
TinyKeys: A New Approach to Efficient Multi-Party Computation

Carmit Hazay1?, Emmanuela Orsini2??, Peter Scholl3? ? ?, and Eduardo Soria-Vazquez4†

1 Bar-Ilan University, Israel
carmit.hazay@biu.ac.il

2 KU Leuven, imec-COSIC, Belgium
emmanuela.orsini@kuleuven.be

3 Aarhus University, Denmark
peter.scholl@cs.au.dk

4 Aarhus University, Denmark. Work partially carried whilst at University of Bristol, UK.
eduardo@cs.au.dk

Abstract We present a new approach to designing concretely efficient MPC protocols with semi-honest security
in the dishonest majority setting. Motivated by the fact that within the dishonest majority setting the efficiency of
most practical protocols does not depend on the number of honest parties, we investigate how to construct protocols
which improve in efficiency as the number of honest parties increases. Our central idea is to take a protocol which
is secure for n − 1 corruptions and modify it to use short symmetric keys, with the aim of basing security on
the concatenation of all honest parties’ keys. This results in a more efficient protocol tolerating fewer corruptions,
whilst also introducing an LPN-style syndrome decoding assumption.
We first apply this technique to a modified version of the semi-honest GMW protocol, using OT extension with short
keys, to improve the efficiency of standard GMW with fewer corruptions. We also obtain more efficient constant-
round MPC, using BMR-style garbled circuits with short keys, and present an implementation of the online phase
of this protocol. Our techniques start to improve upon existing protocols when there are around n = 10 parties
with h = 4 honest parties, and as these increase we obtain up to a 13 times reduction (for n = 400, h = 120) in
communication complexity for our GMW variant, compared with the best-known GMW-based protocol modified
to use the same threshold.

? Supported by the European Research Council under the ERC consolidators grant agreement n. 615172 (HIPS), and by the BIU
Center for Research in Applied Cryptography and Cyber Security in conjunction with the Israel National Cyber Bureau in the
Prime Minister’s Office.

?? Supported in part by ERC Advanced Grant ERC-2015-AdG-IMPaCT.
? ? ? Supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 731583

(SODA), and the Danish Independent Research Council under Grant-ID DFF-6108-00169 (FoCC).
† Supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant

agreement No. 643161, and by ERC Advanced Grant ERC-2015-AdG-IMPaCT.

Contents

TinyKeys: A New Approach to Efficient Multi-Party Computation . 1
Carmit Hazay, Emmanuela Orsini, Peter Scholl, Eduardo Soria-Vazquez

1 Introduction . 3
1.1 Our Contribution . 4
1.2 Technical Overview . 7

2 Preliminaries . 9
2.1 Security and Communication Models . 9
2.2 Random Zero-Sharing . 9
2.3 IKNP OT Extension . 10

3 Syndrome Decoding Problem . 10
4 GMW-Style MPC with Short Keys . 13

4.1 Leaky Two-Party Secret-Shared Multiplication . 14
4.2 MPC for Binary Circuits From Leaky OT . 18
4.3 Optimization with Vandermonde Matrices . 23

5 Multi-Party Garbled Circuits with Short Keys . 24
5.1 The Multi-Party Garbling Scheme . 26
5.2 The Preprocessing Protocol . 27
5.3 Protocols for Bit/String Multiplication . 30
5.4 Security and Complexity . 31
5.5 The Online Phase . 33

6 Complexity Analysis and Implementation Results . 38
6.1 Threshold Variants of Full-Threshold Protocols . 38
6.2 Concrete Hardness of RSD and Our Choice of Parameters . 38
6.3 GMW-Style Protocol . 39
6.4 BMR-Style Protocol . 42

A Universal Composability . 47
B Cryptanalysis . 48

B.1 Linearization Attack . 49
B.2 Generalised Birthday Attack . 50
B.3 Information Set Decoding Attacks . 52

C Additional Material for Efficiency Analysis . 56
C.1 BMR Preprocessing: Communication Complexity . 56
C.2 Instantiating the CRS . 56

1 Introduction

Secure multi-party computation (MPC) protocols allow a group of n parties to compute some function f on
the parties’ private inputs, while preserving a number of security properties such as privacy and correctness.
The former property implies data confidentiality, namely, nothing leaks from the protocol execution but the
computed output. The latter requirement implies that the protocol enforces the integrity of the computations
made by the parties, namely, honest parties are not lead to accept a wrong output. Security is proven either
in the presence of an honest-but-curious adversary that follows the protocol specification but tries to learn
more than allowed from its view of the protocol, or a malicious adversary that can arbitrarily deviate from
the protocol specification in order to compromise the security of the other parties in the protocol.

The efficiency of a protocol typically also depends on how many corrupted parties can be tolerated be-
fore security breaks down, a quantity known as the threshold, t. With semi-honest security, most protocols
either require t < n/2 (where n is the number of parties), in which case unconditionally secure proto-
cols [BGW88, CCD88] based on Shamir secret-sharing can be used, or support any choice of t up to n− 1,
as in computationally secure protocols based on oblivious transfer [GMW87, Gol04]. Interestingly, within
these two ranges, the efficiency of most practical semi-honest protocols does not depend on t. For instance,
the GMW [GMW87] protocol (and its many variants) is full-threshold, so supports any t < n corruptions.
However, we do not know of any practical protocols with threshold, say, t = 2

3n, or even t = n/2 + 1,
that are more efficient than full-threshold GMW-style protocols. One exception to this is when the number
of parties becomes very large, in which case protocols based on committees can be used. In this approach,
due to an idea of Bracha [Bra85], first a random committee of size n′ � n is chosen. Then every party
secret-shares its input to the parties in the committee, who runs a secure computation protocol for t < n′ to
obtain the result. The committee size n′ must be chosen to ensure (with high probability) that not the whole
committee is corrupted, so clearly a lower threshold t allows for smaller committees, giving significant effi-
ciency savings. However, this technique is only really useful when n is very large, at least in the hundreds
or thousands.

In this paper we investigate designing MPC protocols where an arbitrary threshold for the number of
corrupted parties can be chosen, which are practical both when n is very large, and also for small to medium
sizes of n. Specifically, we ask the question:

Can we design concretely efficient MPC protocols where the performance improves gracefully as
the number of honest parties increases?

Note that the performance of an MPC protocol can be measured both in terms of communication
overhead and computational overhead. Using fully homomorphic encryption [Gen09], it is possible to
achieve very low communication overhead that is independent of the circuit size even in the malicious
setting [AJL+12], but for reasonably complex functions FHE is impractical due to very high computational
costs. On the other hand, practical MPC protocols typically communicate for every AND gate in the cir-
cuit, and use oblivious transfer (OT) to carry out the computation. Fast OT extension techniques allow a
large number of secret-shared bit multiplications1 to be performed using only symmetric primitives and an
amortized communication complexity of O(κ) [IKNP03] or O(κ/ log κ) [KK13, DKS+17] bits, where κ is
a computational security parameter. This leads to an overall communication complexity which grows with
O(n2κ/ log κ) bits per AND gate for GMW-style protocols based on secret-sharing, and O(n2κ) in those
based on garbled circuits [Yao86, BMR90, BLO16].

1 Note that OT is equivalent to secret-shared bit multiplication, and when constructing MPC it is more convenient to use the latter
definition.

3

Short keys for secure computation. Our main idea towards achieving the above goal is to build a secure
multi-party protocol with h honest parties, by distributing secret key material so that each party only holds a
small part of the key. Instead of basing security on secret keys held by each party individually, we then base
security on the concatenation of all honest parties’ keys.

As a toy example, consider the following simple distributed encryption of a message m under n keys:

Ek(m) =
n⊕
i=1

H(i, ki)⊕m

where H is a suitable hash function and each key ki ∈ {0, 1}` belongs to party Pi. In the full-threshold
setting with up to n− 1 corruptions, to hide the message we need each party’s key to be of length ` = 128
to ensure 128-bit computational security. However, if only t < n − 1 parties are corrupted, it seems that,
intuitively, an adversary needs to guess all h := n − t honest parties’ keys to recover the message, and
potentially each key ki can be much less than 128 bits long when h is large enough. This is because the
“obvious” way to try to guess m would be to brute force all h keys until decrypting “successfully”.

In fact, recovering m when there are h unknown keys corresponds to solving an instance of the regular
syndrome decoding (RSD) problem [AFS03], which is related to the well-known learning parity with noise
(LPN) problem, and believed to be hard for suitable choices of parameters.

1.1 Our Contribution

In this work we use the above idea of short secret keys to design new MPC protocols in both the constant
round and non-constant round settings, which improve in efficiency as the number of honest parties in-
creases. We consider security against a static, honest-but-curious adversary. Our contribution is captured by
the following:

GMW-STYLE MPC WITH SHORT KEYS (SECTION 4). We present a GMW-style MPC protocol for binary
circuits, where multiplications are done with OT extension using short symmetric keys. This reduces the
communication complexity of OT extension-based GMW from O(n2κ/ log κ) [KK13] to O(nt`), where
the key length ` decreases as the number of honest parties, h = n − t, increases. When h is large enough
(h = Ω(κ)), we can even have ` as small as 1. To construct this protocol, we first analyse the security of
the IKNP OT extension protocol [IKNP03] when using short keys, and formalise the leakage obtained by a
corrupt receiver in this case. We then show how to use this version of “leaky OT” to generate multiplication
triples using a modified version of the GMW method, where pairs of parties use OT to multiply their shares
of random values. We also optimize our protocol by reducing the number of communication channels using
two different-sized committees, improving upon the standard approach of choosing one committee to do all
the work.

MULTI-PARTY GARBLED CIRCUITS WITH SHORT KEYS (SECTION 5). Our second contribution is the de-
sign of a constant round, BMR-style [BMR90] protocol based on garbled circuits with short keys. Our offline
phase uses the multiplication protocol from the previous result in order to generate the garbled circuit, using
secret-shared bit and bit/string multiplications as done in previous works [BLO16, HSS20], with the excep-
tion that the keys are shorter. In the online phase, we then use the LPN-style assumption to show that the
combination of all honest parties’ `-bit keys suffices to obtain a secure garbling protocol. This allows us to
save on the key length as a function of the number of honest parties.
As well as reducing communication with a smaller garbled circuit, we also reduce computation when evalu-
ating the circuit, since each garbled gate can be evaluated with only O(n2`/κ) block cipher calls (assuming

4

the ideal cipher model), instead of O(n2) when using κ-bit keys. For this protocol, ` can be as small as 8
when n is large enough, giving a significant saving over 128-bit keys used previously.

Concrete Efficiency Improvements. The efficiency of our protocols depends on the total number of parties,
n, and the number of honest parties, h, so there is a large range of parameters to explore when comparing
with other works. We discuss this in more detail in Section 6. Our protocols seem most significant in the
dishonest majority setting, since when there is an honest majority there are unconditionally secure protocols
withO(n log n) communication overhead and reasonable computational complexity e.g. [DN07], whilst our
protocols have Ω(nt) communication overhead.

Our GMW-style protocol starts to improve upon previous protocols already when we reach n = 10
parties and t = 6 corruptions: here, our triple generation method requires less than half the communication
cost of the fastest triple generation protocol based on OT extension [DKS+17] tolerating up to n−1 corrup-
tions. When the number of honest parties is large enough, we can use 1-bit keys, giving a 25-fold reduction
in communication over previous protocols when n = 400 and t = 280. In some settings we rely on yet
another improvement, that optimizes our triple generation protocol using Vandermonde matrices. As shown
in Section 6, this approach is particularly convenient when the number of honest parties is small and allows
us to avoid relying on the RSD assumption. Finally, we describe a simple threshold-t variant of GMW-style
protocols, which our protocol still outperforms by 1.1x and 13x, respectively, in these two scenarios.

For our constant round protocol, with n = 20, t = 10 we can use 32-bit keys, so the size of each
garbled AND gate is 1/4 the size of [BLO16]. As n increases the improvements become greater, with a
16-fold reduction in garbled AND gate size for n = 400, t = 280. We also reduce the communication cost
of creating the garbled circuit. Here, the improvement starts at around 50 parties, and goes up to a 7 times
reduction in communication when n = 400, t = 280. Note that our protocol does incur a slight additional
overhead, since we need to use extra “splitter gates”, but this cost is relatively small.

To demonstrate the practicality of our approach, we also present an implementation of the online evalu-
ation phase of our constant-round protocol for key lengths ranging between 1− 4 bytes, and with an overall
number of parties ranging from 15− 1000; more details can be found in Section 6.

Applications. Our techniques seem most useful for large-scale MPC with around 70% corruptions, where
we obtain the greatest concrete efficiency improvements. An important motivation for this setting is privacy-
preserving statistical analysis of data collected from a large network with potentially thousands of nodes.
In scenarios where the nodes are not always online and connected, our protocols can also be used with the
“random committee” approach discussed earlier, so only a small subset of, say, a hundred nodes need to be
online and interacting during the protocol.

An interesting example is safely measuring the Tor network [DMS04] which is among the most popular
tools for digital privacy, consisting of more than 6000 relays that can opt-in for providing statistics about
the use of the network. Nowadays, due to privacy risks, the statistics collected over Tor are generally poor:
There is a reduced list of computed functions and only a minority of the relays provide data, which has
to be obfuscated before publishing [DMS04]. Hence, the statistics provide an incomplete picture which
is affected by a noise that scales with the number of relays. Running MPC in this setting would enable
for more complex, accurate and private data processing, for example through anomaly detection and more
sophisticated censorship detection. Moreover, our protocols are particularly well-suited to this setting since
all relays in the network must be connected to one another already, by design.

Another possible application is for securely computing the interdomain routing within the Border Gate-
way Protocol (BGP), which is performed at a large scale of thousands of nodes. A recent solution in the

5

dishonest majority setting [ADS+17] centralizes BGP so that two parties run this computation for all Au-
tonomous Systems. Our techniques allow scaling to a large number of systems computing the interdomain
routing themselves using MPC, hence further reducing the trust requirements.

Decisional Regular Syndrome Decoding problem. The security of our protocols relies on the Decisional
Regular Syndrome Decoding (DRSD) problem, which, given a random binary matrix H, is to distinguish
between the syndrome obtained by multiplying H with an error vector e = (e1‖ · · · ‖eh) where each ei ∈
{0, 1}2` has Hamming weight one, and the uniform distribution. This can equivalently be described as
distinguishing

⊕h
i=1 H(i, ki) from the uniform distribution, where H is a random function and each ki is a

random `-bit key (as in the toy example described earlier).
This problem was introduced in 2003 by Augot, Finiasz and Sendrier [AFS03], who used it for the

SHA-3 candidate FSB (Fast Syndrome-Based) hash function. RSD is similar to the (standard) syndrome
decoding problem [BMvT78, MS77], where each component of the error vector is 0 or 1 with some constant
probability, and which, in turn, is equivalent to the problem of learning parity with noise (LPN) [BFKL94]
for a restricted number of samples. Like LPN, the RSD problem is NP-hard in general, and the best-known
attacks on RSD do not perform much better than those against LPN. We also show that RSD admits a simple
search-to-decision reduction, similar to a previous reduction for LPN [AIK09].

We remark that in some of our settings, the problem is unconditionally hard even for ` = 1, which means
for certain parameter choices in our GMW-based protocol we can use much smaller keys without introducing
any additional assumptions. This introduces a significant saving in our triple generation protocol.

Overall, our approach demonstrates a new application of LPN-type assumptions to efficient MPC with-
out introducing asymmetric operations. Our techniques may also be useful in other distributed applications
where only a small fraction of nodes are honest.

Additional related work. Another work which applies a similar assumption to secure computation is that
of Applebaum [App16], who built garbled circuits with the free-XOR technique in the standard model under
the LPN assumption. Conceptually, our work differs from Applebaum’s since our focus is to improve the
efficiency of multi-party protocols with fewer corruptions, whereas in [App16], LPN is used in a more
modular way in order to achieve encryption with stronger properties and under a more standard assumption.

In a recent work [NR17], Nielsen and Ranellucci designed a protocol in the dishonest majority setting
with malicious, adaptive security in the presence of t < cn corruption for c ∈ [0, 1). Their protocol is aimed
to work with a large number of parties and uses committees to obtain a protocol with poly-logarithmic
overhead. This protocol introduces high constants and is not useful for practical applications.

Finally, in work concurrent to the proceedings version of this work [BO17], Ben-Efraim and Omri
also explore how to optimize garbled circuits in the presence of non-full-threshold adversaries. By using
deterministic committees they achieve AND gates of size 4(t + 1)κ, where κ is the computational security
parameter. If we were to limit ourselves to deterministic rather than random committees, our work would
achieve a gate size of 4(t+ h)`, where h is the minimum number of honest parties in the committee and the
parameter ` � κ depends on h according to the Decisional Regular Syndrome Decoding problem. When
n is big enough, for garbled circuits we can go as low as ` = 8, while still limiting h (see discussion in
Section 6.4 and Table 5). The rest of the results in [BO17] apply only to the honest majority setting.

History and Subsequent Work. An earlier version of this work was published at Crypto 2018 [HOSS18b].
The current version extends this with complete security proofs, more detailed complexity and security anal-
ysis, and an additional optimization. In particular, Section 4.3 describes a new variant of our GMW protocol

6

which leads to lower communication in several settings, and can also remove reliance on the DRSD assump-
tion for a wider range of parameters.

In follow-up work, we extended these techniques to the malicious setting [HOSS18a]. There, we show
how to improve the communication and computation complexity of protocols from the ‘TinyOT’ fam-
ily [NNOB12, FKOS15, HSS20, WRK17]. Furthermore, such techniques can be combined with the BMR
protocol of [HSS20] to obtain more efficient constant-round MPC.

1.2 Technical Overview

In what follows we explain the technical side of our results in more detail.

Leaky oblivious transfer (OT). We first present a two-party secret-shared bit multiplication protocol,
based on the IKNP OT extension protocol [IKNP03] which we adapt to use short keys. Recall that the IKNP
protocol can be broken into two stages: first, the parties create a batch of correlated OTs, where the sender’s
messages in each OT are strings of the form qi, qi⊕∆ for some fixed∆ ∈ {0, 1}κ. Secondly, the parties break
the correlation by hashing each string individually; if the hash function H has one-bit output, this produces
OTs on random bits, which can be directly used for secret-shared multiplication. For security, H must satisfy
a correlation robustness property, namely, if∆ is a random, secret string, then H(qi⊕∆) is indistinguishable
from random to the receiver, even given qi. Note that this last step is completely local, while the first step
requires κ bits of communication per OT when using optimized IKNP variants [ALSZ13, KK13] which we
build upon.

In our protocol, we modify the first step by choosing the sender’s secret ∆ to be an `-bit string, for
some ` < κ, instead of κ bits. This reduces the communication cost of this step down to ≈ ` bits per OT.
However, the protocol now leaks some information on the sender’s secret∆← {0, 1}` to the receiver, which
also reveals information about the sender’s inputs. Roughly speaking, the leakage is of the form H(i,∆)+xi,
where xi ∈ {0, 1} is an input of the sender and H is a hash function with 1-bit output. Clearly, when ` is
short this is not secure to use on its own, since all of the receiver’s inputs only have ` bits of min-entropy
(based on the choice of ∆).

MPC from leaky OT. We then show how to apply this leaky two-party protocol to the multi-party setting,
whilst preventing any leakage on the parties shares. The main observation is that, when using additive secret-
sharing, we only need to ensure that the sum of all honest parties’ shares is unpredictable; if the adversary
learns just a few shares, they can easily be rerandomized by adding pseudorandom shares of zero, which
can be done non-interactively using a PRF. However, we still have a problem, which is that in the standard
GMW approach, each party Pi uses OT to multiply their share xi with every other party Pj’s share yj . Now,
there is leakage on the same share xi from each of the OT instances between all other parties, which seems
much harder to prevent than leakage from just a single OT instance.

To work around this problem, we have the parties add shares of zero to their xi inputs before multiplying
them. So, every pair (Pi, Pj) will use leaky OT to multiply xi ⊕ si,j with yj , where si,j is a random share
of zero satisfying

⊕n
i=1 s

i,j = 0. This preserves correctness of the protocol, because the parties end up
computing an additive sharing of:

n⊕
i=1

n⊕
j=1

(xi ⊕ si,j)yj =

n⊕
j=1

yj
n⊕
i=1

(xi ⊕ si,j) = xy.

7

This also effectively removes leakage on the individual shares, so we only need to be concerned with the
sum of the leakage on all honest parties’ shares, and this turns out to be of the form:

⊕n
i=1(H(i,∆i) + xi)

which is pseudorandom under the decisional regular syndrome decoding assumption.
We realize our protocol using a hash function with a polynomial-sized domain, so that is can be imple-

mented using a CRS which simply outputs a random lookup-table. This means that, unlike when using the
IKNP protocol, we do not need to rely on a random oracle or a correlation robustness assumption (which
is also defined using an oracle). Furthermore, in some cases we can avoid reliance on decisional regular
syndrome decoding, by choosing parameters such that the problem is information-theoretically secure. We
present two variants of this approach, where the first requires a large number of honest parties but allows
` = 1, while the second requires ` ≥ log n, and uses Vandermonde matrices to extract randomness from a
smaller number of honest parties.

When the number of parties is large enough, we can also improve our triple generation protocol using
random committees. In this case the amortized communication cost is ≤ nhn1(` + `κ/r + 1) bits per
multiplication where we need to choose two committees of sizes nh and n1 which have at least h and 1
honest parties, respectively.

Garbled circuits with short keys. We next revisit the multi-party garbled circuits technique by Beaver,
Micali and Rogaway, known as BMR, that extends the classic Yao garbling [Yao86] to an arbitrary number
of parties, where essentially all the parties jointly garble using one set of keys each. This method was
recently improved in a sequence of works [LPSY15, LSS16, BLO16, HSS20], where the two latter works
further support the free-XOR property.

Our garbling method uses an expansion function H : [n] × {0, 1} × {0, 1}` → {0, 1}n`+1, where ` is
the length of each parties’ keys used as wire labels in the garbled circuit. To garble a gate, the hash values
of the input wire keys kiu,b and kiv,b are XORed over i and used to mask the output wire keys.

Specifically, for an AND gate g with input wires u, v and output wire w, the 4 garbled rows g̃a,b, for
each (a, b) ∈ {0, 1}2, are computed as:

g̃a,b =

(
n⊕
i=1

H(i, b, kiu,a)⊕ H(i, a, kiv,b)

)
⊕ (c, k1

w,c, . . . , k
n
w,c).

Security then relies on the DRSD assumption, which implies that the sum of h hash values on short keys is
pseudorandom, which suffices to construct a secure garbling method with h honest parties.

Using this assumption instead of a PRF (as in recent works) comes with difficulties, as we can no longer
garble gates with arbitrary fan-out, or use the free-XOR technique, without degrading the DRSD parameters.
To allow for arbitrary fan-out circuits with our protocol we use splitter gates, which take as input one wire
w and provide two outputs wires u, v, representing the same wire value. Splitter gates were previously
introduced as a fix for an error in the original BMR paper in [TX03]. We stress that transforming a general
circuit description into a circuit where XOR and AND gates are fan-out-1 requires adding at most a single
splitter gate per AND or XOR gate.

The restriction to fan-out-1 gates and the use of splitter gates allow us to garble XOR gates ‘almost for
free’ in BMR, more specifically at the cost of at most one splitter gate per arbitrary-fan-in XOR gate. Our
technique is based on FlexOR [KMR14], by setting each XOR gate to use a unique offset. As a side effect
of using different offsets, we do not need to rely on circular security assumptions or correlation-robust hash
functions. Furthermore, the overhead of splitter gates is very low, since garbling a splitter gate does not use
the underlying MPC protocol: shares of the garbled gate can be generated non-interactively.

8

2 Preliminaries

We denote the security parameter by κ. We say that a function µ : N→ N is negligible if for every positive
polynomial p(·) and all sufficiently large κ it holds that µ(κ) < 1

p(κ) . The function µ is noticeable (or
non-negligible) if there exists a positive polynomial p(·) such that for all sufficiently large κ it holds that
µ(κ) ≥ 1

p(κ) . We use the abbreviation PPT to denote probabilistic polynomial-time. We further denote by
a ← A the uniform sampling of a from a set A, and by [d] the set of elements {1, . . . , d}. We often view
bit-strings in {0, 1}k as vectors in Fk2 , depending on the context, and denote exclusive-or by “⊕” or “+”. If
a, b ∈ F2 then a · b denotes multiplication (or AND), and if c ∈ Fκ2 then a · c ∈ Fκ2 denotes the product of a
with every component of c.

We first specify the definition of computational indistinguishability.

Definition 2.1 Let X = {X(a, κ)}a∈{0,1}∗,κ∈N and Y = {Y (a, κ)}a∈{0,1}∗,κ∈N be two distribution en-

sembles. We say that X and Y are computationally indistinguishable, denoted X
c
≈ Y , if for every PPT

machine D and every a ∈ {0, 1}∗, there exists a negligible function negl such that:∣∣Pr [D(X(a, κ), a, 1κ) = 1]− Pr [D(Y (a, κ), a, 1κ) = 1]
∣∣ < negl(κ).

2.1 Security and Communication Models

We prove security of our protocols in the universal composability (UC) framework [Can01]. See Appendix A
for a summary of this. We assume all parties are connected via secure, authenticated point-to-point channels,
which is the default method of communication in our protocols. The adversary model we consider is a static,
honest-but-curious adversary who corrupts a subset A ⊂ [n] of parties at the beginning of the protocol. We
denote by Ā the subset of honest parties, and define h = |Ā| = n− t.

2.2 Random Zero-Sharing

Functionality FrZero(P)

On receiving (zero) from all parties in P = {P1, . . . , Pn}:

1. Sample random shares s2, . . . , sn ← {0, 1}r and let s1 = s2 ⊕ · · · ⊕ sn
2. Send si to party Pi

Figure 1. Random zero sharing functionality.

Our protocols require the parties to generate random additive sharings of zero, as in the FZero function-
ality in Figure 1. This can be done efficiently using a PRF F , with interaction only during a setup phase, as
in [AFL+16]. We do this by asking each party Pi to send a random PRF key ki,j to every other party Pj .
Next, Pi defines its share by

⊕
j 6=i(Fki,j (τ) ⊕ Fkj,i(τ)) where τ is an index that identifies the generated

share. It is simple to verify that all the shares XOR to zero since each PRF value is used exactly twice. More-
over, privacy holds in the presence of any subset of n − 2 corrupted parties because the respective values
Fkl,l′ and Fkl′,l of honest parties Pl and Pl′ are pseudorandom, which implies that their zero shares are also
pseudorandom. Finally, the communication complexity of the setup phase amounts to sending O(n2) PRF
keys, whilst creating the shares requires 2(n− 1) PRF evaluations to produce κ bits.

9

2.3 IKNP OT Extension

Here we shortly recall the passively secure OT extension protocol presented by Ishai, Kilian, Nissim and Pe-
trank in 2003 [IKNP03], including some optimations by Asharov, Lindell, Schneider and Zohner [ALSZ13].
This protocol allows to generate r = poly(κ) random oblivious transfers from κ oblivious transfers using
only cheap symmetric cryptographic primitives. At a high level, the protocol can be divided into three
phases. The private inputs of the receiver PB are the choice bits x = (x1, . . . , xr).

In the first step, called “seed OT phase”, the sender, PA, and the receiver, PB , acting with their roles
reversed, perform κ OTs on random strings of length κ. PB obtains random (si0, s

i
1) ∈ {0, 1}κ and PA

obtains (si∆i), where ∆ = (∆1, . . . ∆κ) ∈ {0, 1}κ is the choice vector used by PA as input in the OTs.
Then, they locally expand these strings through a pseudorandom generator, so that PB obtains (ti0, t

i
1) ∈

{0, 1}r, i ∈ [κ], and PA obtains (ti∆i). In the second step, PB introduces a correlation by sending the values

ui = t0i ⊕ t11 ⊕ x,

where x = (x1, . . . , xr) are the receiver’s r choice bits. In this way the sender PA can compute

qi = ti∆i ⊕∆i · ui

= ti0 ⊕∆i · x = ti ⊕∆ · x,

and can define the matrix Q ∈ {0, 1}κ×r having the vectors qi as rows. Similarly, PB can define the matrix
T ∈ {0, 1}κ×r with rows ti0. By taking the columns of these two matrices, PA and PB respectively obtain
qj , tj ∈ {0, 1}κ, j ∈ [r] such that:

tj ⊕ qj = ∆ · xj .

Finally, the last step permits to obtain r OTs on random strings, by breaking the correlation ∆. To do
this, the sender computes H(qj) and H(qj ⊕∆) and the receiver computes H(tj), where H is a correlation
robust hash function.

Note that this protocol only requires interaction to generate the seed OTs and during the second phase
when the receiver sends the values ui. Note that in this second interaction the receiver must communicate κ
bits for each of the r OTs to be produced.

3 Syndrome Decoding Problem

We now describe the Regular Syndrome Decoding (RSD) problem [AFS03] and some of its properties.

Definition 3.1 A vector e ∈ Fm2 is (m,h)-regular if e = (e1‖ · · · ‖eh) where each ei ∈ {0, 1}m/h has
Hamming weight one. We denote by Rm,h the set of all the (m,h)-regular vectors in Fm2 .

Definition 3.2 (Regular Syndrome Decoding (RSD)) Let r, h, ` ∈ N with m = h · 2`, H ← Fr×m2 and
e← Rm,h. Given (H,He), the RSDr,h,` problem is to recover e with noticeable probability.

The decisional version of the problem, given below, is to distinguish the syndrome He from uniform.

Definition 3.3 (Decisional Regular Syndrome Decoding (DRSD)) Let H ← Fr×m2 and e ← Rm,h, and
let Ur be the uniform distribution on r bits. The DRSDr,h,` problem is to distinguish between (H,He) and
(H, Ur) with noticeable advantage.

10

Hash function formulation. The DRSD problem can be equivalently described as distinguishing from
uniform

⊕h
i=1 H(i, ki) where H : [h]×{0, 1}` → {0, 1}r is a random hash function, and each ki ← {0, 1}`.

With this formulation, it is easier to see how the DRSD problem arises when using our protocols with short
keys, since this appears when summing up a hash function applied to h honest parties’ secret keys.

To see the equivalence, we can define a matrix H ∈ Fr×h·2
`

2 , where for each i ∈ {0, . . . , h − 1} and
k ∈ [2`], column i · 2` + k of H contains H(i, k). Then, multiplying H with a random (m,h)-regular vector
e is equivalent to taking the sum of H over h random inputs, as above.

Statistical hardness of DRSD. We next observe that for certain parameters where the output size of H is
sufficiently smaller than the min-entropy of the error vector e, the distribution in the decisional problem is
statistically close to uniform.

Lemma 3.1 If ` = 1 and h ≥ r + s then DRSDr,h,` is statistically hard, with distinguishing probability
2−s.

Proof. Suppose ` = 1 and h ≥ r + s, so m = 2h. For a vector e = (e1‖ · · · ‖eh) ∈ Rm,h, we can write
each of the weight-1 vectors ei ∈ {0, 1}2 as (e′i, 1 − e′i). An RSD sample H,y = He therefore defines
a system of r linear equations in the h variables {e′i}i, and it can be shown that this simplifies to the form
y = H′e′+c, where e′ = (e′1, . . . , e

′
h), by defining the j-th column of H′ ∈ Fr×h2 to be the sum of columns

2j − 1 and 2j from H, and c to be the sum of all even-indexed columns in H. Note that H′ is uniformly
random because H is, and it is easy to show (e.g. [Pie12, Lemma 1]) that the probability that H′ ← Fr×h2 is
not full rank is no more than 2−s when h ≥ r+ s. Assuming that H′ has full rank and h ≥ r, y = H′e′+ c
must be uniformly random because e′ is. �

For the general case of `-bit keys, we use the following form of the leftover hash lemma.

Lemma 3.2 (Leftover Hash Lemma [ILL89]) Let H← Fr×m2 and e← χ, where χ is a distribution over
Fm2 with min-entropy at least k. If r ≤ k − 2s then

∆SD((H,He), (H,u)) ≤ 2−s

where u← Fr2 and ∆SD is the statistical distance.

Note that if e ← Rm,h then we have H∞(e) = h`. Applying Lemma 3.2 with k = h`, we obtain the
following.

Corollary 3.1. If h ≥ (r + 2s)/` then DRSDr,h,` is statistically hard, with distinguishing probability 2−s.

Search-to-decision reduction. For all parameter choices of DRSD, there is a simple reduction to the search
version of the regular syndrome decoding problem with the same parameters.

Lemma 3.3 Any efficient distinguisher for the DRSDr,h,` problem can be used to efficiently solve RSDr,h,`.

The proof (inspired by a similar result for LPN [AIK09]) is a simplified version of previous reductions
for syndrome decoding.

We first recall the Goldreich-Levin hardcore-bit theorem.

11

Theorem 3.4 ([GL89]) Let f be a one-way function. Then, given (r, f(x)) for uniformly random r and x,
the inner product 〈x, r〉 over F2 is unpredictable.

Proof. (of Lemma 3.3) Suppose A distinguishes between (H,He) and (H, Ur) with noticeable advantage
δ. We construct an adversary A′ that breaks the Goldreich-Levin hardcore bit of f(e) = (H,He) by
guessing the inner product 〈e, s〉 for some vector s ∈ Fm2 . On input (H,y = He, s), algorithmA′ proceeds
as follows:

1. Sample t← {0, 1}r
2. Compute H′ = H− t · s>
3. Run A on input (H′,y)

4. Output the same as A

First notice that because H is uniformly random, H′ is also. Secondly, y = He = (H′ + t · s>)e =
H′e + t · 〈s, e〉. So, if 〈s, e〉 = 0 then the input to A is a correct sample (H′,H′e), whereas if 〈s, e〉 = 1
then the input is uniformly random. Therefore, it holds that:

Pr[A′(H,He, r) = 〈e, r〉] = Pr[A′(H,He, r) = 0|〈e, r〉 = 0] · Pr[〈e, r〉 = 0]+

Pr[A′(H,He, r) = 1|〈e, r〉 = 1] · Pr[〈e, r〉 = 1]

=
1

2
· (Pr[A(H′,H′e) = 0] + (1− Pr[A(H′, Ur) = 0]))

≥ 1

2
+
δ

2
.

�

Multi-Secret RSD. We now consider a variant of DRSD with multiple sets of secrets, where the matrix H
is fixed for each sample. We then reduce this to the standard DRSD problem with the same parameters, with
a security loss of the number of secrets.

Definition 3.5 (Multi-Secret DRSD) Let H ← Fr×m2 and e1, . . . , eq ← Rm,h (as in Definition 3.2). The
q-DRSDr,h,` problem is to distinguish between a tuple (H,He1, . . . ,Heq) and (H, U qr) with noticeable
advantage.

Lemma 3.4 q-DRSDr,h,` is reducible to DRSDr,h,`, where the reduction loses a tightness factor of q.

Proof. The proof is based on a standard hybrid argument with a sequence of q + 1 hybrid distributions,
where each pair of neighbouring hybrids is indistinguishable based on DRSD.
The first hybrid,H0, outputs (H, u1, . . . , uq), where H← Fr×m2 and ui ← {0, 1}r, which is exactly the uni-
form distribution used in q-DRSD. In hybrid Hi, for i = 1, . . . , q, we sample regular secrets e1, . . . , ei and
output (H,He1, . . . ,Hei, ui+1, . . . , uq). Note that Hq is the same as the real distribution in the q-DRSD
problem. Any adversary A who distinguishes between Hi and Hi+1 can be used to break DRSDr,h,`, as
follows. The distinguisherD receives a DRSD challenge (H,y), then samples e1, . . . , ei from the error dis-
tribution and random strings ui+2, . . . , uq ← {0, 1}r. It then outputsA(H,He1, . . . ,Hei,y, ui+2, . . . , uq).
The advantage of D against the DRSD problem is identical to that of A. A standard argument then implies
that any adversary who distinguishes H0 and Hq with advantage δ can solve DRSDr,h,` with advantage at
least δ/q. �

12

Extended Double-Key RSD. In our final variant of RSD — used in the security proof of our BMR-style
online phase — we consider multiple sets of secrets, and also give the adversary two challenges for each
secret which captures the double use of each key in the garbling procedure. This means we cannot preserve
the RSD parameters, and must reduce to 2-DRSD2r,h,`. We also make a conceptual change, and specify the
problem using a random hash function H with small domain (which can be modelled as a random oracle, or
a random lookup table given as a common random string) instead of matrices and vectors. We switch to this
notation in order to capture the computation made by the honest parties when garbling a gate.

Definition 3.6 (Extended Double-Key DRSD) The extended double-key decisional-RSD problem states
that, for every fixed subset S ⊂ [n] of size h, it holds that(

H,
⊕
i∈S

H(i, 0, ki),
⊕
i∈S

H(i, 0, k′i),
⊕
i∈S

H(i, 1, ki),
⊕
i∈S

H(i, 1, k′i)

)
c
≈ (H, U4r) ,

where H : [n]×{0, 1}× {0, 1}` → {0, 1}r is a randomly sampled function, and ki, k′i ← {0, 1}` for i ∈ S.

Lemma 3.5 The extended double-key decisional-RSD problem with parameters (r, h, `) is reducible to 2-
DRSD(2r, h, `).

Proof. Suppose there exists a set S ⊂ [n] for which an adversaryA distinguishes the above two distributions
with noticeable advantage. We use A to construct a distinguisher D for the 2-DRSD(2r, h, `) problem. D
receives a challenge (H,y0,y1), where H ∈ F2r×m

2 , m = h · 2` and y0,y1 ∈ F2r
2 . Write H =

(
H0
H1

)
and

yj =
(

zj
z′j

)
. Define the hash function H : [n] × {0, 1} × {0, 1}` → {0, 1}r so that H(i, b, k) is equal to

column 2`i + k (viewing k also as an integer in [2`]) of the matrix Hb, for each i ∈ S and b ∈ {0, 1}. For
i ∈ [n] \ S, let the output of H(i, ·, ·) be uniformly random. The distinguisher then runs A with input(

H, z0, z
′
0, z1, z

′
1

)
,

and outputs the same as A. Notice that if the DRSD challenge is random then the input to A is random,
whereas if the challenge is computed as yj = Hej for some regular error ej and j ∈ {0, 1}, then we have
zj = H0ej and z′j = H1ej , and by the definition of H, these values are equal to the sum of hash function
outputs under some secret keys corresponding to ej . It follows that the distinguishing advantage of D is the
same as that of A. �

4 GMW-Style MPC with Short Keys

In this section we design a protocol for generating multiplication triples over F2 using short secret keys,
with reduced communication complexity as the number of honest parties increases. More concretely, we
first design a leaky protocol for secret-shared two-party bit multiplication, based on correlated OT and OT
extension techniques with short keys. This protocol is not fully secure and we precisely define the leakage,
which is obtained by the receiver. We next show how to use the leaky protocol to produce multiplication
triples, removing the leakage by rerandomizing the parties’ shares with shares of zero, and using the DRSD
assumption. Finally, this protocol can be used with Beaver’s multiplication triple technique [Bea92] to obtain
MPC for binary circuits with an amortized communication complexity of O(nt`) bits per triple, where t is
the threshold and ` is the secret key length. In some cases we can use short keys without relying on DRSD,
obtaining either ` = 1 when the number of honest parties is large enough, or ` = log n otherwise.

13

4.1 Leaky Two-Party Secret-Shared Multiplication

Functionality Fr,`∆-ROT

After receiving ∆ ∈ {0, 1}` from PS and (y1, . . . , yr) ∈ {0, 1}r from PR, do the following:

1. Sample qi ← {0, 1}`, for i ∈ [r], and let ti = qi ⊕ yi ·∆.
2. Output qi to PS and ti to PR, for i ∈ [r].

Figure 2. Functionality for oblivious transfer on random, correlated strings.

We first present our protocol for two-party secret-shared bit multiplication. We modify the IKNP pro-
tocol for OT extension to use short keys, where by ‘IKNP’ we refer to the optimized variant by Asharov
et al. [ALSZ13], which we summarized in Section 2.3. With short keys we cannot hope for computational
security based on standard symmetric primitives, because an adversary can search every possible key in
polynomial time. Our goal, therefore, is to define the precise leakage that occurs when using short keys, in
order to remove this leakage at a later stage.

OT extension and correlated OT. Recall that the main observation of the IKNP protocol for extending
oblivious transfer [IKNP03] is that correlated OT is symmetric, so that κ correlated OTs on r-bit strings can
be locally converted into r correlated OTs on κ-bit strings. Secondly, a κ-bit correlated OT can be used to
obtain an OT on chosen strings with computational security. The first stage of this process is abstracted away
by the functionality F∆-ROT in Figure 2, and is implemented by the first two phases of IKNP as described
in Section 2.3.

Using IKNP to multiply an input bit xk from the sender, PA, with an input bit yk from PB , the receiver,
PB sends yk as its choice bit to F∆-ROT and learns tk = qk ⊕ yk ·∆. The sender PA obtains qk, and then
sends

dk = H(qk)⊕ H(qk ⊕∆)⊕ xk,

where H is a 1-bit output hash function. This allows the parties to compute an additive sharing of xk · yk as
follows: PA defines the share H(qk), and PB computes H(tk) ⊕ yk · dk. This can be repeated many times
with the same ∆ to perform a large batch of poly(κ) secret-shared multiplications, because the randomness
in ∆ serves to computationally mask each x with the hash values (under a suitable correlation robustness
assumption for H). The downside of this is that for ∆ ∈ {0, 1}κ, the communication cost is O(κ) bits per
two-party bit multiplication, to perform the correlated OTs.

Variant with short keys. We adapt this protocol to use short keys by performing the correlated OTs on
`-bit strings, instead of κ-bit, for some small key length ` = O(log κ) (we could have ` as small as 1). This
allows F∆-ROT to be implemented with only O(`) bits of communication per OT instead of O(κ).

Our protocol, shown in Figure 4, performs a batch of r multiplications at once. First the parties create
r correlated OTs on `-bit strings using F∆-ROT. Next, the parties hash the output strings of the correlated
OTs, and PA sends over the correction values dk, which are used by PB to convert the random OTs into a
secret-shared bit multiplication. Finally, we require the parties to add a random value (from FZero, shown in
Figure 1) to their outputs, which ensures that they have a uniform distribution.

14

Note that if ` ∈ O(log κ) then the hash function HAB has a polynomial-sized domain, so can be de-
scribed as a lookup table provided as a common input to the protocol by both parties. At this stage we do
not make any assumptions about HAB; this means that the leakage in the protocol will depend on the hash
function, so its description is also passed to the functionality FLeaky-2-Mult (Figure 3). We require HAB to
take as additional input an index k ∈ [r] and a bit in {0, 1}, to provide independence between different uses,
and our later protocols require the function to be different in protocol instances between different pairs of
parties (we use the notation HAB to emphasize this).

Functionality Fr,`Leaky-2-Mult

INPUT: (x1, . . . , xr) ∈ Fr2 from PA and (y1, . . . , yr) ∈ Fr2 from PB .
COMMON INPUT: A hash function HAB : [r]× {0, 1} × {0, 1}` → {0, 1}.

1. Sample zA,zB ← Fr2 such that zA + zB = x ∗ y (where ∗ denotes component-wise product).
2. Output zA to PA and zB to PB .

Leakage: If PB is corrupt:

1. Let H ∈ Fr×2`

2 be defined so that entry (k, k′) of H is HAB(k, 1⊕ yk, tk ⊕ k′), where tk ← {0, 1}`.
2. Sample a random unit vector e ∈ F2`

2 and send (H,u = He+ x) to A.

Figure 3. Ideal functionality for leaky secret-shared two-party bit multiplication.

Leakage. We now analyse the exact security of the protocol in Figure 4 when using short keys, and explain
how this is specified in the functionality FLeaky-2-Mult (Figure 3). Since a random share of zero is added to
the outputs, note that the output distribution is uniformly random. Also, like IKNP, the protocol is perfectly
secure against a corrupt PA (or sender), so we only need to be concerned with leakage to a corrupt PB who
also sees the intermediate values of the protocol.

The leakage is different for each k, depending on whether yk = 0 or yk = 1, so we consider the two cases
separately. Within each case, there are two potential sources of leakage: firstly, the corrupt PB’s knowledge
of tk and ρk may cause leakage (where ρk is a random share of zero), since these values are used to define
PA’s output. Secondly, the dk values seen by PB , which equal

dk = HAB(k, yk, tk)⊕ HAB(k, 1⊕ yk, tk ⊕∆)⊕ xk, (1)

may leak information on PA’s inputs xk.

Case 1 (yk = 1). In this case there is only leakage from the values tk and ρk, which are used to define
PA’s output. Since zAk = HAB(k, 0, tk⊕∆)⊕ρk, all of PA’s outputs (and hence, also inputs) where yk = 1
effectively have only ` bits of min-entropy in the view of PB , corresponding to the random choice of ∆.
In this case PB’s output is zBk = zAk ⊕ xk = HAB(k, 0, tk ⊕ ∆) ⊕ ρk ⊕ xk. To ensure that PB’s view is
simulable the functionality needs to sample a random string ∆← {0, 1}` and leak HAB(k, 0, tk ⊕∆)⊕ xk
to a corrupt PB .

Concerning the dk values, notice that when yk = 1 PB can compute HAB(k, 1, tk) and use (1) to recover
HAB(k, 0, qk) + xk, which equals zAk + ρk + xk. However, this is not a problem, because in this case we
have zBk = zAk + xk, so dk can be simulated given PB’s output.

15

Case 2 (yk = 0). Here the dk values seen by PB causes leakage on PA’s inputs, because ∆ is short.
Looking at (1), dk leaks information on xk because ∆ ← {0, 1}` is the only unknown in the equation, and
is fixed for every k. Similarly to the previous case, this means that all of PA’s inputs where yk = 0 have
only ` bits of min-entropy in the view of an adversary who corrupts PB . We can again handle this leakage,
by defining FLeaky-2-Mult to leak HAB(k, 1, tk ⊕∆) + xk to a corrupt PB .

Note that there is no leakage from the tk values when yk = 0, because then tk = qk, so these messages
are independent of ∆ and the inputs of PA.

In the functionality FLeaky-2-Mult, we actually modify the above slightly so that the leakage is defined in
terms of linear algebra, instead of the hash function HAB , to simplify the translation to the DRSD problem
later on. Therefore, FLeaky-2-Mult defines a matrix H ∈ Fr×2`

2 , which contains the 2` values {HAB(k, 1 ⊕
yk, tk ⊕∆)}∆∈{0,1}` in row k, where each tk is uniformly random. Given H, the leakage from the protocol

can then be described by sampling a random unit vector e ∈ F2`
2 (which corresponds to ∆ ∈ {0, 1}` in the

protocol) and leaking u = He+ x to a corrupt PB .

Protocol Πr,`
Leaky-2-Mult

PARAMETERS: r, number of multiplications; `, key length.
INPUT: x = (x1, . . . , xr) ∈ Fr2 from PA and y = (y1, . . . , yr) ∈ Fr2 from PB .
COMMON INPUT: A hash function HAB : [r]× {0, 1} × {0, 1}` → {0, 1}.

1. PA and PB invoke Fr,`∆-ROT where PA is sender with a random input ∆ ← {0, 1}`, and PB is receiver with inputs
(y1, . . . , yr). PA receives random strings qk ∈ {0, 1}` and PB receives tk = qk ⊕ yk ·∆, for k ∈ [r].

2. Call FrZero so that PA and PB obtain the same random ρk ∈ {0, 1} for every k ∈ [r].
3. For each k ∈ [r], PA privately sends to PB :

dk = HAB(k, 0, qk) + HAB(k, 1, qk +∆) + xk.

4. PB outputs
zBk = HAB(k, yk, tk) + yk · dk + ρk, for k ∈ [r].

5. PA outputs
zAk = HAB(k, 0, qk) + ρk, for k ∈ [r].

Figure 4. Leaky secret-shared two-party bit multiplication protocol.

We remark that this leakage reveals a lot of information about PA’s input x, and in particular, if a corrupt
PB knows something about the distribution of x then it might leverage this to learn∆ and thus all of x. This
illustrates the challenge of using leaky multiplication to build a secure MPC protocol, which we overcome
in the next section.

Theorem 4.1 ProtocolΠr,`
Leaky-2-Mult securely implements the functionality Fr,`Leaky-2-Mult with perfect secu-

rity in the (F∆-ROT,FZero)-hybrid model in the presence of static honest-but-curious adversaries.

Proof. The main challenge in the proof consists of showing that the leakage to PB in the functionality can
be translated directly to the leakage introduced in the protocol in the view of PB . More formally, for the two
cases of a corrupt PA, and a corrupt PB , we define a simulator who obtains the corrupted party’s inputs and
the output of FLeaky-2-Mult, and simulates the view of the corrupted party during a protocol execution.

16

No corruptions. Here, no simulation is necessary because all communication is over private channels, so
we just need to show that the outputs of an honest execution are distributed identically to the functionality.
By inspection, the protocol is correct. Observe that the outputs of PA are uniformly random, because ρk is
uniformly random. Since PB’s outputs are fixed by the inputs and PA’s outputs, we are done.

Corrupt PA. This is the simpler of the remaining two cases. The simulator SA receives PA’s inputs
x1, . . . , xr ∈ F2, as well as the outputs zA1 , . . . , z

A
r from FLeaky-2-Mult. It completes the view of PA by

sampling the q1, . . . , qr ← {0, 1}` PA receives from F∆-ROT, and then sends ρk = zAk − HAB(k, 0, qk) to
simulate PA’s outputs from FZero.

It is easy to see that the views in the two executions are identically distributed, since no messages are
sent to PA during the protocol, and the definition of ρk in the simulation ensures that ρk is uniformly random
(because zAk is) and also consistent with PA’s output and the hash function, as in the protocol.

Corrupt PB . We define a simulator SB , who receives the inputs y1, . . . , yr ∈ {0, 1}, and then obtains the
values zB1 , . . . , z

B
r ,H,u = (u1, . . . , ur) from the functionality.

Let SB sample values t1, . . . , tr ∈ {0, 1}` at random, subject to the constraint that for every k ∈ [r] and
k′ ∈ {0, 1}`, HAB(k, 1 ⊕ yk, tk ⊕ k′) is equal to entry (k, k′) of H (viewing k′ also as an integer in [2`]).
Note that because of the way H is defined in FLeaky-2-Mult, such a tk is guaranteed to exist and can be found
by searching all 22` = poly(κ) possibilities of k′ and tk. This also ensures it will be identically distributed
to the tk sampled by the functionality. SB sends these values tk as the outputs of F∆-ROT to PB .

For all k ∈ [r], SB then emulates the output of FZero to PB as follows:

1. If yk = 0, send ρk = zBk + HAB(k, 0, tk).
2. If yk = 1, send ρk = zBk + uk.

Finally, for k ∈ [r], SB sends dk = uk +HAB(k, yk, tk) to PB . This completes the simulation of PB’s view.
Regarding indistinguishability, first note that the tk values are identically distributed as a uniformly

random value in both executions, since in the real world tk = qk ⊕ yk · ∆ and qk ← {0, 1}`. Now
considering the case when yk = 0, we have:

zBk + HAB(k, 0, tk) + ρk = 0,

from the definition of ρk. Since in both worlds zBk , tk and ρk are all uniformly random, subject to the above,
this means that these values are identically distributed in both worlds. Also, it is easy to see that the simulated
dk values are computed exactly as in the protocol, because of the way FLeaky-2-Mult computes uk.

When yk = 1, we have:

zBk + HAB(k, 1, tk) + dk + ρk = 0 ⇐⇒ (ρk + uk) + HAB(k, 1, tk) + ρk = dk

⇐⇒ HAB(k, 0, tk ⊕ ∆̃) + HAB(k, 1, tk) + xk = dk,

where ∆̃ ∈ [2`] denotes the position of the 1 in e sampled by FLeaky-2-Mult to compute u, so is identically
distributed to ∆ ∈ {0, 1}` in the real protocol. Therefore, the last equation above holds, which implies that
zBk , ρk and dk are all distributed identically to the values in the real protocol. �

17

Communication complexity. The cost of computing r secret-shared products is that of ` random, correlated
OTs on r-bit strings, and a further r bits of communication. Using OT extension [IKNP03, ALSZ13] with
a correlation-robust hash function to implement the correlated OTs, the amortized cost is `(r + κ) bits for
computational security κ. This gives a total cost of `(r + κ) + r bits.

4.2 MPC for Binary Circuits From Leaky OT

We now show how to use the leaky OT protocol to compute multiplication triples over F2, using a GMW-
style protocol [GMW87, Gol04] optimized for the case of at least h honest parties. This can then be used to
obtain a general MPC protocol for binary circuits using Beaver’s method [Bea92].

Triple generation. We implement the triple generation functionality over F2, shown in Figure 5. Recall
that to create a triple using the GMW method, first each party locally samples shares xi, yi ← F2. Next, the
parties compute shares of the product based on the fact that:

(

n∑
i=1

xi) · (
n∑
i=1

yi) =

n∑
i=1

xiyi +

n∑
i=1

∑
j 6=i

xiyj .

where xi denotes Pi’s share of x =
∑

i x
i.

Since each party can compute xiyi on its own, in order to obtain additive shares of z = xy it suffices for
the parties to obtain additive shares of xiyj for every pair i 6= j. This can be done using oblivious transfer
between Pi and Pj , since a 1-out-of-2 OT implies two-party secret-shared bit multiplication. To improve
efficiency, we actually realize a slight variation of this functionality where two (possibly overlapping) subsets
P(h),P(1) such that P(h) has at least h honest parties and P(1) has at least one honest party, choose the
respective shares of x and y.

Functionality FrTriple

1. Sample (xij , y
i
j , z

i
j)← F3

2, for i ∈ (P(h) ∪ P(1)) and j ∈ [r], subject to the constraint that∑
i

zij =
(∑

i

xij
)
·
(∑

i

yij
)

2. Output (xij , y
i
j , z

i
j) to party Pi, for j ∈ [r].

Figure 5. Multiplication triple generation functionality.

If we plug in our leaky two-party batch multiplication protocol to GMW, this naive approach fails to
give a secure protocol, because the leakage in FLeaky-2-Mult allows a corrupt PB to guess PA’s inputs with
probability 2−`. When obtaining shares of the pairwise products, PA does a secret-shared multiplication
using the same input shares with every other party, which introduces further leakage on PA’s shares for
every corrupt party, increasing the success probability further. If the number of corrupted parties is not too
small then this gives the adversary a significant chance of successfully guessing the shares of every honest
party, completely breaking security.

To avoid this issue, we require PA to randomize the shares used as input to FLeaky-2-Mult, in such a way
that we still preserve correctness of the protocol. To do this, the parties will use FZero to generate random
zero shares si,j ∈ F2 (held by Pi), satisfying

∑
i s
i,j = 0 for all j ∈ [n], and then Pi and Pj will multiply

xi + si,j and yj . This means that all parties end up computing shares of:

18

n∑
i=1

n∑
j=1

(xi + si,j)yj =
n∑
j=1

yj
n∑
i=1

(xi + si,j) = xy,

so still obtain a correct triple.
Finally, to ensure that the output shares are uniformly random, fresh shares of zero will be added to each

party’s share of xy.
Note that masking each xi input to FLeaky-2-Mult means that it doesn’t matter if the individual shares are

leaked to the adversary, as long as it is still hard to guess the sum of all shares. This means that we only need
to be concerned with the sum of the leakage from FLeaky-2-Mult. Recall that each individual instance leaks
the input of an honest party Pi masked by Hiei, where Hi is a random matrix and ei ∈ F2`

2 is a random unit
vector. Summing up all the leakage from h honest parties, we get

h∑
i=1

Hiei = (H1‖ · · · ‖Hh)

e1
...
eh


This is exactly an instance of the DRSDr,h,` problem, so is pseudorandom for an appropriate choice of
parameters.

We remark that the number of triples generated, r, affects the hardness of DRSD. However, we can create
an arbitrary number of triples without changing the assumption by repeating the protocol for a fixed r. Note
that each invocation of Πr,`

Leaky-2-Mult samples a different value ∆.

Reducing the number of OT channels. The above approach reduces communication of GMW by a factor
κ/`, for `-bit keys, but still requires a complete network of n(n − 1) OT and communication channels
between the parties. We can reduce this further by again taking advantage of the fact that there are at least h
honest parties. We observe that when using our two-party secret-shared multiplication protocol to generate
triples, information is only leaked on the xi shares, and not the yi shares of each triple. This means that
h − 1 parties can choose their shares of y to be zero, and y will still be uniformly random to an adversary
who corrupts up to t = n − h parties. This reduces the number of OT channels needed from n(n − 1) to
(t+ 1)(n− 1).

When the number of parties is large enough, we can do even better using random committees. We
randomly choose two committees, P(h) and P(1), such that except with negligible probability, P(h) has at
least h honest parties and P(1) has at least one honest party. Only the parties in P(h) choose non-zero shares
of x, and parties in P(1) choose non-zero shares of y; all other parties do not take part in any OT instances,
and just output random sharings of zero. We remark that it can be useful to choose the parameter h lower
than the actual number of honest parties, to enable a smaller committee size (at the cost of potentially larger
keys). When the total number of parties, n, is large enough, this means the number of interacting parties can
be independent of n. The complete protocol, described for two fixed committees satisfying our requirements,
is shown in Figure 6.

Communication complexity. Recall from the analysis in Section 4.1 that the cost of r multiplications with
ΠLeaky-2-Mult is that of ` random, correlated OTs on r-bit strings, and a further r bits of communication.
Using OT extension, this gives a cost of `(r + κ) + r bits between every pair of parties in P(h) × P(1)

(ignoring FZero and the seed OTs for OT extension, since their communication cost is independent of the

19

Protocol Πr
Triple

The protocol runs between a set of parties P = {P1, . . . , Pn}, containing two (possibly overlapping) subsets P(h),P(1),
such that P(h) has at least h honest parties and P(1) has at least one honest party. We denote nh = |P(h)|, n1 = |P(1)|.

CRS: Random hash functions Hi : [r]× {0, 1} × {0, 1}` → {0, 1}, for i ∈ [nh].

1. Each party Pi ∈ P(h) samples xik ← F2, and each Pj ∈ P(1) samples yjk ← F2, for k ∈ [r].
2. Call FZero so that each Pτ ∈ P(h) ∪ P(1) obtains shares (ρτ1 , . . . , ρ

τ
r) and each Pi ∈ P(h) obtains shares

(si,j1 , . . . , si,jr)j∈P(1)
, such that

⊕
τ∈P(h)∪P(1)

ρτk = 0 and
⊕

i∈P(h)
si,jk = 0.

3. Every pair (Pi, Pj) ∈ P(h) × P(1) runs Fr,`Leaky-2-Mult(Hi) on input {xik + si,jk }k∈[r] from Pi and {yjk}k∈[r] from Pj .
For k ∈ [r], Pi receives ai,jk and Pj receives bj,ik such that ai,jk + bj,ik = (xik + si,jk) · yjk.

4. Each Pi ∈ P(h) ∪ P(1) computes, for k ∈ [r]:

zik = (xik + si,ik) · yik +
∑
j 6=i

(ai,jk + bi,jk) + ρik

where if any value xik, y
i
k, a

i,j
k , bi,jk , si,ik has not been defined by Pi, it is set to zero.

5. Pi outputs the shares (xik, y
i
k, z

i
k)k∈[r].

Figure 6. Secret-shared triple generation using leaky two-party multiplication.

number of triples). If the two committees P(h),P(1) have sizes nh ≤ n and n1 ≤ t + 1 then we have the
following theorem

Theorem 4.2 ProtocolΠTriple securely realizesFrTriple in the (Fr,`Leaky-2-Mult,F
(n+1)r
Zero)-hybrid model, based

on the DRSDr,h,` assumption, where h is the number of honest parties in P(h). The amortized communica-
tion cost is≤ nhn1(`+ `κ/r+1) bits per triple, using OT extension based on a correlation-robust function.

Proof. The claimed communication complexity follows from the previous analysis. Security relies on the
fact that Pi ∈ P(h)’s input to FLeaky-2-Mult is always of the form xi + si,j , where si,j is a fresh, random
sharing of zero. This means that any leakage on Pi’s input from FLeaky-2-Mult is perfectly masked by si,j ,
and we only need to consider the sum of the leakage from all honest parties in P(h).

Recall that we have two committees P(h) and P(1) of sizes nh and n1, with at least h and 1 honest
parties, respectively. LetA be an adversary corrupting a set of partiesA. Throughout the proof we will write
x1, . . . , xr to denote the components of a vector x ∈ Fr2.

We construct a simulator, S, which interacts with A as follows:

1. Simulate the CRS with nh randomly sampled functions Hi : [r]× {0, 1} × {0, 1}` → {0, 1}.
2. Call FrTriple to receive the corrupted parties’ outputs, (xik, y

i
k, z

i
k)i∈A∩(P(h)∪P(1)),k∈[r].

3. For each i ∈ P(h) ∩ A, sample si,j ← Fr2, for j ∈ [n1], and send these to A as the shares output by
FZero.

4. Let Pi ∈ P(h), Pj ∈ P(1). Compute the messages that would be sent by FLeaky-2-Mult to the adversary
as follows:
(a) Pi, Pj ∈ A: Using both parties’ inputs, generate their random output shares as FLeaky-2-Mult would

do and send these toA. Explicitly, the simulator samples shares ai,j , bj,i that sum to (xi+si,j)∗yj ,
and the leakage (Hi,j ,ui,j) on xi + si,j (just as FLeaky-2-Mult would do).

(b) Pi ∈ A,Pj /∈ A: Emulate the corrupt Pi’s view honestly, by sampling ai,j ← Fr2.
(c) Pi /∈ A,Pj ∈ A: Sample uniform values bj,i,ui,j ← Fr2, and sample Hi,j ∈ Fm×2`

2 exactly as
FLeaky-2-Mult would do, using knowledge of Hi and yj .

20

5. For i ∈ A∩ (P(h) ∪P(1)), compute ρi = zi + (xi + si,i) ∗ yi +
∑

j 6=i(a
i,j + bi,j) and send this as the

ρik share from FZero.
6. Send to A the values {ai,j}i∈P(h)∩A,j∈P(1)

∪ {bj,i,Hi,j ,ui,j}i∈P(h),j∈P(1)∩A as defined above, to simu-
late the outputs of FLeaky-2-Mult.

We first consider the distribution of the parties’ outputs.

Claim 4.1 The outputs of the protocol are distributed identically to outputs of the functionality.

Proof. We need to to show that, in the real protocol, {zik}i,k are uniformly random subject to
∑

i z
i
k =∑

i x
i
k ·
∑

i y
i
k. Firstly, the correctness constraint holds because

n∑
i=1

zik =

n∑
i=1

(xik + si,ik) · yik +
∑
j 6=i

(ai,jk + bi,jk) + ρik


=

n∑
i=1

xik · yik +

n∑
i=1

yik · si,ik +
∑
j 6=i

(ai,jk + bj,ik)


=

n∑
i=1

xik · yik +
n∑
i=1

yik · si,ik +
∑
j 6=i

yik · (x
j
k + sj,ik)


= xk · yk +

n∑
i=1

yik ·
n∑
j=1

sj,ik

= xk · yk

where the second line above holds because
∑

i ρ
i
k = 0, and the final line uses

∑
j s

j,i
k = 0.

Now, to see that (zik)i are uniformly random, subject to the above, notice that the masks (ρik)
n−1
i=1 are

uniformly random in the protocol, so the same is true of (zik)
n−1
i=1 . This completes the claim. �

We next consider the entire view of the environment Z , which is the joint distribution of all parties’
inputs and outputs, and the messages received by the adversary during the protocol. Using vector notation,
this is:

(xi,yj , zi, zj)i∈P(h),j∈P(1)
, (ρi, si,j ,ai,j)i∈A∩P(h),j∈P(1)

, (ρj , bj,i,ui,j ,Hi,j)i∈P(h),j∈P(1)∩A

First note that the ρτ , τ ∈ P(h)∪P(1) and si,j shares, for i ∈ P(h)∩A, j ∈ P(1)\A, are uniformly random
in both executions, since the environment never sees the honest parties’ shares. Secondly, recall that in the
simulation, ai,j for corrupt Pi and honest Pj) and bj,i (for corrupt Pj and honest Pi) are computed uniformly
at random, and this is identically distributed to the values in the protocol sampled by FLeaky-2-Mult, because
the outputs of the honest party in that instance are not seen by Z . Also, notice that when Pj is corrupt S
computes Hi,j exactly as in the real protocol, because S knows Pj’s input yj .

This leaves the {ui,j}i∈P(h)\A,j∈P(1)∩A values, which are the main challenge, because the simulation
computes these with random values, whilst the real execution uses the honest Pi’s inputs, computing ui,j =
Hi,jei,j +xi+si,j for a random unit vector ei,j . Let Pi1 , . . . , Pih be the honest parties in P(h). Because the
si,j values are random shares of zero, it holds that the partial views containing the entire transcript except for

21

(ui1,j)j∈P(1)∩A are identically distributed. This is because for Pj ∈ P(1) ∩ A, the masks si2,j , . . . , sih,j in
the protocol are random and independent of the view of Z , which makes the corresponding ui2,j , . . . , sih,j

values distributed the same as in the simulation.
Once we include ui1,j , however, these values are no longer independent because

∑n
i∈P(h)

si,j = 0. We

therefore look at the distribution of
∑h

k=1 u
ik,j , for some fixed j ∈ P(1) ∩A. In the protocol, we have∑

i∈P(h)\A

ui,j =
∑

i∈P(h)\A

(xi + si,j + Hi,jei,j)

for some random, weight-1 vector ei,j . In the simulation, all of the ui,j’s are uniformly random.
Since Z can compute

∑
i∈P(h)\A(xi + si,j) with the information it already has, it follows that distin-

guishing the two executions requires distinguishing

Hiei :=
(
Hi1,j‖Hi2,j‖ · · · ‖Hih,j

)

ei1,j

ei2,j

...
eih,j


and the uniform distribution on r bits (given Hi).

We claim that this corresponds exactly to solving the DRSDr,h,` problem, because Hi is uniformly
distributed in Fr×2`h

2 and ei is a uniformly random, 1-regular error vector of weight h.

Lemma 4.2 Any environment distinguishing the real and ideal executions with advantage δ can be used to
break DRSDr,h,` with advantage at least δ/t (where t = |P(1) ∩A|).

Proof. Assume w.l.o.g. that the corrupted parties in P(1) are indexed P1, . . . , Pt. We construct a sequence
of hybrid executions, HYB0, . . . ,HYBt, where hybrid HYB0 is identical to the simulation. In hybrid
HYBj′ , instead of the simulator sampling ui,j (for j ≤ j′, i ∈ P(h) \ A) at random, we replace this with
the real ui,j generated using Pi’s inputs as in the protocol. The final hybrid HYBt is therefore identically
distributed to the real execution.

Let A be an adversary for which the environment Z distinguishes between HYBj′ and HYBj′+1

with advantage δ, for some index j′ < t. We construct a distinguisher D for DRSDr,h,` as follows. D
receives a DRSD challenge Hj′ ∈ Fr×h2`

2 , cj
′ ∈ Fr2. Write Hj′ = (Hi1,j′‖Hi2,j′‖ · · · ‖Hih,j

′
), where each

Hik,j
′ ∈ Fr×2`

2 . NowD simulates an execution ofΠTriple withA as S would, with the following differences.

– D samples a set of honest parties’ shares, (xi,yi, zi)i/∈A which, together with the corrupt parties’ shares
known to D, form correct triples.

– Instead of sampling the function Hi in the CRS at random, sample it such that for every k ∈ [h], the
matrix Hik,j

′
, sent later to the corrupt Pj′ , is equal to the challenge matrix Hik,j

′
. (The remainder of the

CRS is sampled at random.)
– Instead of sampling the leakage terms uik,j

′
(for k ∈ [h]) uniformly and independently, sample them at

random such that
∑

i∈P(h)
(ui,j

′
+ xi) = cj

′
.

– For each j < j′, instead of sampling uik,j
′

uniformly, compute them as in the real protocol using the
honest parties’ shares and shares of zero.

To conclude, D sends all the output shares to Z and outputs the same as Z .

22

If the challenge (Hj′ , c
j′) comes from the DRSD distribution then the uik,j

′
values are distributed as in

a real execution, so we are in hybrid HYBj′+1. On the other hand, if cj
′

is uniformly random then so are
the uik,j

′
, so we are in HYBj′ . Therefore, the advantage ofD is δ, the same as that of Z . A standard hybrid

argument then shows that there exists a distinguisher for HYB0 and HYBt, which has advantage at least
δ/t. �

Parameters for unconditional security. Recall from Lemma 3.1 and Corollary 3.1 that if ` = 1 and
h ≥ r + s, or if h ≥ (r + 2s)/` for any `, then DRSDr,h,` is statistically hard, with statistical security 2−s.
This means when h is large enough we can use 1-bit keys, and every pair of parties who communicates only
needs to send 2 + κ/r bits over the network.2

MPC using multiplication triples. Our protocol for multiplication triples can be used to construct a semi-
honest MPC protocol for binary circuits using Beaver’s approach [Bea92]. The parties first secret-share their
inputs between all other parties. Then, XOR gates can be evaluated locally on the shares, whilst an AND
gate requires consuming a multiplication triple, and two openings with Beaver’s method. Each opening can
be done with 2(n − 1) bits of communication as follows: all parties send their shares to P1, who sums the
shares together and sends the result back to every other party.

In the 1-bit key case mentioned above, using two (deterministic) committees of sizes n and t + 1 and
setting, for instance, r = κ implies the following corollary. Note that the number of communication channels
is (t+ 1)(n− 1) and not (t+ 1)n, because in the deterministic case P(1) is contained in P(h), so t+ 1 sets
of the shared cross-products can be computed locally.

Corollary 4.1. Assuming OT and a correlation-robust function, there is a semi-honest MPC protocol for
binary circuits with an amortized communication complexity of no more than 3(t + 1)(n − 1) + 4(n − 1)
bits per AND gate, if there are at least κ+ s honest parties.

Remark 4.1. We can obtain a feasibility result from OWF instead of a correlation-robust function, by us-
ing standard OT instead of OT extension. This comes at the cost of replacing κ with the communication
complexity of the OT protocol.

4.3 Optimization with Vandermonde Matrices
In this section we show how to optimize our triple generation protocol using Vandermonde matrices. As we
will see in Section 6, this approach is particularly convenient when the number of honest parties is small and
allows to avoid relying on the DRSD assumption.

The high level idea is to replace the random choice of hash functions used in the previous protocol with
deterministically chosen functions based on Vandermonde matrices. We show that the variant of regular
syndrome decoding induced by this choice is perfectly secure, so we can plug the new functions directly
into protocol ΠTriple (Figure 6) and improve the efficiency.

We redefine the functions Hi, as follows. Let ` ≥ log n and v1, . . . , vn be distinct points in F2` . Let
r = ` · h, and let V ∈ Fn×h

2`
be the Vandermonde matrix given by

V =


1 v1 . . . v

h−1
1

1 v2 . . . v
h−1
2

...
.

...
1 vn . . . v

h−1
n


2 Note that we still need computational assumptions for OT and zero sharing in order to implement FLeaky-2-Mult and FZero.

23

and let vi be the i-th row of V.
Define the hash functions Hi : [r]× {0, 1}` → {0, 1}, for i = 1, . . . , n, so that Hi(j, x) outputs the j-th

bit of x · vi ∈ Fh
2`

, where we expand x · vi into a vector in F`×h2 .
The following lemma implies perfect security of the variant of the RSD problem, where the (r × h2`)

matrix H contains Hi(j, k) in entry (j, i · 2` + k).

Lemma 4.3 LetH be a size-h subset of [n]. For ∆i ← {0, 1}`, i ∈ [n], the distribution of

U =
∑
i∈H

(Hi(1, ∆i), · · · ,Hi(r,∆i))

is uniform in {0, 1}r.

Proof. From the definition of Hi, we have

U =
∑
i∈H

∆i · vi = (∆1, . . . ,∆n) ·VH

where VH denotes the restriction of V to rows with indices in H. Since V is a Vandermonde matrix, any
square matrix formed by taking h rows of V is invertible. Hence, U is uniformly distributed since VH is a
bijection. �

With this technique, we can use `-bit keys to produce r = ` · h triples in one go. Just as with the DRSD-
based protocol, the cost of producing the initial correlated OTs is `(r+κ) bits of communication per pair of
parties, with a further r bits for the leaky OT protocol. Using two committees of size n1 and n2, the overall
communication cost per triple (from Theorem 4.2) is no more than

n1n2(`+ `κ/r + 1) = n1n2(`+ κ/h+ 1)

Recall that the only constraint on the above parameters is that ` ≥ log n, since we need |F2` | ≥ n for
the Vandermonde matrix to exist. Therefore, choosing ` = log n we obtain the following.

Theorem 4.3 Assuming OT and a correlation-robust hash function, there is a semi-honest MPC protocol
for binary circuits with an amortized communication complexity of no more than (t + 1)(n − 1)(log n +
κ/(n− t) + 1) + 4(n− 1) bits per AND gate.

When h is very large, this is not as efficient as the previous case where we could have ` = 1, but for
more reasonable sizes of h we can achieve much smaller keys than previously, as we show in Section 6.

5 Multi-Party Garbled Circuits with Short Keys

In this section we present our second contribution: a constant-round MPC protocol based on garbled circuits
with short keys. The protocol has two phases, a preprocessing phase independent of the parties’ actual inputs
where the garbled circuit is mutually generated by all parties, and an online phase where the computation is
performed. We first abstractly discuss the details of our garbling method, and then turn to the two protocols
for generating and evaluating the garbled circuit.

24

Functionality F`BMR
Preprocessing

COMMON INPUT: A function H : [n]× {0, 1} × {0, 1}`BMR → {0, 1}n`BMR+1. Let H′ denote the same function excluding
the least significant bit of the output.

LetCf be a boolean circuit with fan-out-one gates. Denote by AND,XOR and SPLIT its sets of AND, XOR and Splitter gates,
respectively. XOR gates have arbitrary fan-in and Cf is described so that there are no two consecutive XOR gates (which can
be regrouped into a single, bigger fan-in XOR gate or otherwise have a Splitter gate in between). Given a gate g, let I and O
be the set of its input and output wires, respectively. If g ∈ SPLIT, then I = {w} and O = {u, v}, otherwise O = {w}.
The functionality proceeds as follows ∀i ∈ [n]:

1. ∀g ∈ XOR, sample ∆i
g ← {0, 1}`BMR .

2. For each circuit-input wire u, sample λu ← {0, 1} and kiu,0 ← {0, 1}`BMR . If u is input to a XOR gate g, set kiu,1 =
kiu,0 ⊕∆i

g , otherwise kiu,1 ← {0, 1}`BMR .
3. Passing topologically through all the gates g ∈ {AND ∪ XOR ∪ SPLIT} of the circuit:

– If g ∈ XOR:
• Set λw =

⊕
x∈I λx

• Set kiw,0 =
⊕

x∈I k
i
x,0 and kiw,1 = kiw,0 ⊕∆i

g

– If g ∈ AND:
• Sample λw ← {0, 1}.
• kiw,0 ← {0, 1}`BMR . If w is input to a XOR gate g′ set kiw,1 = kiw,0 ⊕∆i

g′ , else kiw,1 ← {0, 1}`BMR .
• For a, b ∈ {0, 1}, representing the public values of wires u and v, let c = (a⊕ λu) · (b⊕ λv)⊕ λw. Store the

four entries of the garbled version of g as:

g̃a,b =

(
n⊕
i=1

H(i, b, kiu,a)⊕ H(i, a, kiv,b)

)
⊕ (c, k1

w,c, . . . , k
n
w,c), (a, b) ∈ {0, 1}2.

– If g ∈ SPLIT:
• Set λx = λw for every x ∈ O.
• ∀x ∈ O, sample kix,0 ← {0, 1}`BMR . If x ∈ O is input to a XOR gate g′, set kix,1 = kix,0 ⊕ ∆i

g′ , otherwise
kix,1 ← {0, 1}`BMR .

• For c ∈ {0, 1}, the public value on w, store the two entries of the garbled version of g as:

g̃c =

(
n⊕
i=1

H′(i, 0, kiw,c),
n⊕
i=1

H′(i, 1, kiw,c)

)
⊕ (k1

u,c, . . . , k
n
u,c, k

1
v,c, . . . , k

n
v,c), c ∈ {0, 1}

4. Output: For each circuit-input wire u, send λu to the party providing inputs to Cf on u. For every circuit wire v and
i ∈ [n], send kiv,0, kiv,1 to Pi. Finally, send to all parties g̃ for each g ∈ AND ∪ SPLIT and λw for each circuit-output
wire w.

Figure 7. Multi-party garbling functionality.

25

5.1 The Multi-Party Garbling Scheme

Our garbling method is defined by the functionality F `BMR
Preprocessing (Figure 7), which creates a garbled circuit

that is given to all the parties. It can be seen as a variant of the multi-party garbling technique by Beaver,
Micali and Rogaway [BMR90], known as BMR, which has been used and improved in a recent sequence of
works [LPSY15, LSS16, BLO16, HSS20].

The main idea behind BMR is that every party Pi contributes a pair of keys kiw,0, k
i
w,1 ∈ {0, 1}κ and a

share of a wire mask λiw ∈ {0, 1} for each wire w in the circuit. To garble a gate, the corresponding output
wire key from every party is encrypted under the combination of all parties’ input wire keys, using a PRF
or PRG, so that no single party knows all the keys for a gate. In addition, the free-XOR property can be
supported by having each party choose their keys such that kiw,0 ⊕ kiw,1 = ∆i, where ∆i is a global fixed
random string known to Pi.

The main difference between our work and recent related protocols is that we use short keys of length
`BMR instead of κ, and then garble gates using a random, expanding function H : [n]×{0, 1}×{0, 1}`BMR →
{0, 1}n`BMR+1. Instead of basing security on a PRF or PRG, we then reduce the security of the protocol to
the pseudorandomness of the sum of H when applied to each of the honest parties’ keys, which is implied by
the DRSD problem from Section 3. We also use H′ to denote H with the least significant output bit dropped,
which we use for garbling splitter gates.

To garble an AND gate g with input wires u, v and output wire w, each of the 4 garbled rows g̃a,b, for
(a, b) ∈ {0, 1}2, is computed as:

g̃a,b =

(
n⊕
i=1

H(i, b, kiu,a)⊕ H(i, a, kiv,b)

)
⊕ (c, k1

w,c, . . . , k
n
w,c), (2)

where c = (a⊕ λu) · (b⊕ λv)⊕ λw and λu, λv, λw are the secret-shared wire masks. Each row can be seen
as an encryption of the correct n output wire keys under the corresponding input wire keys of all parties.
Note that, for each wire, Pi holds the keys kiu,0, k

i
u,1 and an additive share λiu of the wire mask. The extra

bit value that H takes as input is added to securely increase the stretch of H when using the same input key
twice, preventing a ‘mix-and-match’ attack on the rows of a garbled gate. Namely, when mixing the rows of
a garbled gate which implies that an incorrect output key is decrypted. The output of H is also extended by
an extra bit, to allow encryption of the output wire mask c.3

Splitter gates. When relying on the DRSD problem, the reuse of a key in multiple gates degrades parameters
and makes the problem easier (as the parameter r grows, the key length must be increased), so we cannot
handle circuits with arbitrary fan-out. For this reason, we restrict our exposition of the garbling to fan-out-
one circuits with so-called splitter gates. This type of gate takes as input a single wire w and provides two
output wires u, v, each of them with fresh, independent keys representing the same value carried by the input
wire. Converting an arbitrary circuit to use splitter gates incurs a cost of roughly a factor of two in the circuit
size (see below).

Splitter gates were previously introduced in [TX03] as a fix for a similar issue in the original BMR paper
[BMR90], where the wire “keys” were used as seeds for a PRG in order to garble the gates, so that when
a wire was used as input to multiple gates, their garbled versions did not use independent pseudorandom
masks. Other recent BMR-style papers avoid this issue by applying the PRF over the gate identifier as well,
which produces distinct, independent PRF evaluations for each gate.

3 This only becomes necessary when using short keys — in BMR with full-length keys the parties can recover the wire mask by
comparing the output with their own two keys, but this does not work if collisions are possible.

26

Free-XOR. The Free-XOR [KS08] optimization results in an improvement in both computation and com-
munication for XOR gates where a global fixed random ∆i is chosen by each party Pi and the input
keys are locally XORed, yielding the output key of this gate. We cannot use the standard free-XOR tech-
nique [KS08, BLO16] for the same reason discussed above: reusing a single offset across multiple gates
would make the DRSD problem easier and not be secure. We therefore introduce a new free-XOR technique
(inspired by FleXOR [KMR14]) which, combined with our use of splitter gates, allows garbling XOR gates
for free without additional assumptions. For each arbitrary fan-in XOR gate g, each party chooses a different
offset ∆i

g, allowing for a free-XOR computation for wires using keys with that offset. For general circuits,
this would normally introduce the problem that the input wires may not have the correct offset, requiring
some ‘translation’ to∆g. However, because we restrict to gates with fan-out-one and splitter gates, we know
that each input wire to g is not an input wire to any other gate, so we can always ensure the keys use the
correct offset without any further changes.

Compiling to fan-out-one circuits with splitter gates. Let Cf be an arbitrary fan-out circuit, with A AND
gates and X XOR gates, both with fan-in-two. Let ICf and OCf be the number of circuit-input and circuit-
output wires, respectively. We will now compute the number S of splitter gates that the compiled circuit
needs. First, note that each time a wire w is used as input to another gate or as a circuit-output wire, w’s
fan-out is increased by one. Each of the AND, XOR gates in the pre-compiled circuit provides a fresh output
wire to be used in Cf , while using for its inputs two pre-existing wires in the circuit. Output wires also use
one pre-existing wire each, while input wires use no pre-existing wires. This means that, to compile Cf to
be a fan-out-one circuit, we need to add up to (2 ·X + 2 ·A+OCf)− (A+X + ICf) wires. Each of these
missing wires, however, can be created by using a splitter gate in the compiled circuit, since each of these
gates uses one wire to generate two fresh new wires. So, putting all the pieces together, the compiled circuit
requires S ≤ X + A+OCf − ICf splitter gates. This gives a close upper bound, as if w is a circuit output
wire and an input wire of another gate then it is being counted twice rather than once in the formula.

5.2 The Preprocessing Protocol

Our protocol for generating the garbled circuit is shown in Figure 10. We use two functionalities FBit×Bit

(Figure 8) and FBit×String(Pj) (Figure 9) for multiplying two additively shared bits, and multiplying an
additively shared bit with a string held by Pj , respectively. FBit×Bit can be easily implemented using a
multiplication triple from FTriple in the previous section, whilst FBit×String uses a variant of the ΠTriple

protocol optimized for this task. We provide more details on how to best implement the latter functionality
in Section 5.3.

Functionality FBit×Bit

After receiving (xi, yi) ∈ F2
2 from each party Pi, sample zi ← F2 such that

∑
i z
i = (

∑
i x

i) · (
∑
i y
i), and send zi to party

Pi.

Figure 8. Secret-shared bit multiplication functionality.

Most of the preprocessing protocol is similar to previous works [BLO16, HSS20], where first each party
samples their sets of wire keys and shares of wire masks, and then the parties interact to obtain shares of the
garbled gates. It is the second stage where our protocol differs, so we focus here on the details of the gate
garbling procedures.

27

Functionality F`BMR
Bit×String(Pj)

After receiving xi ∈ F2 from each party Pi, as well as∆ ∈ F`BMR
2 from Pj , sampleZi ← F2 such that

∑
i Z

i = (
∑
i x

i)·∆,
and send Zi to party Pi.

Figure 9. Secret-shared bit/string multiplication functionality.

The Preprocessing Protocol – Π`BMR
Preprocessing

COMMON INPUT: H : [n] × {0, 1} × {0, 1}`BMR → {0, 1}n`BMR+1, a uniformly random sampled function and H′ defined
from H excluding the least significant bit of the output. A boolean circuit Cf with fan-out-one gates. Denote by AND,XOR
and SPLIT its sets of AND, XOR and Splitter gates, respectively. XOR gates have arbitrary fan-in and Cf is described so that
there are no two consecutive XOR gates (which can be regrouped into a single, bigger fan-in XOR gate or otherwise have a
Splitter gate in between). Given a gate, let I and O be the set of its input and output wires, respectively. If g ∈ SPLIT, then
I = {w} and O = {u, v}, otherwise O = {w}.
For each i ∈ [n], the protocol proceeds as follows:

1. Free-XOR offsets: For every g ∈ XOR, Pi samples a random value ∆i
g ← {0, 1}`BMR

2. Circuit-input wires’ masks and keys: If w is a circuit-input wire:
(a) Pi samples a key kiw,0 ← {0, 1}`BMR and a wire mask share λiw ← {0, 1}.
(b) If w is input to a XOR gate g′, Pi sets kiw,1 = kiw,0 ⊕∆i

g′ , otherwise kiw,1 ← {0, 1}`BMR .
3. Intermediate wires’ masks and keys: Passing topologically through all the gates g ∈ G = {AND∪XOR∪ SPLIT} of

the circuit:
(a) If g ∈ XOR, Pi computes:

– λiw =
⊕

x∈I λ
i
x.

– kiw,0 =
⊕

x∈I k
i
x,0 and kiw,1 = kiw,0 ⊕∆i

g .
(b) If g /∈ XOR, Pi does as follows:

– If g ∈ AND, λiw ← {0, 1}. Else if g ∈ SPLIT, sets λix = λiw for every x ∈ O.
– For every x ∈ O, kix,0 ← {0, 1}`BMR . If x ∈ O is input to a XOR gate g′, set kix,1 = kix,0 ⊕∆i

g′ , otherwise
sample kix,1 ← {0, 1}`BMR .

4. Garble gates: For each gate g ∈ {AND∪ SPLIT}, the parties run the subprotocol Π`BMR
GateGarbling, obtaining back shares

g̃i of each garbled gate.
5. Reveal input/output wires’ masks: For every circuit-output wire w, Pi broadcasts λiw. For every circuit-input wire w,

Pi sends λiw to the party Pj who provides input on it. Each party reconstructs the wire masks from her received values as
λw =

⊕n
i=1 λ

i
w.

6. Open Garbling For each g ∈ {AND ∪ SPLIT}, Pi sends g̃i to P1. P1 reconstructs every garbled gate, g̃ =
⊕n

i=1 g̃
i,

and broadcasts it.

Figure 10. The preprocessing protocol that realizes F `BMR
Preprocessing.

The Gate Garbling Protocol We describe the details of the sub-protocol Π`BMR
GateGarbling (Figure 11), im-

plementing the gate garbling phase of F `BMR
Preprocessing. Creating garbled AND gates is done similarly to the

OT-based protocol [BLO16], with the exception that we use short wire keys of length `BMR instead of κ. We
also show how to create sharings of garbled splitter gates without any interaction, so these are much cheaper
than AND gates.

Suppose that for an AND gate g, each Pi holds the wire mask share λiv and keys kiv,0, k
i
v,1 ← {0, 1}`BMR .

Pi defines Rig = kiw,0 ⊕ kiw,1. After that all parties call FBit×Bit once to compute additive shares of λuv =
λu ·λv ∈ {0, 1}, which are then used to locally compute shares of χg,a,b = (a⊕λu) · (b⊕λv)⊕λw, for each
(a, b) ∈ {0, 1}2. Each Pi obtains χig,a,b such that χg,a,b = ⊕i∈[n]χ

i
g,a,b. To compute shares of the products

χg,a,b ·Rig, the parties call F `BMR
Bit×String(Pi) three times, for each i ∈ [n], to multiply Rig with each of the bits

λu, λv, (λuv ⊕ λw). These can then be used for each Pj to locally obtain the shares (χg,a,b · Rig)j , for all
(a, b) ∈ {0, 1}2 (just as in [BLO16]).

28

The Gate Garbling sub-protocol – Π`BMR
GateGarbling

COMMON INPUT: a function H : [n]×{0, 1}×{0, 1}`BMR → {0, 1}n`BMR+1; H′ defined as H excluding the least significant
output bit; the gate g to be garbled.
PRIVATE INPUT: Each Pi, i ∈ [n], holds λiv and kiv,0, kiv,1, for each wire v.

1. If g ∈ AND with input wires {u, v} and output wire w:
(a) Each party Pi defines Rig = kiw,0 ⊕ kiw,1, for each i ∈ [n]
(b) Call FBit×Bit to compute shares of λu · λv , and use these to locally obtain shares of

χg,a,b = (a⊕ λu) · (b⊕ λv)⊕ λw, for (a, b) ∈ {0, 1}2

(c) For each i ∈ [n] and (a, b) ∈ {0, 1}2, call F`BMR
Bit×String(Pi), where Pi inputs Rig and each other party inputs their

share of χg,a,b. As a result, parties obtain shares of χg,a,b · Rig . Party Pi then sets ρii,a,b = kiw,0 ⊕ (χg,a,b · Rig)i,
and ∀j 6= i, Pj sets ρji,a,b = (χg,a,b ·Rig)j .

(d) Each Pi sets g̃ia,b = H(i, b, kiu,a)⊕ H(i, a, kiv,b)⊕ (χig,a,b, ρ
i
1,a,b, . . . , ρ

i
n,a,b), for a, b ∈ {0, 1}.

2. If g ∈ SPLIT with input wire w and output wires {u, v}:
(a) Call F2n`BMR

Zero twice, so that each Pi receives shares si0, si1 ∈ {0, 1}2n`BMR .
(b) Pi sets ρic = sic ⊕ (0, . . . , kiu,c, 0, . . . , k

i
v,c, . . . , 0) for c ∈ {0, 1}.

(c) Set g̃ic =
(
H′(i, 0, kiw,c),H

′(i, 1, kiw,c)
)
⊕ ρic, for c ∈ {0, 1}.

Figure 11. The gate garbling sub-protocol.

After computing the bit/string products, Pj then computes for each (a, b) ∈ {0, 1}2:

ρji,a,b =

{
(χg,a,b ·Rig)j j 6= i

kiw,0 ⊕ (χg,a,b ·Rig)i j = i.

These values define shares of χg,a,b · Rig ⊕ kiw,0. Finally, each party’s share of the garbled AND gate is
obtained as:

g̃ia,b = H(i, b, kiu,a)⊕ H(i, a, kiv,b)⊕ (χig,a,b, ρ
i
1,a,b, . . . , ρ

i
n,a,b), a, b ∈ {0, 1}

Summing up these values we obtain:

⊕
i

g̃ia,b =
⊕
i

H(i, b, kiu,a)⊕ H(i, a, kiv,b)⊕ (χig,a,b, ρ
i
1,a,b, . . . , ρ

i
n,a,b)

=
n⊕
i=1

(H(i, b, kiu,a)⊕ H(i, a, kiv,b))⊕ (c, k1
w,c, . . . , k

n
w,c),

where c = χg,a,b, as required.
To garble a splitter gate, we observe that here there is no need for any secure multiplications within

MPC, and the parties can produce shares of the garbled gate without any interaction. This is because the
two output wire values are the same as the input wire value, so to obtain a share of the encryption of the two
output keys on wires u, v with input wire w, party Pi just computes:

(H′(i, 0, kiw,c),H
′(i, 1, kiw,c))⊕ (0, . . . , kiu,c, 0, . . . , k

i
v,c, 0, . . . , 0)

for c ∈ {0, 1}, where the right-hand vector contains Pi’s keys in positions i and n + i. The parties then re-
randomize this sharing with a share of zero from FZero, so that opening the shares does not leak information
on the individual keys.4

4 For AND gates, the shares output by F`BMR
Bit×String are uniformly random, so do not need re-randomizing with sharings of zero.

29

5.3 Protocols for Bit/String Multiplication

Even though we could implement F `BMR
Bit×String(Pj) using FTriple, there are more efficient ways to do so:

One by building directly from FLeaky-2-Mult, and another using correlated OT [ALSZ13], as we are going to
describe.

– UsingFLeaky-2-Mult, we give protocolΠr,`BMR
Bit×String in Figure 13. Here, we multiply each bit of the length-

`BMR string with every share using leaky-OT. This is similar to our triple generation protocol ΠTriple

(Section 4), except that since the `BMR-string is not secret-shared but known to one party, we only
need to perform `BMR(n − 1) invocations of FLeaky-2-Mult in order to multiply it with a secret-shared
bit x = x1 + · · · + xn. The protocol uses random shares of zero to mask the inputs and outputs of
FLeaky-2-Mult, similarly to ΠTriple.
Note that this does not directly implement the functionality F `BMR

Bit×String(Pj) shown in Figure 9, because

Πr,`BMR
Bit×String performs a batch of r independent multiplications in parallel. However, in the protocol

Π`BMR
Preprocessing all the gates can be garbled in parallel, so a batch version of the functionality (as described

in Figure 12) suffices.
– Alternatively, we can do the secret-shared multiplication using n − 1 (non-leaky) correlated OTs of

length `BMR (one between Pj and every other party), for example using the protocol from [ALSZ13].

Functionality Fr,`BMR
Bit×String

After receiving input (Pj , xi1, . . . , xim) from every party Pi, and additional inputs ∆1, . . . ,∆r from Pj , where each xik ∈
{0, 1} and ∆k ∈ {0, 1}`BMR :

1. Sample Zik ← {0, 1}`BMR , for i ∈ [n] and k ∈ [r], subject to the constraint that⊕
i

Zik = ∆k ·
⊕
i

xik, for k ∈ [r]

2. Output Zi1, . . . , Zir to party Pi

Figure 12. Batch secret-shared bit/string multiplication between Pj and all parties.

Protocol Πr,`BMR
Bit×String, n-party Bit×String Multiplication

To multiply the strings ∆1, . . . ,∆r ∈ {0, 1}`BMR held by Pj with secret-shared bits (xi1, . . . , xir)i∈[n]:

1. Denote the v-th bit of ∆k by ∆k,v . For v ∈ [`BMR]:
(a) Call F2r

Zero so that each Pi obtains fresh shares (ρi1,v, . . . , ρ
i
m,v, σ

i
1,v, . . . , σ

i
m,v), such that

⊕
i ρ
i
k,v = 0 and⊕

i σ
i
k,v = 0

(b) For each i 6= j, Pi and Pj runFr,`OT
Leaky-2-Mult on input (xik⊕σik,v)k∈[r] from Pi and (∆k,v)k∈[r] from Pj . Pi receives

aik,v and Pj receives bik,v such that aik,v ⊕ bik,v = ∆k,v · (xik ⊕ σik).
2. Each Pi, for i 6= j, outputs the `BMR-bit strings Zik := (aik,1 ⊕ ρik,1, . . . , aik,`BMR

⊕ ρik,`BMR
), for k ∈ [r].

3. Pj outputs the `BMR-bit strings Zjk :=
⊕

i 6=j(b
i
k,1 ⊕ ρjk,1, . . . , b

i
k,`BMR

⊕ ρjk,`BMR
), for k ∈ [r].

Figure 13. n-party secret-shared bit/string multiplication using leaky 2-party multiplication.

30

Communication complexity. First we consider the communication complexity of Πr,`BMR
Bit×String described

in Figure 13. We note that in this case the communication complexity is exactly that of (n − 1)`BMR in-
stances of Fr,`OT

Leaky-2-Mult, where `OT is the leakage parameter used in the protocol Πr,`OT

Leaky-2-Mult. Note that
`OT is independent of `BMR used in the bit/string protocol, but affects the security and cost of realising
FLeaky-2-Mult. The total complexity is then (n − 1)`BMR(`OT(r + κ) + r) bits, or an amortized cost of
(n− 1)`BMR(`OT + `OTκ/r + 1) bits per multiplication, as discussed in Sections 4.1 and 4.2.

The alternative instantiation of F `BMR
Bit×String(Pj) using (non-leaky) correlated OTs requires to invoke

them n− 1 times. With the protocol from [ALSZ13], each correlated OT has an amortized communication
complexity of κ + `BMR bits. Hence, the amortized communication complexity of this approach is (n −
1)(κ+ `BMR) bits.

Which of the two proposed implementations is more efficient depends on the key lengths `BMR and `OT.

Theorem 5.1 Protocol Πr,`BMR
Bit×String UC-securely realizes Fr,`BMR

Bit×String in the F2r
Zero-hybrid in the presence of

static honest-but-curious adversaries, under the DRSDr,h,`OT
assumption.

The proof is a direct extension of the proof of Theorem 4.2.

5.4 Security and Complexity

The above approach reduces size of the garbled circuit by a factor κ/`BMR, for `BMR-bit keys, but still
requires n keys for every row in the garbled gates. Similarly to Section 4, when n is large we can reduce this
by using a (random) committee P(h) of size nh that has at least h honest parties. Π`BMR

Preprocessing and Π`BMR
BMR

are then run as if called only by the parties in P(h). For circuit-input wires w where parties in P \ P(h)

provide input, they are sent the masks λw inΠ`BMR
Preprocessing, so in Π`BMR

BMR (Figure 14) they can then broadcast
Λw = ρiw ⊕ λw in the same way as parties in P(h).

This reduces the size of the garbled circuit by an additional factor of n/nh. Finally, the same committee
P(h) can be combined with a (random) committee P(1) with a single honest party in order to optimize the
bit multiplications needed to compute the χg,a,b values, as was described in Section 4.

In Section 6, we give some examples of committee sizes and key lengths that ensure security, and
compare this with the naive approach of running the preprocessing phase of BMR in P(1) only.

Theorem 5.2 Protocol Π`BMR
Preprocessing UC-securely realizes the functionality F `BMR

Preprocessing with perfect se-

curity in the (FBit×Bit,F `BMR
Bit×String,F

2n`BMR
Zero)-hybrid model in the presence of static honest-but-curious

adversaries.

Proof. LetA denote a PPT adversary corrupting a subset of parties A ⊂ [n], then we prove that there exists
a PPT simulator S that simulates the adversary’s view. In the following, we denote by Ā the set of honest
parties. When we say that the simulator is given some value, we mean that it receives it from F `BMR

Preprocessing.

The description of the simulation: Denote by W and OCf , respectively, the set of wires and the set of
circuit-output wires of a boolean circuitCf . Denote by ICf ,S the set of circuit-input wires of a circuit where a
subset of parties S ⊂ [n] provides input to the circuit. We assume w.l.o.g. thatA is a deterministic adversary,
which receives as additional input a random tape that determines its internal coin tosses. Upon receiving
A’s input (1κ, A,Cf) and output ({λw}w∈OCf , {k

j
v,0, k

j
v,1}j∈A,v∈W , {λu}u∈ICf ,A), S incorporates A and

internally emulates an execution of the honest parties running Π`BMR
Preprocessing with the adversary A.

31

1. CIRCUIT-INPUT WIRES’ MASKS AND KEYS: For every circuit-input wire u and for j ∈ A, S samples
from Pj’s random tape the wire mask shares λju and the keys kju,0, k

j
u,1 that party is meant to obtain from

F `BMR
Preprocessing. If a corrupted Pj provides input to the circuit on a given wire u, S samples {λiu}i/∈A such

that
⊕

i/∈A λ
i
u = λu ⊕

⊕
j∈A λ

j
u, where the value λu was received from F `BMR

Preprocessing. If it is a honest
party providing input on u, S samples {λiu}i/∈A uniformly at random.

2. INTERMEDIATE WIRES’ MASKS AND KEYS: Passing topologically through the gates g of the circuit:
– For j ∈ A: If g ∈ AND, S samples λjw ∈ {0, 1} from Pj’s random tape. If g ∈ SPLIT, it sets
λjx = λjw for both output wires x = u, v. If g ∈ XOR, it sets λjw =

⊕
x∈I λ

j
x.

– For j /∈ A: If g ∈ AND, S samples λiw. If g ∈ SPLIT, it sets λix = λiw for both output wires
x = u, v. If g ∈ XOR, it sets λiw =

⊕
x∈I λ

i
x.

– If x is a circuit-output wire, the simulator adjusts the value λx ∈ {0, 1} that F `BMR
Preprocessing sends to

the parties to be λx =
⊕

i/∈A λ
i
x ⊕

⊕
j∈A λ

j
x.

3. GARBLE GATES: For each g ∈ AND ∪ SPLIT:
– If g ∈ AND, let ug, vg be its input wires and wg its output wire. S emulates FBit×Bit by sampling

shares zjg from Pj’s random tape, for j ∈ A, and setting random zig for i /∈ A such that
∑

i∈[n] z
i
g =

λug · λvg , where λug , λvg were obtained from F `BMR
Preprocessing. S has now all the values to compute

shares of χg,a,b as χig,a,b = a · b⊕ b · λiug ⊕ a · λ
i
vg ⊕ z

i
g ⊕ λiwg for i ∈ [n].

For j ∈ [n], S emulates three calls to F `BMR
Bit×String(Pj) with inputs {χig,0,0, χig,0,1, χig,1,0} from every

Pi and additional input Rjg from Pj , where Rjg = kjwg ,0 ⊕ k
j
wg ,1

. In each of these emulated calls and
for i ∈ A, it computes the corrupted parties’ output shares from Pi’s random tape, while for i /∈ A
it samples random shares that sum to each of the values Rjg · χg,0,0, Rjg · χg,0,1 and Rjg · χg,1,0 as
required.

– If g ∈ SPLIT, S emulates twice F2n`BMR
Zero by computing shares si0, s

i
1 from Pi’s random tape for

i ∈ A and setting sj0, s
j
1 for j /∈ A such that

⊕
i∈[n] s

i
c = 0 for c ∈ {0, 1}.

Setting the ρ and g̃ values is local computation.
4. REVEAL INPUT/OUTPUT WIRES’ MASKS: For every circuit-output wire w, S adds values λiw, i /∈ A

(previously computed in Step 2) to the view of each Pj , j ∈ A. For every circuit-input wire u on which
a Pj , j ∈ A, provides input, S adds the {λiu}i/∈A values it previously computed in Step 1 to Pj’s view.

5. OPEN GARBLING: Using the adversary’s output {g̃}g∈AND∪SPLIT, S proceeds as follows: If 1 ∈ A, it
plays the role of each Pj , for j /∈ A, and sends to P1 the shares {g̃j}g∈AND∪SPLIT that it previously
computed. Otherwise, the simulator plays the role of P1 by sending {g̃}g∈AND∪SPLIT to each Pi, i ∈ A.

Indistinguishability: The wire keys and the (circuit-input and circuit-output) wire masks output by the
functionalityF `BMR

Preprocessing are i.i.d. uniformly random variables in the real world too. In both worlds and for
the additional simulated values, the corrupted parties’ shares for the wire masks, the bit products (FBit×Bit

functionality) and bit/string products (F `BMR
Bit×String functionality) needed to garble AND gates are fixed by

A’s random tape, while the honest parties’ shares of the same values are uniformly random additive shares.
In particular, this implies that shares g̃ia,b of garbled AND gates are uniformly random additive shares in both

executions. The same applies to shares of garbled splitter gates, due to the use of theF2n`BMR
Zero functionality in

the real world. Regarding the OPEN GARBLING step, if 1 /∈ A the reconstructed garbled circuit is identically
distributed in both worlds. Else, if 1 ∈ A, the adversary gets additive shares of the garbled circuit both in
the real and simulated executions, as we argued.

32

Finally, the distribution of the variables corresponding to additive shares, on the one hand, and that of
the i.i.d. variables, on the other hand, guarantees that the joint output of all parties, together with the simu-
lated/real view of corrupted parties, are identically distributed in both worlds. More formally, let outputπ(x, κ)
(resp. f(x)) be the output of Π`BMR

Preprocessing (resp. F `BMR
Preprocessing) on input x ∈ {0, 1}∗ from all parties and

security parameter κ. Let viewπA(x, κ) (resp. fA(x)) be the restriction of these outputs to the set of cor-
rupted parties A. We just proved that:

{(S(1κ,x, fA(x)), f(x))}x,κ,A ≈ {(viewπA(x, κ),outputπ(x, κ))}x,κ,A.

�

5.5 The Online Phase

Protocol Π`BMR
BMR

COMMON INPUT: A boolean circuit Cf with fan-out-one gates representing the function f . Let AND,XOR and SPLIT be
the sets of AND, XOR and splitter gates, respectively. For a gate g ∈ SPLIT, let the input wire be {w} and the output wires
be {u, v}. Otherwise let {u, v} be the input wires and {w} the output wire.

CRS: H : [n]× {0, 1} × {0, 1}`BMR → {0, 1}n`BMR+1, a uniformly random function, and H′ defined from H by excluding
the least significant bit of the output.
The parties execute the following commands in sequence:

Preprocessing:
1. Call F`BMR

Preprocessing with input Cf . Each party Pi obtains the garbled version g̃ of every gate g ∈ SPLIT ∪ AND, the wire
masks λw for every output wire and every wire associated with their input, and all their keys {kiw,0, kiw,1} for every wire
w of the circuit.

Online Computation:
1. For all input wires w with input from Pi, party Pi computes Λw = ρiw ⊕ λw, where ρiw is Pi’s input to Cf on wire w, and

λw was obtained from F`BMR
Preprocessing. Then, Pi broadcasts the public value Λw to all parties.

2. For all input wires w, each party Pi broadcasts the key kiw,Λw
associated to Λw.

3. Passing through the circuit topologically, the parties can now locally compute the following operations for each gate g.
(a) If g ∈ SPLIT, set Λx = Λw for x ∈ {u, v} and then compute:

(k1
u,Λu

, . . . , knu,Λu
, k1
v,Λv

, . . . , knv,Λv
) = g̃Λw⊕(

n⊕
i=1

H′(i, 0, kiw,Λw
),

n⊕
i=1

H′(i, 1, kiw,Λw
)

)
(b) If g ∈ AND, the parties compute:

(Λw, k
1
w,Λw

, · · · , knw,Λw
) = g̃Λu,Λv ⊕

n⊕
i=1

(
H(i, Λv, k

i
u,Λu

)⊕ H(i, Λu, k
i
v,Λv

)
)

(c) If g ∈ XOR, the parties compute Λw =
⊕

x∈I Λx and kiw,Λw
=
⊕

x∈I k
i
x,Λx

for i ∈ [n].
4. Eventually, all parties will obtain a public value Λw for every circuit-output wire w. The party can then recover the actual

output value from ρw = Λw ⊕ λw, where λw was obtained in the preprocessing stage.

Figure 14. Online phase of the constant-round MPC protocol.

We present the online phase of our protocol for multi-party garbled circuits with short keys in Figure 14
. Given the previous description of the garbling phase, the online phase is quite straightforward, where upon

33

reconstructing the garbled circuit and obtaining all input keys, the evaluation process is similar to [BMR90].
As in that work, all parties run the evaluation algorithm, which in our case involves each party computing
just 2n hash evaluations per gate. During evaluation, the parties only see the randomly masked wire values,
which we call “public values”, and cannot determine the actual values being computed. Upon completion,
the parties obtain the actual output using the output wire masks revealed from F `BMR

Preprocessing. The security of
the protocol reduces to the DRSDr,h,`BMR

problem, where `BMR is the key length, h is the number of honest
parties, and r is twice the output length of the function H (sampled by the CRS).

We remark that in practice, we may want to implement the random function H in the CRS using fixed-key
AES in the ideal cipher model, as is common for garbling schemes based on free-XOR. In Appendix C.2, we
show that this reduces the number of AES calls from O(n2) in previous BMR protocols to O(n2`BMR/κ).

We conclude with the following theorem.

Theorem 5.3 Let f be an n-party functionality {0, 1}nκ 7→ {0, 1}κ and assume that the DRSD2r,h,`BMR

assumption (cf. Definition 3.3) holds, where r = n`BMR + 1. Then Protocol Π`BMR
BMR from Figure 14 UC-

securely computes f in the presence of a static honest-but-curious adversary corrupting t = n − h parties
in the F `BMR

Preprocessing-hybrid model.

Proof. We reduce security of the protocol to the extended double-key decisional-RSD problem (Definition
3.6) with parameters (r, h, `), where r := n`BMR + 1. By Lemma 3.5, this is reducible to DRSD2r,h,`.

Let A be a PPT adversary corrupting a subset of parties A ⊂ [n] such that |A| = n− h. We prove that
there exists a PPT simulator S, with access to an ideal functionality F that implements f , which simulates
the adversary’s view. The simulator fixes the CRS as a random 2n · 2`BMR × 2n`BMR+1 matrix. A key kw
for wire w is denoted as an active key if it is observed by the adversary upon evaluating the garbled circuit.
The remaining hidden key is denoted as an inactive key. An active path is the set of all active keys that are
observed throughout the garbled circuit evaluation.

Denoting the set of honest parties by Ā, our simulator S is defined below.

The description of the simulation.

1. INITIALIZATION. Upon receiving the adversary’s input (1κ, A,xA) and output y, S samples a i.i.d
uniformly random tapes ri for each i ∈ A, incorporates A and internally emulates an execution of the
honest parties running Π`BMR

BMR with the adversary A. When we say that S chooses a value for some
corrupted party, we mean that it samples the value from that party’s random tape ri.

2. PREPROCESSING. S obtains the adversary’s input Cf which is a Boolean circuit that computes f with a
set of wires W and a set of G gates, and emulates F `BMR

Preprocessing, as follows:

– For every XOR gate g and i ∈ A the simulator samples ∆i
g ∈ {0, 1}`BMR .

– For every input wire u the simulator chooses a random bit Λu ∈ {0, 1} and, for every i ∈ Ā, an
active key kiu,Λu ∈ {0, 1}

`BMR . Additionally, it chooses a key kiu,0 ∈ {0, 1}`BMR for every i ∈ A.
Finally, and also for i ∈ A, if u is input to a XOR gate g′ it sets kiu,1 = kiu,0 ⊕ ∆i

g′ , otherwise it
samples kiu,1 ∈ {0, 1}`BMR .

The simulator continues the emulation of the garbling phase by computing an active path of the garbled
circuit that corresponds to the sequence of keys which will be observed by the adversary. Importantly, S
never samples the inactive keys ki

u,Λ̄u
, ki
v,Λ̄v

and ki
w,Λ̄w

for i ∈ Ā in order to generate the garbled circuit.
– ACTIVE PATH GENERATION OF XOR GATES. For every XOR gate g with input a set of wires I and

an output wire w,

34

• S sets Λw =
⊕

x∈I Λx.
• Next, for i ∈ A it sets kiw,0 =

⊕
x∈I k

i
x,0 and kiw,1 = kiw,0 ⊕∆i

g.
• Finally, for i ∈ Ā the simulator sets kiw,Λw =

⊕
x∈I k

i
x,Λx

.
– ACTIVE PATH GENERATION OF AND GATES. For every AND gate g with input wires I = {u, v}

and an output wire w, S samples a random Λw ∈ {0, 1} and honestly generates the entry in row
(Λu, Λv), where Λu (resp. Λv) is the public value associated to the left (resp. right) input wire to g.
Namely, the simulator computes

g̃Λu,Λv =

(
n⊕
i=1

H(i, Λv, k
i
u,Λu)⊕ H(i, Λu, k

i
v,Λv)

)
⊕ (Λw, k

1
w,Λw , . . . , k

n
w,Λw).

The remaining three rows are sampled uniformly at random from {0, 1}n`BMR+1.
– ACTIVE PATH GENERATION OF SPLITTER GATES. For every splitter gate g with an input wire
I = {w} and output wires O = {u, v}, S sets Λx = Λw for every x ∈ O and honestly generates
the entry in row Λw, where Λw is the public value associated to the input wire to g. Namely, the
simulator computes

g̃Λw =

(
n⊕
i=1

H′(i, 0, kiw,Λw),
n⊕
i=1

H′(i, 1, kiw,Λw)

)
⊕ (k1

u,Λu , . . . , k
n
u,Λu , k

1
v,Λv , . . . , k

n
v,Λv).

The remaining row is sampled uniformly at random from {0, 1}2n`BMR .
– SETTING THE TRANSLATION TABLE. For every output wire w ∈ W returning the ith bit of y, the

simulator sets λw = Λw ⊕ yi. For all input wires w ∈ W ′′ that are associated with the ith bit of xA
(the adversary’s input), the simulator sets λw = Λw ⊕ xA,i. The simulator forwards the adversary
the λw value for every output wire w ∈ W and every circuit-input wire w ∈ W ′′ associated with a
corrupted party. It completes the emulation of F `BMR

Preprocessing by adding the complete garbled circuit
to the view of each corrupted party.

3. ONLINE COMPUTATION. In the online computation the simulator adds to the view of every corrupted
partiy the public values {Λw}w∈W ′ that are associated with the honest parties’ input wires W ′. The
simulator adds the honest parties’ input keys {kiw,Λw}i∈Ā,w∈W ′ to the view of each corrupted party.

This concludes the description of the simulation. Note that the difference between the simulated and the
real executions is regarding the way the garbled circuit is generated. More concretely, the simulated garbled
gates include a single row that is properly produced, whereas the remaining three rows are picked at random.

Let HYB
F`BMR

Preprocessing

Π
`BMR
BMR

,A,Z
(1κ, z) denote the output distribution of the adversary A and honest parties in a real

execution usingΠ`BMR
BMR with adversaryA. Moreover, let IDEALF ,S,Z(1κ, z) denote the output distribution

of S and the honest parties in an ideal execution.
We prove that the ideal and real executions are indistinguishable.

Lemma 5.1 The following two distributions are computationally indistinguishable:

– {HYB
F`BMR

Preprocessing

Π
`BMR
BMR

,A,Z
(1κ, z)}κ∈N,z∈{0,1}∗

– {IDEALF ,S,Z(1κ, z)}κ∈N,z∈{0,1}∗

35

Proof: We begin by defining a slightly modified simulated execution H̃YB, where the generation of the
garbled circuit is modified so that upon receiving the parties’ inputs {δi}i∈[n] the simulator S̃ first eval-
uates the circuit Cf , computing the actual bit δw to be transferred via wire w for all w ∈ W , where
W is the set of wires of Cf . It then chooses wire mask shares and wire keys as in the description of
functionality F `BMR

Preprocessing from Figure 7. Finally, S̃ fixes the active key for each wire w ∈ W to be
(k1
w,δw⊕λw , . . . , k

n
w,δw⊕λw). The rest of this hybrid is identical to the simulation. This hybrid execution is

needed in order to construct a distinguisher for the Extended Double-Key RSD assumption.

Let H̃YB
F`BMR

Preprocessing

Π
`BMR
BMR

,A
(1κ, z) denote the output distribution of the adversary A and honest parties in this

game. It is simple to verify that the adversary’s views in H̃YB and IDEAL are identical, as in both cases
the garbling of each gate includes just a single row that is correctly garbled and the public value associated
with each wire w is independent of `BMRw.

Our proof of the lemma follows by a reduction to the Extended Double-Key RSD hardness assumption
(cf. Definition 3.6). Assume by contradiction the existence of an environment Z , an adversary A and a
non-negligible function p(·) such that

∣∣Pr[Z(HYB
F`BMR

Preprocessing

Π
`BMR
BMR

,A,Z
(1κ, z)) = 1]− Pr[Z(H̃YB

Π
`BMR
BMR

,A,Z(1κ, z)) = 1]
∣∣ ≥ 1

p(κ)

for infinitely many κ’s where the probability is taken over the randomness ofZ as well as the randomness for
choosing the Λ values and the keys. Then we construct a PPT distinguisherD for the Extended Double-Key
RSD assumption that distinguishes between an instance of the formH,

⊕
i∈Ā

H(i, 0, ki),
⊕
i∈Ā

H(i, 0, k′i),
⊕
i∈Ā

H(i, 1, ki),
⊕
i∈Ā

H(i, 1, k′i)


and five random elements, for some subset Ā of [n] of size h (that corresponds to the set of honest parties)
with probability at least 1

p(κ)·|C| via a sequence of hybrid games {HYBi}i∈[|C|], where C = SPLIT ∪
AND. In more details, we define hybrid HYBi as a hybrid execution with a simulator Si that garbles the
circuit as follows. The first i gates in the topological order are garbled as in the simulation whereas the
remaining |C| − i gates are garbled as in the real execution. Note that HYB0 is distributed as hybrid
HYB and that HYB|C| is distributed as H̃YB. Therefore, if HYB and H̃YB are distinguishable with
probability 1

p(κ) then there exists τ ∈ [|C|] such that hybrids HYBτ−1 and HYBτ are distinguishable
with probability at least 1

p(κ)·|C| . Next, we formally describe our reduction to the Extended Double-Key

RSD hardness assumption. Upon receiving a tuple (H, H̃0, H̃
′
0, H̃1, H̃

′
1) that is distributed according to the

first or the second distribution, a subset Ā of [n] that denotes the set of honest parties, an index τ and the
environment’s input z, distinguisher D internally invokes Z and simulator S. In more details,

– D internally invokes Z that fixes the honest parties’ inputs ρ.
– D emulates the communication with the adversary (controlled by Z) in the initialization, preprocessing

and garbling steps as in the simulation with S .
– For each wire u, let δu ∈ {0, 1} be the actual value on wire u. Note that these values, as well as the

output of the computation y, can be determined since D knows the actual input of all parties to the
circuit.

36

– For each wire u in the circuit and i ∈ A, D chooses a pair of keys kiu,0, k
i
u,1 ∈ {0, 1}`BMR , whereas for

all i ∈ Ā it samples a random key kiu,Λu ∈ {0, 1}
`BMR . D further fixes the public value Λu = λu ⊕ δu.

– D then garbles the circuit as follows.
• For every gj ∈ AND with input wires u and v and output wire w, D continues as follows.

If j < τ then D garbles gj exactly as in the simulation with S̃.
If j = τ then D first honestly computes the (Λu, Λv)-th row by fixing

g̃Λu,Λv =

(
n⊕
i=1

H(i, Λv, k
i
u,Λu)⊕ H(i, Λu, k

i
v,Λv)

)
⊕ (c, k1

w,Λw , . . . , k
n
w,Λw)

where c = Λw.
Next, D samples an inactive key ki

w,Λ̄w
for all i ∈ Ā and fixes the remaining three rows as follows.

g̃Λu,Λ̄v =

(
n⊕
i=1

H(i, Λ̄v, k
i
u,Λu)⊕

(⊕
i∈A

H(i, Λu, k
i
v,Λ̄v

)

)
⊕ H̃′Λu

)
⊕ (c, k1

w,c, . . . , k
n
w,c), where c = Λu · Λ̄v ⊕ Λw ⊕ δw

g̃Λ̄u,Λv =

(⊕
i∈A

H(i, Λv, k
i
u,Λ̄u

)⊕ H̃Λv ⊕
(n⊕

i=1

H(i, Λ̄u, k
i
v,Λv)

))
⊕ (c, k1

w,c, . . . , k
n
w,c), where c = Λ̄u · Λv ⊕ Λw ⊕ δw

g̃Λ̄u,Λ̄v =

(⊕
i∈A

H(i, Λ̄v, k
i
u,Λ̄u

)⊕ H̃Λ̄v ⊕
(⊕
i∈A

H(i, Λ̄u, k
i
v,Λ̄v

)

)
⊕ H̃′Λ̄u

)
⊕ (c, k1

w,c, . . . , k
n
w,c), where c = Λ̄u · Λ̄v ⊕ Λw ⊕ δw.

Finally, if j > τ thenD garbles gj exactly as in hybrid HYB. For that,D needs to know both active
and inactive keys. It therefore chooses the inactive keys that are associated with the input and output
wires of this gate for i ∈ Ā, in order to be able to complete the garbling. Recall that the circuit is
with fan-out 1. Therefore the distinguisher can choose the inactive key for the input wire of this gate
(as it was not used as an input wire to gate gτ).
• For every gj ∈ SPLIT with input wire w and output wires u, v,D completes the garbling as follows.

If j < τ then D garbles gj exactly as in the simulation with S̃.
If j = τ then D first honestly computes the Λwth row by fixing

g̃Λw =

(
n⊕
i=1

H(i, 0, kiw,Λw)⊕ H(i, 1, kiw,Λw)

)
⊕ (k1

u,Λu , . . . , k
n
v,Λv).

Next, it samples inactive keys ki
u,Λ̄u

, ki
v,Λ̄v

for all i ∈ Ā and fixes the remaining row as follows.

g̃Λ̄w =

(⊕
i∈A

H(i, 0, kiw,Λ̄w)⊕ H̃0 ⊕
⊕
i∈A

H(i, 1, kiw,Λ̄w)⊕ H̃1

)
⊕ (k1

u,Λ̄u
, . . . , knv,Λ̄v).

If j > τ then D garbles gj as in hybrid HYB using a similar process as for the case of an AND
gate.

37

– This concludes the description of the reduction. Note that the set XOR need not be part of these hybrids
since we do not send any garbling information for this set of gates. D hands the adversary the complete
description of the garbled circuit and concludes the execution as in the simulation with S̃.

– D outputs whatever Z does.

Note first that if (H̃0, H̃
′
0, H̃1, H̃

′
1) are truly uniform then the view generated byD is distributed as in HYBτ .

This is because only the active path is created as in the real execution, whereas the remaining rows are
sampled uniformly at random from the appropriate domain. On the other hand, if this tuple is generated
according to the following distribution(

H,
⊕
i∈A

H(i, 0, ki),
⊕
i∈A

H(i, 0, k′i),
⊕
i∈A

H(i, 1, ki),
⊕
i∈A

H(i, 1, k′i)

)

then this emulates game HYBτ−1, since each tuple element emulates an evaluation of the hash values for
the honest parties on the secret keys.

This completes the proof. �

6 Complexity Analysis and Implementation Results

We now compare the complexity of the most relevant aspects of our approach to the state-of-the-art prior re-
sults in semi-honest MPC protocols with dishonest majority. To demonstrate the practicality of our approach,
we also present implementation results for the online evaluation phase of our BMR-based protocol.

6.1 Threshold Variants of Full-Threshold Protocols

Since the standard GMW and BMR-based protocols allow for up to n− 1 corruptions, we also show how to
modify previous protocols to support some threshold t, and compare our protocols with these variants. The
method is very simple (and similar to the use of committees in our protocols), but does not seem to have
been explicitly mentioned in previous literature. To evaluate a circuit C, all parties first secret-share their
inputs to an arbitrarily chosen committee P ′, of size t+1. Committee P ′ runs the full-threshold protocol for
a modified circuit C ′, which takes all the shares as input, and first XORs them together so that it computes
the same function as C. The committee P ′ then sends the output to all parties in P . The complexity of the
threshold-t variant of a full-threshold protocol, Π , is then essentially the same as running Π between t+ 1
parties instead of n.

6.2 Concrete Hardness of RSD and Our Choice of Parameters

In this section we give an overview of how we select the key length ` in our protocols according to n, h, r,
so that the corresponding RSDr,h,` instance is hard enough. See Appendix B for a more detailed survey of
known attacks and the techniques involved. As discussed in Section 3, RSD is similar to the (standard) syn-
drome decoding problem, where each component of the error vector is 0 or 1 with some constant probability,
which is equivalent to the problem of learning parity with noise (LPN).

The most efficient attacks on RSD are Information Set Decoding (ISD), introduced by Prange in 1962
[Pra62], Wagner’s Generalised Birthday Attack (GBA) [Wag02], and the Linearization Attack (LA) by Bel-
lare et al. [BM97] and Saarinen [Saa07]. We stress that the goal of our analysis is to find a reasonable
estimation of the complexity of these attacks; giving a complete description of all possible decoding tech-
niques and a precise evaluation of their cost is out of the scope of this paper. In our analysis we intentionally

38

n 20 50 80 100 200 400
h 10 11 16 10 20 25 40 16 24 32 56 20 30 40 60 60 100 80 120 180

` Pra 19 18 13 21 13 11 8 32 12 10 7 14 11 9 7 8 6 8 7 6
` 32 29 18 > 32 27 16 8 > 32 30 17 8 > 32 25 15 8 14 8 11 8 6

Table 1. Min key-length for BMR-style MPC with 128 bits of security for different n and h when r =
2`n+ 2.

h 15 20 30 40 50 80

r 300 1500 300 3000 300 2000 400 3000 450 1000 420 2500
` 14 26 11 32 8 16 7 15 6 8 4 8

Table 2. Min key-length for GMW-style MPC with 128 bits of security for different values of h and r.

underestimate the complexity of all the attacks, resulting in a conservative estimate of the security of our
protocols.

When considering the hardness of RSD instances we need to distinguish the case where the solution
to the problem is unique and the case of multiple solutions. In the first case, which always occurs for our
BMR-style protocols, GBA essentially reduces to the classical birthday attack and the most efficient attack is
ISD. Classical information set decoding algorithms do not take into account the possibility that the solution
is regular. In practice, when we estimate the cost of this attack, we consider the cost of both a tailored
regular variant of ISD, augmented with the Stern [Ste88] and Finiasz and Sendrier [FS09] techniques, and
the more recent non-regular variant due to Becker et al. [BJMM12], and then we take the minimum of the
two. We have also analysed more recent variants of ISD [MO15, BM17]. More precisely, the values in the
tables are obtained by considering all the cost analysis performed in Section B and computing the key-values
corresponding to the most efficient attack according to Eq. 3, 5, 7, 9 and 10.

In Table 1, we provide an estimation of the minimal key-length ` for our BMR-style protocols to achieve
more than 128 bits of security for different values of n, h and r = 2`n+2. Note that we only consider ` ≤ 32,
so when in the table we have that ` should be larger than 32, it means that ISD cost less than 2128 for that
set of parameters. We also give an estimation of minimal key-length respect to the plain ISD attack to RSD
by Prange.

When an RSD instance has more than one solution - this is sometimes the case for our GMW-style
protocol - we need to consider also GBA and LA. Notice that since there are many solutions, attacking
regular SD with classical ISD is more difficult than attacking non-regular SD and an adversary needs to run
the attack repeatedly until the output is regular, increasing the cost of the attack. To estimate the complexity
of GBA and LA we take the same conservative approach we use for ISD. Since LA is particularly effective
for larger h, especially when h > r/4, we always set up r > 2h+ 1.

In Table 2 we propose a set of of parameters for our GMW-style protocols for different values of h
(and irrespective to the total number of parties n), such that the estimated complexity of the most efficient
decoding algorithms is more than 2128.

6.3 GMW-Style Protocol

Recall that the relevant parameters are the key-length `, the number of honest parties h, and the parameter r
which is the batch size when producing triples; we fix the computational and statistical security parameters
to κ = 128 and s = 40. We instantiate our protocol with two variants, depending on how the hash functions
Hi are defined:

39

(parties n, honest), (`OT, r) GMW (t = n− 1) GMW (t = n− h) Ours (DRSD or Vandermonde)
(10, 4), (4, 16) 6.03 2.81 2.59 (V)
(15, 6), (4, 24) 14.07 6.03 3.95 (V)
(30, 8), (5, 40), 58.3 34 15.18 (V)
(60, 12), (6, 72) 237.18 157.584 52 (V)
(50, 15), (6, 90) 164.15 84.42 27.96 (V)
(60, 20), (6, 120) 237.18 109.88 32.96 (V)
(80, 30), (8, 300) 423.44 170.85 50.01 (V/D)
(100, 40), (7, 400) 663.3 245.22 61.84 (D)
(150, 40), (7, 400) 1497.5 818.07 169.36 (D)
(200, 50), (6, 450) 2666.6 1517.55 261.6 (D)
(400, 120), (1, 80) 10693.2 5271.56 403.63 (D)

Table 3. Amortized communication cost (in kbit) of producing a single triple in GMW for different values
of n and h. We consider [DKS+17] for 1-out-of-4 OT extension in the GMW protocols, and the protocol
from Section 4 in our work using the DRSD assumption and the Vandermonde-based technique described
in Section 4.3 and reporting the best of the two.

– “DRSD” variant (Section 4.2): Hi are uniformly random. Security is either based on the DRSD assump-
tion, with ` and r taken from Table 2, or statistically secure when h ≥ r + s with ` = 1.

– “Vandermonde” variant (Section 4.3): Hi come from a Vandermonde matrix. Perfect security, key length
` = log2 n, and r = ` · h.

In both cases, the communication complexity is n1 · n2 · (`+ `κ/r + 1) bits per triple.
For comparison, we use the best-known instantiation of standard GMW, namely a variant based on 1-

out-of-4 OT to generate triples, optimized by [DKS+17] in the 2-party setting. This easily extends to the
multi-party case with communication complexity O(n2κ/ log κ) bits per AND gate, so we consider both
full-threshold and threshold-t (§6.1) variants.

Tables 3 and Figure 15 show the amortized communication complexity for triple production using de-
terministic committees for different values of n and honest parties h. We can see that the Vandermonde
approach always wins for small values of (n, h); when n > 80 and h > 30 then the DRSD technique per-
forms better. Our protocol starts to beat the best-known GMW protocol for producing multiplication triples
when there are just 4 honest parties. For example, with 15 parties and 6 corruptions, the communication
cost of our protocol is roughly 35% lower than threshold-6 GMW, and 82% lower than the cost of standard,
full threshold GMW. As the number of parties (and honest parties) grows, our improvements become even
greater, and when the number of honest parties is more than 80, we can use 1-bit keys and improve upon the
threshold variant of GMW by more than 13 times.

In Section 4 we mentioned the possibility, when n and h are large enough, of using random committees
P(h) and P(1), such that except with negligible probability P(h) has at least h′ ≤ h honest parties and P(1)

has at least one honest party. In order to estimate the communication complexity of our protocol, we consider
the probability p(1) of P(1) not having a single honest party and the probability p(h) of P(h) of having less
than h′ honest parties. Let n1 = |P(1)| and nh = |P(h)|, we have that

p(1) =

(
n−h
n1

)(
n
n1

) and p(h) =

∑min(h′,h′−v)
j=1

(
n−h

nh−h′+j
)
·
(

h
h′−j

)(
n
nh

) ,

40

4 5 6 7

4

6

8

10

Number of honest parties

C
om

m
un

ic
at

io
n

co
m

pl
ex

ity
(k

bi
t)

n = 15

Ours (Vandermonde)
GMW, t = n− h
Ours (DRSD)

4 5 6 7 8 9

5

10

15

Number of honest parties

n = 20

Ours (Vandermonde)
GMW, t = n− h
Ours (DRSD)

4 5 6 7 8 9 10 11 12

10

20

30

40

50

Number of honest parties

C
om

m
un

ic
at

io
n

co
m

pl
ex

ity
(k

bi
t)

n = 30

Ours (Vandermonde)
GMW, t = n− h
Ours (DRSD)

4 6 8 10 12 14 16 18 20

50

100

150

200

Number of honest parties

n = 60

Ours (Vandermonde)
GMW, t = n− h
Ours (DRSD)

5 10 15 20 25 30 35 40 45 50 55 60
0

500

1,000

1,500

Number of honest parties

C
om

m
un

ic
at

io
n

co
m

pl
ex

ity
(k

bi
t)

n = 150

Ours (Vandermonde)
GMW, t = n− h
Ours (DRSD)

510 20 30 40 50 60 70 80 90 100110120

0

0.2

0.4

0.6

0.8

1

·104

Number of honest parties

n = 400

Ours (Vandermonde)
GMW, t = n− h
Ours (DRSD)

Figure 15. Amortized communication cost (in kbit) for producing triples in GMW for n =
20, 50, 80, 100, 150, 400 and deterministic committees.

where v = nh− (n−h) < h′. We fix the parameters n, h, h′, and compute the minimum values nh, n1 such
that p(h) and p(1) are less than 2−s. Table 4 compares our protocol with random committees and GMW with
a single random committee of size n1, i.e. having at least one honest party with overwhelming probability,

41

(n, h, h′) (100, 40, 30) (200, 70, 50) (500, 200, 120) (800, 300, 120) (1000, 200, 120) (5000,1200,120) (10000, 3000, 120)
(`OT, r) (8, 300) (6, 450) (1, 80) (1, 80) (1, 80) (1, 80) (1, 80)
(nh′ , n1) (90, 39) (180, 54) (382, 51) (447, 57) (790, 117) (811, 100) (654, 78)

GMW 99.3 191.75 170.85 213.9 909.32 663.3 402.40
Ours 43.6 84.62 70.13 91.72 337.75 291 183.64

Table 4. Amortized communication cost (in kbit) of producing a single triple in GMW using random com-
mittees.

parties (honest) 20 (10) 50 (20) 80 (32) 100 (40) 200 (60) 400 (120) 1000 (160)
(`BMR, `OT, r) (32, 23, 530) (27, 13, 450) (17, 8, 380) (15, 7, 400) (8, 5, 370) (8, 1, 80) (8, 1, 120)

[BLO16] (Gb P) 341.24 2200.1 5675.36 8890 35740 143320.8 897102
[BLO16] (Gb P(1)) 98.78 835.14 2112.1 3286.7 17726.45 70654.7 634383.12
Ours (Garbling) 111.7 747.63 1750.48 2678.74 5448.36 10114.99 64474.1

[BLO16] (|GC| P) 10.24A 25.6A 40.96A 51.2A 102.4A 204.8A 512A

[BLO16] (|GC| P(1)) 5.632A 15.88A 25.1A 31.23A 72.19A 143.9A 430.6A

[BLO17] (|GC|) 12.29(A+X) 12.29(A+X) 12.29(A+X) 12.29(A+X) 12.29(A+X) 12.29(A+X) 12.29(A+X)

Ours (|GC|) 2.56(A+ S) 5.4(A+ S) 5.45(A+ S) 6(A+ S) 6.4(A+ S) 12.8(A+S) 32(A+S)

Table 5. Communication complexity for garbling, and size of garbled gates, in BMR-style protocols in kbit.
A = #AND gates, S = #Splitter gates, X = #XOR gates.

when s = 40. Even if the communication complexity reduces in both protocols, our approach is always at
least 50% more efficient compared to GMW.

6.4 BMR-Style Protocol

Communication Complexity. To show the efficiency of our constant-round garbling protocol from Sec-
tion 5.5, we provide Table 5, which has two parts. First, it compares the amortized communication com-
plexity incurred for garbling an AND gate with [BLO16]. We recall that this is the dominating cost for
BMR-style protocols using free-XOR, and that we incur no communication for creating shares of garbled
splitter gates. Note that in the first setting of n = 20, t = 10, although our communication costs are around 3
times lower than [BLO16], we do not improve upon the threshold-t variant of that protocol, described earlier.
Once we get to 50 parties, though, we start to improve upon [BLO16], with a reduction in communication
going up to 7x for 400 parties and 10x for 1000 parties.

The second half of the table shows the size of the garbled circuit in terms of the total number of AND,
XOR and splitter gates. Garbled circuit size only has a slight impact on communication complexity, when
opening the garbled circuit, which is much lower than the communication in the rest of the garbling phase.
However, if an implementation needs to store the entire garbled circuit in memory (either for evaluation,
or storage for later use) then it is also important to optimize its size. Here we also compare with [BLO17],
which recently showed how to construct a compact multi-party garbled circuit based on key-homomorphic
PRFs. The size of their garbled circuit is constant and grows with O(κ) per gate, with security proven in the
presence of n − 1 corrupted parties. On the other hand, their construction requires much more expensive
operations based on the Decisional Diffie-Hellman or Ring-LWE assumptions, and these also lead to fairly
large keys — with a 3072-bit discrete log prime (equivalent to 128-bit security) the size of a garbled AND
gate only beats our protocol at around 400 parties. Additionally, their construction does not support free-
XOR, and the concrete efficiency of the offline garbling phase is not clear: garbling an AND gate requires
O(n) secret-shared field multiplications, which seems likely to be much higher than the offline cost of

42

20 40 60 80

0

2,000

4,000

6,000

Number of honest parties

C
om

m
un

ic
at

io
n

co
m

pl
ex

ity
(k

bi
t)

n = 100

BLO16
Ours

50 100 150 200 250 300

0

0.5

1

1.5

2

·105

Number of honest parties

n = 500

BLO16
Ours

Figure 16. Communication complexity cost (in kbit) for garbling when n = 100 and n = 500.

our protocol or [BLO16], but their paper does not give concrete numbers. In Figure 16 we show the
communication complexity of garbling when n = 100, 500 and for different number of honest parties.

We conclude by remarking that known GC-based protocols in the malicious setting naturally incur in
much higher communication costs, even if the online running times are overall comparable with those re-
ported in [BLO16]. The most efficient maliciously-secure multiparty GC-based protocol [YWZ20] requires
roughly κ ·A · (4n− 6) and 7κ ·A · (n− 1) bits per party for the garbling and the function independent step,
respectively (as in Table 5, A denotes the number of AND gates and κ the security parameter).

Garbling Implementation. In Figure 17, we present running times for evaluating the garbled circuit in our
protocol and compare with times for [BLO16] running on the same machine.

The implementation runs on a single machine,5 to allow testing just the local computation in the on-
line phase (note that there is very little interaction in the online phase). We took as benchmarks the AES
circuit (6800 AND gates, 31796 Splitters), the SHA-256 circuit (90825 AND gates, 132586 Splitters), a
binary multiplier for 32-bit numbers (5926 AND gates, 6994 Splitters) and a randomly generated circuit
with 100000 AND gates and 99510 Splitters (as used in [BLO17], for comparison). The CRS H was imple-
mented with fixed-key AES in counter mode using AES-NI instructions, which is a random function under
the assumption that AES behaves like a random permutation (see Appendix C). We also tried precomputing
every output of H and storing this as a lookup-table, but in practice this did not perform well as the table size
was usually much larger than the CPU cache. Recall that the standard BMR online phase requires each party
to perform O(n2) AES operations per AND gate, whereas our online phase reduces this to O(n2`BMR/κ),
with some extra cost for evaluating splitter gates. The results show that for the random circuit our protocol
starts to pay off from around 50 parties, when the corruption threshold is between 20–40%, reaching a 3.3x
improvement for n = 300, h = 105. On the other hand, for AES, which has a relatively large proportion of
splitter gates, the crossover point is closer to 150 parties, and the greatest improvement factor is 1.3x over
[BLO16] for n = 300, h = 105.
This shows that the performance improvements of our garbled circuit-based protocol very much depend on
the specific circuit being evaluated, but further improvements may be possible by modifying secure compu-

5 Intel Xeon E5-2650 v3 2.3GHz / 25M Cache, 10 Cores, 64GB RAM.

43

50 100 150 200 250 300

0

1,000

2,000

3,000

4,000

5,000

Number of parties

Ti
m

e
(m

s)

AES

BLO16
Ours

50 100 150 200 250 300

0

2

4

·104

Number of parties

Ti
m

e
(m

s)

SHA-256

BLO16
Ours

50 100 150 200 250 300

0

2

4

6

·104

Number of parties

Ti
m

e
(m

s)
Random circuit

BLO16
Ours

50 100 150 200 250 300

0

1,000

2,000

3,000

Number of parties

Ti
m

e
(m

s)

Mult-32

BLO16
Ours

Figure 17. Online time for evaluating various circuits with n = 30, 50, 100, 300. The corresponding num-
bers of honest parties are h = 14, 21, 38, 105, respectively. Times for [BLO16] are for a full-threshold
implementation.

tation compilers to produce circuits more suitable for our protocol. It also seems likely that implementing
our GMW-based protocol would show much more significant gains, based on the communication costs
presented earlier.

References

ABP11. Martin R. Albrecht, Gregory V. Bard, and Clément Pernet. Efficient dense gaussian elimination over the finite field
with two elements. CoRR, abs/1111.6549, 2011.

ADS+17. Gilad Asharov, Daniel Demmler, Michael Schapira, Thomas Schneider, Gil Segev, Scott Shenker, and Michael Zohner.
Privacy-preserving interdomain routing at internet scale. PoPETs, 2017(3):147, 2017.

AFL+16. Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. High-throughput semi-honest secure
three-party computation with an honest majority. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 805–817. ACM Press, October 2016.

AFS03. Daniel Augot, Matthieu Finiasz, and Nicolas Sendrier. A fast provably secure cryptographic hash function. IACR
Cryptology ePrint Archive, 2003:230, 2003.

44

AIK09. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography with constant input locality. Journal of Cryptol-
ogy, 22(4):429–469, October 2009.

AJL+12. Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and Daniel Wichs. Multiparty
computation with low communication, computation and interaction via threshold FHE. In David Pointcheval and
Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 483–501. Springer, Heidelberg, April
2012.

ALSZ13. Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient oblivious transfer and exten-
sions for faster secure computation. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS
2013, pages 535–548. ACM Press, November 2013.

App16. Benny Applebaum. Garbling XOR gates ”for free” in the standard model. J. Cryptology, 29(3):552–576, 2016.
Bea92. Donald Beaver. Efficient multiparty protocols using circuit randomization. In Joan Feigenbaum, editor, CRYPTO’91,

volume 576 of LNCS, pages 420–432. Springer, Heidelberg, August 1992.
BFKL94. Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Cryptographic primitives based on hard learn-

ing problems. In Douglas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 278–291. Springer, Heidelberg,
August 1994.

BGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic fault-tolerant
distributed computation (extended abstract). In 20th ACM STOC, pages 1–10. ACM Press, May 1988.

BJMM12. Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding random binary linear codes in 2n/20:
How 1 + 1 = 0 improves information set decoding. In David Pointcheval and Thomas Johansson, editors, EURO-
CRYPT 2012, volume 7237 of LNCS, pages 520–536. Springer, Heidelberg, April 2012.

BLN+09. Daniel J. Bernstein, Tanja Lange, Ruben Niederhagen, Christiane Peters, and Peter Schwabe. Fsbday. In INDOCRYPT,
pages 18–38, 2009.

BLO16. Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Optimizing semi-honest secure multiparty computation for the
internet. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors,
ACM CCS 2016, pages 578–590. ACM Press, October 2016.

BLO17. Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Efficient scalable constant-round MPC via garbled circuits. In
ASIACRYPT, 2017.

BLP08. Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Attacking and defending the McEliece cryptosystem. Cryp-
tology ePrint Archive, Report 2008/318, 2008. https://eprint.iacr.org/2008/318.

BLP11. Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Smaller decoding exponents: Ball-collision decoding. In
Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 743–760. Springer, Heidelberg, August 2011.

BM97. Mihir Bellare and Daniele Micciancio. A new paradigm for collision-free hashing: Incrementality at reduced cost. In
Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 163–192. Springer, Heidelberg, May 1997.

BM17. Leif Both and Alexander May. Decoding linear codes with high error rate and its impact for lpn security. IACR
Cryptology ePrint Archive, 2017:1139, 2017.

BMR90. Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols (extended abstract). In
22nd ACM STOC, pages 503–513. ACM Press, May 1990.

BMvT78. Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg. On the inherent intractability of certain coding
problems (corresp.). IEEE Trans. Information Theory, 24(3):384–386, 1978.

BO17. Aner Ben-Efraim and Eran Omri. Concrete efficiency improvements for multiparty garbling with an honest majority.
In Latincrypt 2017, 2017.

Bra85. Gabriel Bracha. An O(lgn) expected rounds randomized byzantine generals protocol. In 17th ACM STOC, pages
316–326. ACM Press, May 1985.

Can01. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd FOCS, pages
136–145. IEEE Computer Society Press, October 2001.

CC81. George C. Clark and J. Bibb Cain. Error-Correction Coding for Digital Communications. Perseus Publishing, 1981.
CC98. Anne Canteaut and Florent Chabaud. A new algorithm for finding minimum-weight words in a linear code: Application

to mceliece’s cryptosystem and to narrow-sense BCH codes of length 511. IEEE Trans. Information Theory, 44(1):367–
378, 1998.

CCD88. David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols (extended abstract).
In 20th ACM STOC, pages 11–19. ACM Press, May 1988.

CCL15. Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant of universally composable security for standard
multiparty computation. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume
9216 of LNCS, pages 3–22. Springer, Heidelberg, August 2015.

CJ04. Jean-Sébastien Coron and Antoine Joux. Cryptanalysis of a provably secure cryptographic hash function. IACR
Cryptology ePrint Archive, 2004:13, 2004.

45

https://eprint.iacr.org/2008/318

CS98. Anne Canteaut and Nicolas Sendrier. Cryptanalysis of the original McEliece cryptosystem. In Kazuo Ohta and Dingyi
Pei, editors, ASIACRYPT’98, volume 1514 of LNCS, pages 187–199. Springer, Heidelberg, October 1998.

DKS+17. Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi, Thomas Schneider, Shaza Zeitouni, and Michael Zohner.
Pushing the communication barrier in secure computation using lookup tables. In NDSS, 2017.

DMS04. Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The second-generation onion router. In USENIX,
pages 303–320, 2004.

DN07. Ivan Damgård and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty computation. In Alfred
Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 572–590. Springer, Heidelberg, August 2007.

Dum91. I. Dumer. On minimum distance decoding of linear codes. In 5th Joint Soviet-Swedish Int. Workshop Inform. Theory,
Proceedings, pages 50–52, 1991.

FKOS15. Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter Scholl. A unified approach to MPC with pre-
processing using OT. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS,
pages 711–735. Springer, Heidelberg, November / December 2015.

FS09. Matthieu Finiasz and Nicolas Sendrier. Security bounds for the design of code-based cryptosystems. In Mitsuru Matsui,
editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 88–105. Springer, Heidelberg, December 2009.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor, 41st ACM STOC,
pages 169–178. ACM Press, May / June 2009.

GL89. Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In 21st ACM STOC, pages
25–32. ACM Press, May 1989.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness theorem for
protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM Press, May 1987.

Gol04. Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge University Press, 2004.
HJ10. Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard knapsacks. In EUROCRYPT, pages

235–256, 2010.
HOSS18a. Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. Concretely efficient large-scale MPC

with active security (or, TinyKeys for TinyOT). In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018,
Part III, volume 11274 of LNCS, pages 86–117. Springer, Heidelberg, December 2018.

HOSS18b. Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. TinyKeys: A new approach to efficient
multi-party computation. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993
of LNCS, pages 3–33. Springer, Heidelberg, August 2018.

HS13. Yann Hamdaoui and Nicolas Sendrier. A non asymptotic analysis of information set decoding. IACR Cryptology ePrint
Archive, 2013:162, 2013.

HSS20. Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round MPC combining BMR and oblivious
transfer. Journal of cryptology, 2020.

IKNP03. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently. In Dan Boneh,
editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–161. Springer, Heidelberg, August 2003.

ILL89. Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation from one-way functions (ex-
tended abstracts). In 21st ACM STOC, pages 12–24. ACM Press, May 1989.

Kir11. Paul Kirchner. Improved generalized birthday attack. IACR Cryptology ePrint Archive, 2011:377, 2011.
KK13. Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for transferring short secrets. In Ran Canetti

and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 54–70. Springer, Heidelberg, August
2013.

KMR14. Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. FleXOR: Flexible garbling for XOR gates that beats free-
XOR. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages 440–457.
Springer, Heidelberg, August 2014.

KS08. Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and applications. In Luca
Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, edi-
tors, ICALP 2008, Part II, volume 5126 of LNCS, pages 486–498. Springer, Heidelberg, July 2008.

LB88. Pil Joong Lee and Ernest F. Brickell. An observation on the security of mceliece’s public-key cryptosystem. In
EUROCRYPT, pages 275–280, 1988.

Leo88. Jeffrey S. Leon. A probabilistic algorithm for computing minimum weights of large error-correcting codes. IEEE
Trans. Information Theory, 34(5):1354–1359, 1988.

LPSY15. Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant round multi-party computation
combining BMR and SPDZ. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume
9216 of LNCS, pages 319–338. Springer, Heidelberg, August 2015.

46

LSS16. Yehuda Lindell, Nigel P. Smart, and Eduardo Soria-Vazquez. More efficient constant-round multi-party computation
from BMR and SHE. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part I, volume 9985 of LNCS, pages
554–581. Springer, Heidelberg, October / November 2016.

MMT11. Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random linear codes in
$\tilde{\mathcal{O}}(2ˆ{0.054n})$. In ASIACRYPT, pages 107–124, 2011.

MO15. Alexander May and Ilya Ozerov. On computing nearest neighbors with applications to decoding of binary linear codes.
In EUROCRYPT, pages 203–228, 2015.

MS77. F. J. MacWilliams and N. J. A. Sloane. The Theory of Error Correcting Codes. North Holland, 1977.
MS09. Lorenz Minder and Alistair Sinclair. The extended k-tree algorithm. In Claire Mathieu, editor, 20th SODA, pages

586–595. ACM-SIAM, January 2009.
NCB11. Robert Niebuhr, Pierre-Louis Cayrel, and Johannes Buchmann. Improving the efficiency of Generalized Birthday

Attacks against certain structured cryptosystems. In WCC, pages 163–172, Paris, France, 2011.
NNOB12. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A new approach to practical

active-secure two-party computation. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417
of LNCS, pages 681–700. Springer, Heidelberg, August 2012.

NR17. Jesper Buus Nielsen and Samuel Ranellucci. On the computational overhead of MPC with dishonest majority. In Serge
Fehr, editor, PKC 2017, Part II, volume 10175 of LNCS, pages 369–395. Springer, Heidelberg, March 2017.

Pie12. Krzysztof Pietrzak. Subspace LWE. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 548–563.
Springer, Heidelberg, March 2012.

Pra62. Eugene Prange. The use of information sets in decoding cyclic codes. IRE Trans. Information Theory, 8(5):5–9, 1962.
Saa07. Markku-Juhani Olavi Saarinen. Linearization attacks against syndrome based hashes. In K. Srinathan, C. Pandu Ran-

gan, and Moti Yung, editors, INDOCRYPT 2007, volume 4859 of LNCS, pages 1–9. Springer, Heidelberg, December
2007.

Sen11. Nicolas Sendrier. Decoding one out of many. Cryptology ePrint Archive, Report 2011/367, 2011. https:
//eprint.iacr.org/2011/367.

Ste88. Jacques Stern. A method for finding codewords of small weight. In Coding Theory and Applications, pages 106–113,
1988.

TS16. Rodolfo Canto Torres and Nicolas Sendrier. Analysis of information set decoding for a sub-linear error weight. In
PQCrypto, pages 144–161, 2016.

TX03. Stephen R Tate and Ke Xu. On garbled circuits and constant round secure function evaluation. CoPS Lab, University
of North Texas, Tech. Rep, 2:2003, 2003.

vT88. Johan van Tilburg. On the mceliece public-key cryptosystem. In CRYPTO, pages 119–131, 1988.
Wag02. David Wagner. A generalized birthday problem. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages

288–303. Springer, Heidelberg, August 2002.
WRK17. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multiparty computation. In Bhavani M.

Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 39–56. ACM Press, Octo-
ber / November 2017.

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS, pages 162–167.
IEEE Computer Society Press, October 1986.

YWZ20. Kang Yang, Xiao Wang, and Jiang Zhang. More efficient MPC from improved triple generation and authenticated
garbling. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1627–1646.
ACM Press, November 2020.

A Universal Composability

We prove security of our protocols in the universal composability (UC) framework [Can01] (see also [CCL15]
for a simplified version of UC). This framework is based on the real/ideal paradigm, where all the entities
(including the parties and the adversary) are modeled as interactive Turing machines. The goal of a protocol
is defined by an ideal functionality, which can be seen as a trusted party sending the desired results to the
parties. To prove security of a protocol, we aim to show that any adversary attacking the real protocol can
be used to construct a corresponding ideal adversary, called the simulator, that runs in the ideal world, in-
teracting only with the functionality F and the real adversary, such that the distributions of messages seen
in the real world and ideal world executions are indistinguishable. The UC framework additionally defines a

47

https://eprint.iacr.org/2011/367
https://eprint.iacr.org/2011/367

powerful entity called the environment, which is the interactive machine trying to distinguish the two worlds.
The environment has total control over the adversary, and can choose the inputs, and see the outputs, of all
parties.

We denote by REALπ,A,Z(1κ, z) the output distribution of the environment Z in the real world ex-
ecution of protocol π, with n parties and an adversary A, where κ is the security parameter and z is the
auxiliary input to Z . The output distribution of Z in the ideal world is denoted by IDEALF ,S,Z(1κ, z),
where F is the ideal functionality to be realized and S is the simulator. Additionally, we denote the hybrid
execution of a protocol π, which is given access to an ideal functionality G, by HYBGπ,A,Z(1κ, z). This is
defined similarly to the real execution, and is known as the G-hybrid model. Security of a protocol is then
defined as follows.

Definition A.1 A protocol π UC-securely computes an ideal functionality F in the G-hybrid model if for
any PPT adversary A, there exists a PPT simulator S such that for any PPT environment Z , it holds that:

HYBGπ,A,Z
c
≈ IDEALF ,S,Z .

The composition theorem provides security guarantees when protocols are composed together. This means
that if ρ is a UC-secure protocol for G, then the protocol π in the G-hybrid model can be replaced by the com-
position π ◦ρ. Informally, the composition theorem then guarantees that REALπ◦ρ,A,Z is indistinguishable
from HYBGπ,A,Z .

B Cryptanalysis

In this section we give a concrete analysis of the hardness of the Syndrome Decoding Problem (SD) and
Regular Syndrome Decoding Problem (RSD) described in Section 3, in order to justify the parameters se-
lection for our protocols. Let us start by providing useful notation on coding theory. For ease of presentation
all vectors are intended to be column vectors.

A binary [m, k, d]2 linear code C is a k-dimensional subspace of Fm2 , where m is the length of the
code, k is its dimension as a vector subspace and d is its distance, i.e. the minimal non-zero Hamming
distance between any two codewords. Equivalently, C can be defined as the kernel of a full-rank matrix
H ∈ F(m−k)×m

2 , called a parity-check matrix of C. Given a vector r = c + e ∈ Fm2 , where c ∈ C is a
codeword and e an error vector, the syndrome corresponding to c is the vector s = H · r = H · c+H · e =
H · e ∈ Fm−k2 . Hence, the syndrome does not depend on the codeword, but only on the error vector. When
the Hamming weight of e is smaller than the error correction capability of C, that is wt(e) ≤ bd−1

2 c, s is
called correctable syndrome and r can be uniquely decoded to c. More formally, we can define a mapping

Syn : Fm2 −→ Fr2 (r = m− k)

e 7−→ H · e(= s).

When the domain of Syn is restricted to vectors of upper bounded Hamming weight, inverting Syn is strictly
related to the problem of decoding the [m, k, d]2 linear code with parity-check matrix H, and this problem
is equivalent to the average-case hardness of the following computational problem.

Definition B.1 (Syndrome Decoding Problem (SD)) Let r, h,m ∈ N. Sample H ← Fr×m2 and e ← Fm2
such that wt(e) = h, where wt(e) denotes the Hamming weight of e. Given (H,H ·e), the SDr,m,h problem
is to recover e with noticeable probability.

48

Notice SD can be seen as a purely combinatorial problem and the most näive algorithm could simply
enumerate all the

(
m
h

)
possible solutions.

We denote by Wm,h the set of all the binary vectors in Fm2 of weight exactly h and by Rm,h ⊂Wm,h the
set of all the binary (m,h)-regular vectors. We recall that a binary (m,h)-regular vector is a vector in Fm2
such that, if we divide it into h blocks of equal length, each of them has Hamming weight exactly 1. When
SD is restricted to vectors in Rm,h, we have the following.

Definition B.2 (Regular Syndrome Decoding (RSD)) Let r, h, ` ∈ N and m = h ·2`. Sample H← Fr×m2

and e← Rm,h. Given (H,H · e), the RSDr,h,` problem is to recover e with noticeable probability.

This problem was introduced in 2003 by Augot et al. [AFS03], who used it for the SHA-3 candidate
FSB (Fast Syndrome-Based) hash function. As for SD, RSD can be seen as a combinatorial problem and
solved by enumerating all the (m/h)h possible solutions. The most efficient attacks against SD and RSD
are Information Set Decoding (ISD), Generalised Birthday Attack (GBA) and Linearization Attack (LA). To
establish which attack is the most efficient we need to distinguish different cases depending on the choice of
h. Clearly, the number of errors affect the practical security of SD and RSD. In coding theory, the values of
h usually considered are those corresponding to a single solution of the problem, which happens with high
probability if the number of errors h is smaller than the Gilbert-Varshamov distance dGV .6 In cryptography,
there is no restriction on h as long as SD or RSD remain hard. In practice, when h ≤ dGV , ISD is always
the most efficient attack and has roughly the same cost when considering SD and RSD; when h > dGV the
best attack is either ISD or GBA. Furthermore, when considering the regular case, the intuition is that if the
solution to the problem is not unique, attacking RSD is even harder than attacking SD: having a smaller set
of inputs decreases the number of possible solutions and thus increases the cost of the attacks. Finally, when
h is larger, say h > r/4, the best attack is linearization.

In the rest of this section we analyse all the most efficient attacks to SD and RSD.

B.1 Linearization Attack

This attack was described in [Saa07] and is a generalisation of [BM97, Appendix A]. It is very efficient for
h large, namely when h > r/4, and consists in finding linear relations between h columns of H.

Algorithm 1 Linearization Attack
Input: H← F2

r×m, s ∈ Fr2, h ∈ N
Output: e ∈ Fm2 such that wt(e) = h and He = s
Parameters: 1 ≤ λ ≤ r/h
1: repeat
2: Choose h columns, ha

0
1 , . . . ,ha

0
h of H, one for each block, i.e. a0

i = (i− 1) · 2` + t0i , i ∈ [h] and
1 ≤ t0i ≤ 2`, and compute

∑
i h

a0i + s = ∆
3: For j ∈ [λ] choose t1j , . . . , t

h
j , such that 1 ≤ tij ≤ 2`

4: ∀(i, j) ∈ [h]× [λ], compute the differences δji = h
a0j + ha

i
j , where ha

j
i = h(i−1)2`+t

j
i

5: until ∃ εji ∈ {0, 1}, (i, j) ∈ [h]× [λ], such that
∑h
i=1

∑λ
j=1 ε

j
i · δ

j
i = ∆ and for each i there is at most one εji = 1 among the

λ of them.

A description of this attack is given in Algorithm 1. As we are considering the RSD problem, we can
assume that the matrix H consists of h blocks of 2` columns, i.e. H = [H1 | · · · | Hh]. The adversary

6 The Gilbert-Varshamov (GV) distance is the largest integer dGV , such that
∑dGV −1
i=0

(
m
i

)
≤ 2r .

49

chooses a parameter λ ≤ r/h and h columns of H, say ha
0
1 , . . . ,ha

0
h , in such a way that only one column

for each of the h blocks is chosen. Then they compute ∆ =
∑

i h
a0
i + s and, for each j ∈ [λ], choose

a different set of h columns, ha
j
1 , . . . ,ha

j
h , of H. After that, using linear algebra, they looks for linear

relations
∑h

i=1

∑λ
j=1 ε

j
i · δ

j
i = ∆, with εii ∈ {0, 1}. As λ ≤ r/w, all the possible linear combinations of

the elements in {δji}(i,j)∈[h]×[λ] form a vector space of dimension h · λ ≤ r at most. Hence, the desired
linear relation exists with probability 2hλ/2r. A relation is useful only with probability ((λ + 1)/2λ)h, as
for each i ∈ [h] it should involve at most one of the δji values. More concretely and for a fixed i, as each εji
is set i.i.d. with probability 1/2, only λ+ 1 cases satisfy the restriction on the δji values, each of those cases
having probability 1/2λ. Overall, this means that the expected number of iterations to find a useful relation
is slightly above 2r

(λ+1)h
. When h ≤ r/2λ, it is possible to consider 2λ generators, so that, using the same

arguments as above, the probability of a useful relation is (λ+ 1)2h/2r. Summing up:

CLA ≥

{
2r

(λ+1)h
if h ≤ r/λ

2r

(λ+1)2h if h ≤ r/2λ
(3)

B.2 Generalised Birthday Attack

Algorithm 2 Wagner’s GBA
Input: t = 2a lists L0, . . . , Lt−1 containing uniform random elements from Fr2
Output: hi ∈ Li, ∀i ∈ [t] such that

∑
i hi = 0

Let L0,0, . . . , L0,2a−1 be 2a lists of elements in Fr2, where Li,j denotes the jth list on level ith, with S = |Lij | = 2
r

a+1 .
Level 0. L1,j ← Merge(L0,2j ,L0,2j+1): Compute L0,2j +L0,2j+1 and consider only sums of two vectors starting with r

a+1

zeros. Result of this step are 2a−1 lists L1,j .
Level 1. L2,j ← Merge(L1,2j , L1,2j+1): Sum elements starting with 2 r

a+1
zeros. The result of this step are 2a−2 lists L2,j .

Level i. Pairwise merge lists from level i− 1 by considering elements starting with (i+ 1) r
a+1

zeros.

Level a− 2. Proceed as before. As a result we obtain 2 lists containing 2
r

a+1 elements whose first (a− 1) r
a+1

components
are zeros.

Output: Only 2 r
a+1

components in the two remaining lists are non-zero, apply the standard birthday technique to find a solution.

This attack is named after the famous birthday paradox which permits to find collisions between two
random lists much faster than checking every possible combinations. GBA improves the standard birthday
paradox by looking for specific solutions and discarding the others, so it does not apply when a single
solution to SD/RSD exists.

Formally, the Generalised Birthday Problem (GBP) can be stated as follows: given t lists L1, . . . , Lt,
containing uniform random elements from Fr2, find exactly one element hi in each list Li, i ∈ [t], such that∑

i∈[t] h
i = 0.

Note that in this definition the number of available vectors is unbounded, but when one considers SDr,m,h
or RSDr,h,`, only m different r-bit strings are available, that is the m columns of H. Also, when the syn-
drome s 6= 0, we can simply subtract s from each element of one list, say L1, and proceed to find a
combination of elements that sum up to zero as in GBP.

To solve GBP, Wagner proposed the so called k-tree algorithm. It consists in a divide and conquer
approach: at each step it uses only two lists at time, performing a simple collision search. This procedure
requires a large number of inputs and therefore more memory than the classic birthday algorithm. Minder

50

et al. [MS09] extended the k-tree algorithm offering a solution which allows to balance time and memory
efficiency of the attack. This technique was firstly applied to decoding problems by Coron and Joux [CJ04]
and then improved by [BLN+09, Kir11, NCB11].

For ease of exposition we only consider the case t = 2a, however the attack still works if this is not
the case, only with a slight loss of efficiency. In Algorithm 2, we give a more detailed description of the
algorithm, as described by Wagner. The algorithm starts by building 2a lists of size S = 2

r
a+1 and consists

of a steps. Each element in a list is a vector in Fr2 and can be seen as a concatenation of a + 1 elements in

F
r
a+1

2 , so that each element h in a list can be visualised as

(h1, . . . , h r
a+1
‖h r

a+1
+1, . . . , h 2r

a+1
‖h ar

r+1
+1, . . . , hr).

At each step elements in these lists are pairwise merged so that the number of lists is halved. More pre-
cisely, at level 0, we start with t = 2a lists L0,0, . . . , L0,2a−1 and from these we obtain L1,0, . . . , L1,2a−2 by
computing L1,j = L0,2j + L0,2j+1 and considering only sums of vectors with the first block of r

a+1 coor-
dinates equal to zero. Clearly, with this condition some possible solutions will be discarded, but it permits
to maintain the size of the lists equal to S on average. Moreover, those zero coordinates are not considered
in the next level. This operation is repeated until only 2 lists remain and a standard birthday technique can
be applied to find a solution. Since this solution is the sum of 2a elements from the original lists, it is also a
solution for the GBP.

A first observation is that the last step, i.e. the standard birthday technique, will be successful as long as
the size S of the lists satisfies S2 ≥ 2r−(a−1) log2 S , that is S ≥ 2

r
a+1 . Therefore, if it is possible to build lists

of size S = 2
r
a+1 , then the complexity of the algorithm can be lower bounded by O(S · log2 S). Now, if we

use GBA to solve SDr,m,h or RSDr,h,`, the size of the starting lists is bounded by the number of columns m
of H. As said above, the size S of these lists needs to verify S ≥ 2

r
a+1 , hence, assuming that the starting

lists contain sums of h
2a columns of H, we need:(

m
h
2a

)
≥ 2

r
a+1 .

Moreover, we need the lists to contain different values, so it should be(
S

2a

)
≤
(
m

h

)
,

from which we obtain:
2a

a+ 1
≤

log2(
(
m
h

)
)

r
. (4)

When the solutions are regular, each list is associated with h/2a blocks, each of weight 1, of H and S cannot
be larger than the number of words of weight h/2a. Since in each block there are m/h words of weight 1,
then we need

S ≤
(m
h

)h/2a
and (4) becomes

2a

a+ 1
≤ h

r
log2

(m
h

)
. (5)

When we consider security against GBA, we also take into account improvements due to Niebuhr et al.
[NCB11], Bernstein et al. [BLN+09] and Kirchner [Kir11].

51

B.3 Information Set Decoding Attacks

Information Set Decoding (ISD) can be seen as a class of generic algorithms for solving SD for random
linear codes. Here we assume an SD (respectively an RSD) instance with parameters (r,m, h), associated
with the [m, k = m − r]2 binary linear code with parity-check matrix H. This decoding technique was
introduced by Prange in 1962 [Pra62] and later improved, by a polynomial factor, by Lee and Bricknell
[LB88] and Leon [Leo88]. In 1988, Stern [Ste88] proposed an exponential improvement, followed by further
improvements by Dumer [Dum91], Finiasz and Sendrier [FS09] and Bernstein et al. [BLP11]. In this section
we describe a common framework for different variants of ISD and analyse their complexity. We consider the
Stern-Dumer variant, with the optimisation due to Finiasz and Sendrier [FS09], and also we take into account
more recent variants, more precisely, those described by May et al. [MMT11], Becker et al. [BJMM12] and
May et al. [MO15].

The high level idea of these algorithms is to transform the original SD instance with parameters (r,m, h)
into a related instance with smaller parameters (r′,m′, h′) and then try to find a solution of the original
problem from a solution of the easier instance. ISD essentially applies linear algebra transformations to the
parity-check matrix H in order to obtain a new structured matrix H′, and reduce the space of solutions of
the original SD instance. The overall idea of ISD is given in Algorithm 3.

Algorithm 3 ISD Framework
Input: H← F2

r×m, s ∈ Fr2, h ∈ N
Output: e ∈ Fm2 such that wt(e) = h and He = s
Parameters: 0 ≤ q ≤ r, 0 ≤ p ≤ k + q
1: repeat

2: H′ ← G(H): Pick P← Fm×m2 and compute H′ = UHP =


R1 0q

R2 Ir−q

,

where R2 ∈ F(r−q)×(k+q)
2 ,R1 ∈ Fq×(k+q)

2 and s′ = Us =

s1

s2

 ,
with U ∈ Fr×r2 invertible, s2 ∈ Fr−q2 and s1 ∈ Fq2.

3: E ← SM(R1, s1, p): Compute the set E ⊂ {e1 ∈ Fk+q
2 | wt(e1) = p,R1 · e1 = s1}

4: for all e1 ∈ E do
5: e2 ← Extend(R2, e1, s2): Compute e2 = R2 · e1 + s2

6: until wt(e2) = h− p

The algorithm consists of three steps:

1. First pick a random m × m permutation matrix P (this is equivalent to choosing a uniform random
subset of k columns of H) and then performing a Gaussian elimination to get a structured matrix

H′ =

 0q
R

Ir−q

 =


R1 0q

R2 Ir−q

 , R ∈ Fr×(k+q)
2 .

H′ consists of two blocks of columns R = [1, k + q] and I = [k + q + 1,m]. Essentially, this step is
equivalent to finding an invertible matrix U ∈ Fr×r2 such that H′ = UHP, and forces a q× (r− q) zero

52

block in the first q rows in the second block of columns I. Notice the multiplication by P permutes the
columns of H and hence the coordinates of e so that e′ = P ·e, and the multiplication by U permutes the
coordinates of s, so that we get s′ = Us = (s1, s2). We denote e′ = (e1, e2), e1 ∈ Fk+q

2 , e2 ∈ Fr−q2 .
2. Next, fix a weight 0 ≤ p ≤ h, and consider the first slice [R1|0q] of H′, containing the first q rows.

Compute SM, by creating a set of partial solutions E, that is a set of vectors e1 ∈ Fk×q2 s.t. wt(e1) = p
and R1 · e1 = s1.

3. Extend partial solutions obtained in the previous step by computing for each e1 ∈ E the vector e2 =
R2e1 + s2. If wt(e2) = h− p, then return e′ = (e1, e2) and stop.

Note that this algorithm always outputs a correct solution:

H′e′ =


R1 0q

R2 Ir−q


e1

e2

 =

[
R1e1

R2e1 + e2

]
=

s1

s2

 = s′,

where H′e′ = UHPe′ = UHe = s′ ⇔ He = U−1s′ = s and wt(e) = wt(Pe′) = h. ISD contains
two parameters: p, with 0 ≤ p ≤ h, representing the number of errors in the selected k + q columns, and
q, 0 ≤ q ≤ r, representing the coordinates where the error components are zero. The case p = q = 0
corresponds to the plain information-set decoding algorithm due to Prange.

The main difference among different ISD variants, and also the main computational task of the algo-
rithm, is the second step, where SM is performed. Here the main problem is to find p columns of R1 that
sum to s1. More in particular, let R1 = [r1

1, . . . , r
k+q
1], rj1 ∈ Fq2, we have to find an index set J ⊆ R, with

|J | = p and
∑

j∈J r
j
1 = s1. This problem was called by May et al. [MMT11] the submatrix matching

problem (SM).
We are going to examine the cost of ISD depending on how the SM step is instantiated, considering both

regular and non-regular syndrome decoding.

Complexity of ISD We essentially follow and simplify the analysis done in [FS09, Sen11, HS13, TS16],
but we also consider in more detail the regular case. We stress that our goal is to find a reasonable estimation
of the complexity of recent ISD algorithms and that a detailed analysis of these algorithms and their cost is
out of the scope of this paper.

To lower bound the cost, CISD, of the attack, we need to estimate the number, NI, of iterations needed
before the algorithm successfully stops. If we assume that those iterations are independent, then NI is simply
the reciprocal of the success probability P of one iteration. In particular, when h ≤ dGV , that is when the
solution of SD/RSD is unique, NIsingle = 1/P; when h > dGV , NImult = 1/(P · N Sol), where N Sol is the

expected number of solutions. We have that N Sol =
(mh)
2r in the non-regular case and N SolR = (m/h)h

2r for
RSD.

Hence, an attack against SD will succeed if one finds an error (e1, e2) such that e1 = p and e2 = h− p,
which happens with probability

Psingle =

(
k+q
p

)
·
(
r−q
h−p
)(

m
h

) and Pmult =

(
k+q
p

)
·
(
r−q
h−p
)

2r
,

where Psingle and Pmult denote the success probability of one iteration when h ≤ dGV and h > dGV ,
respectively.

53

Each iteration of ISD chooses r − q columns of H and applies Gaussian elimination to obtain Ir−q.
The cost of Gaussian elimination is essentially the same for all the different ISD variants. This cost can be
reduced using for example the bit-swapping technique introduced by Omura (see [CC81]) and used in ISD
by vanTilburg [vT88], Canteaut and Chabaud [CC98] and Canteaut and Sendrier [CS98]. A generalisation
of bit-swapping is introduced by Bernstein et al. [BLP08] which improves the balance between the cost
of Gaussian Elimination and the cost of error-searching. The idea is that of starting a new iteration with
the matrix H′ from previous iteration and then, instead of choosing a new set of r − q columns, reusing
r − q − t out of r − q columns from previous iteration and selecting only t new columns randomly. In
this way only t columns need to be pivoted. However, as observed by Bernestein et al., small values of t
introduce a dependence between iterations and require more iterations before the algorithm succeeds.
Analysing the impact of t in the algorithm is very difficult as the iterations are no more independent and the
number of errors in the selected r columns is correlated with the number of errors in the columns selected
in the next iteration. So, to estimate the cost of the algorithm, we should consider a Markov chain for the
number of errors, as in [CC98]. For this reason, we assume the iterations to be independent and that this step
approximately costs (r−q)3/ log2(r−q) [ABP11]. Also, we would like to remark that the cost of Gaussian
elimination is most of the time negligible compared to other operations.

Next, we need to consider the number of expected iterations of Extend. Following the same arguments
as in [FS09, TS16], we have that the probability of success is

Psingle
Success ≈

2q ·
(
r−q
h−p
)(

m
h

) and Pmult
Success ≈

2q ·
(
r−q
h−p
)

2r
. (6)

Putting everything together, the average cost of ISD is

CISD ≈ min
p,q

{min
{

2r,
(
m
h

)}(
r−q
h−p
) ·

(KGauss +KSM(
k+q
p

) +
KExt

2q

)}
, (7)

whereKSM andKExt denote the average cost in elementary binary operations of computing SM and Extend,
respectively, and both depend on the ISD variant. The impact of KExt on the cost of the attack is relative
small, it is essentially the cost of testing e2 = R2 · e1 + s2 for e1 ∈ E. If we consider the plain information
set decoding described by Prange, we have p = q = 0 and obtain:

Csingle
ISD Pra >

(
m
h

)(
r
h

) Cmult
ISD Pra >

2r(
r
h

) (8)

In Stern and Dumer’s algorithm, with Finiasz and Sendrier optimization, the submatrix matching problem is
solved using a birthday collision search. More precisely, the first block of k+ q coordinatesR is split in two
disjoint sets R1 = [1, k+q

2] and R2 = [k+q
2 + 1, k + q] and then by using a birthday technique, one looks

for two sets I1 ⊂ R1 and I2 ⊂ R2 of cardinality p/2 such that
∑

i∈I1 r
i
2 =

∑
i∈I2 r

i
2 + s1. Roughly, the

initial lists have size
((k+q)/2

p/2

)
, so KSD

SM >
((k+q)/2

p/2

)
. In 2012 May et al. [MMT11] exponentially improved

ISD by using the representation technique introduced by Howgrave-Graham and Joux [HJ10] in the context
of subset sum algorithms. We don’t give further details of this ISD variant, but it uses four initial lists of
size

((k+q)/2
p/4

)
, so K ISD MMT

SM >
((k+q)/4

p/4

)
. In a further work of May et al. [BJMM12], the birthday decoding

is replaced by an order 3 generalised birthday decoding with 8 initial lists of size larger that
((k+q)/2

p/8

)
.

The algorithm described in a more recent work by May et al. [MO15] it is slightly different from previous
variants. It has the same main loop with the Gaussian Elimination, then it starts the BJMM variants with 8

54

lists, but in the tree structure the last join is replaced by a “Nearest Neighbours” (NN) search. This technique
provides a significant asymptotic advance, but the analysis hides a large factor and it does not lead to a
significant practical improvement. Finally, we would like to mention a very recent work by Both and May
[BM17], which uses the same approach of [BJMM12] and the power of NN search in each step of the
algorithm, and not only in the last join like [MO15]. However, the practical impact of this new approach is
still unclear and it leads to a significant asymptotic improvement compared to previous attacks only when
the error rate is high, which is never the case in our protocol.

In practice to analyse the complexity of ISD, we use a lower bound on BJMM, simplyfing the analysis
done in [HS13]. Notice that in our construction we are mostly interested in solving RSDr,h,` withm = 2` ·h.
To estimate the cost of attacking RSD with ISD, we first consider the case p = q = 0. In this case an attacker
can choose a different strategy: here the error e is regular, so it can be decomposed in h blocks with m/h
components and only one error for each block, hence to maximise the probability of success when choosing
the first k coordinates, the adversary should choose the same number of positions k/h from each block.
This means that they take k/h coordinates out of m/h. Given that only 1 of these is different from 0, the
probability of ending up with an error e′ = (e1, e2) with wt(e1) = 0 and wt(e2) = h is:

P0,0,single = Pr({e = (e1, e2) ∈ Rm,h | wt(e1) = 0,wt(e2) = h})

=

(((m/h)−1
k/h

)(m/h
k/h

))h
=
(r
m

)h
,

which correspond to CR,singleISD Pra, i.e. the cost of Prange’s algorithm for the regular case, and similarly, when
the number of solutions is greater than one,

P0,0,mult =
(r
h

)h
· 2−r,

which, as before, correspond to CR,mult
ISD Pra for the regular case. Note that this probability is smaller than for the

SD, so finding a solution for RSD is harder. This strategy can be easily generalised to the case p, q different
from zero. To solve RSD, the adversary could select the first block of k + p coordinates as follows: take p
blocks, i.e. p ·m/h coordinates, and then fill the remaining (k + q)− p ·m/h coordinates by following the
same strategy as before, i.e. take the same number of positions a from each remaining block, where

a =
(k + q)− p ·m/h

h− p
.

Notice we are assuming k + q ≤ p ·m/h and a integers. There are h− p remaining blocks, each with m/h
components of which only one is non-zero, therefore the above probability becomes

PR,single =

(
h

p

)
·

((
(m/h)−1

a

)(
m/h
a

))h−p
=

(
h

p

)
·
(h · (r − q)
m · (h− p)

)h−p
. (9)

and

PR,mult =

(
h

p

)
·
(r − q
h− p

)h−p
·
(m
h

)p
· 2−r. (10)

Notice these are exactly P0,0 when p = q = 0. Similarly to the case of non-regular SD, we can compute
CRISD. For our parameters selection we consider an estimation of the cost of both this regular variant, asso-
ciated with the Stern [Ste88] and Finiasz and Sendrier [FS09] techniques, and the more recent non-regular

55

BJMM variant, and then we take the minimum of the two. It would be very interesting to apply more recent
techniques to the regular case, but this is out of the scope of this paper. It is worth noting that all the im-
proved ISD variants come at the price of much larger space complexity, which is usually completely ignored
in the cost analysis of these algorithms, but plays a significant role in practical applications. For this reason,
Prange’s plain information set decoding still achieves the best time-space complexity product. However for
our parameter selection, as we already said, we consider a lower bound on the cost of BJMM and a spe-
cial regular-case tailored SD variant, taking into account exclusively the average number of operations and
ignoring the memory cost of the algorithm.

C Additional Material for Efficiency Analysis

C.1 BMR Preprocessing: Communication Complexity

Here we detail how we compared our communication complexity with that of the best previous passively
secure BMR protocol, namely [BLO16]. To simplify the comparison, we exclude the communication related
to input and output wires. Given a circuit Cf with X XOR gates and A AND gates, each of them with fan-
in-two and arbitrary fan-out, [BLO16] has the following communication costs:

1. One bit multiplication and 3n bit-string multiplications per AND gate, where the strings have length κ.
A bit multiplication requires n(n− 1) bit-OTs, each of which involves sending 128 + 2 bits if instanti-
ated with [IKNP03] or 84 bits if instantiated with [KK13]. Each of the bit-string multiplication can be
computed using n− 1 correlated OTs, at a cost of 128 + 128 bits each.

2. Each AND gate has size 4nκ bits, and each party has a share of it. If the circuit is reconstructed by every
party sending her share to P1, and then P1 broadcasting the addition of every share, the cost of putting
an AND gate together is 8n(n− 1)κ bits.

This gives a total cost of (130 + 768 + 8κ) ·n · (n− 1) ·A = 1922 ·n · (n− 1) ·A bits for the [IKNP03]
instantiation and (67 + 768 + 8κ) · n · (n− 1) ·A = 1876 · n · (n− 1) ·A when using [DKS+17] instead.
In our work, the costs are:

1. One bit multiplication and 3n bit/string multiplications per AND gate, where the strings have length
`. When implemented with our improved GMW protocol with deterministic committees, these cost
(n− h+ 1)(n− 1)(`OT + `OTκ/r + 1) bits and n(n− 1)`BMR(`OT + `OTκ/r + 1) bits, respectively.

2. Each AND gate has size 4 · (n`+ 1) bits. Each Splitter gate has size 4n` bits.

C.2 Instantiating the CRS

Our protocols require a CRS, which is a randomly sampled function, H. One way of implementing this would
be generate the function in a setup phase (e.g. with coin-tossing) and store it as a lookup table. However,
when the table grows large this will have a prohibitive impact on performance, as there will likely be many
cache misses when reading from H at random locations. A more efficient alternative is to implement H using
fixed-key AES, which offers fast performance on modern CPUs with AES hardware instructions. This gives
security in the ideal cipher model, where fixed-key AES is modelled as a random permutation.7

Depending on which of our two protocols is used, this method works as follows:
7 This actually only provides security up to the birthday bound, i.e. as long as the adversary makes no more than 264 queries to
AESs. In practice, however, since ` is small there will typically be far fewer than 264 possible inputs, so we do not need to be
concerned with the birthday bound.

56

– For GMW, H is a 1-bit output hash function, so we can simply truncate the AES output.
– For our BMR-style protocol, we need to expand the input to n · ` + 1 bits. Let B = d(n · ` + 1)/128e

be the number of AES blocks needed to generate one hash output. The parties first fix a random key
s← {0, 1}128 and then define:

H(i, b, k) = (AESs(i‖b‖k‖0), . . . ,AESs(i‖b‖k‖B − 1)),

where the last block is truncated so that the total output length is n · `BMR + 1 bits.
The cost of a single call to H is that of B AES operations.

57

	TinyKeys: A New Approach to Efficient Multi-Party Computation
	Introduction
	Our Contribution
	Technical Overview

	Preliminaries
	Security and Communication Models
	Random Zero-Sharing
	IKNP OT Extension

	Syndrome Decoding Problem
	GMW-Style MPC with Short Keys
	Leaky Two-Party Secret-Shared Multiplication
	MPC for Binary Circuits From Leaky OT
	Optimization with Vandermonde Matrices

	Multi-Party Garbled Circuits with Short Keys
	The Multi-Party Garbling Scheme
	The Preprocessing Protocol
	Protocols for Bit/String Multiplication
	Security and Complexity
	The Online Phase

	Complexity Analysis and Implementation Results
	Threshold Variants of Full-Threshold Protocols
	Concrete Hardness of RSD and Our Choice of Parameters
	GMW-Style Protocol
	BMR-Style Protocol

	Universal Composability
	Cryptanalysis
	Linearization Attack
	Generalised Birthday Attack
	Information Set Decoding Attacks

	Additional Material for Efficiency Analysis
	BMR Preprocessing: Communication Complexity
	Instantiating the CRS

