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Abstract—Parallel cryptographic implementations are gener-
ally considered to be more advantageous than their non-parallel
counterparts in mitigating side-channel attacks because of their
higher noise-level. So far as we know, the side-channel security
of GPU-based cryptographic implementations have been studied
in recent years, and those implementations then turn out to
be susceptible to some side-channel attacks. Unfortunately, the
target parallel implementations in their work do not achieve
strict parallelism because of the occurrence of cached memory
accesses or the use of conditional branches, so how strict
parallelism affects the side-channel security of cryptographic
implementations is still an open problem. In this work, we make
a case study of the side-channel security of a GPU-based bitsliced
AES implementation in terms of bit-level parallelism and thread-
level parallelism in order to show the way that works to reduce
the side-channel security of strict parallel implementations. We
present GPU-based bitsliced AES implementation as the study
case because (1) it achieves strict parallelism so as to be resistant
to cache-based attacks and timing attacks; and (2) it achieves
both bit-level parallelism and thread-level parallelism (a.k.a. task-
level parallelism), which enables us to research from multiple
perspectives. More specifically, we first set up our testbed and col-
lect electro-magnetic (EM) traces with some special techniques.
Then, the measured traces are analyzed in two granularity. In
bit-level parallelism, we give a non-profiled leakage detection
test before mounting attacks with our proposed bit-level fusion
techniques like multi-bits feature-level fusion attacks (MBFFA)
and multi-bits decision-level fusion attacks (MBDFA). In thread-
level parallelism, a profiled leakage detection test is employed to
extract some special information from multi-threads leakages,
and with the help of those information our proposed multi-
threads hybrid fusion attack (MTHFA) method takes effect. Last,
we propose a simple metric to quantify the side-channel security
of parallel cryptographic implementations. Our research shows
that the secret key of our target implementation can be recovered
with less cost than expected, which suggests that the side-channel
security of parallel cryptographic implementations should be
reevaluated before application.
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I. INTRODUCTION

Parallel computing is a type of computation in which
many calculations or the execution of processes are carried
out concurrently. Generally speaking, large problems can

often be broken down into smaller ones, which can then
be solve at the same time. Due to the urgent need of
high-performance computing power in many areas, parallel
computing has become the dominant paradigm in computer
architecture. Nowadays as the most widely used parallel com-
puting platform, Graphics Processing Unit (GPU) has evolved
from a specialized hardware for graphics rendering into a
general-purpose computing device for various applications as
biomedical analysis, signal processing, scientific computing
and so on. GPU is designed as an SIMT (Single Instruction,
Multiple Threads) device and well suited to cryptographic
applications deployed in cloud computing environment. How-
ever, GPU-based cryptographic applications are vulnerable to
many known attacks as proposed in [1][2][3]. Among those
published vulnerabilities of GPUs, side-channel attacks are
the most serious ones due to their non-invasiveness to target
devices. In recent years, the studies on the side-channel attacks
against cryptographic implementations have always been a
research hotspot of cryptanalysis beyond algebraic analysis
methods. As the most popular block cipher, AES is widely
deployed on a wide variety of hardware platforms. The side-
channel attacks against AES software implementations on
CPUs/MCUs and hardware implementations on FPGAs have
been deeply studied. Until very recently, some literatures
mentioned that GPU-based cryptographic implementations
are also susceptible to side-channel attacks through electro-
magnetic emanation, power consumption or execution time
leakages [4][5][3][6]. Unfortunately, these attacks are based
on the special architectural features of CUDA-enabled GPUs
like cache line access coalescing/serialization [4][3], shared
memory bank conflict [6], and high occupancy of threads [5],
which make the target implementations not strict parallel any
more. Therefore, it is still an open problem about the side-
channel security of cryptographic implementations with strict
parallelism. In light of this, we study the side-channel attacks
against a GPU-based bitsliced AES implementation in order to
give a deep insight into the mechanisms mitigating the security
of strict parallel cryptographic implementation.

In the work, we take GPU-based bitsliced AES implemen-
tation as the study case for two reasons.



First, GPU-based bitsliced AES implementation achieves
strict parallelism across threads in a warp, which means
threads in a warp execute the same instruction at any moment
without exceptions like cache line access serialization and
conditional branches that needs coordination among threads.
In addition, the implementation is assumed to be resistant to
cache attacks and timing attacks due to the constant execution
time of strict parallelism.

Second, GPU-based bitsliced AES implementation achieves
both bit-level parallelism and thread-level parallelism (a.k.a.
task-level parallelism), which enables us to research from
multiple perspectives. The two types of parallelism cover the
major granularity of parallelisms, so it is of great significance
to our research.

To the best of our knowledge, this is the first work to inves-
tigate the side-channel security of strict parallel cryptographic
implementation in two granularity, i.e. bit-level parallelism and
thread-level parallelism. Our contributions are summarized as
follows:

e We study the side-channel security of bit-level parallelism
in GPU-based bitsliced AES implementation. A non-profiled
leakage detection method is employed to find special leakage
patterns on multiple bits, and then multi-bits feature-level
fusion attack (MBFFA) and multi-bits decision-level fusion
attack (MBDFA) are proposed to analyze the side-channel
security of the implementation.

e We study the side-channel security of thread-level paral-
lelism in GPU-based bitsliced AES implementation. A profiled
leakage detection method is employed to find special leakage
patterns on multiple threads, and then multi-threads hybrid
fusion attack (MTHFA) is proposed to analyze the side-
channel security of the implementation.

e We also propose a simple metric to assess the side-channel
security of a certain parallel cryptographic implementation for
certain attacks, which is very useful in security assessments.

The rest of this paper is organized as follows. In section
I, we give a brief introduction of CUDA-enabled GPU and
GPU-based bitsliced AES implementation. In section III, we
present some special techniques used in leakage acquisition
and preprocessing. In section IV, we investigate the side-
channel security of bit-level parallelism of the target imple-
mentation. In section V, we study the side-channel security
of strict thread-level parallelism of target implementation. In
section VI, we introduce a simple metric to assess the security
of parallelism. In section VII, related work are listed. Finally,
conclusions and future works are given in section VIII.

II. PRELIMINARY

In this section, we give a brief introduction to the archi-
tecture of CUDA-enabled GPUs, the features of GPU-based
bitsliced AES implementation as well as the definitions and
notations involved in this paper.

A. CUDA-enabled GPU

Compute Unified Device Architecture (CUDA) is a gener-
al purpose parallel computing framework and programming

model developed by NVIDIA for its GPUs. In a physical
view, the CUDA-enabled GPU is composed of Mx Streaming
Multiprocessors (SM) and a global memory. Each SM has
Nx Scalar Processor (SP), a shared memory, several 32-bits
registers, and a shared instruction unit. In an abstract view,
CUDA defines the threading model, calling conventions and
memory hierarchy for programmers.

Warps are the basic unit of execution in an SM. When you
launch a grid of thread blocks, the thread blocks in the gird
are distributed among SMs. Once a thread block is scheduled
to an SM, threads in the thread block are further partitioned
into warps. A warp consists of 32 consecutive threads and all
threads in a warp are executed in Single Instruction Multiple
Thread (SIMT) fashion; that is, all threads execute the same
instruction, and each thread carries out that operation on its
own private data.

B. GPU-based Bitsliced AES Implementation

The term bitsliced cipher was first proposed by Eli Biham
[7] referring to the AES candidate Serpent. More precisely,
it is a concept about cryptographic implementation instead of
cryptographic algorithm or scheme itself.

The AES implementation of bitsliced version could process
more than one plaintexts in a parallel fashion. The parallelism
of plaintexts is determined by the length of machine word in
bit. For 32-bit processors, 32 plaintexts can be encrypted si-
multaneously, which is also mentioned as bit-level parallelism.
The first step of bitsliced AES implementation is to transpose
multiple plaintexts by bit in order to adapt bitsliced execution
fashion. As shown in Fig.1, 32 128-bit plaintexts are arranged
by row, and each plaintext is written to or read from four 32-
bit registers within GPU. The 32X 128 matrix is transposed
before the first round encryption, and the inverse transposition
is performed after the final round encryption. It is obvious that
only one forward transposition and one inverse transposition
are needed to finish one bitsliced AES encryption on a single
GPU thread. For multiple threads execution on GPU, each
thread executes the above process independently, which is also
called thread-level parallelism. In a word, GPU-based bitsliced
AES implementation achieves parallelism in two granularity,
i.e. both bit-level parallelism and thread-level parallelism, so
it is well suited for us to study the side-channel security of
parallel cryptographic implementations.

C. Definitions and Notations

Definition 1. For multi-threads cryptographic implementa-
tions, if an attacker is able to choose the same random
plaintexts for some threads and collect the corresponding
ciphertexts and side-channel leakages, it is called Chosen-
Thread Side-Channel Attacks (CTSCA). Attackers cannot
choose specific plaintexts in CTSCA, which is different from
Chosen-Plaintext Side-Channel Attacks (CPSCA).

Definition 2. When performing a CTSCA, if attackers choose
the same random plaintexts for the consecutive M threads of
totally Mx N threads, it is called N-Group CTSCA.
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Fig. 1. Transposition in bitsliced AES implementation. On the left side,
it shows the normal byte ordering of 32 128-bit plaintext block layout in
registers. On the right side, it is the bit-oriented transposed bitsliced ordering
layout in registers. The transformation from the left to the right and the
reverse are made only once at the beginning of encryption and at the end
of encryption, respectively.

Definition 3. For bitsliced crypto implementations, if we give
the same plaintexts for the consecutive M slices of totally MxX N
slices, it is called N-Slice (encryption) mode.

Notations.
I,(fﬂl) denotes the m-th bit from the least significant bit in
the n-th byte of the first S-box outputs. (¢, j) specifies
the j-th slice of the ¢-th thread.
denotes the m-th bit from the least significant bit in
the n-th byte of a plaintext. (¢,j) specifies the j-th
slice of the i-th thread.
’: denote quantifier all and any, respectively. For ex-
ample, Pf:.’j ) denotes one byte plaintext, and P(” )
denotes 16-byte plaintext, and P’y denotes any bit
of the n-th byte plaintext.

Py

L]

III. LEAKAGE ACQUISITION AND PREPROCESSING

Electro-magnetic emanation around electronic devices can
be captured without any difficulties, but it is not so easy to
measure useful signals. Compared with power analysis, EM
analysis enables us to take advantage of localization effects,
which makes EM attacks more efficient than power attacks.
we use two small magnetic probes Rohde Schwarz RF B 3-3
and Rohde Schwarz RS H 2.5-2 instead of larger ones in order
to probe localized leakages from near-field emanation [8].
Theoretically, the region located less than 1/27 of wavelength
away from the source is called near-field. All our probings in
this work are conducted in this region.

Experimental Set-ups. We set up our testbed with the follow-
ing configurations:

- We target a NVIDIA’s GeForce GT 620 graphics card
connected to the host with PCI-e bus. The device is of low
performance, but it is enough to show the vulnerability
of NVIDIA’s GPU to EM attacks. Specifically, it has one
streaming multiprocessor of 48 SPs, a L2 cache of 64KiB,
and it is equipped with an off-chip device memory of
454MiB. The device is running at 1.27GiHz.

- We port a bitsliced AES implementation from a open
source community [9] into our GPU. Since this is a
table-free implementation, we do not need to consider
the efficiency of table look-up with respect to memory
usage among different memories. The device memory in
our GPU is used to store the plaintexts to be encrypted
as well as the ciphertexts to be produced.

- We employ an Agilent DSO9104A digital oscilloscope,
which is capable of measuring signals with a sample rate
up to 20GHz (20GSa/s). In our experiment, we set our
sampling rate as 200MSa/s, which turns out to be enough
for our attack.

Our testbed is set up with a client/server mode, which
is widely used in internet applications. Cloud device that
provides SECaaS work as a server, and inside attackers
is authorized to encrypt any plaintexts P-s and obtain the
corresponding ciphertexts C-s and measured EM traces
T-s. With a sufficient number of triple (P,C,T), the
attacker attempt to recover the preset secret key of our AES
implementation.

Locate Signals. A printed circuit board (PCB) like GPU card
is generally composed of hundreds of electronic parts and
components such as chips, resistors, capacitors, inductors and
so on. However, it is unnecessary to check all of them to
locate target signals. Generally speaking, only the right above
of GPU chip and capacitors on the back of GPU chip should
be checked, because these positions or components tend to
produce useful leakages, which is confirmed afterwards in
our experiment. More specifically, we start up the CUDA
program and run encryption in a loop. We adjust EM probe
on the candidate components within their near-field zones
until we find a position in which the oscilloscope captures a
periodic signal. If some pattern within the signal repeats nine
to ten times, leakage positions are found. The repeated signal
in our experiment is shown in Fig.2. We call it target signal.

Collect Signals. Although the target signal is identified, it is
still not easy to capture it without external triggers. In fact,
it is impractical to provide an external trigger that controlled
within program, so we design a delicate trigger with another
magnetic probe. As shown in Fig.2, two signals measured at
different probing positions look similar, and the amplitude
in the upper one is basically less than that in the lower one.
However, the two signals share a signal pattern of the same
high voltage marked as Trigger A and Trigger B, so the more
significant difference between Trigger and other signals in
the upper channel makes 7Trigger A a better choice to work
as a trigger to capture target signal.

Align Signals. Now we have measured almost aligned EM
traces with our delicate trigger, but it is still not enough to per-
form a successful attack. More accurate alignment techniques
are necessary. By zooming in the first round encryption of the
lower signal in Fig.2, more details of the first round encryption
are shown in Fig.3. First, we observe the special patterns on the
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Fig. 3. Overview measurement of the first round AES encryption.

signal and find a rwo-trough (C in Fig.3) pattern that is shared
by all traces. The pattern is likely an ideal reference to align all
traces. Second, we match the pattern among several traces and
find that the pattern in different traces are strongly correlated
(Pearson Correlation Coefficient, PCC > 0.70). Third, for all
traces we search the pattern by fixing one trace and sliding the
others within a small range to find the position at which the
pattern hold the maximum PCC with the pattern in the fixed

trace. We exclude traces whose maximum PCC is less than
0.70. Then all traces with the maximum PCC no less than 0.70
could be aligned properly.

IV. THE SECURITY OF BIT-LEVEL PARALLELISM

The GPU-based bitsliced AES implementation achieves
parallelism in two granularity, which are bit-level parallelism
and thread-level parallelism. For bit-level parallelism, a single



thread will suffice, so it is unnecessary to analyze its security
with more than one group CTSCA. Hence, only one-group
CTSCA is performed in our research.

A. Non-Profiled Leakage Detection Test

Since bits of the same position in multiple plaintexts are
operated in the same register, bit-level leakages are very likely
to happen. The Welch’s #-test [10] is employed to detect the
bit-level leakages induced by bitsliced implementation. Non-
profiled leakage detection test needs specifying intermediates.
For our implementation, we detect the independent bits of the
output of S-box in the first round encryption. For simplicity,
we feed 32 slices with the same plaintext, so all 128 registers
for intermediates hold either 32 0’s or 32 1’s. Therefore, we
just detect the difference of leakages in these two cases.

Test Method. First, N EM traces are partitioned into two
groups G and (G; with respect to the intermedates I = 0
or I =232 — 1. Then, the following statistic is computed:

t(T) — M (1)

.2 2
where 11o(7), p1(7) are the means of Gy, G; at 7 in time,
and so(7), s1(7) are the standard deviations of Gy, G
at 7 in time, and ng, n; are the cardinality of Gy, Gj.
Although 7 represents any value in the time domain, it takes
discrete values due to finite sampling rate (e.g. 200MSa/s
in our experiment) in practice. Last, it is time to determine
whether two sets Gy and G; are sampled from an identical
population or not. Generally speaking, two sets are assumed
to be sampled from two distinct populations, if the statistical
quantity t(7) > 4.5 at some 7-s [11]. We follow this
convention in our test experiments.

Test Results and Discussion. As noted above, there are totally
128 registers to hold the 128-bit state of bitsliced AES encryp-
tion. Now that the 128-bit state are leaked independently in
the time domain, our experiment tests the leakage of each of
the 128 bits by Welch’s ¢-test method. As shown in Fig.4, 16
peaks or troughs are clearly visible, and they are far beyond
the preset thresholds (-4.5 to 4.5). The 16 peaks/troughs of
different colors represent the leakages of 16 S-box output in
the first round encryption respectively. What is particular is the
12 peaks/troughs of extremely high/low f-statistic. According
to the colors shown, the 12 peaks/troughs are created by four
of totally 128 bits intermediate, precisely, the MSB of the 1st,
5th, 9th and 13th intermediate byte, respectively.

We also investigate the maximum of ¢(7) in the time domain
for each of 128 bits. For the sake of clarity, we make small
changes in computing the maximum of ¢(7) as follows:

max, |t(7)|, if max, [¢(T)] > 4.5
tmas = (2)
0, otherwise.

The ¢4, of 128 intermediate bits are shown in Fig.5. It can
be regarded as a 8 x 16 matrix I'(x, y), where z € {1,2,...,8}
and y € {1,2,...,16}. The eight rows show different patterns.
For example, the 3th bit, 5th bit and 7th bit are detected to
be leaky on every other bytes, and the MSB is tested to be
leaky on every bytes. Those interesting patterns are of great
help to recover the secret key, and they will be used to develop
side-channel attacks against our target implementation.
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Fig. 4. Results of t-test for all 128 independent bits of the S-box output.
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Fig. 5. Maximum of ¢(7) in the time domain for all 128 individual bits of
the S-box output.

B. A Simple Single-Bit Correlation Analysis

Correlation analysis [12] method is commonly used in side-
channel attacks, which can be used to extract the correct secret
key of our special AES implementation. For our bitsliced
implementation, each intermediate (S-box output) is leaked
in eight registers, so either of these eight values is qualified



to recover the secret key with Correlation Electro-Magnetic
Analysis (CEMA) method. Unfortunately, the leakages of
the eight registers vary from byte to byte. We learn from
above tests that only the most significant bit (MSB) of each
intermediate byte is likely to be used to recover all 16-byte
secret key. The leakage model is as follows:

m=a: ZI(I’]

where L, ,,, denotes the predlcted leakage of the m-th bit from
the least significant bit in the n-th intermediate byte, and HW(-)
evaluates the Hamming weight of a variable. a is a scale factor,
the value of which is insignificant for our attack. B,,;sc 1S a
Gaussian variable, which might frustrate our attack if a high-
level noise makes the signal-to-noise ratio drop significantly
to some thresholds.

noise (3)

C. Multi-Bits Feature-level Fusion Attacks (MBFFA)

As mentioned above, only the MSB of Ifﬂ (namely If;é)
can be used to recover 16-byte secret key, but it does not
mean that the leakages on other bits are useless. Just on the
contrary, appropriate multi-bits fusion techniques may improve
the above attacks.

We propose a multi-bits feature-level fusion attack. Leakage
features I'(x, y) are extracted from appropriate leakage detec-
tion methods such as Welch’s ¢-test used above. Specifically,
we build the following leakage model:

16
Ly=a-) | Z(n.y) anlﬁn
y=1

where n € {1,2,...,16}, and L,, is the predicted leakage of
the n-th intermediate byte, and Z(-,-) is defined as:

+ Bnoise (4)

1, if x =y,
Z(x,y) = )
0, otherwise.

F, €{1,2,...,8} for any n, and

F, = argmax <m§ax1"(j, )) , (6)
J =

where I'(j,n) is called individual features, and F, is called

fused features or features.

D. Multi-Bits Decision-level Fusion Attacks (MBDFA)

Just like MBFFA, multi-bits decision-level fusion attack also
need to extract leakage features I'(x,y) from an appropriate
leakage detection test before attacking. I'(x, y) tells on which
bit to mount a attack before decision-level fusions. The leakage
model is the as follows:

nz—a E
j=1

where T,, = {z|x € T'(-,n) and z # 0} forn € {1,2,...,16},
and Y, (¢) denotes the i-th element of Y,,. For the n-th secret

32
15 o)+ Broise (D

Algorithm 1 Multi-Bits Decision-level Fusion Attack

Input:

P =[Py, P, ..., Pyg]

T = [T1, Tz, ..., Ta] are EM traces of M sampling points.
T =[Yy,To ..., T1g]

Output:

K = [k1, ka, ..., k16]: 16-byte secret key recovered.

1: for [ + 1 to 16 do
2 for kguess < 0 to 255 do

3 R < SBox (P, ® kguess)

4: S = HW,ow (R)

5: for 5+ 1 to |T;| do

6 b+ Tl(ﬂ)

7 for m <+ 1 to M do

8 ¢m,ﬁ — p(Tm; Sb)

9 (Dkgue557ﬁ <—max{¢17ﬁ,¢275,...,¢M75}
, ®oss.3}

VV\TZI}

10: Wg (*maX{(I)ng,(I)lﬁ,...

11: Whax + max{Wy, Ws, ...,
12: ki + argmaxz(Wyax)

k
13: return K =

[k1> k?; sy klﬁ]

key byte, multiple predicted leakages Ly 1, Ly 2, .. »Ly 1,
are calculated. L,, ; implicitly depends on the secret key byte
k, so the secret key bytes are recovered with decision-level
fusion as follows:

|Tn
K, = argmax (malx C(n, Z)> 9)
k i=

where p(-,-) evaluates the Pearson correlation coefficient of
two vectors, and E is the measured EM leakage. Obviously,
K,, is recovered by decision-level fusion technique. More
details about the MBDFA is shown in Algorithm 1.

E. Experimental Results and Discussion

Since the number of slices and groups for plaintexts have
nothing to do with the bit parallelism of our target implementa-
tion, our experiments are performed in one-slice and one-group
scenario, which means just one plaintext is needed for one
EM trace measurement. As shown in Fig.3, the performance
of single-bit CEMA varies from bit to bit. CEMA on the
most significant bit outperforms that on other bits, which is
consistent with the results of leakage detection test. We also
investigate the performance of our proposed methods MBFFA
and MBDFA. The experimental results show they are almost
equivalent and more efficient than the single-bit CEMA on
MSB. Just 400 EM traces is enough to mount a complete key
recovery attack against our target AES implementation.

We have to note two facts. First, the MBFFA or MBDFA
cannot work if any prior leakage detection test is not available,
because both methods are based on the prior knowledge of
leakages on 128 bits, say I;F , where n = {1,2,...,16} and

n,m?
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m = {1,2,...,8}. In this sense, it should be classified as
profiled attacks like template attacks. However, our methods
may be more practical than template attacks, because profiling
is done only once in our methods for devices of the same mod-
el before attacking while profiling and attacking in template
attacks must be on identical devices. Second, the MBFFA and
MBDFA are not much efficient, which is induced by different
leakages on 8 bits. Thus, leakages on some bits dominate
leakages on all bits, so it is reasonable that the non-dominant
leakages will not help much to the dominate leakage when all
the leakages are fused with some techniques. As a matter of
fact, if leakages on all bits were the same or almost the same,
the profiling stage mentioned above would not be necessary,
either.

V. THE SECURITY OF THREAD-LEVEL PARALLELISM

In this section, the side-channel security of thread-level
parallelism of GPU-based bitsliced AES implementation to-
wards electro-magnetic attacks will be deeply investigated.
The thread-level parallelism on CUDA-enabled GPUs features
the SIMT (Single Instruction, Multiple Threads) execution
fashion from which programs with conditional branches would
benefit. For cryptographic implementations like ours without
any conditional branches, the program executes in a strict
parallelism fashion, which means that threads in a GPU warp
run at the same pace without any time deviation. As a result,
much noises are introduced when multiple threads run on dif-
ferent inputs, which basically makes the side-channel attacks
much difficult. However, how thread-level parallelism affects
the security of strict parallel cryptographic implementation
remains unknown, so further studies are needed.

A. Developing a Simple Attack

The parallel execution of many threads on GPU makes the
EM emanation much complicated. Since the warp scheduling
within GPU is primarily unpredictable, we just consider
thread-level parallelism within one GPU warp. In this case,
multiple threads execute our target encryption simultaneously.
As mentioned above, multiple threads in a warp run in a strict
parallelism fashion because there are not any cache accesses
or conditional branches in our target program that make a
divergence among threads. Therefore, the most direct way
to model the simultaneous EM leakages of multiple threads
in a warp is to add up all their respective leakages together,
although it may not be the best one.

Intermediate Bit Selection. As our target implementation
processes any byte of AES state bit by bit, we formulate the
process of AddRoundKey followed by SubByte of any byte in
bit operations:
[I(i»j) 709

n,l » n,2 s n,l »*n

I e F (PSPPI 0 Kng

(10)
where @ is component-wise XOR, and F(-) is a series of XOR
and AND operations to compute the multiplicative inversion of

the 8-bit P\"V) @ K,, over Fas. IV is called intermediate,

which is a key-dependent quantity. I *(%) is the m-th bit of any
intermediate. N N N
As mentioned in the previous section, I,(:’f), I,(:’Qj), s I,(:’Sj)

are scattered across eight independent registers. However,
the general fusion methods are always defeated due to the
different noise-level among bits or bytes, so only some special
fusion methods with prior knowledge work. Since we just
consider the thread-level parallelism, we would better use the
MSBs of 16 intermediate bytes as the target bit in order to



avoid multi-bits fusions.

Simple Synchronous Model (SSM). The most direct way to
describe the simultaneous leakages in a warp is to sum them
up as follows:

32
Ln,m =a- Z HW <I7(1177’n’2> + Bhroise; (11)

i=1
where n € {1,2,...,16}, m € {1,2,...,8}, L, ,, evaluates
the predicted leakages, and I,SZ,Z is of 32-bit length stored in
a single 32-bit register of processor. For the n-th key byte,
we have eight leakage points at least. Those leakages happen
at different point-in-time in the time domain.

Performance of SSM and Discussions. In order to evaluate
the performance of the hypothetical model SSM we set up
experiments of N-group CTSCA in one-slice mode. Since N
can possibly be assigned any value exactly dividable to 32
(warp size in our setting), we choose three typical value of
N=2,8,32 in our experiments. As shown in Fig.7, all 16 secret
key byte can be recovered with about 1,500 EM traces in
2-group CTSCA, and none of secret key bytes is recovered
with up to 4,000 EM traces in 8-group or 32-group CTSCA.
The experimental results also show that more groups make the
attack harder due to more noises.

—&— 2-group CTSCA
—&— 8-group CTSCA
32-group CTSCA

Number of Key Bytes
Recovered

2000 3000 4000
Number of Traces

0o 1000

Fig. 7. Attack results of N-group CTSCA in one-slice mode with SSM.

It seems that the above model SSM works when dealing
with simultaneous leakages of strict parallel implementation.
However, it is just a heuristic model, so more accurate models
will be further studied.

B. Profiled Correlation-based Leakage Detection Test

To further understand the nature of parallel leakages, we
employ profiled leakage detection method to analyze the
individual leakages of multiple threads. With profiled methods,
we do not need to make any assumptions about the leakage
model of the target implementation, which thereby lowers the
requirement and simplifies the procedure. The profiled p-test
method we use is originally due to Durvaux and Standaert [13].
The method takes advantage of the cross-validation techniques
introduced in [14] and applies to the leakages of all threads
in a warp. For the test of each thread, the leakages from any
other threads are treated as random noises. Specifically, our
test is carried out in three steps:

First, N EM traces with random plaintext inputs are sam-
pled. For k-fold cross-validation, the set of acquired traces
L is split into k (we set & = 10) non-overlapping subset-
s LW, £® . L®) of (approximately) the same size. For
i =1,2,...,k, we define the profiling sets L](,J) = Uiy £
and the test sets c,Ej ) = E\Ez(jj ). For each target plaintext
byte variable X,,, with m € {1,2,...,32} and for each cross-
validation set j with j € {1,2,...,k}, a model is estimated:
moAdeli]’m) (Xm) < LY™. For 8-bit plaintext bytes, this
model corresponds to the sample means of the leakage sample
7 corresponding to each value of the plaintext bytes.

Next, we compute the Pearson correlation coefficient be-
tween this model and the leakage sample in the test sets
EEJ ),

k ) )
Z corr(ﬁgg’m) (1), model”™ (X))

T

T (T) = 1 .

= (12)

j=1

where m € {1,2,...,32}.
Last, the p-statistic of standard normal distribution is eval-
uated:

1 <1+r;n(r))_ N (13)

pml7) =5 I\ T wo o
where N is the number of EM traces. Since p;,(7) satisfies
standard normal distribution at any time 7, |py,(7)| > 4.5 can
conclude the existence of leakage at 7 with a probability of
larger than 0.99.

In our experiment, the p-statistics of 32 individual tests at
each time 7 are evaluated and plotted within a single figure as
Fig.8. It shows that there are approximately five leakage points
marked as LP1, LP2, LP3, LP4 and LP5, respectively. At any
of the five leakage points, multiple colors are accumulated,
which seems that 32 threads leak information simultaneously.
However, it is not like this when zooming in any of the five
leakage points. As shown in Fig.9, the details of LP1, LP2,
LP4 and LP5 tell that not all leakages from multiple threads
are synchronous as we usually think. This discovery is so
important because we always expect synchronous executions
to generate synchronous leakages instead of asynchronous
ones. It is obvious that the executions of Tdl and Td2 are
almost overlapping, the same with Td17, Td18 and Tdl19.
Since we cannot deny the existence of leakages when lacking
indications in the figure, we still do not know whether they
are leaky or not in other threads except Td1, Td2, Td17, Td18
and Td19. We do not know why the device leaks information
in these special threads, and we think it may have something
to do with the half-warp feature of CUDA-enabled GPU.

C. A General Model and Hybrid Fusion Attack

For parallel computing platforms, the above model SSM is
effective only if the leakages from multiple computing units
are absolutely synchronous in the time domain. It is widely
believed that multiple threads execution for a warp on GPU
always produces synchronous EM leakages because of the
strict parallel execution fashion. However, our experimental
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Fig. 8. Experimental results of p-test for 32 threads in 32-group mode.
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Fig. 9. Experimental results when zooming in LP1, LP2, LP4 and LP5.

result shows that all respective EM leakages for a GPU warp
in our setting are not rightly overlapping. Therefore, it is
reasonable that the above model SSM is not so effective, so
we need to develop more effective methods.

Warp Asynchronous Leakage (WAL). As mentioned above,
although all threads in a GPU warp execute in a strict
parallelism fashion, they may not produce synchronous EM
leakages. Suppose that &;(¢) denotes the quantity of EM
emanation of the i-th thread and 7; denotes the time offset
of the ¢-th thread, and the quantity of multiple EM emanation
is formulated as:
32
E) =) Elt—7) =En(t—mm) + > _E(t—m) (14)
i=1 i€D
where N;; denotes the total number of threads and
n € [1,32]NZ and D = ([1,32] N Z)\{m}. If &(t) at
any moment %y is statistically independent of &;(t) at any
other moment except ¢ty and time offset 7;-s are pairwisely
different, then it is assumed that multiple threads execution
on GPU produces simultaneous EM leakages, and every

single thread contributes to the superimposed EM leakage.
In fact, a warp of threads start at the same time, but it do
not mean that their respective leakages are exactly overlapping.

General Asynchronous Model (GAM). Based on the analysis
of WAL above, the EM emanation of one thread is modeled
as:

Ei(t):h(t—Ti) XHi—‘y-bi(t) (15)

where 1 <t < T is the sampling point, 1 < ¢ < 32 is the
index of thread, H; is a leakage function of the intermediate,
h(t) is the the power of EM emanation of a thread with unit
intermediate starting at time point ”0”. 7; is the delay time
of the ¢-th thread relative with time “0”. Then the general
asynchronous model can be formulated as:

32 32
E(t)=> Ei(t)=Y_ h(t—m)-H;+ B(t) (16)
i=1 i=1

where B(t) = by (t) +ba(t) + ... + b2 (t). When we just focus
on the j-th threads and treat the EM emanation from other
threads as noises, the model can be rewritten as:

E(t)=E;(t)+ Y Ei(t)=h(t—7) H;+B'(t) (17)
i€\ {j}

where B'(t) = ( B(t) + > e\ El(t)) is treated as noises.
Interestingly, although Equ.16 and Equ.17 are essentially
equivalent, different approaches can be derived from the
two equations. To be specific, Equ.16 tells that a data-level
fusion technique may be effective, while Equ.17 means a
decision-level/feature-level fusion attack (DFA/FFA) may be
possible. The latter method requires less computation than the
former one, so we just develop an attack based on Equ.17.

Multi-Threads Hybrid Fusion Attack (MTHFA). It has been
proven experimentally that the EM leakages from different
GPU threads in a warp is not exactly synchronous. The asyn-
chronization among threads makes the leakages of the same
instruction may occur at different time. We propose a MTHFA
method, which is a combination of multi-threads feature-level
fusion attack (MTFFA) and multi-threads decision-level fusion
attack (MTDFA). To be specific, the MTFFA is applied among
synchronous threads, and the groups of asynchronous threads
is fused with MTDFA. The grouping A = {A;, A2, As, ...} of
threads is extracted from the above profiled leakage detection
test, where A, C {1,2,...,32} for any ¢, and for any ¢ # (o,
A, NA,, = 0. In practice, synchronous threads cannot be
detected due to errors in profiled leakage detection test, so
two thread are considered to be synchronous if the distance of
their POIs (Point of Interests) are within a very small threshold
€, that is |t; — 2| < e. Specifically, we achieve MTFFA in the
following model:

32
anL =a- Z Z 17(1277721) + Bnoise

ieA, \j=1

(18)



Algorithm 2 Multi-Threads Hybrid Fusion Attack (MTHFA)

Input:
Pl = [Pl P},..Pl]. P = [P2P2.. P . .. :
P32 = [P§2,P§2, ...,P1362] are plaintexts encrypted on 32

threads in a GPU warp,

T =[T1,Ts, ..., Th] are EM traces of M sampling points.

A =[A1,Aq, ..., Az] are leakage patterns from leakage detec-
tion test, where A, C{1,2,...,32} and Ule A, ={1,2,...,32}
QOutput:

K = [k, ko, ..., k16]: 16-byte secret key recovered.

1: for [ < 1 to 16 do

2 for kguess <— 0 to 255 do
3 R' «+ 5Box (P! @ kgyess
4 R? « SBox (P? @ kgyess
5 L.
6 R3?2 + sSBox (Pl32 &b kzguess)
7 for « + 1 to Z do
8 S*«+0
9: for g € A, do
10: S = 5%+ HW,00 (MSB(R?))
11: for m < 1 to M do
12: Gm 0
13: for a <~ Z do
14: ¢m — d)m + P(Tm, Sa)
15: Om ¢m/Z
16: I/Vk;guess <—max{¢1,¢2,...,¢M}
17: Wmax < maX{Wo, Wl, . W255}
18: ki < argmax(Waax)
Kk

19: return K = []{517 kg, ey k16]

where L, , is the predicted leakage of the n-th secret byte
in threads A,. m = 8 in our study, which means only the
MSB of intermediate byte is considered. After the feature-
level fusion, multiple predicted leakages L, 1, Ly, 2, Ly 3, ...
are calculated. Then, multiple CEMA are performed before
making a decision-level fusion (MTDFA) as:

255 >, P(Lnu, E))

K. =
n arg;zmx (I]fgl_aé( |A|

where K = {K;, K»,..., K16} is the secret key recovered
with MTHFA. The "hybrid” in MTHFA means the method is
a combination of two basic methods DFA and FFA.

19)

D. Experimental Results and Discussion

Since our multi-threads fusion attack needs multiple threads
encrypting different plaintexts, our experiments are performed
in one-slice and multiple-group scenario. In our experiments,
MTFFA, MTDFA and MTHFA are evaluated. We extract A
by the profiled leakage detection test and find A = {Aq, Ao},
where A; = {1,2} and Ay = {17, 18}. In this case, MTFFA
can be applied between Tdl and Td2 or Td17 and Tdl18,
and MTDFA can be applied between any one in A; and

TABLE I
THE © OF OUR PROPOSED METHODS.
MBFFA | MBDFA | MTFFA | MTDFA | MTHFA
0=17]|0=17]0=15|0=20| 6=20

As. As shown in Fig.10, MTFFA, MTDFA and MTHFA
outperform CEMA on single thread. Although both MTFFA
and MTDFA are two-threads fusion attacks, MTFFA performs
better than MTDFA. It tells that MTFFA can make better use
of multi-threads leakages than MTDFA does. It is no doubt
that MTHFA performs best. Just 2,000 EM traces suffice to
recover 16-byte secret key of our target AES implementation.

We note that only five out of 32 threads are detected to be
leaky from the profiled leakage detection test. In fact, all thread
are leaky if using a non-profiled leakage detection method for
a change, so further improvements are possible. In addition,
Equ.16 implies a data-level fusion is also possible.

VI. THE ASSESSMENT CRITERIA OF THE SECURITY OF
PARALLELISM

Just as many studies show, parallelism does improve side-
channel security of cryptographic implementations because of
high-level noises. However, how to quantify the improvement
is still an open question. In this section, we propose a very
single metric © as a assessment criteria. The © is defined as:

v Np

= 2
© min N, (20)

where NV, denotes the number of traces for attacks with -
way fusion and N, stands for the number of traces for attacks
with the ¢-th way leakage. For example, the MTFFA, MTD-
FA, MTHFA are 2-way, 2-way, 4-way fusions, respectively.
Obviously, larger ©® means higher side-channel security of
parallelism against certain attack. We assess the side-channel
security of our target AES implementation against MBFFA,
MBDFA, MTFFA, MTDFA and MTHFA, respectively. The
assessment results are shown in Table 1. It tells that our
target AES implementation achieves the highest security when
only MTDFA or MTHFA is possible and the lowest security
when only MTFFA is available. It seems that MTFFA is
more efficient than MTHFA, which contradicts the above
experimental results. In fact, it is reasonable because O takes
v into account. © describes the efficiency per way of a certain
attack method, so it is a better criteria than conventional
criteria without the number of ways for fusion, say © /.

VII. RELATED WORK
A. GPU-based AES Implementation

An efficient option for AES software implementations on
GPUs is the T-box approach due to Daemen and Rijmen [15].
The rationale behind the idea is to merge three (SubBytes,
ShiftRows, MixColumns) of four AES transformations into
four independent table lookups so as to make the best use
of high efficient cached memory access on GPUs. Biagio
et al. published a counter mode AES (AES-CTR) on an
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Fig. 10. Experimental results of MTFFA, MTDFA and MTHFA.

NVIDIA CUDA-enabled GPU [16]. They proposed a fine-
grained solution exposing the internal parallelism of each AES
round by dispatching four 32-bit words blocks to four SPs.
Four T tables are loaded into shared memory in order to
accelerate the T-boxes lookups. Because of address-dependent
table accesses in table-based implementations, it is susceptible
to cache attacks, especially, cache-timing attack. However,
table-free implementations like bitsliced version could keep
a constant execution time, so it becomes an implicit timing
attack protection method with respect to masking protection.
The first implementation of this type on GPUs is due to Lim,
Petzold and Kog in [17]. Bitsliced implementations are not as
competitive with word-level implementations on CPUs due to
the limited number of registers and the cost of transpositions
of the ciphertext.

B. SCA against GPU-based AES Implementation

Luo et al. proposed the first power analysis attack against
GPU-based AES implementation in [5]. They inserted a re-
sistor in series with power supply in order to measure the
power consumption of GPU card. They targeted a T-box
implementation of AES on GPU and built a simplified leakage
model to avoid the synchronization of power traces in the time
domain in multiple core scenarios. They employed Correlation
Power Analysis (CPA) to recover 16-byte secret key of AES
with 160,000 traces. Their attack is performed in a chosen-
thread scenario, which requires the adversary be capable of
encrypting the same plaintexts for all block threads. In fact, it
is scarcely possible to conduct side-channel attacks success-
fully in known-plaintext and highly-occupied scenarios against
GPU-based cryptographic implementations. After that, Jiang
et al. proposed two cache-timing attacks against GPU-based

T-table AES implementation based on the time differences
induced by L1 cache line access serialization (CLAS) [3] and
shared memory bank conflict (SMBC) [6]. They recovered 16-
byte secret key of AES by Correlation Timing Analysis (CTA)
and Differential Timing Analysis (DTA), respectively. Gao at
al. proposed an electro-magnetic attacks against a GPU-based
AES implementation based on the cache line access coalescing

[4].

VIII. CONCLUSION AND DISCUSSION

In this work, for the first time we investigate the side-
channel security of a GPU-based bitsliced AES implementa-
tion in order to give a deep insight into how strict parallelism
affects security. We study the problem in terms of bit-level
parallelism and thread-level parallelism and propose several
methods, namely MBFFA, MBDFA and MTHFA, to analyze
the side-channel security of the target implementation. We also
propose a simple metric to assess the side-channel security
of a certain parallel cryptographic implementation for certain
attacks, which is very useful in security assessments.

It is obvious that this work is far from perfect. For bit-level
parallelism, more researches are needed to find appropriate
intermediates within bit-based S-box computation, by which
can detect comparable leakages among registers containing the
state of AES. In this way, the profiling stage of our attack may
not be necessary. For thread-level parallelism, the reason for
warp asynchronous leakage should be investigated and try to
take more threads into account when mounting a fusion attack
in order to improve efficiency.

For our future work, we will try to combine MTHFA and
MBFFA/MBDFA together to achieve a further improvement



of attack. In addition, the countermeasures against MBF-
FA/MBDFA and MTHFA are also investigated.
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