
Universally Composable Accumulators

Foteini Badimtsi1[0000−0003−3296−5336], Ran Canetti2[0000−0002−5479−7540], and Sophia
Yakoubov2[0000−0001−7958−8537]

1 George Mason University, Fairfax, VA, USA foteini@gmu.edu
2 Boston University, Boston, MA, USA

{canetti,sonka}@bu.edu

Abstract. Accumulators, first introduced by Benaloh and de Mare (Eurocrypt
1993), are compact representations of arbitrarily large sets and can be used to
prove claims of membership or non-membership about the underlying set. They
are almost exclusively used as building blocks in real-world complex systems,
including anonymous credentials, group signatures and, more recently, anonymous
cryptocurrencies. Having rigorous security analysis for such systems is crucial for
their adoption and safe use in the real world, but it can turn out to be extremely
challenging given their complexity.

In this work, we provide the first universally composable (UC) treatment of
cryptographic accumulators. There are many different types of accumulators:
some support additions, some support deletions and some support both; and,
orthogonally, some support proofs of membership, some support proofs of non-
membership, and some support both. Additionally, some accumulators support
public verifiability of set operations, and some do not. Our UC definition covers all
of these types of accumulators concisely in a single functionality, and captures the
two basic security properties of accumulators: correctness and soundness. We then
prove the equivalence of our UC definition to standard accumulator definitions.
This implies that existing popular accumulator schemes, such as the RSA accu-
mulator, already meet our UC definition, and that the security proofs of existing
systems that leverage such accumulators can be significantly simplified.

Finally, we use our UC definition to get simple proofs of security. We build an
accumulator in a modular way out of two weaker accumulators (in the style of
Baldimtsi et al. (Euro S&P 2017), and we give a simple proof of its UC security.
We also show how to simplify the proofs of security of complex systems such as
anonymous credentials. Specifically, we show how to extend an anonymous cre-
dential system to support revocation by utilizing our results on UC accumulators.

1 Introduction

Accumulators, first introduced by Benaloh and de Mare [Bd94], are compact represen-
tations of arbitrarily large sets. Despite being small — ideally constant-size relative to
the size of the set they represent! — they enable verification of statements about the set.
Given a membership witness for some object x together with the accumulator, anyone
can verify that x is in the accumulated set. If the accumulator is a universal accumula-
tor [LLX07], it also supports non-membership witnesses that can be used to verify that
elements are not in the accumulated set. Typically, an accumulator is owned by an en-
tity called an accumulator manager who can add elements to (and, if the accumulator is



dynamic [CL02], remove elements from) the set. If the accumulator is strong [CHKO08],
even a corrupt accumulator manager cannot forge a proof of (non-)membership.

Many crucial primitives are actually special cases of accumulators. For instance, dig-
ital signatures are accumulator schemes, where the signature verification key is the ac-
cumulator representing the set of signed messages, and the signatures are membership
witnesses. The owner of the signing key is the accumulator manager, and she can add
elements to the set by signing them. Of course, she cannot un-sign elements (without
publishing a revocation list, which is not constant in size), and she cannot produce a
proof that a given element has not been signed, so this accumulator is neither dynamic
nor universal. She can also always prove the membership of arbitrary elements, so this
accumulator is not strong.

Another example of an accumulator is a Merkle hash tree. The tree root is the ac-
cumulator representing the set of leaf nodes, and the authenticating paths through the
tree are membership witnesses. This accumulator supports both element addition and
deletion, but when either of those events occur, all existing witnesses must be updated,
requiring total work that is linear in the number of member elements. In many situations,
this is prohibitively inefficient. The Merkle hash tree accumulator is strong, because all
additions and deletions are publicly verifiable (by means of re-execution). Though the
intuitive Merkle hash tree accumulator does not support proofs of non-membership, it
can be modified to be universal [CHKO08].

One construction of a universal, dynamic (but not strong) accumulator with efficient
update algorithms is the RSA accumulator. It is the original accumulator introduced
by Benaloh and de Mare [Bd94], augmented with dynamism by Camenisch and Lysyan-
skaya [CL02], and with universality by Li, Li and Xue [LLX07]. It is one of the most
popular accumulator constructions because of its compactness and efficiency.

Although accumulators are frequently analyzed as stand-alone primitives, they are
almost exclusively used as building blocks in real-world complex systems, including anony-
mous credentials [CL02,Ngu05,CKS09,BCD+17], group signatures [CL02] and, more re-
cently, anonymous cryptocurrencies [MGGR13]. Having rigorous security analysis for
such systems is crucial for their adoption and safe use in the real world, but it can turn
out to be extremely challenging given their complexity. When a system consists of multi-
ple building blocks, even if each one of them is proven secure independently, the security
analysis of the whole needs to be done from scratch.

Universal Composability. Universally Composable (UC) security [Can01], addresses
this problem. Any protocol that has been shown to be UC-secure will maintain its security
properties even when it is used concurrently with other arbitrary protocols as part of a
larger system. This allows one to formally argue about the security of a complex scheme
in a much simpler and cleaner way, as long as all the protocols used within it have already
been proven to be UC-secure.

Showing that a protocol is UC-secure consists of two steps. First, we write out a set
of instructions called the ideal functionality, which define how we would instantiate the
primitive if we had an incorruptible third party to delegate its operation to. Second, we
show that any attack an adversary carries out against the protocol, it can also carry
out against the ideal functionality. This is done by arguing that for any efficient adver-
sary and environment (which sets all parties’ inputs, receives all parties’ outputs and
additionally receives information from the adversary), there exists a simulator such that
the environment cannot tell the difference between interacting with the protocol and

2



adversary, and interacting with the ideal functionality and simulator. This proves that
any time it suffices to use our ideal functionality within a larger system, we can replace
it with our protocol and the system will remain secure.

The modularity and the strong security guarantees provided by UC suggest that pro-
tocols should always be designed and proven secure in the UC framework. However, this
is only the case for a small fraction of proposed cryptographic schemes. One roadblock to
using the UC framework is that not all commonly used sub-protocols have UC definitions
and proofs. Some such sub-protocols have already been defined and analyzed in the UC
framework (e.g. digital signatures [Can01,Can04], zero-knowledge proofs [CKS11], etc.),
but others have not. Cryptographic accumulators are one example of a very common
primitive that has never been considered in the context of UC security.

Our Results. In this work, we make the following contributions:

1. We provide the first UC definition (ideal functionality) for cryptographic accumu-
lators. There are many functionality flavors of accumulators: accumulators might
support only additions, only deletions or both, and they might support proofs of
membership, proofs of non-membership, or both. Our UC definition covers all of
these possibilities in a modular way.

2. We then prove the equivalence of our UC definition to standard accumulator security
definitions. This implies that existing secure accumulator constructions — such as
the RSA accumulator [Bd94,CL02,LLX07] — are UC secure.

3. Finally, we discuss how our UC definition simplifies the proofs of security for schemes
that use accumulators as a building block. First, we build an accumulator out of two
weaker accumulators (as in [BCD+17], but with stronger privacy properties), and
give a simple UC proof of security for that composite accumulator, which we call
Braavos′. Then, we consider how UC simplifies proofs of security in more complex
systems such as anonymous credentials.

Note that when defining a new ideal functionality, there are two possible scenarios:
either existing constructions can be proven to securely realize the new functionality (as
with digital signatures [Can04]), or new constructions must be developed (as with com-
mitment schemes [CF01]). Our second contribution shows that our accumulator function-
ality is in the first scenario; popular, existing accumulator constructions already satisfy
it. This greatly simplifies the security analysis of existing and future systems that use
cryptographic accumulators as a building block.

Informally, two classical properties are considered for cryptographic accumulators.
The first is correctness: for every element inside (or outside, for negative accumulators)
the accumulated set, an honest witness holder can always prove membership (or non-
membership, for negative accumulators) in the set. The second is soundness: for every
element outside (or inside, for negative accumulators) the accumulated set, it is infeasible
to prove membership (or non-membership, for negative accumulators).

Our ideal functionality is different than most ideal functionalities in that it requires
as input from the simulator all of the accumulator algorithms (as previously done in the
context of digital signatures [Can04]). This is actually a very intuitive way to build an
ideal functionality, since it only deviates from the algorithm outputs when necessary for
correctness or soundness. We explain this in more detail in Sec. 3.

We chose not to incorporate secrecy or privacy requirements into our ideal functional-
ity since they depend on specific applications and vary considerably; thus, they are best

3



made separately, as an additional “layer” on top of the basic correctness guarantees cap-
tured in this work. Additionally, privacy-aware constructions often use accumulators and
privacy-enhancing mechanisms (such as zero-knowledge proofs) as two separate modules,
making the formalization here more conducive to modular analysis. We exemplify this
point by sketching a modular analysis of the Baldimtsi et al. [BCD+17] construction of
revocable anonymous credentials from zero knowledge proofs and accumulators.

Outline. We start by setting notation and presenting classical accumulator definitions
(but with a twist) in Section 2. Then, in Section 3, we give an ideal UC functionality
for accumulators that encompasses both of the properties listed above. In Section 4,
we argue that any accumulator that has these properties meets our UC definition, and
vice versa. Finally, in Section 5 we discuss how our UC definition of accumulators would
simplify the security proof of an existing complex system like anonymous credentials.

1.1 Accumulator Applications

To showcase the importance of a UC analysis for cryptographic accumulators we briefly
discuss a few of the most interesting systems that use accumulators as a main building
block. The security analysis of all the following systems would be much simpler when
the underlying accumulator is UC-secure.

Access Control. Authentication of users is vital to most of the electronic systems we
use today. It is usually achieved by giving the user a token, or credential, that the user
must present to prove that she has permission to access a service. A naive construction
for an access control system is to maintain a whitelist of authorized users (i.e., by storing
their credentials). Whenever a user wants to access the system she just needs to present
her credential, and as long as it is on the whitelist, the user will be given access. When
a user needs to be revoked, her credential is just removed from the whitelist. Despite
its simplicity, such a solution is not practical, since the size of the whitelist will have to
grow linearly with the number of participating users.

Cryptographic accumulators enable more efficient access control systems. Instead of
keeping a whitelist, an accumulator can be used to maintain the set of authorized users.
Whenever a user is given access to the resource, she is given a credential that can be
seen as an accumulator membership witness. One possible construction uses the digital
signature accumulator together with a blacklist of revoked users, which grows linearly
with the number of revocations. This construction is the one most commonly used in
public key infrastructures (PKIs), where a certificate revocation list (CRL) that contains
the revoked certificates is published periodically. This solution is more efficient, since
usually the number of revoked users is much smaller than the number of total users in
the system. However, it is still not ideal, since the blacklist can grow to significant size.
A dynamic accumulator — which supports both element additions and deletions while
remaining small — is a much better solution.

Anonymous Credentials. The inefficiency of the naive whitelist and blacklist solutions
for access control becomes even more problematic when anonymity is considered as a
goal of the system: if a user wishes to anonymously show that her credential is on a
whitelist (or not on a blacklist), then she would have to perform a zero-knowledge proof
of membership (or non-membership) which would require cost linear to the size of the
corresponding list. Given how expensive zero knowledge proofs usually are, it is important

4



to avoid doing work linear in the number of valid or revoked members in a system. To
avoid this inefficiency, anonymous credentials schemes (the most prominent solution
for anonymous user authentication) make use of dynamic cryptographic accumulators
as an essential building block to allow for efficient proofs of membership (and practical
user revocation) [CL02,Ngu05,CKS09]. Idemix [CV02], the leading anonymous credential
system by IBM, is such an example of an anonymous credential scheme that employs
cryptographic accumulators for user membership management [BCD+17].

Cryptocurrencies. As discussed above, when a proof of membership (or non-membership)
needs to be done in zero-knowledge, the naive whitelist and blacklist solutions are not
realistic. Anonymous cryptocurrencies, like anonymous credentials, require such zero-
knowledge proofs. In order to prove that a payment is valid (and is not a double-spend),
when a user wishes to spend a coin that she owns, she must first prove that her coin
does not belong in a list of previously spent coins. To ensure anonymity, such a proof
must be done in zero-knowledge. Universal cryptographic accumulators are used in Zero-
coin [MGGR13] to maintain the set of spent coins while enabling efficient zero-knowledge
proofs of non-membership.

Group Signatures. Accumulators have been suggested for building other cryptographic
primitives such as group signatures. In a group signature scheme, the group manager
maintains a list of valid group members, and periodically grants (or revokes) member-
ship. There has been much research on the topic of group signatures, and a number
of efficient schemes have been proposed. One of the first practical solutions supporting
revocation uses cryptographic accumulators for user revocation (Camenisch and Lysyan-
skaya [CL02], building on the ACJT group signature scheme [ACJT00]).

2 Revisiting Classical Accumulator Definitions

We first discuss accumulator terminology and notation and review accumulator algo-
rithms. Then, in Section 2.2, we revise the classical accumulator definitions of security
to be more modular, and to support a wider range of accumulator functionalities. These
changes make the transition to the UC model more clear and natural.

2.1 Notation and Algorithms

An accumulator is a compact representation of a set S = {x1, . . . xn}, which can be used
to prove statements about the underlying set. Different accumulator types and properties
have been considered in the literature. Here, we use the terminology and definitions of
Baldimtsi et al. [BCD+17], who provide a modular view of accumulator functionalities.
Like them, we consider four basic types of accumulators:

– Static accumulator : represents a fixed set.
– Additive accumulator : supports only addition of elements to the set.
– Subtractive accumulator : supports only deletion of elements from the set.
– Dynamic accumulator [CL02]: supports both additions and deletions.

Note that a trivial way to achieve deletions and additions is by re-instantiating the
accumulator with the updated set. Although simple, this takes a polynomial amount

5



of time in the number of element additions or deletions which have been performed up
until that point. For practical applications a dynamic accumulator should support both
additions and deletions in time which is either independent of the number of operations
performed altogether, or at least sublinear in this number.

In addition to considering the types of modifications we can make to accumulated
sets, we also consider the types of proofs (membership proofs, non-membership proofs,
or both) accumulators support.

– Positive accumulator : supports membership proofs.
– Negative accumulator : supports non-membership proofs.
– Universal accumulator [LLX07]: supports both types of proofs.

We consider three types of parties in the accumulator setting. The accumulator man-
ager is a special party who is the “owner” of the accumulated set: she creates the ac-
cumulator, adds and deletes elements, and creates membership and non-membership
witnesses. A witness holder, or user, is responsible for an accumulated element (i.e. she
owns a credential in a system for which an accumulator is used). She is interested in
being able to prove the (non-)membership of that element to others, so she maintains
the witness for that element, by updating it when/if necessary. Finally, a verifier is any
third party who is only interested in checking the proofs of (non-)membership (e.g. a
gatekeeper checking credentials).

We now describe the algorithms performed by each party, and summarize them in
Figure 1. In Figure 2 we summarize the notation used to describe the different accumu-
lator algorithm input and output parameters.

Accumulator Manager Algorithms. The following are algorithms performed by the
accumulator manager who creates the accumulator and maintains it as required. If the
accumulator is additive, she can add elements to it by calling the Update algorithm
with Op = Add. If the accumulator is subtractive, she can delete elements by calling
Update with Op = Del. If it is dynamic, she can do both. If the accumulator is positive,
the accumulator manager can create membership witnesses by calling WitCreate with
stts = in (where stts is a variable representing the status of an element, which can be in
or out of the set); if it is negative she can create non-membership witnesses by calling
WitCreate with stts = out. If it is universal, she can do both.

– Gen(1λ, S0) → (sk, a0,m0) outputs the accumulator manager’s secret key sk, the
accumulator a0 (representing the initial set S0 ⊆ D of elements in the accumulator,
where D is the domain of the accumulator3), and an auxiliary value m0 necessary for
the maintenance of the accumulator (i.e. one could think of mt being the accumulator
manager’s memory or storage at step t).

– Update(Op, sk, at,mt, x) → (at+1,mt+1, w
x
t+1, upmsgt+1) updates the accumulator

by either adding or deleting an element. If Op = Add it adds the element x ∈ D to
the accumulator and outputs the updated accumulator value at+1 and auxiliary value
mt+1, as well as the membership witness wxt+1 for x and an update message upmsgt+1,
which enables witness holders to bring their witnesses up to date. If Op = Del then

3 The allowable S0 sets vary from accumulator to accumulator. There are accumulators that
support only S0 = ∅; others support any polynomial-size S0, and yet others support any S0

that can be expressed as a polynomial number of ranges.

6



it deletes the element x from the accumulator and outputs at+1, mt+1 and upmsgt+1

as before, as well as a non-membership witness wxt+1.

– WitCreate(stts, sk, at,mt, x, (upmsg1, . . . , upmsgt)) → wxt creates a (non-) member-
ship witness. If stts = in it generates a membership witness wxt for x, and if stts = out
it generates a non-membership witness. (Of course, this algorithm should only suc-
ceed in generating a valid membership witness if x is actually in the set, and in
generating a non-membership witness if x is not in the set.)

Remark 1. The parameters sk, m and upmsg are optional for some accumulator con-
structions. For instance, in a Merkle hash tree accumulator there is no secret key sk,
and in a digital signature accumulator there is no auxiliary value m or update messages
upmsg. Notice that the WitCreate algorithm takes in both the auxiliary value m and
the update messages, which seems redundant; after all, the update messages can always
be kept as part of m. The reason we provide the algorithm with both arguments is to
account for scenarios which do not use any auxiliary storage.

Remark 2. The notion of a public key is absent on the above definition. One can con-
sider the accumulator value a to be the “public key” of the scheme, since it is used for
verification. In fact, in the digital signature accumulator construction, the public verifi-
cation key is equal to the accumulator value. However, unlike a typical public key, the
accumulator value can evolve over time.

Witness Holder Algorithms. Witness holders are interested in proving the (non-
)membership of certain elements, and thus maintain witnesses for those elements. They
use a witness update algorithm WitUp to sync their witnesses with the accumulator when
additions or deletions occur.

– WitUp(stts, x, wxt , upmsgt+1)→ wxt+1 updates the membership witness for element x
(if stts = in) or the non-membership witness if stts = out. The updates use the update
messages upmsg, which contain information about changes to the accumulator value
(e.g. that a given element was addedv, what the new accumulator value is, etc).

Verifier/Third Party Algorithms. The last category of accumulator users are the
verifiers (or third parties) who are only interested in checking proofs of (non-)membership.
They do so by calling the VerStatus algorithm.

– VerStatus(stts, at, x, w
x
t ) → φ checks whether the membership witness (if stts = in)

or the non-membership witness (if stts = out) for element x is valid; it returns φ = 1
if it is, and φ = 0 if it is not.

If the accumulator is strong (Definition 4), the accumulator should be secure even
against a cheating accumulator manager. That is, all modifications that an accumulator
manager makes to the accumulator should be publicly verifiable. The differences in the
algorithms are as follows: (a) Gen and Update also output a value v, which essentially is
a proof that an accumulator was created/updated correctly. (b) Additional verification
algorithms VerGen and VerUpdate can be used to check these proofs.

7



Algorithm Inputs Outputs

Accumulator Manager Algorithms

Gen 1λ, S0 sk, a0,m0, v
Update Opt, sk, at,mt, x at+1,mt+1, w

x
t+1, upmsgt+1, vt+1

WitCreate stts, sk, at,mt, (upmsg1, . . . , upmsgt), x wxt
Witness Holder Algorithms

WitUp stts, x, wxt , upmsgt+1 wxt+1

Verifier or Third Party Algorithms
VerStatus stts, at, x, w

x
t φ ∈ {0, 1}

Additional Third Party Algorithms in Strong Accumulators

VerGen 1λ, S0, a0, v φ ∈ {0, 1}
VerUpdate Opt, at, at+1, x, vt+1 φ ∈ {0, 1}

Fig. 1. Accumulator Algorithms. In static accumulators, the Update, WitUp and VerUpdate
algorithms do not exist. In additive accumulators, Op is required to be equal to Add everywhere.
In subtractive accumulators, Op is required to be equal to Del. In dynamic accumulators, Op
can be either. In positive accumulators, stts is required to be equal to in everywhere. In negative
accumulators, stts is required to be equal to out. In universal accumulators, stts can be either.

λ: The security parameter.
D: The domain of the accumulator (the set of elements that the accumulator can accumulate).

Often, D includes all elements (e.g., {0, 1}∗). Sometimes, D is more limited (e.g., primes of
a certain size).

sk: The accumulator manager’s secret key or trapdoor. (The corresponding public key, if one
exists, is not modeled here as it can be considered to be a part of the accumulator itself.)

t: A discrete time / operation counter.
at: The accumulator at time t.
mt: Any auxiliary values which might be necessary for the maintenance of the accumulator.

These are typically held by the accumulator manager. Note that while the accumulator itself
should be constant (or at least sub-linear) in size, m may be larger.

St: The set of elements in the accumulated set at time t. Note that S0 can be instantiated
to be different, based on the initial sets supported by the accumulator in question. Most
accumulators assume S0 = ∅.

x, y: Elements which might be added to or removed from the accumulator.
wxt : A witness that element x is (or is not) in the accumulated set at time t.

stts ∈ {in, out}: A flag indicating of whether a given element is in the accumulated set or not.
Op ∈ {Add,Del}: A flag indicating of whether a given element is being added or deleted.

upmsgt: A broadcast message sent (by the accumulator manager, if one exists) at time t to all witness
holders immediately after the accumulator has been updated. This message is meant to
enable all witness holders to update the witnesses they hold for consistency with the new
accumulator. It will often contain the new accumulator at, and the nature of the update
itself (e.g., “x has been added and witness wxt has been produced”). It may also contain
other information.

v: A witness that the accumulator a0 was generated correctly. (Only present in strong accu-
mulators.)

vt: A witness that the accumulator at was updated correctly. (Only present in strong accumu-
lators.)

Fig. 2. Accumulator Algorithm Input and Output Parameters (from Baldimtsi et al. [BCD+17]).

2.2 Security Definitions

A cryptographic accumulator should satisfy two basic security properties: correctness and
soundness. In this section, we review the classical correctness and soundness properties of
accumulators (stated, for instance, by Ghosh et al. [GOP+16]). We revise these classical
definitions in several ways.

1. We explicitly consider the correctness of the witness update algorithm, which [GOP+16]
consider only as an efficiency shortcut, and thus exclude from their definitions. Since
the update algorithm is used in practice, we believe it is important to include in the
formal definitions.

8



2. We allow the generation of membership witnesses during addition (or non-membership
witnesses during deletion) as is commonly done in practice, while [GOP+16] only con-
siders the generation of witnesses from a fixed accumulator state. Because of this,
we have two separate notions of correctness — correctness and creation-correctness.

Correctness Definitions. Definitions 1 and 2 give the correctness requirements for
the more general case of a universal dynamic accumulator. Informally, an accumulator
is correct or creation-correct if an up-to-date version of a witness produced by Update
or WitCreate, respectively, can be used to verify the (non-)membership of the corre-
sponding element. It is easy to adapt our definition for cases of additive/subtractive or
positive/negative. To get a definition for an additive accumulator, restrict all instances
of Op to be equal to Add; to get a definition for a subtractive accumulator, restrict all
instances of Op to be equal to Del. Similarly, to get a definition for a positive accumu-
lator, restrict all instances of stts to be equal to in; to get a definition for a negative
accumulator, restrict all instances of stts to be equal to out.

Definition 1 (Correctness). A universal dynamic accumulator is correct for a given
domain D of elements if an up-to-date witness wx corresponding to value x can always be
used to verify the (non-)membership of x in an up-to-date accumulator a. More formally,
there exists a negligible function ν in the security parameter λ such that for all:

– security parameters λ,
– initial sets S0 ⊆ D,
– values x ∈ D,
– positive integers t polynomial in λ,
– positive integers tx such that 1 ≤ tx ≤ t,
– operations Op ∈ {Add,Del} (with stts = in if Op = Add and stts = out if Op = Del),
– lists of tuples [(y1,Op1), . . . , (ytx−1,Optx−1)], [(ytx+1,Optx+1), . . . , (yt,Opt)], where

• yi ∈ D and Opi ∈ {Add,Del} for i ∈ [1, . . . , tx − 1, tx + 1, . . . , t];
• If Op = Add, then (x,Del) does not appear in [(ytx+1,Optx+1), . . . , (yt,Opt)]; and
• If Op = Del, then (x,Add) does not appear in [(ytx+1,Optx+1), . . . , (yt,Opt)],

The following holds:

Pr


(a0, sk)← Gen(1λ, S0);
(ai,mi, w

yi
i , upmsgi)← Update(Opi, sk, ai−1,mi−1, yi) for i ∈ [1, . . . , tx − 1];

(atx ,mtx , w
x
tx , upmsgtx)← Update(Op, sk, atx−1,mtx−1, x);

(ai,mi, w
yi
i , upmsgi)← Update(Opi, sk, ai−1,mi−1, yi) for i ∈ [tx + 1, . . . , t];

wxi ←WitUp(stts, x, wxi−1, upmsgi) for i ∈ [tx + 1, . . . , t]) :
VerStatus(stts, at, x, w

x
t ) = 1

 ≥ 1−ν(λ)

Definition 2 (Creation-Correctness). A universal dynamic accumulator is creation-
correct for a given domain D of elements if an up-to-date witness wx created by the
WitCreate algorithm — not by the Update algorithm! — corresponding to value x can
always be used to verify the (non-)membership of x in an up-to-date accumulator a.

More formally, there exists a negligible function ν in the security parameter λ such
that for all

9



– security parameters λ,
– initial sets S0 ⊆ D,
– values x ∈ D,
– positive integers t polynomial in λ,
– positive integers tx such that 1 ≤ tx ≤ t,
– statuses stts ∈ {in, out}, and
– lists of values [(y1,Op1), . . . , (yt,Opt)], where
• yi ∈ D and Opi ∈ {Add,Del} for i ∈ [1, . . . , t];
• If stts = in
∗ either (a) x ∈ S0, or (b) (x,Add) appears in [(y1,Op1), . . . , (ytx−1,Optx)] and

was not followed by (x,Del), and
∗ (x,Del) does not appear in [(ytx+1,Optx+1), . . . , (yt,Opt)];

• If stts = out
∗ either (a) x 6∈ S0, or (b) (x,Del) appears in [(y1,Op1), . . . , (ytx−1,Optx)] and

was not followed by (x,Add), and
∗ (x,Add) does not appear in [(ytx+1,Optx+1), . . . , (yt,Opt)];

The following holds:

Pr


(a0, sk)← Gen(1λ, S0);
(ai,mi, w

yi
i , upmsgi)← Update(Opi, sk, ai−1,mi−1, yi) for i ∈ [1, . . . , tx];

wxtx ←WitCreate(stts, sk, at,mt, x);
(ai,mi, w

yi
i , upmsgi)← Update(Opi, sk, ai−1,mi−1, yi) for i ∈ [tx + 1, . . . , t];

wxi ←WitUp(stts, x, wxi−1, upmsgi) for i ∈ [tx + 1, . . . , t]) :
VerStatus(stts, at, x, w

x
t ) = 1

 ≥ 1−ν(λ)

Soundness Definitions. Classically, collision-freeness [BP97] is the soundness defini-
tion for accumulators. Collision-freeness informally requires that for any element not in
the accumulated set it should be hard to find a membership witness. For negative and
universal accumulators, collision-freeness can be extended to require that for any element
in the accumulated set it should be hard to find a non-membership witness. Another for-
malization of accumulator soundness for universal accumulators is undeniability [Lip12],
which requires that for any element (regardless of its presence in the accumulated set)
it be hard to find both a membership witness and a non-membership witness.

In this paper, we choose to use collision-freeness, since undeniability is not meaningful
for positive or negative accumulators, which only support proofs of membership or proofs
of non-membership but not both. Definition 3 gives the collision-freeness definition for
a universal dynamic accumulator. This definition can be converted to work for positive,
negative, additive or subtractive accumulators in the usual way (by limiting the possible
values of Op or stts).

Definition 3 (Collision-Freeness). A universal dynamic accumulator is collision-free
for a given domain D of elements if it is hard to fabricate a (non-)membership witness
w for a value x that is not (or, respectively, is) in the accumulated set. More formally,
consider the collision-freeness game described in Figure 3. An accumulator is collision-
free if for any sufficiently large security parameter λ, for any probabilistic polynomial-time
adversary AColFree, there exists a negligible function ν in the security parameter λ such
that the probability that AColFree wins the game is less than ν(λ).

10



Challenger AColFree

S = S0 if S0 provided, ∅ otherwise
S0←−−−−−−−−−−−−−−−−−−

t = 0

(sk, a0,m0)← Gen(1λ, S0)
a0−−−−−−−−−−−−−−−−−−→

x ∈ D,Op ∈ {Add,Del}←−−−−−−−−−−−−−−−−−− 
p(λ) times

t = t+ 1
If Op = Add: S = S ∪ {x}

If Op = Del: S = S\{x}
(at+1,mt+1, w

x
t+1, upmsgt+1)← Update(Op, sk, at,mt, x)

at+1,mt+1, w
x
t+1, upmsgt+1−−−−−−−−−−−−−−−−−−→

x∗ ∈ D,w∗←−−−−−−−−−−−−−−−−−−

Fig. 3. The Collision-Freeness Game. AColFree wins if (VerStatus(in, at+1, x
∗, w∗) = 1 and x∗ 6∈

S), or (VerStatus(out, at+1, x
∗, w∗) = 1 and x∗ ∈ S).

Non-Adaptive Soundness. In the collision-freeness game of Figure 3, the adversary
is able to choose elements to add and delete adaptively. However, this notion of collision-
freeness (or soundness) is quite strong. In a non-adaptive4 version of the game, the
adversary would be required to commit to all elements it intends to add before seeing a0.
Certain accumulators can only be shown to meet non-adaptive soundness. One example
of such an accumulator is the CLRSAB accumulator, which was informally introduced
as a brief remark by Camenisch and Lysyanskaya [CL02] and formally described by
Baldimtsi et al. [BCD+17]. Note that, in particular, a non-adaptively sound accumulator
can always be used to accumulate random values, since it makes no difference whether
random values are chosen beforehand or on-the-fly.

Strength. Typically, accumulators are not required to be secure against cheating ac-
cumulator managers, since in many scenarios the entity that manages the set (and thus
the accumulator) is trusted. When that is not the case (e.g. in many blockchain appli-
cations), a strong accumulator can be used. A strong accumulator provides guarantees
even against a cheating accumulator manager. Informally, an accumulator is strong if all
of the modifications an accumulator manager makes to the accumulator are verifiable.

Definition 4 (Strength). An accumulator is strong for a given domain D of elements
if an adversary cannot win the game described in Figure 3 with non-negligible probability
even if it is modified as follows: instead of asking the challenger to run Gen and Update,
the adversary runs them locally and sends the challenger the updated accumulator values
together with witnesses v. The challenger aborts if VerGen or VerUpdate return 0.

We must also ensure the correctness of the VerGen and VerUpdate algorithms.

Definition 5 (Strength Correctness). Informally, an accumulator has strength cor-
rectness if VerGen and VerUpdate run on honestly generated inputs and outputs of Gen
and Update always return 1.

4 Note that this does not refer to non-adaptive corruptions, as in the context of MPC; it is not
corruptions that are non-adaptive, but the choice of accumulated elements.

11



3 Ideal Functionality for Accumulators

Universally Composable (UC) security, proposed by Canetti [Can01] and described briefly
in Section 1, requires a different flavor of definitions than those described in Section 2.
A UC definition of security for some primitive consists of a set of instructions called
an ideal functionality which achieves the goals of the primitive when carried out by an
incorruptible third party. Informally, to show that a candidate protocol securely realizes
the ideal functionality, it must be shown that any adversary in a real execution of the
protocol can be simulated by a corresponding ideal world adversary in an interaction
with the incorruptible third party running the ideal functionality.

Definition 6 ([Can01, Page 12]). Let execΠ,A,Z denote the random variable (over the
local random choices of all the involved machines) describing the output of environment
Z when interacting with adversary A and parties running protocol Π. Protocol Π UC-
emulates ideal functionality F if for any adversary A there exists a simulator SIM
such that, for any environment Z the distributions of execΠ,A,Z and execF,SIM,Z are
indistinguishable. That is, on any input, the probability that Z outputs 1 after interacting
with A and parties running Π differs by at most a negligible amount from the probability
that Z outputs 1 after interacting with SIM and F .

In this section we present our ideal functionality FACC for an accumulator.
Like [Can04], we discuss several candidate ideal functionalities in order to build up

the intuition for how we arrived at the ideal functionality described in Fig. 4 and 5.

First Attempt. A naive first attempt at an accumulator functionality might ignore the
accumulator and witness objects altogether, instead functioning as a simple set manager.
It would allow the accumulator manager to add and remove elements from the set, and
answer ‘yes’ or ‘no’ to membership (or non-membership) queries. These queries could
optionally be parametrized by timestamps, so as to allow queries about all states of the
set, past and present. However, this simple ideal functionality definition fails to support
one of the basic modular operations of accumulators. Recall that an accumulator is an
object that evolves by time, i.e. at time t it might represent a different set from what it
used to represent at time t′. Thus, if we do not consider explicit accumulator objects, then
it is impossible to talk about committing to a given set by committing to an accumulator
value at a specific time.

Second Attempt - Explicitly Modeling Accumulator Values. A second attempt
might be to add explicit accumulator values, without modeling witnesses. So, a mem-
bership query would now have the form, ‘is this element a (non-)member under this
accumulator value?’. However, the absence of explicit witness objects also limits the
modular use of accumulators significantly. Specifically, not having explicit witness ob-
jects would not work when the ability to verify the (non)membership of certain elements
should be secret-shared or otherwise restricted. (For instance, perhaps I should be able
to demonstrate my membership in some organization - such as the gym - but any third
party shouldn’t be able to test my membership without my help, because that would
be a violation of my privacy.) Adding these privacy features to an accumulator system
would require re-designing and re-proving the accumulator system from scratch if wit-
ness objects were not part of the ideal functionality. If witness and accumulator objects
are modeled explicitly, however, existing accumulator systems can simply be combined

12



with existing off-the-shelf primitives such as secret sharing, encryption, or commitment.
In other words, having the functionality give binary answers to membership queries is
over-idealization; it is a good way to model accumulators on their own, but it does not
lend itself to use by other protocols that need actual accumulator and witness values to
operate.

Final Attempt. Our ideal functionality for accumulators FACC is described in Figures 4
and 5 and provides interfaces for all of the algorithms in Figure 1. (Note that in the
functionality the accumulator manager interfaces ignore all queries for which the querier’s
identity is not encoded in the functionality session id sid.)

We loosely base FACC on the ideal functionality for digital signatures described by
Canetti [Can04]. Canetti actually gave two different functionalities for digital signatures,
which we recall for completeness in Appendix A. The first one (Figure 7) asks the ideal
world adversary for a verification key ; while the second (Figure 8) asks the ideal world
adversary for a verification algorithm. Similarly, Camenisch et al. [CDT19] give func-
tionalities for signatures, non-interactive zero knowledge proofs and for commitments
that are explicitly parameterized by the protocol algorithms. Using a given deterministic
signature verification algorithm, rather than allowing the ideal world adversary to make
each verification decision, achieves two goals:

– It forces verification decisions to be consistent.
– It makes combining UC signatures and zero knowledge proofs of signature knowledge

in a black box way simpler.

For these reasons, we chose to define our FACC to receive explicit algorithms from the
ideal world adversary. Thus, instead of asking the ideal world adversary to provide up-
dated accumulator states, witnesses and verification decisions, our ideal world adversary
provides all accumulator algorithms to the functionality (Step 1e in Figure 4).5 This is
a very intuitive way to define an ideal functionality: it explicitly uses the accumulator
algorithms except where it needs to modify their behavior to match what is demanded
by correctness or soundness. If an ideal execution (that uses the ideal functionality) is
indistinguishable from a real execution, that means that the algorithms’ behavior did
not need any modification.

Just like in the context of digital signatures, if the algorithms are modeled explicitly,
usage within multi-party computation (MPC) protocols or in larger zero-knowledge-
based systems such as Zcash can be done in a modular way, using existing components.

In addition to the benefits listed above, this also allows us more flexibility to add
privacy features to the ideal functionality, as discussed in Section 3.3.

Remark 3. Note that inputs belonging to anyone but the accumulator manager (AM)
can be misinformed (just like parties are frequently misinformed about verification keys
in signature schemes, in the absence of a PKI). In order to capture such cases, we
require parties to provide all inputs to witness holder and third party algorithms, instead
of having some inputs, such as the accumulator value, implicitly stored by the ideal
functionality.

5 These algorithms will, among other things, check that elements being added are in the domain
D of the accumulator in question.

13



1. GEN: Upon getting (GEN, sid, S0) as first activation from AM . . .
(a) Initialize an operation counter t = 0.
(b) Initialize an empty list A. This list will be used to keep track of all accumulator states.
(c) Initialize an empty map S, and set S[0] = S0. (If S0 was not provided, use ∅.) This map will be used

to map operation counters to current accumulated sets.
(d) Send (GEN, sid) to Adversary AIdeal.
(e) Get (ALGORITHMS, sid, (Gen,Update,WitCreate,WitUp,VerStatus,VerGen,VerUpdate)) from Adversary
AIdeal. This includes all of the accumulator algorithms; their expected input output behavior is de-
scribed in Figure 1. All of them should be polynomial-time; we restrict the verification algorithms
VerStatus,VerGen,VerUpdate to be deterministic.

(f) Run (sk, a0,m0, v)← Gen(1λ, S0).
(g) Verify that VerGen(S0, a0, v) = 1. If not, output ⊥ to AM and halt. (This ensures strength.) Other-

wise, continue.
(h) Store sk, m0; add a0 to A.
(i) Output (ALGORITHMS, sid, S0, (Gen,Update,WitCreate,WitUp,VerStatus,VerGen,VerUpdate) to AM.

2. UPDATE: Upon getting (UPDATE, sid,Op, x) from AM . . .
(a) Increment the operation counter: t = t+ 1.
(b) Set S[t] = S[t− 1].
(c) Run (at,mt, w

x
t , upmsgt, vt)← Update(Op, sk, at−1,mt−1, x).

(d) If Op = Add:
i. Verify that VerStatus(in, a, x, wt) = 1. If not, output ⊥ to AM and halt. (This ensures correct-

ness.) Otherwise, continue.
ii. If x 6∈ S[t], add x to S[t].

(e) If Op = Del:
i. Verify that VerStatus(out, a, x, wt) = 1. If not, output ⊥ to AM and halt. (This ensures negative

correctness.) Otherwise, continue.
ii. If x ∈ S[t], remove x from S[t].

(f) Verify that VerUpdate(Op, at−1, at, x, vt) = 1. If not, output ⊥ to AM and halt. (This ensures
strength.) Otherwise, continue.

(g) Store mt, upmsgt; add at to A.
(h) Output (UPDATE, sid,Op, at, x, wt, upmsgt) to AM.

3. WITCREATE: Upon getting (WITCREATE, sid, stts, x) from AM . . .
(a) Run w ← WitCreate(stts, sk, at,mt, x, (upmsg1, . . . , upmsgt))
(b) If stts = in:

If x ∈ S[t], verify that VerStatus(in, at, x, w) = 1. If not, output ⊥ to AM and halt. (This ensures
creation-correctness.) Otherwise, continue.

(c) If stts = out:
If x 6∈ S[t], verify that VerStatus(out, at, x, w) = 1. If not, output ⊥ to AM and halt. (This ensures
negative-creation-correctness.) Otherwise, continue.

(d) Output (WITNESS, sid, stts, x, w) to AM.
4. WITUP: Upon getting (WITUP, sid, stts, aold, anew, x, wold, (upmsgold+1, . . . , upmsgnew)) from any party
H . . .
(a) Run wnew ← WitUp(stts, x, wold, (upmsgold+1, . . . , upmsgnew))
(b) If aold ∈ A, anew ∈ A and old < new:

i. If stts = in, VerStatus(in, aold, x, wold) = 1, x ∈ S[t] for t ∈ [old, . . . , new],
upmsgold+1, . . . , upmsgnew match the stored values and VerStatus(in, anew, x, wnew) = 0, out-
put ⊥ to P and halt. (This ensures correctness.) Otherwise, continue.

ii. If stts = out, VerStatus(out, aold, x, wold) = 1, x 6∈ S[t] for t ∈ [old, . . . , new],
upmsgold+1, . . . , upmsgnew match the stored values and VerStatus(out, anew, x, wnew) = 0, out-
put ⊥ to P and halt. (This ensures negative correctness.) Otherwise, continue.

(c) Output (UPDATEDWITNESS, sid, stts, aold, anew, x, wold, (upmsgold+1, . . . , upmsgnew), wnew) to H.

Fig. 4. Ideal Functionality FACC for Accumulators With Explicit Verification Algorithm

The ideal functionality described in Figures 4 and 5 is really an entire “menu” of
functionalities covering all different types of accumulators: additive, subtractive, dy-
namic, positive, negative and universal and finally strong accumulators. More explicitly,
by default, if all of the text (except for the text colored by pink) is considered, the
ideal functionality describes a dynamic, universal accumulator. By restricting Op to be
only Add or only Del we could make it additive or subtractive instead of dynamic; by
restricting stts to be only in or only out we could make it positive or negative instead
of universal. Figure 4 describes the ideal functionality interfaces for the accumulator
manager and witness holders; Figure 5 describes the interfaces for third parties.

14



1. VERSTATUS: Upon getting (VERSTATUS, sid, stts, a,VerStatus′, x, w) from any party P . . .
(a) If VerStatus′ = VerStatus and there exists a t such that a = at ∈ A:

i. Let t be the largest such number.
ii. If stts = in:

A. If AM not corrupted, x 6∈ S[t] and VerStatus(in, at, x, w) = 1, output ⊥ to P and halt.
(This ensures collision-freeness.) Otherwise, continue.

B. Set φ = VerStatus(in, at, x, w).
iii. If stts = out:

A. If AM not corrupted, x ∈ S[t] and VerStatus(out, at, x, w) = 1, output ⊥ to P and
halt. (This ensures negative collision-freeness.) Otherwise, continue.

B. Set φ = VerStatus(out, at, x, w).
(b) Otherwise, set φ = VerStatus′(stts, a, x, w).
(c) Output (VERIFIED, sid, stts, a,VerStatus′, x, w, φ) to P.

2. VERGEN: Upon getting (VERGEN, sid, S, a, v,VerGen′) from any party P . . .
(a) Set φ = VerGen′(S, a, v).
(b) Output (VERIFIED, sid, S, a, v,VerGen′, φ) to P.

3. VERUPDATE: Upon getting (VERUPDATE, sid,Op, a, a′, x, vt,VerUpdate′) from any party P . . .
(a) Set φ = VerUpdate′(Op, a, a′, x, vt).
(b) Output (VERIFIED, sid,Op, a, a′, x, vt,VerUpdate′, φ) to P.

Fig. 5. Ideal Functionality FACC Interfaces for Third Parties

We use color coding to describe different types of accumulators within the same
functionality. If the ideal functionality is limited to the black text, it describes a positive
additive accumulator. Actions that are present only in subtractive accumulators are
colored green. Actions that are present only in negative accumulators are colored blue.
Finally, actions that are present only in strong accumulators are colored pink; actions
not present in strong accumulators are colored orange.

We use FACC to refer to the universal dynamic accumulator functionality. We add
Add,Del, in and out to the subscript to denote additive, subtractive, positive and negative
accumulators, respectively. We add other parameters to the subscript (e.g. ‘STRONG’)
to denote other properties.

3.1 Modeling Decentralized Management

If the accumulator is strong, it may make sense to allow anyone to perform an accumula-
tor update, instead of restricting the ability to perform such updates to the accumulator
manager. We model this by making a few changes to the functionality. First, the GEN,
UPDATE and WITCREATE interfaces of the ideal functionality no longer only accept in-
vocations by AM. Additionally, instead of having a strict ordering of update operations,
we might allow parties to perform an update on any accumulator state, resulting in a
tree of states. The functionality will be modified to perform the appropriate checks and
record-keeping.

3.2 Modeling Non-Adaptive Soundness

We model non-adaptive soundness (Section 2.2) by making two simple changes to the
ideal functionality. First, when sending the GEN command to the ideal functionality
(in Step 1 of Figure 4), the accumulator manager AM is expected to provide a set of
all elements that will ever be added or deleted. (This can be done e.g. by providing a
PRF seed.) Second, if even one element outside of that set is added or deleted, nothing is
guaranteed; the functionality simply runs the algorithms it was given, without performing
any checks.

15



3.3 Adding Privacy Properties

Our ideal functionality as stated in Figures 4 and 5 does not make any attempt to
hide anything about the accumulated set from any accumulator user. In this section, we
discuss how we add such privacy properties to the ideal functionality.

Add-Delete Unlinkability. In certain scenarios it is desirable that an adversary should
not be able to link an addition of an element to a deletion of the same element later
on. Such a property is relevant when accumulators are used as an anonymous revocation
mechanism where the revocation information should not allow anyone to determine that
the user revoked just now was the user who joined two hours ago, and not the user who
joined four hours ago [BCD+17]. We do not formally model add-delete unlinkability;
instead, we define a stronger property which we call hiding update-message (HUM).

Hiding Update-Message (HUM). Informally, an accumulator is hiding update-message,
or HUM, if given all of the update messages produced in the course of an execution, it
is impossible to tell whether one specific update message corresponds to the addition /
deletion of element x0 or element x1 for x0, x1 ∈ D.

We can incorporate HUM into our ideal functionality by placing limitations on the
algorithm Update provided by the ideal world adversary. We require Update to consist
of two sub-algorithms: one sub-algorithm — Update1 — which receives no input at all
except for randomness, and produces the update message; and a second sub-algorithm
— Update2 — which can receive state from Update1 as well as all of the other inputs
typically provided to Update, and produces all the other outputs of Update. This forces
update messages to reveal nothing about the added / deleted element.

Note that this modification is very strong, since it forces the update messages to sta-
tistically hide the elements; constructions where the elements are only computationally
hidden would not meet this definition. This modification trivially implies the add-delete
unlinkability property described above, since update messages now contain no informa-
tion at all about the elements.

Remark 4. We clearly need to withhold x from Update1, in order to guarantee that the
update message does not reveal x. However, we could consider allowing Update1 to see
the other inputs to Update. This would not work because if we give Update1 access to
the accumulator a or the auxiliary value m, then the update message it produces might
contain arbitrary information about the set of elements accumulated prior to the current
operation. In particular, the update message might reveal which elements were added /
deleted previously, breaking the HUM property.

Zero-Knowledge. Ghosh et al. [GOP+16] define the notion of a zero-knowledge accu-
mulator, which requires that accumulator and witness values reveal nothing about the
accumulated set (other than the element to which the witness corresponds). We can in-
corporate ZK by placing limitations on the Update and WitCreate algorithms provided
by the ideal world adversary, just like we did for the HUM property. We can require each
algorithm to consist of two sub-algorithms: one which does not require any set-dependent
inputs and produces the accumulator and witness values (as necessary), and a second
sub-algorithm (which can receive state from the first) which produces all other values.

16



3.4 Discussion: Incorrect Accumulator and Witness Values

If an incorrect accumulator value (or verification algorithm VerStatus′) is provided to
the verification interface, we allow the party making the query to control the verification
verdict, via VerStatus′. This models the fact that any party can issue verification queries
for accumulator values of their choice — for instance, for accumulator values which they
may have generated themselves, and for which they control the accumulated set.

If an incorrect witness for a member element is provided to the verification interface,
we allow the ideal world adversary to control the verification verdict (via the algorithm
VerStatus it provides during the generation phase). This models the fact that we only re-
quire the ideal world adversary to be unable to come up with a witness for a non-member
(or a non-membership witness for a member); we do not require that an adversary be
unable to come up with a witness for a member (or a non-membership witness for a
non-member). For instance, it may be possible to modify valid witnesses to obtain other
witnesses for the same element. Note also that multiple witnesses can be generated for
the same element by means of the WitCreate interface.

4 Equivalence Argument

Like Canetti [Can04], we prove that satisfying our UC definition for dynamic universal
accumulators is the same as satisfying the classical definition.6

Theorem 1. Let ΠACC = (Gen,Update,WitCreate,WitUp,VerStatus) be a universal dy-
namic accumulator scheme, and let VerStatus be deterministic. Then ΠACC securely re-
alizes FACC if and only if ΠACC satisfies Definitions 1, 2 and 3.

Proof. Our proof follows the structure of the proof of Canetti [Can04] (pages 12-14).

1. We start by assuming that ΠACC does not satisfy Definitions 1, 2 and 3. We then show
that ΠACC also does not securely realize FACC. To do this, we build an environment Z
and an adversary AReal such that for any simulator SIM, Z can distinguish between
interacting with AReal and ΠACC, and interacting with SIM and FACC. Like the
environment of Canetti [Can04], our environment does not corrupt any parties, and
does not send any messages to the adversary. Because all accumulator operations are
non-interactive, meaning that they are run locally by individual parties, no messages
are exchanged in the real world. So, the adversary AReal is never activated.
(a) Assume ΠACC is not correct (i.e. does not satisfy Definition 1). That is, there

exists a security parameter λ, an initial set S0 ⊆ D, a value x ∈ D, an operation
Op ∈ {Add,Del} (with stts = in if Op = Add and stts = out if Op = Del) and a list
of values [(y1,Op1), . . . , (ytx−1,Optx−1)], [(ytx+1,Optx+1), . . . , (yt,Opt)], where
– yi ∈ D and Opi ∈ {Add,Del} for i ∈ [1, . . . , tx − 1, tx + 1, . . . , t];
– If Op = Add, then (x,Del) does not appear in [(ytx+1,Optx+1), . . . , (yt,Opt)];

and
– If Op = Del, then (x,Add) does not appear in [(ytx+1,Optx+1), . . . , (yt,Opt)],

6 This proof also implies that satisfying our UC definition for additive or subtractive, positive
or negative accumulators is the same as satisfying the classical definition; however, it does
not imply anything for strong accumulators. We leave that up to future work.

17



such that with non-negligible probability, the honestly-produced witness for x
against accumulator at will not verify.
Our environment Z will send the following commands to some party AM, where
sid encodes the identity of AM:
– (GEN, sid, S0),
– (UPDATE, sid,Op1, y1), . . . , (UPDATE, sid,Optx−1, ytx−1),
– (UPDATE, sid,Op, x), and
– (UPDATE, sid,Optx+1, ytx+1), . . . , (UPDATE, sid,Opt, yt).

As a result of the third step, Z will learn atx and wxtx . As a result of the
fourth step, Z will learn at and t− tx update messages (upmsgtx+1, . . . , upmsgt).
It then sends (WITUP, stts, sid, atx , at, x, w

x
tx , (upmsgtx+1, . . . , upmsgt)) to some

party H (where possibly H = AM), and receives wxt back. Finally, it sends
(VERSTATUS, sid, stts, at,VerStatus′ = VerStatus(·, ·, ·, ·), x, wxt ) to some party P
(which may be the same party or not). Z outputs the returned verdict φ.
In the real world, φ will be 0 with non-negligible probability according to our
assumption.
In the ideal world, if no error messages are returned, φ will always be 1, since
in WitUp, we will always hit Item 4(b)i or 4(b)ii of Figure 4, and there the first
three listed conditions will be satisfied.

(b) Assume ΠACC is not creation-correct (i.e. does not satisfy Definition 2). Z can
distinguish between the real and ideal worlds in a way very similar to that de-
scribed above.

(c) Assume ΠACC is not collision-free (i.e. does not satisfy Definition 3). That is,
there exists an adversary AColFree that can forge a (non-)membership witness
for a non-member (or member, respectively) x with non-negligible probability.
Our Z will use AColFree to generate inputs for AM. Having received x∗, w∗ from
AColFree, Z will compute φin by calling (VERSTATUS, sid, in, at, x

∗, w∗), and φout
by calling (VERSTATUS, sid, out, at, x

∗, w∗). Z will then output 1 if x∗ was in
the accumulated set and φout = 1 or if x∗ was not in the accumulated set and
φin = 1, and will output 0 otherwise.
In the real world, if AColFree met the collision-freeness win conditions, Z will
output 1 with non-negligible probability according to our assumption.
In the ideal world, both φin and φout will always be 0 or ⊥, since we will satisfy the
first two conditions in Item 1(a)iiA (or Item 1(a)iiiA, if stts = out) of VERSTATUS
in Figure 5. If the third condition is satisfied too, ⊥ will be returned. If it is not,
0 will be returned, as a result of Item 1(a)iiB (or Item 1(a)iiiB, if stts = out) in
Figure 5.

2. We now prove the other direction. Assume that ΠACC does not securely realize FACC.
That is, there exists an adversary AReal such that for any simulator SIM, there
exists an environment Z that can distinguish between interacting with AReal and
ΠACC, and interacting with SIM and FACC. We show that if that is the case, ΠACC

must also violate Definition 1, 2 or 3. We pick a simulator SIM that proceeds as
follows, running an internal copy of AReal:

– Inputs from Z is forwarded to AReal. Outputs from AReal is forwarded to Z.
– SIM handles corruptions according to the standard corruption model [Can01].
– Upon receiving (GEN, sid) from FACC, SIM sends the actual accumulator algo-

rithms back as (GEN, sid, (Gen,Update,WitCreate,WitUp,VerStatus)).

18



This simulator guarantees that the real and ideal worlds will be distributed identically,
unless one of the following causes FACC to return ⊥:

– In Update, FACC hits Item 2(d)i or 2(e)i of Figure 4. If this happens, correctness
(Definition 1) is violated.

– In WitCreate, FACC hits Item 3b or 3c of Figure 4. If this happens, creation-correctness
(Definition 2) is violated.

– In VerStatus, FACC hits Item 1(a)iiA or 1(a)iiiA of Figure 5. If this happens, collision-
freeness (Definition 3) is violated.

– In WitUp, FACC hits Item 4(b)i or 4(b)ii of Figure 4. If this happens, either correctness
or creation-correctness is violated.

In order for Z to distinguish between the real and ideal worlds, one of the above
must happen with non-negligible probability, and thus either Definition 1, 2 or 3 must
be violated with non-negligible probability.

We can modify the theorem and proof to also prove equivalence between classical and
UC definitions for strong accumulators.

Corollary 1. Let ΠACC = (Gen,Update,WitCreate,WitUp,VerStatus,VerGen,VerUpdate)
be a strong universal dynamic accumulator scheme, and let VerStatus, VerGen and VerUpdate
be deterministic. Then ΠACC securely realizes FACC,STRONG if and only if ΠACC satisfies
Definitions 1, 2 and 4.

Proof. The proof is very similar to that of Theorem 1 above, with a few changes. The
changes are in Steps 1c and 2 of the proof.

In Step 1c of the proof above, instead of calling AColFree, we call AStrength which runs
Gen and Update itself. The environment Z computes its output exactly as before. In
the ideal world, both φin and φout will always be 0 or ⊥, since we will satisfy the first
condition in Item 1(a)iiA (or Item 1(a)iiiA, if stts = out) of VERSTATUS (ignoring the
condition that AM is not corrupted, which does not apply for a strong accumulator). If
the third condition is satisfied too, ⊥ will be returned. If it is not, 0 will be returned, as
a result of Item 1(a)iiB (or 1(a)iiiB, if stts = out) of Figure 5.

In Step 2 of the proof above, SIM includes VerGen and VerUpdate in the list of
algorithms it sends to the ideal functionality. Then, in the list of things that might cause
FACC,STRONG to return ⊥, we replace the third bullet with the following:

– In VerStatus, FACC hits Item 1(a)iiA or 1(a)iiiA of Figure 5. If this happens, strength
(Definition 4) is violated.

We also add the following:

– In Gen, FACC,STRONG returns ⊥ at Item 1g of Figure 4. If this happens, strength
correctness (Definition 5) is violated.

– In Update, FACC,STRONG returns ⊥ at Item 2f of Figure 4. If this happens, strength
correctness (Definition 5) is violated.

5 Demonstrations of Composition

We now present two examples of accumulator composition to showcase the convenience
of having UC secure accumulators.

19



5.1 Accumulator Composition: Braavos

Baldimtsi et al. [BCD+17] show how one can build accumulators with certain properties
by composing other types of (potentially weaker) accumulators. Among other examples,
Baldimtsi et al. build the Braavos accumulator. We present a modified version of Braavos,
which we call Braavos′. Braavos′ is a hiding update-message (HUM) dynamic accumulator
as described in Section 3.3. We describe Braavos′ in Figure 6.

Just like Braavos, Braavos′ leverages the following two weaker accumulators:

1. SIG: A positive (but not dynamic) additive accumulator, in the form of a digital
signature scheme. Note that this accumulator does not have any update messages
(and we thus omit update messages from its inputs and outputs).

2. CLRSAB: A non-adaptively-sound negative additive accumulator. One example of
such an accumulator is the CLRSAB construction7, informally introduced as a brief
remark by Camenisch and Lysyanskaya [CL02] and formally described by Baldimtsi et
al. [BCD+17].

Informally, Braavos′ works as follows. When a new element x is added, a random
value rx is chosen to correspond to it, and the pair (x, rx) is accumulated in SIG. Since
we use a digital signature scheme, no update message is sent. A proof of membership
for x consists of the value rx, a proof of membership of (x, rx) in SIG (which is simply
a digital signature), and a proof of non-membership of rx in CLRSAB. Then, when the
element x is deleted, rx is added to CLRSAB (so a proof of non-membership of rx in
CLRSAB can no longer be produced). Next time x is added, a fresh random value is
chosen, and so forth.

Unlike Braavos′, Braavos [BCD+17] uses the same random value every time a given
element is re-added, instead of choosing fresh random values. This has the advantage of
saving on accumulator manager storage requirements. However, it has the disadvantage
that deletions of the same element can all be linked to one another, since the same
random value is present in all of the associated update messages. This violates the HUM
property8 (but not the add-delete unlinkability property, which is the one Baldimtsi et
al. require).

Braavos′ is obviously HUM, since it (a) has empty update messages for additions, and
(b) has update messages for deletions that are completely independent of the element
being deleted. Intuitively, it is secure because if an element was never added then no
signature on it exists, and every time an element x is removed, all random values rx that
have been signed with x are in the CLRSAB accumulator, so no proof of non-membership
for any such rx can be produced.

More formally, let FACC,in,HUM be our accumulator functionality FACC for a dynamic,
positive, HUM accumulator. That is, FACC,in,HUM is FACC restricted to stts = in, and
requiring the simulator to provide Update in two parts, as necessary for HUM (described
in Section 3.3). Similarly, let FACC,in,Add be our accumulator functionality FACC for a

7 The CLRSAB accumulator is actually universal and dynamic, but we only require it to be
negative and additive.

8 Adding zero knowledge proofs would not resolve this issue — that random value cannot be
hidden within a zero knowledge proof in any straightforward way, since it must be used to
update CLRSAB witnesses.

20



positive additive accumulator, and let FACC,out,Add,NA be our accumulator functionality
FACC for a negative additive accumulator that is non-adaptively sound (Section 3.2).

Theorem 2. The Braavos′ accumulator described in Figure 6 securely realizes FACC,in,HUM

as long as SIG securely realizes FACC,in,Add with no update messages, and CLRSAB securely
realizes FACC,out,Add,NA.

We can prove Theorem 2 very simply using the fact that both SIG and CLRSAB
are UC-secure (that is, by operating in the double-FACC-hybrid model). Before our UC
definitions, a proof of security would involve a multi-step security reduction of the new
accumulator to one of the old ones.

Proof. The simulator for the new accumulator uses its two inner simulators to obtain
algorithms for the inner accumulators, composes them as in Figure 6, and submits those
to the ideal functionality. (Since the CLRSAB accumulator is only non-adaptively sound,
the simulator also pre-selects the random values that are to be accumulated in the
CLRSAB accumulator.)9

In Section 3.3, we described how in order to modify the UC functionality FACC to
be HUM, we require that the simulator provide the algorithm Update in two parts:
one sub-algorithm (let’s call it Update1) which only receives randomness and produces
the update message; and a second sub-algorithm (let’s call it Update2) which produces
all the other outputs of Update, and is additionally allowed to depend on the state
of Update1. If the update being performed is an addition, we do not need Update1 at
all, since no update message is necessary; we simply set Update2(Add, sk, at,mt, x) =
Update(Add, sk, at,mt, x). If the update being performed is a deletion, Update1(Del,
sk, at,mt) gets a random pre-selected value and performs a CLRSAB addition on it;
it then passes the random value it added as stateUpdate1 to Update2(Del, sk, at,mt, x,
stateUpdate1) which does the rest of the work.

The views of the environment Z in the real and ideal worlds will be identical in the
so-called double-FACC-hybrid model, since the sub-accumulator functionalities guarantee
that if an element was never added then no signature on it exists, and every time an
element x is removed, all random values rx that have been signed with x are in set
accumulated in CLRSAB, so no proof of non-membership for any such rx can be produced.

5.2 Accumulators for Anonymous Credentials

We now informally discuss how our UC definition of accumulators would simplify the
security proof of a complex system like anonymous credentials. An ideal functionality
that provides all the properties of anonymous credentials including pseudonyms, selective
attribute disclosure, predicates over attributes, revocation, inspection, etc. is described by
Camenisch et al. [CDHK15]. (Baldimtsi et al. [BCD+17] augment this functionality with
revocation.) In this section, to demonstrate the benefits of modularity we concentrate
on a simplified version of an anonymous credential ideal functionality with three types
of parties: the credential manager or issuer, credential holders, and credential verifiers.
Our ideal functionality has the following interfaces for the credential manager:

9 Notice that this works regardless of how the simpler accumulators are implemented (simply
software vs. hardward vs. distributed protocols), since they satisfy the UC definition.

21



Gen(1λ, S):

1. (SIG.sk, SIG.a0)← SIG.Gen(1λ, ∅)
2. (CLRSAB.sk,CLRSAB.a0,CLRSAB.upmsg0)← CLRSAB.Gen(1λ, ∅)
3. Set

(a) sk ← (SIG.sk,CLRSAB.sk),
(b) a0 ← (SIG.a0,CLRSAB.a0),
(c) upmsg0 ← CLRSAB.a0
(d) Instantiate m0 as an empty map.

4. Return (sk, a0, upmsg0,m0)
Update(Opt, sk, at,mt, x):

1. If Opt = Add and x 6∈ mt:
(a) Pick rx at random from the domain DCLRSAB of the CLRSAB accumulator. (We require

the domain to be large enough that the probability of picking the same element twice is
negligible.)

(b) Set mt+1 = mt
(c) Set mt+1[x] = rx
(d) CLRSAB.wrxt+1 ← CLRSAB.WitCreate(out,CLRSAB.sk,CLRSAB.at, rx)

(e) SIG.w
(x,rx)
t+1 ← SIG.Update(Add, SIG.sk, SIG.a0, (x, rx))

(f) Set CLRSAB.at+1 = CLRSAB.at.
(g) Set at+1 = (SIG.a0,CLRSAB.at+1)

(h) Set wxt+1 = (rx,CLRSAB.wrxt+1, SIG.w
(x,rx)
t+1 )

(i) Set upmsgt+1 = ⊥
(j) Return (at+1,mt+1, w

x
t+1, upmsgt+1)

2. If Opt = Del and x ∈ mt:
(a) Set rx = mt[x]
(b) Set mt+1 = mt
(c) Delete x from mt+1

(d) (CLRSAB.at+1,CLRSAB.upmsgt+1)← CLRSAB.Update(Add,CLRSAB.sk,CLRSAB.at, rx)
(e) Set at+1 = (SIG.a0,CLRSAB.at+1)
(f) Set upmsgt+1 = CLRSAB.upmsgt+1
(g) Return (at+1,mt+1, upmsgt+1)

WitCreate(stts, sk, at,mt, x):
1. If stts = in and x ∈ mt:

(a) Set rx = mt[x]

(b) SIG.w
(x,rx)
t ← SIG.WitCreate(in, SIG.sk, SIG.at, (x, rx))

(c) CLRSAB.wrxt ← CLRSAB.WitCreate(out,CLRSAB.sk,CLRSAB.at, rx)

(d) Set wxt = (rx,CLRSAB.wrxt , SIG.w
(x,rx)
t )

(e) Return wxt
WitUp(stts, x, wxt = (rx,CLRSAB.wrxt , SIG.w

(x,rx)
t ), upmsgt+1):

1. If upmsgt+1 6= ⊥: (This update message corresponds to a deletion)

(a) CLRSAB.wrxt+1 = CLRSAB.WitUp(out, rx,CLRSAB.wrxt , upmsgt+1)

2. Else: wxt+1 = wxt
3. Return wxt+1

VerStatus(in, at = (SIG.at,CLRSAB.at), x, w
x
t = (rx,CLRSAB.wrxt , SIG.w

(x,rx)
t )):

1. Return 1 if both of the following are 1, and 0 otherwise:

– SIG.VerStatus(in, SIG.at, (x, rx), SIG.w
(x,rx)
t )

– CLRSAB.VerStatus(out,CLRSAB.at, rx,CLRSAB.wrxt )

Fig. 6. Braavos′ Algorithms. We omit parameters unnecessary for the SIG and CLRSAB accu-
mulator algorithms.

1. KeyGen, to set up the scheme parameters.
2. IssueCred(token, property), to issue a credential certifying property to a credential

holder who knows the secret corresponding to token, and
3. RevokeCred(token, property), to revoke an issued credential.

Our simplified functionality sends the simulator all information about issued and re-
voked credentials (including token and property information); so, unlike the full-fledged
functionality of Camenisch et al., it does not restrict access to information about who is
certified for what property.

22



Credential holders only have a single interface — ProveCred, which they use to demon-
strate to a credential verifier that they hold a credential certifying some property. Creden-
tial holders should be able to use their credentials anonymously. The credential verifiers
have the corresponding interface VerifyCredProof, which allows them to check the proof
provided by the credential holder.

Now, imagine that we instantiate our simplified anonymous credential functionality
with a combination of the following building blocks: (a) digital signatures, (b) accumula-
tors and (c) (non-interactive) zero knowledge (ZK) proofs, as described by Baldimtsi et
al. [BCD+17]. A simple instantiation would work as follows:

The signatures are used simply to guarantee the authenticity of updates made by
the credential manager. KeyGen sets up the parameters for all three primitives. IssueCred
adds (token, property) to the accumulator, where token is a value linked to a long-term
secret belonging to the user (e.g. token might be a public key), and property is the
property the credential certifies (e.g. “citizen”, “member”, “age = 30”, etc.). Similarly,
RevokeCred deletes the appropriate element from the accumulator. Whenever an update
happens to the accumulator value, the most recent value (and a corresponding update
message) is signed by the credential manager and sent to all system users, who can then
bring their accumulator witnesses up to date.

ProveCred would then provide a ZK proof of knowledge of long-term user secret
s, token token and accumulator witness w such that, for the most recent credential-
manager-signed accumulator, the conjunction of the following statements is true:

1. s is appropriately linked to token (through some relationship, e.g. s is the secret key
corresponding to token which is the public key), and

2. the accumulator verification algorithm returns true when given the accumulator wit-
ness w and (token, property).

Given that no UC accumulator existed before our work, in order for someone to
prove security even of such a simple scheme, a reduction would be required that would
reduce the security of the overall scheme to the underlying building blocks. However, we
can prove the security of this simplified credential scheme in the UC model using UC
secure versions of the underlying building blocks. Such a UC proof would be information
theoretic and unconditional, and will hold for any implementation of the underlying
primitives, whether they be simple software, distributed computation, hardware, etc.

In order to prove the security of this credential scheme we need to build a simulator
that, when run with the ideal functionality, produces an environment view indistinguish-
able from that of a real run of the anonymous credentials protocol. The two difficulties
in doing so is (1) playing the roles of honest parties without knowing their long-term
secrets, and (2) arguing that real adversaries can no more convince verifiers to accept
forged credentials than ideal functionality adversaries can. UC zero knowledge proofs
address the first concern. Since the use of UC zero knowledge proofs allows the simulator
to control the zero knowledge proof ideal functionality (which we review in Appendix B),
it can control the verification outcome without actually knowing the values in question,
sidestepping this issue. UC accumulators address the second concern.

Acknowledgements

This research was supported, in part, by US NSF grant 1717067.

23



References

[ACJT00] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical and
provably secure coalition-resistant group signature scheme. In Mihir Bellare, editor,
CRYPTO 2000, volume 1880 of LNCS, pages 255–270. Springer, Heidelberg, August
2000.

[BCD+17] Foteini Baldimtsi, Jan Camenisch, Maria Dubovitskaya, Anna Lysyanskaya, Leonid
Reyzin, Kai Samelin, and Sophia Yakoubov. Accumulators with applications to
anonymity-preserving revocation. In 2017 IEEE European Symposium on Security
and Privacy, EuroS&P 2017, Paris, France, April 26-28, 2017, pages 301–315. IEEE,
2017.

[Bd94] Josh Cohen Benaloh and Michael de Mare. One-way accumulators: A decentral-
ized alternative to digital sinatures (extended abstract). In Tor Helleseth, editor,
EUROCRYPT’93, volume 765 of LNCS, pages 274–285. Springer, Heidelberg, May
1994.

[BP97] Niko Bari and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature
schemes without trees. In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of
LNCS, pages 480–494. Springer, Heidelberg, May 1997.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

[Can04] Ran Canetti. Universally composable signature, certification, and authentication. In
Proceedings of the 17th IEEE Workshop on Computer Security Foundations, CSFW
’04, pages 219–, Washington, DC, USA, 2004. IEEE Computer Society.

[CDHK15] Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf
Kohlweiss. Composable and modular anonymous credentials: Definitions and practi-
cal constructions. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015,
Part II, volume 9453 of LNCS, pages 262–288. Springer, Heidelberg, November / De-
cember 2015.

[CDT19] Jan Camenisch, Manu Drijvers, and Björn Tackmann. Multi-protocol UC and its
use for building modular and efficient protocols. IACR Cryptology ePrint Archive,
2019:65, 2019.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 19–40. Springer, Heidelberg,
August 2001.

[CHKO08] Philippe Camacho, Alejandro Hevia, Marcos A. Kiwi, and Roberto Opazo. Strong
accumulators from collision-resistant hashing. In Tzong-Chen Wu, Chin-Laung Lei,
Vincent Rijmen, and Der-Tsai Lee, editors, ISC 2008, volume 5222 of LNCS, pages
471–486. Springer, Heidelberg, September 2008.

[CKS09] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An accumulator based
on bilinear maps and efficient revocation for anonymous credentials. In Stanislaw
Jarecki and Gene Tsudik, editors, PKC 2009, volume 5443 of LNCS, pages 481–500.
Springer, Heidelberg, March 2009.

[CKS11] Jan Camenisch, Stephan Krenn, and Victor Shoup. A framework for practical uni-
versally composable zero-knowledge protocols. In Dong Hoon Lee and Xiaoyun
Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 449–467. Springer,
Heidelberg, December 2011.

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to
efficient revocation of anonymous credentials. In Moti Yung, editor, CRYPTO 2002,
volume 2442 of LNCS, pages 61–76. Springer, Heidelberg, August 2002.

24



[CV02] Jan Camenisch and Els Van Herreweghen. Design and implementation of the idemix
anonymous credential system. In Vijayalakshmi Atluri, editor, ACM CCS 2002,
pages 21–30. ACM Press, November 2002.

[GOP+16] Esha Ghosh, Olga Ohrimenko, Dimitrios Papadopoulos, Roberto Tamassia, and
Nikos Triandopoulos. Zero-knowledge accumulators and set algebra. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of
LNCS, pages 67–100. Springer, Heidelberg, December 2016.

[Lip12] Helger Lipmaa. Secure accumulators from euclidean rings without trusted setup. In
Feng Bao, Pierangela Samarati, and Jianying Zhou, editors, ACNS 12, volume 7341
of LNCS, pages 224–240. Springer, Heidelberg, June 2012.

[LLX07] Jiangtao Li, Ninghui Li, and Rui Xue. Universal accumulators with efficient non-
membership proofs. In Jonathan Katz and Moti Yung, editors, ACNS 07, volume
4521 of LNCS, pages 253–269. Springer, Heidelberg, June 2007.

[MGGR13] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zerocoin:
Anonymous distributed E-cash from Bitcoin. In 2013 IEEE Symposium on Security
and Privacy, pages 397–411. IEEE Computer Society Press, May 2013.

[Ngu05] Lan Nguyen. Accumulators from bilinear pairings and applications. In Alfred
Menezes, editor, CT-RSA 2005, volume 3376 of LNCS, pages 275–292. Springer,
Heidelberg, February 2005.

25



1. Key Generation: Upon getting (KEYGEN, sid) from a party Signer . . .
(a) If this is not the first KeyGen command, ignore this command. Otherwise, continue.
(b) If sid does not encode Signer’s identity, ignore this command. Otherwise, continue.
(c) Initialize an empty map W.
(d) Send (KEYGEN, sid) to Adversary AIdeal.
(e) Get (VERKEY, sid, vk) from Adversary AIdeal.
(f) Record vk.
(g) Send (VERKEY, sid, vk) to Signer.

2. Signature Generation: Upon getting (SIGN, sid, x) from a party Signer . . .
(a) Verify that sid encodes Signer’s identity. If not, ignore this command. Otherwise, continue.
(b) Send (SIGN, sid, x) to Adversary AIdeal.
(c) Get (SIGNATURE, sid, x, σ) from Adversary AIdeal.
(d) Verify that (x, σ) 6∈W or W[(x, σ)] = 1. If not, send ⊥ to Signer and halt. Otherwise, continue.
(e) If (x, σ) 6∈W, record W[(x, σ)] = 1.
(f) Output (SIGNATURE, sid, x, σ) to Signer.

3. Signature Verification: Upon getting (VERIFY, sid, x, σ, vk) from a party Verifier . . .
(a) Send (VERIFY, sid, x, σ, vk) to Adversary AIdeal.
(b) Get (VERIFIED, sid, x, σ, vk, φ) from Adversary AIdeal.
(c) If (x, σ) ∈W: let φ′ = W[(x, σ)].
(d) Else:

i. If the signer is not corrupted, vk is the recorded public key, and (x, σ) 6∈W, set φ′ = 0.
ii. Else, let φ′ = φ.

iii. Record W[(x, σ)] = φ′.
(e) Output (VERIFIED, sid, x, σ, vk, φ′) to Verifier.

Fig. 7. Ideal Functionality for Digital Signatures [Can04]

A Universally Composable Signatures

In this appendix (specifically, in Figures 7 and 8), we describe the two digital signature
ideal functionalities described by Canetti [Can01,Can04]. The first does not require the
simulator to provide the signing and verification algorithms explicitly at key generation
time; the second does. Both ideal functionalities require the verifier to provide the verifi-
cation key (or verification algorithm) when using the verification interface. This models
the fact that the verifier might be misinformed about the verification key if a PKI is not
available.

B Universally Composable Zero-Knowledge

In this appendix (in Figure 9) we recall the ideal functionality FZK from [Can01] which
is parameterized by a binary relation R that takes in an element x and a witness w. It
expects a single input (PROVE, sid, x, w) from Prover (where sid encodes the identities of
Prover and Verifier). If R(x,w) = 1 then FZK will output (VERIFIED, sid, x) to Verifier10.

C The RSA Accumulator

In this appendix (in Figures 10, 11 and 12), we review the RSA dynamic universal
accumulator, which has been shown to meet the classical accumulator definitions. By
Theorem 1, it follows that this accumulator also meets our UC definition.

The RSA accumulator is described across several papers. It was introduced by Be-
naloh and de Mare [Bd94], augmented with dynamism by Camenisch and Lysyan-
skaya [CL02], and with universality by Li, Li and Xue [LLX07].

10 Corruption is also modeled; if Prover is corrupt, the adversary learns the prover’s witness w.

26



1. Key Generation: Upon getting (KEYGEN, sid) from a party Signer . . .
(a) If this is not the first KeyGen command, ignore this command. Otherwise, continue.
(b) If sid does not encode Signer’s identity, ignore this command. Otherwise, continue.
(c) Initialize an empty list W of signed messages.
(d) Send (KEYGEN, sid) to Adversary AIdeal.
(e) Get (ALGORITHMS, sid, Sign,Ver) from Adversary AIdeal, where Sign is a polynomial-time algo-

rithm and Ver is a polynomial-time deterministic algorithm.
(f) Send (ALGORITHMS, sid,Ver) to Signer.

2. Signature Generation: Upon getting (SIGN, sid, x) from a party Signer . . .
(a) Verify that sid encodes Signer’s identity. If not, ignore this command. Otherwise, continue.
(b) Let σ = Sign(x).
(c) Verify that Ver(x, σ) = 1. If not, send ⊥ to Signer and halt. Otherwise, continue.
(d) Output (SIGNATURE, sid, x, σ) to Signer.
(e) Record x in W.

3. Signature Verification: Upon getting (VERIFY, sid, x, σ,Ver′) from a party Verifier . . .
(a) If Ver′ = Ver, the signer is not corrupted, Ver(x, σ) = 1 and x 6∈W, send ⊥ to signer and halt.

(This violates soundness.) Otherwise, continue.
(b) φ = Ver′(x, σ).
(c) Output (VERIFIED, sid, x, σ,Ver′, φ) to Verifier.

Fig. 8. Ideal Functionality for Digital Signatures With Explicit Verification Algorithm [Can01]
(2005 version)

FRZK is parameterized by a binary relation R. It proceeds as follows.

1. Upon getting (PROVE, sid, x, w) from Prover, Ignore it unless sid = (Prover,Verifier, sid′) for some
Verifier. Next, if R(x,w) = 1, send the output (VERIFIED, sid, x) to Verifier; otherwise, do nothing.
From now on, ignore PROVE inputs.

2. Upon getting (CORRUPTPROVER, sid) from AdversaryAIdeal, send w to AdversaryAIdeal. If Adversary
AIdeal now provides a value (x′, w′) such that R(x′, w′) holds, and no output was yet sent to Verifier,
send (VERIFIED, sid, x′) to Verifier.

Fig. 9. Ideal Functionality for Zero Knowledge [Can01] (2005 version)

27



Gen(1λ, S0):
1. Select two λ-bit safe primes p = 2p′ + 1 and q = 2q′ + 1 where p′ and q′ are also prime, and

let n = pq. (Consider n to be public knowledge from hereon out; it is actually a part of the
accumulator value a, but for simplicity we will not refer to it as such.)

2. Let sk = p′q′.
3. Select a random integer a′ ← Z∗n.

4. Let a0 = (a′)2 mod n. (Like n, this initial accumulator a0 will be part of all future accumulator
values, but for simplicity we will not refer to it as such.)

5. Let m0 = S0 be the set of member elements.
6. Return (sk, a0,m0).

Update(Op, sk, at,mt, x):
1. Let mt+1 = mt.
2. Check that x ∈ D (that is, that x is an odd prime). If not, return ⊥.
3. If Op = Add:

(a) If x ∈ mt+1 (x is already a member):
i. Let wxt+1 = WitCreate(in, sk, at,mt, x).

ii. Let at+1 = at.
iii. Let upmsgt = (Add,⊥).

(b) Else (x is not yet a member):
i. Add x to mt+1.

ii. Let wxt+1 = at.

iii. Let at+1 = axt mod n.
iv. Let upmsgt+1 = (Add, x).

(c) Return (at+1,mt+1, w
x
t+1, upmsgt+1).

4. If Op = Del:
(a) If x 6∈ mt (x is already a non-member):

i. Let at+1 = at.
ii. Let upmsgt+1 = (Del,⊥).

(b) Else (x is a member):
i. Remove x from mt+1.

ii. Let at+1 = ax
−1 mod sk
t mod n.

iii. Let upmsgt+1 = (Del, (at+1, x)).
(c) Let wxt+1 = WitCreate(out, sk, at+1,mt+1, x).

(d) Return (at+1,mt+1, w
x
t+1, upmsgt+1).

WitCreate(stts, sk, at,mt, x):
1. If x 6∈ D or x 6∈ mt, FAIL.
2. If stts = in:

(a) Let wxt = ax
−1 mod p′q′
t mod n, and return wxt .

3. If stts = out:
(a) Compute Bezout coefficients α, β such that α(

∏
y∈mt+1

y) + βx = 1. (Given that x 6= y

for all y ∈ mt+1, since both x and all y are prime, such α and β are guaranteed to exist
and be efficiently computable.)

(b) Let rxt = α, and sxt = a−β0 mod n.
(c) Return wxt = (rxt , s

x
t ).

Verifying that the witness holds, we have

a
rxt
t = a

rxt
∏
y∈mt+1

y

0 = a
α

∏
y∈mt+1

y

0 = a
1−βx
0 = a0(a

−β
0 )

x
= a0(s

x
t )
x
(modn).

Fig. 10. RSA Accumulator Manager Algorithms

28



WitUp(stts, x, wxt , upmsgt+1):

1. Parse (Op, upmsg′) = upmsg.
2. If stts = in:

(a) If Op = Add:
i. Parse y = upmsg′.

ii. If y = ⊥: let wxt+1 = wxt .

iii. Else: let wxt+1 = (wxt )y mod n.

iv. Return wxt+1.

(b) If Op = Del:
i. If upmsg′ = ⊥: let wxt+1 = wxt .

ii. Else:
A. Parse (at+1, y) = upmsg′.
B. Compute Bezout coefficients α, β such that αx+ βy = 1. (Given that x 6= y, since

both x and y are prime, such α and β are guaranteed to exist.)

C. Let wxt+1 = (wxt )βaαt+1 mod n.

iii. Return wxt+1.
3. If stts = out:

(a) Parse (rxt , s
x
t ) = wxt .

(b) If Op = Add:
i. Parse y = upmsg′.
ii. If y = ⊥: let wxt+1 = wxt .
iii. Else:

A. Find α and β such that αy + βx = 1.
B. rxt+1 = αrxt mod x.

C. Find a value v such that rxt+1y = rxt + vx.

D. sxt+1 = sxt a
v
t mod n.

E. Let wxt+1 = (rxt+1, s
x
t+1).

F. Return wxt+1.
Verifying that the new witness holds, we have

a
rt+1
t+1 = a

rt+1y

t = a
rt+rx
t = a

rx
t a

rt
t

= a
rx
t s

x
a0 = (a

r
t s)

x
a0 = s

x
t+1a0(modn).

(c) Op = Del:
i. If upmsg′ = ⊥: let wxt+1 = wxt .
ii. Else:

A. Find a value v such that 0 ≤ rxt y − vx < 2λ (this is efficiently doable).
B. rxt+1 = rxt y − vx.

C. sxt+1 = sxt a
x
t+1a0.

D. Let wxt+1 = (rxt+1, s
x
t+1).

E. Return wxt+1.
Verifying that the new witness holds, we have

a
rt+1
t+1 = a

rty−rx
t+1 = s

x
t a0a

−rx
t+1 = (sta

−1
t+1)

x
a0 = s

x
t+1a0(modn).

Fig. 11. RSA Witness Holder Algorithms

VerStatus(stts, at, x, w
x
t ):

1. If stts = in:
(a) Return 1 if at = (wxt )x mod n.
(b) Return 0 otherwise.

2. If stts = out:
(a) Parse (rxt , s

x
t ) = wxt .

(b) Return 1 if a
rxt
t = (sxt )xa0(modn).

(c) Return 0 otherwise.

Fig. 12. RSA Verifier Algorithms

29


