomial of degree n.

Since all the matrices we list in Table 3 and Table 4 have o and a+1 as a minor, the only
interesting candidates with an xor count of one are matrices with a minimal polynomial
that is a trinomial of degree n. Therefore we concentrate our search on companion matrices
of trinomials. (For a given trinomial ¢, there are many different matrices with an xor count
of one and t as minimal polynomial, but they are either all MDS or all non-MDS, because
of Proposition 1.)

We now instantiate the matrices from Table 1. We define Ag the companion matrix of
X8+ X2 +1 over Fy; As_l has minimal polynomial X8 + X6 4 1:

Ag = At =

HOOOOOOO
[elelelelelelelg
HOOOOoO~O
[elolelelel Jole]
[eclelelel dolele]
[eclelel Holelele]
[elel Hololelele}
el elolelelele}]
[clolelelelel ]
[elelelelel Jel oy
[eleleleldelele}]
[olelelolololw}
[elelHololelele)
(el elolelelele)
HOOOOOOO
[oleleleleleleliy

Similarly, we define A4 the companion matrix of X* + X + 1 over Fy; AZl has minimal
polynomial X4 + X3 4 1:

8168 18
Ay = 0010 Ay = 0100
1100 0010

It is not generally the case, but for the matrices of Table 1, Ag, Ay, Agl and All are
enough to instantiate the results of the algorithm over F§. For instance, over Fo[X]:

The trinomials and their factorization are
X84+ X +1=(X*+X+1

(XO+ X5+ X?+ X2+ 1),
X8+ X%2+1=(X*+X+1)?

)
( )%
X4+ X34+ 1=+ X+ D)X+ X3+ X2+ X +1),
X84 X4 41=(X24+X+1)4

X X041 = (X3 4+ X2+ D) ( X+ X+ X3+ X2 4 1),
X84 X041 =(X*+X241)2,

X4 XT4+1=(X?+ X+ DX+ X+ X3+ X +1).
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In particular, there are only 2 trinomials which factorize to degree 4 polynomials:
X84+ X241 =(X*+ X +1)2and X8+ X0 +1=(X*+X3+1)2

2231
. 83 |1364
The minors of M, ¢ = 314a|3®
3213
{LX, X+1, X2 X2+ 1, X2+ X, X2+ X +1, X3 X3+ 1, X3+ X, X3+ X +1, X3+
X2+ 1L, X2+ X2+ X, X2+ X2+ X +1}
whose factors are
(X, X+1L, X3+ X+ 1, X2+ X +1, X3+ X2+ 1}
None is of degree greater than 3, therefore they are all relatively prime with both
X® 4+ X? +1and X® + X4 1. Picking either a = Ag or a = Ag" therefore yields
an MDS matrix over F§. A full implementation is given in Appendix C.
5713
4611

1357
1146

(X, X+1L, X3+ X+ 1, X2+ X+ 1, X3+ X2+ 1, X + X3+ 1)

The factors of the minors of Mi’: =

The only factor of degree 4 is X* + X3 + 1, so there is at least one minor which
is not relatively prime with X® + X6 + 1, but they are all relatively prime with
X%+ X2 + 1. Picking o = Ag therefore yields an MDS matrix over F3.

The other results are obtained in a similar fashion.

g1 p+1 1
6.3.1 Instantiation of M, = Y adl A ai‘_‘,';ll
B+~y 1 B4+v+1 ~+1

Following Section 6.2, we first instantiate all the linear mappings as powers of single .
Using the sage code given in Appendix B, we found that setting 5 = a~! and v = o2 still
gives an MDS matrix. The factors of the minors of the resulting matrix are:

X, X4+1L, X2 4+ X4+ 1L, X3+ X+1, X3+ X2+ 1, X4+ X +1

The only factor of degree 4 is X* + X3 + 1, therefore o = A™! yields an MDS matrix over
FS.

Conclusion

Like the parallel work of [KLSW17], our results show that global optimization of an MDS
matrix is much more powerful than local optimization of the coefficients. Moreover, our
approach allows to find new MDS matrices optimized for a global lightweight implementa-
tion, while the straight line tools used in [KLSW17] can only find a good implementation
of a given matrix. As can be seen in Table 1, our approach leads to even better results. In
particular, the best 4 x 4 MDS matrix with 8-bit words previously reported has an xor
count of 72, while our best result has an xor count of only 67. Moreover, our approach
can take into account the depth of the circuits. When considering results with a depth
of 3 (the minimal depth possible), we still have an MDS matrix with xor count only 77
which would be challenging with straight line program optimizations. Finally, we tried to
run the straight line program tools on the binary matrices found by our search, but the
implementations found by the tools are not as good as ours.
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A

Algorithm

Algorithm 1 Algorithm to search for MDS circuits.

1:

© P NPT

e
Wy Q

14:
15:
16:
17:

18:
19:
20:
21:

22:

23:

24:

25:

function Finp MDS
Input: MAX_WEIGHT, MAX_DEPTH, weights of operations. Output: All MDS matrices
of weight lesser than MAX_WEIGHT.

TestedIDs +— NULL
UntestedStates < Identity
CurrentWeight < 0
for state € UntestedStates with state.weight = CurrentWeight do
if TestedIDs.contains(state.ID) then
continue
if state.isMDS() then
state.print())
continue > Children are equivalent or of bigger weight.
state.spawnChildren(UntestedStates)
if {UntestedStates with CurrentWeight} = () then

CurrentWeight < CurrentWeight + 1
return

function sTATE.sPAWNCHILDREN(UntestedStates)
for op € opSet do
childState < state.addOp(op)
if childState.weight > MAX_WEIGHT or childState.depth > MAX_DEPTH
then
continue
if op = COPY and childState.notInjective() then
continue

UntestedStates.append(childState)
return

function sTATE.PRINT Prints the state as a matrix, gives its weight and operations.

function sTaTE. 1sMDS Tests if the function is MDS by computing the determinant of
all its square submatrices.

function sTaTE.NOTINJECTIVE Tests if the function is injective by computing its
determinant (there are subtilities since some of the words are discarded in the end).

function sTATE.ADDOP(op, from, to) Returns the child state from the father state
and the new operation. Computes the child’s weight.
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B Instantiation

We can use the following sage program to instantiate the constructions of Section 6.

R.<a,b,c> = PolynomialRing(GF(2))

M = Matrix([[b,1,b+1,1], \
[c,a,c,a+c], \
[c,a+1l,c+1l,a+c+1], \
[b+c,1,b+c+1,c+1]1])

#M = Matrix([[a,a,a+1,1], \

# [1,a+1,a*x(a+1),a"2], \

# [a+1,1,a"2,a"2], \

# [a+1,a,1,a+1]])

#M = Matrix([[a"2+1,a"2+a+1,1,a+1], \
# [a=2,a"2+a,1,1], \

# [1,a+1,a"2+1,a"2+a+1], \
# [1,1,a"2,a"2+a]])

#M = Matrix([[a+1,a,1,a+1], \

# [a,a+1,1,1], \

# [1,a+1,a"2+a,a"4], \

# [1,1,a"2,a"2+a]])

lambda m: m.is_invertible() \
if hasattr(m,"is_invertible") \
else not m.is_zero()

all minors = lambda M : [ m for k in range (M.nrows()) \

for m in M.minors(k+1) ]
minors_factor = lambda M : { p for m in all_minors(M) \

for p,_ in factor(m)}

is_MDS = lambda M : all(can_invert(m) for m in all_minors(M))
print is_MDS(M)

can_invert

MS = MatrixSpace(GF(2),8,8)
MS.is_field = lambda proof=True: False

A_8 = Ms([[o,1,0,0,0,0,0,0]1,[0,0,1,0,0,0,0,0], \
(0,0,0,1,0,0,0,01, [0,0,0,0,1,0,0,0], \
fo,0,0,0,0,1,0,01, [0,0,0,0,0,0,1,0], \
(0,0,0,0,0,0,0,1],[1,0,1,0,0,0,0,011)

A8 =A8"-1

print is_MDS(M.substitute({a:A_8,b:A_87-1,c:A_87-2}))
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8,3
4,6

The best MDS 4 x 4 MDS matrix over 8-bit word that we found can be implemented with

C Instantiation of Mi’g’

Sébastien Duval and Gaétan Leurent
67 bitwise xors. It is obtained from

binary matrix:

| a)<<8) | d;

c = x>>16, d = x>>24;
| b)<<8)

((x)>>7))

= x, b = x>>8,

b:
d

It can also be implemented with the following C code. The shifts are implicit and the
uint8_t a

linear function LIN corresponds to Ag. Other matrices can be implemented in a similar

way.
return ((((((uint32_t)c<<8)

#define LIN(x) (ROT((x)) ~ (((x)>>1)&1))

#define ROT(x) (((x)<<1)
uint32_t MDS(uint32_t x) {

}
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D Figures

D.1 3 x 3 matrices
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D.2 4 x 4 matrices
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Y

Figure 12: 4 x 4 MDS matrix with depth 4: Figure 13:
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