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Abstract. An important prerequisite for Side-channel Attack (SCA) is leakage sam-
pling where the side-channel measurements (e.g. power traces) of the cryptographic
device are collected for further analysis. However, as the operating frequency of
cryptographic devices continues to increase due to advancing technology, leakage
sampling will impose higher requirements on the sampling equipment. This paper
undertakes the first study to show that effective leakage sampling can be achieved
without relying on sophisticated equipments through Compressive Sensing (CS).
In particular, CS can obtain low-dimensional samples from high-dimensional power
traces by simply projecting the useful information onto the observation matrix. The
leakage information can then be reconstructed in a workstation for further analysis.
With this approach, the sampling rate to obtain the side-channel measurements is no
longer limited by the operating frequency of the cryptographic device and Nyquist
sampling theorem. Instead it depends on the sparsity of the leakage signal. Our
study reveals that there is large amount of information redundancy in power traces
obtained from the leaky device. As such, CS can employ a much lower sampling rate
and yet obtain equivalent leakage sampling performance, which significantly lowers
the requirement of sampling equipments. The feasibility of our approach is verified
theoretically and through experiments.

Keywords: compressive sensing · matching pursuit · OMP · CoSaMP · SP · GOMP
· side-channel attack

1 Introduction

Traditional side-channel leakage sampling conforms to the Nyquist theorem, i.e. the
sampling rate of the equipment must be more than (or at least) twice the highest operating
frequency of the cryptographic device in order for the original leakage to be reconstructed
completely from the samples. In order to obtain more leakage details for Side-Channel
Attacks (SCAs), the sampling rate is usually several times higher than the operating
frequency of the leaky device. With advancing technology, the operating frequency of
cryptographic devices is increasing rapidly. Micro-controllers and Field-Programmable
Gate Arrays (FPGAs) today have a clock operating frequency of a few MHz, while mobile
phones, laptops and desktop computers can run in the order of several GHz.

The increase in operating speed of the cryptographic devices is expected to impose a
challenge to the acquisition and storage of leakage signals for SCA as more sophisticated
equipments will be required for leakage sampling. This may seem as a benefit from
the security standpoint, but in this paper, we refute this presumption by demonstrating
that using lower sampling rates can still enable us to obtain equivalent leakage sampling
performance, which significantly lowers the requirement of sampling equipments. This is
achieved through a novel use of Compressive Sensing (CS) which abandons the need to
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conform to the sampling rate that is dictated by the Nyquist theorem. In particular, using
CS, the leakage sampling rate depends solely on the sparsity of the leakage signal, which
is a predominant characteristic in the power traces obtained from the leaky device.

While there has been several works in SCA that have attempted to eliminate the
information redundancy in power traces, these techniques only process power traces after
leakage sampling to reduce the efforts of side-channel analysis. Contrary to our work, they
do not lower the requirements on the sampling equipments. In the following subsection, we
will discuss these existing works along with CS before describing the main contributions
of our work.

1.1 Related Works

Points-Of-Interest (POI) selection in [DS16] and dimensionality reductions in [CDP15,
SNG+10, BHvW12] are two classical pre-processing techniques in SCA. The former finds
the locations of POIs by using side-channel distinguishers such as Differential Power Anal-
ysis (DPA) [KJJ99] and Correlation Power Analysis (CPA) [BCO04], or leakage detection
tools such as Welch’s t-test [DCE16], ρ-test [DS16] and χ2-test [MRSS18], while the latter
such as PCA [SNG+10] and LDA [SA08], considers the global features of high-dimensional
samples. Both techniques need to consider multiple power traces simultaneously. Discrete
Wavelet Transform(DWT), Discrete Cosine Transform(DCT) and Fast Fourier Transform
(FFT) [GHT05], transform power traces from time domain to sparse domain one at a time,
but all the computations are carried out on the sampling equipments, which increases its
workload and reduces the sampling rate.

To the best of our knowledge, Maximum Extraction and Integration in [MOP07] are
two existing compressive sampling techniques that are used to eliminate information re-
dundancy on power traces. The former maintains that the highest correlation occurs
exactly at the position where the power consumption of each clock cycle reaches its max-
imum, and it is therefore reasonable to choose these points as representative points for
entire clock cycles. The latter integrates points in each clock cycle or within small time
intervals. They are all applicable to situations where the sampling rate of the oscilloscope
is much higher than the bandwidth of the leaky device. Re-sampling is then performed on
the collected power traces. As such, these techniques incur resource wastage since the high
sampling rate provides observers with leakage containing a large amount of redundancy,
which is discarded during compression. This led to the problem stated in [Don06]: "why
go to so much effort to acquire all the data when most of what we get will be thrown away?
Can’t we just directly measure the part that won’t end up being thrown away?". The rest
of this paper will address this problem for SCA.

Based on the theory of functional analysis and approximation [Kas91], Romberg, Tao
and Donoho established the theory of Compressive Sensing (CS) [CR06, CRT06, Don06].
Combined with information theory, CS makes it possible to sample signals at a rate far
below the Nyquist sampling theorem while enabling equivalent sampling performance. CS
has been widely studied and applied to many fields such as image, voice and signals in
general. The sampling rate of CS no longer depends on the highest frequency of the signals,
but instead it is governed by the signal’s sparsity and Restricted Isometry Property (RIP)
[CRT06]. As long as a signal is compressible or sparse in a certain transform domain,
it can be projected from high-dimensional space into a low-dimensional space and retain
the important information. Then, by solving an optimization problem, this signal can be
reconstructed from a small number of projections with a high probability. In the context
of SCA, sparsity provides a more intuitive and efficient representation of information in
the power traces.

The research in CS mainly includes three aspects: (1) sparse signal representation, (2)
observation matrices satisfying the incoherence and RIP properties, and (3) fast and ro-
bust signal reconstruction algorithms. Sparse signal representation, a precondition of CS,
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signifies that the low-dimensional transformed vector is sparse or approximately sparse
when a high-dimensional leakage signal is projected onto a certain orthogonal transfor-
mation basis. The aim is to find the features of signals in different functional spaces such
as FFT, DWT, DCT and Bandelet [PM00], and provide a more concise representation.
This is different from directly transforming the power traces into frequency domain, since
the observer only needs to compute the inner product of the signal and the observation
matrix, which requires very low computation. The purpose of the observation matrices
such as Gauss, Bernoulli and Toeplitz [SYZ08] is to find a projection matrix that is not
related to the sparse matrix, and they reflect the observation rules for leakage signals.

Fast and robust signal reconstruction algorithms are the most widely researched among
the three aspects of CS. The algorithms can be divided into three categories according
to the problem addressed: greedy algorithms for solving l0-norm, convex optimization
algorithms for solving l1-norm and the combination of these two kinds of algorithms.
Matching pursuit algorithms are typical examples of greedy algorithms, which aim to
select one or more dimensions with the highest correlation with the current residual vector
in each iteration, and approximate the original leakage signal and the new iteration error
based on the current selected dimensions. Classical greedy algorithms include Matching
Pursuits (MP) [MZ93], Orthogonal Matching Pursuit (OMP) [SM15], CoSaMP[NT10],
GOMP [WKS12], TMP (Tree Matching Pursuit) [LD06] and ROMP [NV09], etc. Convex
relaxation algorithms convert the non-convex optimization problem l0-norm to the convex
optimization l1-norm. The representative algorithms include BP (Basis Pursuit) [CDS01],
GP (Gradient Projections) [HTWM10], IHT (Iterative Hard Threshold) [Mal09], etc. The
convex optimization algorithms are more accurate than the greedy algorithms, but their
computational complexity is higher. The combined or hybrid algorithms mainly consist of
CP (Chaining Pursuit) [GSTV06]. It is worth mentioning that even though there are many
existing reconstruction algorithms, there are still a lot of problems in their convergence
and robustness. Nevertheless, the existing theories and prior work are sufficient for CS to
be applied in side-channel leakage sampling.

1.2 Our Contributions

The increasing operating frequency of cryptographic devices impose high requirements on
the sampling equipments, bring new challenges to the storage and processing of power
traces for SCA. In this paper, we focus on addressing these challenges which pertain to
leakage sampling for SCA. While this problem has not been adequately discussed in the
literature, we believe it is of high importance as we are able to show that the high operating
frequency of advanced cryptographic devices is not a barrier to leakage sampling in the
absence of powerful sampling equipments.

Specifically, we introduce a novel use of Compressive Sensing (CS), a new and highly-
efficient compressive sampling technology for side-channel leakage sampling. CS performs
compression and sampling simultaneously by projecting the high-dimensional signals on-
to a low-dimensional space to obtain the discrete leakage samples. This enables the
high-dimensional signal to be reconstructed without distortion. Compared with classi-
cal sampling, CS uses a far lower sampling rate to achieve the same performance. The
feasibility of our approach is verified by theory and experiments in this paper.

In addition, the practical deployment of the proposed approach is also highly feasible
as the sampling process of CS is very simple. It only needs to compute the incoherent
projection without any additional processing. A large amount of computations which are
needed for reconstruction of the signals are transferred from the sampling equipments
to the desktop computers and workstations, which reduces the workload of the sampling
equipments. Many current sampling tasks in side-channel analysis are accomplished au-
tomatically by expensive oscilloscopes. The CS programs can be integrated into sampling
plug-ins of these oscilloscopes. Oscilloscopes such as our Tektronix DPO 7254 with a
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Windows 7 operation system, even allow the development of independent sampling soft-
ware. Researchers have also developed the sampling software on various platforms. For
example, Inspector developed by Riscure, enables the leakage to be collected and stored
on laptop computers and other advanced processors. CS can also be efficiently imple-
mented on these platforms by integrating a small program to solve the inner product of
observation matrix (see Section 4) and leakage sample vector.

1.3 Organization

The rest of this paper is organized as follows. Principles of classical compressive sam-
pling and CS are introduced in Section 2. The first two main parts of CS, leakage sparse
representation and observation, are described in Sections 3∼4. Section 5 uses classical
greedy algorithms such as OMP, CoSaMP, SP and GOMP as examples to introduce the
principle of signal reconstruction. The corresponding reconstruction performance evalua-
tion criteria are also provided in this section. Observers can find good sparse domain and
observation matrix through experiments, optimize the sparse coefficients and compression
ratio, and implement CS with a much lower sampling rate than those required by existing
sampling equipments or sampling software on computers. In Sections 6 and 7, we describe
the experiments on an AT89S52 micro-controller and measurements from DPA contest
v1.1 [dpa] to demonstrate the efficiency of the approach. Finally, Section 8 concludes this
paper.

2 Preliminaries

2.1 Classical Compressive Sampling

Sampling and compression are carried out separately in traditional compressive sampling.
The sampling rate must satisfy Nyquist theorem, which states that the bandwidth of
sampling equipment must be at least twice the maximum frequency of the cryptographic
device. Moreover, the sampling is uniform, and the number of samples collected in any
fixed interval is the same. It is noteworthy that the sampling rate is usually much higher
than the bandwidth of cryptographic devices in practice. As such, the power traces contain
a large amount of information redundancy, which can be removed during compression to
lower the complexity of side-channel attacks and evaluations. Mangard et al. stated that
the peaks of the damped oscillation carried all the information that was necessary to
perform a power analysis attack. Two classic compression techniques named Maximum
Extraction and Integration were given [MOP07]. The reconstruction of the original power
traces from compressed ones is usually not considered in SCA since attacks can be directly
performed on the compressed low-dimensional power traces.

Dimensionality reduction methods such as PCA [SNG+10, BHvW12], LDA [SA08],
KDA [CDP16] and manifold learning [OSW+17], obtain the low-dimensional samples by
extracting the features from high-dimensional leakages, which consider the structure of
all power traces. Compression only needs to consider a single trace. The low-dimensional
samples obtained from different power trace sets may vary significantly after dimensional-
ity reduction. However, the compression of one power trace is not affected by other power
traces. This indicates that the above mentioned dimensionality reduction algorithms com-
monly used in SCA cannot be used in CS. We further illustrated why FFT, DWT and
DCT cannot be directly used for sampling in Section 1.1. It is noteworthy that most of
the sample points on the power traces do not contain sensitive information and there is
still a lot of information redundancy in the two compression methods, Maximum Extrac-
tion and Integration [MOP07]. Moreover, they lose information and the original power
traces cannot be accurately reconstructed after compression. It can only be re-sampled if
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necessary, which requires significant effort.

2.2 Compressive Sensing

The principle of CS maintains that as long as the signal is sparse or sparse in a trans-
form domain, and its projection vectors can be obtained from observation matrix, then
it can be reconstructed nondestructively by optimization methods. Unlike the classical
compressive sampling, wherein the sampling and compression are performed separately,
CS compresses a power trace while sampling it and aims to use the least coefficients to
represent the compressed signal. Compared with traditional compressive sampling, the
sampling rate in CS theory no longer depends on the bandwidth of signal, but on it-
s sparsity (see Table 1). The sparser the signal in a transformation domain, the fewer
non-zero coefficients it possesses. These coefficients represent the smallest sampling band-
width needed to reconstruct the original high-dimensional signals. As such, to achieve the
same sampling performance, CS only requires a much lower sampling rate compared to
traditional compressive sampling.

Table 1: Difference between classic compressive sampling and CS.

classic compressive sampling Compressive Sensing
Proposed in 1948 2006

Sampling mode uniform sampling non-uniform sampling
Sampling rate highest frequency of leakage sparsity
Observation high-dimensional low dimensional

original samples observation vector
Reconstruction Sinc interpolation Solving optimization problems

Moreover, classical compression samples uniformly, while CS does not. The low-
dimensional samples are obtained by computing the inner product between the signal
and the observation matrix. Since each measured value takes the same information, this
makes the measurement robust. Finally, Nyquist sampling theorem uses Sinc interpola-
tion (i.e. Whittaker-Shannon interpolation) to reconstruct the original leakage, which is
a linear operation with limited computation. CS uses nonlinear programming methods
to recover leaky signals, and the corresponding complexity is high. Fortunately, most of
the computation is eventually transferred from the sampling devices to computers, which
notably reduces the workload of the sampling devices.

0 n

(a) original signal

0 n

(b) sparse representation

0 m

(c) observation

0 n

(d) signal reconstruction

→ → →

Figure 1: General procedure of CS.

The complete CS flow is shown in Fig. 1. Firstly, the m sparse coefficients of the n-
dimensional original signals are obtained by sparse transformation (m ≪ n in Fig. 1(b)).
m largest coefficients are saved and other n − m coefficients are discarded. The saved
coefficients are sufficient to reconstruct the original signal without distortion. Secondly,
the observer encodes these saved coefficients, achieves low-dimensional observation vec-
tors and completes the compression (Fig. 1(c)). In other words, the high-dimensional
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original signal is projected onto a sparse domain to achieve low-dimensional samples. The
sampling device outputs these samples as sampling results. Finally, the original signal
is reconstructed by solving an optimization algorithm (Fig. 1(d)). These operations
correspond to the three aspects of CS theory introduced in Section 1.1: signal sparse rep-
resentation, observation matrix design, and signal reconstruction, which will be discussed
in detail in Sections III∼V.

3 Leakage Sparse Representation

3.1 Sparse Decomposition

The purpose of sparse decomposition in SCA is to use as few sparse vectors as possible
to represent the original leakage. If a leakage signal x = [x0, x1, . . . , xn−1] ∈ Rn×1 can be
represented by linear combinations of normal orthogonal bases Ψ = [ψ0, ψ1, . . . , ψn−1] ∈
Rn×n, then x can be represented as:

x = ΨΘ =

n−1
∑

i=0

ψiθi. (1)

If the number of non-zero coefficients k in Θ is much smaller than n, then x is s-
parse or compressible on the orthogonal basis Ψ. In other words, Θ is sparse. Θ =
[θ0, θ1, . . . , θn−1]

T ∈ Rn×1 is the sparse coefficients, and also the sparse representation of
x on Ψ. Ψ here is the sparse base or sparse domain.

3.2 Determination Conditions

The precondition of CS is that the leakage signal is k-sparse, but most of the natural signals
are not sparse. If the absolute values of the coefficients in Θ exponentially attenuate after
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then the signal is compressible or nearly sparse. Here i ∈ (0, n− 1). Parameter p controls
the speed of exponential attenuation. The larger it is, the faster the attenuation, and
the sparser the signal x is on Ψ. Therefore, the criterion to evaluate the performance
of a set of sparse bases is to measure the attenuation tendency of the sparse coefficients.
However, many signals are not strictly sparse but approximately sparse, which can still
be decomposed sparsely.

Candes and Tao indicated in [CT06] that the signals with Θ exponential attenuation
could be reconstructed by CS theory, and the upper bound of reconstruction error satisfies:

eo = ‖x − x̂‖2 ≤ Cp ·R ·
(

k

logn

)−r

. (3)

Here r = 1/p− 1/2, 0 < p < 1, R > 0, Cp is constant which only depends on p and ‖·‖2

is the l2-norm.

3.3 Sparse Domains

Side-channel leakages are not sparse in time domain, but they are sparse when converted
to frequency domain, wavelet domain etc. Classical transforms, such as FFT, DWT and
DCT, were first applied to CS. FFT and DCT belong to global transformation and no
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longer preserve features of time domain. DCT focuses on the low frequencies of power
traces as critical information. DWT can better analyze the time-domain characteristics
of signals and more sparsely represent the information of signals. If a suitable base is
selected, the coefficients are easier to deal with than the original leakage signal.

We only consider DCT in this paper. There are 8 transform forms for one-dimensional
DCT, of which the second one is the most commonly used. Let n denote the number of
samples on original leakage signal, then the u-th coefficient after transformation is

F (u) = c (u)

n−1
∑

i=0

x (i) cos

{

u
(2i+ 1)

2n

}

. (4)

x (i) is the i-th time point of original leakage signal and c (u) is a coefficient satisfying

c (u) =















√

1
n
, u = 0

√

2
n
, u = 1, 2, · · · , n− 1

(5)

It can be regarded as a compensation coefficient, which makes the DCT transformation
matrix an orthogonal matrix. For side-channel leakage, c (0) of F (0) is the DC (Direct-
Current) component and other coefficients are AC (Alternating Current) components.
The complexity of DCT is O

(

n2
)

. In fact, the target of reconstruction algorithms is to
reconstruct the DCT coefficients. Finally, the Inverse Discrete Cosine Transform (IDCT):

x (i) =

√

2

n

n−1
∑

u=0

c (u)F (u) cos

{

u
(2i+ 1)π

2n

}

(6)

is performed to reconstruct the original leakage.

4 Observation

The sampling process of CS is very simple, and most of the computations lie mainly in
the leakage signal reconstruction. This reduces the workload of sampling devices and
facilitates the fast sampling of CS. If the leakage signal x ∈ Rn×1 is sparse, it can be
projected onto the observation matrix Φ = [φ0, φ1, . . . , φm−1] ∈ Rm×n:

y = Φx, (7)

and obtains the low-dimensional observation vector (as shown in Fig. 2). Otherwise,
the observer must project it onto orthogonal bases to make it sparse. The observation
matrix Φ is independent of the sparse basis Ψ. Here y = [y0, y1, . . . , ym−1] ∈ Rm×1 is the
observation vector (i.e. sampling results of sampling equipment). y = ΛΘ (Λ = ΦΨ =
[γ0, γ1, . . . , γn−1]) is defined as the sensing matrix. The principle of y = Φx and y = ΛΘ
is similar, since we can make

Θ = ΨT
x (8)

and get Φ
′

= ΦΨT . The observation y = Φ
′

x. Matrices Ψ and Φ can be employed
universally in a cryptographic implementation, and hence we only need to set them once.

Since the size m of y is much smaller than the size n of x, y = ΛΘ is an under-
determined system of equation. This is equivalent to x being compressed, and the amount
of data compressed is much lesser than the original leakage obtained by Nyquist sampling
theorem. If m and n are very large, the dimensions of matrices Ψ and Φ will be very high,
which need to be optimized.
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m × n

Φ

m × 1

n × 1

xy

sparsity k

=

Figure 2: Low-dimensional observation from high-dimensional leakage signal x.

4.1 Constraint Conditions

Observers need to construct an observation matrix in CS theory, which plays an important
role in the acquisition of observation vectors and signal reconstruction. It requires that
the k measured values do not destroy the information of the original leakage signal when
it is converted from x to y, thus ensuring accurate signal reconstruction. This should
satisfy Restricted Isometry Property (RIP) and Incoherence Property [CW08, DH01].

Restricted Isometry Property: A matrix Ψ satisfies RIP of order k (i.e. the
leakage signal is k-sparse) if there exists a δ ∈ (0, 1) that makes Λ satisfy the following
inequality:

1 − δ ≤ ‖ΛΘ‖2

‖Θ‖2

≤ 1 + δ. (9)

This ensures that signals can be transformed from one domain to another without diver-
gence. δ is the Restricted Isometry Constant (RIC) [CRT06], which is the minimum value
satisfying Eq. 9.

Incoherence property: The coherence within the observation matrix Φ is the
maximum absolute value of the normalized inner products, i.e.

µ (Φ) = max
1≤i,j≤n,i6=j

|〈φi, φj〉|
‖φi‖2 · ‖φj‖2

. (10)

Here 〈·, ·〉 denotes dot product of two vectors. The smaller the µ, the weaker the coherence
of any two atoms (i.e. columns) in Φ. The coherence coefficients of orthogonal matrices
are 0.

The coherence between the observation matrix Φ and sparse transformation base Ψ
can refer to the coherence between two atoms of a single matrix. Incoherence here means
that the row vectors φi of Φ cannot be represented linearly by the column vectors in Ψ.
The coherence of Φ and Ψ can be defined as:

µ (Φ,Ψ) =
√
n · max

1≤i,j≤n
{|〈φi, ψj〉|} ∈

[

0,
√
n
]

. (11)

If there are coherent columns in Φ and Ψ, µ (Φ,Ψ) is large. The smaller the µ (Φ,Ψ) is,
the more information of the original signal x is contained in the measurement samples,
which leads to better reconstruction performance.
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4.2 Observation Matrices

It is difficult to directly design an observation matrix satisfying the RIP condition. Most
of the current observation matrices are random Gaussian matrices, wherein each element
satisfies the normal distribution with mean 0 and variance 1

m
:

φ (i, j) ∼ N
(

0,
1

m

)

. (12)

Since random matrices are not related to any matrix, they can satisfy RIP conditions
with high probability if m ≥ c · k · log2

(

n
k

)

[Don06]. Here c is a small constant. An-
other observation matrix is random Bernoulli matrix, in which elements follow Bernoulli
distribution:

φ (i, j) =
1√
m







1, pr = 1
2

−1, pr = 1
2

(13)

or

φ (i, j) =

√

3

m























1, pr = 1
6

0, pr = 2
3

−1, pr = 1
6

(14)

Here pr denotes the probability of the element. Baraniuk et al. in [RMRM08] proved
that Bernoulli matrix was strongly random, it could satisfy RIP condition with great
probability if the number of observationsm ≥ c·k·log2

(

n
k

)

. Besides Gauss and Bernoulli, a
large number of observation matrices have also been proposed, which will not be discussed
in this paper.

5 Leakage Reconstruction

Signal reconstruction algorithms in CS aim to use the low-dimensional observation vector
y to recover the high-dimensional original leakage signal x. As proved in [GN03, Tro04],
if the sparse coefficients in Θ satisfy

‖Θ‖l0
<

1

2

{

1 +
1

µ {Φ}

}

, (15)

the low-dimensional observation is achieved by solving the optimization problem:

arg min ‖Θ‖l0
, s.t.y = ΛΘ. (16)

‖Θ‖l0
is the number of non-zero elements in Θ. In this case, Θ has a unique solution,

which is equivalent to that the minimum number of linear correlation atoms in the given
matrix Φ is greater than 2k. Thus, the sparse coefficient Θ is obtained and the side-
channel leakage x is recovered by Eq. 1. The greedy algorithms aim to solve the l0-norm.
Since m ≪ n, y = ΛΘ has multiple solutions, this is NP-hard. If a reconstruction error ǫ
is allowed, this model becomes

arg min ‖Θ‖l0
, s.t. ‖y − ΛΘ‖ < ǫ. (17)

However, the new model is unstable and difficult to solve directly.
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5.1 Optimization

Since Θ is sparse, the number of unknowns in y = ΛΘ is greatly reduced, which makes
signal reconstruction possible. The problem described in Eq. 17 can be solved by the
suboptimal solution of l0-norm:

arg min ‖Θ‖l1
, s.t.y = ΛΘ (18)

if θ satisfies certain conditions [CDS01]. The typical solutions of l1-norm are convex

optimization algorithms. The lp-norm of vector x = [x0, x1, . . . , xn−1]
T

is defined as

‖x‖lp
=

(

n−1
∑

i=0

|xi|p
)

1

p

. (19)

Taking two-dimensional real space R2 as an example, l1-norm ‖x‖l1
= |x1| + |x2| repre-

sents the closed area surrounded by four lines shown in Fig. 3(a), and l2-norm ‖x‖l2
=

√

|x1|2 + |x2|2 represents a circle (as shown in Fig. 3(b)). They are hyper-prism and
hyper-sphere in high-dimensional space Rn. Only if the optimal solution of y = Φx falls
onto the coordinate axis can the sparsity be guaranteed. In fact, if l1-norm and l2-norm
fall onto the coordinate axis, their solutions are equivalent to the ones of l0-norm.

(a) ( )

y = Φx
y = Φx non-sparse

sparse

x1

sparse

x1

x2
x2

Figure 3: The geometric meaning of the optimal solutions of l1-norm (a) and l2-norm (b)
in two-dimensional space.

From the perspective of information theory, the information cannot be infinite com-
pressed. The number of observations (i.e. the number of measurements) m determines
the compression ratio m

n
. For a leakage signal with length n and sparsity k on a sparse

base, the lower bound of the number of observations m required by CS is:

m ≥ c · µ2 (Φ,Ψ) · k · log2 n. (20)

It is noteworthy that the above solutions all require the observer to solve constraint
problems, which can be transformed into solving unconstrained problem [CT06]:

arg min ‖Θ‖l1
+ η ‖y − ΛΘ‖2 . (21)

η is a balance factor, which is used to balance reconstruction error and sparsity.

5.2 Greedy Algorithms

Signal reconstruction algorithms play a very important role in accurately reconstructing
the high-dimensional original leakage signal from the low-dimensional observation vector
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in CS. Greedy algorithms are the earliest and the most widely used signal reconstruction
algorithms in CS. The main idea of these algorithms is to select one or more atoms
(i.e. columns) having the greatest correlation with the current residual vector r in each
iteration, and obtain the current optimal solution to approximate the original leakage
signal and the new iteration error according to the currently selected atoms. Matching
Pursuits (MP) [MZ93] and Orthogonal Matching Pursuit (OMP) (improved from MP)
[SM15] are two widely used greedy algorithms in CS. MP selects the atom γt−1 with
highest matching degree between matrix Λ and current signal residual rt−1:

γt−1 = arg max
γj

|〈rt−1, γj〉| . (22)

Here t− 1 is the current number of repetitions (i.e. the current number of observations).
The residual is then decomposed as

rt−1 = max |〈rt−1, γj〉| + rt (23)

after each iteration. Almost all of the matching pursuit algorithms such as CoSaMP[NT10],
GOMP [WKS12], StOMP[DTDS12] and ROMP [NV09], are improved from OMP. These
algorithms preserve the atom selection strategy of MP.

OMP [SM15] is the most commonly used algorithm in CS (see Algorithm 1). The
atom in the sensing matrix Λ having greatest correlation with the current residual rt−1

is selected as a new candidate atom (Step 3). It is added to the atom matrix Λt and its
corresponding index λt is added to the support set A (Step 4). For a k-sparse leakage
signal x, only k non-zero coefficients are involved in the operation when the sensing matrix
Λ is used. These atoms are stored in matrix Λ according to the observation rules used
during the iteration. OMP is then updated by subtracting its projection on the orthogonal
space of the selected atom matrix from the observation vector y until the iteration t ≤ k
is satisfied (Steps 5 and 6). Since the residual r is orthogonal to the selected atoms, an
atom in Λ will not be selected twice, thus guaranteeing the convergence of the algorithm.
Moreover, orthogonalization guarantees the local optimal solution in each iteration, but
does not guarantees that the sum of the local optimal solutions is the global optimal
solution.

Algorithm 1: Orthogonal Matching Pursuit (OMP).

Input: sensing matrix Λ = ΦΨ, sparse base Ψ, support matrix A, observation y

and sparsity k.
Output: estimated parameters Θ̂ and residual r.

1 Initialization: r0 = y, A0 = ∅, Λ0 = ∅ and the number of iteration t = 1;
2 while t ≤ k do

3 λt = arg maxj |〈rt−1, γj〉| ;

4 find index At = At−1 ∪ {λt} ,Λt = Λt−1 ∪ {γλt
} ;

5 Θ̂t = arg minΘ̂t

∥

∥

∥
y − ΛtΘ̂t

∥

∥

∥

2
;

6 update residual rt = y − ΛtΘ̂t ;
7 t = t+ 1 ;

8 end

9 recover signal x̂ = ΨΘ̂ ;

OMP uses least square method to solve the minimum Θ̂t (see Step 5 in Algorithm 1).
Since y = ΛΘ, solving f (Θ) = ‖y − ΛtΘt‖2 is equivalent to solving:

f (Θ) = (y − ΛtΘt)
T

(y − ΛtΘt) . (24)
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The function f (Θ) has an extreme value at ∂f(Θ)
∂Θ = 0, i.e. ∂f(Θ)

∂Θ = −2ΛT
t (y − ΛtΘt).

We get ΛT
t y = ΛT

t ΛtΘt, Step 5 can be simplified by solving

Θt =
(

ΛT
t Λt

)−1
ΛT

t y. (25)

Here ΛT
t is the transformation matrix of Λt. The complexity of OMP is O (k ·m · n). The

advantage of OMP is its fast convergence and high accuracy under the precondition that
k is known. However, if the sparsity k is unknown and the estimation is too small, then
the absolute error eo is too large, OMP falls into endless iterations or results in very low
percentage recovered. Moreover, it will incur a large amount of computation and lower
the quality of reconstructed signals if the sparsity k is estimated to be too large.

As we mentioned earlier, almost all of matching pursuit algorithms are improved from
OMP. An obvious disadvantage of OMP algorithm is that only one atom is selected in
each iteration. With the number of observations increase, the runtime increases rapidly.
This can be solved by selecting multiple atoms from the observation matrix Φ or sensing
matrix Λ each time. In this case, SWOMP (Stagewise Weak OMP) [BD09] which is
improved from StOMP (Stagewise OMP) [DTDS12], selects all the atoms larger than
a preset threshold for subsequent calculations. The difference is that the threshold of
StOMP comes from residuals, while the threshold of SWOMP comes from experiential
setting. In general, the threshold of SWOMP is the maximum coefficient multiplied by
a parameter between 0 and 1, with a default value 0.5. The complexity of StOMP and
SWOMP is O (m · n). GOMP [WKS12] requires to set a parameter s, which denotes
the number of atoms selected in each repetition (the default value is k

4 ). In order to
reduce parameter settings, we chose GOMP to represent these improved algorithms in
our experiments.

Another disadvantage of OMP algorithm is that once an atom is in the candidate
set, it will never be deleted. StOMP and SWOMP also have this drawback. To improve
this shortcoming, two algorithms CoSaMP (Compressive Sampling Matching Pursuit)
[NT10, NV10] and SP (Subspace Pursuit) [DM09], which rely on backtracking is employed.
Specifically, as the algorithm iterates, the atoms in Λ are recalculated and the non-optimal
atoms are deleted. Specifically, CoSaMP [NT10, NV10] selects 2 · k atoms most relevant
to the residual in Steps 3 and 4 of Algorithm 1, and the k atoms with the largest absolute
values in Θ̂ are selected for the next iteration in Step 5. It guarantees that there will
be no more than 3 · k atoms in Λ, 2 · k atoms in A and at most k atoms are removed in
each repetition. Compared with CoSaMP, SP [DM09] only selects k atoms most relevant
to the residual in Steps 3 and 4, it guarantees that there should be no more than 2 · k
atoms in Λ and 2 ·k atoms in support vector A, and at most k atoms are removed in each
repetition. The complexity of CoSaMP and SP is O (m · n) and O (log (k) ·m · n).

5.3 Performance Criteria

There are many criteria to evaluate the performance of signal reconstruction algorithms,
such as reconstruction time, reconstruction residual (also called absolute error, see Eq. 3),
relative error and signal-to-noise ratio (SNR). They reflect the reconstruction performance
of the algorithm from different aspects.

Relative Error: Referring to the absolute error eo = ‖x − x̂‖2 between the original
leakage signal x and reconstructed signal x̂ given in Eq. 3, the relative error is defined
as:

er =
‖x − x̂‖2

‖x̂‖2

. (26)

Signal-to-Noise Ratio: SNR is defined as the ratio of exploitable power consump-
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tion component to noise component in side-channel attacks [MOP07]. It is defined as:

SNR = 20 × lg

{ ‖x‖2

‖x − x̂‖2

}

(27)

in CS, of which the molecule represents the variance of the signal. The denominator
represents the absolute error of the original signal and the reconstructed signal.

Matching Degree: The matching degree α of the original signal and the recovered
signal is defined as

α = 1 − |‖x̂‖2 − ‖x‖2|
|‖x̂‖2 + ‖x‖2| . (28)

It is a positive number with a value between 0 and 1. The smaller the reconstruction error
e0 = ‖x − x̂‖2, the greater the matching degree, the closer to 1 the α is, and the better
the reconstruction performance.

Percentage Recovered: The percentage recovered Pr in [TG07] depends on the
absolute error eo = ‖x − x̂‖2 of reconstruction. If it is smaller than the pre-determined
threshold, then the reconstruction is successful. Therefore, its calculation is similar to
the Success Rate (SR) [SMY09] in side-channel analysis, and its value is the ratio of the
number of successful reconstructions to the total number of repetitions in experiments.
The setting of threshold eo can be determined according to the required reconstruction
accuracy. If the reconstructed power traces are only used for attacks, it can be set ap-
propriately large. However, leakage evaluations require high reconstruction accuracy, so
it should be set small.

6 Experiment Results On AT89S52 Micro-controller

6.1 Experimental Setups

Our first experiment is performed on an AT89S52 micro-controller, with a clock operating
frequency of 12 MHz. The shortest instructions take 12 clock cycles to execute. We use
a Tektronix DPO 7254 oscilloscope to capture leakage of the look-up table instruction
"MOVC A,@A+DPTR", which takes 24 clock cycles. The oscilloscope has a sampling
rate of up to 40 GHz, but it does not have the function to automatically collect and store
waveform. We obtain the waveform acquisition plug-in from the Tektronix company, but
the speed is very slow. We cannot even store the leakage samples of the AES encryption
algorithm promptly under 500 MHz sampling rate. So, we add about 0.5 second of empty-
loop instructions before look-up table operation. Finally, we acquire 20000 power traces,
each of them includes 5000 samples. The rest of our experiments are performed on a
HP desktop computer with 6 Inter(R) Xeon(R) E5-1650 v2 CPUs, 16 GB RAM and a
Windows 10 operating system. It’s clock frequency is 3.5 GHz. Since the power traces
are affected by noise, they fluctuate significantly. We use a moving average filter with
a 5-hour span to remove the noise. A random observation matrix for four algorithms is
generated for each repetition.

In order to observe and compare the performance of the algorithms OMP, CoSaMP,
BP and GOMP, we use the 1801th ∼ 2600th samples to perform our CS using MATLAB
R2016b. The time samples in this segment contain obvious leakage. The DCT coefficients
of a power trace transformed from time domain to DCT domain are shown in Fig. 4. We
can draw the conclusion that the leakage of AT89S52 micro-controller is sparse in DCT
domain, as most DCT coefficients are close to 0. FFT and DWT can also be used as
sparse domains, although the corresponding experimental results are not given.
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Figure 4: DCT coefficients of a power trace leaks from AT89S52 micro-controller.

6.2 Threshold Selection

The original power trace x can be projected onto the observation matrix Φ if it satisfies
RIP, and reconstructed by using at least m ≥ k · log2

(

n
k

)

observations. The minimum
number of observations m can be quickly obtained if the sparsity k is known. Otherwise,
we need to test it. In order to optimize the reconstruction performance, it is necessary to
adjust m appropriately. We use OMP, CoSaMP, SP and GOMP to perform our experi-
ments and set m to 400 to test the sparsity, which ranges from 5 to 200, with step width
5. SNR, relative error, matching degree α and their runtime under different sparsity are
shown in Fig. 5. The reconstruction performance is compared considering only one power
trace. The SNR of OMP, CoSaMP and SP increases rapidly and reaches the highest at
k < 80. SP and GOMP fluctuate significantly at k > 100. GOMP is the highest when
k < 75, which indicates that its power trace reconstruction requires the smallest number
of observations. SNR and matching degree of CoSaMP decrease rapidly when k > 125, the
relative error of it is also much larger than other algorithms. If m is set to 320, the SNR
of 4 algorithms reaches the highest at k < 45, and SP fluctuates significantly at k > 60.
This also indicates that we may get very different results under different observations.

CoSaMP is the most time-consuming algorithm followed by SP (see Fig. 5(d)). It
decreases rapidly to about 0 when k > 135, the observer should guarantee that there
should be 3 · k atoms in Λ, which indicates that very large k will affect its performance.
The time consumption of OMP and GOMP only change a little under different sparsity.
Through comprehensive analysis, reasonable k should be between 50 and 125, which is
further set to 50 in the next experiments (if m = 320, k is then set to from 45 to 60).
The experimental results of m from 100 to 800 are shown in Fig. 6. The SNR of the
four algorithms continues to improve before the number of measurements m reach 320
(i.e. m ≥ k · log2

(

n
k

)

is satisfied). OMP, CoSaMP and SP achieve optimal performance
when m > 300 (SNR is about 25). This indicates that k limits the further improvement
of their performance. However, the performance of GOMP is still improving and becomes
the best when m > 300. The final SNR of GOMP is about 48. This is also reflected
in Fig. 6(b) where the relative errors of OMP, CoSaMP and SP decrease to the lowest
(about 0.055) when m > 300, while the relative error of GOMP continues to decline and
finally reaches about 0.004. This also fully illustrates the superiority of GOMP.

The matching degrees of OMP, CoSaMP, SP and GOMP are greater than 0.75 in all
measurements (see Fig. 6). They increase rapidly when m < 200 and then becomes stable
and are larger than 0.9950. The runtime of GOMP increases rapidly, while other three
algorithms changes little under different numbers of observations. Compared with the
experimental results under different sparsity, the performance under different numbers
of measurements is more stable and does not fluctuate dramatically. This is even more
obvious for GOMP, which consumes more time than other 3 algorithms when m > 350.
Choosing a reasonable number of observations can reduce the time consumption, here we
set m to 320.
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Figure 5: SNR (a), relative error (b), matching degree (c) and time consumption (d) of
OMP, CoSaMP, SP and GOMP under different sparsity.

6.3 Performance Comparison

We randomly select a power trace. In fact, the reconstruction performance of power traces
is almost the same under the same observation matrix. The algorithms OMP, CoSaMP,
BP and GOMP can reconstruct power traces well when k = 50 and m = 320 (as shown in
Table 2 and Fig. 7). The blue line and red line represent the original and the reconstructed
power traces. They overlap in most regions, when the matching degree is greater than
0.9950. This shows that only 320 samples need to be collected to reconstruct the leakage
of 800 samples under CS. If we collect longer traces, the compression performance is
even better. GOMP performs best, since the relative error er is smallest, of which the
corresponding SNR is also the largest. This also verifies the conclusion that SNR of GOMP
is the highest when k = 50 in Fig. 5. Although er of OMP is larger than that of GOMP,
the matching degree of it is better. This indicates that partial overlap has an important
impact on the overall performance evaluation. Therefore, we need to integrate a number
of criteria when comparing the performance of power trace reconstruction algorithms.

Table 2: Leakage reconstruction performance of OMP, CoSaMP, SP and GOMP on
AT89S52 micro-controller.

algorithms er SNR α time (second)
OMP 0.0647 23.7766 0.9993 0.017782

CoSaMP 0.0573 24.8361 0.9971 0.092189
SP 0.0607 24.3335 0.9958 0.044551

GOMP 0.0538 25.3873 0.9992 0.055530

The reconstruction error eo of OMP, CoSaMP, SP and GOMP in Fig. 7 is about 0.40.
Most regions of these four algorithms overlap. This indicates that 0.35 could be a very
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Figure 6: SNR (a), relative error (b), matching degree (c) and time consumption (d) of
OMP, CoSaMP, SP and GOMP under different numbers of measurements.
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Figure 7: Leakage reconstruction using OMP, CoSaMP, SP and GOMP (the original
power trace (blue) and reconstructed power trace (red)).

good threshold since it leads to high reconstruction performance. In order to compare the
performance of OMP, CoSaMP, SP and GOMP more objectively, we further compare the
percentage recovered ( i.e. probability of successful reconstruction) under different sparsity
and different numbers of observations (measurements). The corresponding experimental
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results are given in Fig. 8. Let Pr denote the percentage recovered in the rest of this
paper. We randomly select signals from a set of 20000 power traces for 400 repetitions
in our experiments. The evaluation in Fig. 8(a) and Fig. 8(b) takes 5678.401890 and
5667.954980 seconds, respectively.
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Figure 8: Percentage recovered under different sparsity levels (a) and different numbers
of observations (b).

The performance of OMP, CoSaMP, SP and GOMP are very different when k varies
from 5 to 160 (m = 320), where it first becomes better and then worse. The Pr of GOMP
rapidly reaches 1.00 when k is from 5 to 15, and decreases with obvious fluctuations when
k is from 105 to 145. Pr of SP and CoSaMP almost overlaps when k is from 15 to 35,
decreases when k is larger than 70 and reaches 0 after k = 110. Compared with CoSaMP,
SP and GOMP, OMP is more robust. Its Pr is constant at 1.00 when k reaches 160.
The precondition of power trace reconstruction is m >= k · log2

(

n
k

)

, which indicates
that the performance of OMP will eventually decline. Compared with the performance
under different sparsity k, Pr of OMP, CoSaMP, SP and GOMP increases steadily under
different numbers of measurements (as shown in Fig. 8(b)). It is almost 0 when m < 170
and reaches 1.00 when m = 320. Their performance from good to poor are as follows:
OMP, SP, CoSaMP and GOMP. This indicates that the observer can recover the power
traces with a probability of 1.00 if m = 320, k = 50 and residual is set to 0.35. Obviously,
the performance of 500MS/s sampling rate under classical compressive sampling is only
equivalent to 200MS/s sampling rate under CS.

Power traces can be reconstructed accurately by fewer observations under the same
sparsity when k < 50, which indicates superiority of the GOMP algorithm shown in Fig.
8(a). However, its performance is worse than the other three algorithms when the number
of measurements is less than 310 (as shown in Fig. 8(b)). The SNR and relative error
er of GOMP in Fig. 6 are significantly better than those of the other three algorithms
when m > 310. However, since we set a large reconstruction error threshold 0.35, this
advantage is not ultimately reflected in the percentage recovered. In fact, we can set
appropriate reconstruction errors according to specific requirements. For example, in
SCAs, the attacker can collect more power traces instead of accurately reconstructing
each of them. The reconstruction error can be set appropriately large. However, in side-
channel evaluations, for the sake of accurate security evaluation of cryptographic devices,
it requires that the power traces can be accurately reconstructed, and the threshold of
reconstruction error should be set sufficiently small.
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7 Experiments Results On DPA Contest v1

7.1 Experimental Setups

In order to facilitate the re-implementation of our CS parameter adjustments, our second
experiment is performed on the power trace set SecmatV1 leaking from the unprotected
DES crypto-processor implemented in ASIC provided by DPA Contest v1.1 [dpa]. Each
power trace includes 5003 time samples. In order to observe and compare the performance
of algorithms OMP, CoSaMP, BP and GOMP conveniently, we download 10000 power
traces and use the times from 4001th to 5000th to perform our compressive sensing leakage
reconstruction experiments. The sample segment includes the leakage of the last round
of DES algorithm, which is commonly attacked in SCA. We also use a moving average
filter with a 5-hour span to smooth all the traces simultaneously. A random observation
matrix for four algorithms is generated for each repetition.
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Figure 9: DCT coefficients of the second power trace in SecmatV1.

As we mentioned in Section 3.3, the sparser the leakage is in one domain, the better
the reconstruction performance is under the same number of observations since more key
information of the leakage is compressed into these dimensions. Sparse domains are also
an important topic in CS. Power traces from DPA Contest v1.1 is well sparse in DCT
domain (as shown in Fig. 9). Compared with the leakage of AT89S52 micro-controller,
its amplitude is smaller. The largest DCT coefficients occurs in the first dimension, and
other DCT coefficients are very small.

7.2 Threshold Selection

SNR, relative error, matching degree and time consumption of OMP, CoSaMP, SP and
GOMP under different sparsity are shown in Fig. 10. The SNR keeps increasing when
k < 25 then reaches about 24. It is noteworthy that SNR is relatively stable when k is
from 25 to 50. CoSaMP and SP fluctuate sharply when k is greater than 50, and their
performance also declines sharply. Relative error and matching degree also indicate that
CoSaMP can not be able to reconstruct power traces when k > 135. Since at least 3 · k
atoms should be guaranteed in Λ, the time consumption of CoSaMP even drops to nearly
0 at k > 100. The time consumption of SP and CoSaMP increases rapidly with sparsity,
while OMP and GOMP changes little. Based on the above analysis, the k between 25
and 50 is a good choice if we want to test the percentage recovered.

We set k to 40, the relative error α of OMP, CoSaMP and SP decreases rapidly when
m is from 50 to 300 and then becomes stable at 0.05 (as shown in Fig. 11). However, α of
GOMP continues to decrease and finally reaches 0.004. The SNR of OMP, CoSaMP and
SP becomes stable (about 26) when m > 300. The SNR of GOMP finally reaches about
48. The matching degree of all algorithms are higher than 0.92. Although we use 1000
time samples on the power traces provided by DPA contest v1.1 to carry out experiments,
the time consumption of OMP, CoSaMP, SP and GOMP is smaller than that of 800 time
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Figure 10: SNR (a), relative error (b), matching degree (c) and time consumption (d) of
OMP, CoSaMP, SP and GOMP under different sparsity.

samples leaking from AT89S52 micro-controller, which makes the reconstruction error eo

of power traces smaller. GOMP takes more time than other algorithms when m > 300.
Based on the above performance analysis, m from 300 to 350 is a good choice.

7.3 Performance Comparison

The second power trace is selected to perform DCT transform to compare the performance
of OMP, CoSaMP, BP and GOMP, and the corresponding experimental results are shown
in Fig. 12. k and m are set to 40 and 300 according to experimental results given in Section
7.2. There are more clock cycles in Fig. 7 compared with the leakage in DPA Contest v1.1
shown in Fig. 12. Due to the preprocessing of DPA Contest v1.1, its power traces are also
more easy to reconstruct. The reconstructed power trace of GOMP can overlap well with
the original one. Compared with the other three algorithms, the reconstruction error of
GOMP is smaller and the SNR is higher (as shown in Table 3). The other 3 algorithms
do not overlap well in some areas where power consumption varies distinctly. α of all 4
algorithms are larger than 0.9970. This indicates that reconstruction performance of the
four algorithms is very good and meets the sampling requirements very well.

Table 3: Leakage reconstruction performance of OMP, CoSaMP, SP and GOMP on DPA
Contest v1.1.

algorithms er SNR α time (second)
OMP 0.0713 22.9364 0.9988 0.010863

CoSaMP 0.0612 24.2611 0.9974 0.043958
SP 0.0692 23.2020 0.9989 0.033731

GOMP 0.0601 24.4179 0.9982 0.058839

The SNR of a power trace depends on the reconstruction residual of the recovery
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Figure 11: SNR (a), relative error (b), matching degree (c) and time consumption (d) of
OMP, CoSaMP, SP and GOMP under different numbers of measurements.
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Figure 12: Leakage reconstruction using OMP, CoSaMP, SP and GOMP (the original
power trace (blue) and reconstructed power trace (red)).

algorithm referring to Eq. 27. The smaller the residual, the higher the SNR of the
reconstructed power traces. The reconstruction errors eo of OMP, CoSaMP and SP in
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Fig. 12 are about 0.04, compared with about 0.03 of GOMP. They are all smaller than
these about 0.40 in Fig. 7, since the power consumption of ASIC used in DPA Contest v1.1
is smaller than AT89S52 micro-controller. Therefore, relative error is better referential
than absolute error in reconstruction performance evaluation. The relative error, SNR and
matching degree in Tables 2 and 3 also illustrate that the reconstruction performance in
Fig. 7 and Fig. 12 is similar. The power traces of DPA contest v1.1 are more compressible
than these of AT89S52 micro-controller. To achieve similar performance, we only need to
collect 30% samples to reconstruct the original leakage (compared with 40% of AT89S52
micro-controller). Moreover, the matching degree also illustrates the high performance of
OMP, CoSaMP, SP and GOMP. They can quickly reconstruct the original power traces
(see the time comsuption on Table 3).
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Figure 13: Percentage recovered under different sparsity levels (a) and different numbers
of observations (b).

In order to further compare the performance of OMP, CoSaMP, SP and GOMP, we set
k = 40, m = 300 and residual threshold to 0.04, the corresponding experimental results
are shown in Fig. 13. When k = 40 and the step width is set to 10, it takes 5047.385466
seconds to run m from 100 to 400 (400 repetitions). When m = 300 and the step width
is set to 5, it takes 2969.2314196 seconds to run k from 15 to 150 (400 repetitions). The
Pr of OMP, CoSaMP and SP is 0 when k is from 5 to 20. k from 30 to 55 is a good
choice, which also validates our conclusion in Section 7.2. Pr of GOMP increases rapidly
from 0 to 1 when k is from 5 to 15, then drops and fluctuates. CoSaMP decreases faster
than SP, and they drop to 0 at k = 100. Similar conclusion is drawn from Section 6.3.
The slow performance degradation of OMP can be observed in Fig. 13, which illustrates
its stability. When k = 40 and the number of observations is smaller than 200, all 4
algorithms fail to recover power traces. The absolute error eo decreases with growth of m.
The percentage recovered increases gradually to 1 then becomes stable when m is from 200
to 330. It is noteworthy that OMP, CoSaMP, SP and GOMP have their own advantages
and disadvantages, the observer may get completely different performance from different
signals. He should choose the appropriate algorithm according to the specific situation,
power trace structure, observation matrix and characteristic of reconstruction algorithms.

The percentage recovered of GOMP is high when the sparsity k is small (as shown in
Fig. 8 and Fig. 13). With more observations, the higher the SNR of GOMP, the better
the reconstruction performance of it than other three algorithms. However, since the large
reconstruction error allowed, this advantage is not ultimately reflected in Fig. 13(b). We
can draw similar conclusions from Fig. 8(b). Moreover, the performance of OMP, CoSaMP
and SP becomes stable after a certain number of observations, while the performance of
GOMP still gradually improves with the growth of m (as shown in Fig. 6 and Fig. 11).
In order to improve their performance, the sparsity can be appropriately enlarged. The
SNR of OMP increases to a certain height and then becomes gradually stable, while the
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performance of the other three algorithms improves first and then deteriorates sharply (as
shown in Fig. 8 and Fig. 13). Enlarging the number of observations can improve their
performance and make the locations of optimal performance move to the right. However,
it is difficult to optimally balance k and m. There are currently many studies on the
selection of them, such as the SWOMP shortly introduced in Section 5.2, of which k is
the number of coefficients larger than half of the maximum.

8 Conclusions

The rapid increase in the bandwidth of cryptographic devices makes it difficult to sample,
store and process leakages. In this paper, we introduce Compressive Sensing, a new and
highly-efficient data sampling technology for side-channel leakage sampling and compare
it with classical compressive sampling. Our experiments performed on power traces ob-
tained from AT89S52 micro-controller and DPA contest v1.1 clearly demonstrate that CS
can use a sampling rate much lower than the original one to obtain equivalent sampling
performance. It projects the original power traces onto the observation space, and obtains
the observation samples far below the original dimension. CS transfers a large amount of
computation from sampling devices to advanced processors, so that the compute-intensive
signal reconstruction can be carried out fast without distortion. In this paper, we only
introduce the basic techniques of CS for leakage sampling and verify its superiority by ex-
periments. There are many studies on sparse representation of signals, observation matrix
design and signal reconstruction which could be applied to the leakage sampling problem.
As such, we believe this work provides a new research direction in SCA which has many
avenues for investigations and opportunities for further improvements.
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