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Abstract

We use an RLWE-based key exchange scheme to construct a simple
and efficient post-quantum oblivious transfer based on the Ring Learning
with Errors assumption. We prove that our protocol is secure in the
Universal Composability framework against static malicious adversaries
in the random oracle model. The main idea of the protocol is that the
receiver and the sender interact using the RLWE-based key exchange in
such a way that the sender computes two keys, one of them shared with
the receiver. It is infeasible for the sender to know which is the shared key
and for the receiver to get information about the other one. The sender
encrypts each message with each key using a symmetric-key encryption
scheme and the receiver can only decrypt one of the ciphertexts. The
protocol is extremely efficient in terms of computational and communica-
tion complexity, and thus a strong candidate for post-quantum applications.

1 Introduction

Oblivious transfer (OT) [Rab81] is a cryptographic primitive involving two
parties, usually called the sender S and the receiver R. It allows S to send two
messages to R in such a way that: i) R chooses one message to receive and gets no
information on the other one, and ii) S does not know which message the other
party has received. Despite its simplicity, OT is a powerful tool since it can be
used to create other more complex protocols. Undoubtedly, the most important
application of OT is its use in the construction of (almost) every efficient and
secure multi-party computation protocol (e.g., Yao’s protocol [Yao86]).
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Since OT is mostly used as a building block inside other more sophisticated
protocols, its security should be analyzed in the Universal Composability (UC)
framework of Canetti [Can01]. Using this framework, security under arbitrary
composition can be guaranteed.

In this work, we present a practical UC-secure OT protocol. Since its security
is based on the RLWE assumption, the protocol is conjectured to be robust to
quantum adversaries.

Previous work. In recent years, several proposals for UC-secure OT protocols
have been made [PVW08, DDN14, BDD+17, HL17, BPRS17, DKLas18], being
the most efficient ones based on number-theoretic assumptions [PVW08, BDD+17,
HL17, DKLas18]. Unfortunately, Shor’s algorithm makes them useless in case
a quantum computer ever exists [Sho97]. Hence, the development of efficient
post-quantum OT protocols is crucial if we want to securely implement oblivious
transfer in the post-quantum era. The post-quantum UC-secure proposals
for OT include a McEliece-based OT protocol [DNMQ12], a LPN-based OT
protocol [DDN14] and the ones that can be obtained from instantiating the
frameworks of [PVW08, BDD+17] using post-quantum cryptosystems. However,
these proposals require the use of public-key encryption schemes and this leads
to extremely high communication costs since public keys need to be sent from
one party to the other, at some point in the protocol. Another approach,
usually more efficient in terms of communication and computational complexity,
is to use a key exchange scheme and encrypt with a symmetric-key encryption
scheme. OT proposals based on this paradigm were presented in [CO15, BOB18],
although none of them is UC-secure (the protocol in [CO15] was originally
claimed to be universally composable but, later, this turned out to be false [BDD+17,
BPRS17, DKLas18]).

The Ring Learning with Errors (RLWE) problem [LPR10] is a variant of the
LWE problem [Reg05], which allows to construct more efficient and compact
cryptosystems. It is conjectured that this problem is hard, even for quantum
adversaries. Therefore, cryptographic primitives based on this problem are
usually very efficient and conjectured to be post-quantum secure. However,
it was still an open problem to construct UC-secure OT protocols based on the
RLWE problem, until this moment. Recall that the framework of [PVW08]
requires a dual-mode encryption scheme and it can be instantiated using the
LWE public-key encryption scheme. It is not known if there exists a dual-
mode variant of the RLWE public-key encryption scheme, a problem stated as
open in [LKHB17]. Thus, it is not known if it is possible to use the framework
of [PVW08] to construct a RLWE-based OT protocol. Moreover, the framework
of [BDD+17] requires a group structure in the set of the public keys of the
cryptosystem to be used. For this reason, it is not possible to use the LWE nor
the RLWE public-key encryption schemes in the framework of [BDD+17] since
the set of the public keys of these schemes do not have a group structure for
any operation.

After our work was essentially finished, there appeared a paper [LH18] where
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a proposal for OT based on the RLWE assumption and achieving security in the
UC-framework was presented. However, the scheme does not provide security
for the receiver. More precisely, the signal function (used in the reconciliation
mechanism of the RLWE-based key exchange) is sent from the receiver R to the
sender S. This allows S to figure out R’s input, since the signal function matches
the right input, and this is very much related to the fact that the signal function
leaks information [DRAC18]. Also, the same argument in [BDD+17, BPRS17,
DKLas18] that invalidates the proof in the UC-framework of the simplest OT
can be applied to the scheme [LH18]. Hence, the claim that the protocol achieves
security in the UC-framework is false. More details on this are presented below.

Contribution of this work. The RLWE-based key exchange by Ding et
al. [DXL12] has proven to be very versatile as it is the core of several lattice-
based constructions (e.g. [ZZD+15, DAL+17]). In this work, we use the RLWE-
based key exchange protocol to build a post-quantum universally composable(

2
1

)
-OT, in the random oracle model. We also show how the protocol can be

easily extended to obtain a
(
N
1

)
-OT protocol. Our protocol can be seen as a

adaptation of the simplest OT protocol [CO15] using the RLWE key exchange
scheme instead of Diffie-Hellman key exchange scheme [DH76]. In a nutshell,
the receiver and the sender interact using the key exchange protocol and, at
the end, the sender has two keys, one of them shared with the receiver. The
sender encrypts each message with each key, and the receiver will only be able
to decrypt one of them.

Contrarily to [CO15, LH18], where the interaction begins with S, in our
protocol the interaction begins with R. The reasons for this are: i) it allows
to reduce the number of rounds of the protocol, and ii) it avoids the attack
of [DRAC18] since, in this case, the signal function is sent by S and not by
R. As mentioned before, if the signal function is sent from R to S, then S has
enough information to extract the input of R with non-negligible probability.
Informally, in [CO15, LH18], S plays the role of Alice in the key exchange, while
in our protocol it is R that plays the role of Alice.

In the simplest OT protocol, R uses as key an output of the random oracle.
To argue security in the UC-framework against a corrupted R, the simulator
uses R’s queries to the random oracle to extract its input. However, as noted
in [BDD+17, BPRS17, DKLas18], the corrupted receiver can just delay the
query of the key to the random oracle and the decryption and the simulator
will have no information to perform the simulation. In this case, S in the real-
world execution halts while the simulator in the ideal-world is still running and,
thus, an environment could distinguish both executions. To achieve security
in the UC-framework for our protocol, we have to somehow force R to query
the random oracle with the key. This idea was already explored in [BDD+17],
where S makes a challenge to R, that it can only answer correctly if it queries its
key to the random oracle. However, the scheme of [BDD+17] uses a public-key
encryption scheme, while ours uses a key exchange followed by a symmetric-
key encryption scheme. Therefore, the adaptation of this technique is not
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straightforward, since, in our case, every key in the protocol is secret. We
solve this problem by allowing R to know the output of both secret keys by
the random oracle, and using these outputs as keys in the challenge. Note that
this does not affect the security of the scheme, since the random oracle should
output a completely random value, and, thus, it should be infeasible for R to
know their pre-image.

Although the scheme proposed in this paper has four rounds, after analyzing
its efficiency, we conclude that it improves state-of-the-art post-quantum OT
protocols in terms of computational and communication complexity. Let q ∈ Z,
Rq = Zq[X]/〈Xn + 1〉 and κ be the security parameter of the OT protocol.
Our scheme achieves a communication complexity of O(λ log q + κ) and it just
requires five multiplications in the ring Rq and six samples from the RLWE
error distribution to obliviously send a λ-bit message. Whereas the frameworks
of [PVW08, BDD+17] require a public key of a post-quantum public-key encryp-
tion scheme to be generated and transmitted. Recall that the size of public keys
of post-quantum public-key encryption schemes is one of the main drawbacks
of post-quantum cryptography. Hence, the use of post-quantum public-key
encryption schemes in OT leads to high communication and computational
complexity since their public keys are, generally, too large for practical purposes.
More precisely, the framework of [PVW08] using the LWE public-key encryption
scheme has communication and computational complexity ofO(λ3) to obliviously
send a λ-bit message, and the framework of [BDD+17], when instantiated
with (for example) McEliece public-key encryption scheme, achieves complexity
O(λ2). Therefore, as far as we know, our protocol is the most efficient post-
quantum OT protocol presented so far. In real-life application, using hardware
implementations of AES and SHA-3, we believe that our protocol should be
very practical and it should be considered when implementing post-quantum
secure multi-party computation.

Roadmap. In Section 2 we state relevant concepts and definitions. Then we
present our universally composable OT protocol based on the RLWE problem
in Section 3. Section 4 shows the details of the proof of security in the UC
framework. Finally, we analyze the communication and computation complexity
of the protocol in Section 5.

2 Preliminaries

As usual, N denotes the set of natural numbers, Z denotes the set of integers,
Zq = Z/qZ, for any q ∈ N, and Z[X] (resp. Zq[X]) denotes the ring of
polynomials on variable X with coefficients in Z (resp. Zq). If A is an algorithm,
we denote by y ← A(x) the output of the experiment of running A on input x. If
S is a set, we denote by x←$S the experiment of choosing uniformly at random
an element x from S. If χ is a probabilistic distribution over some set S, x←$χ
denotes the experiment of sampling an element x from S according to χ. If x
and y are two binary strings, we denote by x|y their concatenation and by x⊕y
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their bit-wise XOR. If X and Y are two probability distributions, X ≈ Y means
that they are computationally indistinguishable. A negligible function negl(n)
is a function such that negl(n) < 1/poly(n) for every polynomial poly(n) and
sufficiently large n. By a PPT algorithm we mean a probabilistic polynomial-
time algorithm.

We present the definition of a symmetric-key encryption scheme which will
be an important tool to design the new OT protocol.

Definition 1. A symmetric-key encryption scheme ∆ = (SEnc∆,SDec∆) is a
pair of algorithms such that:

• c ← SEnc∆(k,M ; r) is a PPT algorithm that takes as input a shared
key k, a message to encrypt M and some randomness r and outputs the
ciphertext c. Whenever r is omitted, it means that it was chosen uniformly
at random;

• M/ ⊥← SDec∆(k, c) is a PPT algorithm that takes as input a key k and
a ciphertext c and outputs either a message M , if c was encrypted using
k, or an error message ⊥, otherwise.

A symmetric-key encryption scheme must be sound, that is, M ← SDec∆ (k,
SEnc∆ (k,M ; r)) for any message M and any r. It also should be secure, that is,
it is infeasible for any PPT adversary to recover M from a ciphertext c without
knowing the secret key k.

2.1 UC-security and ideal functionalities

The Universal Composability (UC) framework, introduced by Canetti [Can01],
ensures that the security of a protocol does not depend on other executions of
the same or other protocols. In a nutshell, given any protocol π, we say that it
is UC-secure if no environment E (an entity that oversees both executions) can
distinguish between the execution of π in the real-world and the execution of
an ideal functionality F (defined a priori) in the ideal-world. By proving that
both executions are indistinguishable from the point-of-view of the environment
E , we show that any cheating strategy that an adversary uses in the real-world
execution of the protocol, it could also be used in the ideal-world execution by
a simulator. Since the ideal functionality F is defined in such a way that each
party involved learns nothing more than its own input and output, we conclude
that it is infeasible to extract more information than this one.

Let π be a protocol where n parties and an adversary A are involved. We
denote the output of the environment E in the end of the real-world execution of
π with adversary A by EXECπ,A,E . The output of E at the end of the ideal-world
execution of a functionality F with adversary Sim is denoted by IDEALF,Sim,E .
The following definition introduces the notion of a protocol emulating (in a
secure way) some ideal functionality.
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Definition 2. We say that a protocol π UC-realizes F if for every PPT adversary
A there is a PPT simulator Sim such that for all PPT environments E ,

IDEALF,Sim,E ≈ EXECπ,A,E

where F is an ideal functionality.

Using random oracles in the UC framework. Since UC-security is a very
strong level of security, it is not odd if some cryptographic primitives turned
out to be impossible to achieve within this framework. That is what happens
with oblivious transfer or bit commitment, for example [CF01]. For this reason,
we work on the so called FRO-hybrid model in order to model random oracles
in the UC framework. The random oracle ideal functionality FRO is presented
below. Let D be the range of the random oracle and L be a list, which is initially
empty. The value sid represents the session ID and the parties involved in the
protocol.

FRO functionality

Upon receiving a query (sid|q) from a party P or from an adversary
A, FRO proceeds as follows:

• If there is a pair (q, h) ∈ L it returns (sid|h);

• Else, it chooses h←$D, stores the pair (q, h) ∈ L and returns
(sid|h).

In the FRO-hybrid model, every party involved in the real-world execution of
the protocol (and the adversary) have access to an auxiliary ideal functionality
FRO. The environment has access to this ideal functionality through the adver-
sary. Similarly, we denote by EXECFRO

π,A,E the output of the environment after
the real-world execution of the protocol π with adversary A, in which every
party involved in the protocol have access to the ideal functionality FRO, apart
from the environment which has access through the adversary. An analogous
definition of UC-security can be made in the FRO-hybrid model. More precisely,
we say that a protocol π UC-realizes F in the FRO-hybrid model if for every PPT
adversary A there is a PPT simulator Sim such that for all PPT environments
E ,

IDEALF,Sim,E ≈ EXECFRO

π,A,E .

Adversarial model. The adversarial model we adopt in this work is the
static (or non-adaptive) corruption adversarial model [Can01]. In this model,
adversaries may deviate in any way from the protocol but the corruption of each
party happens before the beginning of the protocol.
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Oblivious transfer. Oblivious transfer (OT) [Rab81] is a crucial primitive in
cryptography since it is used as a building block to construct other primitives,
such as bit commitment or secure multiparty computation. The

(
2
1

)
-OT ideal

functionality FOT is presented below, as in [CLOS02]. The functionality involves
two parties, the sender S and the receiver R. Let λ ∈ N be a fixed value known
to both parties, M0,M1 ∈ {0, 1}λ and b ∈ {0, 1}.

FOT functionality

• Upon receiving (sid|M0|M1) from S, FOT stores M0,M1 and ignores
future messages from S with the same sid;
• Upon receiving (sid|b) from R, FOT checks if it has recorded
(sid|M0|M1). If so, returns (sid|Mb) to R and (sid|receipt) to S and
halts. Else, it sends nothing but continues running.

2.2 RLWE problem and RLWE key exchange

The RLWE problem [LPR10] is the ring version of the LWE problem [Reg05] and
it is conjectured to be hard for both classical and quantum computers. Before
presenting the problem, we define the RLWE distribution. Let n = 2a for some
a ∈ N, q ≥ 2, Rq = Zq[X]/〈f(X)〉 where f(X) = Xn + 1 and χ be the error
distribution (which is usually a discrete Gaussian [LPR10]) and which satisfies
Pr[‖p‖ > β : p←$χ ] ≤ negl(n) for some β ∈ N, where ‖p‖ = ‖p‖∞ = max{pi}i
denotes the largest coefficient of the polynomial p = p0 +p1X+ . . . pn−1X

n−1 ∈
Rq. For s ∈ Rq, the RLWE distribution As,χ is obtained by choosing a←$Rq,
e←$χ and outputting (a, as+ e mod q).

Problem 3 (Ring Learning with Errors). Let n, q, Rq, χ and As,χ be as
above. The decision version of the RLWE problem is the following: for s←$Rq,
distinguish the case when it is given a polynomial number of samples from As,χ
or when it is given uniformly chosen at random values.

The problem is proven to be as hard as quantumly solving a worst-case
lattice problem (the approximate SVP) which is conjectured to be hard for both
classical and quantum computers [LPR10]. The advantages of using the RLWE
assumption instead of the LWE assumption is that the keys of the primitives
based on RLWE are smaller than the ones based on LWE, and, since the RLWE
uses polynomials in the ring Rq we can use the Fast Fourier Transform (FFT)
to enhance the speed of the multiplication. Here, we use the Hermite Normal
Form of the RLWE problem, usually called HNF-RLWE, in which the secret s
is sampled from the error distribution χ instead of being chosen uniformly at
random from the ring Rq. This version of the problem is also assumed to be
hard [ACPS09].

We define the signal function Sig and the extraction function Mod2 as in [DXL12].
Both of these functions are used in the reconciliation mechanism of the key
exchange protocol in [DXL12] and allows the parties involved to compute a
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shared key. Let σ0, σ1 : Zq → {0, 1} such that

σ0(a) =

{
0, a ∈

[
−b q4c, b

q
4c
]

1, otherwise

and

σ1(a) =

{
0, a ∈

[
−b q4 + 1c, b q4 + 1c

]
1, otherwise

for a ∈ Zq. When a =
∑n−1
i=0 aiX

i ∈ Rq, then σ0(a) =
∑n−1
i=0 σ0(ai)X

i and

σ1(a) =
∑n−1
i=0 σ1(ai)X

i. The signal function Sig : Rq → R2 is defined as
Sig(a) = σb(a) where b←$ {0, 1}. The extraction function Mod2 : Rq×R2 → R2

is defined as

Mod2(a, σ) =

(
a+ σ

q − 1

2
mod q

)
mod 2.

We now present Ding’s key exchange (KE) protocol based on RLWE. Let q,
n, χ, Rq be as above and m←$Rq.

RLWE-based key exchange

Alice Bob

sA, eA, e
′
A ←$χ

pA ← msA + 2eA mod q pA sB , eB , e
′
B ←$χ

pB ← msB + 2eB mod q

(pB , σ) kB ← pAsB + 2e′B mod q

kA ← sApB + 2e′A mod q σ ← Sig(kB)

sk← Mod2(kA, σ) sk← Mod2(kB , σ)

The soundness of the scheme as well as it security are proven in [DXL12].
The protocol has its security based on the HNF-RLWE problem since the secret
is sampled from the error distribution.

Regarding its efficiency, the scheme requires 2µ log q+µ bits of information to
be exchanged, where µ is the length of the key exchanged, and four multiplications
in the ring Rq and six samplings from χ [DXL12].

3 An universally composable OT based on the
RLWE problem

Let κ be the security parameter, ∆ = (SEnc∆,SDec∆) be a symmetric-key
encryption protocol and n, q, Rq, χ as described in the previous section. Let
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m←$Rq be a polynomial common to every party in the protocol. In our
construction we need four instances of the random oracle functionality FRO:
H1 with range Rq, H2 with range K = {0, 1}β where β is the size of the keys
outputted by the RLWE-based key exchange, H3 with range {0, 1}2κ+β and H4

with range {0, 1}κ.
Suppose that the sender S wants to obliviously send M0 and M1, and that

the receiver R wants to receive the message Mb, where b ∈ {0, 1} is the input of
R. Let sid denote the session ID.

The protocol. The new OT protocol has 4 rounds. We will call it πOT.

• R starts by sampling sR, eR, e
′
R←$χ and computing pbR ← msR + 2eR

mod q. It also chooses r←$ {0, 1}κ. It queries the random oracle H1

with (sid|r), setting the output to h. If b = 1, it computes p0
R = p1

R − h
mod q. When b = 0, the receiver does not have to compute p1

R since, in
this case, it will never use this value. It sends sid, p0

R and r to S.

• Upon receiving sid, p0
R and r, S samples sS, eS, e

′
S←$χ and computes pS ←

msS + 2eS mod q. It queries H1 with (sid|r) to obtain h′ and sets p1
R =

p0
R + h′ mod q. Now, it can compute the values

k0
S ← sSp

0
R + 2e′S mod q and k1

S ← sSp
1
R + 2e′S mod q,

and the respective signal of these values, that is,

σ0 ← Sig(k0
S) and σ1 ← Sig(k1

S).

It computes the keys

sk0
S ← Mod2(k0

S, σ0) and sk1
S ← Mod2(k1

S, σ1).

Now, S will make a challenge to R. It chooses w0, z0, w1, z1 ← {0, 1}κ. It

queries H2 with (sid|sk0) and (sid|sk1), setting the outputs to s̄k
0
S and to

s̄k
1
S, and queries H3 with (sid|w0) and (sid|w1), setting the output to w̄0

and w̄1, respectively. It computes

a0 ← SEnc∆(s̄k
0
S, w0; z0) and a1 ← SEnc∆(s̄k

1
S, w1; z1)

and sets

u0 = w̄0 ⊕ (w1|s̄k
1
S|z1) and u1 = w̄1 ⊕ (w0|s̄k

0
S|z0).

Finally, it asks H4 for (sid|w0|w1|z0|z1) and sets the result to a challenge
ch that it keeps to itself. It sends sid, pS, σ0, σ1, a0, a1, u0 and u1 to R.

• After receiving these values, the goal of R is to compute ch. First, it
obtains the secret shared key by computing kR ← pSsR + 2e′R mod q
and then skR ← Mod2(kR, σb). Then, it decrypts xb ← SDec∆(s̄kR, ab)
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where s̄kR is the value returned by H2 on input (sid|skR). It asks H3 for

(sid|xb) to get x̄b and then it can recover (x1−b|s̄k
1−b
R |y1−b) = ub ⊕ x̄b.

To recover yb, it asks H3 for (sid|x1−b) to get x̄1−b and then it recovers

(x′b|s̄k
b
R|yb) = u1−b ⊕ x̄1−b. Having recovered x0, y0, x1 and y1, it can

query H4 on input (sid|x0|x1|y0|y1) and sets the output to ch ′. To be
sure that S has not cheated, R verifies if a′0 = a0, if a′1 = a1 where

a′0 ← SEnc∆(s̄k
0
R, x0; y0) and a′1 ← SEnc∆(s̄k

1
R, x1; y1), if s̄k

b
R = s̄kR and if

x′b = xb. It aborts if any of these conditions fail. Else, it sends sid and ch ′

to S.

• After receiving ch ′ from the R, the sender checks if ch = ch ′. If the test
fails, it aborts the protocol. Otherwise, it encrypts both messages M0

and M1 using SEnc∆ with keys sk0
S and sk1

S, respectively, and sends the
resulting ciphertexts c0 and c1 and the session ID sid to the receiver. It
halts.

Finally, after receiving c0 and c1, R uses skR to computeMb ← SDec(skR, cb).
It outputs Mb and halts.

A scheme of the protocol is presented below. By x
?
= y, we mean that the

user checks if x and y have the same value. If they do not have the same value,
then the user aborts the protocol. In the scheme, the index i should take the
values 0 and 1.
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RLWE KE-based OT protocol: πOT

Sender S Receiver R

Input: M0,M1 Input: b ∈ {0, 1}
sR, eR, e

′
R ←$χ

pbR ← msR + 2eR mod q

sS, eS, e
′
S ←$χ r←$ {0, 1}κ

pS ← msS + 2eS mod q (sid, p0R, r) h← H1(sid|r)

h′ ← H1(sid|r) p0R ← p1R − h mod q (if b=1)

p1R ← p0R + h′ mod q

kiS ← sSp
i
R + 2e′S mod q

σi ← Sig(kiS)

skiS ← Mod2(kiS, σi)

w0, z0, w1, z1 ←$ {0, 1}κ kR ← pSsR + 2e′R mod q

s̄k
i
S ← H2(sid|skiS) skR ← Mod2(kR, σb)

ai ← SEnc∆(s̄k
i
S, wi; zi) s̄kR ← H2(sid|skR)

w̄i ← H3(sid|wi) xb ← SDec∆(s̄kR, ab)

ui ← w̄i ⊕ (w1−i|s̄k1−iS |z1−i) (sid, pS, σ0, σ1, a0, a1, u0, u1) x̄b ← H3(sid|xb)

ch ← H4(sid|w0|w1|z0|z1) (x1−b, s̄k
1−b
R , y1−b)← ub ⊕ x̄b

a1−b
?
= SEnc∆(s̄k

1−b
R , x1−b; y1−b)

x̄1−b ← H3(sid|x1−b)

(x′b, s̄k
b
R, yb)← u1−b ⊕ x̄1−b

x′b
?
= xb, s̄k

b
R

?
= s̄kR

ab
?
= SEnc∆(s̄k

b
R, xb; yb)

(sid, ch ′) ch ′ ← H4(sid|x0|x1|y0|y1)

ch
?
= ch ′

ci ← SEnc∆(skiS,Mi) (sid, c0, c1) Mb ← SDec∆(skR, cb)

In the protocol, S and R run the RLWE-based KE where R plays the role
of Alice. Observe that R cannot play the role of Bob. More precisely, R cannot
send a signal of its key, since, in this case, S would be able to tell if R has a
secret sR for p0

R or for p1
R [DRAC18], thus, revealing b.

The purpose of the challenge sent by the sender to the receiver in the second
round is to force the receiver to ask the random oracle with the key it has, in
order to perform the simulation when the receiver is corrupted. The simulation
when the sender is corrupted is done by programming the random oracle, in
order to extract both keys.

By the soundness of the RLWE key exchange, we have that skR will be equal
to skbS. Thus, the receiver will be able to decrypt the ciphertext cb and recover
the message Mb.
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A
(
N
1

)
-OT protocol. The scheme can be easily extended to create a

(
N
1

)
-

OT protocol: R sends p0
R and also r1, . . . , rN−1 in the first message. The

challenge computed by S is H4(sid, w0, . . . , wN−1, z0, . . . , zN−1) and it sends
a0, . . . , aN−1, u0, . . . , uN−1 where

ai ← SEnc∆(s̄k
i
S, wi; zi)

and
ui ← w̄i ⊕ (wi+1 mod N |s̄k

i+1 mod N
S |zi+1 mod N )

, for i = 0, . . . , N − 1.

Sender’s and receiver’s privacy. Note that the receiver is not able to get
both messages. Since the hash value h is an uniformly chosen value, then p1−b

R

is also a uniformly chosen value. Without knowing the secret s such that p1−b
R =

ms+ f mod q where f ←$χ (which may not even exist), the receiver is not be
able to compute the value k1−b

R = pSs+2e′R mod q that would allow it to find a

key equal to sk1−b
S . This follows immediately from the HNF-RLWE assumption

and from the security of the RLWE-based key exchange. Moreover, the receiver
gets to know σ0 and σ1, where (pS, σi) are two messages of the KE protocol,
and while the receiver R has the secret key sR for one of them, the other yields
no information by the security of the KE (again, since it does not have the
secret key for p1−b

R ). Later, the receiver receives a0, a1, u0, u1 from the sender
from which it is only able to recover the hash of the secret keys. Since the hash

functions are modeled as random oracles, the value s̄k
1−b
R will not be correlated

with the key sk1−b
S which will be used to encrypt M1−b. This can be proven

using a simple hybrid argument and replacing the hash of sk1−b
S by a uniformly

chosen value. For these reasons, the receiver will not have any information on
the secret key sk1−b

S . Hence, it is infeasible for it to get the message M1−b, given
that ∆ is secure.

Also, we argue that it is infeasible for the sender to know the input b of R.
Observe that the sender only receives p0

R (from which it can derive p1
R) from the

receiver, and a random value r. From the HNF-RLWE assumption, it follows
that the sender has no information on which of these values, p0

R or p1
R, was

computed using the receiver’s secret sR and which will allow it to compute the
shared key. The sender S also receives ch ′, which R can compute no matter its
input b.

4 Security proof

The following theorem states the security of the scheme in the UC-framework.

Theorem 4. The protocol πOT UC-realizes FOT in the FRO-hybrid model
against static malicious adversaries, given that the symmetric-key encryption
scheme ∆ is secure.

12



Proof. In order to prove the theorem stated above, we have to show that both
the real-world execution of the protocol and the ideal-world execution of FOT

are indistinguishable for any environment E .
As usual, the communication with the environment E can be simulated by

Sim in the following way: whenever Sim receives a message from E , Sim forwards
it to A; and whenever A outputs some message, Sim outputs the same message
that will be read by E .

In the (trivial) cases where both the sender and the receiver are honest and
controlled by the simulator Sim (the simulator just runs the protocol honestly)
or when both of them are corrupted by an adversary A (the simulator just runs
internally the adversary which will generate messages from both the corrupted
sender and the corrupted receiver) the executions are indistinguishable. We still
have to consider the cases where only the receiver is corrupted and when only the
sender is corrupted by an adversary. This is done by proving the existence of an
ideal-world simulator Sim that mimics the behavior of any real-world adversary
A corrupting only one of the parties.

Security when only the receiver R is corrupted by A = A(R). We start
by proving security against a corrupted receiver. Given any real-world adversary
A corrupting R (denoted by A(R)), we have to construct a simulator Sim that
is able to extract the inputs of A(R). In this case, Sim must be able to extract
the bit b representing the message that R wants to receive. After knowing b,
Sim will be able to send it to the ideal functionality. Sim will then receive a
message Mb and proceeds the interaction with the real-world adversary sending
the message Mb and some other randomly chosen message, in order to complete
the protocol. In the end, both executions will be indistinguishable from the
point-of-view of the environment.

Given a real-world adversary A(R), we describe how the simulator Sim works.
The adversary can make queries to the random oracles H1, H2, H3 and H4, here
simulated by Sim.

Simulation of H1, H2, H3 and H4: In this case, when A(R) queries any of
these random oracles with (sid|t), Sim answers as the random oracles would do,
returning a value h chosen uniformly at random. It keeps the pair (t, h) of query
and respective answer in a list.

At some point, Sim receives (sid, p0
R, r) from A(R). Sim computes kiS, σi and

the keys skiS ← Mod2(kiS, σi), for i = 0, 1. It proceeds as the honest sender would
do and sends (sid, pS, σ0, σ1, a0, a1, u0, u1) to the adversary.

After sending these values to the adversary, Sim sets b =⊥. When skb̄S is
asked to the random oracle H2 by A(R), it sets b = b̄. If w1−b is asked to the
random oracle H3 before wb, then Sim aborts the execution. If k1−b

S is asked
to H2, then it also aborts the execution. At some point, Sim receives ch ′ from
A(R). It checks if ch = ch ′: if the test fails, it aborts as the honest S would do.
Otherwise, it sends (sid|b) to the ideal functionality FOT, which returns back
Mb.
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Sim computes cb ← SEnc∆(skbS,Mb) and c1−b ← SEnc∆(sk1−b
S , 0λ) where λ

is the size of Mb. Finally, it sends c0 and c1 to A(R), waits for it to halt and
halts.

Both the real-world and the ideal-world executions are indistinguishable,
except when the simulator Sim aborts when it is not supposed to do it. From
the specification of Sim, we conclude that it aborts if the key k1−b

S is asked
to the random oracle by the adversary, which by the security of the RLWE
key exchange scheme used has negligible probability of happening; or if w1−b
is asked to the random oracle H3 before wb, which happens also with negligible
probability on the security parameter κ; or if none of the keys k0

S and k1
S are

queried to the random oracle, but in this case, the receiver will fail to compute
the right ch ′, except with negligible probability. We conclude that

IDEALFOT,Sim,E ≈ EXECFRO

πOT,A(R),E

for any A corrupting only R, that is, both executions are indistinguishable.

Security when only the receiver S is corrupted by A = A(S). When
the real-world adversary is corrupting S, we have to construct a simulator
(controlling the dummy receiver) that is able to extract the adversary’s input,
that is, the simulator must be able to extract the input of the corrupted sender,
which are the messages M0 and M1.

The simulator proceeds as follows. It starts by choosing s0
R, e

0
R←$χ and

computes p0
R ← ms0

R + 2e0
R mod q and, as the honest R would do, it samples

r←$ {0, 1}κ and sends (sid, p0
R, r) to A(S). Moreover, the simulator chooses

s1
R, e

1
R←$χ and computes another key p1

R ← ms1
R + 2e1

R mod q.
The adversary can make queries to the random oracles H1, H2, H3 and H4.

We specify how the simulator simulates each of these random oracles.
Simulation of H2, H3 and H4: Whenever A(S) queries H2, H3 or H4 with a

query (sid|t), the simulator returns a value h as the ideal functionality would do
and keeps (t, h) on a list of queries and respective answers.

Simulation of H1: Whenever the adversary queries H1 with (sid|r), the
simulator answers with h = p1

R − p0
R, in all other cases it returns h as the ideal

functionality would do, and again keeps (t, h) on a list of queries and respective
answers. Note that the value h for the query (sid, r) is computationally indistin-
guishable from a uniformly chosen value since p1

R − p0
R is indistinguishable

from random given that the HNF-RLWE assumption holds. Consequently, the
probability that the environment distinguishes both the real and the simulated
execution of the random oracle H1 is negligible.

At some point, Sim receives (sid, pS, σ0, σ1, a0, a1, u0, u1) from A(S). Note
that, from the information (pS, σ0, σ1), the simulator can compute both

k0
R ← pSs

0
R + 2e′R mod q and k1

R ← pSs
1
R + 2e′R mod q
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and the keys

skR ← Mod2(k0
R, σ0) and skR ← Mod2(k1

R, σ1)

that should be equal to the keys computed by A(S). Sim proceeds as the honest
R would do and sends ch ′ to the A(S).
A(S) sends c0 and c1 to the dummy R. Since Sim has both keys, it can

compute
M0 ← SDec∆(sk0

R, c0) and M1 ← SDec∆(sk1
R, c1).

It sends both (sid|M0|M1) to the ideal functionality FOT.
Finally, upon receiving a message (sid|receipt) from the ideal functionality,

Sim waits for the adversary to halt and halts.

We have to show that both the ideal-world and the real-world executions
are indistinguishable from the point-of-view of any environment. The ideal-
world simulation just differs from the real-world execution in the outputs of the
random oracle H1. As mentioned above, it is infeasible for an adversary (or
environment) to distinguish the value h outputted by H1 when queried on r
from a truly execution of the random oracle, by the HNF-RLWE assumption.
Hence, we conclude that

IDEALFOT,Sim,E ≈ EXECFRO

πOT,A(S),E ,

for any adversary A corrupting S.

5 Efficiency

In this section, we analyze the communication and computational complexity
of the OT scheme presented in this paper. We also compare it with other post-
quantum UC-secure protocols. Finally, we propose some optimizations that
should be considered when implementing the protocol in real-life.

Let λ be the length of the messages that S wants to obviously send to R, ∆
be the usual one-time pad and κ be the security parameter. Note that the most
expensive part of our protocol is the key exchange since all the other operations
(sum modulo q, sum modulo 2 and concatenation) are linear on the number of
bits.

Recall that the communication complexity of the RLWE-based KE is 2µ log q+
µ and that it requires four multiplications in the ring Rq where µ is the length
of the key exchanged [DXL12]. Since we are using one-time pad µ = λ.

Communication Complexity. The first two rounds of the OT protocol are
almost the same as the RLWE-based KE. Hence, the communication complexity
of the OT protocol is 2λ log q+λ (corresponding to the execution of the RLWE-
based KE) plus κ (corresponding to the length of r) plus 8κ bits of information,
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where 2κ bits corresponds to (a0, a1) and 2(3κ) bits to (u0, u1).1 This results
in 2λ log q + λ+ 9κ bits of information. The third message exchanged is just a
κ-bit message, which is the answer to the challenge. Finally, the fourth message,
composed by two ciphertexts (c0, c1), requires 2λ bits of information. So in total,
our scheme requires 2λ log q + 3λ+ 10κ bits of information to be exchanged.

Computational complexity. The scheme just requires five multiplications
in the ring Rq and six samplings from the error distribution χ, the same as
in the RLWE-based KE. Therefore, our scheme is very efficient in terms of
computational complexity, requiring only these operations to obliviously transfer
a λ-bit message.

Table 1: Number of rounds, communication complexity and computation
complexity for obliviously transmitting a λ-bit message using πOT, with
security parameter κ. Computational complexity is expressed in “number of
multiplications in the ring Rq”+“number of samplings from the distribution
χ”.

N. of rounds Communication complexity Computation complexity
4 2λ log q + 3λ+ 10κ 5 + 6

Comparison. The scheme of Peikert et al. [PVW08] (and the one in [BPRS17])
can be implemented using a dual-mode version of the LWE public-key encryption
scheme [Reg05] and it is not known if it can be instantiated with a version of the
RLWE encryption scheme. In fact, it is stated as an open problem in [LKHB17]
to find a dual-mode RLWE encryption scheme. The dual-mode LWE public-key
encryption scheme used in the OT requires a public key of size O(n2) and the
encryption takes O(n log n) operations, for a single bit message [PVW08], where
n depends on the security parameter. The framework requires a key generation,
two encryptions and a decryption. To transfer a λ-bit message, this has to be
repeated λ times. Let us assume that λ ≈ n. 2

In terms of the communication complexity, our scheme has two more rounds
than [PVW08]. However, the communication complexity of our scheme is linear
in λ and, thus, it requires less information to be exchanged asymptotically. Note
that, in the scheme of [PVW08], a public key needs to sent from the receiver
to the sender requiring O(λ2) bits of information to be exchanged, just for a
single bit to be transfered. For a λ-bit message to be transfered, the scheme
of [PVW08] needs O(λ3) bits of information to be exchanged, just in the first
round.

1Here, we just need a κ-bit secret key to use the one-time pad on a κ-bit message.
2Usually, the objective of OT is to exchange a key in order to perform multi-party

computation [Yao86]. By [Alb17], we conclude that n should be around 1024, and, thus, let
us suppose that the message being obliviously sent is of the same size. The same assumption
was done while analyzing the efficiency of our scheme.
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Regarding the computational cost, their scheme requires the generation of
one pair of public and secret keys of the LWE public-key encryption scheme,
the encryption of two messages and the decryption of one ciphertext. It is
well known that primitives based on the RLWE assumption are faster and
require less memory than the ones based on the LWE assumption. This fact
is also reflected here. 3 The computational cost of the scheme of [PVW08] is
O(λ3), corresponding to the key generation, plus two encryptions, which cost
O(λ2 log2 λ) operations. Whereas, our scheme just requires five multiplications
in the ring Rq, which, using Fast Fourier Transform, takes O(λ log q) operations
for polynomials of degree λ. Therefore, although our scheme has two more
rounds than the one in [PVW08], the operations of our scheme are faster and the
size of the messages exchanged are shorter, resulting in an overall asymptotically
more efficient procedure.

We also would like to remark that the scheme in [PVW08] is proven to be
secure in the Common Reference String (CRS) model. Of course, this raises the
question on how to create the common reference string in practice. Either we
delegate this operation to a (trusted) third party or we use some multi-party
computation procedure to create the common reference string, which would be
too inefficient. Our scheme relies on random oracles that can be instantiated
using cryptographic hash functions in practice and, thus, it should be very easy
and efficient to implement.

It seems that it is not possible to instantiate the scheme of Barreto et
al. [BDD+17] using LWE or the RLWE public-key encryption scheme since
a group structure is required in the set of public keys [BDD+17, Property
2.2]. However, the set of LWE and RLWE public keys does not have a group
structure for any operation. For example, if we had two different samples of the
RLWE distribution, the sum will not be a RLWE sample. Thus, the conditions
presented in [BDD+17] discard the use of LWE or RLWE public-key encryption
schemes in their framework.

Possible optimizations. Some steps and procedures of the protocol may
be optimized in practice. For instance, the polynomial m can be the same in
multiple iterations of the protocol.4 The value pS sent by the sender in the
first round can be used in several iterations of the protocol, taking into account
that security may be compromised, when used too many times [Flu16, DAS+17,
DFR18].

Another possible optimization is to use a more practical symmetric-key
encryption scheme than the one-time pad. Indeed, AES can be computed using
specialized hardware which makes it extremely fast comparing to public-key
encryption schemes. It also allows smaller keys, which removes the practical
issues associated with the use of one-time pad.

3An analysis of the number of operations of LWE encryption scheme and RLWE Ding’s
KE is presented in [DXL12]

4In fact, it is suggested in [DXL12] that m is chosen by some trusted institution (e.g.
NIST) and used as a standard.
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6 Conclusion

To the best of our knowledge, we present the first ever universally composable
OT protocol whose security is based on the RLWE assumption. Its simplicity
and the fact that is based on the RLWE problem allows for very efficient
computational and communication complexity. For these reasons, we believe
that it is a solid candidate to be employed in post-quantum secure applications.
We also proved UC-security for the proposed protocol, which means that it can
be composed arbitrarily with the same or other protocols.

In real-life, the protocol should be quite efficient. We suggest to use the
NIST standard SHA to model random oracles. Regarding encryption, one may
use AES (which is also the current NIST standard) instead of the one-time pad,
which leads to a much smaller key size. These standards are chosen considering
the fact that they should be easily and efficiently implemented in hardware,
leading to extremely fast executions. Moreover, attacks to break these protocols
using a quantum computer are not known. The implementation in hardware of
our protocol and comparison with other OT protocols are left as future work.
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