
Analysis Of The Simulatability Of An Oblivious Transfer

Bing Zenga

aSchool of Software Engineering, South China University of Technology, Guangzhou, 510006, China

Abstract

In the Journal of Cryptology (25(1): 158-193. 2012), Shai Halevi and Yael Kalai proposed a general framework
for constructing two-message oblivious transfer protocols using smooth projective hashing. The authors asserts that
this framework gives a simulation-based security guarantee when the sender is corrupted. Later this work has been
believed to be half-simulatable in literatures. In this paper, we show that the assertion is not true and present our ideas
to construct a fully-simulatable oblivious transfer framework.

Keywords: oblivious transfer, secure multiparty computation, malicious adversaries, smooth projective hashing.

1. Introduction

Oblivious transfer (OT), introduced in [1], is a fundamental cryptographic primitive allowing the secure multiparty
computation (SMPC) of any computable function [2]. Beside this completeness result by Kilian, OT exhibits interests
on its own since this primitive is generally used as a building block in a variety of cryptographic protocols [3] [4] [5]
[6] [7, 8] [9].

1-out-of-2 oblivious transfer (OT2
1) deals with the scenario where a sender holds 2 private values m1,m2 and

a receiver possesses a private indexes i ∈ {1, 2}. The receiver expects to get the values mi without leaking any
information about which one were chosen. On the other hand, the sender does not want the receiver to know anything
but the value queried about.

A standard way of proving the security of a SMPC protocol is to use the ideal/real model paradigm. In this context,
adversaries in the real world are demonstrated to be equivalent to enemies in the ideal world where the computation is
executed by an incorruptible entity named ideal functionality. As the SMPC protocol (in the real world) simulates the
ideal world, the security is said to be fully-simulatable. For any non-simulatable OT, it is harder to use it as a building
block in cryptographic protocols. A concrete attack on non-simulatable OT shown by [7] is selective-failure attack
where the sender causes a failure depending on the receiver’s selection. What is worse, there possibly exists attacks
that is unknown at present but will be carried out in the future.

In [10], Shai Halevi and Yael Kalai proposes a OT2
1 based on smooth projective hashing. This work is remarkable

among known protocols, because it is the most efficient protocol for OT2
1 against malicious adversaries in plain model

and it is a generally realizable framework. In [10] the authors also discuss the possibility of simulation-based security
of their work. In the case that the receiver is corrupted, they admit that their work does not give a simulation-based
security guarantee, while in the case that the sender is corrupted, they assert that their work gives a simulation-based
one. Indeed Halevi-Kalai OT2

1 has been believed to be half-simulatable in literatures, e.g., [11, 12, 13]. In this paper,
we show that this assertion is not true and present our ideas to construct a fully-simulatable framework based on
Halevi-Kalai OT2

1.

2. Preliminaries

2.1. OT2
1 Under the Ideal/Real Simulation Paradigm

In OT2
1 functionality f ((m1,m2), i) = (λ,mi), the sender S privately holds the input (m1,m2) and receives no output

λ while the receiver R privately owns its choice i and receives mi.

Email address: zeng.bing.zb@gmail.com (Bing Zeng)

Preprint submitted to X November 26, 2018



In the ideal world, there is an incorruptible trusted third party (TTP). S and R send their inputs to TTP. If a party
is corrupted by a malicious adversaryA, then then its input is sent byA and may be altered byA. Denote the inputs
received by the TTP by (y1, y2). The TTP computes f (y1, y2) and sends the results toA and the honest party.

In the real world, there is a protocol Π instead of the TTP. Computing f is done via interactions between the
sender and the receiver. The honest party strictly follows the prescribed protocol Π. The corrupted party followsA’s
instructions and may arbitrarily deviate from Π.

At the end of the executions, the corrupted party outputs nothing λ. The adversaryA outputs any arbitrary function
of the information it gathers. The honest party in the ideal world outputs the message obtained from the TTP while
in the real world outputs what Π instructs. The output Ideal (Real, respectively) of the execution in the ideal world
(the real world, respectively) is a 3-entry vector consisting of outputs of malicious adversaryA, the sender S and the
receiver R in order.

Loosely speaking, protocol Π securely computes OT2
1 functionality f in the presence of malicious adversaries,

if and only if for any non-uniform probabilistic polynomial time adversary A in the real world, there exists a non-
uniform probabilistic expected polynomial-time adversary S in the ideal world such that the two outputs Ideal and
Real of the two worlds are computationally indistinguishable. The adversary S is called the simulator of the adversary
A.

2.2. Smooth Projective Hash
Smooth projective hash (SPH) was introduced to design chosen-ciphertext secure encryption schemes [14] and

Halevi and Tauman Kalai applied a variant of this cryptographic primitive to construct a protocol for OT.

Definition 1 ([10]). A hash familyH is defined by means of the following PPT algorithmsH = (PG, IS, IT,KG,Hash, pHash):

• Parameter generator PG: it takes a security parameter k as input and returns a hash parameter Λ: i.e. Λ ←

PG(1k).

• Instance sampler IS: it takes a security parameter k and a hash parameter Λ as input and returns a triple, i.e.,
(ẋ, ẇ, ẍ)← IS(1k,Λ)), where ẋ is a projective instance, ẇ is one of its witnesses, ẍ is a smooth instance.

• Instance-testing algorithm IT: it tests the parameters Λ and two strings x0, x1, i.e., IT(Λ, x0, x1) ∈ {0, 1} . The
intent is to test that at least one of x0, x1 is a smooth instance.

• Key generator KG: it takes a security parameter k, a hash parameter Λ and an instance x as input and outputs
a hash-projection key pair (hk, pk): i.e., (hk, pk)← KG(1k,Λ).

• Hash algorithm Hash: it takes a security parameter k, a hash parameter Λ, an instance x and a hash key hk as
input and outputs a value y: i.e., y← Hash(1k,Λ, x, hk).

• Projection algorithm pHash: it takes a security parameter k, a hash parameter Λ, an instance x, a projection
key pk and a witness w of x as input and outputs a value y: i.e., y← pHash(1k,Λ, x, pk,w).

The smoothness requires that for any ẍ, its projection key and hash value are almost uniformly distributed. The
projection requires that for any ẋ and any its hash-projection key pair (hk, pk), its hash value equals its projection value.
The verifiable smoothness requires that if IT(Λ, x0, x1) = 1, then at least one of x0, x1 is a smooth instance. The hard
subset membership requires the smooth instances ẍ and projective instances ẋ are computationally indistinguishable.

3. A Brief Review of Halevi-Kalai OT

Halevi-Kalai OT2
1 [10] proceeds as follows:

• R1 (Receiver’s step): R generates the hashing parameters Λ and samples random instances (ẋ, ẍ,w), where ẋ is
projective and w is its witness. R sets xi ← ẋ and x3−i ← ẍ (i ∈ {1, 2}). R sends (Λ, xi, x3−i).

• S1 (Sender’s step): S verifies that at least one instance of (x1, x2) is smooth. If the test fails then the sender
aborts. Otherwise the sender encrypts each message mi via XOR-ing it with hash value of xi. S sends ciphertext
ci along projection key of xi.

2



• R2 (Receiver’s step): R XOR-es ciphertext ci with projection value of xi and gets message mi.

Halevi-Kalai OT2
1 protocol meets privacy-based definition, which is a weaker notion than simulation-based defini-

tion. In this definition, no malicious adversary should be able to distinguish two views which are generated on distinct
sets of inputs for the honest party but yield the same output.

Definition 2 ([10]). A protocol is said to privately implement oblivious transfer OT2
1 if the following conditions are

satisfied:

• Receiver’s Privacy: Denoted by R(1n, i) the message sent by the honest receiver with input (1n, i). Then the
ensembles {R(1n, 1)}n∈N and {R(1n, 2)}n∈N are computationally indistinguishable; {R(1n, 1)}n∈N

c
= {R(1n, 2)}n∈N .

• Sender’s Privacy: Denote by S(1n,m1,m2, q) the response of the honest sender with input (1n,m1,m2) when the
receiver.s first message is q. Then there is a negligible function µ such that for any n > 0, any three messages
m1,m2,m′ ∈ {0, 1}l(n), and any message q ∈ {0, 1}∗, it holds that

S(1n,m1,m2, q) s
= S(1n,m1,m′, q) ∨ or

S(1n,m1,m2, q) s
= S(1n,m′,m2, q),

where s
= means statistically indistinguishability.

4. Analysis of the Simulatability of Halevi-Kalai OT

In the case that the receiver is corrupted, Halevi and Kalai admit that their work does not give a simulation-based
security guarantee, while in the case that the sender is corrupted, they assert that Definition 2 gives a simulation-based
guarantee. Let us focus on the latter case. Following their ideas [10, Sec. 3], the simulator S should be constructed
as follows.

1. The simulator S invokes the adversaryA as a subroutine.
2. Simulator S plays the role of an honest receiver with private input 1, and extracts message m1.
3. S rewindsA , plays the role of an honest receiver with private input 2, and extracts message m2.
4. S sends (m1,m2) to the TTP, and outputs whatA outputs.

Since {R(1n, 1)}n∈N
s
= {R(1n, 2)}n∈N , the views of adversary A in the real world and ideal world are statistically

indistinguishable too. Combining with the fact that the sender S outputs nothing in both the real world and the ideal
world, one may conclude that the two worlds are computationally indistinguishable. However, this simulation ignores
two subtle problems.

P1 A may not always gives responses to S.

P2 (m1,m2) is not extracted in one shot.

To illustrate P1, consider the following. A may gives responses in the first extraction and refuses to respond in
the second extraction. This is possible, becauseA receives distinct messages in two distinct extractions. If this is the
case, S can not extract m2 and fails.

To illustrate P2, consider the following. SinceA is malicious, it may choose distinct values in distinct extractions.
For example, the adversaryA follows the following strategy:

• in each execution,A chooses two random values m1,m2 ∈U {0, 1}∗ as its real input and finally outputs them.

More concretely, let us assume that the real input of A in the first interaction and the second interaction are (a1, a2)
and (b1, b2) respectively. We also assume that honest receiver R takes i = 1 as its input. Then we know,

Real = ((a1, a2), λ, a1) Ideal = ((b1, b2), λ, a1)

3



where (a1, a2), (b1, b2) are outputs of adversary A and simulator S, respectively. Considering the random choices of
a1, a2, b1, b2, it holds with overwhelming probability that

a1 < {b1, b2}.

That is, in the ideal world, the receiver get a value that is highly probable to be inconsistent with the output of S. This
distinguishes the real world from the ideal world.

Theorem 3. Halevi-Kalai OT does not provide a simulation-based security guarantee when the sender or the receiver
is corrupted.

More generally, we have Lemma 4. Since the proof is similar to the discussion above, we omit the details.

Lemma 4. Let Π be a protocol that is supposed to implement a two-party functionality f (x, y) such that the first party
receives f1(x, y) and the second party receives f2(x, y). Let S be the simulator of the case that the malicious adversary
corrupts the first party. If simulator S does not extract real input of the adversary in one shot, and there exists a value
ν such that makes f2(·, ν) injective, then S does not provide blackbox-simulation-based security.

5. Our Ideas To Achieve A Fully-Simulatable Framework for OT2
1

First, let us consider the case that the receiver is corrupted. As pointed out by the Halevi and Kalai, the reason why
their OT is non-simulatable is that the simulator S can not extract the choice i of the adversary A. We note that the
receiver R learns the value mi it queried about via a projective instance ẋ. For a smooth-projective instance pair (ẋ, ẍ),
if the witness ẇ is available, S can identify the projective instance, and hence S can learn which valueA chooses (i.e.
it learns the adversary’s real input i). Employing a cut-and-choose technique as in [15, 16], S can see the witnesses
by rewindingA’s computation.

Naturally, our idea is for the receiver R to ”cut” some instance pairs (where each one contains a projective instance
and a smooth instance) and for the sender S to ”choose” some instance pairs at random to check their legalities (i.e.,
S checks that each pair indeed contains at least one smooth instance). The receiver then sends the chosen instance
pairs’ witnesses. Combining the previous analysis, we can see that for a protocol constructed following this idea, S
can extractA’s real input, and hence simulation-based security can be gained.

Second, let us consider the case that only the sender is corrupted. As pointed out in Section 4, the main problem
is that the input extraction is not completed in one shot. To solve this problem, we let both parties commonly choose
instance pairs to open via a coin-tossing protocol. This gives opportunities to S to know the choice of malicious
adversaryA and to bias the common choices. Then S can cheatA and extract its input in one shot.

To summarize our idea, a fully-simulatable framework can be depicted at a high level as follows:

1. Let K be a predetermined positive integer. The receiver R generates a hash family parameter and ”cuts” K
instance pairs where each pair contains a projective instance and a smooth instance. It shuffles each pair and
sends the parameter and the shuffled pairs to the sender S.

2. The sender S checks that the hash family parameter is legal. Then, both parties commonly run a coin-tossing
protocol to ”choose” instance pairs to check the legalities.

3. To prove the chosen instance pairs’ legalities, the receiver R sends their witness to the sender S.
4. Based on its private input i, the receiver R chooses a rearrangement indicator for each non-chosen pair.
5. According to the rearrangement indicators, the sender S reorders each non-chosen pair so that the i-th entry of

the resultant pair is projective. Then, S encrypts its private 2 values by XOR-ing them with the hash values
of the non-chosen instance pairs. Finally, S sends the encryptions and projection keys of non-chosen instance
pairs to the receiver.

6. The receiver R computes the projection values of the non-chosen instances pairs and it XOR-es the projection
values and the encryptions to gain the value it sought.

See [17] for the detailed framework and the formal proof which is highly complicated.

4



References

[1] M. O. Rabin, How to exchange secrets by oblivious transfer, Tech. Rep. Technical Report TR-81, Aiken Computation Lab, Harvard University
(1981).

[2] J. Kilian, Founding cryptography on oblivious transfer, in: 20th Annual ACM Symposium on Theory of Computing (STOC’88), ACM Press,
Chicago, USA, 1988, pp. 20 – 31.

[3] N. Mohammed, D. Alhadidi, B. C. M. Fung, M. Debbabi, Secure two-party differentially private data release for vertically partitioned data,
Dependable and Secure Computing, IEEE Transactions on 11 (1) (2014) 59–71.

[4] C. Hazay, K. Nissim, Efficient set operations in the presence of malicious adversaries, Journal of Cryptology 25 (3) (2012) 383–433.
[5] B. Aiello, Y. Ishai, O. Reingold, Priced oblivious transfer: How to sell digital goods, in: B. Pfitzmann (Ed.), Advances in Cryptology -

Eurocrypt’01, Vol. 2045 of Lecture Notes in Computer Science, Springer - Verlag, Innsbruck, Austria, 2001, pp. 119 – 135.
[6] Y. Lindell, B. Pinkas, Privacy preserving data mining, Journal of Cryptology 15 (2002) 177–206.
[7] M. Naor, B. Pinkas, Computationally secure oblivious transfer, Journal of Cryptology 18 (1) (2005) 1–35.
[8] M. Green, S. Hohenberger, Practical adaptive oblivious transfer from simple assumptions, in: Y. Ishai (Ed.), 8th Theory of Cryptography

Conference (TCC’11), Vol. 6597, Springer - Verlag, Providence, USA, 2011, pp. 347 – 363.
[9] W. Ogata, K. Kurosawa, Oblivious keyword search, Journal of complexity 20 (2) (2004) 356–371.

[10] S. Halevi, Y. Tauman Kalai, Smooth projective hashing and two-message oblivious transfer, Journal of Cryptology 25 (1) (2012) 158–193.
[11] C. Peikert, V. Vaikuntanathan, B. Waters, A framework for efficient and composable oblivious transfer, in: D. Wagner (Ed.), Advances in

Cryptology-CRYPTO’2008, Springer-Verlag Berlin, Santa Barbara, CA, 2008, pp. 554–571.
[12] J. Camenisch, G. Neven, abhi shelat, Simulatable adaptive oblivious transfer, in: M. Naor (Ed.), Advances in Cryptology - Eurocrypt’07, Vol.

4515 of Lecture Notes in Computer Science, Springer - Verlag, Barcelona, Spain, 2007, pp. 573 – 590.
[13] B. Libert, S. Ling, F. Mouhartem, K. Nguyen, H. Wang, Adaptive oblivious transfer with access control from lattice assumptions, Advances

in CryptologyõASIACRYPT 2017, Springer International Publishing, 2017, pp. 533–563.
[14] R. Cramer, V. Shoup, Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption, in: L. R. Knud-

sen (Ed.), Advances in Cryptology - Eurocrypt’02, Vol. 2332 of Lecture Notes in Computer Science, Springer - Verlag, Amsterdam, The
Netherlands, 2002, pp. 45 – 64.

[15] A. Y. Lindell, Efficient fully-simulatable oblivious transfer, in: T. Malkin (Ed.), Topics in Cryptology - CT-RSA 2008, Vol. 4964 of Lecture
Notes in Computer Science, Springer - Verlag, San Francisco, USA, 2008, pp. 52 – 70.

[16] Y. Lindell, B. Pinkas, An efficient protocol for secure two-party computation in the presence of malicious adversaries, Journal of Cryptology
28 (2) (2015) 312–350. doi:10.1007/s00145-014-9177-x.
URL http://dx.doi.org/10.1007/s00145-014-9177-x

[17] B. Zeng, Founding cryptography on smooth projective hashing, Cryptology ePrint Archive, Report 2018/444, https://eprint.iacr.org/
2018/444 (2018).

5

http://dx.doi.org/10.1007/s00145-014-9177-x
http://dx.doi.org/10.1007/s00145-014-9177-x
http://dx.doi.org/10.1007/s00145-014-9177-x
https://eprint.iacr.org/2018/444
https://eprint.iacr.org/2018/444

	1 Introduction
	2 Preliminaries
	2.1 OT21 Under the Ideal/Real Simulation Paradigm 
	2.2 Smooth Projective Hash

	3 A Brief Review of Halevi-Kalai OT 
	4 Analysis of the Simulatability of Halevi-Kalai OT 
	5 Our Ideas To Achieve A Fully-Simulatable Framework for OT21

