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Abstract. In this paper, we consider the implications of parallelizing time-memory
tradeoff attacks using a large number of distributed processors. It is shown that
Hellman’s original tradeoff method and the Biryukov-Shamir attack on stream ciphers,
which incorporates data into the tradeoff, can be effectively distributed to reduce
both time and memory, while other approaches are less advantaged in a distributed
approach. Distributed tradeoff attacks are specifically discussed as applied to stream
ciphers and the counter mode operation of block ciphers, where their feasibility is
considered in relation to distributed exhaustive key search. In particular, for counter
mode with an unpredictable initial count, we show that distributed tradeoff attacks
are applicable, but can be made infeasible if the entropy of the initial count is at least
as large as the key. In general, the analyses of this paper illustrate the effectiveness of
a distributed tradeoff approach and show that, when enough processors are involved
in the attack, it is possible some systems, such as lightweight cipher implementations,
may be practically susceptible to attack.
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1 Introduction
Time-memory tradeoff (TMTO) attacks were first introduced by Hellman [1] to attack
block ciphers using a chosen plaintext or easily predicted known plaintext. The basic
concept involves two phases: Before system operation begins, the preprocessing (or offline)
phase prepares a compact table from chains representing information from (almost) all
keys, while the online phase efficiently searches the table in an attempt to identify which
key is used to encrypt during system operation. Following Hellman’s work, Babbage [2] and
Golić [3] independently showed that a time-memory-data tradeoff based on the birthday
paradox was applicable to stream ciphers by attacking the stream cipher state, rather
than the key. This was subsequently combined with Hellman’s approach by Biryukov and
Shamir [4] to develop another, more flexible tradeoff involving data and targeting the
stream cipher state. This approach was then extended by Hong and Sarkar [5] to attack
directly the key and initialization vector (IV) of stream ciphers, as well as being applied
to some block cipher modes.

Numerous papers have refined Hellman’s approach trying various methods to improve
the success rate and reduce the attack complexity. Most notably, the distinguished points
method, attributed to Rivest in [6], can be used to minimize costly memory accesses, while
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it is claimed that the rainbow table method can be used to minimize memory accesses and
improve the speed of the table search [7].

Although the concept of distributed cryptanalytic attacks is well known, no paper has
systematically characterized the value of distributed time-memory tradeoff attacks. In this
paper, we examine tradeoff expressions for a number of distributed TMTO approaches
using the number of processors as a tradeoff parameter. Further, we explicitly examine
distributed attacks and their applicability to stream ciphers and the counter mode operation
of block ciphers.

2 Background on Time-Memory Tradeoff Attacks
In this section, we provide detailed descriptions of TMTO attacks so that we have the
foundation to later discuss the distributed TMTO attacks. The knowledgeable reader may
wish to skip to Section 3.

In our discussion (as well as the discussions in other papers on TMTO attacks),
complexities are given for time, memory, and data and the unit of these complexities
may differ by a modest multiplicative constant when comparing approaches. Time and
memory complexities are often represented in units equivalent to the number of encryption
operations and the number of key pairs stored, respectively, while data complexities are
sometimes expressed as the contiguous bits of data or the number of data blocks, with
each block corresponding to a unique IV. Also, as is usually done, we assume that when
an algorithm complexity involves a factor that is logarithmic in a parameter, this factor is
small enough to be ignored.

A summary of the characteristics of tradeoff attacks, as well as the distributed versions
discussed in this paper, is presented in Appendix A.

2.1 Hellman’s Attack
The basic TMTO attack introduced by Hellman [1] works because memory is saved by
storing in a table just the start and end of chains generated during the preprocessing phase,
such that, in the online phase, the table can be efficiently searched while walking through
a chain starting with the data captured from the system. As a result, the preprocessing
phase requires a time complexity that is equivalent to the size of the key space, while the
online time complexity and the memory complexity can be substantially less than the size
of the key space.

Consider a block cipher with a block size of b bits and a key space with a total of
K keys, where K ≤ 2b.1 A plaintext block, x, is selected such that the corresponding
ciphertext (resulting from encryption using the target key) can be captured during system
operation. During the preprocessing phase, a chain is created by randomly selecting a
key k0 and encrypting plaintext x using encryption function E with key k0 to produce
ciphertext y1 = Ek0(x). A chaining function R is then applied to produce a value for
the next key, k1, from the ciphertext, y1, so that k1 = R(y1). In practice, R can be a
very simple function (such as a transposition on log2K bits selected from the b bits of the
block). Key k1 is subsequently used to encrypt x to produce y2 = Ek1(x), which then has
R applied so that k2 = R(y2). This process is repeated for a total of t links in the chain,
as illustrated in Figure 1, and the first key, k0, and last key, kt, are saved. A total of m
such chains for random starting keys are constructed with just the first and last keys being
saved for each. For clarity, we shall refer to this table of m key pairs as a subtable.

After the completion of the m chains, the subtable of m key pairs are sorted based
on the last key in the chain. Hellman recommended the stopping criterion of mt2 = K
as a constraint on the values of m and t to mitigate the merging of chains which causes

1The TMTO attack can also be easily applied when K > 2b using multiple blocks of plaintext for input.
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Figure 1: Chain in Hellman Table

repetition of keys covered by the subtable. Hence, one subtable only effectively covers
about K/t of the total of K keys. To improve the coverage, Hellman suggested generating
a table of t such subtables, using different chaining functions Ri, 1 ≤ i ≤ t, for each table.
Since any two subtables have different chaining functions, even if a specific key value
occurs in chains in both subtables, it will not result in the two chains merging. Since one
subtable should cover about mt key values, if t subtables are constructed using different
chaining functions, the resulting coverage of the table of t subtables will be about K. This
means that information on most of the keys is available from the table which has a memory
complexity of M = mt� K, where a memory element contains a key pair corresponding
to the first and last keys in a chain.

After the table is constructed in the preprocessing phase, in the online phase, the
attacker acquires the ciphertext, y, corresponding to plaintext x encrypted under the
unknown target key value k, y = Ek(x). For each subtable i, 1 ≤ i ≤ t, after computing
Ri(y), the resulting value is looked up in the subtable, requiring a search of (insignificant)
logarithmic complexity in m since each of t subtables is sorted by the last key of each
chain. If this value is not found, the encryption is applied with the new key value given by
Ri(y), the chaining function applied, and the resulting value looked up in the subtable.
This process is repeated (up to t times) for each subtable. When a value is found in one
of the subtables, the implication is that, with reasonable likelihood, the correct key is
found in the corresponding chain and by restarting at the beginning of the chain (using
the stored first key value) and continuing until y is produced by the encryption in the
chain, one can identify the target key as the key used to produce y in the chain. The
correctness of this key can be confirmed with other captured plaintext/ciphertext pairs. If
a false alarm occurs, the search process continues and, with high probability, the correct
key will eventually be found in the table. In the worst case, it will take t encryptions of x
(to proceed through a chain) for each of t subtables. Hence, the online time complexity is
T = t2, where the units of time are encryption operations.

Now, combining the stopping criterion of mt2 = K, with the expressions for M and T ,
it is simple to develop the Hellman tradeoff expression of

TM2 = K2. (1)

The preprocessing time, P , required to set up the table must cover all key values and,
hence, P = K. Hellman uses the example that, if T = M , then both online time and
memory are smaller than the key space and, in fact, T = M = K2/3.

2.2 Babbage-Golić (BG) Tradeoff
Both Babbage [2] and Golić [3] independently proposed a tradeoff attack on stream ciphers,
referred to as the BG attack. Assume that the size of the stream cipher’s state space is
N . A keystream prefix is a log2N sequence of keystream bits corresponding to the state
at which the prefix starts. The BG tradeoff works by constructing, during preprocessing,
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a table of N/D pairs of the state and the corresponding keystream prefix. A total of
D + log2N − 1 ≈ D bits of keystream are acquired in the online phase resulting in the
determination of D keystream prefixes, using a sliding window. Due to the birthday
paradox, with high probablity, one of the D keystream prefixes can be found in the table
and the corresponding state derived, thus breaking the cipher.

For this attack, the tradeoff expression is

TM = N (2)

where T = D, M = N/D, and the preprocessing time complexity is P = N/D. While
a strong theoretical attack, the requirement for a large amount of data restricts the
practicality of the attack.

Due to this attack, it is prudent to ensure that the state of the stream cipher (in bits)
should be at least twice as large as the key (in bits) to ensure that T ≥ K or M ≥ K.
Thus, as long as N ≥ K2, the BG TMTO attack is not more efficient than exhaustive key
search which has a time complexity of K.

2.3 Biryukov-Shamir (BS) Tradeoff
In [4], Biryukov and Shamir combined Hellman’s table and the BG tradeoff use of data to
develop a new tradeoff involving time, memory, and data, applicable to stream ciphers. In
the BS tradeoff, the Hellman table is derived from chains on the cipher state, rather than
the key. During preprocessing, a total of t/D subtables are constructed using different
chaining functions, with each covering m chains of length t, for which only the first and
last states are stored. Variable D represents the amount of data in the form of contiguous
keystream bits used in the attack and now M = mt/D. The preprocessing complexity is
thus P = N/D, where mt2 = N is the stopping criterion for constructing the table.

During the online phase, t steps through the chain (that is, state updates of the stream
cipher, followed by the chaining function) must be executed, with each of the t/D subtables
being searched and this must be done for each of the D prefixes derived from a sliding
window over the D bits. Hence, the online time takes T = t(t/D)D = t2. As a result, the
tradeoff in this case becomes

TM2D2 = N2. (3)

It should be noted that to ensure there is at least one complete subtable, it is assumed
that D ≤ t and therefore the restriction of D2 ≤ T exists. In order to be better than
exhaustive search on the state, an attacker would select T < N and M < N . However,
since the state is determined by the key upon initialization, in order to be better than
exhaustive key search, we expect T < K and M < K, where K represents the size of the
key space. Hence, since D2 ≤ T , it can be seen that letting N ≥ K2 is sufficient to ensure
that a BS TMTO attack cannot do better than exhaustive key search.

2.4 Hong-Sarkar (HS) Tradeoff
In [5], Hong and Sarkar explicitly relate the BS tradeoff for stream ciphers to the key and
the IV, rather than the state. The key is secret and unknown when building the table
during preprocessing and, while the IV is typically public and known during the online
phase, it may be unpredictable and therefore also unknown when building the table during
preprocessing. The HS tradeoff approach treats the input to be discovered in the tradeoff
attack to be the key/IV combination. If the size of the IV space is defined to be V and the
IVs to be used by the system are unknown during preprocessing, then the HS approach
can be applied to a stream cipher with the tradeoff being

TM2D2
iv = (KV )2 (4)
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where the preprocessing complexity is given by P = KV/Div. The attack has a similar data
restriction of D2

iv ≤ T as the BS approach. Note that the D term used in the BS tradeoff
of (3) has been replaced by Div in (4) to emphasize that, rather than D contiguous bits,
in fact, Div represents the number of log2(KV ) bit prefixes at the start of the keystream
for different key/IV combinations.

The HS tradeoff can be easily explained by noting that the state space defining the
initial state following a reinitialization with a new IV cannot exceed the total space implied
by the key/IV combination since the key/IV combination determines the initial state. It
is possible for the HS tradeoff to be an improvement on the BS tradeoff in cases where
KV < N , however, this is not necessarily the case. In practice, to apply the attack would
require a lot more data to be collected than just Div bits, although much of it could be
discarded since it is not needed in online processing. This is discussed further in Section
4.3.

In theory, each prefix used in the attack must be collected from different key/IV
combinations and, hence, success in the attack may mean finding one key from among a
number of keys used in encryption. In the single-key scenario, where it is assumed that
data is only available from one key, if unpredictable IVs are to be used, then data could be
collected from different IVs and the target key. Then the tradeoff of (4) can be applied,
where Div represents the number of IVs under the one key and, hence, Div ≤ V .

2.5 Dunkelman-Keller (DK) Approach

The HS tradeoff approach assumes that the preprocessing is structured to consider the
combination of key and IV as one input and builds the table based on this, resulting in the
restriction on data. However, the HS method of attack does not take advantage of the fact
that, during the online phase, the IV is known and only the key needs to be discovered.
In [8], Dunkelman and Keller modify the HS approach by separating the key and IV in
the attack. The preprocessing phase then builds a number of Hellman tables to cover keys,
with each table built for a particular IV. This allows the online phase of the attack to
simply consider whether an intercepted IV has been used to build a table. If so, the table
corresponding to this IV can be searched for the key. In this approach, which we refer to
as the DK approach, assuming equally likely occurences of any IV, if V/Div tables, each
corresponding to a different IV, are built during preprocessing, then collected data from
Div IVs during the online phase, should result in one of the intercepted IVs being used in
the tables with high probability. For this tradeoff, M = (V/Div)mt and T = t2, where
the stopping criterion of mt2 = K2 applies to the Hellman tables. Hence, the DK method
has the tradeoff expression of (4) if the IV is unpredictable, but now has no restriction
on the data, Div, other than Div ≤ V in the single-key scenario. Further, this approach
has the advantage for applications where the IV is unpredictable but not equally likely in
distribution, as this can be used to build tables for the IVs which are most likely to occur.

2.6 Practical Performance Issues for TMTO Attacks

We shall consider in our work both the distinguished points and rainbow table refinements
of Hellman’s TMTO attack. These refinements and their relative merits in terms of
probability of success, detailed complexity analyses, and other practical performance
related issues, are studied in a number of papers including [9][10][11]. The results of
these comparisons indicate that these practical performance issues do not seem to have
substantial implications (i.e., orders of magnitude effects on complexity) and, hence, we
do not consider them significant for our discussion on distributed TMTO attacks.
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2.7 Previous Work on Parallelized TMTO Attacks
It is known that it is possible to parallelize TMTO attacks. For example, distributed
attacks are mentioned in [12] where it is noted that it is possible to divide the Hellman
subtables into groupings and circulate to participating processors. Parallelizing TMTO
attacks is further studied in [13][14]. However, no work has yet systematically characterized
the tradeoff aspects of multiple processors. In our work, we will thoroughly characterize
the distributed approach to various forms of time-memory tradeoffs. As a point of
comparison for distributed tradeoff attacks, we consider distributed exhaustive key search
and dictionary attacks, which represent the extreme ends of the tradeoff spectrum of “large
time complexity / negligible memory complexity” and “negligible time complexity / large
memory compexity”, respectively. The reader is referred to Appendix B for a discussion of
the distributed versions of these basic cryptanalytic attacks.

3 Distributed Hellman Attack
We now consider the parallelization of Hellman’s attack using distributed processors, as
well as the related approaches of distinguished points and the rainbow table. We assume
that W processors, with independent memory, are available. This might represent, for
example, W computers on the Internet with users willing to participate, or being duped
into participating, in attacking some cryptographic system. We assume that any necessary
communication complexity between these processors and a central controlling processor
are negligible in comparison to the time and memory complexities associated with the
attack.

In our discussion, we let T0, M0, and P0 represent the online time complexity, memory
complexity, and preprocessing time complexity, respectively, for an individual processor.
It is these quantities, along with W , which determine the efficacy of the attack, since it is
assumed that the individual processors can operate concurrently. For example, while a
non-distributed attack might require an online time complexity of T , if it is possible to
spread this work evenly between W processors, each processor would only require a time
of T/W , which could be done concurrently for all processors, and thus the overall duration
of the attack could be dramatically reduced if W is large.

3.1 Distributed Approach to the Original Hellman Attack
A distributed approach to Hellman’s TMTO attack can proceed by distributing the
responsibility for generating the t subtables to the W processors, so that each processor
generates t/W subtables independently. When the necessary ciphertext data is captured
during system operation, it will be distributed to all processors. Each processor will require
a memory of M0, where M0 = m(t/W ) = M/W and M is the total memory requirement
for the attack, with W ≤ t in order to ensure that each processor generates one or more
subtables.

Since each processor only needs to implement t encryptions for each of t/W subtables,
the time taken in a processor (and, if all processors operate concurrently, the overall time
to search the full Hellman table) is T0 = t(t/W ) = T/W , where T is the time required for
the non-distributed attack. When a key is found by a processor in its share of the table, it
must communicate this back to the central processor that is overseeing the cryptanalytic
process and that will be able to announce the successful completion of the attack.

Now T0M
2
0 = (t2/W )(mt/W )2 = (mt2)2/W 3 and assuming the Hellman stopping

criterion of mt2 = K results in the tradeoff for an individual processor to be

T0M
2
0W

3 = K2 (5)
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where the constraint W ≤ t, or equivalently W ≤ T0, applies. This expression captures
the tradeoff of interest in a distributed Hellman attack and reflects that both time and
memory can be improved by a factor of W . The preprocessing time for an individual
processor is P0 = K/W and is improved by a factor of W over the time required in the
non-distributed attack, since each processor only needs to construct chains covering a
fraction of the table. Although we notate this as the preprocessing cost of the individual
processor, if we assume that all processors compute their tables concurrently, it also reflects
the overall time complexity to prepare for the attack.

It is clear that using a number of processors to implement the attack potentially
provides a very significant advantage and may actually make the attack possible in some
practical scenarios. Of course, similar statements can be made about exhaustive key search
or a dictionary attack: A distributed exhaustive key search can be sped up by a factor
of W , while a distributed dictionary attack can reduce the memory requirement of an
individual processor by a factor of W . (See Appendix B for a discussion of these attacks.)
However, a distributed TMTO attack preserves the possibility for a significantly faster
online processing time at the expense of more memory, or vice versa.

Consider the following example applying to an implementation of AES-128 for which
K = 2128. Letting W = 220, the non-distributed exhaustive key search would require
T = 2128, while the distributed exhaustive key search would require T0 = 2108. In the
case of a Hellman TMTO attack with equal online time and memory complexity, the
non-distributed attack would take T = M = 285.3 (with P = 2128), while the distributed
approach would require T0 = M0 = 265.3 (with P0 = 2108). As another example, consider
a lightweight block cipher with an 80-bit key so that K = 280. In this case, with W = 220,
a distributed TMTO attack exists with T0 = M0 = 233.3 (and P0 = 260), which is
substantially less complex than the T0 = 260 required for a distributed exhaustive key
search.

3.2 Distributed Distinguished Points (DP) Method
One of the issues identified for the Hellman TMTO attack is that the cost of a memory
access can be highly variable depending on whether the access is to internal memory
(RAM) or to an external memory (eg. hard disk drive or a solid state drive). For example,
the cost of accessing an external drive may be orders of magnitude more than an internal
RAM access [15]. In developing the tradeoff expression of (1), it was assumed that the time
to access memory is negligible in comparison to an encryption operation and, hence, time
complexity is enumerated relative to the number of encryption operations. However, if this
assumption does not hold true, then in practical terms the attack may run much slower
than anticipated. In order to mitigate the cost of slow memory accesses, the distinguished
points (DP) method was proposed by Rivest [6]. In this approach, rather than build chains
of fixed length t when constructing a Hellman table, the preprocessing phase can build
a chain which terminates when a particular pattern (eg. all zeroes) is recognized in the
first log2t bits of the key. This means the length of a chain is variable but will be a length
of t on average. When executing the online portion of the attack, since the end point of
a chain must start with log2t zeroes, only about 1/t encryptions needs a look up to be
executed in the subtable (which is likely stored in slow access external memory). Hence,
the number of memory accesses is reduced by a factor of t.

In the distributed Hellman attack, it is fully possible to execute the distinguished points
approach to the attack. The amount of memory in a processor is still fixed at M0 = mt/W ,
since there are t subtables split between the W processors. However, the time required to
finish the concurrent computations of W processors is now more complex. Since there is an
average of t links in each chain, the number of encryptions per subtable must be more than
t to cope with chains having longer than t links. Assume that, at most, γt encryptions
are executed for each subtable. The DP method is likely to set γ to be a modest value,
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to keep the time complexity of the attack constrained. When preparing the table during
the preprocessing phase, the DP method will stop a chain when a distinguished point is
found or when γt links in a chain have been reached without hitting a distinguished point.
Similarly, during the online process, if, after γt encryptions, a distinguished point is not
reached for a subtable, the subtable is assumed to not contain the key. Of course, the
value used for γ affects the probability of success, but as shown in [10], γ can effectively be
a small constant. Hence, the online time complexity can be no worse than the maximum
chain length, γt, multiplied by the number of subtables to search through, t/W , and, hence,
T0 = γt2/W where T0 now represents the maximum possible time taken at an individual
processor.

This leads to a tradeoff of the form T0M
2
0W

3 = γK2 which is slightly worse than the
distributed Hellman tradeoff of (5). However, it is quite possible that implementing the
distinguished points method when using a distributed approach will not be necessary. Since
the memory size needed in the individual processors in a distributed attack is reduced
by a factor of W , it is quite conceivable for some parameters that the processor memory
complexity of M0 is small enough that the processor’s complete table portion could be
stored in internal memory and slow accesses to external memory are not needed. In such a
case, there would be no need to implement the DP approach.

3.3 Distributed Rainbow Table Method
In [7], Oechslin proposed an alternate formulation to represent the key chains in the TMTO
attack. Hellman’s approach was to use one chaining function for every link in a chain and
for all the chains in one subtable, with different subtables then using different chaining
functions. In contrast, the rainbow table approach uses a different chaining function for
each link in the chain and then builds one table of such chains. That is, link i, 1 ≤ i ≤ t,
in each chain uses function Ri. It is shown that the same relationship of mt2 = K should
be used and the result is one table covering M = mt = K/t chains of length t. It is argued
that there are improvements to Hellman’s approach [7][16]. For the online phase, the
number of encryptions is determined by computing t partial chains, where the j-th partial
chain is of the form

Rt+1−j(·)→ E(·)(x)→ Rt+2−j(·)→ E(·)(x)→ ...→ Rt−1(·)→ E(·)(x)→ Rt(·) (6)

resulting in the total number of encryptions to be about t2/2. Ignoring the somewhat
insignificant factor of 1/2 in the number of encryptions gives T ≈ t2 and results in the
same tradeoff expression as in (1). However, since only at the end of one of the partial
chains is it necessary to look up in the table, only t memory accesses to the table are
required.

The distributed rainbow table approach can be accomplished by distributing the table
so that M0 = mt/W = M/W . However, for each processor, the time complexity involves
reproducing t partial chains for a total of T0 = t2/2 ≈ t2 encryptions required in each
processor. Hence, the time complexity cannot be improved by distributing the table since
each processor must take ∼t2 to consider their portion of the table, i.e., T0 = T . The
resulting tradeoff expression is

T0M
2
0W

2 = K2. (7)

Rather than divide up the rainbow table between processors, an alternative approach for
a distributed rainbow table attack, would be to distribute the computation of t partial
chains between W processors. In this case, T ≈ t(t/W ) would represent the online time
complexity, where we use the approximation sign to indicate that partial chains have about
t/2 encryptions on average. However, the resulting distributed computations would need
to be checked in one central table. In this case, T0 = T/W , but M0 = M = mt. Hence,
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the tradeoff becomes even worse as

T0M
2
0W = K2. (8)

For the rainbow table approach, distributing the table and the computations is not
feasible, since the end of each partial chain must be looked up in the full table. Comparing
(7) and (8) to the tradeoff of (5) representing the distributed Hellman attack, it is obvious
that the tradeoff of the distributed rainbow table approach is inferior to the distributed
version of the original Hellman TMTO approach. In addition, when applying a distributed
approach to time-memory tradeoffs, since the memory requirements could be substantially
smaller on a per processor basis, reducing memory accesses (one of the advantages of
the rainbow table) may very well not be important, since the necessary subtables of the
Hellman approach may fit within a processor’s RAM.

4 Applying Distributed TMTO Attacks on Stream Ciphers
In this section, we consider the application of distributed TMTO attacks to stream ciphers.

4.1 Distributed BG Attack
We first consider the distributed BG attack, which makes use of data collected and assumes
D bits of keystream are available. In this case, the attack can be distributed by dividing
up the work to prepare, and the memory to store, the BG table to W processors, so that
P0 = N/(DW ) and M0 = N/(DW ). The time required in a processor during the online
phase is directly proportional to the processing of all D prefixes, so that T0 = D, which is
unchanged from the non-distributed case. As a result, it can be shown that

T0M0W = N. (9)

Consider the general case where T0 = Mr
0 , r > 0. Then, it can be shown that

T0 = (N/W )r/(r+1). Since the exponent is always less than 1, T0 < N/W , which is
equivalent to saying that the distributed BG tradeoff always leads to an attack which has
a better online time complexity than distributed exhaustive search on the state of the
stream cipher. (Similar reasoning applies to M0.)

For a non-distributed attack, letting N ≥ K2 ensures that the BG tradeoff does not
lead to a better attack than exhaustive key search. Placing this constraint on the stream
cipher leads to the following proposition for the distributed BG attack.

Proposition 1
If N ≥ K2, there is no value of W for which a distributed BG TMTO attack on a stream
cipher has a lower complexity for both online time and memory than the complexity of
distributed exhaustive key search.

Proof
A distributed exhaustive key search has a complexity of K/W . Let N = aK2, where
a ≥ 1. We can now adjust (9) to be T0M0W = aK2. For the best TMTO attack, we can
minimize the maximum of either T0 or M0 in this equation by letting T0 = M0, leading to

T0 = a1/2K

W 1/2 (10)

which clearly implies T0 ≥ K/W and M0 ≥ K/W for all values of W . Since other tradeoffs
lead to one of T0 or M0 being larger, there will always be at least one of T0 or M0 being
at least as large as K/W . Hence, clearly the distributed BG tradeoff cannot have a lower
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complexity than distributed exhaustive key search for any number of processors. �

As an example, consider Grain v1 [17], for which the size of the stream cipher state
is 160 bits and the key is 80 bits. Using (9) and letting T0 = M0, if W = 220, then
T0 = M0 = 270, which is better than a non-distributed exhaustive key search and non-
distributed BG TMTO for which, in both cases, T = 280. However, for distributed
exhaustive key search, T0 = 260. In general, when N = K2, in comparison to a non-
distributed attack, the distributed BG attack only improves time complexity by a factor
of W 1/2 over non-distributed exhaustive key search, whereas the distributed exhaustive
key search and the distributed Hellman attack improve by a factor of W .

4.2 Distributed BS Attack
Consider now the distributed BS attack. With W processors and D contiguous data bits
of keystream, the t/D subtables needed in the BS approach can be divided into W groups,
resulting in the memory for individual processors being M0 = mt/(DW ), where W ≤ t/D
in order for each processor to have one or more subtables. The time in an individual
processor to process the data and recover the state is given by T0 = t·(t/(DW ))·D = t2/W ,
where the first term represents the t encryptions to reproduce a chain from the starting
point of the captured data, the middle bracketed term represents the number of subtables
to process in each processor, and the last term represents the data that each processor
must consider. Combining the expressions for M0 and T0 leads to the following tradeoff:

T0M
2
0D

2W 3 = N2 (11)

where the amount of data and the number of processors must satisfy D2W ≤ T0 (which is
derived by combining the constraint on W with the expression for T0). Since deriving the
required subtables determines the preprocessing time in an individual processor, we also
have P0 = N/(DW ).

For a distributed BS attack, the constraint of N ≥ K2 ensures that the distributed
BS tradeoff performs no better than distributed exhaustive key search. We illustrate this
formally in the following proposition.

Proposition 2
If N ≥ K2, there is no value of W for which a distributed BS TMTO attack on a stream
cipher, satisfying the constraint D2W ≤ T0, has a lower complexity for both online time
and memory than the complexity of distributed exhaustive key search.

Proof
Let N = aK2, where a ≥ 1. Minimizing T0 and M0 in the application of the BS tradeoff is
done by maximizing the data in the tradeoff. Using the upper bound of D ≤ (T0/W )1/2,
it can be shown that (11) is equivalent to the tradeoff of T0M0W = aK2. This is now
identical in form to the distributed BG tradeoff of (9) and, hence, the remainder of the
proof can follow similarly to the proof of Proposition 1. �

Using the tradeoff of (11) could be useful in circumstances where the ratio of the state
size in bits to the key in bits is less than 2. Consider that, if N = 2160 and D = 225, then
letting T0 = M0, one could use W = 220 processors to achieve T0 = M0 = 270, where
D2W ≤ T0 is satisfied. In comparison, this is clearly better than the distributed BG attack
which would require T0 = D = 225 and M0 = 2115. Further, a distributed BS TMTO
attack would be more successful than a distributed exhaustive key search, if the key size
was such that the online time complexity for the BS tradeoff satisfies T0 < K/W and this
is true here if the key size is more than 90 bits.
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4.3 Distributed HS and DK Attacks
Targeting a stream cipher system which uses a single key and numerous IVs and applying
a distributed HS approach results in the tradeoff

T0M
2
0D

2
ivW

3 = (KV )2, (12)

where Div represents the number of prefixes that are derived from the first log2(KV ) bits
of the initial cipher state following the reinitialization from different IVs. The constraints
D2

ivW ≤ T0 and Div ≤ V apply and the preprocessing complexity is P0 = (KV )/(DivW ).
(It is also conceivable to attack the cipher obtaining data from different keys, however, we
focus on the single key scenario, thereby assuming that all data collected and used in the
attack comes from one key.)

The distributed DK approach, which builds V/Div Hellman tables for different IVs
results in the same tradeoff as (12), as well as the same constraint of Div ≤ V and the same
preprocessing complexity of P0 = (KV )/(DivW ). However, since the DK approach builds
a Hellman table to cover just keys (rather than key/IV combinations), we can assume that
each processor contains t/W of the Hellman subtables for all of the V/Div IVs. In this
case, M0 = (V/Div)m(t/W ) and T0 = t(t/W ), resulting in (12) with the contraint that
W ≤ t, or equivalently W ≤ T0, since at least one full subtable per IV must be stored in a
processor.

It appears that, if KV < N , the distributed HS and DK formulations are preferred
over the BS approach. However, comparing (11) and (12) can be deceiving since the data
term in both expressions represents different types of data. In the case of the BS approach
of (11), the data represents the total number of contiguous bits collected under the same
key and IV. Conversely, the HS and DK approaches of (12) require a total number of
bits of data to be about Dtotal = Divµiv, where µiv represents the average number of bits
encrypted under one IV (although only the first log2(KV ) bits of each IV’s keystream are
used in the attack). Hence, substituting into (12) results in

TM2D2
totalW

3 = (KV µiv)2 (13)

where Dtotal is the number of bits collected (although many are discarded) and, while it
represents data collected from multiple IVs, it is similar to the D term in (11), implying
that (12) is a better tradeoff (with a smaller term on the right), when KV µiv < N . In
cases where N = K2, which ensures security against BG and BS attacks and minimizes
cipher implementation complexity, (12) is the better tradeoff when V µiv < K. These same
arguments apply equally to the non-distributed and distributed HS and DK approaches.

As an example, consider Grain v1 [17] with state size of 160 bits, key size of 80 bits,
and IV size of 64 bits. As long as the average number of plaintext bits encrypted for each
IV is less than 216, the HS and DK attack formulations are better than attacking the state
of the cipher using the BS tradeoff. Note that if the IVs used in a stream cipher system
are not equally likely, then the DK approach can effectively build tables for the most likely
IVs and can be more successful than the HS approach in both the non-distributed and
distributed cases.

5 Applying TMTO Attacks to Counter Mode
In this section, we describe how non-distributed and distributed TMTO attacks can be
applied to counter mode [18]. We focus our attention on counter mode because TMTO
attacks have not been fully explored for their applicability to the mode. Other modes
(such as ECB) can be straightforwardly attacked using chosen or (predictable) known
plaintext approaches and applying TMTO attacks such as Hellman’s original tradeoff or its
distributed version. However, when a block cipher operates in counter mode, in addition
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to the key, the count value can be initialized so that the count is unpredictable during the
preprocessing phase of TMTO attacks, making the building of the Hellman table more
challenging. This implies that TMTO attacks can be made more difficult, even when a
chosen plaintext approach can be applied during the online phase. In this section, we
explore the viability of increasing the security of counter mode against TMTO attacks by
making the initial count unpredictable.

5.1 Counter Mode Model
When used in counter mode, a keyed block cipher encrypts a count value held in a b-bit
counter register, where the count is incremented by a simple update function such as
adding 1 to a binary number or applying LFSR functionality. During the operation of the
system under a given key, the count is periodically initialized to a particular value that we
shall refer to as the initial count. It is important not to repeat the count under a given key
because this will result in a repetition of the keystream. We shall consider a format for the
initial count that divides the b bits into two parts: (1) a v-bit initialization vector (IV) or
nonce2 and (2) a c-bit block counter field, where b = v + c. The IV field is used to ensure
that no counts are repeated for a given key and the IV could be (i) a predictable, unique
value (eg. message number) or (ii) a randomly selected, unpredictable value. Although the
IV (and hence the initial count) may not be predictable, it is not usually kept secret and
is typically publicly exchanged between parties at the start of a communication session
or message.3 The c-bit block counter field increments for every block of encryption. We
assume that it will be typically initialized to a known value (such as all zeroes) for every
new IV.

When counter mode is operated with a non-random, predictable IV, along with a
known initial value for the block counter field, Hellman’s TMTO attack can be directly
applied by constructing tables for the predicted initial count. The distributed attack can
be applied as described in Section 3.

In the rest of the paper, we consider counter mode with a random, unpredictable IV
component in the initial count. Although it is still assumed that the initial count value
can be intercepted and known to the attacker during the online phase of a TMTO attack,
we assume that all V = 2v values of IV are random and equally likely when building the
tables during the preprocessing phase. This is equivalent to having the entropy of the
initial count being log2V = v.

5.2 Non-Distributed TMTO Attack on Counter Mode
In this section, we consider first the application of Hellman’s original, non-distributed
TMTO attack to counter mode. In all cases in this section, we focus the discussion on
extracting the key from a system which uses a single key. The multi-key scenario is
discussed in Section 5.5.

When the IV is unpredictable, the initial count value is not known before the use of
the cipher and it cannot be used to build the Hellman table to cover the keys. We assume
therefore that it is not known how to build a table for any resulting value in the counter
register. One approach, if V is small enough, could therefore be to build Hellman tables for
keys, corresponding to all V = 2v values. Once an IV is used and observed, the appropriate
Hellman table can be accessed and the TMTO attack executed. In this case, the memory

2We use the terminology “IV” to refer to the field of the initial count that must be unique for a given
key in order to be consistent with terminology used in the stream cipher domain. In some contexts, this
field may be referred to as a nonce.

3We will sometimes refer to the IV, when more precisely, we should refer to the initial count that is
intercepted and collected. Strictly, we consider the IV to be the random, unpredictable part of the initial
count but, for convenience, we often treat the IV as synonymous with the initial count.
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required is M = V mt and the time required for the attack is T = t2, resulting in tradeoff

TM2 = (KV )2 (14)

based on the Hellman stopping criterion of mt2 = K. The preprocessing complexity is
P = KV . Clearly, the tradeoff attack is worse than Hellman’s attack on the cipher in ECB
mode and the preprocessing stage is more costly than exhaustive key search since P > K.
Also, if V > t, the memory requirement is worse than the full dictionary attack, since this
implies M > K. However, for some relative values of K and V , the online phase of the
TMTO attack can be better than exhaustive key search.

Note that this is the same tradeoff expression that would apply if we used the TMTO
attack on a function with an input that is the combination of the key and IV, resulting in
an input space of KV . In counter mode, determining the IV in the attack has no value
since it is assumed to be intercepted and known during the online phase.

It is not hard to show from (14) that if V ≥ K1/2, at least one of T or M must be at
least as large as the complexity of exhaustive key search. Hence, in order to ensure that a
non-distributed TMTO attack (which does not use multiple data) can be no better than
exhaustive key search, the size of the IV field of the initial count, should be at least half
the size of the key, that is, v ≥ k/2, where K = 2k. This has implications for practical
specifications of counter mode. For example, using AES-128 (where K = 2128) in counter
mode with an unpredictable IV so that V = 232, since V < K1/2, it is possible to mount
a TMTO attack with an online time or memory complexity better than 2128. In fact, a
TMTO attack can be mounted with T = M = (KV )2/3 = 2106.67. The preprocessing
phase of the attack has a complexity of P = KV = 2160.

The TMTO attack can be improved by making use of data using the DK approach.
Allowing for the collection of data from Div IVs, we could implement only V/Div of the
total V Hellman tables. Each captured IV can be checked to see whether it is used for
one of the tables. This can be assumed to take negligible time if the IV is not used.
However, with high probability, we would expect one of the collected IVs to be used for
a table and the attack on the key can proceed with the appropriate table. In this case,
M = (V/Div)mt since V/Div Hellman tables are used. Since the online time complexity
is dominated by the time taken for an IV used in the tables, T = t2. The preprocessing
complexity is now P = KV/Div and the tradeoff expression is given by (4), which is
derived using the stopping criterion of mt2 = K2.

Of course, Div ≤ V and, in practice, the number of data bits collected is required to
be more than Div, since many plaintext blocks will be encrypted for a given IV. This
extra data can be ignored in the attack as it does not affect either the amount of memory
needed or the time complexity. For K = 2128 and V = 232, if 220 initial count values can
be collected corresponding to 220 different IV values, it is possible to mount a TMTO
attack with T = M = 293.3 using P = 2140.

It is clear that, since Div ≤ V , P ≥ K and TM2 ≥ K2. Hence, even using data, the
preprocessing step is at least as slow as exhaustive key search and the tradeoff is worse
than the Hellman tradeoff attack on ECB mode as in (1). However, we note that the
Hellman tradeoff of (1) cannot be directly applied to counter mode unless the counter
register content can be predicted during the preprocessing phase. To improve on the attack,
we can apply a distributed approach and this will be considered in the next section.

5.3 Distributed TMTO Attack on Counter Mode
In this section, we consider the application of a distributed TMTO attack to counter mode
with a single key and an unpredictable IV. For an attack which does not use data in the
tradeoff, this can be done by dividing the t subtables of V Hellman tables (one table for
each IV, covering all keys) between the W processors. The tradeoff used in this approach



14 Distributed TMTO Attacks

would be a simple modification of (5), where K is replaced by KV :

T0M
2
0W

3 = (KV )2 (15)

with W ≤ T0 and preprocessing requiring P0 = KV/W to cover all key/IV combinations
across all processors. We now consider the development of an expression which indicates
the size of W necessary to allow a TMTO attack to outperform a distributed exhaustive
key search. This is equivalent to saying that the online time complexity and memory
complexity of the TMTO attack should be both less than K/W . The resulting analysis
leads to Proposition 3.

Proposition 3
Consider counter mode such that the key and the IV portion of the initial count are
unpredictable during the preprocessing phase and assumed to be randomly drawn from
the K and V possible values, respectively. With T0 = Mr

0 , a distributed tradeoff approach
can be applied to obtain an attack with an online time complexity and memory complexity
less than the complexity of distributed exhaustive key search for the following conditions
on W :

W >


V

2
1−r /K

r
1−r , r < 1

0 , r = 1, if V < K1/2

∞ , r = 1, if V ≥ K1/2

K
r−2

2r−2V
2r

2r−2 , r > 1

(16)

Proof
We need to show the conditions on W for which T0 < K/W and M0 < K/W . The proof
considers the three cases for r. For r > 1, T0 > M0 and, hence, it is sufficient to consider
scenarios for T0 < K/W , while for r < 1, M0 > T0, and, therefore, it is sufficient to
consider M0 < K/W . For the case of r = 1, T0 = M0 and we can consider a bound on
either T0 or M0.

From (15), it can be shown that, if r > 1, then

T0 = (KV )
2r

r+2

W
3r

r+2
(17)

which, when letting T0 < K/W , leads to the case for r > 1.
Similarly, for r < 1,

M0 = (KV )
2

r+2

W
3

r+2
(18)

which, when letting M0 < K/W , leads to the case for r < 1.
Finally, letting T0 = M0, gives

T0 = (KV )2/3

W
(19)

which, when compared to K/W , results in an inequality not involving W , but which shows
that, for V < K1/2, the TMTO attack can improve upon exhaustive search for any W ,
while, for V ≥ K1/2, the TMTO attack cannot improve upon exhaustive search for anyW .�

The interpretation of Proposition 3 can be demonstrated by considering the following
example where we let K = 2128 and V = 232. From Proposition 3, we can determine: (1)
if T = M , then W > 0, (2) if T = M1/2, then W > 1, and (3) if T = M2, W > 264. So we
can conclude that a distributed TMTO attack can be made more efficient than distributed
exhaustive key search for cases 1 and 2 by using as few as 1 and 2 processors, respectively,
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while for case 3, the number of processors must be more than 264, an impractically large
requirement. Hence, for case 3, although it may be theoretically possible to mount a
distributed TMTO attack, it is not practical to do so. Other examples for values of K, V
and r can be considered to determine their practicality in terms of the number of required
processors in a distributed attack.

We have seen for the case of r = 1 that if the condition V ≥ K1/2 is satisfied, then
any value of W cannot lead to the online time and memory complexity of the TMTO
attack as an improvement over exhaustive key search. We can now develop Proposition
4 which gives the relationship between K and V in order to ensure that it is impossible
for a distributed TMTO attack to outperform distributed exhaustive key search for any
tradeoff of time and memory.

Proposition 4
Consider counter mode such that the key and the IV portion of the initial count are
unpredictable during the preprocessing phase and assumed to be randomly drawn from
the K and V possible values, respectively. If V ≥ K1/2, the online time complexity or the
memory complexity of a distributed TMTO attack (which does not use multiple data) is
at least as large as the complexity of a distributed exhaustive key search.

Proof
The best tradeoff from (15) occurs when we minimize the maximum of either T0 or M0,
which occurs for T0 = M0, leading to T0 = (KV )2/3/W . If V ≥ K1/2, in this case clearly
T0 ≥ K/W and M0 ≥ K/W for any W , where K/W is the complexity of a distributed
exhaustive key search. Reducing T0 at the expense of M0 (or vice versa) would still clearly
result in M0 (or T0) being at least K/W . �

Proposition 4 states that a distributed TMTO attack (which does not use multiple
data) cannot be made more efficient than a distributed exhaustive key search for V ≥ K1/2

and this was argued to be the case for the non-distributed attack as well. The broad
implication is that to ensure security against TMTO attacks (which do not use multiple
data), the unpredictable portion of the initial count (which is equivalent to the entropy of
the initial count) should be at least half the size of the key.

5.4 Incorporating Data into the Distributed Attack on Counter Mode

Consider now incorporating the use of data into the distributed TMTO attack on a
single-key implementation of counter mode. In doing so, the distributed DK approach can
be applied and, hence, the tradeoff of (12) can be used, with the constraints W ≤ T0 and
Div ≤ V , and P0 = KV/(DivW ).

We can extend Proposition 4 to apply to TMTO attacks which use data, resulting in
the following proposition.

Proposition 5
Consider counter mode such that the key and the IV portion of the initial count are
unpredictable during the preprocessing phase and assumed to be randomly drawn from
the K and V possible values, respectively. Assume that a distributed TMTO attack
on a single-key system is applied with data available from Div IVs, where Div ≤ V . If
V/Div ≥ K1/2, the online time complexity or the memory complexity of a distributed
TMTO attack is at least as large as the complexity of a distributed exhaustive key search.

Proof
We can simply follow the proof of Proposition 4, but base it on the distributed DK tradeoff
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of (12), which can be rewritten to be

T0M
2
0W

3 = (K[V/Div])2. (20)

This equation is similar to (15) used in the proof of Proposition 4, except that we have
substituted V with V/Div. Proposition 4 now follows with the same substitution, resulting
in the distributed TMTO attack with data not being able to improve on distributed
exhaustive key search when V/Div ≥ K1/2. �

Proposition 5 increases the lower bound on V for which the distributed TMTO attack
becomes infeasible. The same bound can be trivially shown to be applicable to the non-
distributed TMTO attack using data. Assuming that it is impractical for Div > K1/2,
then letting V ≥ K is sufficient to ensure security against TMTO attacks which make
use of data. (Note that the requirement that V ≥ K was also suggested in [5] in the
context of non-distributed attacks on stream ciphers and allowing Div = K1/2. In [8], the
requirement of V ≥ K3/2 is recommended based on non-distributed TMTO attacks on
stream ciphers and allowing Div = K, which may be impractical. Hence, although V ≥ K
is sufficient based a reasonable expectation on the amount of data that could be used, a
cautious cryptographer may wish to ensure that V ≥ K3/2.)

Now if DivW = αV , where α > 1, then P0 < K, meaning the preprocessing time is
better than exhaustive search on a cipher with key spaceK. Further, T0M

2
0 = K2/(α2W ) <

K2/W , which could be substantially better than the tradeoff of the non-distributed
approach. Consider the following case of counter mode using AES-128: K = 2128, V = 232

and W = 220. If we let T0 = M0 and Div = 220 (so that α = 256), we get T0 = M0 = 273.3,
with P0 = 2120. Hence, the complexity of the online phase of the distributed TMTO attack
is much better than the complexity of distributed exhaustive key search, which would be
K/W = 2108. Of course, collecting more data Div and/or involving more processors W
could be used to improve the attack even further, but is still subject to the DK approach
constraints of Div ≤ V and W ≤ T0.

5.5 Applying Multiple Keys in the Attack on Counter Mode
In [5][19], the concept of attacking a multi-key block cipher system is discussed, where
success in the attack is considered to occur if one of many used keys is found. Using
data from different keys, it is possible to make use of the BS tradeoff expression of (3) in
attacking block ciphers in ECB mode by collecting D ciphertexts for a given plaintext
where data is taken from D different keys and N = K. This approach could also be applied
to a multi-key system using counter mode making use of a tradeoff such as (4) which
targets the key and unpredictable initial count. In this case, Div represents data from
different key/IV combinations and the constraint Div ≤ V need not be applied. Further,
applying a distributed approach resulting in a tradeoff of the form of (12) may make some
systems vulnerable.

As an example, consider counter mode of AES-128, where K = 2128 and V = 232.
Assume that we have collected data from 212 IVs from each of 212 different keys, so that
Div = 224. Enlisting 220 processors in the TMTO attack, we can find one of the used keys
with an online complexity of T0 = M0 = 270.7 and a preprocessing complexity of P0 = 2116,
where the restriction D2

ivW ≤ T0 holds as required for the distributed HS approach.

6 Numerical Results for Some Tradeoffs
In this section, we highlight a few cases to illustrate the applicability of the distributed
TMTO attack. The data presented considers two key sizes of 80 bits (Table 1) and 128
bits (Table 2). A key size of 80 bits is consistent with the typical use of a lightweight block
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Table 1: TMTO Results T0/P0 for 80-bit Keys

K = 280 DEKS V = 1 V = 220 V = 240

W = 1, Div = 1 280 253.3 / 280 266.7 / 2100 280 / 2120

W = 1, Div = 210 280 253.3 / 280 260 / 290 273.3 / 2110

W = 220, Div = 1 260 233.3 / 260 246.7 / 280 260 / 2100

W = 220, Div = 210 260 233.3 / 260 240 / 270 253.3 / 290

Table 2: TMTO Results T0/P0 for 128-bit Keys

K = 2128 DEKS V = 1 V = 232 V = 264

W = 1, Div = 1 2128 285.3 / 2128 2106.7 / 2160 2128 / 2192

W = 1, Div = 220 2128 285.3 / 2128 293.3 / 2140 2114.7 / 2172

W = 220, Div = 1 2108 265.3 / 2108 286.7 / 2140 2108 / 2172

W = 220, Div = 220 2108 265.3 / 2108 273.3 / 2120 294.7 / 2152

or stream cipher, while the 128-bit key could represent an application that uses AES-128.
The results in the tables could represent a tradeoff attack using the DK approach of a
single-key system based on counter mode or a stream cipher. The table values assume
equal complexity for the online time and memory, i.e., T0 = M0. The tradeoff expression
of (12) is applied and the constraints Div ≤ V and W ≤ T0 are satisfied. For V > 1,
P0 = KV/(DivW ) resulting in

T0 = P
2/3
0

W 1/3 (21)

which can be used to derive the values in the tables. However, for the case of V = 1 (that
is, a predictable initial count in counter mode or a stream cipher with no IV), data cannot
be used in the tradeoff and P0 = KV/W with (21) still suitable.

For both key sizes, various IV sizes are given and the complexity presented for cases
of differing amounts of data, Div, and number of processors, W . For reference, the
appropriate distributed exhaustive key search complexity (DEKS) is also presented for
each case. Each TMTO case given in the tables has the online time complexity and the
preprocessing complexity for an individual processor presented in the format T0/P0.

It is obvious from the tables that there are many scenarios in which distributed TMTO
attacks could be made more effective than a distributed exhaustive key search. Most
notably, if V = 1, one Hellman table can be constructed straightforwardly to cover just the
keys. In this case, although the use of data from multiple IVs is not applicable, applying
a distributed approach can result in extremely small online time complexities - as low
as 233.3 for a lightweight cipher with an 80-bit key using 220 processors. For cases with
V > 1, using data drawn from a modest number of IVs can result in a compromise of the
security of the cipher. For example, with K = 2128 and V = 232, using data from only 220

IVs and applying 220 processors results in a TMTO attack with an online time complexity
of 273.3 and a preprocessing time complexity of 2120. Hence, the online time complexity is
substantially better than the distributed exhaustive key search complexity of 2108, while
the preprocessing complexity is only slightly worse.

7 Conclusions
In this paper, we have discussed the characterization of distributed TMTO attacks on
ciphers. Not surprisingly, distributing Hellman’s approach can be highly effective, scaling
both time and memory by the number of processors. Other tradeoff approaches such as
the rainbow table method and the BG method are not as well suited to a distributed
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approach. The BS method benefits from a distributed approach in both time and memory,
but the benefit of data in the tradeoff is not scaled by the number of processors involved.
We have also described the application of distributed tradeoff attacks in relation to stream
ciphers and have shown that TMTO and distributed TMTO approaches can be applied to
counter mode in scenarios where the entropy of the initial count is too small. In particular,
distributed TMTO attacks are of concern in the context of lightweight cryptography, where
key sizes are smaller and the cryptanalytic gain of distributing the attacks could seriously
compromise the security of some systems.
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Appendix A: Summary of Tradeoffs
Table 3 contains a summary of all tradeoffs discussed and applied in this paper. Tradeoff
expressions and preprocessing complexity, as well as target applications and meaningful
restrictions on tradeoff parameters, are presented.

Table 3: Summary of Tradeoffs

Tradeoff Preprocessing Target Applications
and Restrictions

Exhaustive T = K, M = 1 P = 0 block cipher key
Key Search stream cipher key

Full Dictionary T = 1, M = K P = K block cipher key
Attack stream cipher key
Hellman TM2 = K2 P = K block cipher key

BG TM = N P = N/D stream cipher state
D = T

BS TM2D2 = N2 P = N/D stream cipher state
D2 ≤ T

HS TM2D2
iv = (KV )2 P = KV/Div stream cipher key/IV

counter mode key/IV
D2

iv ≤ T
DK TM2D2

iv = (KV )2 P = KV/Div stream cipher key
counter mode key
Div ≤ V for single-key

Distributed T0 = K/W , M0 = 1 P0 = 0 block cipher key
Exh Key Srch stream cipher key
Distributed T0 = 1, M0 = K/W P0 = K/W block cipher key
Full Dict Att stream cipher key
Distributed T0M

2
0W

3 = K2 P0 = K/W block cipher key
Hellman W ≤ T0

Distributed BG T0M0W = N P0 = N/(DW ) stream cipher state
D = T0

Distributed BS T0M
2
0D

2W 3 = N2 P0 = N/(DW ) stream cipher state
D2W ≤ T0

Distributed HS T0M
2
0D

2
ivW

3 = (KV )2 P0 = KV/(DivW ) stream cipher key/IV
counter mode key/IV
D2

ivW ≤ T0
Div ≤ V for single-key

Distributed DK T0M
2
0D

2
ivW

3 = (KV )2 P0 = KV/(DivW ) stream cipher key
counter mode key
W ≤ T0
Div ≤ V for single-key

Appendix B: Distributed Attacks
We now briefly discuss exhaustive key search and dictionary attacks in the context of
a distributed attack. These are attacks at the two extreme ends of the time-memory
tradeoff spectrum. We present them as they provide a benchmark with which to analyze
the effectiveness of distributed TMTO attacks.

For a block cipher, exhaustive key search works by considering 2 or 3 known inputs for
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which the outputs are intercepted from the system under attack. Encryptions are done for
all possible candidate keys and the resulting outputs are checked to see which ones are
consistent with the intercepted outputs. For a stream cipher with a known IV, for each
candidate key, a sufficient number of keystream bits are produced and compared to the
bits of the keystream derived from a known plaintext/ciphertext pair from the system
under attack, with the correct key presumed to be the candidate key which is successful in
the comparison. It is obvious T = K, M = 1 and, since there is no preprocessing, P = 0.

Exhaustive key search can be easily distributed by simply dividing up the search space
between a number of participating processors. With W processors operating concurrently,
the time complexity for an individual processor is T0 = K/W with the amount of memory
being negligible, implying we can letM0 = 1. Since all processors are operating concurrently,
in fact, this also represents the total time taken in the attack. No preprocessing is required,
meaning P0 = 0.

In contrast, a full dictionary attack can be applied to a block cipher by storing in
memory all possible keys and outputs which correspond to each key, assuming a given
input value. (Here, we use the adjective “full” to indicate that all keys have outputs
stored.) The table should be sorted according to output values. When the given input and
its corresponding output is acquired from the system under attack, the output is looked up
in the table and the corresponding key is taken as correct. The output could correspond
to some spurious keys, as well as the correct key, so some filtering using a couple of other
input/output pairs may be necessary. A similar attack can be structured for a stream
cipher.

For the full dictionary attack, the online time complexity represents the time to look
up in the sorted table, which is strictly logarithmic in the table size, but since we shall
assume that logarithmic factors are negligible (as is presumed in TMTO attacks), T = 1.
The memory requirement involves storing data for all keys and, hence, M = K, while the
preprocessing time involves filling in the table and thus P = K. For a block cipher in
ECB mode, assuming a chosen plaintext attack, the data requirement is negligible for the
attack.

Consider now the distributed approach to the full dictionary attack. This can be
achieved by involving W processors to each prepare K/W of the total entries in the
table. The total amount of memory is still M = K, but, for each individual processor,
the amount of memory is M0 = K/W and the preprocessing time for each processor
is P0 = K/W , which is the same as the overall preprocessing time assuming that all
processors concurrently prepare their tables. The online time is still a small fixed value
(assuming that any necessary communication time is small), and we can assume that T0 = 1.
For a sufficiently large W , in some cases, a previously impractical memory requirement,
M , can be made practical as M0 for the individual processors.

Note that, by necessity, distributed attacks require elements of inter-processor com-
munication that do not exist in non-distributed implementations. However, invariably
the cost of such communication can be quite small and, at worst, proportional to the
number of processors. For example, to implement a distributed exhaustive key search,
each processor must be given a range of keys to search and be given the appropriate data
values to work on. This could be done by communication from one central controlling
processor to each processor individually and, hence, is directly proportional to the number
of processors. In our analyses of distributed attacks, we assume that the communication
costs are negligible and far outweighed by the benefit of reduction in time complexity and
memory requirements. Admittedly, if W is chosen to be large and, for attacks which use
data, if D is very large, these communication costs may become prohibitively large.
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