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Abstract

We present a new cryptanalytic algorithm on obfuscations based on GGH15 multilinear
map. Our algorithm, statistical zeroizing attack, directly distinguishes two distributions from
obfuscation while it follows the zeroizing attack paradigm, that is, it uses evaluations of zeros
of obfuscated programs.

Our attack breaks the recent indistinguishability obfuscation candidate suggested by Chen
et al. (CRYPTO’18) for the optimal parameter settings. More precisely, we show that there are
two functionally equivalent branching programs whose CVW obfuscations can be efficiently
distinguished by computing the sample variance of evaluations.

This statistical attack gives a new perspective on the security of the indistinguishability
obfuscations: we should consider the shape of the distributions of evaluation of obfuscation to
ensure security.

In other words, while most of the previous (weak) security proofs have been studied with
respect to algebraic attack model or ideal model, our attack shows that this algebraic security
is not enough to achieve indistinguishability obfuscation. In particular, we show that the
obfuscation scheme suggested by Bartusek et al. (TCC’18) does not achieve the desired security
in a certain parameter regime, in which their algebraic security proof still holds.

The correctness of statistical zeroizing attacks holds under a mild assumption on the preim-
age sampling algorithm with a lattice trapdoor. We experimentally verify this assumption for
implemented obfuscation by Halevi et al. (ACM CCS’17).

Keywords: Cryptanalysis, indistinguishability obfuscation, multilinear map

1 Introduction

Indistinguishability obfuscation (iO) is one of the most powerful tools used to construct many
cryptographic applications such as non-interactive multiparty key exchange and functional encryp-
tion [5, 17, 33]. While constructing a general-purpose iO has been posed as a longstanding open
problem, Garg et al. [17] first proposed a plausible candidate for the general-purpose iO exploit-
ing a multilinear map in 2013. Starting from this work, many subsequent studies have proposed
plausible constructions of iO upon candidate multilinear maps [1–3,6, 17,18,24–27,30,31,35].

However, all of the current constructions of multilinear map, essentially classified as GGH13,
CLT13 and GGH15 [15,16,19], are merely candidates. These constructions are not known to have
the desired security of the multilinear map due to the first class of zeroizing attacks, such as the
CHLRS attack and Hu-Jia attack [11, 15, 26]; these attacks commonly exploits several encodings
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of zero to show the multi-party key exchange protocol instantiated by candidate multilinear maps
are not secure.

On the other hand, the first class of zeroizing attacks does not damage the security of current iO
constructions from the candidate multilinear maps. It later turns out that most candidates iO fail to
achieve the desired security due to subsequent works, the second class of zeroizing attacks [9–14,32],
which employs algebraic relations of the top level encodings of zero. In this light, many researches
focus on algebraic security of obfuscation using the weak multilinear map models [4, 18, 28] to
capture the currently known techniques to analyze obfuscations and multilinear map itself.

Recently, GGH15 multilinear map has been in the spotlight because it is shown that GGH15
and its variants can be exploited to construct provable secure special-purpose obfuscations and
other cryptographic applications including constraint pseudorandom functions under the hardness
of LWE and its variants [7,8,10,21,34]. Therefore, the GGH15 multilinear map has been believed
to be the most plausible candidate for constructing the general-purpose obfuscation.

In this respect, Chen et al. [10] proposed a new iO candidate over GGH15, called CVW obfus-
cation, to be secure against all known attacks. Then, Bartusek et al. [4] provided a new candidate
over GGH15, called BGMZ obfuscation, which is provably secure against generalized algebraic
zeroizing attacks. The security of these two schemes in more general setting remains as an open
problem.

1.1 Our Result

We give a new polynomial time cryptanalysis, statistical zeroizing attack, on the candidates of iO
based on the GGH15 multilinear map. This attack directly distinguishes the distributions from
zeros of obfuscated programs instead of finding algebraic relations of evaluations. We particularly
exploit the sample variance as a distinguisher of the distributions, while this attack introduces wide
class of distinguishing methods. In particular, under an assumption on lattice preimage sampling
algorithm with a trapdoor, our attack breaks the security of

• CVW obfuscation for the optimal parameter choice. Further, our attack still works for the
relatively small variance σ2 of Gaussian distribution such as σ = poly(λ) for the security
parameter λ, and

• BGMZ obfuscation for large variance of Gaussian distribution, e.g. σ = 2λ, which still enables
the security proof in the weak GGH15 multilinear map model.1

This result refutes the open problem posed in [10] in a certain parameter regime: the CVW
obfuscation is not secure even when the adversary gets oracle access to the honest evaluations as
matrix products instead of obfuscated program.

Our attack leads a new perspective to the study of iO: we should focus on the statistical
properties such as shapes of distributions as well to achieve indistinguishability obfuscation. In
particular, the distributions of evaluations should be (almost) the same regardless of the choice of
target branching program. Previously, most attacks and constructions only focused on the algebraic
structure of evaluations.

Attack Overview. Suppose that the adversary has two functionally equivalent branching pro-
grams M and N, and an obfuscated program O(P) where P = M or N. The purpose of the
adversary is to determine whether P = M or N. Note that the recent obfuscation constructions
compute its output via two processes: the first step is to compute a value, we call evaluation here
according to the evaluating rules, which is usually to compute a product of given matrices. The
second step is to determine the output from the size of the evaluation in the first step.

The basic form of statistical zeroizing attack is incredibly simple; just compute the evaluation
of obfuscated program (right before computing output) and check if an entry is larger than a
threshold value. Since two evaluations of obfuscated programs O(M) and O(N) have the different
variance, this attack may work.

Technically speaking, we consider a bit complex form of statistical zeroizing attack in this paper
to give a rigorous analysis. The above form is simple, but it is hard to check the correctness of

1That is, our attack is lying outside the considered attack class in [4].
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attack.2 Thus we consider the multiple-sample problem instead of one evaluation, and then compute
the sample variance. Then we determine P by checking the inequality of the sample variance and
a threshold value. Note that these distributions of evaluations are polynomial-time constructible,
i.e. the sampling algorithm is done in polynomial time, since every parameter to do obfuscation
process is given to adversary. Therefore the distinguishing algorithm of two distributions implies
the distinguishability of two corresponding evaluations by the standard hybrid argument.

Though the attack is conceptually simple, it is difficult to verify that the attack works well for
certain obfuscation schemes, and this verification requires several complex computational tasks.
Thus we give the sufficient conditions that attack works well using sample variance for a simpler
description of the attack. And we assign most papers including appendix to show that those
conditions hold under an assumption, dealing with many random variables that might be dependent
themselves. We derive many lemmas to deal with such intertwined random variables.

Assumption on Lattice Preimage Sampling. The analysis of attack requires an assumption
on lattice preimage sampling algorithm. This assumption states that the variance and kurtosis
of products of matrices from preimage sampling have almost the same size as one assumed the
independency of those matrices. This assumption is experimentally verified for matrices used in
implemented obfuscation scheme [22]. For more detailed description, see Assumption 1 and Ap-
pendix C.

Example of Statistical Zeroizing Attack. We give an example to show how our attack intu-
itively works. We consider a simple construction of GGH15-obfuscation without all safeguards. For
brevity we only give the result of evaluation. A detailed description of this simple obfuscation is
given in Appendix A. We also do not give a computational analysis of the attack here, but this
example still is enough to shows that the two distributions of evaluations from different branching
programs may have quite different shape.

We consider two functionally equivalent branching programs

M = {Mi,b}i∈[h],b∈{0,1} and N = {Ni,b}i∈[h],b∈{0,1}

where

Mi,b = ~0w×w for all i, b and Ni,b =

{
Iw×w if i = 1
~0w×w otherwise

.

For these BPs, the evaluations are of the form

O(M)(x) = E1,xinp(1)
·
h∏
k=2

Dk,xinp(k)
and

O(N)(x) = E1,xinp(1)
·
h∏
k=2

Dk,xinp(k)
+ I ·E2,xinp(2)

·
h∏
k=3

Dk,xinp(k)
.

Here D’s are preimage-sampled matrices and E’s are error matrices, whose entries are all following
discrete Gaussian distribution.

If we choose polynomial-size variances for those matrices, these two distributions have notice-
ably different shape. Therefore one can hope to distinguish two distribution; indeed, the sample
variance will be served as a distinguisher in this paper. Or, more efficiently, one can distinguish
them by looking at the size of sample, but this is not easy to show the correctness as noted in
above without strong assumption on shape of distributions.

Applicability and Limitation. The class of branching programs constructed from CNF formulas,
suggested in [10, Construction 6.4], is in the range of our attack as well. For example, as we choose
two branching programs N = {Ni,b} and M = {Mi,b} as follows: N1,b as the identity matrix with
w × w size and all other matrices of M and N as the zero matrix. These two branching programs
M and N correspond to some CNF formulas following the construction. This is exactly the same
to the target branching programs described in Section 4.2 as an attack example.

2The difference of variance is even not enough to distinguish. For example, the distributions that 0 with over-
whelming probability cannot be efficiently distinguished though these can have any variance.
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On the other hand, there is a class of branching programs that seems robust against our attack:
permutation matrix branching programs. For this class of branching programs, the distributions of
evaluations except bookend vectors are the same for any choice of permutation branching program
M in many obfuscation constructions (under the assumption on trapdoor matrices). Interestingly,
(a variant of) the first candidate iO over the GGH15 multilinear map [17, 19] has targeted such
branching programs so it is robust against our attack.

Further, the obfuscation schemes over the CLT13 or GGH13 multilinear maps seems to be secure
against statistical zeroizing attack. This is due to the structure of those schemes; encodings CLT13
and GGH13 have large randomness in the zero-testing results compared to the message-dependent
parts. In other words, the randomness dominates the zero-testing values and the message only
gives negligible perturbation on the zero-testing distributions.

Counter Measures. There are two countermeasures on our attack: 1) modifying construction to
obfuscate permutation branching programs and 2) adjusting parameters to rule out our attack.
We remark that both countermeasures are plausibly blocking the attack but not in the provable
security level.

As noted above, we can simply use the known obfuscations to obfuscate permutation branch-
ing programs only. Unfortunately, CVW and BGMZ obfuscations in the suggested form are not
appropriate to obfuscate the permutation branching programs.3 We can modify CVW obfuscation
to obfuscate the permutation branching programs; this modified construction is secure against all
existing attacks including the attack suggested in this paper. This can be done by choosing the
bookends appropriately for permutations. A more precise description is placed in Appendix B. The
similar modification works well in BGMZ obfuscation.

Another simple countermeasure for our attack is to take another parameter choice for variance
σ, especially to adjust the variance of several discrete Gaussian distributions appropriately. For
example, one can consider the following modifications.

• For CVW obfuscation, the condition of our attack (using sample variance) does not hold for
large σ2, e.g. σ2 = Ω(m`) for the sampled dimension m of preimage sampling and the length
` of branching program.

• For BGMZ obfuscation, the small choice of σ, e.g. σ2 = O(ν) for the size bound of the
bookend vector’s entry ν.

Both countermeasures yield the exponential bound in the first attack condition (See Proposi-
tion 3.1). We remark that the preimage sampling procedure with large σ can be done in polynomial
time using [20].

It is interesting that the large σ yields countermeasure on CVW obfuscation while it allows
the attack on BGMZ obfuscation. This difference comes from the structure of scheme, or the
dominating term of evaluation’s variance. More precisely, the main parts to induce the difference
are

• In BGMZ obfuscation, there are auxiliary random matrices terms, which flood other terms.
For large σ, a dominating term moves to the message dependent terms.

• In CVW obfuscation, auxiliary random matrices are only larger than the message dependent
terms up to polynomial factor, which gives the enough difference to distinguish. When σ is
increased, the ratio is going to exponential and yields noise-flooding.

Open Questions. We also leave some open problems:

1. The presented attack shows some weakness of obfuscation for non-permutation branching pro-
gram, while this class of branching programs is known to have several advantages compared

3Though there is a general transformation from permutation branching program into Type I branching pro-
gram [10, Claim 6.2], this induces the bookend vector of the form (v| − v) rather than the implicitly supposed
bookend ~11×w in CVW obfuscation. If we directly obfuscate permutation branching programs, the functionality of
them is all-rejection. Indeed, if we obfuscate permutation branching programs using CVW obfuscation as this trivial
functionality (without transformation), the iO security for these trivial BPs can be proven by the proof technique
of [7].
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to permutation branching programs including efficiency [10]. Can we construct a provably
secure obfuscation against all zeroizing attack without choosing the permutation branching
programs?

2. On the other hand, can we extend the zeroizing attack to more general obfuscation or branch-
ing programs such as evasive functions or permutation branching programs? Can we derive
a new attack that combines algebraic and statistical structure of evaluations?

3. The candidate witness encryption in [10] shares almost the same structure with the CVW
obfuscation but we do not know whether it is secure or not.

Organization. In Section 2, we introduce preliminary related to the branching program, iO,
and lattices. We describe the statistical zeroizing attack in Section 3. In Section 4, we briefly
describe CVW obfuscation and its cryptanalysis. In addition, we review BGMZ obfuscation and
its cryptanalysis in Section 5.

2 Preliminaries

Notations. N,Z,R denote the sets of natural numbers, integers, and real numbers, respectively.
For an integer q ≥ 2, Zq is the set of integers modulo q. Elements are in Zq are usually considered
as integers in [−q/2, q/2). We denote the set {1, 2, · · · , h} by [h] for a natural number h.

Lower bold letters means row vectors and capital bold letters denote matrices. In addition,
capital italic letters denote random matrices or random variables. For a random variable X , we let
E(X ) be the expected value of X , V ar(X ) the variance of X .

The n-dimensional identity matrix is denoted by In×n. For a row vector v, a i-th component
of v is denoted by vi, and for a matrix A, a (i, j)-th entry of a matrix A is denoted by ai,j ,

respectively. A notation ~1a×b means a a × b matrix such that all entries are 1. The `p norm of a
vector v = (vi) is denoted by ‖v‖p = (

∑
i |vi|p)1/p. We denote ‖A‖∞ by the infinity norm of a

matrix A, ‖A‖∞ = maxi,j ai,j with A = (ai,j).
We use a notation x← χ to denote the operation of sampling element x from the distribution

χ. Especially, if χ is the uniform distribution on a finite set X, we denote x← U(X).
For two matrices A = (ai,j) ∈ Rn×m, B ∈ Rk×`, the tensor product of matrix A and B is

defined as

A⊗B :=


a1,1 ·B · · · a1,m ·B

...
. . .

...

an,1 ·B, · · · , an,m ·B

 .

For four matrices A,B,C,D such that one can form products A · C and B · D, the equation
(A⊗B) · (C⊗D) = (A ·C)⊗ (B ·D) holds.

2.1 Matrix Branching Program

A matrix branching program (BP) is the set which consists of an index-to-input function and
several matrix chains.

Definition 2.1. A width w, length h, and a s-ary matrix branching program P over a `-bit input
is a set which consists of index-to-input maps {inpµ : [h] → [`]}µ∈[s], sequences of matrices, and
two disjoint sets of target matrices

P = {(inpµ)µ∈[s], {Pi,~b ∈ {0, 1}
w×w}i∈[h],~b∈{0,1}s ,P0,P1 ⊂ Zw×w}.

The evaluation of P on input x = (xi)i∈[`] ∈ {0, 1}` is computed by

P(x) =

{
0 if

∏h
i=1 Pi,(xinpµ(i))µ∈[s] ∈ P0

1 if
∏h
i=1 Pi,(xinpµ(i))µ∈[s] ∈ P1

.
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When s = 1 (s = 2), the BP is called a single-input (dual-input) BP. In this paper, we usually
use P0 = ~0w×w and P1 is the set of all nonzero matrices in Zw×w. Also, we call {Pi,~b}~b∈{0,1}s
the i-th layer of the BP. Remark that CVW obfuscation and BGMZ obfuscation take as input
different BP type (e.g. single and dual BP) and the required properties of BP for each obfuscation
are different. Therefore, we mention the required properties used to construct an obfuscation again
before describing each obfuscation.

2.2 Indistinguishability Obfuscation

Definition 2.2 (Indistinguishability Obfuscation). A probabilistic polynomial time machine O
is an indistinguishability obfuscation for a circuit class C = {Cλ} if the following conditions are
satisfied:

• For all security parameters λ ∈ N, for all circuits C ∈ Cλ, for all inputs x, the following
probability holds:

Pr [C ′(x) = C(x) : C ′ ← O(λ,C)] = 1.

• For any p.p.t distinguisher D, there exists a negligible function α satisfying the following
statement: For all security parameters λ ∈ N and all pairs of circuits C0, C1 ∈ Cλ, C0(x) =
C1(x) for all inputs x implies

|Pr [D(O(λ,C0)) = 1]− Pr [D(O(λ,C1)) = 1] | ≤ α(λ).

2.3 Lattice Trapdoor Background

A lattice L of dimension n is a discrete additive subgroup of Rn. If L is generated by the set
{b1, · · · ,bn}, all elements in L are of the form

∑n
i=1 xi · bi for some integers xi’s. In this case,

the lattice L is called the full rank lattice. Throughout this paper, we only consider the full rank
lattice. Now we give several definitions and lemmas used in this paper.

For any σ > 0, the Gaussian function on Rn centered at c with parameter σ is defined as

ρσ,c(x) = e−π‖x−c‖/σ
2

for all x ∈ Rn.

Definition 2.3 (Discrete Gaussian Distribution on Lattices). For any element c ∈ Rn, σ > 0 and
any full rank lattice L of Rn, the discrete Gaussian distribution over L is defined as

DL,σ,c(x) =
ρσ,c(x)

ρσ,c(L)
for all x ∈ L

where ρσ,c(L) =
∑

x∈L ρσ,c(x).

Lemma 2.4 ([29]). For integers n ≥ 1, q ≥ 2 and m ≥ 2n log q, there is a p.p.t algorithm
TrapSam(1n, 1m, q) that outputs a matrix A ∈ Zn×mq and a trapdoor τ such that A is statistically
indistinguishable from U(Zn×mq ) with a trapdoor τ .

Lemma 2.5 ([20]). There is a p.p.t. algorithm Sample(A, τ,y, σ) that outputs a vector d from a
distribution DZm,σ. Moreover, if σ ≥ 2

√
n log q, then with all but negligible probability, we have

{A,d,y : y← U(Znq ),d← Sample(A, τ,y, σ)} ≈s {A,d,y : d← DZm,σ,Ad = y}.

3 Statistical Zeroizing Attack

In this section, we introduce our attack, statistical zeroizing attack. We give an abstract model
for branching program obfuscation and the attack description in this model. In this attack, we
are given two functionally equivalent branching programs M and N, which will be specified later,
and an obfuscated program O(P) for P = M or N. Our purpose is to distinguish whether P =
M or P = N. The targeted branching programs of the obfuscation output 0 when the product
corresponding to input is zero. The obfuscated program O(P) consists of{

S, {Di,~b}1≤i≤h,~b∈{0,1}s ,T, inp = (inp1, · · · , inps) : [h]→ [`]s, B
}
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where every element is a matrix over Zq (possibly identity) except the input function inp. The
output of the obfuscated program at x = (x1, · · · , x`) ∈ {0, 1}` is computed by considering the
value

O(P)(x) = S ·
h∏
i=1

Di,xinp(i) ·T

where ~xinp(i) = (xinp1(i), · · · , xinps(i)). Note that O(P)(x) can be a matrix, vector or an element
(over Zq). Regard it as matrix/vector/integer over Z and check the value: if ‖O(P)(x)‖∞ < B < q
then it outputs 0, otherwise outputs 1. We call O(P)(x) the evaluation of the obfuscated program
(at x). We also call O(P)(x) evaluation of zero if P(x) = 0 in the plain program. We stress that
the output and evaluation of the obfuscated program is different; the output of the obfuscated
program is the same to output of original program, and the evaluation is the value O(P)(x), which
is computed right before determining the output.

To distinguish two different obfuscated programs, we see the distribution of valid evaluations of
zero of O(M) and O(N). For the evaluation of zero, the size of these products is far smaller than q
(or B), thus we can obtain the integer value rather than the element in Zq. Now, if the evaluation
is of the matrix or vector form, we consider only the first entry, namely (1, 1) entry of the matrix
or the first entry of the vector, in the whole procedure of the attack. We call all of these entries by
the first entry of the evaluation, including the case of the evaluation is just a real value.

Our strategy is to compute the sample variance of the first entries of many independent eval-
uations which follow the same distribution. The key of the attack is that this variance heavily
depends on the plain program of the obfuscated program and the variance is sufficiently different
to distinguish for two certain programs. Therefore, from the variance of the several evaluations, we
can decide that the obfuscated program is from which program.

Note that one can sample an element following the distribution of obfuscation or its evaluation
at fixed point x = x0 in polynomial time when the corresponding program is given, since there is
no private key in the obfuscation procedure. In this regard, we consider a more general problem
which is easier to analyze: Given two polynomial-time constructible distribution DM and DN and
x sampled from one of them, determine that the sample is from which distribution. In our scenario,
DM and DN are the distribution of O(M)(x) and O(N)(x), respectively where the distribution is
over all randomness to construct obfuscations.

Since the adversary has one sample in our setting, the actual algorithm proceeds by sampling
multiple evaluations itself as follows.

Data: DM,DN, x, κ

1. set B = (σ2
M + σ2

N)/2 for σ2
M = V ar(DM) and σ2

N = V ar(DN)

2. i← [κ] and let si = x

3. sample {sj}j∈[i−1] from DM and {sj}i+1≤j≤κ from DN

4. compute the sample variance S2 of {sj}j∈[κ]

5. if S2 < B, decides DM, otherwise DN.

The choice of κ is specified later in Proposition 3.1. We also remark that the overall time complexity
of algorithm is O(κ · Tsample) plus small computation for sample variance, where Tsample is the time
complexity for sampling algorithms. The advantage of this algorithm is, by the standard hybrid
arguemnt, advmult/κ where advmult = 0.98 is the advantage of distinguishing algorithm by sample
variance when κ samples are given as inputs instead of one sample as in Proposition 3.1.

In the next subsection, we analyze the distinguishing algorithm using sample variance for general
distributions instead of iO when the multiple samples are given. Then we go back to the actual
attack for iO for the concrete obfuscations in Section 4 and 5 by showing the attack conditions
hold well.

3.1 Distinguishing Distributions using Sample Variance

Now we give the detailed analysis of distinguishing by sample variance. In this algorithm, we
compute the variance of the samples, and check whether the distance between the sample variance
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and the expected variance of DM and DN. If the distance from the sample variance to the variance
of DM is less than the distance to the variance of DN, we decide the given samples are from DM.
Otherwise we decide the samples are from DN. The result of this method is stated in the following
proposition.

Proposition 3.1. Suppose that two random variables XM and XN that follow polynomial time
constructible distributions DN and DM and have the means µ ~M and µ ~N and the variances σ2

N

and σ2
M, respectively. For the security parameter λ and polynomials p, q, r = poly(λ), there is

a polynomial time algorithm that distinguishes DM and DN with non-negligible advantage when
O(p · (√q +

√
r)) = poly(λ) independent samples from DP are given and the following conditions

hold: ∣∣∣∣∣max(σ2
~N
, σ2

~M
)

σ2
~N
− σ2

~M

∣∣∣∣∣ ≤ p
∣∣∣∣∣E[(XN − µN)4]

σ4
~N

∣∣∣∣∣ ≤ q, and

∣∣∣∣∣E[(XM − µM)4]

σ4
~M

∣∣∣∣∣ ≤ r.
In other words, if two known distributions satisfy the conditions, we can solve the distinguishing

problem of two distribution with multiple samples. Thus to cryptanalyze the concrete obfuscation
schemes, it suffice to show the conditions in Proposition 3.1. We conclude this section by giving
the proof of this proposition.

Proposition 3.1. We call a definition and useful lemmas first.

Lemma 3.2 (Chebyshev’s inequality). Let X be a random variable with a finite expected value µ
and a finite variance σ2 > 0. Then, it holds that

Pr[|X − µ| ≥ kσ] ≤ 1/k2

for any real number k > 0.

Definition 3.3 (Sample variance). Given random n samples x1, x2, · · · , xn of D, the sample vari-
ance of D is defined by

S2 =
1

n− 1

n∑
i=1

(xi − x̄)2

where x̄ = 1
n

∑n
i=1 xi is the sample mean.

Definition 3.4 (Kurtosis). Let X be a random variable with a finite expected value µ and a finite
variance σ2 > 0. The kurtosis of X is defined by

Kurt[X] =
E[(X − µ)4]

E[(X − µ)2]2
=
E[(X − µ)4]

σ4
.

Lemma 3.5. Let S2 be the sample variance of size κ samples of a distribution D. Let X be a
random variable following D and µn = E[(X − E[X])n] be the n-th central moment. Then the
variance of S2 satisfies

V ar(S2) =
1

κ

(
µ4 −

κ− 3

κ− 1
µ2

2

)
.

Now we return to the proof. Suppose that all of the conditions hold for polynomials p, q, r ∈
poly(λ) and σ2

M < σ2
N. By Lemma 3.2 and 3.5, we compute the 99% confidence interval of variance

of S2 as follows

Pr

[
|S2 − σ2

~P
| ≥ 10 ·

√
1

κ
·
(
E[(X~P − µ~P )4]− κ− 1

κ− 3
· σ4

~P

)]
≤ 1

100

with κ number of samples. If κ is sufficiently large, the two intervals of sample variance for M and
N are disjoint. So we can distinguish two distributions by checking the size of sample variance.

More precisely, if κ ≥ 100 · (p · √q + p ·
√
r)2 that is poly(λ), we have

σ2
~M

+ 10σ2
~M
·

√
1

κ
·
(
E[(XM − µM)4]

σ4
M

− κ− 1

κ− 3

)
< σ2

~N
− 10σ2

~N
·

√
1

κ
·
(
E[(XN − µ ~N )4]

σ4
N

− κ− 1

κ− 3

)
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Thus the algorithm decides the answer by checking if the sample variance is included in which
interval; we do not care the case that it is not included both. This algorithm succeeds with prob-
ability at least 0.99 for each input, i.e. the advantage of algorithm is at least 0.98. Note that this
algorithm only does the polynomial number of sampling and computing the variance, thus the
running time is polynomial.

4 Cryptanalysis of CVW Obfuscation

In this section, we briefly describe the construction of CVW obfuscation scheme and show that the
statistical zeroizing attack works well for CVW obfuscation.

4.1 Construction of CVW Obfuscation

Chen, Vaikuntanathan and Wee proposed a new candidate of iO which is robust against all existing
attacks. We here give a brief description of the candidate scheme. For more details, we refer to
original paper [10].

First, we start with the description of BPs they used. The authors use single-input binary BPs,
i.e., inp = inp1. They employ a new function, called an input-to-index map ω̄: {0, 1}` → {0, 1}h
such that ω̄(x)i = xinp(i) for all i ∈ [h], x ∈ {0, 1}`. As used in the paper [10], we denote the∏h
i=1 Mi,ω̄(x)i by Mω̄(x) or simply Mx. We sometimes abuse the notion Mi,xi to denote Mi,ω̄(x)i .
A target BP P = {inp, {Pi,b}i∈[h],b∈{0,1},P0,P1}, which is called Type I BP in the original

paper, satisfies the following conditions.

1. All the matrices Pi,b are w × w matrices.

2. For a vector v = ~11×w, the target sets P0,P1 satisfies v · P0 = {~01×w}, v · P1 6= {~01×w}.4

3. An index length h is set to (λ+ 1) · ` with the security parameter λ.

4. An index-to-input function satisfies inp(i) = (i mod `). Thus, index-to-input function iter-
ates λ+ 1 times.

Construction. CVW obfuscation is a probabilistic polynomial time algorithm which takes as input
a BP P with an input length `, and outputs an obfuscated program preserving the functionality.
The algorithm process consists of the following steps. Here we use new parameters n,m, q, t :=
(w + 2n`) · n, σ for the construction. We will specify the parameter settings later.

• Sample bundling matrices {Ri,b ∈ Z2n`×2n`}i∈[h],b∈{0,1} such that (~11×2` ⊗ In×n) · Rx′ ·
(~12`×1 ⊗ In×n) = ~0 ⇐⇒ x′ ∈ ω̄({0, 1}`) for all x′ ∈ {0, 1}h. More precisely, Ri,b is a block

diagonal matrix diag(R
(1)
i,b ,R

(2)
i,b , · · · ,R

(`)
i,b ). Each R

(k)
i,b ∈ Z2n×2n is one of the following three

cases.

R
(k)
i,b =



I2n×2n if inp(i) 6= k(
R̃

(k)
i,b

In×n

)
, R̃

(k)
i,b ← D

n×n
Z,σ if inp(i) = k and i ≤ λ`

−In×n

λ−1∏
j=0

R̃
(k)
k+j`,b

 if inp(i) = k and i > λ`

• Sample matrices {Si,b ← Dn×nZ,σ }i∈[h],b∈{0,1} and compute

J := (~11×(w+2n`) ⊗ In×n) ∈ Zn×t

4As noted in the remark of introduction, it is assumed implicitly that v = ~11×w for the targeted BP, while the
definition of Type I BP uses v ∈ {0, 1}1×w.
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Ŝi,b :=

(
Pi,b ⊗ Si,b

Ri,b ⊗ Si,b

)
∈ Zt×t

L := (~1(w+2n`)×1 ⊗ In×n) ∈ Zt×n

• Sample (Ai, τi)← TrapSam(1t, 1m, q) for 0 ≤ i ≤ h−1, Ah ← U(Zn×nq ), {Ei,b ← Dt×mZ,σ }i∈[h−1],b∈{0,1}

and {Eh,b ← Dt×nZ,σ }b∈{0,1}.

• Run Sample algorithms to obtain

Di,b ∈ Zm×m ← Sample(Ai−1, τi−1, Ŝi,b ·Ai + Ei,b, σ) for 1 ≤ i ≤ h− 1,

Dh,b ∈ Zm×n ← Sample(Ah−1, τh−1, Ŝh,b · L ·Ah + Eh,b, σ).

• Define AJ as a matrix J ·A0 ∈ Zn×m and outputs matrices{
inp,AJ, {Di,b}i∈[h],b∈{0,1}

}
.

Evaluation. Evaluation process consists of two steps. The first step is to compute a matrix AJ ·
Dω̄(x) mod q. The last step is size comparison: If ‖AJ ·Dω̄(x) mod q‖∞ ≤ B, output 0 for some
fixed B. Otherwise, output 1.

Parameters. Let λ and λLWE for the security parameters of obfuscation itself and underlying
LWE problem satisfying λLWE = poly(λ) and the following constraints. Set n = Ω(λLWE log q)
and χ = DZ,2

√
λLWE

. Moreover, for the trapdoor functionality, m = Ω(t log q) and σ = Ω(
√
t log q)

for t = (w + 2n`) · n. B ≥ (w + 2n`) · h · (m · σ2
√
n(w + 2n`)σ)h and q = B · ω(poly(λ)) for

correctness, and q ≤ (σ/λLWE) · 2λ
1−ε
LWE for a fixed ε ∈ (0, 1) for security. For more details, we refer

readers to the original paper [10].

Remark. The original paper [10] only uses one security parameter λ, but the correctness does not
hold in that setting. Instead, the trick that uses two security parameters λ and λLWE resolves this
problem as in [4].

Zerotest Functionality. From the construction of the obfuscation, the following equality always
holds, which is essentially what we need.

[AJ ·Dω̄(x)]q =

J ·

(
h∏
i=1

Ŝi,xi

)
·Ah + J ·

h∑
j=1

(j−1∏
i=1

Ŝi,xi

)
·Ej,xj ·

h∏
k=j+1

Dk,xk


q

The honest evaluation with Px = ~0w×w gives Ŝx = ~0t×t due to the construction of Ri,b is zero
for the valid evaluation. Then, the following inequality holds:

‖[AJ ·Dω̄(x)]q‖∞ =

∥∥∥∥∥∥
J ·

h∑
j=1

(j−1∏
i=1

Ŝi,xi

)
·Ej,xj ·

h∏
k=j+1

Dk,xk


q

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥J ·
h∑
j=1

(j−1∏
i=1

Ŝi,xi

)
·Ej,xj ·

h∏
k=j+1

Dk,xk

∥∥∥∥∥∥
∞

≤ h ·
(

max
i,b
‖Ŝi,b‖ · σ ·m

)h
≤ B

for all but negligible probability due to the choice of B. If Px is not the zero matrix, then Ŝx is
also not the zero matrix with overwhelming probability. It implies that ‖[AJ ·Dω̄(x)]q‖∞ is larger
than B with overwhelming probability because of Ah ← U(Zn×nq ).
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4.2 Cryptanalysis of CVW Obfuscation

We apply the statistical zeroizing attack to the CVW obfuscation. As stated in Section 3, it is
enough to show that the conditions of Proposition 3.1 hold. We only consider small variance σ2 so
that σ = poly(λ), and sufficiently large `.5 This includes the optimal parameter choice as well.

Our targeted two functionally equivalent BPs M = {Mi,b}i∈[h],b∈{0,1} and N = {Ni,b}i∈[h],b∈{0,1}
are of the form

Mi,b = ~0w×w for all i, b and Ni,b =

{
~1w×w if i = 1
~0w×w otherwise

.

Suppose that we have an obfuscated program O(P) for P = M or P = N. Our goal is to determine
whether the program O(P) is an obfuscation of M or N.

By the standard hybrid argument, it suffices to distinguish the distributions DM or DN where
DM and DN is the distributions of the (1,1) entry of evaluation at a fixed vector x of the obfuscated
program of M or N, respectively. To exploit Proposition 3.1, we transform the CVW construction
into the language of random variables. We denote the random matrix by the capital italic words
whose entry follows a distribution that corresponds to the distribution of entry of the bold matrix.
For example, the entry of random matrix Ei,b follows the distribution DZ,σ since the matrix Ei,b

is chosen from Dt×mZ,σ in the CVW construction. More precisely, we define random matrices R̃
(k)
i,b

following Dn×nZ,σ , Si,b following Dn×nZ,σ and Ai as in the trapdoor sampling algorithm. Then we obtain

random matrices Ŝ
(P)
i,b , R

(P)
i,b , E

(P)
i,b and D

(P)
i,b as in the construction of CVW obfuscation for the

branching programs P = M or N. We note that only Ŝ
(P)
i,b and D

(P)
i,b depend on the choice of

branching program, but we put P in some other random variables for convenience of distinction.
Under this setting, it suffices to show the following proposition.

Proposition 4.1. For a security parameter λ, fix the Gaussian variance parameter σ = poly(λ).
Then, there are two functionally equivalent branching programs M and N with sufficiently large
input length ` satisfying the following statement: let ZM and ZN be random variables satisfying

ZM =

[(
J ·A0 ·D (M)

ω̄(x)

)
(1,1)

]
q

, ZN =

[(
J ·A0 ·D (N)

ω̄(x)

)
(1,1)

]
q

where every random matrix is defined as the above. Let µM and µN, σ2
M and σ2

N be mean and
variance of the random variables of ZM and ZN, respectively. Then, it holds that∣∣∣∣∣max(σ2

~N
, σ2

~M
)

σ2
~N
− σ2

~M

∣∣∣∣∣ ≤ p,
∣∣∣∣∣E[(ZN − µN)4]

σ4
~N

∣∣∣∣∣ ≤ q, and

∣∣∣∣E[(ZM − µM)4]

σ4
M

∣∣∣∣ ≤ q.
for some p, q = poly(λ) under Assumption 1.

We remark that since the random matrices D’s are dependent each other, we need to assume
the statistical property for verifying conditions of Proposition 4.1 as follows.

Assumption 1. For an integer 0 ≤ k ≤ h− 2 and P = M or N, let D̂
(P)
k be a random matrix

such that D̂
(P)
k =

∏h
i=k+2 D

(P)
i , where D

(P)
i is the random matrix which follows a distribution

corresponding preimage-sampled matrix D
(P)
i . Then, the following equations hold

1. the variance is approximated by the same one assumed that D’s are independent Gaussian,
that is, it holds that

V ar[D̂
(P)
k ] = Θ

(
mh−k−2(σ2)h−k−1

)
.

2. the kurtosis is bounded by constant, that is, it holds that

E[(D̂k
(P) − E[D̂k

(P)])4]

V ar[D̂k
(P)]2

= O(poly(λ)).

5Indeed, the attack requires the condition σ4 < m`/n`+1.
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We experimentally verify this assumption using the implementation of GGH15 BP obfuscation
by Halevi et al. [22]. More detailed experimental results are presented in Appendix C. We remark
that if we assume that D ’s are independent matrices that have discrete Gaussian entry with the
variance σ2, the following computations hold:

• the variance of D̂
(P)
k is exactly mh−k−2 · (σ2)h−k−1, and

• the kurtosis of D̂
(P)
k is 3 · (1 + 2/m)h−k = Θ(1).

The honest evaluation of the CVW obfuscation [AJ ·D(P)
ω̄(x)]q is the matrix of the form

J ·
h−1∑
j=0

( j∏
i=1

Ŝi,xi

)
·Ej+1,xj+1

·
h∏

k=j+2

D
(P)
k,xk

 ,

which does not contain the term including the trapdoor matrices Ai for i = 0, · · · , h− 1. Thus, to
establish the statistical properties including variance in Proposition 4.1, it suffices to analyze the

statistical properties of the random matrices Ŝ
(P)
i,b , E

(P)
i,b , D

(P)
i,b and their products.

By the definition of ZP with P = M or P = N, it is rewritten as

ZP = J ·
h−1∑
j=0

( j∏
i=1

Ŝi,xi

)
· Ej+1,xj+1 ·

h∏
k=j+2

D
(P)
k,xk

 .

Now we give the lemmas to prove Proposition 4.1. The proofs of lemmas are placed in Ap-
pendix E and sub-lemmas in Appendix D. The proof of Proposition 4.1 using the lemmas is placed
in the concluding part of this section.

For the convenience of the statement, let (Z
(M)
1,1 )j be random variables of (1, 1)-th entry of the

random matrices

J ·
j∏
i=1

Ŝ
(M)
i · E (M)

j+1 ·
h∏

k=j+2

D
(M)
k

for j = 0, 1, · · · , h− 1. In this notation, ZM is the summation of (Z
(M)
1,1 )j for j ∈ {0, 1, · · · , h− 1}.

Similarly, we define (Z
(N)
1,1 )j for all j = 0, · · · , h− 1. We employ additional notations constants c, d

and (possibly polynomial) c0 such that for all 0 ≤ k ≤ h− 2,

c ≤
V ar[D̂

(P)
k ]

mh−k−2(σ2)h−k−1
≤ d and

E[(D̂k
(P) − E[D̂k

(P)])4]

V ar[D̂k
(P)]2

≤ c0.

We remark that variances of many terms for M and N are exactly the same since the only D1,
Ŝ1 are different and the different terms in products of Ŝ are canceled for j ≥ 2. Note that most of
lemmas hold under Assumption 1, but we omit this repeated statement under Assumption 1 for
brevity.

Lemma 4.2. E[(Z
(M)
1,1 )j ] = E[(Z

(N)
1,1 )j ] = 0 for all j = 0, · · · , h− 1.

Lemma 4.3. E[(Z
(M)
1,1 )µ1

· (Z(M)
1,1 )µ2

] = E[(Z
(N)
1,1 )µ1

· (Z(N)
1,1 )µ2

] = 0 for µ1 6= µ2.

Lemma 4.4 (j = 0). It holds that

V ar[(Z
(M)
1,1 )0] = V ar[(Z

(N)
1,1 )0] = Θ

(
(w + 2n`) ·mh−1 · σ2h

)
and∣∣∣∣∣ E[(Z

(M)
1,1 )4

0]

V ar[(Z
(M)
1,1 )0]2

∣∣∣∣∣ ,
∣∣∣∣∣ E[(Z

(N)
1,1 )4

0]

V ar[(Z
(N)
1,1 )0]2

∣∣∣∣∣ ≤ 3c0 · (w + 2n`)2 ·m2 ·
(
d

c

)2

= poly(λ).

Lemma 4.5 (j = 1). It holds that

V ar[(Z
(M)
1,1 )1] = Θ

((
n3σ2 + (2`− 1) · n2

)
·mh−2(σ2)h

)
,
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V ar[(Z
(N)
1,1 )1] = Θ

(
w3 · n ·mh−2(σ2)h

)
+ V ar[(Z

(M)
1,1 )1]∣∣∣∣∣ E[(Z

(M)
1,1 )4

1]

V ar[(Z
(M)
1,1 )1]2

∣∣∣∣∣ ,
∣∣∣∣∣ E[(Z

(N)
1,1 )4

1]

V ar[(Z
(N)
1,1 )1]2

∣∣∣∣∣ ≤ 27c0 · (w + 2n`)4n2m2 ·
(
d

c

)2

= poly(λ).

Lemma 4.6 (1 < j ≤ λ · `). Let j be a fixed integer with j = ` · j1 + j2 > 1 for 0 ≤ j2 < ` and
2 ≤ j ≤ λ · `. Then, it holds that

V ar[(Z
(M)
1,1 )j ] = V ar[(Z

(N)
1,1 )j ]

= Θ
((
j2n

j+j1+2(σ2)j1+1 + (`− j2)nj+j1+1(σ2)j1 + `nj+1
)
mh−j−1(σ2)h

)
.

Moreover, it holds that∣∣∣∣∣ E[(Z
(M)
1,1 )4

j ]

V ar[(Z
(M)
1,1 )j ]2

∣∣∣∣∣ ,
∣∣∣∣∣ E[(Z

(N)
1,1 )4

j ]

V ar[(Z
(N)
1,1 )j ]2

∣∣∣∣∣ ≤ 27c0(w + 2n`)4n2m2

(
1 +

2

n

)j1+j−1(
d

c

)2

= poly(λ).

Lemma 4.7 (j > λ ·`)). Let j be a fixed integer with j = ` · j1 + j2 > 1 for 0 ≤ j2 < ` and j > λ ·`.
Then, it holds that

V ar[(Z
(M)
1,1 )j ] = V ar[(Z

(N)
1,1 )j ]

= Θ
((

(`+ j2) · nλ+j+1 · (σ2)λ + (`− j2) · nj+1
)
·mh−j−1 · (σ2)h

)
.

In addition, it holds that∣∣∣∣∣ E[(Z
(M)
1,1 )4

j ]

V ar[(Z
(M)
1,1 )j ]2

∣∣∣∣∣ ,
∣∣∣∣∣ E[(Z

(N)
1,1 )4

j ]

V ar[(Z
(N)
1,1 )j ]2

∣∣∣∣∣ ≤ 27c0(w + 2n`)4n2m2

(
1 +

2

n

)λ+j−2(
d

c

)2

= poly(λ).

Now we give a proof of the proposition 4.1 using above lemmas.

of Proposition 4.1. Fix ` be a sufficiently large so that σ4 < m`/n`+1 and choose BP M and
N as the given in the first page of this section. These two branching programs have the same
functionality and length.

Using the results of lemmas, we can prove the proposition by analyzing the summation of
random matrices. We first verify the results for ZM. The similar result holds for ZN since the
bounds of lemmas are almost same.

From Lemma 4.2, 4.3 and the definition of ZM, we have

V ar[ZM] = E

(

h−1∑
j=0

(Z
(M)
1,1 )j)

2

 = E

h−1∑
j=0

(Z
(M)
1,1 )2

j

 =

h−1∑
j=0

V ar[(Z
(M)
1,1 )j ].

On the other hands, applying to the Cauchy-Schwarz inequality, it also holds

E[Z4
M] = E

(

h−1∑
j=0

(Z
(M)
1,1 )j)

4

 ≤ E
h3 · (

h−1∑
j=0

(Z
(M)
1,1 )4

j )

 .
When dividing both sides by V ar[ZM]2, we obtain the inequality∣∣∣∣ E[Z4

M]

V ar[ZM]2

∣∣∣∣ ≤
∣∣∣∣∣E[h3 · (

∑h−1
j=0 (Z

(M)
1,1 )4

j )]

V ar[ZM]2

∣∣∣∣∣ = h3 ·

∣∣∣∣∣E[
∑h−1
j=0 (Z

(M)
1,1 )4

j ]

V ar[ZM]2

∣∣∣∣∣
= h3 ·

h−1∑
j=0

∣∣∣∣∣E[(Z
(M)
1,1 )4

j ]

V ar[ZM]2

∣∣∣∣∣ ≤ h3 ·
h−1∑
j=0

∣∣∣∣∣ E[(Z
(M)
1,1 )4

j ]

V ar[(Z
(M)
1,1 )j ]2

∣∣∣∣∣ .
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By Lemma 4.4,4.5,4.6 and 4.7,

∣∣∣∣∣ E[(Z
(M)
1,1 )4

j ]

V ar[(Z
(M)
1,1 )j ]2

∣∣∣∣∣ is bounded by poly(λ) for all j = 0, 1, · · · , h−1.

Therefore, the following inequality holds.∣∣∣∣ E[Z4
M]

V ar[ZM]2

∣∣∣∣ ≤ poly(λ) =: q(λ)

The same holds for N as well.
Moreover, V ar[ZN]−V ar[ZM] = Θ

(
w3 · n ·mh−2(σ2)h

)
holds by Lemma 4.5. Then the values∣∣∣V ar[(Z (M)

1,1 )j ]/(V ar[ZN]− V ar[ZM])
∣∣∣ is bounded by poly(λ) for every j since σ4 < m`/n`+1. This

implies the first condition also holds.

Remark. In the original paper [10], the authors give two different choice of the distributions
of Ei,b; DZ,σ with corresponding dimension in Section 11, and χ = DZ,2

√
λLWE

with appropriate
dimension in Section 5. This paper focus on DZ,σ but the result still holds for χ = DZ,2

√
λLWE

with
slight modification.

5 Cryptanalysis of BGMZ Obfuscation

In this section, we briefly review the BGMZ obfuscation and apply the statistical zeroizing attack
on BGMZ obfuscation for exponentially large variance σ. Note that the security proof of BGMZ
obfuscation under GGH15 zeroizing model (and underlying BPUA assumption) is independent of
the parameter σ, so our attack implies that the algebraic security proof is not enough to achieve
the ideal security of iO.

5.1 Construction of BGMZ Obfuscation

Bartusek et al. proposed a new candidate of iO which is provably secure in the GGH15 zeroizing
model. We briefly review the construction of this scheme. For more detail, we refer to the original
paper [4].

We start with the conditions of BP they used. The authors use a dual-input binary BP’s.
i.e., inp(i) = (inp1(i), inp2(i)). For simplicity, they use the notation ~x(i) = (xinp1(i), xinp2(i)). More-
over, they employ the new parameter η = poly(`, λ) with η ≥ `4 which decides the minimum
number of the BP layer for the security parameter λ and input length `.

The targeted BP P also satisfies the following conditions.

1. All the matrices {Pi,~b}i∈[h],~b∈{0,1}2 are w × w matrices.

2.
∏h
i=1 Pi,~x(i) = ~0w×w.

3. Each pair of input bits (j, k) is read in at least 4`2 different layers of branching program.

4. There exist layers i1 < i2 < · · · < iη such that inp1(i1), · · · , inp1(iη) cycles η/` times through
[`].

To obfuscate a branching program that does not satisfy the condition 3 or 4, one pads the identity
matrices to satisfy the conditions while preserving the functionality.

Remark. The original construction consider the straddling set and asymmetric level structures to
prohibit invalid evaluations. The description below omitted them because our attack only exploits
the valid evaluations whose results are the same regardless of them.

Construction. BGMZ obfuscation is a probabilistic polynomial time algorithm which takes as
input a BP P with a length h, and outputs an obfuscated program with the same functionality.
We use several parameter such as n,m, q, t := (w+1)·n, σ, ν, g in the construction. We will describe
the setting for new parameters such as g, ν later.

The obfuscation procedure consists of the following steps.

14



• Sample (Ai, τi)← TrapSam(1t, 1m, q) for 0 ≤ i ≤ h−1, Ah ← U(Zt×mq ), {Ei,~b ← χt×m}i∈[h−1],~b∈{0,1}2

and Eh ← χt×m where t := (w + 1) · n.

• Sample matrices Bi,~b ∈ Zg×gν and invertible matrices Ri ∈ Z(m+g)×(m+g)
q randomly.

• Sample matrices {Si,~b ← D
n×n
Z,σ }i∈[h−1],~b∈{0,1}2 and a final encoding Dh as

Dh ∈ Zm×m ← Sample(Ah−1, τh−1,

(
Iwn×wn

~0n×n

)
·Ah + Eh, σ),

and compute bookend vectors v and w as

v = [v′ · J ·A0 | bv] ·R1,

Ŝi,~b :=

(
Pi,~b ⊗ Si,~b

Si,~b

)
∈ Zt×t

wT = R−1
h ·

(
Dh ·w′T

bTw

)

where v′ ← DnZ,σ, w′ ← DmZ,σ, bv,bw ← U(Zkν) and J := [J′|In×n] with a randomly chosen

matrix J′ ← {0, 1}n×wn.

• Compute matrices

Di, ∈ Zm×m ← Sample(Ai−1, τi−1, Ŝi,~b ·Ai + Ei,~b, σ) with 1 ≤ i ≤ h− 1,

and Ci,~b = R−1
i ·

(
Di,~b

Bi,~b

)
·Ri+1 with i = 1, · · · , h− 1.

Evaluation. Outputs 0 if |v ·
∏h−1
i=1 Ci,~x(i) ·wT | ≤ B. Otherwise, outputs 1.

Parameters. We first consider several security parameters. Let λ and λLWE = poly(λ) be secu-
rity parameters depending on the obfuscation itself and the hardness of LWE satisfying following
constraints, respectively. Set n = Ω(λLWE log q), χ = DZ,s with s = Ω(

√
n). Moreover, for the

trapdoor functionality, we set m = Ω(t log q) and σ = Ω(
√
t log q). In addition, they use parame-

ters g = 5 and ν = 2λ. For correctness we set zerotest bound B = (m ·β ·σ ·
√
t)h+1 +(k ·ν)h+1 and

B · ω(poly(λ)) ≤ q ≤ (σ/λLWE) · 2λ
1−ε
LWE for some fixed ε ∈ (0, 1). For more detail we refer readers

to the original paper [4].

Zerotest Functionality. From the construction of obfuscation, the following equality always holds
if C :=

∏h−1
i=1 Ci,~x(i) is an encoding of zero computed by honest evaluation.

‖[v ·C ·wT ]q‖∞

=

∥∥∥∥∥∥
v′ · J ·

h∑
j=1

((

j−1∏
i=1

Ŝi,~x(i)) ·Ej,~x(j) ·
h∏

k=j+1

Dk,~x(k) ·w′T + bv ·
h−1∏
i=1

Bi,~x(i) · bTw


q

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥v′ · J ·
h∑
j=1

((

j−1∏
i=1

Ŝi,~x(i)) ·Ej,~x(j) ·
h∏

k=j+1

Dk,~x(k) ·w′T + bv ·
h−1∏
i=1

Bi,~x(i) · bTw

∥∥∥∥∥∥
∞

≤ σ2 ·m2 · (m · β · σ ·
√
t)h−1 + (k · ν)h+1

Since ‖[v · C · wT ]q‖∞ is bounded by σ2 · m2 · (m · β · σ ·
√
t)h−1 + (k · ν)h+1 ≤ B for all

but negligible probability. Moreover, if
∏h
i=1 Pi,~x(i) is a nonzero matrix, then

∏h
i=1 Ŝi,~x(i) is also

nonzero matrix. Thus, ‖[v ·C ·wT ]q‖∞ is larger than B with overwhelming probability because of
Ah ← U(Zt×mq ).
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5.2 Cryptanalysis of BGMZ Obfuscation

In this section, we analyze the conditions for the statistical zeroizing attack on the BGMZ obfusca-
tion when we assume σ ≥ ν = 2λ. (More precisely, the same result holds when σ2 ≥ ν2g/12m.). As
in Section 4.2, the notation written in the capital italic words are regarded as the random matrix
whose entry follows a distribution that corresponds to the distribution of entry of the bold-written
matrix.

The targeted BPs are M = {Mi,~b}i∈[h],~b∈{0,1}2 and N = {Ni,~b}i∈[h],~b∈{0,1}2 such that

Mi,~b = ~0w×w for all i, b and Ni,~b =

{
Iw×w if i = 1
~0w×w otherwise

.

Note that two branching programs always output zero. Now we suppose that we have polyno-
mially many samples from the one of two distributions DM and DN, where DM and DN are the
distributions of the evaluations of obfuscations of M and N.

Then our purpose is to distinguish whether the samples come from DM or DN by Proposi-

tion 3.1. We obtain random matrices S
(P)
i,b , E

(P)

i,~b
, D

(P)

i,~b
and C

(P)

i,~b
as in the construction of BGMZ

obfuscation for branching programs P = M or N. Thus, it suffices to prove the following proposi-
tion.

Proposition 5.1. Let λ be a security parameter and σ the Gaussian variance parameter satisfying
σ2 ≥ ν2g/12m for parameters m, ν and g of BGMZ obfuscation. Then, there are two functionally
equivalent branching programs M and N satisfying the following statement: let ZM and ZN be
random variables satisfying

ZM =

[
v ·

h−1∏
i=1

C
(M)
i,~x(i) · w

T

]
q

and ZN =

[
v ·

h−1∏
i=1

C
(N)
i,~x(i) · w

T

]
q

.

where every random matrix is defined as the above. Let µM and µN, σ2
M and σ2

N be mean and
variance of the random variables of ZM and ZN, respectively. Then, it holds that∣∣∣∣∣max(σ2

~N
, σ2

~M
)

σ2
~N
− σ2

~M

∣∣∣∣∣ ≤ p,
∣∣∣∣E[(ZN − µN)4]

σ4
N

∣∣∣∣ ≤ q, and

∣∣∣∣E[(ZM − µM)4]

σ4
M

∣∣∣∣ ≤ q.
for some p, q = poly(λ) under Assumption 1.

Note that Assumption 1 (for BGMZ obfuscation) is also needed to verify the proposition. With

the honest evaluation
[
v ·
∏h−1
i=1 Ci,~x(i) ·wT

]
q

of the BGMZ obfuscation, we obtain the integer of

the form

v′ · J
h∑
j=1

((

j−1∏
i=1

Ŝi,~x(i))Ej,~x(j)

h∏
k=j+1

Dk,~x(k) ·w′T + bv ·
h−1∏
i=1

Bi,~x(i) · bTw

which does not contain the term including trapdoor matrices Ai’s. Thus, similarly to the CVW ob-

fuscation case, we need to analyze the statistical properties of the random vectors v ′(P),w ′(P), b
(P)
v ,

b
(P)
w and random matrices Ŝ

(P)

i,~b
, E

(P)

i,~b
, D

(P)

i,~b
and their products to prove the statistical properties

including the variance in Proposition 5.1.
The proof of Proposition 5.1 is based on the following lemmas and placed in the concluding

part of this section. All proofs of these lemmas are in Appendix F. Note that most lemmas in this
section also hold under Assumption 1 as the section 4.2, so we omit repeated under Assumption 1
in statements. Notations c0, c, and d are similarly defined as Section 4.

For j = 0, 1, · · · , h− 1, let (Z (M))j be a random variable of the form

v ′(M) · J (M) ·
j∏
i=1

Ŝ
(M)
i,~x(i) · E

(M)
j+1,~x(j+1) ·

h∏
k=j+2

D
(M)
k,~x(k) · w

′(M)T ,
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and for j = h, (Z (M))h a random variable of the form

b(M)
v ·

h−1∏
i=1

B
(M)
i,~x(i) · b

(M)T

w .

We similarly define (Z (N))j for j = 0, 1, · · · , h, and ZP =
∑h
i=0(Z (P))j for P = M and N.

Lemma 5.2. E[(Z (M))j ] = E[(Z (N))j ] = 0 for all j = 0, 1, · · · , h.

Lemma 5.3. E[(Z (M))µ1
· (Z (M))µ2

] = E[(Z (N))µ1
· (Z (N))µ2

] = 0 for µ1 6= µ2.

Lemma 5.4 (j = 0). It holds that

V ar[(Z (M))0] = V ar[(Z (N))0] = Θ
(
wn ·mh · (σ2)h+1 · s2

)
,∣∣∣∣ E[(Z (M))4

0]

V ar[(Z (M))0]2

∣∣∣∣ , ∣∣∣∣ E[(Z (N))4
0]

V ar[(Z (N))0]2

∣∣∣∣ ≤ 108c0(w + 1)2 · n2m4 ·
(
d

c

)2

= poly(λ).

Lemma 5.5 (j = 1). It holds that

V ar[(Z (M))1] = Θ
(
n2mh−1 · (σ2)h+1 · s2

)
,

V ar[(Z (N))1] = Θ
(
wn3mh−1 · (σ2)h+1 · s2

)
+ V ar[(Z (M))1]

Moreover, it holds that∣∣∣∣ E[(Z (M))4
1]

V ar[(Z (M))1]2

∣∣∣∣ ≤ 81c0 · n4m4 ·
(
d

c

)2

= poly(λ),∣∣∣∣ E[(Z (N))4
1]

V ar[(Z (N))1]2

∣∣∣∣ ≤ 324c0(w + 1)2 · n6m4 ·
(
d

c

)2

= poly(λ).

Lemma 5.6 (2 ≤ j ≤ h− 1). It holds that

V ar[(Z (M))j ] = V ar[(Z (N))j ] = Θ
(
nj+1mh−j · (σ2)h+1 · s2

)
.

Moreover, it holds that∣∣∣∣∣ E[(Z (M))4
j ]

V ar[(Z (M))j ]2

∣∣∣∣∣ ,
∣∣∣∣∣ E[(Z (N))4

j ]

V ar[(Z (N))j ]2

∣∣∣∣∣ ≤ 81c0 · n4m4

(
1 +

2

n

)j−1(
d

c

)2

= poly(λ).

Lemma 5.7 (j = h). It holds that

V ar[(Z (M))h] = V ar[(Z (N))h] = gh ·
{

1

12
· ν(ν + 2)

}h+1

.

Moreover, it holds that

E[(Z (M))4
h], E[(Z (N))4

h] ≤ 27 · (g2)4 · {g(g + 2)}h−2 ·
{

1

12
· ν(ν + 2)

}2(h+1)

.

Now we give a proof of the proposition 5.1 using the above lemmas.

of Proposition 5.1. Choose BPs M and N as given in the first page of this section. They have the
same functionality and length.

Note that elements (Z (M))j in the above Lemmas are of the form

(Z (M))j = v ′(M) · J (M) ·
j∏
i=1

Ŝ
(M)
i,~x(i) · E

(M)
j+1,~x(j+1) ·

h∏
k=j+2

D
(M)
k,~x(k) · w

′(M)T for j < h
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(Z (M))h = b(M)
v ·

h−1∏
i=1

B
(M)
i,~x(i) · b

(M)T

w

Let ZM be the summation of (Z (M))j for j ∈ {0, 1, · · · , h}. From Lemma 5.3, we have

V ar[ZM] = E

[
(

h∑
i=0

(Z (M))i)
2

]
= E

[
h∑
i=0

(Z (M))2
i

]
=

h∑
i=0

V ar[(Z (M))i],

E[Z 4
M] = E

[
(

h∑
i=0

(Z (M))i)
4

]
≤ E

[
(h+ 1)3 · (

h∑
i=0

(Z (M))4
i )

]
.

After dividing both sides by V ar[ZM]2, we obtain the following inequality∣∣∣∣ E[Z 4
M]

V ar[ZM]2

∣∣∣∣ ≤
∣∣∣∣∣E[(h+ 1)3 · (

∑h
i=0(Z (M))4

i )]

V ar[ZM]2

∣∣∣∣∣ = (h+ 1)3 ·

∣∣∣∣∣E[
∑h
i=0(Z (M))4

i ]

V ar[ZM]2

∣∣∣∣∣
= (h+ 1)3 ·

h∑
i=0

∣∣∣∣E[(Z (M))4
i ]

V ar[ZM]2

∣∣∣∣
≤ (h+ 1)3 ·

(
h−1∑
i=0

∣∣∣∣ E[(Z (M))4
i ]

V ar[(Z (M))i]2

∣∣∣∣+

∣∣∣∣E[(Z (M))4
h]

V ar[ZM]2

∣∣∣∣
)

By Lemma 5.4,5.5, 5.6 and 5.7,

∣∣∣∣ E[(Z (M))4
i ]

V ar[(Z (M))i]2

∣∣∣∣ is bounded by poly(λ) for all i = 0, 1, · · · , h − 1

regardless of P = M or P = N. Since σ2 ≥ ν2g/12m, we obtain the following upper bound.∣∣∣∣E[(Z (M))4
h]

V ar[ZM]2

∣∣∣∣ ≤ ∣∣∣∣ E[(Z (M))4
h]

V ar[(Z (M))0]2

∣∣∣∣
= O

(
(g2)4 ·

(
g(g + 2)

m2

)h−2

·
(
ν(ν + 2)

12σ2

)h+1
)

= poly(λ)

Thus the kurtosis is bounded by polynomial of security parameter λ.
Moreover, by the definition of ZN and ZM and lemmas, we obtain the equality |σ2

N − σ2
M| =

Θ
(
wn3mh−1 · (σ2)h+1 · s2

)
. Using lemmas,

∣∣∣∣max(σ2
N, σ

2
M)

σ2
N − σ2

M

∣∣∣∣ is bounded by poly(λ).
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[14] Jean-Sébastien Coron, Moon Sung Lee, Tancrede Lepoint, and Mehdi Tibouchi. Zeroizing
attacks on indistinguishability obfuscation over clt13. In IACR International Workshop on
Public Key Cryptography, pages 41–58. Springer, 2017.
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A Simple GGH15 obfuscation

We briefly describe the construction of single input BP obfuscation based GGH15 without safe-
guard.

For an index to input function inp : [h]→ [`], let

P =
{
inp, {Pi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1},P0 = ~0w×w,P1 = Zw×w \ P0

}
be a single input BP.

For parameters w,m, q,B ∈ N and σ ∈ R+, the BP obfuscation based GGH15 consists of the
matrices and input function, namely

O(P) =
{
inp,A0, {Di,b ∈ Zm×m}i∈[h],b∈{0,1}

}
.

In this case, the matrix T in the abstract model is the identity matrix and S = A0. The output
of the obfuscation at x is computed as follows: compute the matrix A0 ·

∏h
i=1 Di,xinp(i)

mod q and
compare its ‖ · ‖∞ to a zerotest bound B. If it is less than B, outputs zero. Otherwise, outputs 1.

The algorithm to construct an obfuscated program O(P) proceeds as follows:

• Sample matrices (Ai, τi)← TrapSam(1w, 1m, q) for i = 0, 1, · · · , h− 1, Ah ← U(Zw×mq ) and
Ei,b ← χw×m where χ is a distribution related to the hardness of LWE problem.

• By using the trapdoor τi, sample matrices

Di,b ∈ Zm×m ← Sample(Ai−1, τi−1,Pi,b ·Ai + Ei,b, σ) with 1 ≤ i ≤ h.

• Output matrices {A0, {Di,b ∈ Zm×m}i∈[h],b∈{0,1}}.

Then, we observe the product O(P)(x) = [A0 ·
∏h
i=1 Di,xinp(i)

]q is equal to

h∏
i=1

Pi,xinp(i)
·Ah +

h∑
j=1

(j−1∏
i=1

Pi,xinp(i)

)
·Ej,xinp(j)

·
h∏

k=j+1

Di,xinp(k)


over Zq. If

∏h
i=1 Pi,xinp(i)

= ~0w×w, then O(P)(x) can be regarded as a summation of matrices over
integers instead of Zq under the certain choice of parameters as follows

O(P)(x) =

[
A0 ·

h∏
i=1

Di,xinp(i)

]
q

=

h∑
j=1

(j−1∏
i=1

Pi,xinp(i)

)
·Ej,xinp(j)

·
h∏

k=j+1

Di,xinp(k)


since the infinity norm of the above matrix is less than B � q. Note that the evaluation values
only rely on the matrices Pi,b, Ei,b and Di,b. Thus, the evaluation result depends on the message
matrices Pi,b.

Suppose that we have two functionally equivalent BPs M = {Mi,b}i∈[h],b∈{0,1} and N =
{Ni,b}i∈[h],b∈{0,1} satisfies

Mi,b = ~0w×w for all i, b and Ni,b =

{
Iw×w if i = 1
~0w×w otherwise

,

and an obfuscated program O(P). The goal of adversary is to determine whether P is M or not.
For all x ∈ {0, 1}`, the evaluation of the obfuscation is of the form

O(M)(x) = E1,xinp(1)
·
h∏
k=2

Dk,xinp(k)
and

O(N)(x) = E1,xinp(1)
·
h∏
k=2

Dk,xinp(k)
+ I ·E2,xinp(2)

·
h∏
k=3

Dk,xinp(k)
.

Note that they correspond to the distributions DM and DN for a fixed vector x. These equations
show the difference of two distributions in this case.
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B Modified CVW Obfuscation

We give a modification of CVW obfuscation, which can obfuscate the permutation matrix branching
programs. This modification is, as far as we know, robust against all existing attacks. We first
describe the transformation of branching programs. Then, we describe the modification of CVW
obfuscation.

B.1 Transformation of Branching Programs

We first introduce the transformation from single-input permutation matrix branching programs
to Type I BP. This transformation is applicable to BPs which outputs 0 when the product of BP
matrices is the identity matrix. The output of transformation is a new branching program that
outputs 0 when the product of BP matrices is the zero matrix. Through this transformation, the
width of branching program is doubled. Note that this is adapted version of [10, Claim 6.2].

We are given a branching program with input size `

P =
{
{Pi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1}, inp : [h]→ [`]

}
where the evaluation of P at x ∈ {0, 1}` is computed by

P(x) =

{
0 if

∏h
i=1 Pi,(xinp(i)) = Iw

1 otherwise

Then the transformation is done by changing branching program matrices as

P′ =


{

P′i,b =

(
Pi,b 0

0 Iw

)
∈ {0, 1}2w×2w

}
i∈[h],b∈{0,1}

, inp : [h]→ [`]


and the evaluation is similar but uses new vectors v′ = (v| − v) and w′ = (w|w) for v,w ∈ Zw:

P′(x) =

{
0 if v′ ·

∏h
i=1 P′i,(xinp(i))

·w′T = 0

1 otherwise

We will choose v and w as random Gaussian vectors. Note that the resulting branching program
is also a permutation BP.

B.2 Modification of CVW Obfuscation

We give here how to modify the CVW obfuscation to be applicable to the resulting permutation
BPs of the above transform. We also assume that the index length h = (λ+ 1) · ` and the index-to-
input function satisfies inp(i) = (i mod `) as in the CVW obfuscation. We also assume that the
BP is (λ + 1)-input repetition BP as in the original construction. The changed parts are written
in red. Note that the targeted BPs have width 2w. Thus we set t := (2w + 2n`) · n.

• Sample bundling matrices {Ri,b ∈ Z2n`×2n`}i∈[h],b∈{0,1} such that (~11×2` ⊗ In×n) · Rx′ ·
(~12`×1 ⊗ In×n) = ~0 ⇐⇒ x′ ∈ ω̄({0, 1}`) for all x′ ∈ {0, 1}h. More precisely, Ri,b is a block

diagonal matrix diag(R
(1)
i,b ,R

(2)
i,b , · · · ,R

(`)
i,b ). Each R

(k)
i,b ∈ Z2n×2n is one of the following three

cases.

R
(k)
i,b =



I2n×2n if inp(i) 6= k(
R̃

(k)
i,b

In×n

)
, R̃

(k)
i,b ← D

n×n
Z,σ if inp(i) = k and i ≤ λ`

−In×n

λ−1∏
j=0

R̃
(k)
k+j`,b

 if inp(i) = k and i > λ`
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Parameters Experiments Expected

#products m log2 σ
2
x log2 S

2 E[X4]/σ4 log2 σ
2

2 2191 34.9 80.8 2.937 80.8

2 2771 35.2 81.4 2.702 81.7

2 3352 35.4 82.4 2.677 82.5

3 2771 35.2 128.7 3.025 128.4

4 3352 35.4 177.0 2.900 176.8

5 3932 35.6 225.9 3.068 225.9

7 5621 36.1 328.1 3.210 327.5

Table 1: Experiment results on statistical value of preimage sampling. #products stands for the
number of producted preimage matrices, σ2

x the variance of preimage sampling, S2 the sample
variance, E[X4]/σ4 the sample kurtosis and σ2 the expected variance. Every experiment is done
using 100 samples. The expected variance is computed under the assumption on independency of
D’s. Every expected kurtosis assuming independency of D’s is about 3.

• Sample matrices {Si,b ← Dn×nZ,σ }i∈[h],b∈{0,1}, bookend vectors v ← DwZ,σ and w ← DwZ,σ and
compute

J := ((v| − v|~11×2n`)⊗ In×n) ∈ Zn×t

Ŝi,b :=

(
Pi,b ⊗ Si,b

Ri,b ⊗ Si,b

)
∈ Zt×t

L := ((w|w|~11×2n`)T ⊗ In×n) ∈ Zt×n

• Sample (Ai, τi)← TrapSam(1t, 1m, q) for 0 ≤ i ≤ h−1, Ah ← U(Zn×nq ), {Ei,b ← Dt×mZ,σ }i∈[h−1],b∈{0,1}

and {Eh,b ← Dt×nZ,σ }b∈{0,1}.

• Run Sample algorithms to obtain

Di,b ∈ Zm×m ← Sample(Ai−1, τi−1, Ŝi,b ·Ai + Ei,b, σ) for 1 ≤ i ≤ h− 1,

Dh,b ∈ Zm×n ← Sample(Ah−1, τh−1, Ŝh,b · L ·Ah + Eh,b, σ).

• Define AJ as a matrix J ·A0 ∈ Zn×m and outputs matrices{
inp,AJ, {Di,b}i∈[h],b∈{0,1}

}
.

We omit the procedure and correctness of evaluation that are almost the same as the original one.

C Assumptions of lattice preimage sampling

In this section we provide the experimental results of Assumption 1. Our experiments are built
upon the preimage sampling algorithm in the [23], an implementation of BP obfuscation [22].6 The
results imply that the variance and kurtosis move almost the same as one assumed independency,
the correctness of attack only requires much relaxed assumption.

D Useful Tools for Computing the Variances

We introduce useful lemmas to help our computation. We note that we consider the random matrix
A whose entries are independent.

6We also verify the correctness of the attack itself for [22], but with large entry BPs. It requires very large
number of samples (say 220 but polynomially many) to verify the attack with binary entry BPs, which is not easy to
experiment because the obfuscation/evaluation of [22] takes long time (say few minutes to obtain one evaluation).

23



Lemma D.1. Let A = (Ai,j) be a n × n random matrix where Ai,t and Aj,t are independent for
every 1 ≤ i < j ≤ n and 1 ≤ t ≤ n. and X = [X1, X2, · · · , Xn] a n-dimensional random vector
which is independent to A. Assume that the following conditions for all distinct i, j, k, l ∈ [n]:

E[Xi] = 0, E[Xi ·Xj ] = 0, E[X3
i ·Xj ] = 0,

E[X2
i ·Xj ·Xk] = 0, and E[Xi ·Xj ·Xk ·Xl] = 0.

Then, a n-dimensional random vector Y = [Y1, Y2, · · · , Yn] = A · X also satisfies the similar
constraints

E[Yi] = 0, E[Yi · Yj ] = 0, E[Y 3
i · Yj ] = 0,

E[Y 2
i · Yj · Yk] = 0, and E[Yi · Yj · Yk · Yl] = 0.

for all distinct i, j, k, l ∈ [n].

Proof.

E[Yi · Yj ] = E

[
n∑
t=1

n∑
s=1

Ai,t ·Xt ·Aj,s ·Xs

]

=

n∑
t=1

n∑
s=1

E[Ai,t ·Xt ·Aj,s ·Xs]

=
∑

1≤t,s≤n,t6=s

E[Ai,t ·Aj,s] · E[Xt ·Xs] +

n∑
t=1

E[Ai,t] · E[Aj,t] · E[Xt ·Xt]

= 0

Lemma D.2. Let {Ai = (Aj,ki )}1≤i≤t be n× n random matrices where

• Aj,ki follow Gaussian distribution DZ,σ for all 1 ≤ j, k ≤ n and 1 ≤ i ≤ t,

• Aj,si and Ak,si are independent for every 1 ≤ j < k ≤ n, 1 ≤ s ≤ n and 1 ≤ i ≤ t,

• Ai1,j11 , · · · , Ait,jtt are mutually (entrywise) independent for every 1 ≤ ik, jk ≤ n for all k

and X = (Xi,j) =
∏t
k=1 Ak n× n random matrix. For all i, j, k ∈ [n], it holds that

E[Xi,j ] = 0, V ar[Xi,j ] = nt−1 · (σ2)t,

E[X4
i,j ] = 3 (n(n+ 2))

t−1 · (σ2)2t,

E[X2
i,j ·X2

k,j ] = (n(n+ 2))
t−1 · (σ2)2t

Proof. We apply mathematical induction on t. For t = 1, it is clear because of the property of
Gaussian distribution.

We assume that the equations hold when t = s and will show that the same results hold

for t = s + 1. Let X ′ =

s∏
i=1

Ai and Y = As+1 · X ′. Note that all entries of Ai follow Gaussian

distribution DZ,σ satisfy the same condition of the lemma. We denote As+1 = (Ai,j) for brevity

and Yi,j =

n∑
k=1

Ai,k ·Xk,j . Note that the results of Lemma D.1 holds for every column of X, which

can be shown in the inductively applying Lemma D.1.

1. E[Yi,j ] = 0 is clear.
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2. Since E[Yi,j ] = 0, V ar[Yi,j ] is the same to E[Y 2
i,j ]. Note that we can obtain E[Xk,j ·Xl,j ] = 0

and for k 6= l by applying Lemma D.1 inductively, thus E[Ai,k ·Xk,j · Ai,l ·Xl,j ] = E[Ai,k ·
Ai,l] · E[Xk,j ·Xl,j ] = 0 also holds. Now we obtain

V ar[Yi,j ] = E[Y 2
i,j ] = E

[
(

n∑
k=1

Ai,k ·Xk,j)
2

]

= E

[
n∑
k=1

A2
i,k ·X2

k,j

]
=

n∑
k=1

E[A2
i,k] · E[X2

k,j ]

= n · σ2 · ns−1 · (σ2)s = ns · (σ2)s+1

The last equality holds by the inductive hypothesis.

3. Note that E[Y 4
i,j ] = E[(

∑n
k=1Ai,k ·Xk,j)

4]. It holds that, for k 6= l,

E[(Ai,k ·Xk,j)
3 · (Ai,l ·Xl,j)] = E[A3

i,k ·Ai,l] · E[X3
k,j ·Xl,j ] = 0

E[(Ai,k ·Xk,j)
2 · (Ai,l ·Xl,j) · (Ai,m ·Xm,j)] = 0

E[(Ai,k ·Xk,j) · (Ai,l ·Xl,j) · (Ai,m ·Xm,j) · (Ai,u ·Xu,j)] = 0

for all for all distinct k, l,m, u ∈ {1, · · · , n}. By the induction hypothesis, it holds that

E[A4
i,k ·X4

k,j ] = E[A4
i,k] · E[X4

k,j ] = 3σ4 · 3(n(n+ 2))s−1 · (σ2)2s.

Therefore, we conclude that

E[(

n∑
k=1

Ai,k ·Xk,j)
4] = 3(n(n+ 2))s · (σ2)2(s+1).

4. Note that E[Y 2
i,j · Y 2

k,j ] = E[(
∑n
m=1Ai,m ·Xm,j)

2 · (
∑n
u=1Ak,u ·Xu,j)

2]. Then we obtain the
similar result as follows:

E[(

n∑
m=1

Ai,m ·Xm,j)
2 · (

n∑
u=1

Ai,u ·Xu,j)
2] = E

[
(

n∑
m=1

A2
i,m ·X2

m,j) · (
n∑
u=1

A2
k,u ·X2

u,j)

]

=

n∑
u=1

n∑
m=1

E[A2
i,m ·A2

k,u] · E[X2
m,j ·X2

u,j ] = (n(n+ 2))
s · (σ2)2(s+1).

Lemma D.3. Let A = (Ai,j) be a n × m random matrix whose entries satisfy E[Ai,j ] = 0,
E[A2

i,j ] = σ2
1 and E[A4

i,j ] ≤ Cσ4
1 for all i ∈ [n], j ∈ [m] with some constant C, where the entries of

A need not to be independent. Let v = [v1, · · · , vn] and w = [w1, · · · , wm] be n-dimensional random
vectors whose entries are mutually independent and follow the Gaussian distribution DZ,σ2

. If the
entries of A are independent to the entries of v and w, then Y = v ·A · wT satisfies the following
condition:

E[Y ] = 0, E[Y 2] = nm · σ2
1 · σ4

2 , E[Y 4] ≤ (nm)4 · (Cσ4
1) · (3σ4

2)2.

Proof. Note that Y =

m∑
j=1

n∑
i=1

vi ·Ai,j · wj .

1. E[Y ] = E[

m∑
j=1

n∑
i=1

vi ·Ai,j · wj ] =

m∑
j=1

n∑
i=1

E[vi]E[Ai,j ]E[wj ] = 0.
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2. For all i, k ∈ [n], j, l ∈ [m] satisfy (i, j) 6= (k, l), E[(vi · Ai,j · wj) · (vk · Ak,l · wl)] = E[vi ·
vk]E[Ai,j ·Ak,l]E[wj · wl] = 0 since one of E[vi · vk] or E[wj · wl] is zero. Then it holds that

E[Y 2] = E[(

m∑
j=1

n∑
i=1

vi ·Ai,j · wj)2] = E[

m∑
j=1

n∑
i=1

v2
i ·A2

i,j · w2
j ]

=

m∑
j=1

n∑
i=1

E[v2
i ]E[A2

i,j ]E[w2
j ] = nm · σ2

1 · σ4
2 .

3. By the Cauchy-Schwarz Inequality, it holds

E[Y 4] = E[(

m∑
j=1

n∑
i=1

vi ·Ai,j · wj)4] ≤ E[(nm)3 · (
m∑
j=1

n∑
i=1

v4
i ·A4

i,j · w4
j )]

= (nm)3 ·
m∑
j=1

n∑
i=1

E[v4
i ]E[A4

i,j ]E[w4
j ] ≤ (nm)4 · (Cσ4

1) · (3σ4
2)2.

E Analysis of CVW Obfuscation

In this seciton, we describe how to prove the Lemmas in Section 4.2. We use the same notation as
in Section 4. We re-use or abuse the some notations for the different proof for the convenience of
the writing. Fix a x satisfying O(P)(x) = ~0.

Note that the appeared random matrices are of the form

(Z
(P)
1,1 )j = J ·

j∏
i=1

Ŝ
(P)
i,xi
· E (P)

j+1,xj+1
·

h∏
k=j+2

D
(P)
k,xk

,

where all random matrices included in (Z
(P)
1,1 )j for each j are mutually independent except the

matrices D’s. Thus, we are only need to carefully deal with the product of preimage sampled
matrices D ’s to compute sample variances for each j. This issue is resolved assuming the variance
of products of D ’s and bounds of their kurtosises.

More precisely, by the Assumption 1, a product of the random matrices D̂
(P)
j =

∏h
i=j+2 D

(P)
i has

the variance Θ(mh−j−2(σ2)h−j−1) and its kurtosis is bounded by O(poly(λ)). We denote (possibly
polynomial) c0 by the bound of kurtosises in Assumption 1, and c and d the lower and upper bound

of V ar[D̂
(P)
k ] for all k, respectively. In other words, it holds that for all k

c ≤
V ar[D̂

(P)
k ]

mh−k−2(σ2)h−k−1
≤ d and

E[(D̂k
(P) − E[D̂k

(P)])4]

V ar[D̂k
(P)]2

≤ c0.

We also remark that all distributions corresponding to random variables appeared in lemmas

except
(
Z

(P)
1,1

)
1

are the same as regardless of the choice of P = M or N, because the matrices

of branching programs are all zero except the first matrix. Thus we consider the choice of the

branching program only in Lemma 4.5, which discusses the random variable
(
Z

(P)
1,1

)
1
.

of Lemma 4.2 and 4.3. We assume that µ1 < µ2 and it is enough to show the result for M. Note

that the random matrix E
(M)
j is only (possibly) dependent to D

(M)
j and the random variables

(Z
(M)
1,1 )µ1

and (Z
(M)
1,1 )µ2

do not contain such random variables at the same time. In addition,

(Z
(M)
1,1 )µ1 and (Z

(M)
1,1 )µ2 both contain the random matrix E

(M)
µ1+1 whose expectation of each entry

is zero. Thus, we obtain the desired result.

Similarly, when we express (Z
(M)
1,1 )µ1 · (Z

(M)
1,1 )µ2 into the polynomials of random variables, then

every monomial includes one entry of E
(M)
µ1+1 and does not include the entries of D

(M)
µ1+1. Since the

expectation of every entry of E
(M)
µ1+1 is zero, it completes proof.
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of Lemma 4.4. As stated above, it suffice to show the result for M. We define X
(M)
u,v , Y

(M)
u,v and

(Z
(N)
u,v )0 be random variables of the (u, v)-th entry of the random matrix

∏h
k=2 D

(M)
k,xk

, E
(M)
1,x1
·∏h

k=2 D
(M)
k,xk

and J · E (M)
1,x1
·
∏h
k=2 D

(M)
k,xk

, respectively.

Then, for all u ∈ [t], v ∈ [n], all random variables X
(M)
u,v have the variance Θ(mh−2(σ2)h−1) by

Assumption 1. Moreover, it holds that E[X
(M)
u,v ] = 0 and

E[X
(M)
u,v

4
]

V ar[X
(M)
u,v ]2

≤ c0 by Assumption 1.

Let E
(M)
u,v be the random variables of (u, v)-th entry of the random matrix E

(M)
1,x1

. Then we can

compute variance and kurtosis of Y
(M)
u,v .

E[Y (M)
u,v ] = E[

m∑
i=1

E
(M)
u,i ·X

(M)
i,v ] =

m∑
i=1

E[E
(M)
u,i ] · E[X

(M)
i,v ] = 0,

E[Y (M)
u,v · Y

(M)
u′,v ] = E[(

m∑
i=1

E
(M)
u,i ·X

(M)
i,v ) · (

m∑
j=1

E
(M)
u′,j ·X

(M)
j,v )]

=

m∑
i=1

m∑
j=1

E[E
(M)
u,i · E

(M)
u′,j ] · E[X

(M)
i,v ·X

(M)
j,v ] = 0,

V ar[Y (M)
u,v ] = V ar[

m∑
i=1

E
(M)
u,i ·X

(M)
i,v ]

= E[(

m∑
i=1

E
(M)
u,i ·X

(M)
i,v )2]− E[

m∑
i=1

E
(M)
u,i ·X

(M)
i,v ]2

= E[(

m∑
i=1

E
(M)
u,i

2
·X(M)

i,v

2
)] = Θ(mh−1(σ2)h),

E[Y (M)
u,v

4
] = E[(

m∑
i=1

E
(M)
u,i ·X

(M)
i,v )4]

≤ E[m3 · (
m∑
i=1

E
(M)
u,i

4
·X(M)

i,v

4
)]

≤ m4 · 3σ4 · c0 · (mh−2(σ2)h−1 · d)2

We observe (Z
(M)
1,1 )0 =

∑w+2n`
i=1 Y

(M)
n·(i−1)+1,1. Then,

V ar[(Z
(M)
1,1 )0] = E

(w+2n`∑
i=1

Y
(M)
n·(i−1)+1,1

)2


= E

[
w+2n`∑
i=1

Y
(M)2

n·(i−1)+1,1

]
= Θ((w + 2n`) ·mh−1(σ2)h).

In addition, the upper bound of E[(Z
(M)
1,1 )4

0] can be computed as follows:

E[(Z
(M)
1,1 )4

0] = E[(

w+2n`∑
i=1

Y
(M)
n(i−1)+1,1)4]

≤ E[(w + 2n`)3 · (
w+2n`∑
i=1

Y
(M)4

n(i−1)+1,1)]

≤ (w + 2n`)4 ·m2 · 3c0 · d2 ·m2h−2 · (σ2)2h.

Combining them, we obtain the inequality
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∣∣∣∣∣ E[(Z
(M)
1,1 )4

0]

V ar[(Z
(M)
1,1 )0]2

∣∣∣∣∣ ≤ 3c0 ·m2(w + 2n`)2 ·
(
d

c

)2

= poly(λ).

All arguments with respect to N also hold well.

of Lemma 4.5. Only for this lemma, we give the proof of the two cases; P = M and P = N.

Case 1: P= M. We now consider a random matrix J · Ŝ (M)
1,x1
· E (M)

2,x2
·
∏h
k=3 D

(M)
k,xk

. Then, this case
is a special case of Lemma 4.6. Readers refer to the proof of Lemma 4.6. Therefore, we can obtain
that

V ar[(Z
(M)
1,1 )1] = Θ((n3 · σ2 + (2`− 1) · n2) ·mh−2 · (σ2)h)

and
E[(Z

(M)
1,1 )4

1] ≤ m2(w + 2n`)4 · 9n8 · 3c0 ·m2h−4 · (σ2)2(h+1) · d2.

Combining this we obtain the inequality∣∣∣∣∣ E[(Z
(M)
1,1 )4

1]

V ar[(Z
(M)
1,1 )1]2

∣∣∣∣∣ ≤ 27c0 ·m2(w + 2n`)4 · n2 ·
(
d

c

)2

= poly(λ).

Case 2: P = N. For a random matrix J · Ŝ (N)
1,x1
· E (N)

2,x2
·
∏h
k=3 D

(N)
k,xk

, the random variable can be
written as

J · Ŝ (N)
1,x1
· E (N)

2,x2
·
h∏
k=3

D
(N)
k,xk

= J · diag(~1w×w ⊗ S
(N)
1,x1

,~0n
2×n2

) · E (N)
2,x2
·
h∏
k=3

D
(N)
k,xk

+ J · diag(~0wn×wn,R
(N)
1,x1
⊗ S

(N)
1,x1

)E
(N)
2,x2
·
h∏
k=3

D
(N)
k,xk

.

since Ŝ
(N)
1,x1

is diag(~1w×w ⊗ S
(N)
1,x1

,~0n
2×n2

) + diag(~0wn×wn,R
(N)
1,x1
⊗ S

(N)
1,x1

).

By the lemma D.1, the variance of the random matrix J · Ŝ (N)
1,x1
· E (N)

2,x2
·
∏h
k=3 D

(N)
k,xk

is equal to
summation of variances of two above two random matrices.

We only need to compute the variance of the first random matrix J ·diag(~1w×w⊗S
(N)
1,x1

,~0n
2×n2

) ·
E

(N)
2,x2
·
∏h
k=3 D

(N)
k,xk

; the variance of the latter term is a special case of the Lemma 4.6 as the above
case.

Let S
(N)
u,v be the random variables of (u, v)-th entry of the random matrix S

(N)
1,x1

. We define

X
(N)
u,v , Y

(N)
u,v and (Z

(N)
u,v )1 be random variables of the (u, v)-th entry of the random matrix E

(N)
2,x2
·∏h

k=3 D
(N)
k,xk

, Ŝ
(N)
1,x1
· E (N)

2,x2
·
∏h
k=3 D

(N)
k,xk

and J · Ŝ (N)
1,x1
· E (N)

2,x2
·
∏h
k=3 D

(N)
k,xk

, respectively.

Then, we observe Y
(N)
1,1 =

∑n
i=1 S

(N)
1,i ·X

(N)
i,1 + · · ·+

∑n
i=1 S

(N)
1,i ·X

(N)
i+(w−1)n,1 from the definition

of Kronecker tensor properties. Then, using Lemma D.1, we can obtain

V ar[Y
(N)
1,1 ] = E[(

n∑
i=1

S
(N)
1,i ·X

(N)
i,1 + · · ·+

n∑
i=1

S
(N)
1,i ·X

(N)
i+(w−1)n,1)2]

= E[

n∑
i=1

S
(N)2

1,i ·X(N)2

i,1 + · · ·+
n∑
i=1

S
(N)2

1,i ·X(N)2

i+(w−1)n,1]

= Θ(wn · (σ2) ·mh−2 · (σ2)h−1)

= Θ(wn ·mh−2 · (σ2)h).

Moreover, we can calculate an upper bound of E[Y
(N)4

1,1 ] as follows:

E[Y
(N)4

1,1 ] = E

[
(

n∑
i=1

S
(N)
1,i ·X

(N)
i,1 + · · ·+

n∑
i=1

S
(N)
1,i ·X

(N)
i+(w−1)n,1)4

]
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≤ E

[
(wn)3 · (

n∑
i=1

S
(N)4

1,i ·X(N)4

i,1 + · · ·+
n∑
i=1

S
(N)4

1,i ·X(N)4

i+(w−1)n,1)

]
≤ (wn)4 · 3(σ2)2 ·m4 · 3co ·m2h−6 · (σ2)2(h−1) · d2

= 9c0 · (wn)4m2 ·m2h−4 · (σ2)2h · d2.

Similarly, we can compute Y
(N)
i,1 for i = 2, · · · , wn in the exactly same way. The equations and

inequalities are all equal to the Y
(N)
1,1 case. For i > wn, Y

(N)
i,1 is computed as in Case 1. In other

words, it is the special case j = 1 of Lemma 4.6 and the result is equal to Case 1 as well. Thus, we
omit the how to compute this value.

Note that Y
(N)
i,1 = Y

(N)
i+(k−1)n,1 for all k = 1, · · · , wn. Thus, we obtain the desired results as

follows:

V ar[(Z
(N)
1,1 )1] = E[(

w+2n`∑
i=1

Y
(N)
1+(i−1)n,1)2]

= E[w2 · Y (N)2

1,1 +

w+2n`∑
i=w+1

Y
(N)2

1+(i−1)n,1]

= Θ((w3 · n+ n3 · σ2 + (2`− 1) · n2) ·mh−2(σ2)h)

E[(Z
(N)
1,1 )4

1] = E

[
(

w+2n`∑
i=1

Y
(N)
1+(i−1)n,1)4

]

≤ E[(w + 2n`)3 · (
w+2n`∑
i=1

Y
(N)4

1+(i−1)n,1)]

≤ (w + 2n`)4 · 27n8m2 · c0 ·m2h−4 · (σ2)2(h+1) · d2

At last, with the two computations, we obtain∣∣∣∣∣ E[(Z
(N)
1,1 )4

1]

V ar[(Z
(N)
1,1 )1]2

∣∣∣∣∣ ≤ 27c0 · (w + 2n`)4 · n2m2 ·
(
d

c

)2

= poly(λ).

of Lemma 4.6. We remark that, as noted in the above proof, this proof works for j = 1 as well
and this case is used in the above proof. It suffice to prove the case P = M. Let 1 ≤ j <

λ · ` be an integer that j = ` · j1 + j2 and X
(M)
u,v the random variables of the (u, v)-th entry of

the random matrix E
(M)
j+1,xj+1

∏h
k=j+2 D

(M)
k,xk

. Then, all random variables Xu,v have the variance

Θ(mh−j−1 · (σ2)h−j), and we have E[X
(M)
u,v ] = 0, E[X

(M)
u,v · X(M)

u′,v ] = 0 for distinct u, u′ and

E[X
(M)4

u,v ] ≤ 3c0 ·m2 ·m2h−2j−2 · (σ2)2(h−j) · d2 by Assumption 1.

Let S
(M)
u,v be the random variable of (u, v)-th entry of the random matrix

∏j
i=1 S

(M)
i,xi

. Then,

V ar[S
(M)
u,v ] = nj−1 ·(σ2)j , E[S

(M)
u,v ·S(M)

u′,v ] = 0 for distinct u, u′ and E[S
(M)4

u,v ] = 3{n(n+2)}j−1 ·(σ2)2j

hold.
By the construction of the matrix R

(M)
i,xi

,
∏j
i=1 R

(M)
i,xi

is a block-diagonal matrix that consists of∏j
i=1 R

(k)(M)

i,xi
∈ Z2n×2n for k ∈ [`]. Note that

∏j
i=1 R

(k)(M)

i,xi
is of the form

j∏
i=1

R
(k)(M)

i,xi
=



(∏j1+1
i=1 R̃

(k)(M)

k+`(i−1),xk+`(i−1)

In×n

)
if k = 1, 2, · · · , j2

(∏j1
i=1 R̃

(k)(M)

k+`(i−1),xk+`(i−1)

In×n

)
if k = j2 + 1, · · · , `
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Let R
(M)
u,v be the random variables of the (u, v)-th entry of the random matrix upper-left quad-

rant of
∏j
i=1 R

(1)(M)

i,xi
. Then V ar[R

(M)2

u,v ] = nj1 · (σ2)j1+1, E[R
(M)
u,v · R(M)

u′,v ] = 0 and E[R
(M)4

u,v ] =

3(n(n+ 2))j1 · (σ2)2(j1+1).

Similarly, we consider the random variables of the (u, v)-th entry of the matrix
(∏j

i=1 Ŝ
(M)
i,xi

)
·

E
(M)
j+1,xj+1

·
(∏h

k=j+2 D
(M)
k,xk

)
and denote it by Y

(M)
u,v . Then,

V ar[Y
(M)
1+wn,1] = E[(R

(M)
1,1

n∑
i=1

S
(M)
1,i X

(M)
i+wn,1 + · · ·+R

(M)
1,n

n∑
i=1

S
(M)
1,i X

(M)
i+n(w+n−1),1)2]

= Θ(n2 · nj1 · (σ2)j1+1 · nj−1 · (σ2)j ·mh−j−1 · (σ2)h−j)

= Θ(nj1+j+1 · (σ2)j1+j+1 ·mh−j−1 · (σ2)h−j)

because of Lemma D.1. Moreover, it holds that

E[Y
(M)4

1+wn,1] = E[(R
(M)
1,1

n∑
i=1

S
(M)
1,i X

(M)
i+wn,1 + · · ·+R

(M)
1,n

n∑
i=1

S
(M)
1,i X

(M)
i+n(w+n−1),1)4]

≤ E[(n2)3(R
(M)4

1,1

n∑
i=1

S
(M)4

1,i X
(M)4

i+wn,1 + · · ·+R
(M)4

1,n

n∑
i=1

S
(M)4

1,i X
(M)4

i+n(w+n−1),1)]

= 27n8m2 · (n(n+ 2))j1+j−1 · c0 ·m2h−2j−2 · (σ2)2(h+j1+1) · d2.

Therefore, we conclude that∣∣∣∣∣∣ E[Y
(M)4

1+wn,1]

V ar[Y
(M)
1+wn,1]2

∣∣∣∣∣∣ ≤ 27c0 · n4m2 ·
(

1 +
2

n

)j1+j−1

·
(
d

c

)2

= poly(λ).

Similarly, we can compute all variances of Yi,1 for each i.

V ar[Y
(M)
i,1 ] =



0 if i ∈ [wn]

Θ(nj1+j+1 · (σ2)j1+j+1 ·mh−j−1 · (σ2)h−j)
if i = a · n2 + b + w · n with
a/2 ∈ {0} ∪ [j2 − 1], b ∈ [n2]

Θ(nj1+j · (σ2)j1+j ·mh−j−1 · (σ2)h−j)
if i = a · n2 + b + w · n with
a/2 ∈ {j2, · · · , `}, b ∈ [n2]

Θ(nj · (σ2)j ·mh−j−1 · (σ2)h−j) otherwise.

Thus, we can derive upper bounds of E[Y
(M)4

i,1 ] as follows:

E[Y
(M)4

i,1 ] ≤


0

27n8m2 · {n(n+ 2)}j1+j−1 · c0 ·m2h−2j−2 · (σ2)2(h+j1+1) · d2

27n8m2 · {n(n+ 2)}j1+j−2 · c0 ·m2h−2j−2 · (σ2)2(h+j1) · d2

9n4m2 · {n(n+ 2)}j−1 · c0 ·m2h−2j−2 · (σ2)2h · d2

Let (Z
(M)
u,v )j be random variable of (u, v)-th entry of the matrix J ·

(∏j
i=1 Ŝ

(M)
i,xi

)
· E (M)

j+1,xj+1
·(∏h

k=j+2 D
(M)
k,xk

)
. Then, we observe (Z

(M)
1,1 )j =

∑w+2n`
i=1 Y

(M)
1+(i−1)n,1. Since, by Lemma D.1, E[S

(M)
u,v ·

S
(M)
u′,v ] = 0, E[R

(M)
u,v · R(M)

u′,v ] = 0, and E[X
(M)
u,v · X(M)

u′,v ] = 0 hold for all distinct u, u′, the equation

E[Y
(M)
u,1 · Y

(M)
v,1 ] = 0 holds for all u, v.

With the similar method, we compute V ar[(Z
(M)
1,1 )j ] and upper bound of E[(Z

(M)
1,1 )4

j ].

V ar[(Z
(M)
1,1 )j ] = E[(

w+2n`∑
i=1

Y
(M)
1+(i−1)n,1)2] = E[

w+2n`∑
i=1

Y
(M)2

1+(i−1)n,1]
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= Θ(j2n · nj1+j+1 · (σ2)j1+j+1 ·mh−j−1 · (σ2)h−j

+ (`− j2)n · nj1+j · (σ2)j1+j ·mh−j−1 · (σ2)h−j

+ `n · nj · (σ2)j ·mh−j−1 · (σ2)h−j)

= Θ(
(
j2n

j1+j+2 · (σ2)j1+1 + (`− j2)nj1+j+1 · (σ2)j1 + `nj+1
)
·mh−j−1 · (σ2)h)

E[(Z
(M)
1,1 )4

j ] = E[(

w+2n`∑
i=1

Y
(M)
1+(i−1)n,1)4]

≤ E[(w + 2n`)3 · (
w+2n`∑
i=1

Y
(M)4

1+(i−1)n,1)]

≤ (w + 2n`)3{j2n · 27n8m2 · (n(n+ 2))j1+j−1 · c0 ·m2h−2j−2 · (σ2)2(h+j1+1) · d2

+ (`− j2)n · 27n8m2 · (n(n+ 2))j1+j−2 · c0 ·m2h−2j−2 · (σ2)2(h+j1) · d2

+ `n · 9n4m2 · (n(n+ 2))j−1 · c0 ·m2h−2j−2 · (σ2)2h · d2}
≤ (w + 2n`)4 · 27n8m2 · (n(n+ 2))j1+j−1 · c0 ·m2h−2j−2 · (σ2)2(h+j1+1) · d2

Overall, we obtain∣∣∣∣∣ E[(Z
(M)
1,1 )4

j ]

V ar[(Z
(M)
1,1 )j ]2

∣∣∣∣∣ ≤ 27c0 · (w + 2n`)4 · n2m2 ·
(

1 +
2

n

)j1+j−1

·
(
d

c

)2

= poly(λ).

All arguments for N hold as well.

of Lemma 4.7. Similarly, we also focus on the case P = M. Let j be an integer that j > λ · ` and
j = ` · λ + j2. This proof is very similar to Lemma 4.5. The difference only comes from a form

of the random matrix
∏j
i=1 R

(M)
i,xi

. Thus, in this proof, we focus on the form of the matrix. Note

that, because of the functionality, the matrices R
(M)
i,b are completely different for i ≤ λ · ` and for

i > λ · `.
In this case,

∏j
i=1 R

(M)
i,xi

is the block diagonal matrix

j∏
i=1

R
(M)
i,xi

= diag(

j∏
i=1

R
(1)(M)

i,xi
,

j∏
i=1

R
(2)(M)

i,xi
, · · · ,

j∏
i=1

R
(`)(M)

i,xi
)

where
∏j
i=1 R

(k)(M)

i,xi
is of the form

−∏λ
i=1 R̃

(k)(M)

k+`(i−1),xk+`(i−1) ∏λ
i=1 R̃

(k)(M)

k+`(i−1),xk+`(i−1)

 if k = 1, 2, · · · , j2

(∏λ
i=1 R̃

(k)(M)

k+`(i−1),xk+`(i−1)

I

)
if k = j2 + 1, · · · , `

Let Y
(M)
u,v and (Z

(M)
u,v )j be random variable of (u, v)-th entry of the matrix

(∏j
i=1 Ŝ

(M)
i,xi

)
·E (M)
j+1,xj+1

·(∏h
k=j+2 D

(M)
k,xk

)
and J ·

(∏j
i=1 Ŝ

(M)
i,xi

)
· E (M)

j+1,xj+1
·
(∏h

k=j+2 D
(M)
k,xk

)
, respectively.

Similarly, we get

V ar[(Z
(M)
1,1 )j ] = E

[
(

w+2n`∑
i=1

Y
(M)
1+(i−1)n,1)2

]
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= E

[
w+2n`∑
i=1

Y
(M)2

1+(i−1)n,1

]
= Θ(

(
(`+ j2)nλ+j+1 · (σ2)λ + (`− j2)nj+1

)
·mh−j−1 · (σ2)h)

and

E[(Z
(M)
1,1 )4

j ] = E[(

w+2n`∑
i=1

Y
(M)
1+(i−1)n,1)4]

≤ E[(w + 2n`)3 · (
w+2n`∑
i=1

Y
(M)4

1+(i−1)n,1)]

≤ (w + 2n`)4 · 27n8m2 · (n(n+ 2))λ+j−2 · c0 ·m2h−2j−2 · (σ2)2(h+λ) · d2

Then, we have∣∣∣∣∣ E[(Z
(M)
1,1 )4

j ]

V ar[(Z
(M)
1,1 )j ]2

∣∣∣∣∣ ≤ 27c0 · (w + 2n`)4 · n2m2 ·
(

1 +
2

n

)λ+j−2

·
(
d

c

)2

= poly(λ).

The arguments for N hold as well.

F Analysis of BGMZ Obfuscation

In this section, we describe how to proof lemmas in Section 5.2. We modify the notation as in the
CVW obfuscation case. We replace n′, n with n, t. We re-use or abuse the some notations for the
different proof for the convenience of the writing. For example, we omit the index j in the main
body of the paper. Fix a x ∈ {0, 1}` satisfying O(P)(x) = ~0.

By Assumption 1, a product of the random matrices D̂P
j =

∏h
i=j+2 D

(P)
i has the variance

Θ(mh−j−2(σ2)h−j−1) and O(poly(λ)) upper bound of its kurtosises.
More precisely, We denote (possibly polynomial) c0 by the bound of kurtosises in Assumption 1,

and c and d the lower and upper bound of V ar[D̂
(P)
k ] for all k, respectively. In other words, it holds

that for all k

c ≤
V ar[D̂

(P)
k ]

mh−k−2(σ2)h−k−1
≤ d and

E[(D̂k
(P) − E[D̂k

(P)])4]

V ar[D̂k
(P)]2

≤ c0.

We omit the proof of Lemma 5.2, 5.3 since it is almost the same to the proof of Lemma 4.2 and
Lemma 4.3.

of Lemma 5.4. Let (X
(M)
u,v ) be random variables of the (u, v)-th entry of the random matrix

E
(M)
~x(1)

∏h
k=2 D

(M)
k,~x(k). Then, for all u ∈ [t], v ∈ [n], all random variables X

(M)
u,v have the variance

Θ(mh−1(σ2)h−1 · s2). Moreover, it holds that E[X
(M)
u,v ] = 0, E[X

(M)
u,v ·X(M)

u′,v ] = 0 for distinct u, u′

and E[X
(M)4

u,v ] ≤ 3c0 ·m2 ·m2h−2 · (σ2)2(h−1) · (s2)2 · d2 by Assumption 1.

Similarly, the random variables of the (u, v)-th entry of the random matrix J (M)·E (M)
1,~x(1)

∏h
k=2 D

(M)
k,~x(k)

are denoted by Y
(M)
u,v . J is defined by [J ′(M)|In×n] and J ′(M) ← {0, 1}n×wn. Let the random vari-

ables of the (u, v)-th entry of the random matrix J ′(M) be denoted by J
′(M)
u,v . Then we can observe

that E[J
′(M)
u,v ] = 1

2 , E[J
′(M)2

u,v ] = 1
2 , E[J

′(M)4

u,v ] = 1
2 for all u, v.

Since Y
(M)
1,1 =

∑w
i=1 J

′(M)
1,n·(t−1)+1 ·X

(M)
n·(t−1)+1,1 +X

(M)
wn+1,1,

V ar[Y
(M)
1,1 ] = E

( w∑
i=1

J
′(M)
1,n·(t−1)+1 ·X

(M)
n·(t−1)+1,1 +X

(M)
wn+1,1

)2


= E

[
w∑
i=1

J
′(M)2

1,n·(t−1)+1 ·X
(M)2

n·(t−1)+1,1 +X
(M)2

wn+1,1

]
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= Θ((
w

2
+ 1) ·mh−1 · (σ2)h−1 · s2).

In addition, the upper bound of E[Y
(M)4

1,1 ] can be computed

E[Y
(M)4

1,1 ] = E[(

w∑
i=1

J
′(M)
1,n(t−1)+1 ·X

(M)
n(t−1)+1,1 +X

(M)
wn+1)4]

≤ E[(w + 1)3 · (
w∑
i=1

J
′(M)4

1,n(t−1)+1 ·X
(M)4

n(t−1)+1,1 +X
(M)4

wn+1)]

≤ (w + 1)4 · 3c0 ·m2 ·m2h−2 · (σ2)2(h−1) · (s2)2 · d2.

Similarly, we can derive the same results for Yu,v for all u, v. The variance of (Z (M))0 =

v ′(M) · J (M) · E (M)
1,~x(1)

∏h
k=2 D

(M)
k,~x(k) · w

′(M)T is computed by

V ar[(Z (M))0] = Θ(nm · (w
2

+ 1) ·mh−1 · (σ2)h−1 · s2 · σ4)

= Θ(nm · (w
2

+ 1) ·mh−1 · (σ2)h+1 · s2)

We also have

E[(Z (M))4
0] ≤ (nm)4 · (w + 1)4 · 3c0 ·m2 ·m2h−2 · (σ2)2(h−1) · (s2)2 · (3σ4)2 · d2

= 27c0 · (nm)4 · (w + 1)4 ·m2 ·m2h−2 · (σ2)2(h+1) · (s2)2 · d2

At last the upper bound is computed as∣∣∣∣ E[(Z (M))4
0]

V ar[(Z (M))0]2

∣∣∣∣ ≤ 108c0 · (nm)2 · (w + 1)2 ·m2 ·
(
d

c

)2

= poly(λ)

For N, all arguments are exactly same.

of Lemma 5.5. In this proof we consider the two cases; P = M and P = N.

Case 1: P = M. Consider a random variable v ′(M) · J (M) · Ŝ (M)
1,~x(1) ·E

(M)
2,~x(2) ·

∏h
k=3 D

(M)
k,~x(k) ·w

′(M)T .

This is the special case j = 1 of Lemma 5.6. Readers refer to the proof of Lemma 5.6. Based on
this the following equation and inequalities hold:

V ar[(Z (M))1] = Θ(nm · n ·mh−2 · (σ2)h+1 · s2)

E[(Z (M))4
1] ≤ 81c0 · (nm)4 · n4 ·m2 ·m2h−4 · (σ2)2(h+1) · s4 · d2∣∣∣∣ E[(Z (M))4

1]

V ar[(Z (M))1]2

∣∣∣∣ ≤ 81c0 · (nm)2 · n2 ·m2 ·
(
d

c

)2

= poly(λ)

Case 2: P = N. Consider a random variable v ′(N) ·J (N) · Ŝ (N)
1,~x(1) ·E

(N)
2,~x(2) ·

∏h
k=3 D

(N)
k,~x(k) ·w

′(N)T . Let

S
(N)
u,v be random variables of (u, v)-th entry of the random matrix S

(N)
1,~x(1). Similarly, we define X

(N)
u,v

and Y
(N)
u,v are random variables of the (u, v)-th entry of the random matrix E

(N)
2,~x(2)

∏h
k=3 D

(N)
k,~x(k)

and J (N) · Ŝ (N)
1,~x(1) · E

(N)
2,~x(2) ·

∏h
k=3 D

(N)
k,~x(k), respectively. J (N) is defined by [J ′(N)|In×n] and J ′(N) ←

{0, 1}n×wn. The random variables of the (u, v)-th entry of the random matrix J ′(N) is denoted by

J ′
(N)
u,v .

Then, we observe

Y
(N)
1,1 =

w∑
j=1

nj∑
i=1+n(j−1)

(

n∑
k=1

J ′
(N)
k+n(j−1) · S

(N)
k,i−n(j−1)) ·X

(N)
i,1 +

n∑
k=1

S
(M)
1,k ·X

(M)
wn+k,1.
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By the Lemma D.1, it holds that

V ar[Y
(N)
1,1 ]

= E


 w∑
j=1

nj∑
i=1+n(j−1)

(

n∑
k=1

J ′
(N)
k+n(j−1) · S

(N)
k,i−n(j−1)) ·X

(N)
i,1 +

n∑
k=1

S
(N)
1,k ·X

(N)
wn+k,1

2


= E

 w∑
j=1

nj∑
i=1+n(j−1)

(

n∑
k=1

J ′
(N)2

k+n(j−1) · S
(N)2

k,i−n(j−1)) ·X
(N)2

i,1 +

n∑
k=1

S
(N)2

1,k ·X(N)2

wn+k,1


= Θ(wn ·

(n
2
· σ2
)
·mh−2 · (σ2)h−2 · s2 + n · σ2 ·mh−2 · (σ2)h−2 · s2)

= Θ(

(
1

2
· wn+ 1

)
· n ·mh−2 · (σ2)h−1 · s2)

In addition, the upper bound of E[Y
(N)4

1,1 ] can be computed

E[Y
(N)4

1,1 ]

= E


 w∑
j=1

nj∑
i=1+n(j−1)

(

n∑
k=1

J ′
(N)
k+n(j−1) · S

(N)
k,i−n(j−1)) ·X

(N)
i,1 ) +

n∑
k=1

S
(N)
1,k ·X

(N)
wn+k,1

4


≤ E

{(w + 1)n}3
 w∑
j=1

nj∑
i=1+n(j−1)

(

n∑
k=1

J ′
(N)
k+n(j−1) · S

(N)
k,i−n(j−1))

4 ·X(N)4

i,1 ) +

n∑
k=1

S
(N)4

1,k ·X(N)4

wn+k,1


≤ E

{(w + 1)n}3
 w∑
j=1

nj∑
i=1+n(j−1)

n3 · (
n∑
k=1

J ′k+n(j−1)
(N)4

S
(N)4

k,i−n(j−1))X
(N)4

i,1 ) +

n∑
k=1

S
(N)4

1,k X
(N)4

wn+k,1


≤ {(w + 1)n}3{wn · n4 · (1

2
· 3σ4) · 3c0 ·m2 ·m2h−4 · (σ2)2(h−2) · (s2)2 · d2

+ n · (3σ4) · 3c0 ·m2 ·m2h−4 · (σ2)2(h−2) · (s2)2 · d2}
≤ 9c0 · {(w + 1)n}4 · n4 ·m2 · (σ2)2(h−1) · (s2)2 · d2

The same results for Y
(N)
u,v for all u, v can be shown in the same way. The variance of (Z (N))1 =

v ′(N) · J (N) · Ŝ1,~x(1) · E
(N)
2,~x(2)

∏h
k=3 D

(N)
k,~x(k) · w

′(N)T is computed as follows:

V ar[(Z (N))1] = Θ(nm ·
(

1

2
· wn+ 1

)
· n ·mh−2 · (σ2)h−1 · s2 · σ4)

= Θ(nm ·
(

1

2
· wn+ 1

)
· n ·mh−2 · (σ2)h+1 · s2).

Similarly, we have

E[(Z (N))4
1] ≤ (nm)4 · 9c0 · {(w + 1)n}4 · n4 ·m2 ·m2h−4 · (σ2)2(h−1) · (s2)2 · (3σ4)2 · d2

= 81c0 · (nm)4 · {(w + 1)n}4 · n4 ·m2 ·m2h−4 · (σ2)2(h+1) · (s2)2 · d2

Then,

∣∣∣∣ E[(Z (N))4
1]

V ar[(Z (N))1]2

∣∣∣∣ ≤ 324c0 · (nm)2 · {(w + 1)n}2 · n2 ·m2 ·
(
d

c

)2

= poly(λ).

of Lemma 5.6. Let 2 ≤ j ≤ h−1 be an integer and Xu,v the random variables of the (u, v)-th entry

of the random matrix E
(M)
j+1,~x(j+1)

∏h
k=j+2 D

(M)
k,~x(k). All random variables X

(M)
u,v have the variance
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Θ(mh−j−1 · (σ2)h−j−1 · s2), and E[X
(M)
u,v ] = 0, E[X

(M)
u,v · X(M)

u′,v ] = 0 holds for distinct u, u′ and

E[X
(M)4

u,v ] ≤ 3c0 ·m2 ·m2h−2j−2 · (σ2)2(h−j−1) · (s2)2 · d2 by Assumption 1.
We observe that

j∏
i=1

Ŝ
(M)
i,xi

=

(
~0 ∏j

i=1 S
(M)
i,xi

)
.

Let S
(M)
u,v be the random variable of (i, j)-th entry of the random matrix

∏j
i=1 S

(M)
i,xi

. Then,

it hold that V ar[S
(M)2

u,v ] = nj−1 · (σ2)j , E[S
(M)
u,v · S(M)

u′,v ] = 0 for distinct u, u′ and E[S
(M)4

u,v ] =

3{n(n+ 2)}j−1 · (σ2)2j .

For a random variable of (u, v)-th entry of the random matrix J (M) ·
(∏j

i=1 Ŝ
(M)
i,~x(i)

)
·E (M)
j+1,~x(j+1) ·(∏h

k=j+2 D
(M)
k,~x(k)

)
, we denote it by Y

(M)
u,v . Then a variance of Y

(M)
u,v can be computed using

Lemma D.1.

V ar[Yu,v] = E

( n∑
k=1

S
(M)
u,k ·X

(M)
wn+k,v

)2
 = E

[
n∑
k=1

S
(M)2

u,k ·X(M)2

wn+k,v

]
= Θ(n · nj−1 · (σ2)j ·mh−j−1 · (σ2)h−j−1 · s2)

= Θ(nj ·mh−j−1 · (σ2)h−1 · s2)

Moreover, it holds that

E[Y (M)4

u,v ] = E

( n∑
k=1

S
(M)
u,k ·X

(M)
wn+k,v

)4
 ≤ E [n3 ·

(
n∑
k=1

S
(M)4

u,k ·X(M)4

wn+k,v

)]
≤ n4 · 3{n(n+ 2)}j−1 · (σ2)2j · 3c0 ·m2 ·m2h−2j−2 · (σ2)2(h−j−1) · (s2)2 · d2

= 9c0 · n4 ·m2 · {n(n+ 2)}j−1 ·m2h−2j−2 · (σ2)2(h−1) · (s2)2 · d2

By Lemma D.3, we can compute v ′(M) · J (M) ·
∏j
i=1 Ŝ

(M)
i,~x(i) ·E

(M)
j+1,~x(j+1)

∏h
k=j+2 D

(M)
k,~x(k) ·w

′(M)T

which is denoted by (Z (M))j . Then it hold that

V ar[(Z (M))j ] = Θ(nm · nj ·mh−j−1 · (σ2)h−1 · s2 · σ4)

= Θ(nm · nj ·mh−j−1 · (σ2)h+1 · s2)

E[(Z (M))4
j ] ≤ 9c0(nm)4n4m2{n(n+ 2)}j−1 ·m2h−2j−2 · (σ2)2(h−1) · (s2)2 · (3σ4)2 · d2

= 81c0 · (nm)4 · n4 ·m2 · {n(n+ 2)}j−1 ·m2h−2j−2 · (σ2)2(h+1) · (s2)2 · d2.

Overall,

∣∣∣∣∣ E[(Z (M))4
j ]

V ar[(Z (M))j ]2

∣∣∣∣∣ ≤ 81c0(nm)2n2m2 ·
(

1 +
2

n

)j−1

·
(
d

c

)2

= poly(λ). All arguments

hold as well for N.

of Lemma 5.7. Let X
(M)
u,v be the random variables of the (u, v)-th entry of the random matrix∏h−1

i=1 B
(M)
i,~x(i). All random variables of entries of B

(M)
i,~x(i) are mutually independent and follow a

uniform distribution [−ν2 ,
ν
2 ). For convenience, we assume random variables follow a uniform dis-

tribution [−ν2 ,
ν
2 ]. The complete proof is done by considering the statistical inditinsguishability of

two uniform random distributions.
We note that the similar computations as in Lemma D.2 hold as well for the uniform distri-

butions. More precisely, for the random variable U1, U2 following the uniform distribution over

[−ν2 ,
ν
2 ], it hold that E[U1] = 0, E[U2

1 ] =
1

12
· ν(ν + 2), E[U4

1 ] =
1

80
· ν(ν + 2){ν(ν + 2)− 4

3}.

Thus, the variance of X
(M)
u,v is

V ar[X(M)
u,v ] = gh−2 ·

{
1

12
· ν(ν + 2)

}h−1

.
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We also have

E[X(M)4

u,v ] ≤ 3 · {g(g + 2)}h−2 ·
{

1

12
· ν(ν + 2)

}2(h−1)

.

By Lemma D.3, we can compute the variance and expectation of quadruple of b
(M)
v ·

∏h−1
i=1 B

(M)
i,~x(i)·

b
(M)T

w which is denoted by (Z (M))h.

V ar[(Z (M))h] ≤ g2 · gh−2 ·
{

1

12
· ν(ν + 2)

}h−1

·
{

1

12
· ν(ν + 2)

}2

= gh ·
{

1

12
· ν(ν + 2)

}h+1

,

E[(Z (M))4
h] ≤ (g2)4 · 3 · {g(g + 2)}h−2 ·

{
1

12
· ν(ν + 2)

}2(h−1)

·

[
3

{
1

12
· ν(ν + 2)

}2
]2

= 27 · (g2)4 · {g(g + 2)}h−2 ·
{

1

12
· ν(ν + 2)

}2(h+1)

.

As a result,

∣∣∣∣ E[(Z (M))4
h]

V ar[(Z (M))h]2

∣∣∣∣ ≤ 27 · (g2)2 ·
(

1 +
2

g

)h−2

. The same arguments hold as well for

N. However, this value is not poly(λ), since g is small constant.
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