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Constructing Infinite Families of Low
Differential Uniformity (n,m)-Functions with

m > n/2
Claude Carlet, Xi Chen* and Longjiang Qu

Abstract

Little theoretical work has been done on (n,m)-functions when n
2 < m < n, even though these functions

can be used in Feistel ciphers, and actually play an important role in several block ciphers. Nyberg has
shown that the differential uniformity of such functions is bounded below by 2n−m + 2 if n is odd or
if m > n

2 . In this paper, we first characterize the differential uniformity of those (n,m)-functions of the
form F (x, z) = φ(z)I(x), where I(x) is the (m,m)-Inverse function and φ(z) is an (n−m,m)-function.
Using this characterization, we construct an infinite family of differentially ∆-uniform (2m−1,m)-functions
with m ≥ 3 achieving Nyberg’s bound with equality, which also have high nonlinearity and not too low
algebraic degree. We then discuss an infinite family of differentially 4-uniform (m+ 1,m)-functions in this
form, which leads to many differentially 4-uniform permutations. We also present a method to construct
infinite families of (m+ k,m)-functions with low differential uniformity and construct an infinite family of
(2m− 2,m)-functions with ∆ ≤ 2m−1− 2m−6 + 2 for any m ≥ 8. The constructed functions in this paper
may provide more choices for the design of Feistel ciphers.

Keywords APN function, Differential Uniformity, Nyberg’s bound, Substitution boxes, Semi-bent function.
Mathematics Subject Classification (2010) 06E30, 11T60, 94A60.

I. INTRODUCTION

In the design of many block ciphers, substitution boxes (S-boxes) play an important role because they
provide nonlinear relationship between the input bits and the output bits in a controllable fashion. These S-
boxes are functions from Fn2 to Fm2 , and are called (n,m)-functions. They are often the only nonlinear parts
of block ciphers [14] and used by a variety of modern block ciphers such as AES [12], [20], Serpent [2], [3],
PRESENT [5], MISTY [16], its variant KASUMI [13], DES [19], CAST [1], KN [21], and many others.
Some of these S-boxes are bijective with n = m and can then be used in the Substitution-Permutation-
Network (SPN) structure. However, some of these S-boxes are defined with m < n or even m > n when
used in block ciphers of Feistel structure. For example, the DES cipher has 8 S-boxes each mapping 6 bits
to 4 bits and the CAST block ciphers have 4 S-boxes each mapping 8 bits to 32 bits. The Feistel model
of block cipher gives more flexibility than the SPN model. In particular it does not need the S-boxes to be
permutations nor to be balanced, see [23]. One may assume, a priori, that the (n,m)-functions with m < n
cannot achieve the same cryptographic properties as (n, n)-functions. But in practice, the S-box of the AES
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is the concatenation of sixteen differentially 4-uniform functions and the differential uniformity of the whole
S-box is then 2121 (recall that the AES has been obliged to use a non-APN function as substitution box
because all known APN functions in even numbers of variables larger than 6 are non-bijective). A comparison
with a model involving a Feistel structure is not always at the advantage of the SPN model. Moreover, the
Feistel structure has the advantage that encryption and decryption operations are very similar. Thus there
is much work nowadays on new models combining the Feistel model and studying (n,m)-functions with
m < n is then definitely necessary [24]. Since we mainly focus on the case m < n here, we always let
n = m+ k with k ≥ 1 throughout this paper.

When used in Feistel ciphers, the functions do not need mandatorily to be balanced. But using a non-
balanced function as S-box obliges to complexity the structure of the cipher (see e.g. [21]). Other criteria
also exist, like the transparency order, which are still less mandatory. It has been observed that addressing
the transparency order makes the search of functions more difficult and may result in less good functions,
while it is possible to add counter-measures after choosing the S-box. To prevent various attacks on the
cipher, such functions are required to have low differential uniformity, high nonlinearity and not too low
algebraic degree. It is well known that the lowest differential uniformity that an (m + k,m)-function can
achieve is 2k; those (m+k,m)-functions which achieve such nonlinearity are called perfect nonlinear (PN).
According to Nyberg’s results [18], PN (m+ k,m)-functions are also bent, and such bent functions do not
exist when m > k ≥ 1. Then the value of the differential uniformity of (m+k,m)-function with m > k ≥ 1
is bounded below by 2k + 2, we call it Nyberg’s bound in this paper.

An (m+ k,m+ k)-function is called almost perfect nonlinear (APN) if its differential uniformity equals
2, which is the lowest possible value. Differentially 2k+1-uniform (m+ k,m)-functions are easily found by
composing on the left any APN (m+ k,m+ k)-function by a surjective affine (m+ k,m)-function. When
k = 1, these functions achieving Nyberg’s bound which is 4. As mentioned in [7], no function achieving
Nyberg’s bound with m > k ≥ 2 is known except sporadic examples found by Carlet and AlSalami for
m = 3, k = 2 [6]. The existence of such functions when m ≥ 4, k ≥ 2 is still an open problem. More
generally, the existence of differentially ∆-uniform (m + k,m)-functions with m > k ≥ 2,m 6= 3 and
∆ < 2k+1 is an open question. In this paper, we will study this open problem when k = m − 1 and
k = m− 2.

Maiorana-McFarland class, of those functions of the form F (x, z) = φ(z)G(x) with φ linear or affine,
seems more or less the first framework to be tried. We have made long mathematical and computer
investigation on it, without success except when using the multiplicative inverse function as function G.
This function behaves nicely because, after the reduction to a common denominator in the equations, its
behavior in the numerators is not so far from that of a linear function, while it avoids the trivial solutions.
Contrary to the case of (n, n)-functions where Gold functions are the simplest to be handled, the inverse
function behaves function G more nicely than Gold functions (even than x3).

The rest of this paper is organized as follows. In Section II, we recall some necessary definitions and
useful lemmas. We characterize in Section III the differential uniformity of (m+k,m)-functions of the form
F (x, z) = φ(z)I(x), where I(x) is the (m,m)-Inverse function and φ(z) is a (k,m)-function. In Section IV,
infinite families of low differential uniformity (m+ k,m)-functions are investigated with k = m− 1, k = 1
and 1 ≤ k ≤ m − 2 thanks to this characterization. More precisely, an infinite family of differentially ∆-
uniform (2m−1,m)-functions with m ≥ 3 achieving Nyberg’s bound with equality is constructed in Section
IV-A. In Section IV-B, we discuss an infinite family of differentially 4-uniform (m+ 1,m)-functions which
leads to many differentially 4-uniform permutations. In Section IV-C, we present a method to construct
infinite families of (m + k,m)-functions with low differential uniformity by modifying the constructed
(2m−1,m)-function and we construct an infinite family of (2m−2,m)-functions with ∆ ≤ 2m−1−2m−6+2
for any m ≥ 8. In Section V, we discuss the possibility of constructing functions achieving Nyberg’s bound
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from Maiorana-McFarland bent functions or almost bent functions. The constructed functions in this paper
may provide more choices for the design of Feistel ciphers.

II. PRELIMINARIES

In this section, we give the definitions and lemmas which will be used in the paper.
Let F2n be the finite field with 2n elements. It is a vector space of dimension n over F2, and can then be

identified with Fn2 . More precisely, assume Γ(x) ∈ F2[x] is an irreducible monic polynomial with degree n
and α is a root of Γ in its splitting field, then

F2n = {a0 + a1α+ · · ·+ an−1α
n−1
∣∣a0, a1, · · · , an−1 ∈ F2}.

For any a = a0+a1α+· · ·+an−1α
n−1 ∈ F2n , the mapping a 7→ ~a := (a0, a1, · · · , an−1)T is an isomorphism

from F2n to Fn2 . In the following, we will switch between these two points of view without explanation if the
context is clear. Define the absolute trace function from F2n to F2 by Trn(x) =

∑n−1
i=0 x

2i

. Denote by F∗2n

(resp. Fn∗2 ) the set of all nonzero elements of F2n (resp. Fn2 ). Throughout this paper, for the multiplicative
inverse function I(x) = 1

x , we always define I(0) = 0.
Let M be a vector space over F2 and let M⊥ be its dual space, i.e.,

M⊥ = {β ∈ F2n |Trn(γβ) = 0 for all γ ∈M}.

Let S be a subset of M, the span of S is defined as the set of all linear combinations of elements of S, that
is,

Span(S) = {
k∑
i=1

λivi|k ∈ N, vi ∈ S, λi ∈ F2}.

Given two positive integers n and m, a function F : Fn2 → Fm2 is called an (n,m)-function. Particularly,
when m = 1, F is a Boolean function over Fn2 and is called an n-variable Boolean function.

There exist several types of unique representations for (n,m)-functions [9]. One such representation is
the algebraic normal form (ANF):

F (x) =
∑

I⊆{1,2,...,n}

aI

(∏
i∈I

xi

)
, where aI ∈ Fm2 , (1)

The algebraic degree of the function is by definition the global degree of its ANF:

d◦(F ) = max{#|I|, where aI 6= 0}.

Let F be a function from Fm+k
2 to Fm2 . For any ā ∈ Fm+k∗

2 , b ∈ Fm2 , let ā = (a, d), where a ∈ Fm2 , d ∈ Fk2 ,
we define the differential value of F at (ā, b) as:

δF (ā, b) = #{(x, z) ∈ Fm+k
2 |F (x, z) + F (x+ a, z + d) = b}

=
∑
z∈Fk

2

#{x ∈ Fm2 |F (x, z) + F (x+ a, z + d) = b}.

Here we use #S to denote the number of the elements in a set S.
The multiset {∗ δF (ā, b)|ā ∈ Fm+k∗

2 , b ∈ Fm2 ∗} is called the differential spectrum of F . The value

∆F = max
ā∈Fm+k∗

2 ,b∈Fm
2

δF (ā, b)

is called the differential uniformity of F , and we call F a differentially ∆F -uniform function.
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Let F be a function from Fm+k
2 to Fm2 . It is clear that for any ā = (a, d) ∈ Fm+k∗

2 ,∑
b∈Fm

2

#{(x, z) ∈ Fm+k
2 |F (x, z) + F (x+ a, z + d) = b} = 2m+k.

Then
2m max

b∈Fm
2

#{(x, z) ∈ Fm+k
2 |F (x, z) + F (x+ a, z + d) = b} ≥ 2m+k.

For arbitrary ā we have that 2k ≤ ∆F ≤ 2m+k. We call F perfect nonlinear (PN) when ∆F equals 2k.
When k = 0, we call (m,m)-function F an almost perfect nonlinear (APN) function if ∆F = 2. It is

easy to see that APN functions achieve the minimal value of differential uniformity for functions defined
on fields with an even characteristic.

Assuming that an inner product in Fm+k
2 and an inner product in Fm2 have been chosen and are written

with the same symbol “·”, the Walsh transform FW : Fm+k
2 × Fm∗2 → C of F is defined by:

FW(u, v) =
∑

x∈Fm+k
2

(−1)v·F (x)+u·x.

The multisetWF = {∗ FW(u, v)|u ∈ Fm+k
2 , v ∈ Fm∗2 ∗} is called the Walsh spectrum of F . The nonlinearity

of F is defined as
NL(F ) = 2m−1 − 1

2
max

(u,v)∈Fm+k
2 ×Fm∗

2

|FW(u, v)|

and corresponds to the minimum Hamming distance between the component functions of F (that is, v · F
for any v ∈ Fm∗2 ) and affine Boolean functions over Fm+k

2 .
An n-variable Boolean function is called bent (resp. semi-bent) if the value of its Walsh transform only

takes values ±2
n

2 , with n even (resp. 0, ±2
n

2
+1 when n is even, and 0, ±2

n+1

2 when n is odd).
Bent functions achieve the highest nonlinearity when n is even. When n is odd, the best possible

nonlinearity is unknown for n ≥ 9; semi-bent functions achieve good nonlinearity and can be balanced
(what cannot be bent functions). For n even, semi-bent functions also achieve good nonlinearity and can be
balanced. An (m+ k,m)-function F is called a vectorial bent function (resp. vectorial semi-bent function)
if all its component functions are bent functions (resp. semi-bent functions). We call F a balanced vectorial
function if all its component functions are balanced, that is, if it takes the same number of times any value
in the output space.

When k = 0, we call (m,m)-function F an almost bent (AB) function if NL(F ) = 2m−1−2
m−1

2 , which
achieves the minimal value of nonlinearity when m is odd. When m is even, the known the minimal value
of nonlinearity is 2m−1 − 2

m

2
−1.

The classical example for a bent function is the Maiorana-McFarland bent function [11] from F2m
2 to

Fm2 , which is defined by
F (x, z) = π(x)L(z) + h(x),

where π : Fm2 → Fm2 is a bijection, L : Fm2 → Fm2 is a linear bijection and h is any function from Fm2 to
Fm2 .

The following results are useful in our further discussion.
Fact 1: [17] Let n,m be integers. Let φ(z) : Fn2 → F2m be an affine function. Assume that there exists

z ∈ Fn2 such that Trm(φ(z)) = 1. Then

#{z ∈ Fn2 |Trm(φ(z)) = 1} = 2n−1 or 2n.
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Lemma 2.1: [15] For any a, b ∈ F2m and a 6= 0, the polynomial F (x) = x2 + ax + b ∈ F2m [x] is
irreducible if and only if Trm( b

a2 ) = 1.
Theorem 2.2: [22] Let t1, t2 denote the roots of t2 + bt + a3 = 0, where a ∈ F2n , b ∈ F∗2n . Then the

factorization of f(x) = x3 + ax+ b over F2n are characterized as follows:
f has three zeros in F2n if and only if

Trn1 (
a3

b2
+ 1) = 0

and t1, t2 are cubes in F2n (n even), F22n (n odd).
f has exactly one zero in F2n if and only if

Trn1 (
a3

b2
+ 1) = 1.

f f has no zero in F2n if and only if

Trn1 (
a3

b2
+ 1) = 0

and t1, t2 are not cubes in F2n (n even), F22n (n odd).

III. A CHARACTERIZATION OF THE DIFFERENTIAL UNIFORMITY OF F (x, z) = φ(z)I(x)

In the following proposition, we characterize the differential uniformity of the functions F : Fm+k
2 → F2m

in the form F (x, z) = φ(z)I(x).
Proposition 3.1: Let m and k be integers satisfying 1 ≤ k ≤ m − 1. Any function F : Fm+k

2 → F2m

in the form F (x, z) = φ(z)I(x), where φ(z) : Fk2 → F2m and I(x) is the (m,m)-Inverse function, is a
differentially ∆-uniform function with ∆ < 2k+1 if and only if all of the conditions below hold.
1. φ(z) 6= 0 for any z ∈ Fk2 .
2. φ(z) is an injection.
3. For any d ∈ Fk2 , t ∈ F∗2m ,

∆ ≥ 2k+1 − 2#

{
z ∈ Fk2

∣∣∣∣Trm

(
φ(z)t

(t+ φ(z) + φ(z + d))2

)
= 1

}
−#{z ∈ Fk2|t = φ(z) + φ(z + d)}+ #{z ∈ Fk2|t = φ(z)}+ #{z ∈ Fk2|t = φ(z + d)}.

Proof: Necessity: Assume that the differential uniformity of F (x, z) = φ(z)I(x) is ∆ < 2k+1. Then for
any ā ∈ Fm+k∗

2 , b ∈ F2m with ā = (a, d), where a ∈ F2m , d ∈ Fk2 , we have∑
z∈Fk

2

#{x ∈ F2m |φ(z)I(x) + φ(z + d)I(x+ a) = b} ≤ ∆. (2)

Let us prove that Conditions 1− 3 are satisfied.
Let d = 0, a ∈ F∗2m , b = 0. Then Eq.(2) is equivalent to∑

z∈Fk
2

#{x ∈ F2m |φ(z)(I(x) + I(x+ a)) = 0} ≤ ∆.

Since ∆ < 2m, we have φ(z) 6= 0 for any z ∈ Fk2 , which means Condition 1 holds.
Let d ∈ Fk∗2 , a = b = 0. If there exists z ∈ Fk2 such that φ(z) = φ(z + d), then∑

z∈Fk
2

#{x ∈ F2m |φ(z)I(x) + φ(z + d)I(x+ a) = b}

=
∑
z∈Fk

2

#{x ∈ F2m |(φ(z) + φ(z + d))I(x) = 0} ≥ 2m > ∆.
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A contradiction! Thus φ(z) is an injection, that is, Condition 2 holds.
Let d ∈ Fk2 and a, b be arbitrary elements in F∗2m . Then we have∑

z∈Fk
2

#{x ∈ F2m |φ(z)I(x) + φ(z + d)I(x+ a) = b}

=
∑
z∈Fk

2

#{x ∈ F2m \ {0, a}|φ(z)I(x) + φ(z + d)I(x+ a) = b}

+
∑
z∈Fk

2

#{x ∈ {0, a}|φ(z)I(x) + φ(z + d)I(x+ a) = b}

=
∑
z∈Fk

2

#{x ∈ F2m \ {0, a}|bx2 + (ab+ φ(z) + φ(z + d))x+ φ(z)a = 0}

+#{z ∈ Fk2|ab = φ(z)}+ #{z ∈ Fk2|ab = φ(z + d)}
=

∑
z∈Fk

2

#{x ∈ F2m |bx2 + (ab+ φ(z) + φ(z + d))x+ φ(z)a = 0}

+#{z ∈ Fk2|ab = φ(z)}+ #{z ∈ Fk2|ab = φ(z + d)}.

The last step holds since neither x = 0 nor a is a solution of bx2 + (ab+ φ(z) + φ(z + d))x+ φ(z)a = 0.
Then we get:∑

z∈Fk
2

#{x ∈ F2m |bx2 + (ab+ φ(z) + φ(z + d))x+ φ(z)a = 0}

=
∑

z∈Fk
2 ,ab+φ(z)+φ(z+d)6=0

#{x ∈ F2m |bx2 + (ab+ φ(z) + φ(z + d))x+ φ(z)a = 0}

+
∑

z∈Fk
2 ,ab+φ(z)+φ(z+d)=0

#{x ∈ F2m |bx2 + (ab+ φ(z) + φ(z + d))x+ φ(z)a = 0}

= 2#

{
z ∈ Fk2

∣∣∣∣Trm

(
φ(z)ab

(ab+ φ(z) + φ(z + d))2

)
= 0

}
+ #{z ∈ Fk2|ab = φ(z) + φ(z + d)}

= 2k+1 − 2#

{
z ∈ Fk2

∣∣∣∣Trm

(
φ(z)ab

(ab+ φ(z) + φ(z + d))2

)
= 1

}
−#{z ∈ Fk2|ab = φ(z) + φ(z + d)}.

The second step holds according to Lemma 2.1.
Let t = ab. Then for any d ∈ Fk2 , t ∈ F∗2m ,

∆ ≥ 2k+1 − 2#

{
z ∈ Fk2

∣∣∣∣Trm

(
φ(z)t

(t+ φ(z) + φ(z + d))2

)
= 1

}
−#{z ∈ Fk2|t = φ(z) + φ(z + d)}+ #{z ∈ Fk2|t = φ(z)}+ #{z ∈ Fk2|t = φ(z + d)}.

Thus Condition 3 holds.
Sufficiency: Assume that the function F (x, z) = φ(z)I(x) satisfies all of the three conditions. Then we

need to prove that Eq.(2) holds for any d ∈ Fk2, a, b ∈ F2m , where d and a can not be 0 at the same time.
The proof is divided into two cases.
Case 1: ab = 0.
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If a = 0, b ∈ F∗2m , then ∑
z∈Fk

2

#{x ∈ F2m |φ(z)I(x) + φ(z + d)I(x+ a) = b}

=
∑
z∈Fk

2

#{x ∈ F2m |φ(z) + φ(z + d)

b
= x} = 2k ≤ ∆.

If b = 0, d ∈ Fk∗2 , a ∈ F2m , then it follows from Condition 2, φ(z) is an injection, that∑
z∈Fk

2

#{x ∈ F2m |φ(z)I(x) + φ(z + d)I(x+ a) = b}

=
∑
z∈Fk

2

#{x ∈ F2m | aφ(z)

φ(z) + φ(z + d)
= x} = 2k ≤ ∆.

If b = d = 0, then a ∈ F∗2m , and we have∑
z∈Fk

2

#{x ∈ F2m |φ(z)I(x) + φ(z + d)I(x+ a) = b}

=
∑
z∈Fk

2

#{x ∈ F2m |φ(z)(I(x) + I(x+ a)) = 0} = 0 ≤ ∆.

The last step holds since φ(z) 6= 0 for any z ∈ Fk2 and the Inverse function I(x) is a bijection.
Case 2: a, b are arbitrary elements in F∗2m .
According to the observations made in the sufficiency part of the proof, for any d ∈ Fk2, a, b ∈ F∗2m ,∑

z∈Fk
2

#{x ∈ F2m |φ(z)I(x) + φ(z + d)I(x+ a) = b}

= 2k+1 − 2#

{
z ∈ Fk2

∣∣∣∣Trm

(
φ(z)ab

(ab+ φ(z) + φ(z + d))2

)
= 1

}
−#{z ∈ Fk2|ab = φ(z) + φ(z + d)}

+#{z ∈ Fk2|ab = φ(z)}+ #{z ∈ Fk2|ab = φ(z + d)}.

Let t = ab. Then according to Condition 3, for any d ∈ Fk2 , t ∈ F∗2m , we have

∆ ≥ 2k+1 − 2#

{
z ∈ Fk2

∣∣∣∣Trm

(
φ(z)t

(t+ φ(z) + φ(z + d))2

)
= 1

}
− #{z ∈ Fk2|t = φ(z) + φ(z + d)}+ #{z ∈ Fk2|t = φ(z)}+ #{z ∈ Fk2|t = φ(z + d)}
=

∑
z∈Fk

2

#{x ∈ F2m |φ(z)I(x) + φ(z + d)I(x+ a) = b}.

The proof is complete. �
As we know, one sporadic differentially 6-uniform (5, 3)-function (equivalently) has been found by Carlet

and AlSalami [6] very recently. It has the form F (x, z) = φ(z)I(x), where I(x) is the Inverse function on
F23 and φ((0, 0)) = 1, φ((0, 1)) = α3, φ((1, 0)) = α6, φ((1, 1)) = α5 (α is a primitive element of F23). Then
a natural question is whether one can generalize it to construct differentially 6-uniform (m+ 2,m)-function
with m > 3. We get a negative conclusion according to the following corollary.

Corollary 3.2: Let m > 2k be an integer. Consider the function F : Fm+k
2 → F2m in the form F (x, z) =

φ(z)I(x), where φ(z) : Fk2 → F2m and I(x) is the (m,m)-Inverse function. Then the differential uniformity
∆ of F satisfies: ∆ ≥ 2k+1.
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Proof: Assume that the differential uniformity of F (x, z) = φ(z)I(x) is less than 2k+1. Then it follows
from Proposition 3.1 that φ(z) is an injection, φ(z) 6= 0 for any z ∈ Fk2 and for any d ∈ Fk2 , t ∈ F∗2m ,

2k+1 > ∆ ≥ 2k+1 − 2#

{
z ∈ Fk2

∣∣∣∣Trm

(
φ(z)t

(t+ φ(z) + φ(z + d))2

)
= 1

}
−#{z ∈ Fk2|t = φ(z) + φ(z + d)}+ #{z ∈ Fk2|t = φ(z)}+ #{z ∈ Fk2|t = φ(z + d)}.

Let d = 0. Then #{z ∈ Fk2|t = φ(z) + φ(z + d)} = 0 since t ∈ F∗2m . Thus for any t ∈ F∗2m ,

2k+1 − 2#

{
z ∈ Fk2

∣∣∣∣Trm

(
φ(z)

t

)
= 1

}
+ 2#{z ∈ Fk2|t = φ(z)} < 2k+1.

This means
#

{
z ∈ Fk2

∣∣∣∣Trm

(
φ(z)

t

)
= 1

}
> #{z ∈ Fk2|t = φ(z)} ≥ 0.

Thus for any t ∈ F∗2m , there exists z ∈ Fk2 such that Trm(φ(z)
t ) = 1. Then for any t ∈ F∗2m , there exists

β ∈ Span{φ(z)|z ∈ Fk2} such that Trm(βt ) = 1. This means for any t ∈ F∗2m , 1
t /∈ Span{φ(z)|z ∈ Fk2}⊥,

that is, Rank(Span{φ(z)|z ∈ Fk2}) = m. Thus 2k ≥ m, a contradiction! �
Corollary 3.2 shows that no functions F : Fm+k

2 → F2m in the form F (x, z) = φ(z)I(x) can have
differential uniformity strictly less than 2k+1 when m > 2k. Let k = 2. Then we have ∆F ≥ 8 when
m > 2k = 4. We searched all of the possible φ(z) when m = 3, 4 and found that the example in [6] is the
only differentially 6-uniform (m + 2,m)-function in this form up to CCZ-equivalence. Then we have the
following corollary.

Proposition 3.3: Let m be an integer. The example in [6] is the only differentially 6-uniform (m+2,m)-
function in the form F (x, z) = φ(z)I(x) up to CCZ-equivalence, where φ(z) : F2

2 → F2m and I(x) is the
(m,m)-Inverse function.

Remark 3.4: We also searched all possible (5, 3)-functions in the form F (x, z) = φ(z)H(x), where
φ(z) is any (3, 2)-function and H(x) is any (3, 3)-function. Unfortunately, the example in [6] is the only
differentially 6-uniform function up to CCZ-equivalence.

IV. INFINITE FAMILIES OF LOW DIFFERENTIAL UNIFORMITY (m+ k,m)-FUNCTIONS IN THE FORM

F (x, z) = φ(z)I(x)

A. An infinite family of (2m− 1,m)-functions achieving Nyberg’s bound

In this subsection, low differential uniformity (m+ k,m)-functions in the form F (x, z) = φ(z)I(x) with
k = m−1 are investigated. We construct an infinite family of differentially ∆-uniform (2m−1,m)-functions
in the form F (x, z) = φ(z)I(x) achieving Nyberg’s bound and prove it with the help of Proposition 3.1.

Proposition 4.1: Let m ≥ 2 be an integer. Consider the function F : F2m−1
2 → F2m in the form F (x, z) =

φ(z)I(x). Here I(x) is the (m,m)-Inverse function and φ : Fm−1
2 → F2m is affine with Rank{φ(z)|z ∈

Fm−1
2 } = m. Then F is a differentially ∆-uniform function with ∆ = 2m−1 + 2.

Proof: Since φ(z) is affine, let φ(z) = L(z)+ c1, where L(z) : Fm−1
2 → F2m is a linear function, c1 ∈ F2m

is a constant. Further, with Rank{φ(z)|z ∈ Fm−1
2 } = m, we know that {φ(z)|z ∈ Fm−1

2 } cannot be a vector
space and cannot be an affine space of dimension less than m− 1. This means φ(z) is an injection and it
does not vanish for any z ∈ Fm−1

2 . Then we only need to verify the last condition in Proposition 3.1, that
is, for any d ∈ Fm−1

2 , t ∈ F∗2m ,

2m−1 + 2 ≥ 2m − 2#

{
z ∈ Fm−1

2

∣∣∣∣Trm

(
φ(z)t

(t+φ(z)+φ(z+d))2

)
= 1

}
−#{z ∈ Fm−1

2 |t = φ(z) + φ(z + d)}+ #{z ∈ Fm−1
2 |t = φ(z)}+ #{z ∈ Fm−1

2 |t = φ(z + d)}.
(3)
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If t+L(d) = 0, then {z ∈ Fm−1
2 |t = φ(z)+φ(z+d)} = {z ∈ Fm−1

2 |t = L(d)} = 2m−1. Hence (3) holds
in this case clearly. Thus we only need to consider the case d ∈ Fm−1

2 , t ∈ F∗2m satisfying t+ L(d) 6= 0.
Since Rank{φ(z)|z ∈ Fm−1

2 } = m, γ /∈ Span{φ(z)|z ∈ Fm−1
2 }⊥ holds for any γ ∈ F∗2m . This means for

any γ ∈ F∗2m , there exists β ∈ Span{φ(z)|z ∈ Fm−1
2 } such that Trm(γβ) = 1. It is equivalent to say that,

for any γ ∈ F∗2m , there exists z ∈ Fm−1
2 such that Trm(φ(z)γ) = 1.

For any d ∈ Fm−1
2 , t ∈ F∗2m satisfying t+L(d) 6= 0, let us apply the observation above with γ = t

(t+L(d))2 .

Then there exists z ∈ Fm−1
2 such that Trm( φ(z)t

(t+L(d))2 ) = 1.
According to Fact 1, we have

2m−2 ≤ #

{
z ∈ Fm−1

2

∣∣∣∣Trm

(
φ(z)t

(t+ L(d))2

)
= 1

}
= #

{
z ∈ Fm−1

2

∣∣∣∣Trm

(
φ(z)t

(t+ φ(z) + φ(z + d))2

)
= 1

}
.

It is clear that for any d ∈ Fm−1
2 , t ∈ F∗2m ,

#{z ∈ Fm−1
2 |t = φ(z)}+ #{z ∈ Fm−1

2 |t = φ(z + d)} ≤ 2

and
#{z ∈ Fm−1

2 |t = φ(z) + φ(z + d)} ≥ 0.

Thus for any d ∈ Fm−1
2 , t ∈ F∗2m satisfying t+ L(d) 6= 0,

2m − 2#

{
z ∈ Fm−1

2

∣∣∣∣Trm

(
φ(z)t

(t+ φ(z) + φ(z + d))2

)
= 1

}
−#{z ∈ Fm−1

2 |t = φ(z) + φ(z + d)}+ #{z ∈ Fm−1
2 |t = φ(z)}+ #{z ∈ Fm−1

2 |t = φ(z + d)}
≤ 2m − 2 ∗ 2m−2 − 0 + 2 = 2m−1 + 2.

All in all, ∆ ≤ 2m−1 + 2 according to Proposition 3.1. According to Nyberg’s results [18], F can not be
PN function, thus ∆ = 2m−1 + 2. �

Define the vectorial function φ(z) = (z, 1), where z ∈ Fm−1
2 . The image set of φ(z) is F2m−1 × F2,

which is isomorphic to F2m as an m-dimensional vector space. It is clear that φ : Fm−1
2 → F2m is affine

and Rank{φ(z)|z ∈ Fm−1
2 } = m. Then we have the following construction according to Proposition 4.1,

which gives the first infinite family of (m+ k,m)-functions with m > k ≥ 2 achieve Nyberg’s bound.
Construction 1: Let m ≥ 2 be an integer. Consider the function F : F2m−1

2 → F2m in the form F (x, z) =
φ(z)I(x). Here I(x) is the (m,m)-Inverse function and φ(z) = (z, 1), where the image set of φ(z) is
F2m−1 × F2. Then F is a differentially ∆-uniform function with ∆ = 2m−1 + 2.

At the end of this subsection, we discuss the other cryptographic and combinatorial properties of Construc-
tion 1. We prove that every function from Construction 1, whose differential uniformity achieves Nyberg’s
bound, also has quite high nonlinearity and not too low algebraic degree. Moreover, we prove that it is a
balanced vectorial semi-bent function.

We first consider a more general case. Assume that the Maiorana-McFarland bent function F ′(x, z′) =
π(x)L′(z′) + h(x), where L′ : Fm2 → F2m is a linear bijection, π : Fm2 → F2m is a bijection and h is any
function from Fm2 to F2m . If we restrict Maiorana-McFarland bent function by taking the last coordinate of
the input variables zero and delete this coordinate, then we are in the situation of F (x, z) = I(x)φ(z)+h(x),
where φ is a linear (m− 1,m)-function whose image is a linear hyperplane of F2m . The following lemma
indicates that all these (2m − 1,m)-functions obtained by deleting one coordinate from the Maiorana-
McFarland bent function are vectorial semi-bent function with high nonlinearity.
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Lemma 4.2: Let m ≥ 2 be an integer. We define the function F : F2m−1
2 → F2m in the form

F (x, z) = π(x)L(z) + h(x),

where π : Fm2 → F2m is a bijection, L : Fm−1
2 → F2m is a linear injection and h is any function from Fm2

to F2m . Then F is a vectorial semi-bent function and NL(F ) = 22m−2 − 2m−1.
Proof: For any v ∈ F∗2m , u ∈ F2m−1

2 , assume that u1 ∈ Fm2 , u2 ∈ Fm−1
2 satisfy (u1, u2) = u, we have

FW(u, v) =
∑

(x,z)∈F2m−1
2

(−1)Trm(vF (x,z))+u·(x,z)

=
∑

x∈Fm
2 ,z∈Fm−1

2

(−1)Trm(vh(x))+Trm(vπ(x)L(z))+u1·x+u2·z

=
∑

x∈Fm
2 ,z∈Fm−1

2

(−1)Trm(vh(x))+u1·x+L∗(vπ(x)+u2)·z

=
∑
x∈Fm

2

(−1)Trm(vh(x))+u1·x

 ∑
z∈Fm−1

2

(−1)L
∗(vπ(x)+u2)·z

 .

The third equality holds since for any L : Fm−1
2 → F2m , there exists L∗ : F2m → Fm−1

2 such that for any
α ∈ F2m , z ∈ Fm−1

2 , Trm(αL(z)) = L∗(α) · z.
It is clear that L∗(vπ(x) + u2) · z is linear since vπ(x) + u2 can be viewed as a constant up to z. Notice

that L : Fm−1
2 → F2m is a linear injection, then

∑
z∈Fm−1

2

(−1)L
∗(vπ(x)+u2)·z is 2m−1 if vπ(x)+u2 ∈ {L(z)|z ∈

Fm−1
2 }⊥ and it is 0 otherwise. Hence for any v ∈ F∗2m , u ∈ F2m−1

2 ,

FW(u, v) = 2m−1
∑

vπ(x)+u2∈{L(z)|z∈Fm−1
2 }⊥

(−1)Trm(vh(x)+u1x) ∈ {0,±2m}.

The last step holds since π(x) is a bijection and dim({L(z)|z ∈ Fm−1
2 }⊥) = 1.

Thus F is a vectorial semi-bent function and

NL(F ) = 22m−2 − 1

2
max

v∈F∗2m ,u∈F
2m−1
2

|
∑

(x,z)∈F2m−1
2

(−1)Trm(vF (x,z))+u·(x,z)| = 22m−2 − 2m−1.

The proof is complete. �
The differential uniformity of functions in Lemma 4.2 are at most 2m in general but not 2m−1 +2, except

in some very delicately chosen I . We will discuss it in the last section. It is clear that those functions from
Construction 1 are the particular cases of Lemma 4.2 with π(x) = I(x), h(x) = (0, 1)I(x) and L(z) = (z, 0),
where (0, 1) and (z, 0) are elements in F2m−1×F2, which is isomorphic to F2m . Then we have the following
proposition.

Proposition 4.3: Let m ≥ 2 be an integer and F : F2m−1
2 → F2m in the form F (x, z) = φ(z)I(x), where

I(x) is the (m,m)-Inverse function and φ(z) = (z, 1). Then F is an infinite family of (2m−1,m)-functions
with differential uniformity 2m−1 + 2, nonlinearity 22m−2− 2m−1 and algebraic degree m. Moreover, these
functions are balanced vectorial semi-bent functions.
Proof: Since the algebraic degree of the Inverse function I(x) is m− 1 and the affine function φ(z) is 1,
the algebraic degree of (2m− 1,m)-function F (x, z) = φ(z)I(x) is m according to the definition.
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Notice that for any v ∈ F∗2m ,

FW(0, v) =
∑

(x,z)∈F2m−1
2

(−1)Trm(vF (x,z))

=
∑

z∈Fm−1
2

∑
x∈Fm

2

(−1)Trm(vφ(z)I(x))


=

∑
z∈Fm−1

2

0 = 0.

The last step holds since I(x) is a bijection and vφ(z) does not vanish, then all component functions of F
are balanced.

According to Proposition 4.1 and Lemma 4.2, Construction 1 builds an infinite family of (2m − 1,m)-
functions with the lowest differential uniformity 2m−1 + 2, high nonlinearity 22m−2−2m−1 and not too low
algebraic degree m. Moreover, these constructions are balanced vectorial semi-bent functions.

B. Differentially 4-uniform (m+ 1,m)-functions lead to differentially 4-uniform permutations

In this section, we investigate low differential uniformity (m + k,m)-functions in the form F (x, z) =
φ(z)I(x) with k = 1. We discuss an infinite family of differentially 4-uniform (m + 1,m)-functions with
the help of Proposition 3.1, which leads to many differentially 4-uniform permutations.

Proposition 4.4: Let m ≥ 2 be an integer. For any element c ∈ F2m \ {0, 1} such that Trm(c) =
Trm(1

c ) = 1, we define the function F : Fm+1
2 → F2m in the form F (x, z) = φ(z)I(x), where I(x) is the

(m,m)-Inverse function and φ(z) = (c− 1)z + 1 is from F2 to F2m . Then F is a differentially 4-uniform
function.
Proof: It follows from c ∈ F2m \ {0, 1} that Conditions 1 and 2 in Proposition 3.1 are satisfied. We only
need to verify Condition 3, which is equivalent to

0 ≤ 2#

{
z ∈ F2

∣∣∣∣Trm

(
φ(z)t

(t+φ(z)+φ(z+d))2

)
= 1

}
+ #{z ∈ F2|t = φ(z) + φ(z + d)}

−#{z ∈ F2|t = φ(z)} −#{z ∈ F2|t = φ(z + d)}
(4)

for any d ∈ F2, t ∈ F∗2m . The proof is divided into two cases.
Case 1: d = 1. Notice that φ(z) = (c− 1)z + 1, then (4) reduce to

2#

{
z ∈ F2

∣∣∣∣Trm

(
φ(z)t

(t+ φ(z) + φ(z + d))2

)
= 1

}
+ #{z ∈ F2|t = φ(z) + φ(z + d)}

−#{z ∈ F2|t = φ(z)} −#{z ∈ F2|t = φ(z + d)}

= 2#

{
z ∈ F2

∣∣∣∣Trm

(
φ(z)t

(t+ c− 1)2

)
= 1

}
+ #{z ∈ F2|t = c− 1}

−#{z ∈ F2|t = φ(z)} −#{z ∈ F2|t = φ(z + 1)}

= 2#

{
Trm

(
t

(t+ c− 1)2

)
= 1

}
+ 2#

{
Trm

(
ct

(t+ c− 1)2

)
= 1

}
+2#{t = c− 1} − 2#{t = 1} − 2#{t = c}

≥ 0.

Since Trm(c) = Trm(1
c ) = 1, the last step holds when t = 1 or c, (it clearly holds when t 6= 1, c.)
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Case 2: d = 0. Similarly, we have

2#

{
z ∈ F2

∣∣∣∣Trm

(
φ(z)t

(t+ φ(z) + φ(z + d))2

)
= 1

}
+ #{z ∈ F2|t = φ(z) + φ(z + d)}

−#{z ∈ F2|t = φ(z)} −#{z ∈ F2|t = φ(z + d)}

= 2#

{
z ∈ F2

∣∣∣∣Trm

(
φ(z)

t

)
= 1

}
+ #{z ∈ F2|t = 0} − 2#{z ∈ F2|t = φ(z)}

= 2#

{
Trm

(
1

t

)
= 1

}
+ 2#

{
Trm

(c
t

)
= 1
}

+ 2#{t = 0} − 2#{t = 1} − 2#{t = c}

≥ 0,

where the last step holds since Trm(c) = Trm(1
c ) = 1. �

By using the proposition above, one can construct many differentially 4-uniform permutations.
Construction 2: Let m ≥ 2 be an integer. For any element c ∈ F2m \{0, 1} such that Trm(c) = Trm(1

c ) =
1, we define the function F : Fm+1

2 → F2m in the form F (x, z) = φ(z)I(x), where I(x) is the (m,m)-
Inverse function and φ(z) = (c− 1)z + 1 is from F2 to F2m . Then

FP (x) = (φ(z)I(x), f(
x

φ(z)
) + z)

is a differentially 4-uniform (m+ 1,m+ 1)-permutation, where f is an arbitrary Boolean function defined
on F2m .
Proof: For any two elements (x1, z1), (x2, z2) ∈ Fm+1

2 , if z1 = z2 and x1 6= x2, then FP (x1, z1) 6=
FP (x2, z2) since φ(z)I(x) is bijective on F2m no matter z = 0 or 1. If z1 6= z2, then without loss of generality,
we assume that z1 = 0 and z2 = 1. We can see that FP (x1, z1) = FP (x2, z2) leads to I(x1) = cI(x2),
which is equivalent to x2 = cx1. Note that the last coordinate function of FP (x1, z1) is f(x1) and the last
coordinate function of FP (x2, z2) equals f(x2

c ) + 1 = f( cx1

c ) + 1 = f(x1) + 1, which does not equal f(x1).
So FP is an injection. Therefore, FP is a permutation.

Notice that the differential uniformity of the function FP is clearly no more than 4 according to Proposition
4.4. Thus FP is a differentially 4-uniform (m+ 1,m+ 1)-permutation. �

When m is odd, the functions in Construction 2 become the differentially 4-uniform permutations presented
by C.Carlet, D.Tang, X.Tang and Q.Y.Liao. [10, Construction 1], which is proved by the APN property of
the Inverse function on odd dimension. However, Construction 2 shows that FP is also a differentially 4-
uniform (m+ 1,m+ 1)-permutation when m is even, although the Inverse function with even dimension is
not an APN function.

C. More infinite families of (m+ k,m)-functions with low differential uniformity

In this section, low differential uniformity (m + k,m)-functions in the form F (x, z) = φ(z)I(x) with
1 ≤ k ≤ m − 2 are investigated. We present a method to construct more infinite families of (m + k,m)-
functions with low differential uniformity by modifying Construction 1. As an application, we construct
an infinite family of differentially ∆-uniform (2m − 2,m)-functions in the form F (x, z) = φ(z)I(x) with
∆ ≤ 2m−1 − 2m−6 + 2.

The following proposition introduce a method to construct more infinite families of (m+k,m)-functions
with low differential uniformity by modifying Construction 1. We place the completed proof in Appendix
A for interested readers.
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Proposition 4.5: Let m, l be positive integers and 1 ≤ k ≤ m−2. Let Ui (1 ≤ i ≤ m−k−1) be disjoint

sets in Fk2 satisfying
m−k−1∑
i=1

#Ui ≤ 2k−2 − l and such that, for any Ui, any element in Fk2 appears at least

2l times in the multiset {∗ z1 + z2|(z1, z2) ∈ Ui × Ui ∗}.
Consider the function F : Fm+k

2 → F2m in the form F (x, z) = φ(z)I(x), where I(x) is the (m,m)-Inverse
function and φ : Fk2 → F2m is defined as

φ(z) =


L(z) + ci, when z ∈ Ui,

L(z) + c0, when z ∈ Fk2 \
m−k−1⋃
i=1

Ui,
(5)

and satisfies Rank{φ(z)|z ∈ Fk2} = m, L : Fk2 → F2m is linear and ci (0 ≤ i ≤ m − k − 1) are constants
in F2m . Then F is a differentially ∆-uniform function with ∆ ≤ 2k+1 − 4l + 2.

In the following construction, we obtain an infinite family of functions satisfying the hypothesis of
Proposition 4.5 with k = m− 2 and l = 2m−8.

Construction 3: Let m ≥ 8 be an integer. Assume that

f(z) = ((z1 + 1)(z2 + 1)(z3 + 1) + 1)((z4 + 1)(z5 + 1)(z6 + 1) + 1) + 1,

where zi, 1 ≤ i ≤ 6 are the first 6 bits of z ∈ Fm−2
2 . Consider the function F : F2m−2

2 → F2m in the form
F (x, z) = φ(z)I(x). Here I(x) is the (m,m)-Inverse function and φ(z) = (z, f(z), f(z) + 1). Then F is a
differentially ∆-uniform function with ∆ ≤ 2m−1 − 2m−6 + 2 and the algebraic degree of F is m+ 5.
Proof: Since the algebraic degree of the Inverse function I(x) is m − 1 and the function φ(z) is 6, the
algebraic degree of (2m− 2,m)-function F (x, z) = φ(z)I(x) is m+ 5 according to the definition.

Let
U1 = {(h1, 0, h3)|h1 ∈ F3

2, h3 ∈ Fm−8
2 }

⋃
{(0, h2, h3)|h2 ∈ F3

2, h3 ∈ Fm−8
2 }

be a set with elements in Fm−2
2 . Then φ(z) can be expressed by

φ(z) =

{
(z, 1, 0), when z ∈ U1;

(z, 0, 1), when z ∈ Fm−2
2 \ U1.

(6)

Further, let k = m−2 and l = 2m−8, and let us take in Proposition 4.5 for linear function L : Fm−2
2 → F2m

the function L(z) = (z, 0, 0) and for constants: c0 = (0, 0, 1), c1 = (0, 1, 0) ∈ F2m . Then we obtain the
function F (x, z) as defined in the present proposition. Then we need to prove the following conditions.
1. #U1 ≤ 2m−4 − 2m−8.
2. Any element in Fm−2

2 appears at least 2m−7 times in the multiset

{∗ z1 + z2|(z1, z2) ∈ U1 × U1 ∗}.

3. Rank{φ(z)|z ∈ Fm−2
2 } = m.

Since {(h1, 0, h3)|h1 ∈ F3
2, h3 ∈ Fm−8

2 }
⋂
{(0, h2, h3)|h2 ∈ F3

2, h3 ∈ Fm−8
2 } = {(0, 0, h3)|h3 ∈ Fm−8

2 },
we have

#U1 = |Fm−8
2 |(|F3

2|+ |F3
2| − 1) = 15× 2m−8 = 2m−4 − 2m−8,

which means Condition 1 holds.



14

For any h ∈ Fm−2
2 , let h = (h′1, h

′
2, h
′
3) with h′1, h

′
2 ∈ F3

2 and h′3 ∈ Fm−8
2 . If (h′1, h

′
2) 6= (0, 0), then

h = (h′1, h
′
2, h
′
3) = (h′1, 0, h3) + (0, h′2, h3 + h′3)

= (0, h′2, h3) + (h′1, 0, h3 + h′3),

where h3 is any element in Fm−8
2 . Notice that (h′1, 0) 6= (0, h′2), then any element in this case appears at

least 2m−7 times in the multiset {∗ z1 + z2|(z1, z2) ∈ U1 × U1 ∗}.
If h′1 = h′2 = 0, let h̃ be a non-zero element in Fm−8

2 , then

h = (0, 0, h′3) = (0, 0, h3) + (0, 0, h3 + h′3)

= (0, h̃, h3) + (0, h̃, h3 + h′3),

where h3 is any element in Fm−8
2 . Then any element with h′1 = h′2 = 0 appears at least 2m−7 times in the

multiset above. Thus Condition 2 holds.
Then we focus on Condition 3. According to Condition 2, for any h ∈ Fm−2

2 , there exists z1, z2 ∈ U1

such that h = z1 + z2. Since 0 ∈ U1, we know that (z1, 1, 0), (z2, 1, 0) and (0, 1, 0) ∈ {(z, 1, 0)|z ∈ U1}.
Because of

(h, 1, 0) = (z1, 1, 0) + (z2, 1, 0) + (0, 1, 0),

we have (h, 1, 0) ∈ Span{(z, 1, 0)|z ∈ U1} for any h ∈ Fm−2
2 , that is, {(z, 1, 0)|z ∈ Fm−2

2 } ⊆ Span{(z, 1, 0)|z ∈
U1}. Then

Span{(z, 1, 0)|z ∈ Fm−2
2 } ⊆ Span{(z, 1, 0)|z ∈ U1}.

It is clear that Span{(z, 1, 0)|z ∈ U1} ⊆ Span{(z, 1, 0)|z ∈ Fm−2
2 }. Then we have

Span{(z, 1, 0)|z ∈ U1} = Span{(z, 1, 0)|z ∈ Fm−2
2 }. (7)

Moreover, let g = (0, 0, 1, 0, 0, 1, 0), g′ = (0, 1, 0, 0, 1, 0, g3), g′′ = (0, 1, 1, 0, 1, 1, g3), where g3 is an
arbitrary element in Fm−8

2 . Then g, g′, g′′ ∈ Fm−2
2 \U1 and (0, 0, 1) = (g, 0, 1) + (g′, 0, 1) + (g′′, 0, 1). This

means
(0, 0, 1) ∈ Span{(z, 0, 1)|z ∈ Fm−2

2 \ U1}. (8)

Then we have

Rank{φ(z)|z ∈ Fm−2
2 }

= Rank({(z, 0, 1)|z ∈ Fm−2
2 \ U1} ∪ {(z, 1, 0)|z ∈ U1})

= Rank(Span{(z, 0, 1)|z ∈ Fm−2
2 \ U1} ∪ Span{(z, 1, 0)|z ∈ U1})

≥ Rank({(0, 0, 1)} ∪ Span{(z, 1, 0)|z ∈ U1})
= Rank({(0, 0, 1)} ∪ Span{(z, 1, 0)|z ∈ Fm−2

2 })
= m,

according to (7) and (8). Thus Rank{φ(z)|z ∈ Fm−2
2 } = m according to φ(z) : Fm−2

2 → F2m , which means
Condition 3 holds.

Then F is a differentially ∆-uniform function with ∆ ≤ 2m−1 − 2m−6 + 2 according to Proposition 4.5
and the algebraic degree of F is m+ 5. �

Remark 4.6: We calculated by Magma [4] that when m = 8, Construction 3 builds a (14, 8)-function
with differential uniformity 114 (which is much less than 126, the upper bound calculated by Construction
3 when m = 8), nonlinearity 7954 and algebraic degree 13 (which achieves the upper bound).

Remark 4.7: We also found some (2m − 2,m)-functions with low differential uniformity in the form
F (x, z) = φ(z)I(x) when m = 5, 6, 7 by Magma. We list their specific forms in Appendix B and leave it
open to generalize them.
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V. MORE DISCUSSIONS

In this section, we discuss the possibility of constructing functions achieving Nyberg’s bound by Maiorana-
McFarland bent functions or almost bent functions. The results show the difficulty of constructing functions
achieving Nyberg’s bound.

All of the functions in Lemma 4.2, which are obtained by deleting one coordinate from the Maiorana-
McFarland bent function, are vectorial semi-bent function with high nonlinearity. Then a natural question is
how are the differential uniformity of these functions. Let us begin with a more general case. Assume that
the Maiorana-McFarland bent function F ′(x, z′) = π(x)L′(z′) + h(x), where L′ : Fm2 → F2m is a linear
bijection, π : Fm2 → F2m is a bijection and h is any function from Fm2 to F2m . Let z0 be the last m − k
coordinates of input variables z′ = (z, z0), where 1 ≤ k ≤ m− 1. If we restrict the function by taking all
the last m − k coordinates of input variables of z′ zero, and delete these coordinates, then we are in the
situation of F (x, z) = I(x)φ(z) + h(x), where φ is a linear (k,m)-function.

Remark 5.1: Let m ≥ 2 and m− 1 ≥ k ≥ 1 be integers. We define the function F : Fm+k
2 → F2m in the

form
F (x, z) = π(x)L(z) + h(x),

where π : Fm2 → F2m is a bijection, L : Fk2 → F2m is a linear injection and h is any function from Fm2
to F2m . Assume that the differential uniformity of F (x, z) is ∆. Then for any ā ∈ Fm+k∗

2 , b ∈ F2m with
ā = (a, d), where a ∈ F2m , d ∈ Fk2 , the following equation needs to have at most ∆ solutions.

(π(x) + π(x+ a))L(z) + π(x+ a)L(d) + h(x) + h(x+ a) = b. (9)

In the case a = 0, we have π(x)L(d) = b, then (9) have at most 2k solutions since π(x) is a bijection. In
the case a 6= 0, then we have

L(z) =
π(x+ a)L(d) + h(x) + h(x+ a) + b

π(x) + π(x+ a)
.

Notice that L(z) is a linear injection, then the number of the solutions is no more than 2m. All in all, the
differential uniformity of F (x, z) = π(x)L(z) + h(x) is no more than 2m in general.

Remark 5.1 shows an upper bound of the differential uniformity of those functions obtained by deleting
coordinates from the Maiorana-McFarland bent function. However, the case a 6= 0 is not easy to handle.
Even the case d = 0 makes already problem. Having π APN or differentially 4-uniform may help, but does
not suffice since the choice of linear function L is also sensitive. The following remark indicates that this
general upper bound can not be improved.

Remark 5.2: Let m ≥ 2 and 1 ≤ k ≤ m− 1 be integers. For F (x) = xφ(z), where x ∈ F2m and z ∈ Fk2
and where φ(z) can be any function from Fk2 to F2m , we have

Da,dF (x, z) = xφ(z) + (x+ a)φ(z + d) = x(φ(z) + φ(z + d)) + aφ(z + d).

Hence, for d = 0 and a 6= 0, the equation Da,bF (x, z) = b has 2m solutions for each choice of z such that
φ(z) = b

a and the differential uniformity of F cannot be better than 2m.
For the case k = m − 1, these functions will have differential uniformity at most 2m but not 2m−1 + 2

in general, except in some very delicately chosen I . For the case 1 ≤ k ≤ m − 2, the upper bound of the
differential uniformity of these functions is worse then the known upper bound 2k+1 and these functions
are also no longer semi-bent functions in general. Further more, the example in [6] is the only differentially
6-uniform (5, 3)-function up to CCZ-equivalence according to Remark 3.4. All in all, we see that the
Maiorana-McFarland construction does not allow to build easily functions achieving Nyberg’s bound.
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Another interesting question here is whether replacing I(x) by other permutations with good cryptographic
properties may also achieve Nyberg’s bound, especially by an almost bent function, for odd m. Here we
consider the simplest case of quadratic AB functions, e.g. x3.

Remark 5.3: Assume that the differential uniformity of F (x, z) = x3φ(z) is 2k + 2. Then for any ā ∈
Fm+k∗

2 , b ∈ F2m with ā = (a, d), where a ∈ F2m , d ∈ Fk2 , the following equation needs to have at most
2k + 2 solutions

(φ(z) + φ(z + d))x3 + φ(z + d)(ax2 + a2x+ a3) = b. (10)

Considering the special case b = 0, a = 0, d 6= 0 and b = 0, a 6= 0, d = 0, we have that φ(z) is an injection
and φ(z) 6= 0 for any z ∈ Fk2 .
In the case d = 0, (10) becomes x2 + ax+ a2 + b

aφ(z) = 0, then we have∑
z∈Fk

2

#{x ∈ F2m |Trn1 (1 + b
a3φ(z)) = 0} ≤ 2k + 2. (11)

In the case d 6= 0, then φ(z) + φ(z + d) 6= 0 since φ(z) is an injection. Let us denote ξ = φ(z+d)
φ(z)+φ(z+d) and

replace x by a(y + ξ). Then (10) becomes

y3 + (ξ2 + ξ)y + ξ2 + ξ + u
a3(φ(z)+φ(z+d)) = 0. (12)

Considering (12) as a cubic equation in y, according to Theorem 2.2, it has a unique solution in F2n if
and only if

Trn1

 ( φ(z+d)
φ(z)+φ(z+d) + 1)3( φ(z+d)

φ(z)+φ(z+d))3

( φ(z+d)
φ(z)+φ(z+d))4 + ( φ(z+d)

φ(z)+φ(z+d))2 + b2

a6(φ(z)+φ(z+d))2

+ 1

 = 1.

It seems quite difficult to go further; in particular, the case when (12) has three solutions seems more
complex. Even if it can be simplified in some special case such as when taking φ(z) affine, it is still very
difficult. Assume that φ(z) is affine, then (12) has one solution if and only if

Trn1

 (φ(z+d)
φ(d) + 1)3(φ(z+d)

φ(d) )3

(φ(z+d)
φ(d) )4 + (φ(z+d)

φ(d) )2 + b2

a6(φ(d))2

+ 1

 = 1.

We see that handling the inverse function is much simpler.
We also made computer experiment for the case that I(x) is replaced by an almost bent function, for odd

m. We searched all possible (9, 5)-functions in the form F (x, z) = x3φ(z), where (5, 4)-function φ(z) is
affine. None of them achieves the Nyberg’s bound. We leave it open to construct low differential uniformity
functions with AB functions.

VI. CONCLUDING REMARKS

Little theoretical work has been done on (n,m)-functions when n
2 < m < n. In this paper, a characteri-

zation of the differential uniformity of those (n,m)-functions of the form F (x, z) = φ(z)I(x) is presented,
where I(x) is the (m,m)-Inverse function and φ(z) is an (n−m,m)-function. Using this characterization,
we construct an infinite family of differentially ∆-uniform (2m − 1,m)-functions with m ≥ 3 achieving
Nyberg’s bound with equality. Then we present a method to construct infinite families of (m + k,m)-
functions with low differential uniformity and construct an infinite family of (2m − 2,m)-functions with
∆ ≤ 2m−1 − 2m−6 + 2 for any m ≥ 8. We also study an infinite family of differentially 4-uniform
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(m + 1,m)-functions in this form, which leads to many differentially 4-uniform permutations. The newly
obtained functions may provide more choices in Feistel ciphers. For further research, it is interesting to
find other constructions of differentially ∆-uniform (m + k,m)-functions with m > k ≥ 2,m 6= 3 and
∆ < 2k+1. A more important challenge is whether a differentially 6-uniform (m+ 2,m)-function exists or
not.
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VIII. APPENDIX

A. Completed proof of Proposition 5.1

Proposition 5.1: Let m, l be positive integers and 1 ≤ k ≤ m− 2. Let Ui (1 ≤ i ≤ m−k− 1) be disjoint

sets in Fk2 satisfying
m−k−1∑
i=1

#Ui ≤ 2k−2 − l and such that, for any Ui, any element in Fk2 appears at least

2l times in the multiset {∗ z1 + z2|(z1, z2) ∈ Ui × Ui ∗}.
Consider the function F : Fm+k

2 → F2m in the form F (x, z) = φ(z)I(x), where I(x) is the (m,m)-Inverse
function and φ : Fk2 → F2m is defined as

φ(z) =


L(z) + ci, when z ∈ Ui,

L(z) + c0, when z ∈ Fk2 \
m−k−1⋃
i=1

Ui,
(13)

and satisfies Rank{φ(z)|z ∈ Fk2} = m, L : Fk2 → F2m is linear and ci (0 ≤ i ≤ m − k − 1) are constants
in F2m . Then F is a differentially ∆-uniform function with ∆ ≤ 2k+1 − 4l + 2.

Proof: Let U0 = Fk2 \
m−k−1⋃
i=1

Ui. According to the conditions on φ(z) and the fact that {L(z)|z ∈ Fk2} is a

vector space, we have

m = Rank{φ(z)|z ∈ Fk2}

= Rank

(
m−k−1⋃
i=0

{L(z) + ci|z ∈ Ui}

)

≤ Rank

(
m−k−1⋃
i=0

{L(z) + ci|z ∈ Fk2}

)
≤ Rank(Span({L(z)|z ∈ Fk2} ∪ {ci|0 ≤ i ≤ m− k − 1})).

The last step holds since for any i, {L(z) + ci|z ∈ Fk2} ⊆ Span({L(z)|z ∈ Fk2} ∪ ci). It is clear that the
span of a set does not change its rank, then

m ≤ Rank(Span({L(z)|z ∈ Fk2} ∪ {ci|0 ≤ i ≤ m− k − 1}))
= Rank({L(z)|z ∈ Fk2} ∪ {ci|0 ≤ i ≤ m− k − 1})
= Rank({L(z)|z ∈ Fk2} ∪ Span{ci|0 ≤ i ≤ m− k − 1})
= Rank{L(z)|z ∈ Fk2}+ Rank(Span{ci|0 ≤ i ≤ m− k − 1})
−Rank({L(z)|z ∈ Fk2} ∩ Span{ci|0 ≤ i ≤ m− k − 1})

≤ k + (m− k)− 0 = m.

Thus the last inequality is an equality, we have

Rank{L(z)|z ∈ Fk2} = k, (14)

Rank(Span{ci|0 ≤ i ≤ m− k − 1}) = m− k, (15)

and
Rank({L(z)|z ∈ Fk2} ∩ Span{ci|0 ≤ i ≤ m− k − 1}) = 0. (16)

For one thing, ci 6= 0 because of (15) for any 0 ≤ i ≤ m − k − 1. Moreover, according to (16), we have
ci /∈ {L(z)|z ∈ Fk2} for any 0 ≤ i ≤ m − k − 1, which means φ(z) does not vanish for any z ∈ Fk2 . For
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another, assume that there exists zi1 6= zi2 ∈ Fk2 such that φ(zi1) = φ(zi2), then L(zi1)+ci1 = L(zi2)+ci2 . If
ci1 = ci2 , notice that L(z) is a linear injection according to (14), then zi1 = zi2 , a contradiction. If ci1 6= ci2 ,
then 0 6= ci1 + ci2 ∈ {L(z)|z ∈ Fk2}. According to (16), then ci1 + ci2 /∈ Span{ci|0 ≤ i ≤ m − k − 1}, a
contradiction. Thus φ(z) is an injection. Then we only need to verify the last condition in Proposition 3.1,
that is, for any d ∈ Fk2 , t ∈ F∗2m ,

2k+1 − 4l + 2 ≥ 2k+1 − 2#

{
z ∈ Fk2

∣∣∣∣Trm

(
φ(z)t

(t+φ(z)+φ(z+d))2

)
= 1

}
−#{z ∈ Fk2|t = φ(z) + φ(z + d)}+ #{z ∈ Fk2|t = φ(z)}+ #{z ∈ Fk2|t = φ(z + d)}.

(17)

Notice that Ui (1 ≤ i ≤ m − k − 1) are disjoint sets satisfying
m−k−1∑
i=1

#Ui ≤ 2k−2 − l, then #U0 ≥

2k − (2k−2 − l) = 3 ∗ 2k−2 + l, we have for any d ∈ Fk2 ,

#{z|z, z + d ∈ U0} ≥ 2k−1 + 2l. (18)

The reason of (18) is

#{z|z, z + d ∈ U0}
= #({z|z ∈ U0}

⋂
{z|z + d ∈ U0})

= #{z|z ∈ U0}+ #{z|z + d ∈ U0} −#({z|z ∈ U0}
⋃
{z|z + d ∈ U0})

≥ #{z|z ∈ U0}+ #{z|z + d ∈ U0} −#{z|z ∈ Fk2}
= 2#U0 − 2k

≥ 2k−1 + 2l.

For any d ∈ Fk2 and t ∈ F∗2m , if t+L(d) = 0, notice that φ(z) = L(z) + c0 for any z ∈ U0, then we have

#{z ∈ Fk2|t = φ(z) + φ(z + d)}
≥ #{z|z, z + d ∈ U0, t = φ(z) + φ(z + d)}
= #{z|z, z + d ∈ U0}
≥ 2k−1 + 2l.

Then (17) holds in this case since

2k+1 − 2#

{
z ∈ Fk2

∣∣∣∣Trm

(
φ(z)t

(t+ φ(z) + φ(z + d))2

)
= 1

}
− #{z ∈ Fk2|t = φ(z) + φ(z + d)}+ #{z ∈ Fk2|t = φ(z)}+ #{z ∈ Fk2|t = φ(z + d)}
≤ 2k+1 − 2× 0−#{z ∈ Fk2|t = φ(z) + φ(z + d)}+ 1 + 1

≤ 2k+1 − (2k−1 + 2l) + 2

≤ 2k+1 − 4l + 2,

the last step follows from 0 ≤ #U ≤ 2k−2 − l. Thus we only need to consider the case d ∈ Fk2 , t ∈ F∗2m

satisfying t+ L(d) 6= 0.
Since Rank{φ(z)|z ∈ Fk2} = m leads to Span{φ(z)|z ∈ Fk2}⊥ = {0}, we have γ /∈ Span{φ(z)|z ∈ Fk2}⊥

for any γ ∈ F∗2m . Hence, for any γ ∈ F∗2m , there exists β ∈ Span{φ(z)|z ∈ Fk2} such that Trm(γβ) = 1.
That is, for any γ ∈ F∗2m , there exists z ∈ Fk2 such that Trm(φ(z)γ) = 1.
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For any d ∈ Fk2 and t ∈ F∗2m satisfying t + L(d) 6= 0, t
(t+L(d))2 does not vanish and the mappings

z → (L(z)+ci)t
(t+L(d))2 are affine functions since L(z) is linear, where 0 ≤ i ≤ m − k − 1. Let us apply the

observation above with γ = t
(t+L(d))2 . Then there exists z0 ∈ Fk2 such that Trm

(
φ(z0)t

(t+L(d))2

)
= 1. The rest

of the proof is divided into two cases z0 ∈ U0 and z0 /∈ U0.
Case 1: z0 ∈ U0.
Then φ(z0) = L(z0) + c0. Since there exists z ∈ Fk2 such that Trm

(
(L(z)+c0)t
(t+L(d))2

)
= 1 and z → (L(z)+c0)t

(t+L(d))2

is an affine function, we can apply Fact 1 and we deduce:

#

{
z ∈ Fk2

∣∣∣∣Trm

(
(L(z) + c0)t

(t+ L(d))2

)
= 1

}
≥ 2k−1. (19)

In this case, we will only consider those z satisfying z, z + d ∈ U0. Then

Trm

(
φ(z)t

(t+ φ(z) + φ(z + d))2

)
= Trm

(
(L(z) + c0)t

(t+ L(d))2

)
for these z.

Further, for any d ∈ Fk2 and t ∈ F∗2m satisfying t+ L(d) 6= 0, we have

2k+1 − 2#

{
z ∈ Fk2

∣∣∣∣Trm

(
φ(z)t

(t+ φ(z) + φ(z + d))2

)
= 1

}
−#{z ∈ Fk2|t = φ(z) + φ(z + d)}+ #{z ∈ Fk2|t = φ(z)}+ #{z ∈ Fk2|t = φ(z + d)}

≤ 2k+1 − 2#

{
z

∣∣∣∣z, z + d ∈ U0,Trm

(
φ(z)t

(t+ φ(z) + φ(z + d))2

)
= 1

}
− 0 + 1 + 1

= 2k+1 − 2#

{
z

∣∣∣∣z, z + d ∈ U0,Trm

(
(L(z) + c0)t

(t+ L(d))2

)
= 1

}
+ 2

= 2k+1 − 2#

(
{z|z, z + d ∈ U0}

⋂{
z ∈ Fk2

∣∣∣∣Trm

(
(L(z) + c0)t

(t+ L(d))2

)
= 1

})
+ 2

= 2k+1 − 2#{z|z, z + d ∈ U0} − 2#

{
z ∈ Fk2

∣∣∣∣Trm

(
(L(z) + c0)t

(t+ L(d))2

)
= 1

}
+ 2#

(
{z|z, z + d ∈ U0}

⋃{
z ∈ Fk2

∣∣∣∣Trm

(
(L(z) + c0)t

(t+ L(d))2

)
= 1

})
+ 2

≤ 2k+1 − 2#{z|z, z + d ∈ U0} − 2#

{
z ∈ Fk2

∣∣∣∣Trm

(
(L(z) + c0)t

(t+ L(d))2

)
= 1

}
+ 2#{z ∈ Fk2}+ 2

≤ 2k+1 − 2(2k−1 + 2l)− 2k + 2k+1 + 2

= 2k+1 − 4l + 2.

The last inequality follows from (18) and (19).
Case 2: z0 /∈ U0.
Then there exists 1 ≤ i ≤ m − k − 1 such that z0 ∈ Ui. Thus φ(z0) = L(z0) + ci, which means there

exists z ∈ Fk2 such that Trm

(
(L(z)+ci)t
(t+L(d))2

)
= 1. Since z → (L(z)+ci)t

(t+L(d))2 is an affine function, we have

#

{
z ∈ Fk2

∣∣∣∣Trm

(
(L(z) + ci)t

(t+ L(d))2

)
= 1

}
= 2k−1 or 2k,

according to Fact 1. The rest of the proof is divided into two subcases.
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Subcase 2.1: #

{
z ∈ Fk2

∣∣∣∣Trm

(
(L(z)+ci)t
(t+L(d))2

)
= 1

}
= 2k−1.

Then
#

{
z ∈ Fk2

∣∣∣∣Trm

(
(L(z) + ci)t

(t+ L(d))2

)
= 0

}
= 2k−1.

This means

#

{
z ∈ Fk2

∣∣∣∣Trm

(
(L(z) + c0)t

(t+ L(d))2

)
= 1

}
= #

{
z ∈ Fk2

∣∣∣∣Trm

(
(L(z) + ci)t

(t+ L(d))2

)
= Trm

(
(c0 + ci)t

(t+ L(d))2

)
+ 1

}
= 2k−1

no matter constant Trm

(
(c0+ci)t

(t+L(d))2

)
+ 1 equals 0 or 1.

Notice that both (18) and (19) also hold in this subcase; similar to Case 1, we only consider those z
satisfying z, z + d ∈ U0. Then

Trm

(
φ(z)t

(t+ φ(z) + φ(z + d))2

)
= Trm

(
(L(z) + c0)t

(t+ L(d))2

)
for these z.

Thus for any d ∈ Fk2 and t ∈ F∗2m satisfying t+ L(d) 6= 0,

2k+1 − 2#

{
z ∈ Fk2

∣∣∣∣Trm

(
φ(z)t

(t+ φ(z) + φ(z + d))2

)
= 1

}
−#{z ∈ Fk2|t = φ(z) + φ(z + d)}+ #{z ∈ Fk2|t = φ(z)}+ #{z ∈ Fk2|t = φ(z + d)}

≤ 2k+1 − 4l + 2.

for the same reason as in Case 1.
Subcase 2.2: #

{
z ∈ Fk2

∣∣∣∣Trm

(
(L(z)+ci)t
(t+L(d))2

)
= 1

}
= 2k.

Then for any z ∈ Fk2 , Trm

(
(L(z)+ci)t
(t+L(d))2

)
= 1. In this subcase, we will only consider those z satisfying

z, z + d ∈ Ui, then for these z, we have

Trm

(
φ(z)t

(t+ φ(z) + φ(z + d))2

)
= Trm

(
(L(z) + ci)t

(t+ L(d))2

)
.

Since for any d ∈ Fk2 appears at least 2l times in the multiset {∗ z1 + z2|(z1, z2) ∈ Ui × Ui ∗} for any
Ui, then there are at least 2l different z1 ∈ Ui such that z2 = z1 + d ∈ Ui. This means for any d ∈ Fk2 ,

#{z|z, z + d ∈ Ui} ≥ 2l.

Thus for any d ∈ Fk2 and t ∈ F∗2m satisfying t+ L(d) 6= 0, we have

2k+1 − 2#

{
z ∈ Fk2

∣∣∣∣Trm

(
φ(z)t

(t+ φ(z) + φ(z + d))2

)
= 1

}
−#{z ∈ Fk2|t = φ(z) + φ(z + d)}+ #{z ∈ Fk2|t = φ(z)}+ #{z ∈ Fk2|t = φ(z + d)}

≤ 2k+1 − 2#

{
z

∣∣∣∣z, z + d ∈ Ui,Trm

(
φ(z)t

(t+ φ(z) + φ(z + d))2

)
= 1

}
− 0 + 2

= 2k+1 − 2#

{
z

∣∣∣∣z, z + d ∈ Ui,Trm

(
(L(z) + ci)t

(t+ L(d))2

)
= 1

}
+ 2

= 2k+1 − 2#{z|z, z + d ∈ Ui}+ 2

≤ 2k+1 − 4l + 2.

All in all, ∆ ≤ 2k+1 − 4l + 2 according to Proposition 3.1. �
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B. Appendix B

A differentially 14-uniform (8, 5)-function: Let F8,5(x, z) = φ(z)I(x), where I(x) is the Inverse function
on F25 and φ : F3

2 → F25 is presented by Table I:

TABLE I

z (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

φ(z) 1 α α2 α3 α4 α10 α24 α11

where α is a defining element of F25 .
A differentially 30-uniform (10, 6)-function: Let F10,6(x, z) = φ(z)I(x), where I(x) is the Inverse

function on F26 and φ : F4
2 → F26 is presented by Table II:

TABLE II

z (0, 0, 0, 0) (0, 0, 0, 1) (0, 0, 1, 0) (0, 0, 1, 1)

φ(z) 1 α2 + 1 α3 + 1 α3 + α2 + 1

z (0, 1, 0, 0) (0, 1, 0, 1) (0, 1, 1, 0) (0, 1, 1, 1)

φ(z) α4 + 1 α4 + α2 + 1 α4 + α3 + 1 α4 + α3 + α2 + α

z (1, 0, 0, 0) (1, 0, 0, 1) (1, 0, 1, 0) (1, 0, 1, 1)

φ(z) α5 + 1 α5 + α2 + 1 α5 + α3 + 1 α5 + α3 + α2 + α

z (1, 1, 0, 0) (1, 1, 0, 1) (1, 1, 1, 0) (1, 1, 1, 1)

φ(z) α5 + α4 + α α5 + α4 + α2 + 1 α5 + α4 + α3 + 1 α5 + α4 + α3 + α2 + α

where α is a defining element of F26 .
A differentially 58-uniform (12, 7)-function: Let F12,7(x, z) = φ(z)I(x), where I(x) is the Inverse

function on F27 and φ : F5
2 → F27 is presented by Table III:

TABLE III

z (0, 0, 0, 0, 0) (0, 0, 0, 0, 1) (0, 0, 0, 1, 0) (0, 0, 0, 1, 1)

φ(z) 1 α2 + α α3 + 1 α3 + α2 + 1

z (0, 0, 1, 0, 0) (0, 0, 1, 0, 1) (0, 0, 1, 1, 0) (0, 0, 1, 1, 1)

φ(z) α4 + 1 α4 + α2 + 1 α4 + α3 + 1 α4 + α3 + α2 + α

z (0, 1, 0, 0, 0) (0, 1, 0, 0, 1) (0, 1, 0, 1, 0) (0, 1, 0, 1, 1)

φ(z) α5 + α α5 + α2 + α α5 + α3 + 1 α5 + α3 + α2 + α

z (0, 1, 1, 0, 0) (0, 1, 1, 0, 1) (0, 1, 1, 1, 0) (0, 1, 1, 1, 1)

φ(z) α5 + α4 + α α5 + α4 + α2 + 1 α5 + α4 + α3 + α α5 + α4 + α3 + α2 + 1

z (1, 0, 0, 0, 0) (1, 0, 0, 0, 1) (1, 0, 0, 1, 0) (1, 0, 0, 1, 1)

φ(z) α6 + α α6 + α2 + 1 α6 + α3 + 1 α6 + α3 + α2 + 1

z (1, 0, 1, 0, 0) (1, 0, 1, 0, 1) (1, 0, 1, 1, 0) (1, 0, 1, 1, 1)

φ(z) α6 + α4 + 1 α6 + α4 + α2 + 1 α6 + α4 + α3 + 1 α6 + α4 + α3 + α2 + 1

z (1, 1, 0, 0, 0) (1, 1, 0, 0, 1) (1, 1, 0, 1, 0) (1, 1, 0, 1, 1)

φ(z) α6 + α5 + 1 α6 + α5 + α2 + 1 α6 + α5 + α3 + 1 α6 + α5 + α3 + α2 + 1

z (1, 1, 1, 0, 0) (1, 1, 1, 0, 1) (1, 1, 1, 1, 0) (1, 1, 1, 1, 1)

φ(z) α6 + α5 + α4 + 1 α6 + α5 + α4 + α2 + 1 α6 + α5 + α4 + α3 + 1 α6 + α5 + α4 + α3 + α2 + 1

where α is a defining element of F27 .


