RepuCoin: Your Reputation is Your Power

Jiangshan Yu *, David Kozhayaf, Jeremie Decouchant?, and Paulo Esteves-Verissimo*
* Monash University, Australia.
t ABB Corporate Research, Switzerland.
YT, University of Luxembourg, Luxembourg.

Abstract—Existing proof-of-work cryptocurrencies cannot tol-
erate attackers controlling more than 50% of the network’s
computing power at any time, but assume that such a condition
happening is “unlikely”. However, recent attack sophistication,
e.g., where attackers can rent mining capacity to obtain a ma-
jority of computing power temporarily, render this assumption
unrealistic.

This paper proposes RepuCoin, the first system to provide
guarantees even when more than 50% of the system’s comput-
ing power is temporarily dominated by an attacker. RepuCoin
physically limits the rate of voting power growth of the entire
system. In particular, RepuCoin defines a miner’s power by its
‘reputation’, as a function of its work integrated over the time
of the entire blockchain, rather than through instantaneous
computing power, which can be obtained relatively quickly
and/or temporarily. As an example, after a single year of
operation, RepuCoin can tolerate attacks compromising 51%
of the network’s computing resources, even if such power
stays maliciously seized for almost a whole year. Moreover,
RepuCoin provides better resilience to known attacks, com-
pared to existing proof-of-work systems, while achieving a high
throughput of 10000 transactions per second (TPS).

1. Introduction

Bitcoin [40] is the most successful decentralized cryp-
tocurrency to date. However, despite its enormous com-
mercial success, many weaknesses have been associated
with Bitcoin, including weak consistency, low transaction
throughput and vulnerabilities to attacks, such as double
spending attacks [27, 3], eclipse attacks [20, 23], selfish-
mining attacks [18, 47], and flash attacks [11].

Several promising existing solutions [34, 45, 14, 48,
19] targeted the low throughput problem of Bitcoin. Nev-
ertheless, these solutions either provide only probabilistic
guarantees about transactions (weak consistency) [19] or
can provide strong consistency but suffer from liveness
problems even when an attacker has a relatively small
computing power [30]. Moreover, the resilience of such
solutions against attacks, such as selfish mining attacks
where an attacker has more than 25% of the computing
power [3, 18, 47, 42], remains unsatisfactory. In addition, all
existing contemporary proof-of-work (PoW) based variants
of Bitcoin (e.g. [2, 44, 19, 30]) rely on the assumption
that an attacker cannot have more than 33% or 50% of

computing power at any time. However, with the sophis-
tication of attacks mounted on Bitcoin, e.g., flash attacks
(a.k.a. bribery attacks), where an attacker can obtain a
temporary majority (>50%) of computing power by renting
mining capacity [11], all these systems would fail. In brief,
existing solutions that address the weaknesses associated
with Bitcoin still suffer from significant shortcomings.

This paper addresses these shortcomings —liveness of
current high-throughput solutions, and vulnerability to at-
tacks such as selfish mining and flash attacks. In particular,
we propose RepuCoin, the first system that can prevent
attacks against an attacker who may possess more than
50% computing power of the entire network temporarily
(e.g., a few weeks or even months). Our proof-of-concept
implementation shows that while providing better security
guarantees than predecessor protocols, RepuCoin also en-
sures a very high throughput (10000 transactions per sec-
ond). In practice, Visa confirms a transaction within seconds,
and processes 1.7k TPS on average [51]. This shows that
RepuCoin satisfies the required throughput of real world
applications.

Design principle. Our system addresses the aforemen-
tioned challenges by defining a new design principle, called
proof-of-reputation. Proof-of-reputation is based on proof-
of-work, but with two fundamental improvements.

First, under proof-of-reputation a miner’s decision power
(i.e., the voting power for reaching consensus in the sys-
tem) is given by its reputation. A miner’s reputation is
not measured by what we call the miner’s ‘instantaneous’
power, i.e., the miner’s computing power in a short time
range, as in classic PoW. Instead, the reputation is computed
based on both the total amount of valid work a miner has
contributed to the system and the regularity of that work,
over the entire period of time during which the system has
been active. We call this the miner’s ‘integrated power’. So,
when an attacker joins the system at time ¢, even if it has a
very strong mining ability that is, high computational (i.e.,
instantaneous) power, it would have no integrated power at
time ¢, or even shortly after, as it did not contribute to the
system before .

Second, when a miner deviates from the system specifi-
cations, RepuCoin lowers the miner’s reputation, and hence
its integrated power, in consequence of this negative con-
tribution. This prevents a powerful malicious miner from
attacking the system repeatedly without significant conse-

quences. In contrast, classic PoW systems either do not
support any feature for punishing miners that do not abide by
system specifications, or they punish these miners by merely
revoking their rewards — this does not prevent them from
attacking the system again immediately after.

To improve the robustness and the liveness of the system,
we further improve the elegant concept of decoupling leader
election from transaction serialization. In its original form
(as proposed in Bitcoin-NG [19] and adopted by ByzCoin
[30]), a miner creates keyblocks by solving the Bitcoin
mining puzzle and may become a leader for a period of
time. A leader can then verify and include transactions into
microblocks directly. While providing a good solution to the
throughput problem of BitCoin, decoupling leader election
from transaction serialization as suggested by [19, 30] also
allows any miner that created a keyblock to disrupt the
system’s liveness temporarily, e.g., by becoming a leader
and not issuing any microblocks. The success rate of such a
miner is proportional to the miner’s instantaneous power. In
other words, a malicious miner with x% computing power
can reduce the throughput to (100-x)% of the average value.
We improve on this situation, by selecting leaders at random
only from the top reputable miners. To further broaden the
reputation reward for ‘good’ actions, RepuCoin splits the
transaction fees carried in the microblocks into two parts.
The keyblock creator will obtain one part of the transaction
fees at an amount determined by its reputation, and the
randomly selected leader gets the remainder.

RepuCoin provides deterministic guarantees on trans-
actions by employing a reputation-based weighted voting
consensus. Consensus is carried by a group formed of the
top reputable miners. Every member of that group has a
weight associated to its vote. The weight of a member’s vote
is the percentage of that member’s reputation w.r.t. the entire
group’s reputation. Such weights ensure that one’s voting
power depends, not on the sheer instantaneous (computing)
power — which is the enabler of flash attacks— but on
the integrated power, which both takes time to build, and is
built on miner’s honesty and historical performance. In fact,
quantifying a miner’s voting power based on its performance
in the entire blockchain highlights the self-stabilizing char-
acteristics of our approach: qualitatively, to acquire power
in RepuCoin a miner is urged to exhibit normal, honest
behavior; quantitatively, the speed with which a miner can
gain power is dictated by the regularity (rhythm) and amount
of that miner’s contributions in the entire blockchain.

To illustrate the robustness of the design choices under-
lying RepuCoin, we present our analysis of the security pro-
vided by the mechanisms used in RepuCoin. In particular,
we show that achieving the safety and liveness correctness
conditions of the reputation-based weighted voting consen-
sus protocol is physically guaranteed by the growth rate of
the proof-of-reputation function, and the rate of decision
power growth of the entire system is bounded. In addition,
we present experiments exemplifying concrete values for the
decision power growth in several situations, showing that the
network achieves very high stochastic robustness against at-
tacks on its liveness or safety. For instance, we demonstrate

that after a single year of operation, RepuCoin is resilient
to all attacks that compromise 26%, 33%, and 51% of the
network’s computing resources, even if such power stays
maliciously confiscated for almost 100 years, 2 years, and
1 year respectively. Also, in the same setting, even if an
attacker can afford to seize a huge computational power for
a specific period, due to the cost of such attacks (e.g., 90%
for up to 3 months), it will not break RepuCoin. Moreover,
we provide an analysis of the non-rationality of infiltration
attacks, with a comparison of the cost of attacking different
systems. Furthermore, we provide in detail how RepuCoin
prevents known attacks.

In short, RepuCoin provides significant resilience to
attacks that may instantaneously break all known PoW based
systems [30, 38, 2, 22, 31].

2. Background and Related Work

Consensus is the key component and backbone of
Blockchains, which use two main types of consensus mech-
anisms, namely proof-of-X based consensus, and Byzantine-
fault tolerant (BFT) consensus. The former is generally per-
missionless, where anyone can join and leave the potentially
large consensus group; and the latter is permissioned, where
the set of participants running consensus is small and pre-
defined.

Proof-of-X based consensus has gained much interest
since the use of Proof-of-work (PoW) in Bitcoin, already
described in the introduction. Proof-of-stake, which was first
discussed in a Bitcoin community forum [46], has been
proposed to use virtual voting to provide quicker transaction
confirmation. Proof-of-space (a.k.a. proof-of-capacity) [37,
43] has been proposed to use physical storage resources to
replace computing power in the proof-of-work mechanism.
Proof-of-coin-age [29] shares a similar concept as proof-
of-stake, as participants also perform virtual “mining” by
demonstrating possession of a quantity of currency. Proof-
of-activity [8] puts every coin owner into a mining lottery;
periodically, winners are randomly determined by transac-
tions. A winner is expected to respond with a signed mes-
sage within a small time interval to claim its award. Proof-
of-elapsed time [25], proposed by Intel and implemented
as a Hyperledger project, uses Intel SGX enabled CPUs
to do virtual voting through a random sleeping time to
replace the proof-of-work mechanism. Proof-of-membership
system in ByzCoin [30] creates a consensus group formed
by recent PoW-based block creators, and this group runs a
BFT protocol for reaching consensus. However, it is shown
that ByzCoin still suffers from selfish mining attack [30],
and that it can permanently lose liveness during reconfigu-
ration, if too many miners disappear in a short time [26] or
can repeatedly lose liveness temporarily [30]. Unfortunately,
none of the permissionless consensus protocols described is
able to provide a meaningful security guarantee when an
attacker is able to control a majority of mining power.

Notable state of the art of BFT protocols include
PBFT [13], Zyzzyva [32], MinBFT/MinZyzzyzva [52], and
ReBFT [15].

PBFT [13] proposes a Byzantine fault-tolerant algorithm
that has an acceptable performance in practice. The protocol
is based on a primary replica that orders and propagates
client requests using Byzantine quorums. To tolerate a
primary replica being faulty, the protocol allows replicas
to trigger view changes through which a new replica is
selected as the primary of the view. PBFT is indulgent,
hence guarantees safety properties regardless of the system’s
synchrony, and assumes F=n-1/3 Byzantine faulty replicas
during the lifetime of the system, attackers cannot forge
MACs. PBFT also allows faulty replicas to recover. This
allows the system to tolerate any number of faulty nodes
during the system’s lifetime given that no more than n-1/3
are simultaneously faulty in a small vulnerably window.

Zyzzyva [32] is a speculation-based BFT protocol
that reduces cryptographic over-heads and increases peak
throughput for demanding workloads compared to tradi-
tional state machine replication. In Zyzzyva [32] replicas
execute client requests speculatively, i.e., without running
an agreement protocol on the order of execution of these
requests. Clients on the other hand, observe the history
information carried within replica replies to determine if the
replies and history are stable and guaranteed to be eventually
committed. Consequently, clients only use those replies with
a stable history. Clients can speed the process of converging
to stable histories by either supplying helpful information
within the current view or by triggering a view change.
However, a recent analysis [1] identified a safety violation
in Zyzzyva.

MinBFT/MinZyzzyva [52] presents non-speculative
and speculative BFT algorithms that are efficient in terms of
three metrics: number of replicas, trusted service simplicity,
and number of communication steps. In particular, MinBFT
protocols require 2f+1 replicas in total rather than 3f+1.
This reduction is achieved by relying on a simple trusted
service - a trusted monotonic counter, used to associate
sequence numbers to each operation. Besides being simple
in design, an important aspect of this trusted entity that
allows it to be implemented even on COTS trusted hardware
is a clear simple interface for interaction. The interface
provides operations only to increment the counter and to
verify if other counter values are correctly authenticated. In
nice executions, the proposed protocols run in the minimum
known number of communication steps for non-speculative
(4 steps) and speculative algorithms(3 steps).

ReBFT [15] is an approach that relies on a passive-
replication paradigm to minimize the number of non-faulty
replicas that participate in system operations in the absence
of faults. This reduction of the resource footprint of BFT
protocols does not jeopardize the system’s liveness when
faults actually occur. This is achieved by defining two oper-
ation modes: a normal mode (when no faults are detected)
and fault-handling mode (when faults are detected). In the
normal mode only a subset of replicas is active. Upon the
suspicion of some fault the remaining replicas are activated.
Besides reducing the resources used, ReBFT does not re-
quire a complete design of a BFT system. In fact, it could
be introduced as a subprotocol in existing BFT protocols

such as PBFT [13] and MinBFT [52].

3. System and Threat Model

3.1. System Context

We adopt the concept of separating the proof-of-work
(keyblocks) from committing transactions (microblocks)
[19]. However, unlike previous work we further refine this
separation as follows. As in Bitcoin-NG, miners in Re-
puCoin solve cryptographic puzzles to create keyblocks.
However, in RepuCoin the miner who creates a keyblock
is not necessarily the one who commits transactions into
microblocks. Instead, one of the most reputable miners
is randomly elected to commit transactions. The keyblock
creator obtains a share of the transaction fees according to
its reputation, and the selected leader gets the remaining
transaction fees as a reward for its work.

A miner can build its reputation by producing work at
a high enough rhythm, and can also lose its reputation if it
did not perform as expected (see §4.3 for details). In this
case, the miner’s reputation is affected negatively depending
on the slowdown. This not only eliminates attacks where a
malicious miner becomes a leader and makes the system lose
liveness by not issuing any microblock, but also incentivises
miners to increase their reputation to gain extra profit.

All participants of the system, no matter whether they
are miners or mobile clients, learn about new transactions
and blocks in the same way as in BitCoin and other
blockchains, through a peer-to-peer protocol.

In RepuCoin, we verify and commit microblocks, as well
as decide on the keyblocks to be added to the blockchain,
using Byzantine fault tolerance (BFT) protocols with minor
modifications, as presented in §4.4. Such form of agreement
prevents a malicious leader from double spending a coin,
and resolves potential forks resulting from simultaneously
mined keyblocks. According to Byzantine quorums theory
[36], in order to reach an agreement, classic BFT protocols
require votes from at least 2f + 1 nodes', to prevent an
adversary controlling f nodes from breaking the protocol.
In practice, however, an open BFT-based system cannot
guarantee that an attacker will never be able to control
more than f nodes. To enforce the assumption that no more
than f Byzantine nodes are ever involved in a consensus, we
introduce novel mechanisms to make it infeasible, in prac-
tice, for an attacker to seize f nodes within the consensus
group, as detailed below.

3.2. System Model

RepuCoin is a system composed of a non-predetermined
number of nodes, called miners. Each miner has a reputation
score, which determines that miner’s ability of obtaining
rewards. A miner’s reputation score is based on the correct-
ness of its behavior and its regularity in adding blocks to the
existing chain, hence correlated with the miner’s computing

1. Hybrid BFT protocols with trusted hardware components, such as
MinBFT [52], only require votes from f + 1 nodes.

power. RepuCoin considers a network that is untrustworthy
and unreliable. In addition, we assume the network has
partial synchrony [16].

To address the above-mentioned uncertainty (Sec-
tion 3.1) in the definition of the consensus quorums and
outcomes for open BFT-based protocols, RepuCoin resorts
to two main techniques. First, we rely on the notion of
having a consensus group, which is a subset of the miners
denoted by X. This group is capable of controlling the oper-
ations of RepuCoin, namely running the consensus protocol.
The members of the consensus group are selected from
the miners with the highest reputation scores. A miner’s
reputation score is based on the correctness of its behavior
and its regularity when adding blocks to the existing chain,
which is correlated with the miner’s computing power. Sec-
ond, the voting rules in the underlying consensus schemes
are not nominal, but based on a novel reputation-based
weighted voting. To this end, we refine the definition of
quorums as follows: reaching agreement not only requires
votes from 2 f + 1 nodes, but also demands that these nodes
collectively have more than % of the cumulative reputation
of the consensus group.

The consensus group size is defined as the minimum
number of miners with enough decision power (i.e., cumu-
lative reputation) to ensure safe and live control of the sys-
tem, given our quorum definition. Therefore, the consensus
group members are obviously the miners with the highest
reputation scores. This stratagem has two virtuous effects.
First, RepuCoin’s safety is guaranteed by consensus, which
can be viewed as a deterministic control orchestrated by
a set of miners with overwhelming cumulative reputation.
By definition, such reputation itself gives an expectation
of the correct behavior of these miners. Second, openess
and fairness of RepuCoin relies on X being parametric and
agnostic of identity of network members, as we show in
Section 4.2. At configuration time, the size of X is calculated
by meeting a target percentage of the overall decision power,
and so it can be large or small, depending on the mining pool
composition, but not pre-determined. On the other hand, as
miners gain or lose reputation, they can (by merit or demerit)
enter and leave the consensus group.

3.3. Threat Model

We consider a malicious (a.k.a. Byzantine) adversary,
who can arbitrarily delay, drop, re-order, insert, or modify
messages. We also consider collusions of an arbitrary num-
ber of miners, to model a malicious real organization capable
of deploying a significant number of virtual miners under
its direct dependence. We assume the security of the used
cryptographic primitives, including a secure hash function
and a secure signature scheme.

Such adversary can potentially control as many miners
as it wishes, and coordinate them in real time with no delay.
In consequence, the consensus group can be infiltrated by
adversaries. However, we assume that the adversary has
the ability to control at most f < LlX‘T_lj group members

whose collective reputation is less than % of the cumulative
reputation of the members of consensus group X.

The coverage of this assumption, i.e., how to constrain
the adversary’s ability of infiltrating the consensus group, to
meet the aforementioned assumption, is explained in Sec-
tion 4.3. The dynamics of the reputation mechanism allow
the consensus group controlling RepuCoin to be infiltrated
with safety, making it practically infeasible for an attacker

to break the system (as shown in Table 3 of Section 6).

4. RepuCoin

In this section, we present details describing the different
concepts and modules underlying RepuCoin. In particular,
Section 4.1 details the different types of blocks, the leader
election mechanism, and the reward system proposed. Then,
we present our reputation-based weighted voting mechanism
in Section 4.2, and the reputation system in Section 4.3.

4.1. Block Mining and Reward System

As mentioned earlier, in order to support higher through-
put rates, RepuCoin decouples leader election (keyblocks)
from transaction serialization (microblocks).

Keyblock and Leader Election. Miners solve Bitcoin-
like puzzles to create keyblocks, and receive rewards corre-
sponding to keyblock creations. However, the keyblock cre-
ator is not necessarily the leader that commits transactions
into microblocks. Rather, the leader is randomly elected
from the reputable miners. The puzzle is defined as follows:

H (prev_keyblock_hash||Nonce|| PK) < target

where H(-) is a cryptographically secure hash function,
prev_keyblock_hash is the hash value of the previous
keyblock, PK is the miner’s public key, which the miner’s
reputation score R is associated with, and target is a target
value defined by the system. (For simplicity, we use repu-
tation score and reputation interchangeably in this paper.)
RepuCoin solves forked chains on the fly by dynamically
forming the consensus group and agreeing on which chain to
choose. The consensus group members are the top reputed
miners in the mining network. The reputation score of
miners can be calculated by using data from the blockchain,
and is maintained locally by each miner. When different
miners have the same reputation, a naive solution would
be to order them according to their public key PK (a.k.a.
address). However, this gives a miner with small PK an
advantage. To avoid this, in RepuCoin, miners with the
same reputation score are ordered by H(PK, R), where
reputation R (and therefore the hash value) is updated each
time a new keyblock becomes part of the blockchain.
Each time a new keyblock is created, the creator pro-
poses it to the consensus group. The group verifies the
received keyblocks, and runs the underlying Byzantine
agreement protocol to decide which keyblock to choose
(if multiple conflicting keyblocks are proposed). We call
a keyblock that is agreed upon and signed by the group a

pinned keyblock. A pinned keyblock is final and canonical,
it defines the unique global blockchain from the very first
block (known as the genesis block) up to the pinned key-
block. All keyblocks that conflict with a pinned keyblock
are considered invalid. New keyblocks are mined based on
the hash value of the previous pinned keyblock. The format
of a pinned keyblock is as follows:

keyblock keyblock pin

‘ prev_keyblock_hash | Nonce | PK | R | K_sig | sig_keyblock_agreement ‘

The (new) keyblock_hash is the hash of a pinned keyblock,
i.e., all the material in the frame above, where K _sig is
a signature on the hash value of (prev_keyblock_hash,
Nonce, PK, R), and sig_keyblock_agreement is the
signed agreement from the consensus protocol on commit-
ting this keyblock. The first keyblock is called the genesis
block (as in Bitcoin), which is defined as part of the system.
Note that to verify a keyblock, consensus group members
check the validity of K_sig, the solution to the mining
puzzle, and the reputation R.

Each time a new keyblock is pinned, the next leader
— which verifies transactions and commits them into mi-
croblocks — is selected as follows:

st.zj € X A j=H(K_sig;) mod |X]

li =T

where [; is the i-th leader determined by the hash value
H(K_sig;) of the signature K_sig; contained in the i-th
pinned keyblock, and X is the set of miners constituting
the consensus group. Since a cryptographically secure hash
function is considered a random oracle, the leader is se-
lected randomly in the consensus group with probability @.
However, one concern with this leader selection process is
that consensus group members can determine the following
leader before pinning a block. Thus, a consensus member
interested in getting more rewards would only accept (decide
to pin) a block that makes itself the new leader. To address
this issue, a simple approach is to determine a leader by
using H (sig;) instead of H (K _sig;), where sig; is a sig-
nature on the current length of the blockchain issued by
the keyblock creator. Note that it is important to issue this
signature only after the keyblock has been pinned by the
consensus group. This way, each consensus member would
accept a block with equal probability.

Remark 1. Note that in consensus schemes, a sufficient
number of signed votes determines an agreement, and
only one valid agreement can be reached. However, dif-
ferent combinations of (a sufficient number of) signed
votes can be used to form this agreement. So, even
though the agreement is unique, the collection (i.e.,
sig_keyblock_agreement) of signed votes may have
different valid values. This results in different valid
prev_keyblock_hash on the same keyblock.

Hence, miners may solve their puzzles based on
different valid prev_keyblock_hash. However, this
will not form a fork in the system, as only one of

the valid solutions to the puzzle will be validated by
the consensus group, as detailed in §4.2. In addition,
upon reaching the agreement on the next keyblock, the
prev_keyblock_hash is considered the only valid hash
value of the previous pinned keyblock, and only this
value will be recorded in the blockchain.

Moreover, the reason why miners in RepuCoin
solve puzzles based on prev_keyblock_hash rather
than based on H (K _sig) is the following. Consensus
group members learn H (K _sig) earlier than other
miners in the system, and this gives these members
extra mining advantage, if the puzzle is only based on
H(K_sig). Using prev_keyblock_hash in the puzzle
prevents these members from getting such advantage.

Microblock. The current leader commits transactions
into microblocks. To prevent double spending, each mi-
croblock is proposed to the consensus group before being
accepted, and hence committing the transactions it encom-
passes. The group members verify the microblock, and
initiate a consensus instance to agree on that microblock,
which upon agreement is called a pinned microblock.

The format of a pinned microblock is shown below:

microblock microblock pin

‘ H(K_sig) | prev_microblock_hash | TXs | M_sig | sig_microblock_agreement ‘

where H(K_sig) is the hash value of the
K_sig contained in the current pinned keyblock,
prev_microblock_hash is the hash value of the previous
pinned microblock; 7' X s is a set of transactions organized
as a Merkle tree, M _sig is a signature on the hash value
of (keyblock_hash,prev_microblock_hash,TXs), and
sig_microblock_agreement is the signed agreement from
the consensus protocol on the microblock. In this sense,
in order to verify a microblock, consensus group members
check the validity of M _sig, verify the hash values of the
keyblock and the previous microblock, and verify the set
of transactions 7' Xs. If invalid transactions are detected,
then the leader is punished, as presented in §4.3. The (new)
microblock_hash is the hash of the microblock (without a
pin). In other words, the ‘microblock pin’ presented in the
above frame is not part of the hash function’s input. In this
way, a leader can issue microblocks without waiting for the
agreement, which optimizes the throughput of RepuCoin.
The blockchain structure containing both keyblocks and
microblocks is presented in Figure 1.

Reward system. In RepuCoin there are two types of
rewards, namely mining rewards and transaction fees. Upon
successfully mining a keyblock, a miner is entitled to get a
reward, precisely if that miner’s keyblock gets pinned. This
mining reward is of a pre-set amount.

Every transaction within the microblock carries a trans-
action fee. The randomly elected leader shares the transac-
tion fees with the miner of the pinned keyblock according
to Algorithm 1. Roughly speaking, the miner’s reputation
determines the number of microblocks from which it can
obtain transaction fees; the leader gets the rest. However, a
leader that can determine the microblocks from which it gets

keyblock_hash; >

keyblock_hash; \ keyblock_hash; 1
prev_keyblock_hash

prev_keyblock_hash prev_keyblock_hash

Nonce; Nonce; 1 Nonce; 2
PK; PKi1 PKi 2
R; Rit1 Rit2
K_sigi K_sigis+2

K _sigit1
sig_keyblock_agmnt; 1 \ sig_keyblock_agmnt; ;o

. microblock_hash; microblock_hash; microblock_hash; ;>
\ H(K _sigi) 1 H(K _sig;) \ H(K _sig;)
prev_microblock_hash prev_microblock_hash prev_microblock_hash

TXs TXs TXs
M_sig M_sig M_sig

sig_keyblock_agmnt;

sig_microblock_agmnt sig_microblock_agmnt sig_microblock_agmnt

Figure 1: A figure presentation of the blockchain structure.
This example contains three pinned keyblocks (i, ¢ + 1,
and ¢ 4+ 2), and three pinned microblocks (j,7 + 1 and
7+ 2). Microblock j and j + 1 were created by the leader
determined by keyblock ¢, and microblock j+2 was created
by the leader determined by keyblock ¢ + 1.

transaction fees, may optimize its income by putting transac-
tions with higher transaction fees into these microblocks. To
avoid this unfair game, RepuCoin uses the hash value of the
next pinned keyblock, i.e., the keyblock pinned at the end
of the new epoch, to decide which pinned microblocks are
allocated to the miner and which go to the leader. Since the
hash value of the next pinned keyblock cannot be predicted,
RepuCoin eliminates the above situation.

More precisely, let M = {mg,m1,...,m,_1} be the
sequence of n microblocks that are pinned by the consensus
group. Let R € [0, 1] be the reputation score of the miner
which creates the (i—1)-th pinned keyblock. The transaction
fees contained in the set M’ and M"” of microblocks are
shared between the miner of the (¢ — 1)-th pinned keyblock
and the leader, respectively, as shown in Algorithm 1.

Algorithm 1 Reward sharing algorithm

Input: The sequence M = {mg, m1, ..., my—1} of microblocks pinned in the
(i — 1)-th epoch, the signature K_sig; contained in the i-th pinned keyblock,
and the reputation R of the miner who created the (¢ — 1)-th keyblock.

Output: Two subsets M’, M’ C M of microblocks, where transaction fees contained
in M/ (resp. M’’) are allocated to the miner (resp. the leader) as reward.

i’ = H(K_sig;) mod n

: while k < R - n do
j=14 +k modn
M,:M’U{m]‘}
k=k+1

: end while

.MII:M MI

WRIDNE LN

The way transaction fees are shared between keyblock
creators and leaders motivates miners to increase their rep-
utation. First, keyblock creators with higher reputation gain
higher shares of rewards. Second, highly reputed miners
constitute the consensus group; hence they can become
leaders and get shares of transaction fees.

Similar to the Bitcoin system, to spend a reward, the
miner simply makes transactions by using the SK which
is associated with the PK contained in the keyblock, and

provides the hash of the keyblock or microblock as an input
of the transaction.

In Bitcoin, a miner needs to wait a maturity period
of 100 blocks to avoid non-mergeable transactions from
forks. In RepuCoin, each pinned keyblock and its underlying
pinned microblocks are canonical, so leaders do not need to
wait for this period to avoid non-mergeable transactions.

Remark 2. With RepuCoin, miners, even the newly
joined ones with initial reputation, will get much more
reward than what they can get in Bitcoin.

There are two types of rewards, namely mining
reward and transaction fees. For the former, every
successful miner, even a new joiner, gets full reward,
like in Bitcoin. For the latter, the miner shares the
transaction fees with the leader of the next epoch.
However, even though the transaction fees are shared
between the miner and the leader, the miner gains more
reward than what it can gain in the Bitcoin system.
The reason for this is that, with RepuCoin, more mi-
croblocks (so transactions) are committed in an epoch,
which is the time period between any two successive
keyblocks. Taking the existing parameter, an epoch is
10 minutes in average. Our analysis in §5.3 shows that
the throughput is about 1000 TPS in RepuCoin, and 7
TPS in Bitcoin. This means that, in total, the transac-
tion fees of 600k transactions will be shared between
a miner and a leader in RepuCoin, according to our
Algorithm 1. In contrast, a miner gets all transaction
fees of only 4200 transactions in average in Bitcoin. So,
even though the miner in Bitcoin gets all transaction
fees, it only earns the fees of 4k transactions, whereas
in RepuCoin, a miner shares the transaction fees of
600k transactions with a leader. Taking the parameter
used in our performance evaluation (§5), even a new
joiner would get 40% shares of the transaction fees.
Thus, with RepuCoin, a new joiner will gain a full
mining reward and transaction fees of roughly 240k
transactions, whereas with Bitcoin, a miner only gets
the transaction fee of roughly 4k transactions. There-
fore, even for a newly joined miner, with RepuCoin,
it gains the same mining reward as with Bitcoin, and
gains transaction fees that are at least 60 times as high
as with Bitcoin.

4.2. Block Pinning

In RepuCoin, we use consensus to pin both keyblocks
and microblocks. Transactions belonging to pinned mi-
croblocks cannot be unrolled at a later point in time. In this
section, we describe in more detail the underlying consensus
mechanism we use to pin such blocks.

Byzantine fault-tolerant consensus algorithms typically
rely on processes voting. A process needs to collect a
quorum of votes on a given value/action for that value/action
to be considered legal by the system. The size of the quorum
is selected in a way that guarantees (i) safety of decisions,
e.g., avoiding conflicting decisions, and (ii) liveness of the

system, i.e., miners should be able to hear eventually a
number of votes on some value/action from a quorum of
miners. It has been shown that in systems, as soon as
% or more of the miners are compromised, an attacker
can make the system inconsistent — an attacker can make
different parts of the system decide differently [36]. In order
to make our system robust to such attacks, we propose
to modify the traditional nominal voting mechanism, i.e.,
hearing from a sufficient number (quorum) of miners, by
requiring as well to hear from a sufficient number of miners
such that their added reputation is above a defined threshold.
Such a modification prevents an attacker from breaking the
correctness of the system directly upon compromising any %
of the miners: it should compromise as well enough miners
that their added reputation is at least % of the total reputation
of the consensus group. Details on how to adapt a chosen

BFT protocol to RepuCoin are presented in §4.4.

Consensus in RepuCoin employs a novel reputation-
based weighted voting mechanism, i.e., rather than treating
each vote from consensus group members equally (e.g., as
in classic Byzantine protocols), the weight of each vote
becomes its reputation over the total reputation of the group.
More precisely, let {x1,..., 2%/} be the consensus group,
and each member z; of the group has its reputation score
R;. The weight of x;’s vote is ﬁ, for all possible z;.
i=1 ?

Instead of only waiting to hear from at least 2f + 1
nominal members to validate a value or an action, it is also
necessary that the collective reputation of those members is
more than % of the total reputation of the consensus group.

Remark 3. Weighted-voting [21] is a classic and well
known concept. The novelty of our weighted-voting
system comes from the way that this weight is defined.
More precisely, the weight of a miner’s vote is given
by this miner’s reputation, i.e., its ‘integrated power’.
In particular, it considers the quantity and regularity of
contributions over the entire blockchain, and provides a
model to punish misbehaved miners (see section 4.3).
In other words, we constrain the evolution of repu-
tation over time. Thus, unlike in traditional systems,
it becomes significantly difficult for an attacker to re-
obtain enough voting power after a deviation, or to
flash-build it like in flash attacks.

The effectiveness of our weighted-voting scheme is
confirmed in our analysis in section 6. For example, it
shows that a 3-month-late-joining attacker needs 90%
computing power of the entire network to successfully
attack the system in one month; this attack becomes
infeasible for 6-month-late-joiners. However, in classic
systems an attacker with 90% computing power can
join at any time and successfully attack the system
quickly.

Consensus Group. As mentioned in Section 3.2,
the size |X| of the consensus group is not pre-determined,

but rather calculated by meeting a target percentage’of
the overall decision power. We select the members of the
consensus group based on our reputation system; namely, the
|X| miners with the top reputations constitute the members.

We define an epoch as the period between any two suc-
cessive keyblocks that become part of the blockchain. Every
epoch possesses a leader, which is the miner that should
issue a maximum pre-specified amount of microblocks. In
every epoch, the reputation of only one miner, the creator
of that pinned keyblock, may gain an extra increase; the
reputation of all other miners would only have a very minor
change according to Algorithm 2, or drops to “0” if they lie
(see Section 4.3). Accordingly, given that f < L‘X‘%J can
be malicious, the members of the consensus group in any
two consecutive epochs can differ by at most f members.
This stability in the members of the consensus group of con-
secutive epochs ensures the safety of consensus decisions.
Namely, at the beginning of a new epoch correct consensus
group members are aware of all committed transactions and
hence do not accept/validate any conflicting transactions
proposed by the new leader.

Committing Microblocks. The leader of the current
epoch, issues transactions in the form of microblocks. After
generating a microblock, the leader initiates a consensus
instance for this microblock proposing an accept to commit
that microblock. Other consensus members will propose
to either accept or decline (by not accepting) this micro-
block, depending on the transactions contained within and
of course their validity. In other words, if transactions within
the micro-block are invalid then members should decline
committing that microblock. The leader continues to issue
microblocks that are proposed to the consensus group for
validation and commitment, until a new leader is elected.

Committing Keyblocks. Upon successfully mining
a keyblock, the miner of that block sends that keyblock to
all members of the consensus group.

Upon receiving a keyblock, this group member initiates
a consensus instance proposing the received keyblock (first
received keyblock in the case when many such keyblocks are
received). As a result, the members of the consensus group
decide on a single keyblock to be part of the blockchain.
The miner of that block is termed as the “winner”. The hash
of the new keyblock output by the consensus decides which
member of the consensus group becomes the leader of the
current epoch as previously mentioned.

A member of the consensus group that successfully
decides on the identity of the new leader stops validating
microblocks relative to the previous leader. Afterwards, that
member initiates a consensus instance to agree on the total
set of committed microblocks. Consensus group members
need to agree on the total set of microblocks, since a
leader is selected from this group. A leader that does not
know the total set of committed microblocks might propose
microblocks that are in conflict with committed ones and

2. Similar to the parameters of other systems, such as the block size of
Bitcoin or the window size of ByzCoin, the target percentage of the overall
decision power is a system parameter that can be reconfigured if necessary.

accordingly lose its reputation, not out of maliciousness but
simply out of lack of knowledge. To avoid this situation,
every member after reaching a decision on the identity of
the new leader submits to consensus the largest sequence
number of microblocks that have been committed along
with a verifiable proof of this claim. Namely we assume
that all consensus algorithms we use are implemented using
digital signatures. As such, having a sufficient number N of
signatures on a decision constitute a proof of its validity. We
say the number N of signatures is sufficient if N > 2f + 1
and if the total reputation of the miners issuing these N
signatures is more than % of the total reputation of the group.

Upon reaching a decision on the new leader and on
the global set of committed microblocks, each consensus
group member also sends a message to notify the winner,
the current leader, and the newly elected leader of this
result. A consensus group member waits to either hear from
consensus or from a sufficient number N’ of other group
members about the identity of the new leader and the global
set of committed microblocks, before it adopts that member
as leader. We say N’ is sufficient if the total reputation of
the issuers of the N’ signatures is more than % of the total
reputation of the group and if N’ > f + 1. In that case,
the current leader simply stops issuing microblocks and the
new leader takes over proposing microblocks.

Optimizing Agreement on Committed Mi-
croblocks. In order to have agreement on the set of commit-
ted microblocks without resorting to a consensus instance,
we propose the following optimization. Due to the PoW, it is
known that mining a keyblock successfully takes a certain
time depending on the mining difficulty (e.g. on average
10 minutes in Bitcoin). If we assume that a leader issues
microblocks to be committed at a pre-specified rate, then we
can assume that on average a leader commits m microblocks
per epoch. Accordingly, all consensus group members do
not validate or commit more than m microblocks for any
given leader. Upon reaching a decision on the identity of a
new leader (as a result of having a new keyblock mined) a
consensus group member only initiates consensus on the set
of committed microblocks if it has not seen m committed
microblocks from the previous leader.

The benefits of fixing the number of microblocks (that
a leader can commit) to m microblocks per epoch extends
beyond having a fast and efficient agreement on the set of
committed microblocks. It can also be used to incentivise
leaders not to hinder throughput, e.g., a malicious leader in
the worst case might decide not to submit any microblocks
to intentionally stall the throughput. However now, since
a leader is expected to commit m microblocks per epoch,
leaders which cannot meet that constraint can be punished
for example by decreasing their reputation and hence de-
creasing their chances of staying part of the consensus group
and becoming leaders again.

4.3. Reputation System

This section describes our reputation system and the
proof-of-reputation. We first highlight the shortcomings of

TABLE 1: The notations.

Notation Explanation
L the length of the current blockchain;
c the size of a block chunk, i.e., the number of keyblocks
contained in a chunk, pre-defined by the system;
t t = [£] is the number of block chunks contained in a
blockchain with length L;
Eat the optional external source of reputation for the miner;
H a binary presenting whether the miner is honest (“1”) or not
07
k; the number of keyblocks created by the miner in chunk 4;
N, the number of times that the miner is elected as a leader;
m; the number of valid microblocks created by the miner at the
j-th time it is the leader;
m the maximum number of microblocks that a leader is allowed
to create, as defined by the system.
mean; the mean value of keyblocks (if ¢ = k) or microblocks (if
i = m) created by a miner or a leader across all epochs in the
blockchain, respectively.
Si the standard deviation corresponding to mean;, for i € {k, m}.
(a, N reputation system parameters

previous systems. For example, a proof-of-work based sys-
tem requires a miner to show that it has done some work
in order to include its set of proposed transactions, and
hence extend the chain. Thus, a miner that has a high
computing power can join the system at any time and can
play attacks. Similarly, in the proof-of-membership system
[30], a miner has to show that it has created enough blocks
recently to demonstrate its computing power, then it can
issue microblocks and can gain power in the consensus
protocol. Again, an attacker with higher computing power
can join the system at any time and can break the system.
However, with proof-of-reputation, in addition to creating
enough recent keyblocks, a miner has to show that it has
behaved honestly and created keyblocks regularly for a
period of time before being able to launch any attacks on
the system.

Given the blockchain, the reputation of any miner can
be calculated at any point in time. Accordingly, each miner
maintains its own copy of the reputation score of all miners,
based on the globally agreed blockchain. We denote by R
the reputation of a miner, which can take values in [0, 1].
R is calculated according to Algorithm 2. The notations are
defined in Table 1.

In particular, Fzt € [0,1] is the (optional) external
source reputation of the miner. For example, when Citybank
joins RepuCoin, it may have a starting reputation that is
higher than a random individual joiner. In RepuCoin, this
is encoded by using Ext’. H € {0,1} is the honesty of
the miner, which is set to “1” for each new joiner, and is
set to “0” if a miner has misbehaved*. A miner is said to
misbehave if:

3. Note that this is only used to optimize the reputation system. However,
to study the worst case, our analysis in §6.1 also shows the security
guarantee without having this external source of reputation.

4. Once the honesty H of a miner has been set to “0”, the Ext of the
corresponding entity will also be set to “0” as this entity is not trustworthy
any more.

« it presents conflicting signed messages to other con-
sensus group members; or

e it commits microblocks with conflicting transactions
when the miner is elected as leader.

Algorithm 2 Reputation algorithm

Input: L, {k;}!_,. {m_j};\rzll, m, ¢, a, and .
Output: Reputation R € [0, 1] of the corresponding miner.

St kg
1: mean, = =i51—+

. _ 1 Ny
Smeany, = x5l o

Ny
ks Stk
A = INC S
. _ 1 Ny omy 1 Ny j
Dm =R T (R — A T T2

4

. __ mean
5. Yy = T+sy,
6: if N; > 1 then

m;

[\

meanyy,

Y2 = Tirem
7: else
8: y2 =1
9: end if

10: x =y1 -y2- L
I f(e) = 31+ x3ay)
12: R = min(1, H - (Ext + f(z)))

Upon their occurrence, an evidence of such misbehavior
is included in the blockchain as a special transaction, similar
to past work [4, 19]. Non-Byzantine miners are incentivised
to place such a proof of fraud into the blockchain, to make
malicious acts visible to everyone, hence preserving the
health of the system. If a cryptocurrency system is not
healthy, then its users will lose their confidence in the
system. This may result in the plummeting of its currency
exchange rate, and all miners will have a loss. So, miners
are incentivised to keep the health of the system for their
own profit.

The reputation function. We intended to define the
social objectives of reputation in RepuCoin in a precise
and parameterizable way. Those objectives are: (i) careful
start, through an initial slow increase; (ii) potential for quick
reward of mature participants, through fast increase in mid-
life; (iii) prevention of over-control, by slow increase near
the top.

The formula defining the progression (resp. regression)
of reputation, f(x) above, is a sigmoid function. It ensures
that miners, at the start, can only increase their reputation
slowly, even if having a strong computing power. A miner
needs to stay in the system and behave honestly for a long
enough period, to progressively increase its reputation up to
the turning point, where it is trusted enough to be incen-
tivized to make it grow more quickly, to more interesting
levels. And finally, the curve inflects again, so that the
reputation does not grow forever, but asymptotically reaches
a plateau that promotes a balance of power amongst miners.
The reputation function is also parameterized, to allow to
mark these points precisely, namely the parameters (a, \)
can be tuned to adopt changes on when and how fast/slow
miners can increase their reputation. The slope of f(z) is
directly correlated with the value of \. The inflection point

of f(x) occurs at = a, and is the point where a miner’s
reputation growth rate starts to decline.

We denote by a block chunk (or just ‘chunk’ for simplic-
ity) a sequence of successive keyblocks in the blockchain.
Blocks chunks satisfy the following: (i) all block chunks
are of the same size, and (ii) any keyblock is included in
exactly one block chunk.

y1, defined at line 5 of Algorithm 2, captures the miner’s
“regularity” of generating keyblocks in each block chunk. In
other words, y; shows how regularly the miner contributes
its computing power to the system.

In particular, the numerator mean;, of y; is the percent-
age of pinned keyblocks generated by the miner, represents
the fraction of valid work that a miner has contributed to
the whole system. In the denominator, s; is the standard
deviation of the pinned keyblocks generated by the miner,
indicates the regularity with which a miner contributes to ev-
ery chunk. Together, they guarantee that a miner’s reputation
is computed based on the miner’s integrated power. Hence,
a miner’s integrated power is given by the total amount of
valid work a miner has done over the period of time it has
been active and the regularity of that work in the entire
blockchain, rather than the miner’s mining ability at a given
time (or instantaneous power) as in classic proof-of-work.
As such, when the system has been operated for some time,
even a miner with strong computing power cannot build-up
its reputation quickly: it needs to contribute honestly and
regularly to the system to gain reputation. We present a
more detailed analysis in §6.1.

Similarly, yo represents the “regularity” with which a
leader commits the defined number of microblocks when
it is selected. This incentivises leaders to optimize the
throughput of RepuCoin.

Remark 4. The solutions based on proof-of-work,
leveraging (instantaneous) computing power, also re-
quire an attacker to do some work to successfully attack
the system. For example, in Bitcoin, a miner needs to
create a relatively small number (e.g. a few dozens) of
blocks before being able to double spend. In ByzCoin,
a miner needs to make enough contributions within a
window of fixed size, e.g., the last hundred or thousand
blocks, to successfully attack the system.

In fact, the necessary actions to make the sys-
tem fail are identical in classic approaches and in
our approach. The robustness of our approach comes
from the fact that, in classic systems, the ‘decision’
power to achieve them is dictated by instantaneous
power (proportional to computing power), which can
be harnessed in “no time”, on demand (see e.g., the
flash attack), whereas in our approach it is given by
integrated power (proportional to reputation), which
needs a significant amount of time to harness. So,
whilst it is not impossible to break RepuCoin, it takes a
very heavy toll on the attacker — indeed significantly
higher than the effort to attack classic approaches —
in a way that makes it infeasible. We show this fact

TABLE 2: Reputation distribution of miners. It presents
the changes of the percentage of miners in each range of
reputation score over time.

Time [0, 0.2) [0.2,0.4) | [04, 0.6) | [0.6, 0.8) [0.8, 1]
1 month 100% - - - -
6 months 64.7% 35.3% - - -

1 year 21.8% 78.2% - - -

2 years 9.6% 31.7% 38.1% 15.2% -

3 years 2.7% 21.6% 19.5% 38.1% 15.2%
4 years 2.7% 19.1% - 25% 53.2%
4 years 2.7% 15.1% 4% 17.9% 60.3%
20 years 0.4% 2.3% - 3% 94.3%

explicitly in our results in §6.1.

Reputation distribution. We use the top 24 mining
pools in the Bitcoin mining network® to simulate the com-
puting power distribution in RepuCoin, since the total com-
puting power of the top 24 mining pools are about 99.6%.
We chose the following values for the parameters of the
reputation function: ¢ = 10000 and A = 50000. Values
for a and A were chosen based on the time that would be
necessary for powerful miners to reach a high reputation.
Indeed, to provide security against bribery attacks the most
powerful miners in the current computing power distribution
need more than 2 years to reach a reputation higher than 0.8.
Based on this computing power distribution, Table 2 shows
the reputation distribution of miners over time.

4.4. Adapting Existing BFT Protocols

RepuCoin uses existing leader-based BFT protocols sup-
porting digital signatures, to pin blocks. Apart from mod-
ifying the weight of the votes, RepuCoin also requires the
following changes to adapt the existing BFT protocols.

Secure bootstrapping. With the potentially unbalanced
amount of mining power in different blockchains, how to do
secure bootstrapping is an open challenge in all blockchain
systems. This, however, is not a problem with the classical
BFT protocols, where the set of participants are predefined
and fixed. Thus, to adapt existing BFT protocols, we need to
provide a mechanism to establish a secure way to initialise
consensus group, when no keyblock is created.

In RepuCoin, we assume the existence of a social
community where participants vote to make decisions on
several aspects of the system, such as the security parameters
and external reputation factors. Such community exists for
almost all permisionless blockchains. For example, with
BitCoin this is the community who votes for proposals such
as changing the maximum block size.

This community in RepuCoin votes a set of parties with
external reputation to ensure a controlled bootstrapping, and
record the result in the genesis block. The parties with

5. The sequence of computing power of the top 24 pools is (15.1, 10.1,
10.0, 9.5, 8.3, 7.1, 6.4, 5.9, 5.5, 4.0, 2.9, 2.8, 24, 2.2, 1.7, 1.5, 1.5, 0.7,
0.5, 0.5, 0.3, 0.3, 0.2, 0.2), respectively. https://bitcoinchain.com/pools (as
of April 2017)

10

initial higher external reputation will form the consensus
group. During the secure bootstrapping phase, other miners
with small or zero external reputation will gradually gain
reputation and enter the consensus group.

View change. Classical BFT protocols provide view
change — leader election and membership update — as a
housekeeping function in the course of failures or recoveries
in the (static) system participants roster. In addition to these
technical functions, these protocols can be used in non-
standard ways in blockchain consensus. That was the case
for example of ByzCoin, where a new leader is elected
every time a new keyblock is created, by invoking the PBFT
view-change protocol [30]. Similarly, with RepuCoin a view
change is enforced by the pinning of a new keyblock, which
ends an epoch, and thus establishes a consistent cut where
the systems flushes (achieving consensus on the blockchain
closing the epoch). Thus, several operations can be safely
performed at this clean (re-)starting point: (i) a new consen-
sus leader is elected; (ii) and the consensus membership is
updated.

To adapt existing classical PBFT-like systems, the first
difference is that, for (i), the leader election is deliberately
provoked in this case (not on account of e.g., a failure) and
the criterion changes to random selection, as presented in
84.1. For (ii), what happens is, again, a non-standard re-
definition of the membership: the (ending epoch) consensus
group re-evaluates the rule for consensus group formation
(a quorum of the top reputed miners, see §4.2). Note that
this can directly and deterministically be derived from the
data in the blockchain, so consensus is safely achieved on
the new roster of X, which is installed for the new epoch.
We recall that these operations occur through stable and safe
states of the system, as mentioned before.

Crash/leave detection. As this is a permissionless envi-
ronment, any miner can join, leave or crash at any time. If
a consensus group member left the system, then RepuCoin
will eventually detect that this has happened, by checking
whether this member has been involved in the last instances
of the consensus. If it is the epoch leader, view change
ensues in the usual manner in BFT consensus protocols.

Message size. Most existing BFT protocols have been
designed for state machine replication, and even optimized
for short messages/commands. Performance shown in ex-
isting publications mostly concerns tests with relatively
“small” block sizes. As shown in [49], the impact of largely
increased block sizes on blockchain consensus performance
should not be neglected either when choosing existing proto-
cols, or when designing blockchain-specific BFT protocols.

5. Performance Evaluation

This section presents an evaluation of the performance
of RepuCoin. We focus specifically on evaluating the con-
sensus latency and transaction throughput under different
system settings.

5.1. Implementation

Library. In our deployment of RepuCoin, we adapt
BFT-SMaRt [9] — a state-of-the-art Byzantine-resilient con-
sensus protocol that is widely used, e.g., in Hyperledger
Fabric [24] — to incorporate our reputation-based weighted
voting mechanism for pinning blocks (see §4.2). We use a
low keyblock generation frequency, similar to the current
Bitcoin system, i.e., generating a keyblock takes 10 minutes
in average. Differently, the miner that creates microblocks
sends them at the highest rate it can maintain.

Mining power distribution. To better simulate the sys-
tem in the real world scenario, we make use of the mining
power distribution from the Bitcoin mining network®. Un-
surprisingly, due to the oligopoly of mining pools, Bitcoin
has a high centralisation of mining power distribution —
the top 24 mining pools collectively have a computing
power of 98.1%. We simulate the performance based on this
power distribution. Assuming honest behavior, we compute
the reputation distribution of miners. Given the computed
reputations, we determine the |X| members of the consensus
group, namely the miners with the highest reputation. In par-
ticular, we consider consensus groups that initially control
from about 50% to 98.1% of computing power. With the
current Bitcoin mining power distribution, the corresponding
consensus group sizes would range from 4 to 19.

In fact, we show, in §6.1, that security is hampered for
consensus groups that control more than 90% computing
power, given Bitcoin’s computing power distribution. This
is due to the fact that a small number of miners individually
account for a very high proportion of the mining power (5%-
16%), whereas the majority of miners are much weaker (less
than 1%). Thus, it would be easier for an attacker to become
a consensus member in a larger consensus group, and there-
fore to attack the system. However, in a situation where the
mining power would be uniformly distributed, then a larger
group would provide a better security guarantee.

Setup. We deploy each member of the consensus group
on a different machine, each having the following speci-
fications: Dell FC430, Intel Xeon E5-2680 v3 @2.5GHz,
48GB RAM. We only use a single core to deploy within
every machine, and limit each miner’s RAM usage to a
maximum of 4GB (even though this limit is far from being
reached). To simulate wide-area network conditions in our
experiments, we impose a round-trip network latency of 200
ms between any two machines. We also set the maximum
communication bandwidth between any pair of machines to
35 Mbps. Similar settings were used to simulate wide-area
network conditions in previous works (e.g., [30]).

5.2. Consensus Latency

In this section, we measure the latency of our con-
sensus implementation , and compare it with the latency

6. The sequence of computing power of the top 24 pools is (15.1, 10.1,
10.0, 9.5, 8.3, 7.1, 6.4, 5.9, 5.5, 4.0, 2.9, 2.8, 24, 2.2, 1.7, 1.5, 1.5, 0.7,
0.5, 0.5, 0.3, 0.3, 0.2, 0.2), respectively. https://bitcoinchain.com/pools (as
of April 2017)

11

1400
—=— Block size=1KB
—&— Block size=512KB
1200 .
—+— Block size=1MB
m Block size=2MB
E 1000 Block size=4MB ~ — ___---
g -
O
c
Y 800+
©
|
600 -
400

Consensus group size

Figure 2: Consensus latency comparison. The dashed lines
and straight lines are used to represent the consensus latency
of BFT-SMaRt and RepuCoin, respectively.

of the original BFT-SMaRt. Such a comparison illustrates
the timing overhead that is incurred relative to using our
reputation-based weighted voting mechanism. We recall that
in order to reach consensus, BFT-SMaRt requires at least
2f 4+ 1 members to agree on a value, while our reputation-
based weighted voting variant requires in addition that these
members (which are at least 2f 4 1) have collectively more
than % of the reputation of the entire consensus group.

We run experiments using keyblocks of size 1KB and
microblocks of sizes 512KB, 1MB, 2MB, and 4MB. Unlike
microblocks, keyblocks are typically small in size as they
do not contain any transactions. We report our results in
Figure 2, which shows that RepuCoin and BFT-SMaRt
have a similar consensus latency values and patterns. For
example, in both RepuCoin’s consensus and BFT-SMaRt,
consensus latency increases dramatically with the block size.
The reason behind this trend can be explained by two things.
First, it takes longer for the leader to propose microblocks to
the consensus group, and for the group members to transmit
a batch of the PROPOSE message which contains un-hashed
microblock. Second, computing the hash value of a larger
block and verifying the transactions it contains consume
more time.

Moreover, in both RepuCoin’s consensus and BFT-
SMaRt, when the group size increases from 4 (which
controls 44.7% computing power of the network) to 13
(which controls 90% computing power of the network), the
consensus latency increases by more than 50%. However,
despite this increase in latency, consensus can be reached in
about 0.5-1.2 second, even when considering the blocks of
size 4MB.

5.3. Throughput

We now analyze the maximum throughput that Repu-
Coin can achieve in terms of the number of processed
transactions per second (TPS).

N
N
n

—&— Block size=512KB
—— Block size=1MB

Block size=2MB
—e— Block size=4MB

N
©
o

17.5 A

15.0

=
N
v

10.0 A

~
¢
!

Throughput (K transactions/sec)

4 6 8 10 12

Consensus group size
Figure 3: Throughput of RepuCoin.

Figure 3 presents the throughput of RepuCoin. First,
as expected, our results in Figure 3 show that the smaller
the consensus group the higher the throughput. For exam-
ple, using 2MB microblocks, the throughput increases from
slightly more than 10000 TPS with a consensus group of size
13 (controlling 90% computing power), to 22500 TPS with
a consensus group of size 4 (controlling 44.7% computing
power). Second, for all group sizes, one can see, as expected,
that the throughput tends to increase as blocks become
larger, and this is what we observe up to 2MB. For example,
when the consensus controls 90% computing power of the
entire network (group size of 13), the throughput for blocks
of 512KB, 1MB, and 2MB, is respectively equal to 6200,
9400, and 10000 TPS. We observe that using larger block
sizes (e.g., 4MB), decreases the throughput. However, this
outlier is an artefact of the underlying protocol we use,
i.e., the BFT-SMaRt library, whose sheer performance, as
a regular BFT protocol, is seemingly affected for very large
block sizes, as discussed in Section 4.4.

When RepuCoin provides the best security guarantee
(when the consensus group controls 90% computing power,
as shown in §6.1), RepuCoin achieves a throughput of 10000
TPS when using 2MB blocks. This means that RepuCoin
can handle the average transaction rates of Paypal and VISA
as measured in real-life, which are 115 TPS and 1700 TPS
respectively.

According to a survey [5], our throughput, i.e., 10K TPS,
is outstanding among the analysed systems, as the reported
peak figure for permissionless ledgers is also 10k TPS. We
refer readers to the survey for more details.

6. Security Analysis

In this section, we present our analysis of the security
provided by the mechanisms used in RepuCoin, namely
reputation-based weighted voting consensus and proof-of-
reputation function. We begin by discussing the safety
and liveness correctness conditions of the reputation-based
weighted voting consensus protocol in Section 6.1, with pre-

12

defined bounds on the relative reputation scores of partici-
pants. Then, we prove in Section 6.2 that the achievement
of those scores, which give decision power, is physically
bounded by the conditions imposed on the growth rate
of the proof-of-reputation function. Next, in Section 6.3,
we present experiments exemplifying concrete values for
the decision power growth vs. time in several situations,
showing that RepuCoin indeed achieves very high stochastic
robustness against attacks on its liveness or safety. More-
over, in Section 6.4 we provide an analysis of the non-
rationality of infiltration attacks, with a comparison on the
cost of attacking different systems. Finally, we describe in
detail how RepuCoin prevents known attacks in Section 6.5.

6.1. Reputation-based Consensus Safety and Live-
ness

Unlike proof-of-work based mechanisms, when using
proof-of-reputation, an attacker cannot break the system
by merely relying on its mining ability, i.e., its computing
power. An attacker rather needs to gain reputation and hence
contribute to the blockchain, by yielding pinned keyblocks.
We recall that the reputation of a miner with correct be-
havior, in RepuCoin, builds essentially on its continued and
regular contribution to the entire blockchain in addition to
its external source of reputation Fxt.

In case of a network where there are trustworthy miners
(e.g. certified operators), an attacker may even never be in
the top |X| reputable miners. For example, this could happen
if the number of those trustworthy miners is large enough
(JX] or more) and if they each have a reputation score of
“1” (which can be achieved only if Fxt # 0). Hence an
outside attacker, which has not established an agreed upon
trust, i.e., its Ext = 0, may happen to never become part of
the consensus group. In that case, the attacker cannot affect
the system: safety and liveness of the system are always
guaranteed.

However, in order to study the worst case, we do not
consider any miner to have established an agreed upon trust,
i.e. Fat = 0 for all miners. For presentation simplicity we
assume that every miner behaves honestly for some period
of time that allows the attacker to have a sufficient reputation
when intending to attack the system.

Let X = {x1,..., 2%} be the consensus group. We note
R; the reputation score of miner x;, which gives it decision
power. name can rely on any underlying secure consensus
algorithm, that can be adapted according to Section 4.4, to
guarantee safety and liveness.

RepuCoin guarantees consensus safety, if: (i) the attacker
controls no more than f miners in the consensus group;
or (ii) the consensus group members compromised by the
attacker have a total reputation R4 such that

Z?jl R;
3

where R; is calculated according to the proof-of-reputation
Algorithm 2. In other words, an attacker cannot break the
safety unless both (i) and (ii) do not hold.

Ry <

In addition, if any of the above two conditions does not
hold, then an attacker can break the liveness of the system,
i.e., an agreement may not be made on any block.

6.2. Bounded
Growth

Proof-of-Reputation Function

We hook the stochastic equations governing the evolu-
tion of our system to ‘physics’: it remains impossible to gain
power faster than some upper bound derived from the need
to perform a number of continued honest contributions to
the network — what we called ‘integrated power’, to dif-
ferentiate from ‘instantaneous power’, haunting all previous
works by leading to flash attacks.

Let |X] be the size of the consensus group in RepuCoin,
meany,; the mean value of keyblocks created by a miner %
across all epochs in the blockchain. We prove in our The-
orem 1 that the proof-of-reputation function growth rate is
bounded. In consequence, the rate of change of the decision
power mentioned in the previous section is, at any time,
limited.

Theorem 1. In RepuCoin, if the mining power of each
participant remains the same, then at any time of the
system, the rate of reputation increase of any node is
bounded by i, and the corresponding increase of the
decision power of any consensus group member i is
bounded by sx Ameany ;AL.

Proof: Let Pd be the decision power of a node for
consensus in RepuCoin. In RepuCoin, the reputation, which
changes over time ¢, links directly to the decision power,
provided that the reputation is among the top ones. A non
top reputed node has no decision power. Since the reputation
is also affected by the ratio of the miner’s computing power,
the reputation change is also affected by the computing
power that the newly joined nodes brought in. For the ease
of presentation, we assume that every node’s computing
power is fixed in the system. Then, we have that the current
decision power changes over both the number of newly
joined nodes and the time increase, as follows:

dPd oPd 0Pd

av @~ an Nt

where dPd is the change of the decision power Pd with
dN and dt, the former being the change of the total number
of nodes, and the latter the advancement of time.

Since a newly joined node only has a default reputation,
and cannot be a part of the top |X]| reputed nodes, we have

that

0PN =0

ON
So, no matter how many nodes with whatever computing
power have joined the system, they will not change the
decision power of the current consensus group at the time
of joining. In contrast, with e.g. Bitcoin, the newly joined
nodes with computing power p would have p/P decision
power, where P is the total amount of the computing power
in the entire network.

dt

13

For any node who is already in the consensus group,
we need to consider its decision power change over time,
which is directly hnked to f’(x), the derivative of reputation
function f(z) = 1(1+)\Jr‘waa') where a and A are system
parameters and they are constant, * = y - y2 - L, such that
Y1 = =1 where meany, ; is the mean value of keyblocks

Lbsp 2 "7 . .
created by a miner ¢ in the blockchain, and sy, is the standard
deviation corresponding to meany, ;. So, ¥ is % Yo

is the miner’s performance on producing mlcroblocks and
the upper bound is 1. L is the length of the blockchain,
which growth according to the time (1 per 10 minutes, as
suggested in the paper). Thus, we have,

»o_1
2A

P
obd \, _

1

Atz —al)? —

That is, the power growth rate is constrained by the
system parameter \. The actual power growth is bounded
by

—A <—A AL,
o T X meany,;

where AL is the speed of blockchain growth (e.g. 1 per
10 minutes), Ameany, ; is the change of the mean value of
the number of keyblocks created by a node ¢ w.r.t. the total
number of keyblocks created by all nodes. O

The decision power of RepuCoin is given by the collec-
tive reputation of the consensus group members. Since in
RepuCoin, only the top ranked nodes can join the consensus
group, their decision power is proportional to their share in
the collective reputation of the group. Thus, the growth of
the system’s decision power is the sum of the reputation
growth of all group members, when the members of the
group member don’t change. If the members change, then
the growth of the system’s decision power is the sum of the
reputation growth of all unchanged group members, plus
the difference brought in by the new members. Since the
upper bound of reputation growth is 5 Sy » the decision power
growth in the consensus group from a new group member
is also bounded by the same formula. In consequence,

regardless whether the group member is changed or not, the

1]
decision power growth of the system is bounded by =% /\Ax.

Thus, with RepuCoin, the rate of increase of decision power
in the entire system is limited regardless of the newly joined
computing power. This makes RepuCoin secure against flash
attacks launched by a late joiner, even when the attacker has
a large amount of computing power (e.g. more than 50%
computing power of the entire network).

So far, we have shown analytically that: RepuCoin is
safe and live (Section 6.1) as long as decision power of
attackers is below a defined threshold; then, we showed
(Section 6.3) that it takes a known and bounded effort
for attackers to reach that threshold and to control the
network. Remains to be seen if stochastically, the network
shows realistic robustness, that is, how much would the
attack effort be to reach the above-mentioned control, and
how do those limits for the network to give in to attacks

if Ameany; >0

compare to previous works. We show that next, through
some experiments.

6.3. Proof-of-Reputation Attack Resilience

Figure 4 and Table 3 show the requirements both in
terms of the computing power and the time that should
be spent doing honest work in the system, in order for an
attacker to successfully launch any attack. In other words,
they present the minimum effort to attack the liveness of
RepuCoin.

Figure 4 indicates that the system is most secure when
the consensus group X controls 90% computing power (with
13 nodes, ie., f = 4), and is most vulnerable when it
controls 98.1% computing power. In fact, we can observe
that the system (when X controls less than 90% comput-
ing power) becomes more secure as the consensus group
controls more computing power of the network. After that
increase the group size begins to depreciate the system
security. These results can be explained by the fact that
when the consensus group size grows beyond some point,
the distribution of the computing power and reputation in
the enlarged group could highly vary. For example, when
X controls about 100% computing power of the system,
more miners with relatively low reputation might become
part of the consensus group; hence an attacker needs less
time (and reputation) to infiltrate the consensus group and
launch attacks. Our results, in Figure 4, show that if the
consensus group controls 90% initial computing power, then
an attacker joining after 3 months of system operation with
26%, 34%, and 51% computing power of the entire network
would need to work honestly for 22 months, 6 months, and
2.4 months respectively, to break the liveness of the system.
If an attacker joins after 1 year, then it is infeasible for this
attacker to break the system’s liveness (and thus the system’s
safety) with a computing power < 26%; and the attacker
would need 2 years (resp. 10 months) when possessing 34%
(resp. 51%) of the system’s computing power. We say that
it is infeasible for an attacker with < 26% to successfully
launch attacks, as our analysis shows that the attacker would
have to contribute to the system honestly for 108 years
before being able to do so. It is worth noting that an attacker
with computing power p, joining a system whose computing
power is ps would have pﬁﬁps x 100% of the system’s
computing power.

In Table 3, we provide a different view on the attack-
ers ability of successfully attacking the system’s liveness.
Breaking RepuCoin’s safety is even harder, at best as diffi-
cult as breaking liveness. It shows that an attacker who wants
to break the system within one month after joining, i.e., by
making the system lose liveness, would need to control at
least 90% of the system’s computing power, if that attacker
joins after 3 months of the system being in operation. An
attacker joining the system at a later time, e.g. 1 year (resp.
1.5 years) after the system operation, would never succeed
in breaking the system’s liveness nor safety within a period
of 3 months after joining, and would require at least 68%

14

@
3

o
3

5
S

o

v s wN -

~
S

S

0

Time to attack success (months)
8
Time to attack success (months)

10 20 30 40 50 60

Adversary computing power (%)

(a) Attack after 3 months

=
3
S

20 30 40 50 60
Adversary computing power (%)

(b) Attack after 12 months

Figure 4: Minimum effort to break the liveness of RepuCoin.
We consider cases where an attacker joins after the system
has operated for 3 months and a year, and where the
consensus group controls mining power ranging from 44.7%
(i.e., f=1,|X] = 4) t0 98.1% (i.e., f=6,|X| = 19.). The x-axis
shows the needed computing power and the y-axis shows
the required time to attack the system.

TABLE 3: The minimum computing power required to break
the liveness of RepuCoin within a targeted time period,
when an attacker joins the system at different times.

Joining time\ Target 1 week 1 month | 3 months | 6 months
1 month infeasible 45% 30% 27%
3 months infeasible 90% 45% 33%
6 months infeasible | infeasible 68% 45%
9 months infeasible | infeasible 90% 54%
12 months infeasible | infeasible | infeasible 68%
18 months infeasible | infeasible | infeasible 91%
20 months infeasible | infeasible | infeasible | infeasible

(resp. 91%) of the system’s computing power to launch at
attack within 6 months after joining.

6.4. Non-Rationality of Infiltration Attacks

We hook heuristics to well-founded ‘rationality’: there
is basically no rational economic model in RepuCoin that
makes it worth to attack the network, i.e. it always costs
much more than what would be gained, due to the following
three main reasons.

First, attacks can only be successful after gaining enough
reputation, by means of a lot of past investment and time
spent (unlike all previous works, based on instantaneous
power, a.k.a. computing power, which can be harnessed in
several expeditious ways). Second, reputation goes to zero
after the first detected attack (unlike all previous works,
which essentially don’t have memory and allow repeated
attacks). Last but not least, the bribery attack by buying rep-
utation is also made ineffective. More precisely, an adaptive
adversary may try to acquire one or more nodes with high
reputation, in order to trigger a ‘flash reputation’ attack.
However, buying that reputation based power should cost
at least as much as the investment previously made by the
sellers, and the gain upon first use (and last, since reputation
goes to zero), would never match the expense. So, it always
costs much more than what would be gained.

70

TABLE 4: The minimum cost of successfully attacking
RepuCoin. sys *N means that the cost of attacking
RepuCoin is at least N times as high as the cost of attacking
sys, where sys is either Bitcoin (BTC) or ByzCoin (BYZ).

Joining time\ Target 1 week 1 month 3 months 6 months

1 month infeasible BTC: *635; BTC: *1271; BTC: #2287,
BYZ: *6 BYZ: *11 BYZ: *20

3 months infeasible BTC: *1270; BTC: *1906; BTC: *2795;
BYZ: *11 BYZ: *17 BYZ: *25

6 months infeasible infeasible BTC: *2880; BTC: *3812;
BYZ: #26 BYZ: *34

9 months infeasible infeasible BTC: *3812; BTC: *4574;
BYZ: *34 BYZ: *41

12 months infeasible infeasible infeasible BTC: *5760;
BYZ: *51

18 months infeasible infeasible infeasible BTC: *7708;
BYZ: *69
20 months infeasible infeasible infeasible infeasible

To better illustrate the cost in different systems, we
show the cost of successful attacks in Bitcoin, ByzCoin, and
RepuCoin. For the analysis, we make use of the Bitcoin real-
world mining power distribution, as presented in Section 5.1.

To successfully attack Bitcoin, in the best case (not
considering the selfish mining attack), an attacker needs
to have 51% of the computing power, and is required to
maintain this computing power only for about an hour if 6
confirmations are required, to mine its own private chain on
the side. Let « be the computing power (in unit) of the entire
network, then the cost for a successful attack on Bitcoin is
about 0.51ar, where r is the price of maintaining 1 unit of
computing power per hour. The cost of repeating this attack
is the same.

With ByzCoin, in the best case (not considering the self-
ish mining attack), an attacker needs to have 34% computing
power, and to maintain this power for the entire window (i.e.
1008 blocks), which is about a week. Thus, the cost is about
168 - 0.34ar, which is 57.12ar. The cost of repeating this
attack is the same, i.e., 57.12ar.

With RepuCoin, in the worst case, where an attacker
joins at the beginning of the system, RepuCoin does no bet-
ter than Bitcoin and ByzCoin upon the first attack. However,
to repeat the same attack, the attack would cost much more,
as the reputation of the attacker would go to zero, and the
attacker would be considered a late joiner.

For a later joined attacker, the minimum cost can be
calculated by using Table 3, as shown in Table 4. For
example, for a 6-month late joined attacker, to successfully
attack the system within 3 months, the cost of attack is
about 2160 - 0.68ar, which is about 1469ar. That is, the
cost is 26 times as high as the cost of attacking ByzCoin,
and 2880 times as high as the cost of attacking Bitcoin.
Taking another example scenario, for a 1-year late joined
attacker, it is infeasible to successfully attack the system
within 3 months, even with the computing power of the
entire network. However, the attacker is able to attack the
system within 6 months with a cost of 4320 -0.68ar, which
is about 2938ar. In this case, the cost is 52 times as high as
the cost of attacking ByzCoin, and 5760 times of the cost
of attacking Bitcoin.

15

TABLE 5: Summary comparison of attack resilience

Attacks ‘ Bitcoin ‘ Bitcoin-NG ‘ ByzCoin ‘ RepuCoin
Flash attack X X X 4
Selfish mining attack X X X Vv
Attack on consistency X X 4 4
Attack on liveness Vv Vv X V4
Double spending attacks X X 4 4
Eclipse attacks X X Ve Ve

\/ — The system is secure against this attack.
X — The system is vulnerable to this attack.

! The system is secure against eclipse attacks for double spending purpose,
however, if an attacker is able to partition the network, then it can
temporally delay the consensus process and reduce the throughput.

6.5. Defense Against Specific Attacks

This section discusses defences of existing protocols
against known attacks. Table 5 summarizes a comparison
between Bitcoin, Bitcoin-NG, ByzCoin, and RepuCoin.

Flash attacks. In flash attacks [11], an attacker is
able to obtain a temporary majority of computing power
by renting enough mining capacity. This would break the
security assumption of classic proof-of-work based systems.

RepuCoin, however, is resilient to flash attacks. Even
an attacker with high computing power, depending on when
that attacker joins, might require a very long period of time
before being able to gain enough reputation to harm the
system. For example, as shown in §6.1 an attacker that
joins after 1.5 years of system operation would need to
have 91% of the system’s computing power for 6 months to
successfully attack the system.

Selfish mining attack. In a selfish mining attack
[18], an attacker (with more than 25% computing power)
keeps its mined blocks private, and only works on its own
local private version of the chain, which is different from
the chain that the rest of the network works on. The attacker
publishes its blocks according to some strategy that would
allow the attacker to claim all rewards. So the attacker gets
advantage of gaining rewards by playing this unfair game.
We refer readers to [18, 47, 42] for more details on the
selfish mining attack, its generalization and its optimization.

RepuCoin pins each created keyblock, and new key-
blocks can only be created based on the pinned keyblock.
Given that RepuCoin relies on a reputation-based consensus
and a secure signature scheme, no attacker can predict the
hash value of a pinned block without controlling at least
2f+1 consensus group members that collectively have more
than % of the reputation of the entire consensus group. So,
a selfish miner cannot gain any advantage in RepuCoin by
hiding its created blocks.

Blockchain consistency and system liveness. Al-
though Bitcoin-NG provides a high transaction through-
put, it does not solve or address the consistency issues of
Bitcoin. Namely, all transactions are only probabilistically
valid. ByzCoin addresses these consistency issues providing
deterministic transaction guarantees while achieving a high
throughput. However, ByzCoin can permanently lose live-

ness during reconfiguration [2, 26], and a malicious miner
can repeatedly make ByzCoin lose liveness temporarily in
the following two ways [30]: (i) if the losing miner can
propagate its block to more than 33% of the consensus
members before they hear the winner’s block, and (ii) if
a malicious miner that becomes a leader decides not to
generate any microblocks. Notice that both attacks can be
repeatedly launched on the system. In addition, when an
attacker controls more than 33% of the computing power
for a short period, e.g., through a flash attack, then the
attacker can break the liveness easily by not participating
in the consensus protocol.

RepuCoin provides strong transaction consistency simi-
lar to that of ByzCoin, however, with better liveness guar-
antees, as RepuCoin relies on a reputation-based Byzantine
fault-tolerant consensus. Specifically, RepuCoin eliminates
case (i) found in ByzCoin by using a consensus protocol
to choose the “winning” keyblocks. RepuCoin also limits
the liveness issue pointed by case (ii) as follows: a current
leader which is not generating enough valid microblocks
gets punished by decreasing its reputation. In that case, that
leader may be outcast from the consensus group (due to
its decreased reputation); hence it cannot become a leader
again and hinder system throughput.

Moreover, as mentioned previously, if an attacker with
more than 33% computing power joins the system when it
initiates, then we do no better than ByzCoin. However, if
the system has been operated for some time, for example,
if the attacker joins after 3 months (resp. after a year), then
an attacker with 34% of computing power would need to
work honestly and regularly for at least 6 months (resp. 2
years) to compromise the system’s liveness. This makes a
flash attack very expensive to launch.

Double spending attacks. There are two types of
double spending attacks, i.e., O-confirmation double spend-
ing attacks and N-confirmation double spending attacks.

Cryptocurrencies are expected to support fast (< 30 sec-
onds) payment scenarios, where the exchange time between
the currency and goods is short. However, with Bitcoin,
users need to wait at least 10 minutes to get a confirmation
that the transaction is included in a block, and an hour
(i.e., 6 blocks) to confirm that the block is very likely to
be a part of the longest chain. If users accept a transaction
without waiting for a confirmation, then attacks [27] on the
O-confirmation transactions can happen. These are referred
to as O-confirmation double spending attacks.

Nonetheless, even if a Bitcoin user has waited for N
confirmations, if an attacker controls a sufficient percentage
of computing power, the attacker can still build a fork of
the chain that will be the longest chain and contains a
double spending transaction, with non-negligible probability
[10]. As result, an attacker is able to reverse its previous
transactions (for double spending coins) even if the victim
has waited for N-confirmations. Such attack is referred to
as N-confirmation double spending attacks.

RepuCoin addresses these problem by speeding up the
confirmation process to less than a second, even when
a block size is as large as 4MB. In addition, RepuCoin

16

provides a deterministic consistency guarantee rather than a
probabilistic one. Determinism is achieved by pinning mi-
croblocks and keyblocks through a consensus scheme using
a reputation-based voting mechanism. Pinned microblocks
and keyblocks are non-reversible, a guarantee provided by
our use of consensus.

Eclipse attacks and isolated leaders. In partial (or
full) eclipse attacks [20, 23], an attacker capable of delaying
information that a victim expects to receive is able to launch
double spending attacks and selfish-mining attacks.

RepuCoin does not prevent an attacker from fully isolat-
ing a victim or delaying messages from a victim. However,
given that blocks are pinned, the attacker cannot successfully
launch double spending attacks, as previously explained. In
the extreme case, some group members may be isolated
temporally due to attacks on the network, e.g. those cre-
ating partitions. Such network attacks may delay the block
pinning process and prevent RepuCoin from making further
progress. However, RepuCoin would recover as soon as the
messages are delivered, and the attacker can neither create
a fork of the blockchain nor double spend any coin.

An attacker may reduce the reputation of a leader and the
throughput of our system by isolating the randomly selected
leader. On one side, this can be solved by using the leader
selection mechanism introduced in Algorand [22]: when a
new block is pinned, miners issue a signature on the block,
and the miner with smallest hash value of this signature
will be the leader. The new leader does not reveal this
information until it prepares all microblocks, and sends all
of them out with the proof that it is the leader. This way,
an attacker cannot predict who will be the leader before it
has sent all the microblocks it issued, and therefore cannot
block the leader’s communication. On the other side, it is
also up to the miners to ensure that their communication
can not be isolated easily and completely. This is a part of
the competition for gaining more reputation. If a miner can
be isolated easily by an attacker, then the miner’s reputation
is decreased, if not enough microblocks are proposed. Such
miners will have lower chances of becoming leaders in the
future (due to their decreased reputation). Thus, in a long
run the system would be robust.

7. Limitations and Future Work

Formal security analysis. Formal security analysis
is vital and is desired by all cryptosystems. However, pro-
viding a formal analysis on cryptocurrencies is very chal-
lenging, and only a limited number of cryptocurrencies [7,
28] has been formally studied. This paper does not address
the formal security analysis of RepuCoin, but recognizes it
as an important future work.

Energy waste. Proof-of-work has many inherent
drawbacks one of which is wasted energy. Promising alter-
natives are available in the literature. Proof-of-stake (PoS)
[17, 28, 22] is a leading alternative where the probability to
create a block and receive the associated reward is propor-
tional to a user’s ownership stake rather than its computing

power in the system. Another alternative is called proof-of-
space (a.k.a. proof-of-capacity) [37, 43], which uses phys-
ical storage resources to replace computing power in the
proof-of-work mechanism. Proof-of-coin-age [29] shares a
similar concept as PoS, as participants also perform “min-
ing” by demonstrating possession of a quantity of currency.
However, unlike PoS, each quantity of coins in the proof-of-
coin-age is weighted by its coin age. Participants in proof-of-
lock (a.k.a. proof-of-deposit) [33] mine coins by depositing
existing coins in a time-locked bond account, during which
they cannot be moved. Proof-of-activity [8] puts every coin
owner into a mining lottery; winners are periodically deter-
mined randomly by transactions. A winner is expected to
respond with a signed message within a small time interval
to claim its award. Proof-of-luck [39] implements a similar
concept by using Trusted Execution Environment (TEE)
such as Intel SGX enabled CPUs. Proof-of-burn is another
alternative, which mines coins by destroying existing coins,
i.e., sending them to an unspendable burn address that no
one owns.

These concepts are particularly interesting to provide
an energy-friendly consensus. Intuitively, the concept of
proof-of-reputation may also be applied to these alternatives,
however, we regard this as a more generic study to be part
of future work.

8. Conclusion

RepuCoin provides proof-of-reputation as an alterna-
tive way to provide a strong deterministic consensus, and
be robust against attacks, in a permission-less distributed
blockchain system. All BFT-based blockchain systems (e.g.
[30, 38, 2, 22, 31]) are bound to the coverage of the
assumption on the maximum number of faulty players, f,
or their decision power quota thereof. RepuCoin, although
belonging to that generation of systems, is the first to deploy
effective mitigation measures that reduce brittleness in the
face of overwhelming adversary power, where other systems
give in. Namely, it provides security guarantees against an
attacker who can control a majority of the overall computing
power for a duration that increases with the joining time of
the attacker.

Based on the strong deterministic guarantee derived
from reputation-based weighted voting, the robustness of
RepuCoin grows with legitimate operation time: the later the
attacker joins, the more secure the system is. For example,
an attacker that joins the system after it has been operating
for a year, would need at least 51% of the overall computing
power and would need to behave correctly in the system for
10 months before being able to successfully make RepuCoin
lose liveness. Breaking RepuCoin’s safety is at least as
difficult as breaking its liveness.

Acknowledgment

This work is partially supported by the Fonds National
de la Recherche Luxembourg (FNR) through PEARL grant
FNR/P14/8149128.

17

References

(1]

(2]

(3]

[4]
(5]
(6]
(71
(8]

[91

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]

[30]

[31]

I. Abraham et al. “Revisiting Fast Practical Byzantine Fault Tol-
erance: Thelma, Velma, and Zelma”. In: CoRR abs/1801.10022
(2018).

I. Abraham et al. “Solidus: An Incentive-compatible Cryptocur-
rency Based on Permissionless Byzantine Consensus”. In: CoRR
abs/1612.02916 (2016).

M. Apostolaki, A. Zohar, and L. Vanbever. “Hijacking Bitcoin:
Routing Attacks on Cryptocurrencies”. In: IEEE S&P. 2017,
pp. 375-392.

A. Back et al. Enabling blockchain innovations with pegged
sidechains. 2014. URL: tinyurl.com/mj656p7.

S. Bano et al. “Consensus in the age of blockchains”. In: arXiv
preprint arXiv:1711.03936 (2017).

I. Bentov, A. Gabizon, and A. Mizrahi. “Cryptocurrencies without
proof of work”. In: FC. 2016.

I. Bentov, R. Pass, and E. Shi. “Snow White: Provably Secure
Proofs of Stake”. In: JACR Cryptology ePrint Archive (2016).

I. Bentov et al. “Proof of Activity: Extending Bitcoin’s Proof of
Work via Proof of Stake”. In: ACM SIGMETRICS Performance
Evaluation Review 42.3 (2014), pp. 34-37.

A. N. Bessani, J. Sousa, and E. A. P. Alchieri. “State Machine
Replication for the Masses with BFT-SMART”. In: DSN. 2014.
Bitcoin Wiki: Bitcoin weaknesses. 2017. URL: tinyurl.com/3hto9zz.
J. Bonneau. “Why Buy When You Can Rent? - Bribery Attacks
on Bitcoin-Style Consensus”. In: FC. 2016.

J. Bonneau et al. “SoK: Research Perspectives and Challenges for
Bitcoin and Cryptocurrencies”. In: S&P. 2015.

M. Castro and B. Liskov. “Practical byzantine fault tolerance and
proactive recovery”. In: ACM Trans. Comput. Syst. 20.4 (2002),
pp. 398-461.

K. Croman et al. “On scaling decentralized blockchains”. In: FC.
2016.

T. Distler, C. Cachin, and R. Kapitza. “Resource-Efficient Byzan-
tine Fault Tolerance”. In: IEEE Transactions on Computers 65.9
(2016), pp. 2807-2819.

C. Dwork, N. Lynch, and L. Stockmeyer. “Consensus in the
presence of partial synchrony”. In: JACM. 1985.

Ethereum. https://www.ethereum.org/. 2017.

I. Eyal and E. G. Sirer. “Majority Is Not Enough: Bitcoin Mining
Is Vulnerable”. In: FC. 2014.

I. Eyal et al. “Bitcoin-NG: A Scalable Blockchain Protocol”. In:
NSDI. 2016.

A. Gervais et al. “Tampering with the Delivery of Blocks and
Transactions in Bitcoin”. In: CCS. 2015.

D. K. Gifford. “Weighted Voting for Replicated Data”. In: SOSP.
1979.

Y. Gilad et al. “Algorand: Scaling Byzantine Agreements for
Cryptocurrencies”. In: SOSP 2017. 2017, pp. 51-68.

E. Heilman et al. “Eclipse Attacks on Bitcoin’s Peer-to-Peer Net-
work”. In: USENIX Security. 2015.

IBM Blockchain: Hyperledger Fabric. 2017. URL: tinyurl.com/
j966lrv.

Intel. Proof of elapsed time (PoET). 2016.

P. Jovanovic. ByzCoin: Securely Scaling Blockchains. 2016.

G. O. Karame, E. Androulaki, and S. Capkun. “Double-spending
Fast Payments in Bitcoin”. In: CCS. 2012.

A. Kiayias et al. “Ouroboros: A Provably Secure Proof-of-Stake
Blockchain Protocol”. In: CRYPTO 2017. 2017, pp. 357-388.

S. King and S. Nadal. “Ppcoin: Peer-to-peer crypto-currency with
proof-of-stake”. In: self-published paper, August 19 (2012).

E. Kokoris-Kogias et al. “Enhancing Bitcoin Security and Per-
formance with Strong Consistency via Collective Signing”. In:
USENIX Security. 2016.

E. Kokoris-Kogias et al. “OmniLedger: A Secure, Scale-Out, De-
centralized Ledger”. In: IEEE Symposium on Security and Privacy
(2018).

R. Kotla et al. “Zyzzyva: Speculative Byzantine Fault Tolerance”.
In: Proceedings of Twenty-first ACM SIGOPS Symposium on Op-
erating Systems Principles. SOSP ’07. 2007, pp. 45-58.

(33]

(34]
[35]

[36]
[37]
[38]
[39]
[40]

[41]

[42]
[43]
[44]
[45]

[46]

[47]
[48]

[49]

[50]

[51]

[52]

(53]

J. Kwon. “Tendermint: Consensus without mining”. In:
tinyurl.com/y7fm8r2u (2014).

Lightning Network. 2017. URL: https://lightning.network/.

J. Liu et al. “Scalable Byzantine Consensus via Hardware-assisted
Secret Sharing”. In: CoRR abs/1612.04997 (2016).

D. Malkhi and M. K. Reiter. “Byzantine Quorum Systems”. In:
Theory of Computing. 1997.

A. Miller et al. “Permacoin: Repurposing Bitcoin Work for Data
Preservation”. In: S&P. 2014.

A. Miller et al. “The Honey Badger of BFT Protocols”. In: CCS.
2016.

M. Milutinovic et al. “Proof of Luck: an Efficient Blockchain
Consensus Protocol”. In: SysTEX. 2016.

S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.
2009.

C. Natoli and V. Gramoli. “The Balance Attack Against Proof-
Of-Work Blockchains: The R3 Testbed as an Example”. In:
arXiv:1612.09426 (2016).

K. Nayak et al. “Stubborn Mining: Generalizing Selfish Mining
and Combining with an Eclipse Attack”. In: IEEE S&P. 2016.

S. Park et al. “Spacemint: A Cryptocurrency Based on Proofs of
Space”. In: IACR Cryptology ePrint Archive (2015).

R. Pass and E. Shi. “Hybrid Consensus: Efficient Consensus in the
Permissionless Model”. In: DISC. 2017, 39:1-39:16.

J. Poon and T. Dryja. The bitcoin lightning network: Scalable off-
chain instant payments. 2015. URL: tinyurl.com/y9xoa42u.
QuantumMechanic. Bitcoin Forum - Proof of Stake instead of Proof
of Work. 2011. URL: https://bitcointalk.org/index.php?topic=27787.
0.

A. Sapirshtein, Y. Sompolinsky, and A. Zohar. “Optimal selfish
mining strategies in Bitcoin”. In: FC. 2016.

Y. Sompolinsky and A. Zohar. “Secure high-rate transaction pro-
cessing in bitcoin”. In: FC. 2015.

J. Sousa, A. Bessani, and M. Vukolic. “A Byzantine Fault-Tolerant
Ordering Service for the Hyperledger Fabric Blockchain Plat-
form”. In: 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2018, Luxembourg City,
Luxembourg, June 25-28, 2018. 2018, pp. 51-58.

1. Stewart. Proof of burn. bitcoin. it. 2012.

J. Vermeulen. VisaNet — handling 100,000 transactions per minute.
MyBroadband. https://mybroadband.co.za/news/security/190348-
visanet-handling- 100000-transactions-per-minute.html. 2016.

G. S. Veronese et al. “Efficient Byzantine Fault-Tolerance”. In:
IEEE Trans. Computers 62.1 (2013), pp. 16-30.

M. Vukolic. “The Quest for Scalable Blockchain Fabric: Proof-
of-Work vs. BFT Replication”. In: Open Problems in Network
Security. 2015.

18

