
Breach-Resistant Structured Encryption

Ghous Amjad∗
Brown University

Seny Kamara†
Brown University

Tarik Moataz‡
Brown University

Abstract

Motivated by the problem of data breaches, we formalize a notion of security for dynamic
structured encryption (STE) schemes that guarantees security against a snapshot adversary;
that is, an adversary that receives a copy of the encrypted structure at various times but does
not see the transcripts related to any queries. In particular, we focus on the construction of
dynamic encrypted multi-maps which are used to build efficient searchable symmetric encryption
schemes, graph encryption schemes and encrypted relational databases. Interestingly, we show
that a form of snapshot security we refer to as breach resistance implies previously-studied
notions such as a (weaker version) of history independence and write-only obliviousness.

Moreover, we initiate the study of dual-secure dynamic STE constructions: schemes that are
forward-private against a persistent adversary and breach-resistant against a snapshot adversary.
The notion of forward privacy guarantees that updates to the encrypted structure do not reveal
their association to any query made in the past. As a concrete instantiation, we propose a new
dual-secure dynamic multi-map encryption scheme that outperforms all existing constructions;
including schemes that are not dual-secure. Our construction has query complexity that grows
with the selectivity of the query and the number of deletes since the client executed a linear-time
rebuild protocol which can be de-amortized.

We implemented our scheme (with the de-amortized rebuild protocol) and evaluated its
concrete efficiency empirically. Our experiments show that it is highly efficient with queries
taking less than 1 microsecond per label/value pair.

∗ghous_amjad@brown.edu.
†seny@brown.edu.
‡tarik_moataz@brown.edu.

1



Contents

1 Introduction 3
1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work 5

3 Preliminaries 6
3.1 Cryptographic Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Definitions 8
4.1 Security Against a Persistent Adversary . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Security Against a Snapshot Adversary . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Implications of Breach Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 DLS: A Dual-Secure Multi-Map Encryption Scheme 14
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 DLSd: DLS with De-amortized Rebuilding 24
6.1 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7 Empirical Evaluation 27

A Insertion Independence and Write-Only Obliviousness 37
A.1 Insertion Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.2 Write-Only Obliviousness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

B Proof of Theorem 4.7 38

C Proof of Theorem 5.1 39

D Proof of Theorem 6.1 42

E Proof of Theorem 5.2 44

F Proof of Theorem 6.2 45

2



1 Introduction

The constant occurrence of data breaches has generated a lot of interest from academia, industry
and government in the subject of encrypted search and, in particular, in encrypted databases (EDB).
Because EDBs can protect data at all times—even in use—they inherently provide stronger security
and privacy guarantees than standard database systems. There are several ways in which a data
breach can occur: (1) the server that runs the database system is compromised; (2) the database
itself is somehow exfiltrated; and (3) the application is compromised and the database is retrieved
using the standard database interface. The first threat can be modeled as a persistent adversary
that controls the database server at all times. The second can be captured by a snapshot adversary
that only gets a copy of the database at specific points in time. Note that the third cannot be
addressed using cryptographic techniques because once the adversary compromises the application
and gets its credentials, it is indistinguishable from the application.

Encrypted search solutions have traditionally been designed to address persistent adversaries
with the understanding that security against a persistent adversary implies security against snap-
shot adversaries. While this is indeed the case in the static setting (for structures that do not
modify themselves during query operations), it is not necessarily true in the dynamic case. In fact,
solutions designed specifically against a persistent adversary could still leak query information to a
snapshot adversary that one would expect to be hidden. The problem of designing snapshot-secure
EDBs, therefore, is non-trivial and is even more challenging when security against both a persistent
and a snapshot adversary is required.

Structured encryption. A promising approach to designing EDBs relies on structured encryp-
tion schemes which provide a balance of security, efficiency, expressiveness. A structured encryption
scheme encrypts a data structure in such a way that it can be privately queried. Roughly speaking,
an STE scheme is secure if it reveals nothing about the underlying structure and queries beyond
some well-specified leakage. Special cases of STE include graph [10, 32], dictionary [10, 8] and, in
particular, multi-map encryption schemes [11, 8, 4], which are going to be the focus of this work.

Multi-maps are data structures that store pairs of the form (`,v), where ` is a label and
v = (v1, . . . , vn) is a tuple of n values. Multi-maps support a get operation that takes as input a
label and returns its associated tuple. Encrypted multi-maps (EMM) naturally yield single-keyword
SSE schemes by storing pairs of the form (w, id) where w is a keyword and id is a tuple of identifiers
for the files that contain w. In addition, EMMs can be used as building blocks to design graph
encryption schemes [10], boolean SSE schemes [6, 24] and encrypted relational databases [27].

In many practical scenarios, encrypted data structures need to be dynamic; that is, able to
support additions and deletions. As such, efficient dynamic SSE/EMM constructions have received
a lot of attention [25, 28, 40, 36, 8, 22, 37, 15, 4, 33, 24, 5, 14].

Forward-privacy. The most recent work on dynamic EMMs has focused on the notion of forward
privacy, first proposed by Stefanov, Papamanthou and Shi [40]. Roughly speaking, forward privacy
guarantees that updates to the structure do not reveal their association to any query made in the
past. While forward privacy is a useful security property in of itself, it has also been shown to
mitigate the adaptive file injection attacks of Zhang, Katz and Papamanthou [41] (though not the
non-adaptive attacks).

Currently, the known forward private EMMs are the SPS construction by Stefanov et al. [40],

3



the Sophos construction of Bost [4], and the EKPE construction by Etemad, Küpçü, Papamanthou
and Evans [14]. Recently, Bost, Minaud and Ohrimenko [5] presented the first backward-private
SSE schemes, a notion that was (informally) introduced in [40]. At a high level, backward privacy
guarantees that queries do not reveal their association to deleted documents. While there are no
known attacks that leverage the lack of backward privacy, improving the security guarantees of
EMMs is well-motivated.

Snapshot security. While most STE constructions are known to be adaptively-secure against
a persistent adversary, as far as we know, no previous work has considered STE in the context
of snapshot adversaries. Informally, a persistent adversary has access to the encrypted structured
and has access to the transcripts of the interactions between the client and the server. A snapshot
adversary, on the other hand, only has access to the encrypted structure (but at various times).
Given that snapshot adversaries are clearly weaker, it motivates the following natural question:

Can we design efficient and dynamic EMMs that are secure against a persistent adver-
sary and are (almost) zero-leakage against a snapshot adversary?

We answer this question positively and in doing so introduce a new kind of dynamic EMM which
are efficient and secure against both snapshot and persistent adversaries. Specifically, these EMMs
are forward-private against persistent adversaries and breach-resistant against snapshot adversaries,
in the sense that they leak only the size of the structure at the time of the snapshot. Interestingly,
while our constructions offer stronger security guarantees than previous work, it also achieves better
asymptotic efficiency in terms of query and update complexity, token and encrypted structure size
and client storage (under reasonable assumptions).

1.1 Our Contributions

In this work, we revisit dynamic EMMs in several ways.

Breach resistance. Snapshot adversaries are motivated by the threat of data breaches. In such
a scenario, the adversary is not necessarily the server itself but some other party that gets access
to a copy of the encrypted structure at some point(s) in time.1

We propose a formal definition of snapshot security which, intuitively, requires that a copy of
the encrypted structure reveals nothing about the structure and the past operations beyond what
is revealed by a well-specified leakage function we refer to as the snapshot leakage. We then say
that an STE scheme is breach-resistant if its snapshot leakage reveals at most the current size of
the structure. Our notion of breach resistance is similar to the notion of offline security of Lewi
and Wu in the setting of property-preserving encryption (PPE) [30]. We also show that, breach-
resistance implies some interesting and previously studied notions such as (a weaker version) of
history independence [35] and write-only obliviousness [3].

We stress that our notion of breach resistance applies only to the encrypted structures we
design and that, as pointed out by Grubbs, Ristenpart and Shmatikov [21], there are non-trivial
implementation questions that have to be considered when they are integrated into real-world
systems.

1Data breaches that occur as a consequence of the disclosure of user credentials (e.g., through phishing) cannot
be addressed with cryptography so are out of scope for this work.

4



Forward privacy. Much like recent works, our proposal is also forward-private. Our scheme,
DLS, does not make use of ORAM simulation or public-key operations. Furthermore, its query
complexity grows only with the number of delete operations performed since the client executed
(linear-time) rebuild protocol; as opposed to the Sophos [4] and Diana [5] constructions whose
complexity grows with the total number of deletes ever performed. Our construction is also much
more efficient as it only uses simple symmetric-key operations as opposed to other schemes which
use public-key operations or constrained PRFs. Compared to the EKPE construction [14], which is
not snapshot-secure and forward-private only for add operations, DLS offers better asymptotics if
the scheme is used in scenarios in which the structure has more frequent updates and less frequent
queries.

Surprisingly, forward privacy does not imply breach resistance. In fact, several known forward-
private constructions are not necessarily breach-resistant [4, 14, 5]. 2 While this may seem counter-
intuitive, it reinforces the need of rigorous security analysis of STE constructions against different
types of adversaries.

Dual security. After formally defining snapshot security, we construct, as far as we know, the
first provably-secure breach-resistant encrypted multi-map. In addition, our construction is also
forward-private which means that it can be used to protect against both persistent and snapshot
adversaries. We refer to such constructions as being dual-secure. Our scheme, DLS, achieves both
notions of security, and we achieve our desirable asymptotic query complexity by an explicit rebuild
protocol that must be executed by the client at certain times. We show, however, that the protocol
can be de-amortized and we call this variant DLSd.3

To sum up, DLS features the best query, token size, client memory, update and storage com-
plexity among all dual-secure schemes in literature.

Experimental evaluation. We implemented DLSd (the variant with de-amortized rebuilding)
in Java and evaluated its performance on the Wikipedia dataset. Our experiments show that this
construction is highly practical. We ran experiments on up to 83 million label/value pairs on an
Amazon EC2 instance with 32 vCPUs and 60GB of memory.

DLS is compact, producing EMMs of size 9.4GB for a 3.6GB folder composed of 554, 059 files.
It has a search overhead less than 1 microsecond per pair for selectivities spanning from 100 to
10, 000 pairs. On the other hand, it has an update overhead of around 100 milliseconds per pair.
This slowdown is mainly due to the de-amortized rebuilding protocol.

2 Related Work

Chase and Kamara introduced structured encryption as a generalization of SSE, along with several
adaptively-secure constructions [10]. Subsequent works have focused on improving several problems
of dynamic [18, 26, 25, 40, 4, 8], I/O-efficient [8, 33], local [7, 1, 13], forward-private [40, 17, 4, 5, 14],
expressive [10, 6, 38, 15, 24], and multi-user [11, 23] SSE.

2The Sophos [4] and Dianadel constructions are breach-resistant only if deletes are handled in the same structure
as adds.

3While this can be of independent interest, DLS results in a very efficient write-only oblivious multi-map which
can replace several existing constructions, e.g., the ones used in the hidden volume scheme HIVE [3] or in the oblivious
file backup system ObliviSync [2].

5



Dynamic SSE. Many works have considered the problem of dynamic SSE schemes. Kamara,
Papamanthou and Roeder gave the first construction with optimal search complexity [26]. Kamara
and Papamanthou proposed a dynamic sub-linear scheme with parallel and I/O efficient search [25].
Kurosawa and Ohtaki considered the problem of dynamic verifiable SSE [28]. Naveed, Prabhakaran
and Gunther proposed an efficient dynamic SSE scheme based on blind storage. Cash, Jaeger,
Jarecki, Jutla, Krawczyk, Rosu and Steiner described I/O-efficient static and dynamic SSE schemes
based on a dictionary structure [8]. Our construction follows the same dictionary-based approach.
Pappas, Krell, Vo, Kolesnikov, Malkin, Choi, George, Keromytis and Bellovin gave an interactive
construction with sub-linear search and complex queries [37, 15].

Forward privacy. Stefanov, Papamanthou and Shi first proposed the notion of forward privacy
in the context of SSE and gave a construction based on ORAM techniques [40]. Their construction
has worst-case search complexity that is poly-logarithmic in the total number of label/value pairs
per value returned. Bost [4] proposed the Sophos construction which is the first practical forward-
private dynamic SSE scheme. A recent followup by Bost, Minaud and Ohrimenko [5] proposed
several practical constructions that are forward and backward-private. The Sophos [4] and Diana [5]
constructions have a search complexity that grows linearly with the number of values and the total
number of deletes ever performed. So they can only achieve optimal-time search if no delete
operations are ever performed. Garg, Mohassel and Papamanthou [17] presented a forward-private
dynamic SSE construction, TWORAM, that hides the search/query pattern by leveraging ORAM
and garbled RAM techniques. Kamara and Moataz described various constructions, including a
boolean dynamic SSE scheme which can be made forward-private [24]. Recently, Etemad, Küpcü,
Papamanthou and Evans [14] proposed a forward-private (only for files additions) SSE scheme with
search complexity that grows linearly in the number of additions. Authors also propose a dynamic
SSE scheme that handles both files additions and deletions with better asympotitcs, but in this
case the scheme is not forward-private.

Snapshot security. Snapshot security has been discussed informally in previous works [39, 21].
As far as we know, the only formal treatment was given by Lewi and Wu in [30] for the setting of
PPE. Under our formulation of snapshot security for STE, there are a few existing constructions that
are breach-resistant including the SPS construction of Stefanov et al. [40], the Sophos construction
of Bost [4], the TWORAM-based scheme of Garg, Mohassel and Papamanthou [17] and the Diana
construction of Bost, Minaud and Ohrimenko [5]. Note that Sophos and Diana constructions are
breach-resistant if deletes are handled in the main table. While these schemes are breach-resistant,
they either use ORAM and/or garbled RAM techniques [40, 17] or have query complexity linear
in the number of updates [4, 5]. Our construction addresses all these limitations and results in the
most efficient breach-resistant EMM all the while providing forward-privacy.

3 Preliminaries

Notation. The set of all binary strings of length n is denoted as {0, 1}n, and the set of all finite
binary strings as {0, 1}∗. [n] is the set of integers {1, . . . , n}, and 2[n] is the corresponding power
set. We write x ← χ to represent an element x being sampled from a distribution χ, and x

$← X
to represent an element x being sampled uniformly at random from a set X. The output x of an
algorithm A is denoted by x← A. Given a sequence o of n elements, we refer to its ith element as

6



oi or o[i]. If T is a set then #T refers to its cardinality. Given strings x and y, we refer to their
concatenation as either 〈x, y〉 or x‖y.

Data types. An abstract data type is a collection of objects together with a set of operations
defined on those objects. Examples include sets, dictionaries (also known as key-value stores or
associative arrays) and graphs. The operations associated with an abstract data type fall into
one of two categories: query operations, which return information about the objects; and update
operations, which modify the objects. If the abstract data type supports only query operations it
is static, otherwise it is dynamic. For simplicity we define data types as having a single operation
and note that the definitions can be extended to capture multiple operations in the natural way.

Data structures. A data structure for a given data type is a representation in some computa-
tional model 4 of an object of the given type. Typically, the representation is optimized to support
the type’s query operation as efficiently as possible. For data types that support multiple queries,
the representation is often optimized to efficiently support as many queries as possible. As a con-
crete example, the dictionary type can be represented using various data structures depending on
which queries one wants to support efficiently. Hash tables support Get and Put in expected O(1)
time whereas balanced binary search trees support both operations in worst-case log(n) time. For
ease of understanding and to match colloquial usage, we will sometimes blur the distinction be-
tween data types and structures. So, for example, when referring to a dictionary structure or a
multi-map structure what we are referring to is an unspecified instantiation of the dictionary or
multi-map data type. Given a sequence of operations op = (op1, . . . , opn), each of which can be
a query, an addition or a deletion, we denote by add(op) the subsequence of addition operations
and by del(op) the subsequence of delete operations. We further define the subsequence of update
operations as up(op) = add(op) + del(op).

Basic structures. We make use of several basic data types including dictionaries and multi-maps
which we recall here. A dictionary DX of capacity n is a collection of n label/value pairs {(`i, vi)}i≤n

and supports Get and Put operations. We write vi = DX[`i] to denote getting the value associated
with label `i and DX[`i] = vi to denote the operation of associating the value vi in DX with label
`i. We denote by LDX the set of labels stored in DX and by #DX the volume of DX which is the
number of label/value pairs it holds n = #LDX. A multi-map MM with capacity n is a collection
of n label/tuple pairs {(`i,vi)i}i≤n that supports Get and Put operations. Similarly to dictionaries,
we write vi = MM[`i] to denote getting the tuple associated with label `i and MM[`i] = vi to denote
operation of associating the tuple vi to label `i. We denote by LMM the set of labels stored in MM
and by #MM the volume of MM which is

∑
`∈LMM

#MM[`]. Multi-maps are the abstract data type
instantiated by an inverted index. In the encrypted search literature multi-maps are sometimes
referred to as indexes, databases or tuple-sets (T-sets) [6, 8].

3.1 Cryptographic Primitives

Basic cryptographic primitives. A private-key encryption scheme is a set of three polynomial-
time algorithms SKE = (Gen,Enc,Dec) such that Gen is a probabilistic algorithm that takes a
security parameter k and returns a secret key K; Enc is a probabilistic algorithm takes a key K

4In this work, the underlying model will always be the word RAM.

7



and a message m and returns a ciphertext c; Dec is a deterministic algorithm that takes a key K
and a ciphertext c and returns m if K was the key under which c was produced. Informally, a
private-key encryption scheme is secure against chosen-plaintext attacks (CPA) if the ciphertexts
it outputs do not reveal any partial information about the plaintext even to an adversary that
can adaptively query an encryption oracle. We say a scheme is random-ciphertext-secure against
chosen-plaintext attacks (RCPA) if the ciphertexts it outputs are computationally indistinguishable
from random even to an adversary that can adaptively query an encryption oracle.5 In addition to
encryption schemes, we also make use of pseudo-random functions (PRF), which are polynomial-
time computable functions that cannot be distinguished from random functions by any probabilistic
polynomial-time adversary.

4 Definitions

Structured encryption schemes [10] encrypt data structures in such a way that they can support
operations on encrypted data. With encrypted data structures, we can distinguish between different
types of operations. This includes interactive and non-interactive operations where the former
require only a single message and the latter require several rounds. We can also distinguish between
response-revealing and response-hiding operations, where the former reveal the answer to the query
and the latter do not.

STE schemes are used as follows. During a setup phase, the client constructs an encrypted
structure EDS from a plaintext structure DS under a key K. If the scheme is stateful, this setup
procedure also outputs a state st. The client then sends the encrypted structure EDS to an untrusted
server and keeps the state st and key K private. The client can then query EDS using the supported
operations. If the operation is non-interactive, the client sends to the server a token tk constructed
with its key K, state st and query q. The server then uses the token tk to query the encrypted
structure EDS. If the operation is interactive, the client and server execute a two-party protocol
where the former inputs K, st and q and the latter inputs EDS.

Self-adjusting encrypted structures. A data structure is self-adjusting if it re-arranges itself
after being queried or updated. This is usually done to maintain correctness, consistency or to
improve efficiency. We provide below the syntax of a self-adjustable STE scheme. Note that, here,
the update operation is interactive which is not a requirement.

Definition 4.1 (Self-adjusting STE). A response-hiding dynamic structured encryption scheme
Σ = (Setup,Token,Query,Update,Rslv) with non-interactive queries and interactive updates consists
of four polynomial-time algorithms and one two-party protocol between the client and server that
work as follows:

• (K, st,EDS) ← Setup(1k,DS): is a probabilistic algorithm that takes as input a security pa-
rameter 1k and a structure DS. It outputs a secret key K, a state st and an encrypted structure
EDS.

• (st′, tk) ← Token(K, st, q): is a (possibly) probabilistic algorithm that takes as input a secret
key K, a state st and a query q. It outputs a new state st′ and a query token tk.

5RCPA-secure encryption can be instantiated practically using either the standard PRF-based private-key encryp-
tion scheme or, e.g., AES in counter mode.

8



• (ct,EDS′) ← Query(EDS, tk): is a (possibly) probabilistic algorithm that takes as input an
encrypted structure EDS and a token tk. It outputs a message ct and an (possibly) updated
encrypted structure EDS′.

• (st′,EDS′) ← UpdateC,S

((
K, st, u

)
,EDS

)
: is a two-party protocol between the client and the

server. It takes as input from the client a key K, a state st and an update u and as input
from the server an encrypted structure EDS. It outputs to the client an updated state st′ and
to the server a new encrypted structure EDS′.

• r ← Rslv(K, ct): is a deterministic algorithm that takes as input a secret key K and a message
ct. It outputs a response r.

The syntax of response-revealing Query operation can be recovered by having it output the
response r directly and omitting the Rslv algorithm.

Self-adjusting STE correctness. We say that a self-adjusting dynamic STE scheme Σ is correct
if for all k ∈ N, for all poly(k)-size structures DS, for all (K, st,EDS) output by Setup(1k,DS), for
all sequences of m = poly(k) operations op1, . . . , opm such that opi ∈ {qi, ui}, for all query tokens
tki and all states st′ output by Token(K, st, qi), for all messages ct and structures EDS′ output
by Query(EDS, tki) or all structures EDS′ and all states st′ output by UpdateC,S

((
K, st, u

)
,EDS

)
,

Rslv(K, ct) returns the correct response with all but negligible probability.

Rebuildable encrypted structures. We say that a data structure is rebuildable if it supports
a rebuild operation that reconstructs it. Rebuild operations are typically used to improve query
efficiency or storage overhead after a sequence of operations have been performed. Whereas self-
adjusting structures re-arrange themselves as part of a query or update operation, rebuildable
structures support an explicit rebuild operation that is typically invoked after a sequence of oper-
ations. We provide below the syntax of a rebuildable STE scheme. Note that, here, the rebuild
operation is interactive.

Definition 4.2 (Rebuildable STE). A response-hiding dynamic structured encryption scheme
Σ = (Setup,Token,Query,UToken,Update,Rebuild,Rslv) with non-interactive queries and interac-
tive rebuilds consists of seven polynomial-time algorithms and one two-party protocol between the
client and server that work as follows:

• (K, st,EDS) ← Setup(1k,DS): is a probabilistic algorithm that takes as input a security pa-
rameter 1k and a structure DS. It outputs a secret key K, a state st and an encrypted structure
EDS.

• (st′, tk) ← Token(K, st, q): is a (possibly) probabilistic algorithm that takes as input a secret
key K, a state st and a query q. It outputs a new state st′ and a query token tk.

• ct ← Query(EDS, tk): is a (possibly) probabilistic algorithm that takes as input an encrypted
structure EDS and a token tk. It outputs a message ct.

• (st′, utk)← UToken(k, st, u): is a (possibly) probabilistic algorithm that takes as input a secret
key K, a state st and an update u. It outputs a new state st′ and an update token utk.

9



• EDS′ ← Update(EDS, utk): is a (possibly) probabilistic algorithm that takes as input an en-
crypted structure EDS and an update token utk. It outputs an updated encrypted structure
EDS′.

• (st′,EDS′) ← RebuildC,S
((
K, st

)
,EDS

)
: is a two-party protocol between the client and the

server. It takes as input from the client a key K and a state st and as input from the server
an encrypted structure EDS. It outputs to the client an updated state st′ and to the server a
new encrypted structure EDS′.

• r ← Rslv(K, ct): is a deterministic algorithm that takes as input a secret key K and a message
ct. It outputs a response r.

In the subsequent parts of this section, we will only focus on non-interactive dynamic STE. The
proposed definitions can be naturally extended to STE schemes with interactive queries.

4.1 Security Against a Persistent Adversary

The standard notion of security for STE guarantees that: (1) an encrypted structure reveals no in-
formation about its underlying structure beyond the setup leakage LS; (2) that the query algorithm
reveals no information about the structure and the queries beyond the query leakage LQ; and that
(3) the update algorithm reveals no information about the structure and the update beyond the
update leakage LU. Naturally, if the scheme has a rebuild protocol then we require that it reveals
no information about the underlying structure beyond the rebuild leakage LR.

If this holds for non-adaptively chosen operations then the scheme is said to be non-adaptively
secure. If, on the other hand, the operations can be chosen adaptively, the scheme is said to be
adaptively-secure. This notion of security was first formalized by Curtmola et al. in the context of
searchable encryption [11] and later generalized to structured encryption in [10].

Definition 4.3 (Adaptive security [11, 10]). Let Σ = (Setup,Token,Query,UToken,Update,Rslv) be
non-interactive dynamic STE scheme and consider the following probabilistic experiments where A
is a stateful adversary, S is a stateful simulator, LS, LQ and LU are leakage profiles and z ∈ {0, 1}∗:

RealΣ,A(k): given z the adversary A outputs a structure DS and receives EDS from the challenger,
where (K, st,EDS) ← Setup(1k,DS). The adversary then adaptively chooses a polynomial
number of operations op1, . . . , opm such that opi is either a query qi or an update ui. For all
i ∈ [m], the adversary receives tki ← Token(K, st, qi) of opi = qi or utki ← UToken(K, st, ui)
if opi = ui. Finally, A outputs a bit b that is output by the experiment.

IdealΣ,A,S(k): given z the adversary A generates a structure DS which it sends to the challenger.
Given z and leakage LS(DS) from the challenger, the simulator S returns an encrypted struc-
ture EDS to A. The adversary then adaptively chooses a polynomial number of operations
op1, . . . , opm such that opi is either a query qi or an update ui. For all i ∈ [m], the simulator
receives either query leakage LQ(DS, qi) or update leakage LU(DS, ui). In the former case, it
returns a query token tki to A and in the latter it returns an update token utki to A. Finally,
A outputs a bit b that is output by the experiment.

We say that Σ is adaptively (LS,LQ,LU)-secure if there exists a ppt simulator S such that for all
ppt adversaries A, for all z ∈ {0, 1}∗,

|Pr [ RealΣ,A(k) = 1 ]− Pr [ IdealΣ,A,S(k) = 1 ]| ≤ negl(k).

10



Definition 4.3 can be modified for rebuildable schemes as follows. In the RealΣ,A experiment,
the adversary can also execute the RebuildC,S((K, st),EDS) protocol with the challenger playing
the role of the client. In the IdealΣ,A,S experiment, the adversary executes the Rebuild protocol
with the simulator playing the role of the client and receiving leakage LR(DS) as input.

Forward privacy. An important property for dynamic STE schemes is forward privacy which
was introduced in [40] to address some of the limitations of dynamic SSE constructions at the time.
The informal requirement described in [40] was that forward-private SSE schemes should not reveal
if the file in a file update operation (i.e., a file add or delete) has keywords that were searched for
in the past. This was formalized in [4] for AddFile operations as

LAF(MM, f) =
(

#f
)
,

where f ⊆W is a file.
While forward privacy is a stronger notion than what was achieved in previous dynamic SSE

schemes [26, 25], as observed by Kamara and Moataz in [24], there are some limitations to this
notion. In particular, it does not prevent all correlations between updates and previous searches
since the size of the update (i.e., #v) could itself be correlated with previous searches. As suggested
in [24], a stronger notion would be to require leakage-free updates 6 which not only implies forward
privacy but also guarantees that no correlations exist between updates and previous searches.
Unfortunately, leakage-free updates seem to require expensive padding techniques so we focus here
only on forward privacy.

4.2 Security Against a Snapshot Adversary

In the standard notions of security for STE, the adversary is assumed to be the server itself. As
such, we seek security guarantees against an adversary that sees not only the encrypted structure
but all the search and update operations as well. In many real-world scenarios, however, we are
concerned with a weaker adversary that, only periodically, gets access to the encrypted structure
and, in particular, does not get to see any query or update operations. This adversarial model
captures, for example, data breaches, malicious employees and device theft. Such an adversary is
called a snapshot adversary.

We propose a new security definition for STE against snapshot adversaries. In our defini-
tion 4.4, the adversary has access to multiple snapshots each of which is interspersed with a batch
of operations. Intuitively, we require that the encrypted structure reveals no information about
the underlying structure and the sequence of operations executed prior to the multiple snapshots,
beyond some snapshot leakage LSN.

Surprisingly, we demonstrate that for a particular class of snapshot leakage, (multiple) snap-
shot secure STE schemes imply insertion independence, a variant of history independent data
structures [35], and can also provide a write-only oblivious structure [3].

Definition 4.4 (Snapshot security). Let Σ = (Setup,Token,Query,UToken,Update,Rslv) be a non-
interactive dynamic STE scheme and consider the following probabilistic experiments where A is

6Note that when we say that a leakage profile is leakage-free we mean that the leakage only includes public
information like the security parameter, the size of the query and response spaces, etc.

11



a stateful adversary, S is a stateful simulator, LSN is a stateful leakage function, z ∈ {0, 1}∗, and
m ≥ 1:

Realms
Σ,A(k,m):

1. given z the adversary A outputs a structure DS0;
2. the challenger computes (K, st,EDS0)← Setup(1k,DS0);
3. the adversary A(EDS0) outputs a sequence of operations op1 = (op1,1, . . . , op1,`) where

` = poly(k);
4. For all i ∈ [m],

(a) the challenger applies all the operations in opi to EDSi−1 by computing and applying
the appropriate tokens. This results in EDSi;

(b) the adversary A(EDSi) outputs a sequence of operations opi+1 = (opi+1,1, . . . , opi+1,`)
where ` = poly(k);

5. Finally, A outputs a bit b that is returned by the experiment.

Idealms
Σ,A,S(k,m):

1. given z the adversary A outputs a structure DS0;
2. the simulator S(z,LSN(DS0,⊥)) simulates EDS0;
3. the adversary A(EDS0) outputs a sequence of operations op1 = (op1,1, . . . , op1,`);
4. For all i ∈ [m],

(a) the challenger applies all the operations in opi to DSi−1, resulting in DSi;
(b) the simulator S(LSN(DSi,opi)) simulates EDSi;
(c) the adversary A(EDSi) outputs a sequence of operations opi+1 = (opi+1,1, . . . , opi+1,`);

5. Finally, A outputs a bit b that is output by the experiment.

We say that Σ is (m,LSN)-snapshot secure if there exists a ppt simulator S such that for all ppt
adversaries A and for all z ∈ {0, 1}∗,∣∣∣Pr

[
Realms

Σ,A(k,m) = 1
]
− Pr

[
Idealms

Σ,A,S(k,m) = 1
]∣∣∣ ≤ negl(k).

Breach resistance. Ideally, the snapshot leakage of a scheme should be as small as possible.
With this in mind, we deem that an encrypted structure should be regarded as breach-resistant if
its snapshot leakage is at most the size of the plaintext structure at the time the snapshot is taken.

Definition 4.5 (Breach resistance). Let Σ be an LSN-snapshot secure non-interactive dynamic
STE scheme. We say that Σ is breach-resistant if

LSN(DS,op1, . . . ,opi) = #DSi,

where DSi is the structure that results from applying op1, . . . ,opi to DS and #DSi refers to its
volume in the sense of the total number of “items” it stores. Note that the volume of a structure
depends on its type.

12



For the remainder of this work, we focus on designing a multi-map encryption scheme that is
secure against both persistent and snapshot adversaries. Specifically, we require that the scheme be
forward-private against a persistent adversary and breach-resistant against a snapshot adversary.
We refer to schemes that meet these two properties as dual-secure.

Definition 4.6 (Dual security). Let Σ be a dynamic rebuildable structured encryption scheme with
leakage profiles ΛPer = (LS,LQ,LU,LR) and ΛSna = LSN. We say that Σ is dual-secure if it is
forward-private and breach-resistant.

4.3 Implications of Breach Resistance

In this Section, we show that breach resistance implies some interesting and previously studied no-
tions of security including a weaker notion of history independence [35] and write-only obliviousness
[3].

History and insertion independence. A data structure is history independent if its represen-
tation does not reveal any information beyond its state. In particular, it hides the order in which
items were inserted/removed and the number of operations performed. While history indepen-
dence is traditionally considered for plaintext data structures, it applies just as well to encrypted
structures. Here, we consider a weaker form of history independence which only hides the order of
the operations but reveals their number. We call this notion insertion independence and provide
a formalization in Appendix A.1. In the following Theorem, whose proof is in Appendix B, we
show that breach resistance under single-snapshot attacks (i.e., when m = 1) implies insertion
independence.

Theorem 4.7. If Σ is
(
1,#DS

)
-snapshot secure, then it is insertion independent.

Write-only obliviousnes. Oblivious RAM (ORAM) [20] is a cryptographic primitive that man-
ages an array in such a way that the client’s access pattern is hidden from a persistent adversary.
ORAM supports read and a write operations. The most recent constructions achieve a poly-
logarithmic multiplicative overhead per operation. Recently, the notion of write-only obliviousness
was introduced by Blass, Mayberry, Noubir and Onarlioglu [3] for the purpose of designing deniable
file systems, also known as hidden volumes (e.g., TrueCrypt [16]). Write-only obliviousness is a
special case of standard obliviousness where the adversary only sees the access pattern produced by
write operations (we recall the formal definition in Appendix A.2). Blass et al. show that, unlike
standard ORAMs, write-only ORAM solutions can be achieved with only a constant overhead per
operation. In the following Theorem, we show breach resistance against a multi-snapshot attack
implies write-only obliviousness for encrypted structures that support fixed-size updates; that is,
update operations always grow the volume of the encrypted structure by a fixed amount.

Theorem 4.8. If Σ is
(
m,#DS)-snapshot secure for m ≥ 1 and if it has fixed-size updates, then

it is write-only oblivious.

The proof is similar to that of Theorem 4.7 so we defer it to the full version of this work.

13



5 DLS: A Dual-Secure Multi-Map Encryption Scheme

We now describe our construction, DLS, which is a dual-secure rebuildable multi-map encryption
scheme. Unlike SPS [40] and Sophos [4], DLS does not make use of ORAM-like techniques or
public-key operations. In addition, while Sophos and Diana [5] have query complexity that is linear
in the number of delete operations ever executed, DLS’s query complexity is linear only in the
number of delete operations executed since the last rebuild operation. The rebuild protocol is
linear in the size of the multi-map and can be de-amortized while maintaining snapshot security.
In the following, we present a high level overview of the construction followed by a more detailed
explanation and analysis.

5.1 Overview

DLS is a dictionary-based multi-map encryption scheme that extends the πdyn construction of [8].
It relies on two main ideas: (1) unpredictable labels; and (2) incremental versioning.

The counter-based approach. In [8], Cash et al. introduced a dictionary-based construction
called πbas together with dynamic and I/O-efficient variants called πdyn and 2Lev, respectively.
Many follow-up works have used πbas as a foundation to build new schemes that achieve various
guarantees [4, 5, 29, 14]. At a high-level, πdyn works as follows. Given a multi-map MM, the
mapping between a label ` ∈ LMM and its tuple v is broken down to #v pairs where the ith pair
has the form (`‖i,vi).

The encrypted multi-map is a dictionary DX that stores all the label/value pairs encrypted as
follows. The key to encrypt a pair is generated as a function of the label itself. The “encrypted”
label is the result of applying a pseudo-random function on a counter that is incremented whenever
the label is updated (both for deletions and additions). To search for a label, the client sends the
key derived from the label and the server generates all encrypted labels by applying a PRF on
a counter. Note that all extensions of this approach [4, 5, 29, 14] mostly differ on the way the
encrypted labels are generated (e.g., using a trapdoor permutation or a constrained PRF).

Unpredictable labels. This counter-based approach provides the server with the ability (in the
form of the keyword-derived key) to compute all future encrypted labels and, therefore, to relate
future updates to previous searches. We can address this by preventing the server from computing
the PRF evaluations itself and instead having the client directly send the encrypted labels; as done,
for example, in the SSE-2 construction of Curtmola et al. [11]. This has two main advantages: (1)
it makes the scheme forward-private; and (2) it can be proven secure in the standard model. The
drawback, however, is that the query, communication and storage complexities will be in function
of the total number of updates ever made. Below, we introduce a technique that addresses this
limitation.

Incremental versioning. As mentioned above, the main drawback of counter-based approach
is that the query, communication and storage overhead increases linearly in the number of updates
(including both additions and deletions). This is the case for most of the recent forward-private
constructions as they are based on a lazy deletion approach where deleting a pair translates to
adding a new pair to the dictionary with a deletion flag. At search time, the server recovers all

14



the pairs for a given label and substracts the deleted pairs. While this may seem unintuitive,
lazy deletions makes the design of dual-secure schemes easier because deletions do not induce any
modifications to the data structure that are in function of previous search operations. Our goal
will consist not only of designing dual-secure schemes but of designing efficient ones. To achieve
this we extend the counter-based approach with a version.

Now instead of using a single dictionary, our encrypted multi-map will consist of two dictionaries:
an old DXo and a new DXn. After a specific number of update operations which constitute an epoch,
the old dictionary is merged into the new one. During this merge operation, all the deleted pairs are
removed and after the operation the new dictionary becomes then the old, and a new dictionary
is initialized. This rebuild process is periodic and is repeated at the end of every epoch. The
intuition is that through this rebuild operation, we clean up the structure in such a way that the
new dictionary mostly consists of the right response for most labels (this depends of course on
the number of deletions performed before the rebuilding). To preserve the unpredictability of the
labels, we augment the label with a version number

(`‖i‖version,vi),

where version represents the epoch during which the pair has been added to the dictionary.
It is clear that the rebuild protocol is a key part of our design and that it should offer several

properties in order to meet both our security and efficiency requirements. We provide a high level
description below.

Almost zero-leakage rebuilds. We require that our rebuild protocol: (1) be almost zero-
leakage in the sense that it should not leak “too much” information beyond what has already been
leaked before the rebuild operation; and (2) produce a compact structure by removing stale pairs
due to lazy deletion. 7 We provide below a gradual explanation of our design starting from a naive
rebuild protocol.

One could design a rebuild protocol by simply making the client fetch a pair uniformly at
random from the old dictionary and inserting it in the new dictionary with a fresh encryption
(under a new version). Unfortunately, while this clearly satisfies our security goals, it falls short of
achieving the main purpose of rebuilding which is to generate a compact structure. This is because
it does not remove any deleted pairs from the old structure so the new structure remains as large
as the old one.

To have a compact structure, the rebuild protocol has to remove the deleted pairs from the
old structure. For this, it seems natural to first query every label in order to retrieve all of its
pairs, remove the deleted pairs, and finally insert the remaining label/value pairs into the new
structure encrypted with a new counter and fresh randomness, respectively. This approach differs
from the previous naive construction by fetching all pairs corresponding to a specific label (sampled
uniformly at random) instead of fetching one pair at a time. Unfortunately, while this achieves our
compactness requirement, it fails at achieving our security requirement. A persistent adversary can
learn the response length of unsearched pairs which is more than what it can learn from pre-rebuild
operations; clearly violating our almost zero-leakage requirement.

The previous issue can be solved by differentiating between two types of labels: (1) labels that
were searched for in the past; (2) and labels that are still unsearched. For the former, we can

7We emphasize here that reducing storage also improves the query complexity and token size.

15



rebuild as above. That is, given a label, retrieve all the corresponding pairs in the old structure,
remove the deleted pairs and insert newly encrypted versions into the new dictionary. Clearly, this
reduces the storage as the deleted pairs are removed. Also, because the pairs have been searched
for in the past, a persistent adversary does not gain any additional knowledge besides the number
of deleted values associated with the searched labels. For unsearched labels, the protocol samples a
pair uniformly at random and insert it into the new structure. This reveals nothing to a persistent
adversary beyond the total number of unsearched pairs.

As long as the intermediate steps of the rebuild protocol are hidden from a snapshot adversary,
the scheme will achieve dual-security. Unfortunately, this rebuild protocol has worst-case linear
complexity in the size of the old dictionary. We show in Section 6, however, how to de-amortize it
which avoids the above worst-case cost while maintaining dual-security. The de-amortized variant
also removes the need to keep intermediate steps hidden from a snapshot adversary.

5.2 Detailed Description

DLS makes use of a pseudo-random function F and of a private-key encryption scheme SKE. The
details of the scheme are provided in Figs. 1, 2, 3 and 4. At a high-level, it works as follows.

Setup. The Setup algorithm takes as input a security parameter k and a multi-map MM. It makes
use of two dictionary data structures, an old dictionary, DXo, and a new dictionary, DXn. The old
dictionary will be rebuilt and merged into the new one. The rebuild occurs periodically such that
after every rebuild epoch, the old dictionary will be totally merged into the new one. The new
dictionary becomes the old and a new empty dictionary will be instantiated. We associate to every
rebuild epoch a global version, called versiong, which is the number of rebuilds ever performed.
Along with this global version, the setup algorithm also instantiates other components of the state:
a searched label set Se, and two state dictionaries, an old DXst

o and a new DXst
n . The set Se is a

temporary one that keeps track of all searched labels within a single rebuild epoch. Dictionaries
DXst

o and DXst
n map a label to both its counter and version. The counter of a label ` in DXst

o and
DXst

n is the number of all values that have been added to DXo and DXn in the previous and current
epoch, respectively. In other words, DXst

o contains only labels that existed within the previous
version, i.e., the previous rebuild epoch.

Setup outputs a dictionary as its encrypted multi-map. At a higher level, in order to store
(`‖versiong,MM[`]) in the old dictionary DXo, it stores the pairs

(
`‖i‖versiong, vi

)
, for all vi ∈ MM[`]

and i ∈ [#MM[`]], where versiong is the current rebuild epoch (the rebuild epoch at setup time
is initialized to 1). To store the pair in an encrypted way, a PRF evaluation is performed on
the concatenation of the label `, its counter count and rebuild epoch versiong. The corresponding
value in MM[`] is first concatenated with the string edit+ and then simply encrypted. The new
dictionary DXn is only instantiated and remains empty. The output of the setup algorithm includes
the encrypted structures (DXo,DXn), the keys as well as the state.

Search token. The Token algorithm takes as input a key, a state and a label. First, it fetches from
both the old and new state dictionaries the corresponding counters and rebuilding versions. Recall
the old and new counters, counto and countn, count the number of times the label has been added,
deleted from the old and new dictionaries, respectively. Based on the counters, whether old or new,
it creates two sub-token vectors such that otk = (otk1, · · · , otkcounto) and ntk = (ntk1, · · · , ntkcountn).
The old subtokens otki, for i ∈ [counto], will allow the server to query the old dictionary DXo, while

16



the new tokens ntki, for i ∈ [countn], will allow the server to query the new dictionary DXn. Finally,
it updates the state by adding ` to Se as it is now searched. The output includes the state and the
token tk = (otk, ntk).

Query. The Query algorithm takes as input the token and the encrypted data structure. The
token is divided into two sub-token vectors, otk and ntk. Each sub-token in otk corresponds to a
label in the old dictionary DXo from which the server fetches the value and inserts in the result
set, Result. The server performs the same operations for every sub-token in ntk, but on the new
dictionary DXn. The server finally outputs the result set Result. Note that the set Result does
not exactly equal MM[`] as the client might have deleted several pairs both in the old or new
dictionaries. The client, based on the meta-information included with the decrypted values, i.e.,
edit+ or edit−, can easily compute the correct MM[`].

Update token. The UToken algorithm takes as input a key, a state, and an update consisting of
the type of operation op, a label `, and its value v. It first computes tk1 which is a PRF evaluation
on the concatenation of the label, its counter and the current rebuilding version. The counter
represents the number of times the label ` has been added to the new dictionary DXn throughout
the current rebuilding version, and is fetched from the new state dictionary DXst

n , given the label `.
The counter is then updated accordingly. The value v is concatenated to the operation op before
being encrypted, and this represents the second part of the token, tk2. The output of the algorithm
includes utk = (tk1, tk2) and an updated state.

Update. The Update algorithm takes as input the update token and the encrypted data structure.
The server will simply update the new dictionary DXn by adding the update token, utk = (tk1, tk2),
to it. The output of the Update algorithm consists of the updated encrypted structure.

Rebuilding. The Rebuild algorithm is a two-party protocol between the client and the server.
The client’s input is a key and a state, while the server’s input is the encrypted data structure.
The goal of the rebuild operation is to merge the old dictionary into the new one. The new one
will then become the old at the end of the rebuild. The rebuild differentiates between two types of
labels: (1) labels that have been searched for in DXo, and (2) labels that have not. For each of the
labels in Se, the client fetches all the values corresponding to ` ∈ Se, removes all values that have to
be deleted and then insert the remaining ones into the new dictionary DXn. Inserting these values
into DXn follows a similar process to the one in UToken and Update algorithms. For the remaining
labels, i.e., labels that have never been searched for in DXo, the client picks a random label, fetches
a value with the largest counter and inserts it into the new dictionary DXn. The client updates the
state by decreasing the counter of the selected label and removes it whenever it equals 1. Once all
labels have been reinserted, both the old state dictionary DXst

o and old dictionary DXo are deleted,
the set Se is reinitialized, the new state dictionary DXst

n and new dictionary DXn becomes the old
state dictionary DXst

o and old dictionary DXo, and the epoch is incremented. The output of the
Rebuild is an updated state for the client and an updated encrypted structure for the server.

In order to achieve snapshot security, the entire transcript of the Rebuild protocol, including its
internal state, has to be kept secret. That is, a snapshot adversary must not get a snapshot of the
encrypted structures while the Rebuild protocol is executing. This is mainly due to the fact that
while rebuilding searched for labels, a snapshot adversary will get to know the response size of the

17



searched for labels; which is clearly at odds with our security goals that consist of only disclosing
the size of the data structure. We show how to lift this constraint in section 6.

Efficiency. The query complexity of DLS is

O

(
#MM[`] + del(`, e)

)
,

where del(`, e) is the number of deletes for ` since epoch e when ` was most recently searched for
(i.e., since the last rebuild during which ` was a searched for label). As a point of comparison, the
Sophos construction of Bost [4] and the Diana construction of Bost et al. [5] which are dual-secure
have query complexity

O

(
#MM[`] + del(`, 0)

)
,

where del(`, 0) denotes the number of deletes for ` since the structure was setup. The storage
complexity of DLS is

O

( ∑
`∈LMM

(
#MM[`] + del(`, e)

))
,

while recent constructions [4, 5] have storage complexity O(
∑

`∈LMM
(#MM[`] + del(`, 0))). DLS has

search and update tokens of size O
(
#MM[`] + del(`, e)

)
and O(#v), respectively, and its rebuild

complexity is

O

( ∑
`∈LMM

(
#MM[`] + del(`, e)− up(`, c)

))
,

where #up(`, c) is the number of updates for ` since the last rebuild operation. Finally, the client
locally stores the state composed of both the old and new state dictionaries, and the set of searched
for labels. That is, client storage is

O

(
#LMM · log

(
max

`∈LMM
(#MM[`] + del(`, e))

)
.

Variants. While DLS improves on the query, update and storage complexity of all previous
dual-secure dynamic EMM schemes, its token size is larger. This can be improved using one of
the following three approaches. The first reduces the token size to be O

(
#up(`, c)

)
. It consists of

using the counter-based approach for the old dictionary; that is, granting the server the ability to
compute all encrypted labels for the old dictionary (as πdyn). Given that all new updates are going
to be added to the new dictionary, the server, with a key derived from the label, can generate all
the encrypted labels. That is, the client will only send a key along with the new token ntk which
has size equal to the number of updates for ` in the current epoch.

The second approach leverages constrained pseudo-random functions, introduced in Diana [5].
The client can simply send two constrained keys for the required ranges for both the old and new
counters. This approach reduces the token size to be

O

(
log

(
#MM[`] + del(`, e)

))
,

when using GGM [19] as the constrained PRF.

18



The third approach is the combination of the first two approaches. The client sends a token
composed of: (1) a key for a standard PRF with which the server computes all encrypted labels in
the old dictionary; and (2) a constrained key for the appropriate range in the new dictionary. The
size of the search token in this case is

O

(
log

(
#up(`, c)

))
,

when using GGM as the constrained PRF.
This last variant of DLS outperforms all previous constructions in query complexity, update

complexity, token size, query round complexity and client and server storage—all while being secure
in the standard model. DLS can also be easily modified to have constant client memory by storing
the state on the server in a zero-leakage encrypted multi-map, e.g., using ORAM at the cost of an
additive poly-logarithmic overhead per query.

5.3 Security

In the following, we detail the leakage of DLS against standard and snapshot adversaries, respec-
tively.

Against a persistent adversary. The setup leakage of DLS consists of the size of the multi-
map MM. The query leakage of DLS for a label ` consists of the search, response length and
operation patterns. The search pattern captures if and when the label has been searched for in the
past. As DLS is response-hiding, it does not reveal the access pattern but only the response length
which is the cardinality of the result. The operation pattern reveals if an operation for a label `
was an update (i.e., an add or delete) or not. The update leakage of DLS is the size of the tuple to
be updated. The rebuild leakage is the size of the updated multi-map and, for each label that was
searched for in the current epoch, the number of deletes in DXo. We now give a precise description
of DLS’s leakage profile and show that it is adaptively-secure with respect to it. Its setup leakage
is

LS(MM) =
∑

`∈LMM

#MM[`].

The query leakage is

LQ(MM, `) =
(

QP,RL,OP
)
.

Here, QP is the query pattern which reveals if and when a query is repeated. More formally, it
is defined as QP = B, where B is a binary square matrix of size t and t is the total number of
operations that have been made. B is such that Bi,j = 1 if the ith and jth queries are the same,
and 0 otherwise. The response length pattern is

RL(MM, `) = #MM[`].

The operation pattern is
OP(MM, `) = m,

where m is a binary vector of size t, where t is the total number of operations. For all i ∈ [t],
mi = 1 if the ith operation is an update and mi = 0 otherwise. Its update leakage is

LU(MM, (op, `,v)) = #v,

19



Let F be a pseudo-random function, SKE = (Gen,Enc,Dec) be a private-key encryption scheme. Con-
sider the dynamic encrypted multi-map DLS = (Setup,Token,UToken,Get,Put,Rebuild) defined as
follows:

• Setup
(
1k,MM

)
:

1. sample K1,K2
$← {0, 1}k;

2. initialize an empty set Se and four empty dictionaries DXst
o , DXst

n , and DXo and DXn with
capacities #LMM and

∑
`∈LMM

#MM[`] respectively;
3. for all i ∈ [#MM],

(a) sample a pair (`,MM[`]) from MM without replacement;
(b) set count = 1 and version = 1;
(c) for all v ∈ MM[`],

i. compute

label := FK1(`‖version‖count) and value := Enc(K2, v‖edit+);

ii. set DXo[label] := value;
iii. set DXst

o [`] := (version, count);
iv. increment count;

4. increment versiong;
5. output (K, st,EMM) where K = (K1,K2), st = (versiong,Se,DXst

o ,DXst
n ) and EMM =

(DXo,DXn).

• Token
(
K, st, `

)
:

1. parse K = (K1,K2) and st = (versiong,Se,DXst
o ,DXst

n );
2. if DXst

n [`] 6= ⊥, set (versionn, countn) := DXst
n [`], and if DXst

o [`] 6= ⊥ set (versiono, counto) :=
DXst

o [`] and add ` to Se;
3. set

otk =
(
otk1, · · · , otkcounto

)
and ntk =

(
ntk1, · · · , ntkcountn

)
,

where
otki := FK1(`‖versiono‖i) and ntki := FK1(`‖versionn‖j),

for all i ∈ [counto] and j ∈ [countn];
4. output the update state st = (versiong,Se,DXst

o ,DXst
n ) and the token tk = (otk, ntk).

• Get
(
tk,EMM

)
:

1. parse tk = (otk, ntk) where

otk =
(
otk1, · · · , otkcounto

)
and ntk =

(
ntk1, · · · , ntkcountn

)
,

and EMM = (DXo,DXn);
2. instantiate an empty set Result;
3. add DXo[otki] and DXn[ntkj ] for all i ∈ [counto] and j ∈ [countn] to Result;
4. output Result.

Figure 1: DLS (Part 1).

20



• UToken
(
K, st, (op, `,v)

)
:

1. parse K = (K1,K2) and st = (versiong,Se,DXst
o ,DXst

n );
2. if ` /∈ LMM,

(a) set DXst
n [`] := (versiong, count) where count = 1;

3. otherwise,
(a) if DXst

n [`] 6= ⊥,
i. set (version, count) := DXst

n [`];
ii. increment count;
iii. set DXst

n [`] := (versiong, count);
(b) otherwise

i. set DXst
n [`] := (versiong, count) where count = 1;

4. for all v ∈ v,
(a) compute

tkv,1 := FK1

(
`‖versiong‖count

)
and tkv,2 := Enc(K2, v‖op);

(b) increment count and set DXst
n [`] := (versiong, count);

5. output the updated state st = (versiong,Se,DXst
o ,DXst

n ) and utk = (tkv,1, tkv,2)v∈v.

• Put
(
utk,EMM

)
:

1. parse EMM = (DXo,DXn) and utk = (tkv,1, tkv,2)v∈v;
2. for all v ∈ v, set DXn[tkv,1] := tkv,2;
3. output EMM.

Figure 2: DLS (Part 2).

21



• RebuildC,S

((
K, st

)
,EMM

)
:

1. C parses K = (K1,K2), st = (versiong,Se,DXst
o ,DXst

n ) and EMM = (DXo,DXn);
2. for all ` ∈ Se such that DXst

o [`] 6= ⊥, ,
(a) C sets (versiono, counto) := DXst

o [`] and removes ` from DXst
o ;

(b) C computes and sends to S,

tk = (otk1, · · · , otkcounto
),

where otki = FK1(`‖versiono‖i);
(c) S computes and sends to C,

Result = (ct1, · · · , ctcounto
);

where cti = DXo[otki] for all i ∈ [counto];
(d) C computes V = Result+ \ Result−, where

Result+ = {v : ∀ct ∈ Result, v‖edit+ = Dec
(
K2, ct

)
}

Result− = {v : ∀ct ∈ Result, v‖edit− = Dec
(
K2, ct

)
}

(e) if DXst
n [`] 6= ⊥, C sets (versionn, countn) := DXst

n [`], otherwise sets countn = 1;
(f) for all v ∈ V ,

i. C computes and sends,

tk1 := FK1

(
`‖versiong‖countn

)
tk2 := Enc(K2, v‖edit+);

ii. S computes DXn[tk1] := tk2;
iii. C increments countn;

Figure 3: DLS (Part 3).

22



• RebuildC,S

((
K, st

)
,EMM

)
:

3. while #DXst
o > 0,

(a) C picks ` at random
(b) C sets (versiono, counto) := DXst

o [`] and DXst
o [`] := (versiono, counto − 1);

(c) if counto − 1 < 1, C then removes ` from DXst
o ;

(d) C computes and sends to S otk = F (K1, `‖versiono‖counto);
(e) S computes and sends to C ct = DXo[otk];
(f) if DXst

n [`] 6= ⊥,
i. C sets (versionn, countn) := DXst

n [`];
ii. C computes and sends to S,

tk1 := FK1

(
`‖versionn‖countn

)
tk2 := Enc

(
K2,Dec(K2, ct)

)
;

iii. S computes DXn[tk1] := tk2;
iv. C sets DXst

n [`] := (versionn, countn + 1);
(g) otherwise if DXst

n [`] = ⊥, then
i. C sets DXst

n [`] := (versiong, 1);
ii. C computes and sends to S,

tk1 := FK1

(
`‖versiong‖1

)
tk2 := Enc

(
K2,Dec(K2, ct)

)
iii. S computes DXn[tk1] := tk2;

4. C sets DXst
o := DXst

n and initializes an empty dictionary DXst
n with capacity 2 ·#LMM;

5. S sets DXo := DXn and initializes an empty dictionary DXn with capacity 2 ·#LMM;
6. C empties Se and increments versiong;
7. C outputs the updated states st = (versiong,Se,DXst

o ,DXst
n ) and S the updated encrypted

multi-map EMM = (DXo,DXn).

Figure 4: DLS (Part 4).

23



for all op ∈ {edit+, edit−}. Its rebuild leakage is

LR(MM) =
(
#delo`

)
`∈Se

,

where #delo` is number of pairs with label ` removed from the old dictionary DXo and Se ⊆ L is
the set of labels that were searched for in the current epoch.

Theorem 5.1. If SKE is an RCPA-secure encryption scheme and F is a pseudo-random function,
then DLS is (LS,LQ,LU,LR) secure.

The proof of Theorem 5.1 is deferred to Appendix C.

Leakage against a snapshot adversary. The snapshot leakage LSN of DLS is

LSN(MM, op1, . . . , opi) =
∑

`∈LMM

#MMi[`]

where MMi is the current version of the multi-map. Note that, given LSN, DLS is breach-resistant
based on Definition 4.5.

Theorem 5.2. If SKE is an RCPA-secure encryption scheme and F is a pseudo-random function,
then DLS is

(
m,LSN

)
-snapshot secure, for m ∈ poly(k).

The proof of Theorem 5.2 is in Appendix E. Note that this Theorem also implies that DLS is
insertion-independent and write-only oblivious (when the client updates the structure with fixed-
sized tuples).

Corollary 5.3. Given Theorems 5.1 and 5.2, DLS is dual-secure.

6 DLSd: DLS with De-amortized Rebuilding

In Section 5, we introduced an instantiation of the rebuilding protocol with a worst-case complexity
linear in the size of the old dictionary, i.e., in

O

( ∑
`∈LMM

(
#MM[`] + del(`, e)− up(`, c)

))
,

where #up(`, c) is the number of updates for ` since the last rebuild operation. Moreover, DLS only
achieves dual security under the assumption that all intermediate steps of the rebuild protocol are
hidden from the snapshot adversary. In this section, we show how to overcome these two challenges,
resulting in a variant of our construction called DLSd. DLSd uses a de-amortized rebuild process,
that maintains dual security with minimal leakage while providing optimal worst-case efficiency
under no assumptions on when snapshots occur.

24



Overview. DLSd is a variant of DLS with de-amortized rebuilding, i.e., it has the same setup,
search token and get algorithms, but differs on how the rebuilding process is performed. We now
provide a gradual description of this process starting from our previous rebuild protocol.

We can de-amortize the Rebuild protocol of DLS by simply operating on one label at a time in
the case of a searched label, or on a pair in the other case. This solution provides a de-amortized
rebuilding and clearly does not introduce any additional leakage against a persistent adversary.
Unfortunately, this solution still induces additional leakage against a snapshot adversary because
it can differentiate between the two types of labels based on the number of pairs that have been
inserted into the new dictionary. Remember that our goal is to have snapshot leakage composed
only of the size of the current structure. So far, this is not the case as we have an additional leakage.

We solve the issue above by allowing some client storage. That is, instead of inserting an
arbitrary number of pairs in the case of searched for labels, only λ pairs are inserted and the
remaining pairs are kept in the client side. For the unsearched for labels, the same number of pairs,
λ, is similarly inserted in the structure. This will make differentiating between the two types of
labels impossible for a snapshot adversary.

De-amortization. An important design decision we have to make is to figure out when to rebuild.
There are three possible approaches, including:

• at update time: this approach runs the de-amortized rebuild steps as a sub-routine of the
update protocol. That is, whenever the client updates the encrypted structure, the client
simultaneously performs a partial rebuilding that operates on λ pairs. Note that this choice
is natural as a snapshot adversary already knows that a data structure has been modified
due to the update operation. Therefore performing a partial-rebuilding that is triggered by
an update will not leak more than the number of rebuilt pairs, which is λ.

• at query time: this approach consists of running the de-amortized rebuild step as a sub-
routine of the query protocol. In this case, it is easy to see that a snapshot adversary would
learn that a search occurred by just looking to the encrypted structure, which violates breach-
resistance and, therefore, dual security.

• continuously: this approach runs the de-amortized rebuild steps continuously in the back-
ground. This is quite similar to the previous rebuild protocol except that the client can always
query or update the structure independently of the rebuilding process. In other words, the
rebuild does not affect the correctness of the query operation. This approach provides the
client with the flexibility to rebuild the data structure whenever it is required (which is not
the case of the previous approaches).

Our preferred approach is to execute rebuild steps at update time. In the following, we provide
the algorithmic details. Note that the syntax of the STE scheme will change slightly because we
are now dealing with a self-adjusting EMM. We refer the reader to Definition 4.1 for more details.

Details. DLSd is a self-adjusting dynamic encrypted multi-map composed of four non-interactive
algorithms and one interactive protocol such that DLSd = (Setup,Token,Get,Update,Rslv). Below,
we only detail the Update protocol as Setup, Token, Get and Rslv remain the same as in DLS. For
more details of the scheme we refer the readers to Figs. 5 and 6.

25



Update is a two-party protocol between the client and the server. The client’s input consists of
a key K, a state st and an update u. The server’s input consists of the encrypted multi-map EMM.
The state is the same as the state of DLS except that it is augmented with the de-amortization
rate λ and two lists Lsr and Lun. Lsr is a stash that stores the pairs corresponding to the searched
for labels, while Lun is a stash that stores the pairs for the unsearched for labels.

The client starts by creating the update token and sending it to the server which then inserts
the updates in the new dictionary using DLS UToken and Put algorithms, respectively. The client
then samples a bit b. If b = 0, the client rebuilds a searched label in Lsr, otherwise it rebuilds an
unsearched label in Lun. If #Lsr < λ or #Lun < λ, it means the client does not hold enough pairs
in the stashes to rebuild and needs to prepare additional pairs as follows.

If it is rebuilding searched labels and #Lsr < λ, then the client picks a label ` ∈ Se, where
Se contains all the searched for labels. The client fetches the corresponding pairs from the old
dictionary DXo, decrypts them, removes all the deleted pairs, and appends the remaining pairs to
Lsr. The client then removes the label ` from Se. When it is time to send pairs to the server, it
generates λ freshly encrypted pairs from Lsr to send. Similarly to the UToken algorithm, a fresh
pair is composed of two sub-tokens. The first, tk1, is the evaluation of the pseudo-random function
on the label `, the global version versiong, and a counter countn. The second, tk2, is generated by
encrypting the value v corresponding to the label ` concatenated to the string edit+.

Otherwise, if it is rebuilding unsearched labels and #Lun < λ, the client retrieves an unsearched
label uniformly at random from LMM \ Se and only retrieves one pair using the label’s counter.
The client then decrements the counter and updates the state accordingly. If the counter is less
than one, it removes the label from the state, DXst

o . The client refreshes the pair similarly to the
operations described earlier, but then appends it to Lun. The client repeats this process as long
as #Lun < λ. Finally if both the stashes are empty and each pair in DXo is refreshed, the server
deletes the old dictionary and the new dictionary becomes the old dictionary. The client similarly
deletes the state of the old dictionary and replaces it with the state of the new dictionary. A new
empty dictionary and state are initialized for future updates. Finally the client increments the
global version.

Efficiency. DLSd has the same query complexity, storage complexity and token size as DLS.
Below, we only detail the client memory and update complexity. DLSd introduces two new data
structures that are stored at the client. The first, Lsr, stores the pairs for the searched labels and
has size

O

(
max

{
λ, max

`∈LMM
(#MM[`] + del(`, e))

})
.

The second, Lun, stores the pairs for the unsearched labels and has size O(λ). In addition, similarly
to DLS, the client also stores the state which is composed of both the old and new state dictionaries,
and the set of searched for labels. This results in O

(
#LMM · log

(
max`∈LMM(#MM[`] + del(`, e))

))
storage at the client. The overall client storage is then

O

(
#LMM · log

(
max

`∈LMM
(#MM[`] + del(`, e))

)
+ max

{
λ, max

`∈LMM
(#MM[`] + del(`, e))

})
.

The update complexity is O(λ+ #v) with two rounds of interactions.8 The first round fetches the
pairs and sends the update token to the server and the second inserts the freshly encrypted pairs

8One might think that the update complexity should be equal to O(#v+max{λ,max`∈LMM (#MM[`]+del(`, e))}).
However, the quantity max`∈LMM (#MM[`]) can be de-amortized over λ−1 ·max`∈LMM (#MM[`]) updates, as the client

26



from the states along with the updates.

6.1 Security

In the following, we describe the leakage of DLSd against persistent and snapshot adversaries,
respectively.

Leakage against a persistent adversary. The setup and query leakage of DLSd is the same
as DLS. The Update leakage consists of the update leakage of DLS and the de-amortization rate
which is public. Note that, contrary to DLS, there is no explicit rebuild leakage since the rebuild
process is de-amortized and executed as a sub-routine of the update operation.

The update with rebuild leakage is then

LUr(MM, u) =
(
LU(MM, u),LRd(MM)

)
,

where u = (op, `,v), LU(MM, u) = #v, LRd(MM) =
(
λ,
(
#delo`

)
`∈Se

)
, λ is the rebuild rate of the

Update protocol, and Se ⊆ L is the set of labels that were searched for in the current epoch.

Theorem 6.1. If SKE is an RCPA-secure encryption scheme and F is a pseudo-random function,
then DLSd is (LS,LQ,LUr) secure.

The proof of Theorem 6.1 appears in Appendix D.

Leakage against a snapshot adversary. The snapshot leakage LSN of DLSd is

LSN(MM,op) =
(
λ,

∑
`∈LMM

#MM(`)
)
.

Note that λ is a public parameter so DLSd is breach-resistant.

Theorem 6.2. If SKE is an RCPA-secure encryption scheme and F is a pseudo-random function,
then DLSd is

(
m,LSN

)
-snapshot secure, for m ∈ poly(k).

The proof of Theorem 6.2 is deferred to Appendix F. Note that this Theorem implies that
DLSd is insertion independent and write-only oblivious (when the client updates the structure
with fixed-size tuples).

Corollary 6.3. DLSd is dual-secure.

7 Empirical Evaluation

We now evaluate how our construction performs in practice. We implemented DLSd, the de-
amortized variant of DLS, in Java using the Clusion encrypted search library [34]. It consists of
1114 lines of codes excluding 180 lines for testing purposes calculated using CLOC [12]. We set λ
to 3 for all experiments except for one where we vary λ to study its effect on update time.

will not fetch any pair as long as the state Lsr contains more than λ pairs.

27



Let F be a pseudo-random function, SKE = (Gen,Enc,Dec) be a private-key encryption scheme. Let
DLS = (Setup,Token,UToken,Get,Put,Rebuild) be the dynamic encrypted multi-map described in
Section 5. Consider the dynamic encrypted multi-map DLSd = (Setup,Token,Get,Update) where
Setup, Token, Get and Update are defined as follows:

• Setup
(
1k,MM

)
: (K, st,EMM)← DLS.Setup

(
1k,MM

)
.

• Token
(
K, st, `

)
: (st, tk)← DLS.Token

(
K, st, `

)
.

• Get
(
tk,EMM

)
: Result← DLS.Get

(
tk,EMM

)
• UpdateC,S

((
K, st,

(
op, `,v

))
,EMM

)
:

1. C sends utk← DLS.UToken
(
K, st, (op, `,v)

)
to S;

2. S executes DLS.Put
(
utk,EMM

)
;

3. C parses K = (K1,K2), st = (versiong,Se, λ, Lsr, Lun,DXst
o ,DXst

n ), and EMM = (DXo,DXn);
4. C samples a bit b
5. if b = 0

(a) if #Lsr < λ then,
i. C picks at random without replacement ` ∈ Se such that ODX[`] 6= ⊥,

ii. C sets (versiono, counto) := DXst
o [`] and removes ` from DXst

o ;
iii. C computes and sends to S,

tk = (otk1, · · · , otkcounto
),

where otki = F (K1, `‖versiono‖i) for all i ∈ [counto];
iv. S computes and sends to C,

Result = (ct1, · · · , ctcounto),

where cti = DXo[otki] for all i ∈ [counto];
v. C computes V = Result+ \ Result−, where

Result+ = {v : ∀ct ∈ Result, v‖edit+ = Dec
(
K2, ct

)
}

Result− = {v : ∀ct ∈ Result, v‖edit− = Dec
(
K2, ct

)
}

vi. for all v ∈ V , C adds (`, v) to Lsr;
vii. If still #Lsr < λ, C picks at random another ` ∈ Se and repeats these steps

(b) else, for i ∈ [λ],
i. C picks and removes a pair (`, v) from Lsr

ii. if DXst
n [`] 6= ⊥, C sets (versionn, countn) := DXst

n [`], otherwise sets countn = 1;
iii. C computes

tk1 := F
(
K1, `‖versiong‖countn

)
tk2 := Enc(K2, v‖edit+);

iv. C increments countn;
v. S sets DXn[tk1] := tk2

vi. C sets DXst
n [`] := (versionn, countn)

Figure 5: DLSd (Part 1).

28



• UpdateC,S

((
K, st,

(
op, `,v

))
,EMM

)
:

6. if b = 1, then
(a) C sets count = λ;
(b) C picks at random without replacement ` ∈ LMM \ Se such that DXst

o [`] 6= ⊥
(c) while count > 0,

i. C sets (versiono, counto) := DXst
o [`] and DXst

o [`] := (versiono, counto − 1);
ii. if counto − 1 < 1, then C removes ` from DXst

o ;
iii. C computes and sends to S otk = F (K1, `‖versiono‖counto);
iv. S computes and sends to C ct = DXo[otk];
v. if DXst

n [`] 6= ⊥, C sets (versionn, countn) := DXst
n [`], otherwise sets countn = 1;

vi. C computes,

tk1 := F
(
K1, `‖versionn‖countn

)
tk2 := Enc

(
K2,Dec(K2, ct)

)
;

vii. C adds (tk1, tk2) to Lun;
viii. C sets DXst

n [`] := (versionn, countn + 1);
ix. C decrements count;

(d) for i ∈ [λ],
i. S sets DXn[tki,1] := tki,2, where (tki,1, tki,2) ∈ Lun;

ii. C removes (tki,1, tki,2) from Lun;
7. if #DXo = 0, then

(a) C sets DXst
o := DXst

n and initializes an empty dictionary DXst
n with capacity 2 ·#LMM;

(b) S sets DXo := DXn and initializes an empty dictionary DXn with capacity 2 ·#LMM;
(c) C initializes an empty set Se, increments versiong.

8. C outputs the updated state st = (versiong,Se, λ, Lsr, Lun,DXst
o ,DXst

n ), and S outputs the
updated encrypted multi-map EMM = (DXo,DXn).

Figure 6: DLSd (Part 2).

29



Parsing and indexing. We used the parsing and indexing functionality of the Clusion library to
process data (which is itself based on the Lucene parser [31]). Through Clusion, our implementation
handles pdf files, Microsoft Office files (doc, docx, pptx, xlsx), basic text files. For media files, it
only indexes the file names.

Cryptographic primitives. We use the cryptographic primitives provided by Clusion (them-
selves based on Bouncy Castle [9]). For symmetric encryption, we use AES in CTR mode with a
256 bit key. We use of HMAC-SHA256/512 for PRFs and random oracles.

Experimental setup. We ran our experiments on an Amazon EC2 instance running Ubuntu
Linux (c3.8xlarge) with an Intel Xeon E5-2680 v2 (Ivy Bridge) Processor with 32 vCPU and 60
GB of RAM. For all our experiments, we used the Wikipedia data dumps. The total uncompressed
size of our dataset was 26.5GB. There are a total number of 2, 681, 795 files in this dataset. We
partitioned these files into different folders. The first folder had 17, 600 files with a total size of
about 250 MB and the last folder had 554, 059 files with a total size of 3.6GB. In our empirical
evaluation, we want to quantify the following characteristics of DLSd:

1. The time to set up the EMM as a function of the number of pairs;

2. The size of each EMM and of the client state as a function of the number of pairs;

3. The time taken to respond to a query for labels with different selectivity as a function of the
number of pairs. The selectivity of a label is the number of values associated to it;

4. The time taken for an update operation as a function of the number of pairs in the EMM.
We also measure how different rebuild parameters λ affect the time taken;

5. The effect of de-amortized rebuilding on the time taken by a query operation in DLSd specif-
ically when there are deletes involved.

Setup time and storage overhead. Fig. 7 describes the time taken to set up an EMM as a
function of the number of label/value pairs stored. We created EMMs with number of pairs ranging
from 2, 758, 254 to 83, 239, 341. The setup phase takes under 13 minutes with a multi-threaded
implementation. Fig. 8 shows the size on disk of both the client state and the EMM for different
number of pairs. We observe that even for about 83 million pairs, the client state is only 210MB
for an 11GB EMM.

Search and update operations. Fig. 9 describes the time taken to search for labels of different
selectivities (MM(w)). We also measure time taken by an update operation. In our experiments,
the client and server are running on the same machine. We measure the effect of increasing the
EMM size on the query time, which seems negligible. We do not send any update tokens between
the query operations during the experiment. For each EMM we first search for labels of different
selectivities (100, 1000 and 10,000). The search time for all selectivities is less than 1 microsecond
per pair. We ran every search data point corresponding to every number of pairs in the x-axis 500
times. We re-ran the whole experiment 10 times, then we took the median. From Fig. 10 we can
see that the update operation is more costly as it takes around 100 milliseconds when λ is set to
3. This can be attributed to the fact that the rebuild is performed with the update algorithm.

30



 0

 2

 4

 6

 8

 10

 12

 14

 0  1x10
7

 2x10
7

 3x10
7

 4x10
7

 5x10
7

 6x10
7

 7x10
7

 8x10
7

 9x10
7

T
im

e
 i
n
 m

in
u
te

s

Number of pairs (w, id)

Setup time

Figure 7: Setup time.

 0

 2

 4

 6

 8

 10

 12

 0  1x10
7

 2x10
7

 3x10
7

 4x10
7

 5x10
7

 6x10
7

 7x10
7

 8x10
7

 9x10
7

S
iz

e
 i
n
 G

B
y
te

Number of pairs (w, id)

State
EMM

Figure 8: Encrypted multi-map and state sizes.

Whenever we do an update, we also execute λ de-amortized rebuild steps. One can see that as we
increase λ, the update time increases proportionally. Note also that both the search and update
operations are independent of the number of pairs in the EMM.

Effect of rebuilding. Figure 11 describes the query time as a function of the number of delete
operations. The keyword being queried initially has selectivity 100, 000 which was achieved by
updating the EMM with 100, 000 update tokens. The consequence of this is that these values are
initially in DXn. The first point of epoch 0 (the green line) represents the first query. After that,
we send 8000 delete tokens, execute a search, send 8000 more deletes, execute a search and so on.

31



 10

 100

 1000

 10000

 100000

 1x10
6

 0  1x10
7
 2x10

7
 3x10

7
 4x10

7
 5x10

7
 6x10

7
 7x10

7
 8x10

7
 9x10

7

T
im

e
 i
n
 m

ic
ro

s
e
c
o
n
d
s

Number of pairs (w, id)

MM(w) = 100
MM(w) = 1000

MM(w) = 10000

Figure 9: Search time for 100, 1000 and 10000 search selectivities.

 10

 100

 1000

 10000

 0  1x10
7

 2x10
7

 3x10
7

 4x10
7

 5x10
7

 6x10
7

 7x10
7

 8x10
7

 9x10
7

T
im

e
 i
n
 m

ill
is

e
c
o
n
d
s

Number of pairs (w, id)

λ = 3
λ = 6
λ = 9

λ = 12
λ = 15

Figure 10: Update time for different rebuiling parameters.

This continues until we send a total of 40, 000 delete tokens (the end of the green line). At this
stage, the selectivity of the keyword is 60, 000 but the total number of pairs in DXn associated with
the keyword is 140, 000. During epoch 0 we can clearly see that query time increases as the number
of deletes increases.

At some point, the rebuild operation ends and epoch 1 begins and DXn becomes DXo. At the
beginning of epoch 1 two queries occur before the keyword has been selected to be rebuilt. The
gap in query time between epoch 0 and the first two queries of epoch 1 is due to the fact that the
pairs are stored in different sized dictionaries in the two epochs. In epoch 0 they are stored in a
relatively empty DXn whereas in epoch 1 they are stored in DXo along with 50 million other pairs

32



 50

 100

 150

 200

 250

 1  10  100

Q
u
e
ry

 T
im

e
 i
n
 m

ill
is

e
c
o
n
d
s

The xth search query

Effect of Rebuilding over time

During rebuild epoch 0
During rebuild epoch 1

During rebuild epoch 1, when selected for client stash

Figure 11: Query times for the same keyword at different times. During epoch 0, the keyword
starts with a selectivity of 100, 000 and 8000 delete operations are performed between each query
operation. No further deletes happen in the next epoch.

(remember that we need to keep updating the EMM to make the rebuild process progress). Once
the keyword is selected to be rebuilt (red line), it is moved to the client’s local stash; specifically,
to Lsr since it was searched. At this stage, query time is negligible but increases as the pairs are
inserted into DXn. When all pairs have been inserted, DXn only holds 60, 000 pairs associated to
this keyword (i.e., all the delete pairs have been removed).

One can clearly see the difference in query time before and after the keyword has been rebuilt.
Before it has been rebuilt (i.e., epoch 0 and beginning of epoch 1 which are the green and blue
lines, respectively), the query times range from 55.6 ms to 75.8 ms. After being rebuilt (i.e., the
end of epoch 1 which is the red line), query times range from 0.1 ms to 33 ms.

Also, note that all query times stay well below 1 microsecond per pair.

Comparison with previous constructions. Given the asymptotic overhead of the SPS con-
struction, we do not compare it to DLSd and focus mainly on the Sophos and Diana schemes of
[4] and [5]. The empirical evaluations of these constructions, however, are based on C/C++ imple-
mentations whereas our implementation of DLSd is in Java. This naturally makes a quantitative
comparison very difficult. In addition, the Sophos implementation is multi-threaded (whereas our
DLSd implementation is only multi-threaded for setup) and is evaluated on disk. Under these
conditions, [4] reports search times ranging from 24 microseconds to 7 microseconds per pair de-
pending on the selectivity of the keyword. On similar datasets, the Diana implementation in [5]
is 10 times faster in part because it uses hardware-accelerated AES instructions. Similarly to our
DLSd implementation, the hardware accelerated C/C++ implementation of Diana takes less than
1 microsecond per pair.

Another point of comparison we can make is with respect to delete operations. While the query
time of Sophos and Diana will increase with the total number of deletes ever performed, the query
time of DLSd will only increase with the number of deletes since the last rebuild (or the current

33



epoch). As shown above, this makes a significant difference in the query time of DLSd.

References

[1] G. Asharov, M. Naor, G. Segev, and I. Shahaf. Searchable symmetric encryption: Optimal
locality in linear space via two-dimensional balanced allocations. In ACM Symposium on
Theory of Computing (STOC ’16), STOC ’16, pages 1101–1114, New York, NY, USA, 2016.
ACM.

[2] Adam J. Aviv, Seung Geol Choi, Travis Mayberry, and Daniel S. Roche. Oblivisync: Prac-
tical oblivious file backup and synchronization. In Network and Distributed System Security
Symposium (NDSS ’16), 2016.

[3] E.-O. Blass, T. Mayberry, G. Noubir, and K. Onarlioglu. Toward robust hidden volumes using
write-only oblivious RAM. In ACM Conference on Computer and Communications Security
(CCS ’14), pages 203–214, 2014.

[4] R. Bost. Sophos - forward secure searchable encryption. In ACM Conference on Computer
and Communications Security (CCS ’16), 20016.

[5] R. Bost, B. Minaud, and O. Ohrimenko. Forward and backward private searchable encryption
from constrained cryptographic primitives. In ACM Conference on Computer and Communi-
cations Security (CCS ’17), 2017.

[6] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Highly-scalable search-
able symmetric encryption with support for boolean queries. In Advances in Cryptology -
CRYPTO ’13. Springer, 2013.

[7] D. Cash and S. Tessaro. The locality of searchable symmetric encryption. In Advances in
Cryptology - EUROCRYPT 2014, 2014.

[8] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel Rosu,
and Michael Steiner. Dynamic searchable encryption in very-large databases: Data structures
and implementation. In Network and Distributed System Security Symposium (NDSS ’14),
2014.

[9] Bouncy Castle. Crypto API. In http: // www. bouncycastle. org .

[10] M. Chase and S. Kamara. Structured encryption and controlled disclosure. In Advances in
Cryptology - ASIACRYPT ’10, volume 6477 of Lecture Notes in Computer Science, pages
577–594. Springer, 2010.

[11] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption:
Improved definitions and efficient constructions. In ACM Conference on Computer and Com-
munications Security (CCS ’06), pages 79–88. ACM, 2006.

[12] Al Danial. Cloc. In http: // www. cloc. sourceforge. net .

34

http://www.bouncycastle.org 
http://www.cloc.sourceforge.net 


[13] I. Demertzis and C. Papamanthou. Fast searchable encryption with tunable locality. In ACM
International Conference on Management of Data (SIGMOD ’17), SIGMOD ’17, pages 1053–
1067, New York, NY, USA, 2017. ACM.

[14] Mohammad Etemad, Alptekin KÃĳpÃğÃĳ, Charalampos Papamanthou, and David Evans.
Efficient dynamic searchable encryption with forward privacy. CoRR, abs/1710.00208, 2017.

[15] B. A Fisch, B. Vo, F. Krell, A. Kumarasubramanian, V. Kolesnikov, T. Malkin, and S. M.
Bellovin. Malicious-client security in blind seer: a scalable private dbms. In IEEE Symposium
on Security and Privacy, pages 395–410. IEEE, 2015.

[16] TrueCrypt Foundation. Truecrypt. In http: // truecrypt. sourceforge. net/ .

[17] S. Garg, P. Mohassel, and C. Papamanthou. TWORAM: efficient oblivious RAM in two rounds
with applications to searchable encryption. In Advances in Cryptology - CRYPTO 2016, pages
563–592, 2016.

[18] E-J. Goh. Secure indexes. Technical Report 2003/216, IACR ePrint Cryptography Archive,
2003. See http://eprint.iacr.org/2003/216.

[19] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. In IEEE Sym-
posium on the Foundations of Computer Science (FOCS ’84), pages 464–479. IEEE Computer
Society, 1984.

[20] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious RAMs. Jour-
nal of the ACM, 43(3):431–473, 1996.

[21] P. Grubbs, T. Ristenpart, and V. Shmatikov. Why your encrypted database is not secure. In
Workshop on Hot Topics in Operating Systems (HotOS ’17), pages 162–168, New York, NY,
USA, 2017. ACM.

[22] F. Hahn and F. Kerschbaum. Searchable encryption with secure and efficient updates. In ACM
Conference on Computer and Communications Security (CCS ’14), CCS ’14, pages 310–320,
New York, NY, USA, 2014. ACM.

[23] S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Outsourced symmetric private
information retrieval. In ACM Conference on Computer and Communications Security (CCS
’13), pages 875–888, 2013.

[24] S. Kamara and T. Moataz. Boolean searchable symmetric encryption with worst-case sub-
linear complexity. In Advances in Cryptology - EUROCRYPT ’17, 2017.

[25] S. Kamara and C. Papamanthou. Parallel and dynamic searchable symmetric encryption. In
Financial Cryptography and Data Security (FC ’13), 2013.

[26] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable symmetric encryption. In
ACM Conference on Computer and Communications Security (CCS ’12). ACM Press, 2012.

[27] Seny Kamara and Tarik Moataz. SQL on structurally-encrypted databases. IACR Cryptology
ePrint Archive, 2016:453, 2016.

35

http://truecrypt.sourceforge.net/ 
http://eprint.iacr.org/2003/216


[28] K. Kurosawa and Y. Ohtaki. How to update documents verifiably in searchable symmetric
encryption. In International Conference on Cryptology and Network Security (CANS ’13),
pages 309–328, 2013.

[29] Russell W. F. Lai and Sherman S. M. Chow. Forward-secure searchable encryption on la-
beled bipartite graphs. In Applied Cryptography and Network Security - 15th International
Conference, ACNS 2017, Kanazawa, Japan, July 10-12, 2017, Proceedings, pages 478–497,
2017.

[30] K. Lewi and D. Wu. Order-revealing encryption: New constructions, applications, and lower
bounds. In ACM Conference on Computer and Communications Security (CCS ’16), 2016.

[31] Lucene. Parser. In http: // lucene. apache. org .

[32] X. Meng, S. Kamara, K. Nissim, and G. Kollios. Grecs: Graph encryption for approximate
shortest distance queries. In ACM Conference on Computer and Communications Security
(CCS 15), 2015.

[33] I. Miers and P. Mohassel. Io-dsse: Scaling dynamic searchable encryption to millions of indexes
by improving locality. Cryptology ePrint Archive, Report 2016/830, 2016. http://eprint.
iacr.org/2016/830.

[34] T. Moataz. Clusion. https://github.com/encryptedsystems/Clusion.

[35] M. Naor and V. Teague. Anti-presistence: history independent data structures. In STOC
’01: Proceedings of the thirty-third annual ACM symposium on Theory of computing, pages
492–501, New York, NY, USA, 2001. ACM.

[36] M. Naveed, M. Prabhakaran, and C. Gunter. Dynamic searchable encryption via blind storage.
In IEEE Symposium on Security and Privacy (S&P ’14), 2014.

[37] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S.-G. Choi, W. George, A. Keromytis,
and S. Bellovin. Blind seer: A scalable private dbms. In Security and Privacy (SP), 2014
IEEE Symposium on, pages 359–374. IEEE, 2014.

[38] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S.-G. Choi, W. George, A. Keromytis,
and S. Bellovin. Blind seer: A scalable private dbms. In Security and Privacy (SP), 2014
IEEE Symposium on, pages 359–374. IEEE, 2014.

[39] R. Poddar, T. Boelter, and R. Ada Popa. Arx: A Strongly Encrypted Database System.
Technical Report 2016/591.

[40] E. Stefanov, C. Papamanthou, and E. Shi. Practical dynamic searchable encryption with small
leakage. In Network and Distributed System Security Symposium (NDSS ’14), 2014.

[41] Y. Zhang, J. Katz, and C. Papamanthou. All your queries are belong to us: The power of
file-injection attacks on searchable encryption. In USENIX Security Symposium, 2016.

36

http://lucene.apache.org
http://eprint.iacr.org/2016/830
http://eprint.iacr.org/2016/830
https://github.com/encryptedsystems/Clusion


A Insertion Independence and Write-Only Obliviousness

A.1 Insertion Independence

Definition A.1 (Insertion independence). Let Σ = (Setup,Token,Query,UToken,Update) be a
dynamic STE scheme with self-adjusting queries and consider the following probabilistic experiment
between a stateful adversary A and a challenger:

Expii
Σ,A(k):

1. A outputs a data structure DS0 and two sequences of m operations

op0 =
(
op0,1, · · · , op0,m

)
and op1 =

(
op1,1, · · · , op1,m

)
,

where op0,i, op1,i ∈ {qi, ui} and #DS0,m = #DS1,m where #DSj,m is the result of applying
all operations of the jth sequence on DS0;

2. the challenger computes (K, st,EDS0)← Setup(1k,DS0) and samples a bit b $← {0, 1};
3. for all i ∈ [m],

(a) if opb,i = qb,i, the challenger
i. computes qtkb,i ← Token(K, st, qb,i);

ii. computes (r,EDSb,i)← Query
(
EDSb,i−1, qtkb,i

)
;

(b) if opb,i = ub,i,
i. computes utkb,i ← UToken(K, st, ub,i);

ii. computes EDSb,i ← Update
(
EDSb,i−1, utkb,i

)
;

4. the adversary A(EDSb,m) output b′;
5. if b′ = b, the experiment outputs 1 and 0 otherwise.

We say that Σ is insertion independent if for all ppt adversaries A,

Pr
[
Expii

Σ,A(k) = 1
]
≤ 1

2 + negl(k).

A.2 Write-Only Obliviousness

In the following, we introduce a game based security definition for write-only oblivious structured
encryption scheme.

Definition A.2 (Write-only obliviousness). Let Σ = (Setup,Token,UToken,Query,Update) be a
STE and consider the following probabilistic experiments where A is a stateful adversary:

Expwo
Σ,A(k):

1. A outputs a data structure DS0 and two sequences of m update operations

op0 =
(
u0,1, · · · , u0,m

)
and op1 =

(
u1,1, · · · , u1,m

)
;

2. output EDS0 where (K, st,EDS0)← Setup(1k,DS0);

37



3. sample a bit b $← {0, 1};
4. for all i ∈ [m],

• output utkb,i ← UToken(K, st, ub,i);
• compute (⊥,EDSb,i)← Update

(
utkb,i,EDSb,i−1

)
;

5. A output b′;
6. if b′ = b, the experiment outputs 1 and 0 otherwise.

We say that Σ is write-only oblivious if for all ppt adversaries A,

Pr
[
Expwo

Σ,A(k) = 1
]
≤ 1

2 + negl(k).

B Proof of Theorem 4.7

Theorem 4.7. If Σ is
(
1,#DS

)
-snapshot secure, then it is insertion independent.

Proof. Assume that there exists a ppt adversary A for which Definition A.1 does not hold. We
write,

ε(k) = Pr
[
Expii

Σ,A(k) = 1
]
− 1

2
to denote a non-negligible probability in k. We use A to build a ppt adversary B for all ppt
simulator S, such that B is able to distinguish between RealssΣ,B(k) and IdealssΣ,B,S(k) experiments
with probability ε(k).
B starts by computing

(
DS0,op0,op1

)
← A(1k) where op0 and op1 contain the same number

of update operations and have the same length m. B outputs DS0. It then samples a random bit
b uniformly at random and outputs opb. Upon receiving EDSb,m, which is either the output of the
RealssΣ,B(k) or the IdealssΣ,B,S(k) experiment, B computes b′ ← A(EDSb,m) and outputs 1 if b′ = b
and 0 otherwise. Note that B is ppt since A is and that B will output 1 if and only if A succeeds
in guessing the bit b.

First, consider the case where EDSb,m is the output of the RealssΣ,B(k) experiment. In this case,
the view of A (while being simulated by B) is exactly the same as it would be in the Expii

Σ,A(k)
experiment. That is,

Pr
[
RealssΣ,B(k) = 1

]
= Pr

[
Expii

Σ,A(k) = 1
]

= ε(k) + 1
2 .

Second, consider the case when EDSb,m is the output of the IdealssΣ,B,S(k) experiment. The
simulator S takes as input z and LSN(DSb,m,opb) = #DS which is independent of b. Note, in
particular, that #DSb,m is independent of b because op0 and op1 lead to two data structures that
have the same volume. It follows that the simulated structure EDS produced by the simulator is
also independent of b which in turn implies that the best A(EDS) can do in guessing b is to choose
uniformly at random. We therefore have,

Pr
[
IdealssΣ,B,S(k) = 1

]
= Pr

[
Expii

Σ,A(k) = 1
]

= 1
2 .

38



Combining both equalities, we obtain,

Pr
[
RealssΣ,B(k) = 1

]
− Pr

[
IdealssΣ,B,S(k) = 1

]
= ε(k).

This concludes our proof.

C Proof of Theorem 5.1

Theorem 5.1. If SKE is an RCPA-secure encryption scheme and F is a pseudo-random function,
then DLS is (LS,LQ,LU,LR) secure.

Proof. Consider the simulator that works as follows.

1. Setup simulation. Given the setup leakage LS(MM) =
(∑

`∈LMM
#MM[`]

)
, the simulator

initializes two dictionaries DX0 and DX1 of size
∑

`∈LMM
#MM[`]. It then initializes a state

multi-map MM0 and three vectors vecl, veco vecn. For 1 ≤ i ≤
∑

`∈LMM
#MM[`]:

(a) compute stri, ctri
$← {0, 1}k where stri, ctri are of appropriate lengths;

(b) set DX0[stri] = ctri;
(c) add stri to vecl.

It then outputs EMM = (DX0,DX1).

2. UToken simulation. Given the update leakage

LU(MM, `,v, op) = #v,

for all op ∈ {edit+, edit−}. For 1 ≤ i ≤ #v,

(a) compute stri, valuei
$← {0, 1}k where stri, valuei are of appropriate lengths;

(b) add stri to vecn.

It then outputs UToken = (stri, valuei)i∈v̄.

3. Token simulation. Given the query leakage

LQ(MM, `) =
(

QP,RL,OP
)
,

where QP is the search pattern, RL = (#DXo[`],#DXn[`]) is the access pattern and OP is
the operation pattern. It adds ` to a set of searched labels S and executes the following steps.

(a) if MM0[`] = ⊥ (which occurs if ` is being searched for the first time),
i. set count = #DXo[`] from RL and initialize an empty set Sl;
ii. using OP, extract and remove all labels that were updates of ` from veco and add

them to Sl. This step is performed in a case if where a rebuild has already occurred
and some updates are in the old dictionary.

39



iii. from i = #Sl to count, pick and remove a label from vecl and add it to Sl.
iv. assign Sl to MM0[`]

(b) else if MM0[`] < #DXo[`] (which happens when there is a rebuild and some new updates
are now in the old dictionary),
• using OP, extract and remove all labels that were updates of ` from veco and

prepend them to MM0[`].
(c) set count = #DXn[`] from RL and initialize an empty set Sl;
(d) Using OP, add all labels that were updates of ` from vecn (all updates in the new

dictionary) and add them to Sl.

It then outputs otk = MM0[`] and ntk = Sl.

4. Rebuild simulation. Given the rebuild leakage

LR(MM) =
(
#delo`

)
`∈S,

where #delo` is the number of pairs with label ` that have been removed from the old dictionary
since the last rebuild. It executes the following steps,

(a) to remove the appropriate number of tuples it does the following. For ` ∈ S,
i. if MM0[`] 6= ⊥,

A. initialize vlab;
B. for count = 0 to #MM0[`]−#delo` ;

• compute str, ctr $← {0, 1}k where str, ctr are of appropriate lengths;
• set vlab[count] = str and DX1[str] = ctr;
• send the pair (str, ctr) to adversary.

C. set MM0[`] := vlab.
(b) To freshly encrypt the remaining pairs n the old dictionary, it sets counter to #vecl +

#veco +
∑

`∈K(MM0)\S #MM0[`] where vecl has all the still unsearched for labels from
setup, veco has the unsearched for updates which happened before the last rebuild and
K(MM0) \ S is a set of all ` that were searched for before the last rebuild but not since
(where K(MM0) is a set that contains all the labels of the state multi-map MM0). It
then does the following:

(c) initialize newl of size counter;
(d) for i = 1 to counter,

i. str, ctr $← {0, 1}k where str, ctr are of appropriate lengths;
ii. append (str, ctr) to newl;
iii. send (str, ctr) to adversary.
Now that the simulator has all fresh encryptions, it just needs to replace them in its
internal state.

(e) for all ` ∈ (K(MM0) \ S),
i. initialize vlab and for count = 0 to #MM0[`];

40



A. pick and remove a pair (str, ctr) from newl at random;
B. append str to vlab;
C. set DX1[str] = ctr.

ii. set MM0[`] := vlab.
(f) initialize vlab and for ` ∈ vecl,

i. pick and remove a pair (str, ctr) from newl at random;
ii. append str to vlab;
iii. set DX1[str] = ctr.

(g) vecl := vlab;
(h) initialize vlab and for ` ∈ veco,

i. pick and remove a pair (str, ctr) from newl at random;
ii. append str to vlab;
iii. set DX1[str] = ctr;

(i) set veco := vlab;
(j) prepend vecn to vec0 and delete everything from vecn;
(k) set DX0 := DX1 and delete everything from DX1;
(l) delete all labels from S.

Now, we have to show that for ppt adversaries A, the output of the real experiment and ideal
experiment are indistinguishable. This can be shown by standard sequence of games argument that
shows that EMM, utk and tk are indistinguishable from the real ones due to the RCPA security of
SKE and the pseudo-randomness of F .

Game0: It is the same as a real experiment.

Game1: It is the same as Game0 except that we replace the function F by a call to a random
function G. This is indistinguishable because of the pseudo-randomness of F .

Game2: It is the same as Game1 except that we do not generate any keys and replace encryption
steps to simply producing a random string. During rebuild step for searched for labels, we
simple remove encrypted values at random from the result set till the result set is of the
leaked size. RCPA security of SKE guarantees indistinguishability between a ciphertext and
a randomly generated string.

Game3: It is the same as Game2 except that we replace the random function G and use random
strings for labels. In setup, keep track of all labels (random strings) generated. When
generating search tokens, we pick these labels at random for a fresh query as the number of
labels originally in the old dictionary for the query is leaked. We further pick appropriate
labels from both dictionaries as the total number of updates in each dictionary and when they
were received is leaked. We assign these labels to this particular query for future repetitions.
During rebuild step for unsearched for labels, we pick them one by one at random and then
replace them with a new random string. This is the same as Game2 as the output of G and
a random string are indistinguishable.

Game3 is the same as an ideal experiment.

41



This concludes our proof.

D Proof of Theorem 6.1

Theorem D.1. If SKE is an RCPA-secure encryption scheme and F is a pseudo-random function,
then DLSd is (LS,LQ,LU) secure.

Consider the simulator that works as follows.

1. Setup simulation. The simulator takes as input the setup leakage LS(MM) =
∑

`∈LMM
#MM[`]

and initializes dictionaries DX0 and DX1 of size
∑

`∈LMM
#MM[`]. It also initializes a state

multi-map MM0 and three vectors vecl, veco vecn. Then For 1 ≤ i ≤
∑

`∈LMM
#MM[`]:

(a) compute stri, ctri
$← {0, 1}k where stri, ctri are of appropriate lengths;

(b) set DX0[stri] = ctri;
(c) add stri to vecl.

It then outputs EMM = (DX0,DX1)

2. Update Simulation. The simulator first simulates an update token utk and then outputs
the rebuilt label, value pairs for the adversary. To simulate the utk, it takes as input the
update leakage which is equal to LU(MM, `,v, op) = #v for all op ∈ {edit+, edit−}. To
output the rebuilt pairs, it takes as input the public parameter λ and also when a rebuild
gets completed. Then, for 1 ≤ v ≤ #v, It does the following:

(a) strv, valuev
$← {0, 1}k where strv, valuev are of appropriate lengths;

(b) add strv to vecn.

It outputs utk = (strv, valuev)v∈v̄, and executes the following steps if the rebuild was com-
pleted:

(a) delete vecl and MM0;
(b) set veco := vecn and reset vecn where vecn had all the updates and re-inserts during

current rebuild epoch.

If the rebuild was not complete, then for v ∈ [λ],

(a) strv, valuev
$← {0, 1}k where strv, valuev are of appropriate lengths

(b) add strv to vecn and output (strv, valuev).

3. Token Simulation. The simulator takes as input the query leakage which is equal to
LQ(MM, `) =

(
QP,RL,OP

)
where QP is the search pattern, RL = #MM[`] is the response

length pattern and OP is the operation pattern which captures the update tokens and rebuild
insertions of `. It first extracts from RL and OP the old and new response lengths, #DXo[`]
and #DXn[`] respectively, such that #MM[`] = #DXo[`] + #DXn[`]. It initializes empty
vectors S1 and S2 and if the first rebuild hasn’t been completed yet it executes the following
steps:

42



(a) if MM0[`] = ⊥:
i. set count = #DXo[`];

ii. from i = 1 to count, pick and remove a label from vecl and add it to S1;
iii. assign S1 to MM0[`].

(b) Using OP, extract all labels that were updates of ` from vecn, and add them to S2.

But if the first rebuild was completed, it simply does the following:

(a) using OP, extract all labels that were updates or re-inserts of ` from vec0 and add to
S1;

(b) using OP, extract all labels that were updates or re-inserts of ` from vecn and add to
S2.

It then outputs otk = S1 and ntk = S2.

Now, we have to show that for all ppt adversaries A, the output of the real experiment and ideal
experiment are indistinguishable. This can be shown by standard sequence of games argument that
shows that EMM, utk and tk are indistinguishable from the real ones due to the RCPA security of
SKE and the pseudo-randomness of F .

Game0: It is the same as a real experiment.

Game1: It is the same as Game0 except that we replace the function F by a call to random function
G. This is indistinguishable because of the pseudo-randomness of F .

Game2: It is the same as Game1 except that we do not generate any keys and replace encryption
steps to simply producing a random string. During rebuild step for a searched for label, we
simply remove encrypted values at random from the result set till the result set is of the
leaked size. RCPA security of SKE guarantees indistinguishability between a ciphertext and
a randomly generated string.

Game3: We now get rid of G and use random strings for labels. In setup, keep track of all labels
(random strings) generated. When generating search tokens, we pick these labels at random
for a fresh query as the number of labels originally in the old dictionary for the query is leaked
if the first rebuild hasn’t been completed. We assign these labels to this particular query for
future repetitions till the first rebuild is completed. If it has, these labels have already been
re-inserted so using OP, we can retrieve them. We further pick appropriate labels from both
dictionaries as the total number of updates and re-inserts in each dictionary and when they
were received is also leaked. During rebuild step for unsearched labels, we pick λ labels one
by one at random and then replace them with a new random string. This is the same as
Game2 because the output of G and a random string are indistinguishable.

Game3: It is the same as an ideal experiment. The rebuild step is now essentially equivalent to
sending λ label, value pairs (which are both random strings now) whenever Update protocol
is executed.

43



E Proof of Theorem 5.2

Theorem 5.2. If SKE is an RCPA-secure encryption scheme and F is a pseudo-random function,
then DLS is

(
LSN,m, `

)
-multi-snapshot secure, for m, ` ∈ poly(k).

Proof. Consider the simulator that works as follows.

1. The snapshot leakage is composed of the total number of label, value pairs in the old
dictionary. So the simulator initializes DX0 and DX1 of the size

∑
`∈LMM

#MM[`]. For
1 ≤ i ≤

∑
`∈LMM

#MM[`], it performs the following steps:

(a) compute stri, ctri
$← {0, 1}k where stri, ctri are of appropriate lengths;

(b) set DX0[stri] = ctri.

Then output EMM = (DX0,DX1) and set a variable size1 = 0 which captures the size of DX1.

2. The snapshot leakage is composed of the size of the dictionaries (#DXo,#DXn). The simulator
then sets count to be #DXn − size1 where size1 captures the size of DXn before the update.
Then for 1 ≤ v ≤ count, it does the following:

(a) compute str, value $← {0, 1}k where str, value are of appropriate lengths;
(b) set DX1[str] = ctr.

It outputs EMM = (DX0,DX1) and sets size1 to #DXn.

3. The rebuild eakage for a snapshot adversary is, similarly, composed of the size of the dictio-
naries (#DXo,#DXn) after the rebuild. The simulator sets count to be #DXo − size1 as the
DXn is now DXo. Then for i from 1 to count, it does the following:

(a) compute str, ctr $← {0, 1}k where str, ctr are of appropriate lengths;
(b) set DX1[str] = ctr.

It then sets size1 := 0 , DX0 := DX1, deletes everything from DX1 and outputs EMM =
(DX0,DX1).

Now, we have to show that for ppt adversaries A, the output of the real experiment and ideal
experiment are indistinguishable. This can be shown by standard sequence of games argument that
shows that snapshots of EMM after different protocols are indistinguishable from the real ones due
to the RCPA security of SKE and the pseudo-randomness of F .

Game0: It is the same as a real experiment.

Game1: It is the same as Game0 except that we replace the function F by a call to random function
G. This is indistinguishable because of the pseudo-randomness of F .

Game2: It is the same as Game1 except that we do not generate any keys and replace encryption
steps to simply producing a random string. During rebuild step for searched for labels, we
now use the snap leakage capturing the decrease in size (#del) of the old dictionary, and
just create label, value pairs that are exactly #del less than the original size in number.

44



It does not matter if we remove from each individual result sets of the searched for labels
accurately as long as the overall size decrease is satisfied. RCPA security of SKE guarantees
indistinguishability between a ciphertext and a randomly generated string.

Game3: It is the same as Game2 except that we now remove the random function G and replace it
with random strings for labels and during rebuild. We simply generate random label, value
pairs that are equal in number to the new size of the old dictionary and add them to the
new dictionary. This is the same as Game2 because output of G and a random string are
indistinguishable.

Game3 is the same as an ideal experiment.

F Proof of Theorem 6.2

Theorem F.1. If SKE is an RCPA-secure encryption scheme and F is a pseudo-random function,
then DLSd is

(
m,LSN

)
-snapshot secure, for m, ` ∈ poly(k).

Proof. Consider the simulator that works as follows.

1. The snapshot leakage consists of the total number of label, value pairs in the old dictionary.
The simulator takes this as input and initializes a dictionary DX0 of size

∑
`∈LMM

#MM[`] and
an empty dictionary DX1. Then for 1 ≤ i ≤

∑
`∈LMM

#MM[`], it does the following:

(a) stri, ctri
$← {0, 1}k where stri, ctri are of appropriate lengths;

(b) set DX0[stri] = ctri.

It then outputs EMM = (DX0,DX1) and sets size1 = 0 which captures the size of DX1.

2. We can derive from the snapshot leakage the size of the old and new dictionaries, #DXo and
#DXn respectively. The simulator takes this derived leakage as input and simulates Update
as follows:

(a) if #DXn is 0 (this is when a rebuild just got completed), it sets count to be #DXo−size1
and for 1 ≤ v ≤ count it does the following,

i. str, value $← {0, 1}k where str, value is of appropriate lengths;
ii. set DX1[str] = ctr.

If size1 > 0, it then sets size1 := 0, DX0 := DX1, deletes everything from DX1. It then
outputs EMM = (DX0,DX1).

(b) Otherwise, it sets count to be #DXn−size1 and for 1 ≤ v ≤ count it does the following,

i. str, value $← {0, 1}k where str, value is of appropriate lengths;
ii. set DX1[str] = ctr.

It then outputs EMM = (DX0,DX1) and sets size1 to #DXn.

45



Now, we have to show that for all ppt adversaries A, the output of the real experiment and ideal
experiment are indistinguishable. This can be shown by standard sequence of games argument that
shows that snapshots of EMM after different protocols are indistinguishable from the real ones due
to the RCPA security of SKE and the pseudo-randomness of F .

Game0: It is the same as a real experiment.

Game1: It is the same as Game0 except that we replace the function F by a call to random function
G. This is indistinguishable because of the pseudo-randomness of F .

Game2: It is the same as Game1 except that we do not generate any keys and replace encryption
steps to simply producing a random string. During rebuild step for searched for labels, as λ is
leaked we simply output λ pairs without caring about deletes. When the rebuild is complete,
we would automatically send the the right number of pairs. RCPA security of SKE guarantees
indistinguishability between a ciphertext and a randomly generated string.

Game3: We now get rid of G and use random strings for labels and during rebuild, we simply
generate random label, value pairs that are equal in number to the new size of the old
dictionary and add them to the new dictionary. This is the same as Game2 because output
of G and a random string are indistinguishable.

Game3 is the same as an ideal experiment.

This concludes our proof.

46


	Introduction
	Our Contributions

	Related Work
	Preliminaries
	Cryptographic Primitives

	Definitions
	Security Against a Persistent Adversary
	Security Against a Snapshot Adversary
	Implications of Breach Resistance

	DLS: A Dual-Secure Multi-Map Encryption Scheme
	Overview
	Detailed Description
	Security

	DLSd: DLS with De-amortized Rebuilding
	Security

	Empirical Evaluation
	Insertion Independence and Write-Only Obliviousness
	Insertion Independence
	Write-Only Obliviousness

	Proof of Theorem 4.7
	Proof of Theorem 5.1
	Proof of Theorem 6.1
	Proof of Theorem 5.2
	Proof of Theorem 6.2

