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Abstract

In this work we construct efficient aggregate signatures from the RSA assumption in the
synchronized setting. In this setting, the signing algorithm takes as input a (time) period ¢ as
well the secret key and message. A signer should sign at most once for each ¢. A set of signatures
can be aggregated so long as they were all created for the same period t. Synchronized aggregate
signatures are useful in systems where there is a natural reporting period such as log and sensor
data, or for signatures embedded in a blockchain protocol where the creation of an additional
block is a natural synchronization event.

We design a synchronized aggregate signature scheme that works for a bounded number of
periods T that is given as a parameter to a global system setup. The big technical question is
whether we can create solutions that will perform well with the large T values that we might
use in practice. For instance, if one wanted signing keys to last up to ten years and be able to
issue signatures every second, then we would need to support a period bound of upwards of 228.

We build our solution in stages where we start with an initial solution that establishes
feasibility, but has an impractically large signing time where the number of exponentiations
and prime searches grows linearly with 7. We prove this scheme secure in the standard model
under the RSA assumption with respect to honestly-generated keys. We then provide a tradeoff
method where one can tradeoff the time to create signatures with the space required to store
private keys. One point in the tradeoff is where each scales with /7.

Finally, we reach our main innovation which is a scheme where both the signing time and
storage scale with lgT" which allows for us to keep both computation and storage costs modest
even for large values of T. Conveniently, our final scheme uses the same verification algorithm,
and has the same distribution of public keys and signatures as the first scheme. Thus we are
able to recycle the existing security proof for the new scheme.

We also show how to extend our results to the identity-based setting in the random oracle
model, which can further reduce the overall cryptographic overhead. We conclude with a detailed
evaluation of the signing time and storage requirements for various practical settings of the
system parameters.
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1 Introduction

Aggregate signatures, as introduced by Boneh, Gentry, Lynn and Shacham [13], allow a third party
to compress an arbitrary group of signatures (o1, ..., 0,) that verify with respect to a corresponding
collection of public key and message pairs ((pky,m1),..., (pk,,m,)) and produce a short aggre-
gated signature that verifies the same collection. There exist many applications where reducing
the cryptographic overhead is desirable including BGP routing [13, 13, 28, 11|, bundling software
updates [1], sensor network data [1] and block chain protocols [2].

When exploring a primitive such as aggregate signatures, it is desirable to have multiple real-
izations under different cryptographic assumptions or constructs. This provides redundancy in the
case that one of the assumptions proves to be false. Also different approaches often yield a menu
of performance tradeoffs that one can select from in an application-dependent manner.

To date, the design of aggregate signature schemes has mostly been dominated by bilinear (or
multilinear) map-based proposals [13, 14, 10, 19, 28, 7, 11, 30, 35, 1, 18, 23, 22]. Most proposals
to aggregate outside of the bilinear setting have required signers to interact either by signing in
a sequential chain [29, 32, 17, 27, 26, 15, 4] or otherwise cooperate interactively on signature
creation or verification [8, 3]. Here we seek a solution that does not require bilinear maps or signer
interaction. We are aware of two prior attempts [36, 20] to aggregate RSA-based signatures (without
interaction), but to the best of our understanding, both schemes appear to lack basic correctness
(that is, each user creates and signs with his own unique modulus, but then the signatures are
aggregated and verified with respect to the same modulus).

In this work we construct efficient aggregate signatures from the RSA assumption in the syn-
chronized setting of Gentry and Ramzan [19]. In the synchronized setting the signing algorithm
will take as input a (time) period t as well the secret key and message. A signer should sign at
most once for each ¢t. A set of signatures can be aggregated so long as they were all created for the
same period t. Synchronized aggregate signatures are useful in systems where there is a natural
reporting period such as log or sensor data. Another example is for use in signatures embedded in
a blockchain protocol where the creation of an additional block is a natural synchronization event.
For instance, consider a blockchain protocol that records several signed transactions in each new
block creation. These signed transactions could use a synchronized aggregate signature scheme
with the block iteration as the period number. This would reduce the signature overhead from one
per transaction to only one synchronized signature per block iteration.

Ahn, Green and Hohenberger [1] gave a synchronized aggregate signature scheme in bilin-
ear groups from the (standard model) computational Diffie-Hellman assumption by adapting the
Hohenberger-Waters [24] short signature scheme. Since Hohenberger and Waters in the same work
also provided a similar scheme from the RSA assumption it is natural to wonder why that one
could not be adapted as well. Unfortunately, this approach will not work as the HW RSA-based
signature scheme requires the signer to have knowledge of ¢(N) and thus the factorization of N.
This trapdoor information cannot be securely dispensed among all signers that might work in ZY.

In this work we design a synchronized aggregate signature scheme that works for a bounded
number of periods 7" that is given as a parameter to a global system setup. We believe that such
a bound is acceptable in the synchronized setting where a reasonable estimate of it can be derived
by first determining a fixed lifetime of keys in the system (e.g., 10 years) and dividing it by the
expected frequency that periods will occur (e.g., every minute). The big question is whether we
can create solutions that will perform well with the larger T' values that we might use in practice.
For instance, suppose that we wanted signing keys to last up to ten years and wanted to have the



capability of signing on periods as short as a second. In this case we would need to be able to
support a period bound of upwards of 228.

We will build our solution in stages where we start with an initial solution that establishes
feasibility of synchronized aggregation in the RSA setting, but has an impractically large signing
time where the number of exponentiations and prime searches grows linearly with 7. We prove this
scheme secure in the standard model under the RSA assumption. We then provide a basic tradeoff
that allows one to tradeoff the time to create signatures with the space required to store private
keys. One point in the tradeoff is where each scales with /7.

We reach our main innovation which is a scheme where both the signing time and storage scale
with 1g(7") which allows for us to keep both computation and storage costs modest even for large
values of T. Conveniently, our final scheme uses the same verification algorithm, and has the same
distribution of public keys and signatures as the first scheme. Thus we are able to recycle the
existing security proof for the new scheme.

We continue our exploration of using RSA in the synchronized aggregate setting by demonstrat-
ing how to extend our results to be identity-based. Since identity strings are typically much shorter
than public keys, this setting can help achieve better overall reduction of cryptographic overhead.
Our solution is secure under the standard RSA assumption in the random oracle model.

Finally, we provide a detailed performance evaluation of the various schemes proposed from
both a signing time and private key storage perspective, concluding that the 1g(7") construction is
relatively practical for realistic settings of the system parameters and far exceeds the performance
of the others for most settings.

Overview of the Schemes In our schemes, messages will be of length L bits which will be
broken up into k chunks of ¢ bits each. In our initial scheme a global system setup will first choose
an RSA modulus N = p - ¢ where we let g be a generator of the quadratic residues of Z},. Next it
picks a key K that is used to define a hash function Hg(t) = e; that maps a period ¢t € [1,7T] to a
prime value e;. We will defer the details of how this function works to the main body. Finally, the
setup computes FF = erzl e; mod ¢(N)andY = ¢¥ mod N and publishes the public parameters
aspp= (T, N,g,Y,K).

Key generation is performed by choosing random wg,u1,...,u; in [1, N] and setting the se-
cret key as sk = (ug,u1,...,u;) and the public key pk = (Up,Ui,...,U) where U; = Y =
g [lierei | for j =0to k. To sign a message first compute all the primes e; - Hg (i) for i # t

and then output o = (g"° H§:1 g“]"mﬂ')n"eT\{t}ei = (Uo H§:1 U]mj)l/ei (mod N). Verification is

performed by testing if o L U Hle U/™. Aggregation is done by simply multiplying individual
signatures together (mod N) and testing against the product of the individual verification tests.
We remark that our group hash function falls into a more general group hash framework proposed
by Hofheinz, Jager and Kiltz [21]. In Section 4, we discuss potential future improvements by
incorporating their framework.

We give a proof of security under the RSA assumption. Our proof is standard model with
respect to honestly-generated keys and uses techniques from [24] for embedding an RSA challenge
into the function Hx. The choice of k provides a tradeoff between the secret key storage size which
grows linearly with k to the tightness in the reduction which has a loss factor of 2¢ = 2L/k,

Taking a step back, our signature scheme involves reconstructing e;-th roots of a public key
and then manipulating these according to the message. Here the secret key simply holds a group
element that is root of all the e; values. The underlying structure is reminiscent of earlier RSA-



based accumulator schemes (e.g., [9, 6]). The problem, however, is that building up this root from
the secret key is quite costly and requires 7' — 1 exponentiations and calls to Hg(-) which are
roughly equivalent to prime searches. Returning to our example of T' = 22, our measured cost of
signing one message was more than one day on a common processor. Clearly, we must do better.

We next show how to obtain a basic tradeoff between the time to sign and the size of the
private key storage. Very roughly the time to sign will scale linearly with a parameter a and the
storage with a parameter b with the constraint that a - b = T. Thus we can explore tradeoffs such
as setting a = T',b = 1 which corresponds to the scheme above, go the opposite direction and set
a = 1,b = T to achieve fast signing at the expense of large storage, or try to balance these by
choosing a = b = VT.

The main technical idea is for the key generation algorithm to organize T into b “windows”
each of size a. (We will assume a divides T" evenly for ease of exposition.) Each window will be
connected with a group element that has g raised to the exponents associated with every period
except for a window of a of them. Thus to sign we need to do a — 1 exponentiations and prime
searches and our private keys roughly grow as b group elements.

While this simple tradeoff technique provides more flexibility, there is still a significant gap from
the performance numbers we would like to achieve. Let’s return again to our 7 = 22® example. In
setting a = 1, we would get very fast signing (a few tens of milliseconds), but with very huge keys
of 64GB. On the other hand, if we aimed for the v/T tradeoff we would end up with 4MB private
keys and roughly 9 seconds per signature. This achieves greater balance, but is still impractical.

This finally moves us to our last solution. Here we wish to find a more intricate way of handling
the key storage that allows us to sign efficiently, but without a significant storage penalty. To do
this we design a key storage mechanism that has about 21g(7T") group elements and requires 1g(7")
exponentiations per signing. Returning to our example of 7' = 22%, we can now achieve the much
more practical 16KB private key storage with 58 milliseconds per signature.

To achieve this, we leverage the fact that the synchronized signatures are performed in sequence
over the total number of periods. The goal is to maintain a data structure which (1) is small, (2)
is ready to quickly produce a signature for the next period and (3) can perform a small amount
of work to update it for future periods. To this end we organize a data structure according to a
levels parameter where T = 2tevels+l
the structure that indicates how many periods have passed so far. At level ¢ at any time there will
be one or two tuples which include a group element which is g raised to all exponents corresponding
to periods except those with indices anywhere from 2¢ to 2°~!. During each signature the signing
algorithm will grab an element from level 1 and use it to sign as well as perform a little bit of work
on each level to close the window of exponents further. We defer the details of how this is achieved
to Section 6. We remark that this approach is conceptually similar to the pebbling optimization
used by Itkis and Reyzin [25] to realize efficient forward-secure signatures.

— 2. In addition, a current index value is associated with

Organization and Summary of the Results In Section 2, we provide the specifications and
security definitions. Section 3 covers the algebraic setting, assumptions and related lemmas. Sec-
tion 4 gives the base construction as well as its proof of security in the standard model under the
RSA assumption. Section 5 describes changes to the key generation and signing algorithms that
can achieve a tradeoff in private key size versus signing time; one point achieves a balance of v/T
for both. Section 6 provides a deeper innovation on how change key generation and signing to scale
with 1g(T"). Recall that the distribution of the public keys and signatures in all of these schemes



are the same as are the verification algorithms and thus the security proof in Section 4 suffices
for all. We then show how to extend these results to the identity-based setting in Section 7 and
provide the new definition and security proof required in Appendix A. Finally, we conclude with a
detailed time and space performance analysis of these constructions in Section 8 showing that the
lg(T) constructions can be practical even for very large bounds on 7.

2 Scheme Specifications and Definitions of Security

In a basic aggregate signature scheme [13], anyone given n signatures on n messages from n users
can aggregate all these signatures into a single short signature. This aggregate signature (together
with the n public keys and n messages) can be publicly verified to convince anyone that user i
authenticated message i for ¢ = 1 to n. This is also true for synchronized aggregate signatures
except that we assume all signers have a synchronized clock and the following restrictions apply:

1. A signer can issue at most one signature per period and keeps state to ensure this.
2. Only signatures created during the same period can be aggregated.

Gentry and Ramzan [19] were the first to consider this “synchronized” setting in the context
of aggregate signatures. In their model, they assumed that signatures were issued using a special
tag (which could not be re-used) and only signatures with the same tag could be aggregated. Ahn,
Green and Hohenberger [1] formalized this synchronization as a time period, assuming all signers
have access to the same clock. ! In this work, we include a bound T on the periods.

Definition 2.1 (Synchronized Aggregate Signatures [19, 1]) A synchronized aggregate sig-
nature scheme for a bounded number of periods and message space M(-) is a tuple of algorithms
(Setup, KeyGen, Sign, Verify, Aggregate, AggVerify) such that

Setup(1*, 1T) : On input the security parameter \ and the period bound T, the setup algorithm
outputs public parameters pp.

KeyGen(pp) : On input the public parameters pp, the key generation algorithm outputs a keypair
(pk, sk).

Sign(pp, sk, M,t) : On input the public parameters pp, the signing algorithm takes in a secret key
sk, a message M € M(N), the current period t < T, and produces a signature o.

Verify(pp, pk, M,t,0) : On input the public parameters pp, the verification algorithm takes in a
public key pk, a message M, a period t and a purported signature o, and returns 1 if and
only if the signature is valid and t < T, and 0 otherwise.

Aggregate(pp, t, (pky, M1,01),...,(pk,, Myp,0,)) : On input the public parameters pp, a period
t, a sequence of public keys (pky, ..., pk,), messages (M, ..., M,), and purported signatures
(01,...,00) for period t <T, it outputs an aggregate signature cqqq or error message L.

Tn this work, as in the case of [1], if the signers’ clocks become out of sync with each other, this will lead to
inefficiencies in the system, as it will not be possible to aggregate some signatures, but this will not open up security
issues. As in [19, 1], there is a security issue if a tag or time period is reused by the signer, so an adversary’s ability
to move a user’s clock backward could lead to forgeries for that signer.



AggVerify(pp,t, (pky,...,pk,), (Mi,...,My,),04g9) : On input the public parameters pp, a pe-
riod t, a sequence of public keys (pky, ..., pk,) and messages (M, ..., My,), and a purported
aggregate signature o.qq, the aggregate-verification algorithm outputs 1 if and only if .94 15
a valid aggregate signature and t < T, and 0 otherwise.

Efficiency We require that the setup algorithm run in time polynomial in its inputs and all other
algorithms run in time polynomial in X\, T.

Correctness Let poly(z) denote the set of polynomials in x. In addition to the standard cor-
rectness properties of the basic signature scheme, for a synchronized aggregation scheme, the cor-
rectness requirements on Aggregate and AggVerify stipulate that for all A € N, T' € poly(\),n €
poly()\), pp € Setup(1*,17), (pky, sk1),..., (pk,,sk,) € KeyGen(pp), 1 < t < T, M; € M()),
o; € Sign(pp, ski, M;, t) and oqq4q € Aggregate(pp, t, (pky, Mi,01),...,(pk,, My, 0r)), it holds that

AggVerify(pp, t, (pky,...,pk,), (M1,...,My),04¢9) = 1.

Unforgeability The definition uses the following game between a challenger and an adversary
A for a given scheme II = (Setup, KeyGen, Sign, Verify, Aggregate, AggVerify), security parameter A\,
and message space M(\):

Setup: The adversary sends 17, 1" to the challenger, who then runs Setup(1*,17) to obtain
the public parameters pp.?2 Then the challenger runs KeyGen(pp) a total of n times to
obtain the key pairs (pk, sk1),. .., (pk,,, skyn). The adversary is sent (pp, pky, (pkq, sk2),
oy (Pkyy, SkR)).

Queries: For each period t starting with 1 and incrementing up to 7', the adversary can
request one signature on a message of its choice in M under skq, or it can choose to
skip that period. The challenger responds to a query for M; during period ¢; € [1,T] as
Sign(pp, sk1, M;, t;).

Output: Let v be a function mapping integers to [1,n]. Eventually, the adversary outputs
a tuple (, (pky), - - - Phyii))s (M{,...,M}),04g9) and wins the game if:

1. 1 <t <T;and

there exists an z* € [1, k] such that v(z*) = 1; and

all M/ € M; and

M. is not in the set of messages A queried during the Queries phase®; and

AggVerify(pp, t, (Pk~(1ys - - - » Py (k)5 (M{,...,M}),04g¢) =1, where 1 <k < n.

AN S

We define SigAdv 4 11 A(()) to be the probability that the adversary A wins in the above game
with scheme II for message space M and security parameter A\ taken over the coin tosses made by
A and the challenger.

2For any adversary A that runs in time polynomial in A will be restricted (by its own running time) to giving T’
values out that are polynomial in A.

3As observed by [1], one can relax this unforgeability condition to allow the forgery message, M., to have been
previously queried to the signing oracle provided that it was not done during the same period used in the forgery.
This “stronger” notion can be achieved by any scheme satisfying the above unforgeability definition by having the
signer incorporate the period into each message.



Definition 2.2 (Unforgeability) A synchronized aggregate signature scheme Il for message space
M is existentially unforgeable under an adaptive chosen message attack if for all sufficiently large
A € N and all probabilistic polynomial-time in A adversaries A, there exists a negligible function
negl, such that SigAdv 4 i pq(A) < negl(A).

Discussion In our definition, we require that the Setup algorithm is honestly executed, so in
practice this could be run by a trusted party or realized via a specialized multiparty protocol (see
Section 4 for more). We also require that the non-challenge public keys be chosen honestly instead
of adversarially. Our later proof requires that the challenger has knowledge of the secret keys
corresponding to the non-challenge public keys. This can be realized by working in the Registered
Key Model [5] or adding an appropriate NIZK to the user’s public key.

3 Number Theoretic Assumptions and Related Lemmas

There are many variants of the RSA assumption [34]. Here we use a variant involving safe primes.
A safe prime is a prime number of the form 2p + 1, where p is also a prime.

Assumption 3.1 (RSA) Let A be the security parameter. Let integer N be the product of two
\-bit, distinct safe primes primes p,q where p = 2p' + 1 and ¢ = 2¢' + 1. Let e be a randomly
chosen prime between 2* and 2T — 1. Let QR be the group of quadratic residues in L of order
p'q". Given (N,e) and a random h € QRy, it is hard to compute x such that ¢ = h mod N.

We note that a randomly chosen element in Z}; would be a quadratic residue 1/4-th of the time,
so the restriction to h € QR is for convenience and could be relaxed.

In our schemes, we will refer to and require a primality test. For our purposes, it will be
sufficient to use the efficient Miller-Rabin test [31, 33]. We will also make use of the following
lemmas:

Lemma 3.2 (Cramer-Shoup [16]) Given x,y € Z, together with a,b € Z such that z® = y® and
ged(a, b) = 1, there is an efficient algorithm for computing z € Z,, such that z* = y.

Theorem 3.3 (Prime Number Theorem) Define w(x) as the number of primes < x. For x >

1,
8 lnzx m* 8 Inzx

4 A Base Scheme for Aggregation from RSA

We begin with a base scheme that assumes a trusted global setup and works in the registered key
model, where every signer needs to show their key pair to an authority that certifies their public
key. The global setup of our scheme will take as input a security parameter A and the maximum
number of periods 7. The message space M will be {0,1}* where L is some polynomial function
of A. (One can handle messages of arbitrary length by first applying a collision-resistant hash.)

In addition, associated with the scheme will be a “message chunking alphabet” where we break
each L-bit message into k chunks each of ¢ bits where k- £ = L with the restriction that ¢ < A and



thus 2¢ < 2*. As we will see the choice of ¢ will effect both the tightness of the security reduction
as well as the size of the signatures.* We make use of a variant of the hash function in [24] to map
integers to primes of an appropriate size.

Setup(1>‘, 1) The setup algorithm chooses an integer N = pq as the product of two safe primes
where p — 1 = 2p’ and ¢ — 1 = 2¢/, such that 2* < ¢(N) < 2", Let QRy denote the group of
quadratic residues of order p’'q’ with generator g.

Next, it sets up a hash function H : [1,7] — {0,1}*! where H will take as input a period
t € [1,T] and output a prime between 2* and 2**! — 1. It begins by randomly choosing a K’ for
the PRF function F : [1,T] x [1,A%] = {0,1}*, a random ¢ € {0,1} as well as an arbitrary prime
€defauls Detween between 2* and 221 — 1. We let K = (K', ¢, eqefault)-

We define how to compute Hy (t). For each i = 1 to A- (A2 + \), let y; = ¢ @ Fx(t,i). If 2* +y;
is prime return it. Else increment i and repeat. If no such i < X - (A% + \) exists, return eqefaus-°
We note that this computation returns the smallest i such that 2* + y; is a prime. Notationally,
for t € [1,T] we will let e, = Hg (t).

The algorithm concludes by computing E = Hszl e; mod ¢(N) and Y = ¢g¥ mod N.

It publishes the public parameters as pp = (T, N, g,Y, K).

KeyGen(pp) The algorithm retrieves Y from the pp. It chooses random integers ug, u1, .. ., Uk
in [1, N]. Tt sets the secret key as sk = (ug,u1,...,u;) and the public key pk = (Uy, Uy, ..., Uy)
where

Uj=Y" = g% [iere: for j =0 to k.

Sign(pp, sk, M,t) The signing algorithm takes as input a time period 1 <t < T and an L = (¢k)-
bit message M = mq|ma|...|my, where each m; contains ¢-bits and these are concatenated together
to form M. It computes the primes (e1,..., €1, €t+1,...,er) from pp and then outputs

k k
o= (guo H QUj~mj)HieT\{t} € — (UO H U;.nj)l/et (mod N)
j=1 J=1

Verify(pp, pk, M,t,0) Let M = mq|ms|...|mg. The algorithm computes the prime e; from pp.
Output 1if 1 <t < T and

k
ot U [JUM™  (mod N)
i=1
or 0 otherwise.

Aggregate(pp, t, (pky, M1,01),...,(pk,, My,,0,)) An aggregate signature on signatures from the
same time period 1 < ¢ < T'is computed as 0qgg = [[j_; 0j (mod N).

“In practice, one might use a collision-resistant hash function to map arbitrarily long messages into L = 256 bits
and then set £ = 32 and k = 8. We discuss the efficiency implications of these choices in Section 8.

5We expect this default case to be exercised only with negligible probability, but define it so that the function
Hg (t) is guaranteed to terminate in a bounded amount of time.



AggVerify (pp,t, (pky, ..., pky,), (M1,..., Mp),0099) Let pk; = (Ujo,Uj1,..., Ujx) and M; =
mj1|m;al...|m;k. The algorithm computes the prime e; from pp. Output 1 if 1 < ¢ < T, each
public key is unique (i.e., Vi # j € [1,n], pk; # pk;) and

oL, = H JOHU’”“ (mod N)

7j=1 =1

or 0 otherwise.

Discussion Observe that the above group hash function we employ falls into a more general
group hash framework proposed by Hofheinz, Jager and Kiltz [21] that uses programmable hash
functions. One might use their general framework to explore further concrete efficiency tradeoffs,
such as letting the group hash function be more complex and letting the hash function output the
product of multiple smaller primes. Our concrete analysis, however, will focus on the core scheme
above along with tradeoffs in key storage and signing time that we explore later. We leave open
the interesting question of what other tradeoffs can be realized via [21], keeping in mind that some
of those instantiations add per signer randomness, which makes aggregation challenging.

Recall from Section 2 that the Setup algorithm must be executed honestly. It seems promising
that, for this scheme, this might be realized efficiently using a specialized multiparty computation
protocol, such as an adaptation of one due to Boneh and Franklin [12] for efficiently allowing a
group of parties to generate an RSA modulus, where each party learns N, but no party learns the
factorization of V.

4.1 Proof of Security

Theorem 4.1 If the RSA assumption (Assumption 3.1) holds and F is a secure pseudorandom
function, then the above synchronized aggregate signature construction is existentially unforgeable
under an adaptive chosen message attack.

Proof. The reduction algorithm receives an RSA challenge (N, e*, h) and needs to use the attacker
to compute h'/¢" mod N. Define a “conforming” attacker as one that will always make a signing
query on the period t* that it forges on. We can assume our attacker is conforming without loss of
generality because if there exists an attacker that breaks the scheme, there exits one that breaks it
and queries for a signature on period t* by simply adding a signature query on a random message
at that period. Our proof will assume a conforming attacker.

Next, we define a sequence of games.

Game 1: (Security Game) This game is defined to be the same as the security game of the scheme.

Game 2: (Guessing the forgery period and part of its queried message) The same as Game 1,
except the game guesses the period the attacker will forge on and a part of the message
queried for a signature during the period that will be different from the forgery message, and
the adversary only wins if these guesses were correct. Formally, the game chooses random
t' € [1,T], a € [1,k] and B € {0,1}*. An adversary wins this game iff: (1) it would have
won in Game 1 with a forgery on period ¢* for some message M* = mj|m3|...|m; with
some message M = mq|ms|...|my queried to the signing oracle on period t*, (2) t' = t*, (3)
B =mg and (4) mq # m},.



Game 3: (Hg does not default) The attacker wins only if it meets all the conditions to win in
Game 2 and Hg (t*) # egetaurt (that is, the default condition of the hash is not triggered on
the forgery message or otherwise equal to the default prime.)

Game 4: (Hg does not collide) The attacker wins only if it meets all the conditions to win in
Game 3 and Hg (t*) # Hi (t) for all ¢ € [1,T] where t # t*.

Game 5: (Guess resolving i* for H) The game chooses a random * € [1, A3 + \2]. Attacker wins
only if it meets all the conditions of Game 4 and i* was the “resolving” index in Hg (t*); that
is, * was the smallest i such that y; = Fg/(t*,1) © ¢ and (2* 4 ;) was a prime.

Game 6: (Programming Hy with random value) The same as Game 5, except that it chooses a
random 3 € {0,1}* and set ¢ = ' © Fi (t*,i*).

Game 7: (Programming Hy with e*) The same as Game 6, except choose e* as a random prime
in the range [2*,2*1 — 1] and let 3’ be the \ least significant bits of e*; that is, drop the
leading 1. As before, set ¢ =y @ Fy/ (t*,4*).

We now establish a series of claims that show that if an adversary is successful against the real
security game (Game 1) then it will be successful against in Game 7 as well. We will then shortly
describe a simulator that can use any adversary successful in Game 7 to solve the RSA challenge.

Define Adv 4|Game z| as the advantage of an adversary A4 in Game .

Claim 4.2
Adv 4[Game 1]

Adv 4[Game 2] > T 5.3

Proof. Since there is no change to the adversary’s view of the game, the probability of the adversary
winning in Game 2 is the same as Game 1 times the probability of the game’s guesses being correct.
There is a 1/T probability of guessing the forging period, at least a 1/k probability of guessing a
message chunk in the signing query that will be different in the forgery (there may be more than
one), and a 2¢ probability of guessing that chunk’s value in the queried message. We note that this
gives a polynomial-time reduction for whenever £ is polylogarithmic in A. Recall that any adversary
that is polynomial time in A\ must give out a 17 that is polynomially bounded in . (|

Claim 4.3 If I is a secure pseudorandom function and X > 4, then
Adv 4[Game 3] = Adv 4[Game 2] — negl(\).

Proof. We here need to understand the probability that Hx (t*) = egefaurs- Using the Prime Number
Theorem, we can bound the number of primes in the range [2*,2**! — 1] as follows. Plugging into

A1 1 is at least %(2;%11)

(the value 221 s not prime, since it is a power of two, for any A > 1) and the number of primes

the formula in Lemma 3.3, we have that the number of primes less than
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less than 2* is at most % . % Thus, the total number of primes in our range of interest is at least

7 9A+1 9 8_7.>\.2A+1_9.()\+1).2A _14.)\.2A_9.()\+1).2A 0
8 (A+1) 8 X 8(A+ 1)\ B 8(A+ 1)A
5220 —9.24 _ (5A—19)-2* @)
 8(A+ 1A 8(A2+ )
2)\
[ > 4.
>)\2+)\7 for all A >4 (3)

Let R be a random function that outputs a value in the range [2*,2*!]. Then the probability
that R outputs a prime is at least:

22 /(A2 +)) 22 1

— = 4
ML 20 2A(A24+1) A2+ )

The probability that R fails to output a prime after A(A\? + \) tries is as follows. We again
use the fact that 2**! is not a prime. Recall Chernoff’s bound for any ¢ > 0, we have Pr[X <
2

(1 —e)u] < e~ 2. Here when X is the number of primes output by R in A(A2 4+ \) trials, € = 1
and p = ZAO‘QH‘) Pr[R fails to output a prime in one trial], we have that

A(A2+>\)-;21—
AN _
<e 2 = M2 (5)

_K
2

Pr[R fails to output a prime in A* + \?) trials] = Pr[X < 0] <e

The PRF we employ to sample from this range cannot non-negligibly differ from R in its probability
of selecting primes or this provides for a distinguishing attack on the PRF. Thus, the probability
that Hg (t*) = egetaurt is the probability that the PRF chose the same prime as the setup algorithm,
which is negligible at 1 in the number of primes in that range (> 2*/(A? 4 \)), plus the probability
that Hg triggers the default condition by failing to output a prime, which we also argued was
negligibly close to the negligible probability of R doing the same. ([l

Claim 4.4 If F is a secure pseudorandom function and T' € poly(\), then
Adv 4[Game 4] = Adv 4[Game 3] — negl(\).

Proof. These games differ only in the event that Hg (t*) = Hg(t) for some t € [1,T] where t # t*.
Let R be a random function that outputs a value in the range [2)‘,2)‘“]. Suppose Hg uses R
instead of the PRF. Then the probability of a collision for a single t is one in the number of primes

in [2*, 221 or at most 1/ )\gi 5 = ’\221"\, which is negligible. So the probability of a collision for any
t € [1,T] (recall that T is polynomial in \) is T - >‘22f)‘ = p°|Y(’\%§’\2+)‘) = p°|2yk(’\) = negl()\). When we
replace R with the PRF, the probability of a collision cannot non-negligibly differ or this provides
a distinguishing attack on the PRF. g
Claim 4.5 Adv A[C n
v 4[Game
Adv 4[Game 5] = 12

11



Proof. The attacker’s view in these games is identical. The only difference is whether the game
correctly guesses the resolving index i* for Hy (t*). Since i* € [1, A3+ \?], the game has a 1/(A3+)\2)
chance of guessing this correctly. ([l

Claim 4.6
Adv 4[Game 6] = Adv 4[Game 5].

Proof. In Game 5, c is chosen randomly in {0,1}*. In Game 6, ¢ is set by randomly selecting
y € {0,1}* and setting ¢ = ' @ Fy(t*,i*), where t* is the period on which the attacker will
attack and ¢* is the resolving index for this value. Since 3’ is chosen randomly and independently
of Fr/(t*,i*), the resulting ¢ will be from the same distribution as Game 5. 0

Claim 4.7
Adv 4[Game 7] = Adv 4[Game 6].

Proof. An adversary’s advantage in these games is the same. In Game 6, the attacker could only
win if 2* 4+ ¢/ was a prime, and thus the distributions are the same. ]

4.1.1 Main Reduction

We now show that if there exists a polynomial-time (in ) attacker that has advantage ¢ = ¢(\) in
Game 7, then there exists a polynomial-time (in A) attacker for the RSA problem in Assumption 3.1
with advantage e.

On input an RSA challenge (N, e*, h), the reduction algorithm proceeds as follows:

Setup.

1. Obtain 17,1 from the aggregate signature adversary A.

2. Make random guesses of t* € [1,T], o € [1,k], B € {0,1}¢,4* € [1, A3 + A2].

3. Choose a random PRF key K'. Let 3 be the X least significant bits of the RSA input e* (note
that this is a prime randomly chosen from the appropriate range by the RSA challenger)
and set ¢ = y @© Fgs(t*,5*). Choose a random prime egefauy € [27,2M! — 1]. Set K =
(K', ¢, eqefaurt)- Thus, note that by construction when * is the resolving index for t*,

epr = Hi(t*) = 22 + (¢ ® Fro (t7,7%) =20 + 4/ = €*.

4. Choose a random g € QR . Compute Y as before.
Set the pp = (T, N, g,Y, K).
6. Set up the “target” user’s public key pk; as:

o

(a) Choose random ug,u1,...,u; € [1, N].

(b) Set Uy = (h_ﬁ)HiT#* “.YU, We note that the reduction algorithm can take the e; root
of Uy so long as t # t*.

(c) For j =1 to k such that j # o, compute U; = Y.
(d) Set Uy = Al . yua,

7. Set pky = (Uo, U1, ..., Ug). For j =2 ton, (pk;, skj) = KeyGen(pp).
8. Send to A the tuple (pp, pk1, (pky, sk2), ..., (pk,, skn)).

12



Queries. For each period ¢t = 1 to T', the adversary can request one signature on a message of
its choice in the message space under sk; or skip that period. Recall that the adversary must be
conforming and thus will request some signature on the forgery period t*. In our construction,
signing during period t requires taking the e;-th root of each U; value. By construction, the
reduction algorithm can do this so long as: (1) t # t* or (2) for t*, when the a-th ¢-bits of the
message are the string 3. If the reduction is ever asked a query it cannot answer, then it will abort.
We note that this only occurs when the guesses of t*, «r, 8 are incorrect, which is consistent with
the attacker not winning in Game 7 anyway. Formally, when asked to sign M = mq|ma|...|my for
period t # t*, the reduction algorithm outputs:

k

o= (h—ﬁ . hma)nz;ﬁt*,iyét €, (guo ngJ'mj)HiET\{t}ei (6)

j=1

T k T

= (h Mo ywoytfee (T wg)Mee . (pllize e yruayme/e (7)

j=1j#a

k
= (W [JU*)V* mod N. (8)
j=1

and when ¢ = t* and m, = (3, it outputs the signature:

k
o= <gu0 H gujmj)HiGT\{t} “ (9)
j=1
- k
_ (1)1_[2‘#*,1# € . (guo ng]'mj)nieT\{t} €i (10)
j=1
- k
_ (h_’B . hma)ni;ét*,i#t € | (guo Hngmj)HieT\{t} € (11)
j=1
T b r
= (h Pz e ymoytfee (T U)Ver . (pllie e yruaymele (12)
J=lj#a
k
= (Uo [TU)Y* mod N. (13)
j=1

Output. Eventually A outputs a tuple (tf, (pky(1ys---s Phy(z)), (M1, ..., M), 0agg). Since aggre-
gation order does not matter hereS, we can w.l.o.g. assume that (1) = 1 (corresponding to the
target key pk;); we also drop « from the subscript below. If the aggregate signature does not verify
or if any of the reduction’s guesses of t*,4*, o, 8 were incorrect, then abort. These abort conditions
are all consistent with the adversary not winning Game 7. Let E' = HiET\ {t+} Ci- Otherwise we

SConsider any signature Oagg that verifies on time period ¢ for public keys pk,, ..., pk, and messages My,..., M.
Our scheme has the property that 0,44 also verifies on any permutation of the indices applied to both the public key
and message sequences.
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have that:

Zgg H J,0 H Umj ! (14)
7j=1

n

U10HUm“ H J,OHUW (15)

k n
_ (hE’(B—ma) .yuo HY“J"”J H j()]h_[UmJZ (16)
=1 J=2 =

Since the reduction can compute the e*-th root of all values not in the h term, it can divide them
out as:

e* r(a_ k oy i
( Gagg ) B (hE (B—ma) , yuo Hj:l YUy . H” »(Ujo Hz U mJ ) an
. k . i - ) k ) N
H?:1(gu]‘0 [IiZq gtoiman)® H?:l(guj'o [[ioy gtomas)en P
= pE'(Bmma), (18)
Now, we have an equation of the form z¢ = y°, where z = agg a=¢e*y=nh

I1j_1(9"70 TTiy g"930) B
and b = E'(S — mq). Recall that the game would have already aborted if e* was output for any
period other than ¢* and thus, ged(e*, E') = 1. The game would also have aborted if 8 = my,.
Finally since the |3| = |mqa| = £ < X and e* > 2*, we can conclude that gcd(a,b) = 1. This allows
the reduction to apply Lemma 3.2 to efficiently compute h € Zx such that h¢" = h mod N. The
reduction outputs this value as the RSA solution.

Analysis. We argue that the above reduction will succeed in outputting the RSA solution when-
ever the adversary wins in Game 7. The adversary’s view in these scenarios differs only in the way
that public key elements Uy and U, are chosen. We will first argue that the way they are chosen
in Game 7 (and the actual scheme) is statistically close to choosing a random element in QR .
Next, we argue that the (different) way they are chosen in the reduction above is also statistically
close to choosing a random element in QR . It follows then that the public key in both Game 7
and the reduction are statistically close and thus cannot be distinguished by our polynomial-time
adversary. Moreover, while the signatures are computed via a different method in Game 7 and the
reduction, the signature the adversary sees is identical (and unique) given the public information
known to the adversary, so there is no information the adversary can use to distinguish. For any
given U € QRy, prime e € [1, N], and m < 2* the values U™ and UY¢ are unique since each e;
is relatively prime to ¢(N). It remains to support the arguments listed above.

First, recall how Uy, U, are chosen in Game 7 (and the actual scheme). Here ug, u, are randomly
chosen from [1, N| and the public key elements are set as:

Up =Y = gwollizier g, = yue = guallieres
Observe that the group of QR has order p’q’. Thus Y = gHiT=1 % is also a generator since all the e;

values are relatively prime to p'q’. Since Y is a generator, if we take Y for a random r € [1, $(N)]
that has the same distribution as choosing a random element in QR . Now, the process of raising
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Y" for a random r € [1, N| is statistically close to the process of raising it to a random r € [1, ¢(N)].
The reason is that N = ¢(N) + p + ¢ — 1 where the difference (p + ¢ — 1) is negligible. Thus, we
achieve our first argument.

Second, recall how Uy, U, are chosen in the reduction. Here ug, u, are randomly chosen from
[1, N] and the public key elements are set as:

Ul = (hP) Tz e ywo = p=Bllm e quolllaes g — pllieci . yua,
We previously argued that the Y“° and Y"* components are distributed statistically close to a
random element in QR,. We assume that h € QRy; this will be true for a random element in
N With 1/4 probability. Each value has an h term that is in QRy but not necessarily distributed

randomly. However, once we multiply this value in the group by a (statistically close to) random
element of the group, we have a product that is distributed statistically close to a random element
in QR . Thus, we achieve our second argument.

Since the adversary cannot distinguish either distribution of public keys from a random distri-
bution, then it cannot distinguish them from each other as well. Thus, whenever the adversary

succeeds in Game 7, we can conclude it will also succeed in helping the reduction solve RSA.
O

5 Trading off Signing Time with Storage

In this section we show a basic tradeoff between the time to sign and the size of the private key
storage. Very roughly the time to sign will scale linearly with a parameter a and the storage with
a parameter b with the constraint that a - b = T'. Thus we can explore tradeoffs such as setting
a =T,b =1 as we saw in the last section or go the opposite direction and set a = 1,b = T to
achieve fast signing at the expense of large storage, or try to balance these by choosing a = b = /T.

Our system will use the same setup, verification and aggregation algorithms as in Section 4
and just replace the KeyGen and Sign algorithms. Moreover, the public keys output by the Key-
Gen algorithm and corresponding signatures output by the Sign algorithm will have an identical
distribution to the original Section 4 scheme and thus not require a new security proof.

Let the public parameters output from Setup be pp = (T, N, ¢,Y, K) as before. Our KeyGen-
eration algorithm will organize T' into b “windows” each of size a. (We will assume a divides T'
evenly for ease of exposition.) Then the private key will be setup to contain a sequence of values
R,, which is g raised to all e; except those in a sliding window of periods. To sign faster during
time period t, select these partially computed values where ¢ is in the window and complete its
computation for signing by raising to all e; in that window except e;.

The new key generation and signing algorithms follow.

KeyGen'(pp,a) It obtains the primes (eq,...,er) and sets b = T'/a (we assume it divides evenly
for ease of exposition). Next it chooses random integers ug,u1,...,u; in [1, N] and computes
pk = (Uy,Uy,...,Ug). For w =1 to b, define ¥, as the set of integers in [1,7T] other than those in
the set {a(w —1)+ 1,a(w—1)+2,...,a(w —1) + a}.

For w =1 to b, it then computes:

Rw e gHiEEw €i
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where the e; values are computed using K from pp. It sets the secret key as sk = ({ Rw }1<w<b, {ti }o<i<k)-
The public key pk = (U, Ui, ...,Uy) is computed as U; = Y = g [lierei for j =0 to k as in
Section 4.

Sign’(pp, sk, M,t) It computes the necessary subset of primes in (eq,...,er) using K in pp and
then for period t, selects the window w = [t/a]. Let X!, denote the set of periods in the window
{a(w—-1)+1,a(w—-1)+2,...,a(w —1) + a}i1<w<p. It outputs

k k
o = (Rio [ r ™) Hiemnen e = (U TTU™) Y (mod N).
j=1 j=1

Analysis. Observe that the public keys and signatures are of the same form and distribution as
those of the base system in Section 4 and thus the security of this tradeoff system follows.

6 Obtaining O(lg(7")) Signing Time and Private Key Size

The previous section showed a basic tradeoff between signing time and private key size. However,
it was limited in that the most “balanced” version required both time and storage to grow with
the square root of the number of periods.

In this section we show how a more intricate key storage technique can give us much better
results with a scheme where the number of exponentiations and prime searches is ~ 1g(T") per
signing operation and where we store =~ lg(T") elements of Z}; in the private key. Unlike the
previous schemes where the private key remained static, our method here will require us to update
the private key on each signing period. As a consequence a signer will be required to sign using each
period in sequence.” Again, our new scheme will produce public keys and signatures with exactly
the same distribution as the base scheme of Section 4. Therefore we will only need to describe
and analyze the new method of key generation and storage and are not required to produce a
new security proof. As mentioned earlier, this approach has conceptual roots in the pebbling
optimization used by Itkis and Reyzin [25] to realize efficient forward-secure signatures.

We present our method by introducing two algorithms. The first algorithm StorageInit(pp,v)
takes in the public parameters and an element v € Z% and outputs the initial key storage state
store. The second algorithm StorageUpdate(store) takes in the storage store and outputs an
updated storage value store as well as a group element s € Z};.

6.1 Storage Algorithms

We assume that there exists an integer ‘levels’ such that 7' = 2*¢ves+1 _ 2 (One could always
pad T out to match this.) The key storage will be structured as a sequence of sets S, ..., Sievels
where elements of set S; are of the form

w € Zy,open € [1,T],closing € [1,T], count € [1,T].

Let R be the set of integers [open, open + 21 — 1] U [closing + count, closing + 2¢~! — 1]. Then
w = vllierres, Intuitively, w is v raised to all of the e exponents except the sequence of 2~ values

"We expect this to be the normal mode of operation in a synchronized scheme, however, the previous schemes
have the ability to sign for periods in an arbitrary order.
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starting at open and a second sequence of length 2°~! — count starting at closing + count. When
the StorageUpdate algorithm runs for each i, it will find an element of the set S; and help “move
it forward” by incrementing its counter count and updating w accordingly. When count reaches
2' the update storage algorithm removes the tuple from the set S; at level i and then splits it into
two parts and puts these in set S;_1. We now describe the algorithms.

Storagelnit(pp,v) Initially, sets Si,..., S1eve1s are empty. Then for i = 1 to levels perform
the following:

o Let R=[2¢ —1,2iF1 —2].
e Compute w = vller\r e,
e Putin S; (w,2" —1,(2" — 1) + 271, 0).
e Put in S; (w, (2" — 1) +271 2 —1,0).

The storage value store = ((Sl, ..y S1evels), index = 0) is output.

StorageUpdate(pp,store) For i =1 to levels perform the following:
e Find a tuple (if any exist) in S; of (w, open, closing, count) with the smallest open value.®

e Replace it with a new tuple (w' = weetesing+eomt open’ = open, closing’ = closing, count’ =
count + 1) where (w’, open’, closing’, count’) is the newly added tuple .

Then for 7 = levels down to 2

Find a tuple (if any) of the form (w, open, closing, count = 2/~!) in S;.

Remove this tuple from the set S;.

To the set S; 1 add the tuple (w’ = w,open’ = open, closing’ = open + 272 count’ = 0)
where (w', open’, closing’, count’) is the newly added tuple.

Also add to the set S; 1 the tuple (w’ = w, open’ = open+2°~2, closing’ = open, count’ = 0).

Finally, from S; find the tuple (w,open = index + 1, closing,1). Remove this from S; and
output s = w which gives s = pllier\(Gnaext 11 € a5 needed. Finally, the storage value store =
((S1,...,S1eve1s), index = index + 1) is output.

6.2 Analysis

We need to show that the storage primitives give the desired correctness and performance properties.
To analyze correctness and storage size we consider what the key storage state will look like for
each value of index between 0 and 7'. Recall that in a stored key, index represents the number of
signatures generated so far. We describe what each S; set contains for a particular index value —
breaking things into three cases. We will refer to this as our “state description” given below.

81n a particular S; there might be zero, one or two tuples. If there are two, the one with the larger open value is
ignored. Ties will not occur, as we will see from the case analysis in Section 6.2.
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Case 1: T — index < 2! —2. In this case the set S; will be empty.

Case 2: Not Case 1 and index = k- 2" +r for 0 < r < 271, S; will contain two elements. The
first is a tuple

(w= ollier\r® open = (k+1)-2"—1,closing = (k+1)-2" — 1+ 2" count = r).
Where we let R = [open, open + 21 — 1] U [closing + count, closing + 2!~ — 1].
The second is a tuple
(w = vllien\r% open = (k4+1)-2" =142 closing = (k+ 1) - 2" — 1, count = 0).
Where R = [open, open+2'~! —1]U[closing+ count, closing+2'~! —1]. (Here count = 0.)
Case 3: Not Case 1 and index = k- 2! 4+ r for 207! <r < 2!, S, has a single element. A tuple
(w= ollien\r € open = (k4+1)-2" =14 27! closing = (k+1) - 2" — 1, count = r — 271),

Where R = [open, open + 2/~!] U [closing + count, closing + 2¢71].

Proof of State Description Accuracy

Theorem 6.1 The above state description for variable index accurately describes the key storage
state after an initial call to StorageInit(pp,v) and index subsequent calls to StorageUpdate(pp, store).

Proof. We begin our proof by establishing two claims about when the “pass down” operation can
and cannot happen which will be used later on in the proof.

Claim 6.2 Suppose that our state description is accurate for period index. Consider an update
operation where the period moves from index to index+1. This will result in an tuple being “passed
down” from S; to S;_1 only if index + 1 is a multiple of 201, if anything is passed down at all.

Proof. If (index, i) were in Case 1, then S; is empty and there is nothing that could be passed
down. If in Case 2, then one tuple has a count = r which is the remainder of index mod 2°. It will
trigger a pass down operation only when count increments to count = 2¢~!. Similarly, in Case 3
there is a tuple with count = r —2°~!. A push down operation is only triggered when it increments
to 2! which means index + 1 is a multiple of 271, ]

Claim 6.3 Suppose that our state description is accurate for period index and all smaller values.
Further suppose that index + 1 = 0 mod 2° for some i and that set S;;1 is in Case 1 at index.
(Le. T —index < 201 —2.) Then it will be that at period index + 1 we have T — index < 2¢ — 2
and set S; is designated as Case 1 by our description.

Proof. Let z be the value where T — z = 2iT! — 2 since T' = 2%evelst1 _ 2 it follows that z = y - 2¢H1
for some y. Also note that z must be the smallest value of index where T — index < 2!t1 — 2. It
then follows that z + 2¢ — 1 is the smallest value of index where T'— index < 2°t! —2 AND index
mod 2. Now let’s consider the next value of of index + 1 which is equal to z 4+ 2¢ and use it to
prove that at index + 1 the set .S; is assigned to be in Case 1. Then

T—(index+1)=T — (2 +2) = (T —2) -2 =2 —2 20 =2 2
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Then we have that at index + 1 the set S; is categorized at Case 1 (and empty) by our description.
O

We now show that for each index if the state description was valid at index then it is valid at
index + 1. We break this into three separate claims showing that if a set .5; is in Case 1,2 and 3
respectively at index that in index + 1 it will match the state description.

Claim 6.4 Suppose at period index the state description is accurate and for a set S; we are in
Case 1 where T — index < 2° — 2 and the set S; is empty. Then at period index + 1 the state
description is accurate for set S;.

Proof. For period index + 1 we have that 7' — (index + 1) is also < 2¢ — 2 and therefore it should
also be Case 1 and S; should remain empty. The only way for it not to remain empty would be if
the StorageUpdate algorithm “passed down” a new tuple from S;;;. However, if S; was in Case 1
for period index then S;;; must also be and also be empty. Since S;41 is empty there is nothing
to pass down. O

Claim 6.5 Suppose at period index the state description is accurate and for a set S; we are in
Case 2 where index = k -2° + 1 for 0 < r < 271, Then at period index + 1 the state description
is accurate for set .S;.

Proof. First consider the subcase where  # 2¢=1 — 1 which should keep S; in Case 2 on period
index+1. We will verify this. Since at period index we are in Case 2 there are two tuples in S; where
the one with the smaller open value is of the form (w = ollier\res, open = (k+1)-2°—1,closing =
(k+1)-2° —1+2! count = r). The update algorithm will increment count to r 4+ 1 and update
w to w = weelesingteomt which gives the needed form to remain in Case 2. The second tuple will is
of the form (w = pllier\rei open = (k+1)-2' — 142" closing = (k+ 1) - 2° — 1, count = 0).
The update algorithm will not modify it as the other tuple had the smaller open value. Thus it
remains the same which matches the behavior for S; remaining in Case 2. Finally, we need to check
that no new tuples are passed down from S;;1. This follows from the fact (Claim 6.2) that index
mod 2° = 7 # 2/ —1 and that a pushdown would only happen as index transfers to being a multiple
of 2¢.

We now consider the subcase where r = 2/~ — 1 at index and thus at index + 1 we should
be moving into Case 3. In this subcase the set S; begins with two tuples with one of the form
(w = ollier\res, open = (k+1)-2" —1,closing = (k+1)-2' — 1+ 27! count = r = 2/~1 —1).
The update operation will first modify the tuple to a new count value of count = 2°~!. This will
trigger the pushdown operation to move the tuple out of S;. It then leaves it with one tuple of the
needed form which transitions .S; to Case 3 as needed. Again no new elements are pushed onto S;
from S;y1 due to Claim 6.2. ]

Claim 6.6 Suppose at period index the state description is accurate and for a set S; we are in
Case 3 where index =k -2' +r for 21 <r < 2¢ for some k. Then at period index + 1 the state
description is accurate for set .S;.

Proof. We first focus on the subcase where r # 2° — 1 and thus at index + 1 we want to verify that
we stay in Case 3. Initially there is one tuple of the form (w = pllier\r “ open = (k+1)-2"—
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14271 closing = (k+1)-2! — 1, count = r — 2¢=1). The update algorithm will increment count
to r + 1 and update w to w = welesingteomt which gives the needed form to remain in Case 3. As
before no new tuples will be added since index + 1 mod 2% # 0.

We end by considering the subcase where r = 2¢ — 1. In this subcase there is initially a single
tuple with a count value of count = 2~! — 1. The update algorithm will increment this count
which triggers its removal from the set. What remains to be seen is whether a new element is added
or if it becomes empty.

We now consider two possibilities. If 7' — (index + 1) < 2 — 2, then our description states that
set S; should enter Case 1 on index + 1. It is easy to see that if this is true that the set S;41
was already Case 1 and empty on index and nothing new will be added so the set S; is empty as
needed.

The somewhat trickier case is when T'— (index+1) > 2! —2. Here we need to verify that the set
S; ends up in Case 2 with the appropriate tuple at index + 1. First, since index + 1 mod 2! = 0
we can apply Claim 6.3. It states that if set S;y; were in Case 1 (empty) at index then set S;
would be in Case 1 for index + 1. Since this is not the case, we have that S; 11 must be non empty
and in Case 2 or 3.

If S;11 started in Case 2 at index, it initially has a tuple of the form:

(w= ollier\r® open = (k+1)-2"1 — 1, closing = (k+1) - 2771 — 14+ 2% count = 2! — 1).

Where we let R = [open, open+2¢ —1]U[closing+count, closing+2°—1]. Note by the description
index = 20tk 4+ 2¢ — 1. After the update algorithm has its first pass, count is incremented to
2! and an exponentiation is done that updates w where it is now for R = [open, open + 2! — 1]
as the second half of the range falls off with the new count value. The update algorithm then
removes this tuple from S;1; and creates two new tuples from it. One with an open’ = open and
closing’ = open + 2%; the second with open’ = open + 2! and closing’ = open.

To verify correctness recall that index = 2k + 2 — 1 and index = 21k 4+ 20 — 1. Tt follows
that k = 2-k. Second, index + 1 = 2k’ where k¥’ = k+1. To match the description for index + 1
we must have that the first tuple created has an open’ value of open’ = (k' 4 1)2¢ — 1. Plugging in
terms:

K+1)2 —1=(k+1+1)2—-1=(2k+2)2 —1=(k+1)2""" — 1.

However, this is exactly the value it inherited from open as needed.
The argument that the right tuple is inherited when set S;;; is in Case 3 proceeds in almost
the same way as above.
O

The proof of our theorem now comes via induction. The accuracy of the state description for
index = 0 can be verified by inspection. We can prove the rest by induction on index. For any
index the accuracy of the description index + 1 follows from its accuracy on period index. In
particular, our previous three claims show that for any ¢ if the state .S; is accurate in period index
then after the update algorithm executes, S; will be accurate in period index + 1 as well. ([l

Computational and Storage Efficiency Analyzing the running time for these storage opera-
tions is straightforward. We have that levels = |lgT']. In each storage update operation there is
at each level at most one prime search operation and at most one exponentiation. This comes from
the fact that for each i the algorithm updates a single set element — the one with the smallest
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open value (if any). Therefore the number of prime searches and exponentiations is bounded by
lg(T') as desired.

The above state description immediately gives us the storage efficiency we desire. There are
at most 1g(7T") sets ¢ which have at most two tuples. Each tuple has a single group element. As
written, a tuple also has three (small) integers (of value at most T'), although a program could drop
these because they can be inferred from index, so we will not count them in our Section 8 analysis.

Sample Snapshot of Storage To aid the reader, we provide an example of the storage states
for levels = 3 and 7' = 2tevelstl _ 9 — 24 _ 9 — 14 in Figure 1. This example shows the states
after updates; it does not show any intermediate states during an update operation. The example
gives just the open, closing and count values. The prior section describes how the corresponding
group element w is computed based on these values (see the description of R as the range of indices
of e; values excluded from the product in the exponent.) Initially, we have sets Si,..., S1eve1s=3
that are empty. The values at index = 0 show the states after running StorageInit. The values
at index > (0 show the state after a call to StorageUpdate.

6.3 Using the Storage Primitives and Optimizations

We can use the storage primitive above to modify our signing algorithm and key storage of Section 4.
We describe two slightly different methods to do this.

Method 1 The Setup algorithm will run as before and output the core public parameters as
pp = (T, N,g,Y, K). However, it will also run StorageInit(pp,g) which outputs a value store
which is appended to the public parameters.

The secret key algorithm will choose random integers wg,u1,...,ux in [1, N]. It sets the se-
cret key as sk = (ug,u1,...,u;) and the public key pk = (Up,Ui,...,U) where U; = Y =
g lliere for j = 0 to k. Note all of this is identical to the Section 4 scheme. However, it addi-
tionally appends store from the public parameters to its secret key. The store is the part of the
secret key that will be modified at each signing.

During each the t-th signing step, it will call StorageUpdate(pp,store;_1) and as output get
a new storage value store; that is uses to replace the previous one as well as J = yl/et Tt uses
this to sign by computing:

k k
o=Jo [ = U [[U/)Y"  (mod N).
1 =1

Method 2 This will be similar to Method 1 except that instead of raising to the wug,...,ux
values at the end of signing the algorithm will keep k£ + 1 parallel copies of storage that already
have each respective u; exponent raised. The description below will need to slightly “break into”
the abstraction that we gave earlier.

Setup will run as before and output the core public parameters as pp = (7, N, g, Y, K). However,
it will also run StorageInit(pp,g) which outputs a value store which is appended to the public
parameters.

The secret key algorithm will choose random integers wug, u1, ..., ux in [1, N]. It sets the public
key pk = (Up, Ui, ...,Uy) where U; = Y% = g% [erei for j =0 to k (as in the Section 4 scheme).
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index Set Sl Set SQ Set 53
open ‘ closing ‘ count || open ‘ closing ‘ count || open ‘ closing ‘ count
0 1 2 0 3 ) 0 7 11 0
2 1 0 ) 3 0 11 7 0
1 2 1 0 3 5 1 7 11 1
) 3 0 11 7 0
9 3 4 0 5) 3 0 7 11 2
4 3 0 11 7 0
3 4 3 0 5 3 1 7 11 3
11 7 0
4 ) 6 0 7 9 0 11 7 0
6 5 0 9 7 0
5 6 ) 0 7 9 1 11 7 1
9 7 0
6 7 8 0 9 7 0 11 7 2
8 7 0
7 8 7 0 9 7 1 11 7 3
3 9 10 0 11 13 0
10 9 0 13 11 0
9 10 9 0 11 13 1
13 11 0
11 12 0 12 11 0
10 13 11 0
11 12 11 0 13 11 1
13 14 0
12 14 13 0
13 14 13 0
14

Figure 1: Storage State Example for levels = 3, T = 14. See snapshot description.

For j = 0 to k it computes store() by taking each of the group elements in store and raising it
to uj. This process effectively changes store from being a storage of v = g to being a storage of
v; = g for the respective u;. Note that each conversion takes 2 - levels exponentiations since
there are 2 - levels group elements per storage.

During each the t-th signing step, for each j € [0, k] it will call StorageUpdate(pp, storegi)l)

and as output get a new storage value storel(t] ) that is uses to replace the previous one as well as

Jj = Ujl/et. It uses these to sign by computing:

k
o=J]7" = W J[U/)"" (mod N).
j=1 =1

One final efficiency note: in the scheme above on the update operation will perform levels
prime searches for each of the k + 1 stores. (By prime search we mean computing the relevant e;
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values needed in update.) This gives (k+ 1) - levels total prime searches. However, each of these
stores will be computing the same e values. Thus if we slightly break into the abstraction then one
can do only levels total prime searches by sharing that part of the computation across all k + 1
storage updates.

7 Identity-Based Aggregation from RSA

In Appendix A, we provide the definition for synchronized identity-based aggregate signatures. We
now give a construction based on the RSA assumption.

Setup(1*, 1T) The setup algorithm chooses an integer N = pq as the product of two safe primes

where p—1 = 2p’ and ¢—1 = 2¢/, such that 2* < ¢(N) < 2**1. The scheme assumes a hash function

(modeled as a random oracle) G : Z — Z}k\gkﬂ). It also uses the hash function H : [1,T] — {0, 1}**!
with key K as specified in Section 4. It computes:

T
D=]]Hx(@)™" mod ¢(N).
=1

It publishes the public parameters as pp = (T, N, K) and we assume all parties have access to G.
The master secret key includes the factorization of N and the value D.

Extract(msk,ID) The algorithm computes (Uy,...,U) < G(ID). For i =1 to k, it computes
di = UP mod N. It returns the secret key as sk = (do,d1, . . .,d).

Sign(pp, skip, M,t) The signing algorithm takes as input a time period 1 < ¢t < T and an

L = (¢k)-bit message M = m|ma| ... |my, where each m; contains ¢-bits and these are concatenated
together to form M. It computes the primes (eq,...,er) from pp and then outputs
k k
o= (dO H d;nj)l_‘[iET\{t} €i = (UD H U;-nj)l/& (H’lOd N)
j=1 J=1

Verify(pp, ID, M,t,0) Let M = my|ms|...|my and G(ID) = (Uy,...,U;) The algorithm com-
putes the prime e; from pp. Output 1if 1 <¢ < 7T and o ~ Uy Hle U™ or 0 otherwise.

Aggregate(pp,t, (ID1, M1,01), ..., (IDy, Mn,0,))  As before, g4y = [[}_; 0 (mod N).
AggVerify(pp,t, (ID1,...,IDy), (Mi,...,My),0499) As before, output 1 if and only if all inputs

are in the correct range, each identity is unique and ogl, = H;‘L:1(Uj,0 Hle U j,i“) where here

G(ID;) = (Uip, ..., Uig)-
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Signing Operations
Scheme P ‘ E ‘ E, ‘ E, ‘ M
Section 4 T—-1 |kE+1 T-1 k| k
Section5(a:ﬁ) VT -1 k+1 VT —1 k| k
Section 5 (a = 1) E+1 0 k| k
Section 6 Method 1 | 1g(T) | k+1 lg(T') k| k
Section 6 Method 2 || 1g(7T) 0 (k+1D)1g(T) | k | k

Figure 2: Signing Operations Evaluation. Let the modulus be N. Let P be the time for function
Hg to output a prime of |e| bits, E; be the time to perform a j-bit modular exponentiation, and
M be the time to perform a modular multiplication. For the Section 6, we round up and treat
lgT ~ levels. For that scheme via Method 2, the results of the prime search from the first store
are shared with all other stores.

Operation || Pos7 | Pgo | Eopus | Eos7 | Eose | Ego JIDE) M
Time (ms) 0.975 | 0.311 | 4.604 | 0.670 | 0.629 | 0.235 | 0.094 | 0.00091

Figure 3: Time recorded in milliseconds for the above operations are averaged over 1,000 iterations
for a 2048-bit modulus using NTL v10.5.0 on a modern laptop. Let P, denote an z-bit prime
search, E, be an z-bit modular exponentiation, and M be a modular multiplication.

Remarks. We remark that the same performance enhancements explored in Sections 5 and 6
apply here. For simplicity, we present the identity-based version only for the scheme in Section 4.

Theorem 7.1 If the RSA assumption (as stated in Assumption 3.1) holds, F is a secure pseudo-
random function and G is modeled as a random oracle, then the above identity-based synchronized
aggregate signature construction is existentially unforgeable under an adaptive chosen message at-
tack.

Proof of this theorem appears in Appendix A.1.

8 Performance Evaluation

We now analyze the performance of the various RSA-based aggregate signature schemes presented
in this work. In particular we consider: our core signature scheme of Section 4, our scheme with
~ \/m storage and signing time of Section 5, our “big storage for fast signing” scheme also of
Section 5 and our scheme of ~ 1g(7T") storage and signing of Section 6 via two different methods
of implementing signing (which may out perform each other based on the selection of various
implementation parameters). The scheme of Section 4 has similar performance to that of Section 5
when a = T and therefore we do not separately analyze it.

For each scheme, we first evaluate its run-time performance with a signing algorithm operations
count in Figure 2. We then proceed to inspect its practical performance using a 2048-bit RSA
modulus and a 256-bit message (the latter corresponding to an output of SHA-256). In Figure 4,
we evaluate each scheme with each of the following parameters: 1 message chunk size of 256 bits,
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Parameters Time when T =
Scheme

k ‘ /¢ ‘ |€| 212 216 220 224 228 232
1 256 | 257 6.7s 1.8m 28.7m 7.7h 5.1d 81.7d
Section 4 8 32 80 2.3s 35.8s 9.5m 2.5h 1.7d 27.1d

256 | 1 | 80 3.4s 37.0s | 9.6m | 2.5h 1.7d | 27.1d
1 | 256|257 [ 113.4ms | 0.4s 1.7s 6.7s | 27.0s | 1.8m
Section 5 (a =+T) || 8 | 32 | 80 | 76.6ms | 0.2s 0.6s 2.3s 9.0s 35.8s

256 1 80 1.2s 1.3s 1.7s 3.4s 10.1s 36.8s

1 256 | 257 9.8ms 9.8ms | 9.8ms | 9.8ms | 9.8ms | 9.8ms

Section 5 (a = 1) 8 32 | 80 42.2ms | 42.2ms | 42.2ms | 42.2ms | 42.2ms | 42.2ms
256 | 1 80 1.2s 1.2s 1.2s 1.2s 1.2s 1.2s

1 | 256 | 257 || 29.6ms | 36.1ms | 42.7ms | 49.3ms | 55.9ms | 62.5ms
Section 6 Method 1 8 32 | 80 48.8ms | 50.9ms | 53.1ms | 55.3ms | 57.5ms | 59.7ms
256 | 1 80 1.2s 1.2s 1.2s 1.2 1.2s 1.2s
1 256 | 257 || 28.4ms | 37.7ms | 47.0ms | 56.2ms | 65.4ms | 74.7ms
Section 6 Method 2 8 32 | 80 29.9ms | 39.6ms | 49.3ms | 59.1ms | 68.8ms | 78.5ms
256 | 1 80 0.7s 1.0s 1.2s 1.5s 1.7s 1.9s

Figure 4: Signing Time Evaluations for 90 different performance points; here N is 2048 bits. Times
are calculated by taking the average time for an operation (see Figure 3) and summing up the total
times of each operation (see Figure 2). Let ms denote milliseconds, s denote seconds, m denote
minutes, h denote hours, and d denote days.

8 message chunks of 32 bits and 256 messages chunks of 1 bit. When message chunks are 256 bits,
we use 257-bit prime e values and for chunks of size 32 bits or 1 bit we consider 80-bit e values.
Here we make sure that the size of the RSA primes are at least as big as the message chunks, but
let them fall no further than 80 bits to avoid collisions.? These evaluations will be considered for a
maximum number of periods of T' € {212 216 220 924 928 9321 Technically, for the log scheme the
numbers of time periods is T' = 2tevels+l
ignore the small constants.

To perform the timing evaluations in Figure 4, we utilized the high-performance NTL number
theory library in C++ v10.5.0 by Victor Shoup [37]. Averaged over 1000 iterations, we measured
the cost of a prime search of the relevant size as well as the time to compute modular multiplications
and modular exponentiations for the relevant exponent sizes using a 2048-bit RSA modulus. We
took all time measurements on an early 2015 MacBook Air with a 1.6 GHz Intel Core i5 processor
and 8 GB 1600 MHz DDR3 memory. These timing results are recorded in Figure 3.

We next report on the signer’s storage space requirements in Figure 5 for all of these combi-
nations. And in Figure 6, we show how to view 7" in practical terms for how often one can issue
signatures according to the synchronized restrictions over the lifespan of a private key.

— 2, however for the sake of these comparisons we will

9We remark that the parameters given for this evaluation do not have a total correspondence to the scheme
description. For example, using 80-bit e values will technically require a variant of the RSA assumption with smaller
exponents. And we do not attempt to set the modulus size to match the security loss of our reduction. (It is unknown
whether this loss can actually be utilized by an attacker or not.) Our focus here is to give the reader a sense of the
relative performance of the scheme variants for parameters that might be used in practice.
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Scheme SK Elements Param. Size when T =
ZN k 212 216 ‘ 220 ‘ 224 ‘ 228 ‘ 232

1 0.5K 0.5K 0.5K 0.5K 0.5K 0.5K
S4 k—+1 8 2.3K 2.3K 2.3K 2.3K 2.3K 2.3K
256 64.3K | 64.3K 64.3K | 64.3K | 64.3K | 64.3K
1 16.5K | 64.5K | 256.5K | 1.0M | 4.0M | 16.0M
S5(a=VT) | (k+1)+ VT 8 18.3K | 66.3K | 258.3K | 1.0M | 4.0M | 16.0M
256 80.3K | 128.3K | 320.3K | 1.1M | 4.1M | 16.1M
1 1.0M | 16.0M | 256.0M | 4.0G | 64.0G | 1.0Tb
S5 (a=1) (k+1)+T 8 1.0M | 16.0M | 256.0M | 4.0G | 64.0G | 1.0Tb
256 1.1IM | 16.1M | 256.1M | 4.0G | 64.0G | 1.0Tb
1 6.5K 8.5K 10.5K | 12.5K | 14.5K | 16.5K
S6 Method 1 || (k+1)+21gT 8 8.3K 10.3K 12.3K | 14.3K | 16.3K | 18.3K
256 70.3K | 72.3K 74.3K | 76.3K | 78.3K | 80.3K
1 12.0K | 16.0K 20.0K | 24.0K | 28.0K | 32.0K
S6 Method 2 2(k+1)1gT 8 54.0K | 72.0K 90.0K 108K | 106K | 144K
256 1.5M 2.0M 2.5M 3.0M | 3.56M | 4.0M

Figure 5: Private Key Size Evaluation. Here the modulus N is 2048 bits. The above numbers
are rounded to show one decimal point. Let K denote a kilobyte (2!° bytes), M a megabyte (22"
bytes), G a gigabyte (230 bytes), and Tb a terabyte (2%° bytes). Any of the schemes that compute
primes during Signing (all but Section 5 when a = 1), could instead choose to speed up signing by
additionally storing those values at an additional storage cost of T elements of Z.. All but the
last scheme include k+ 1 elements that are the randomization factors ug, . .., ux € [1, N|; this space
could be shrunk by re-computing these from a PRF.

Some Conclusions As expected the initial core scheme of Section 4 is much too costly for
signing. Even for T = 220 (where one signature is permitted every 5 minutes for 10 years), it takes
roughly 10 minutes to sign a single message, so the processor we took these measurements on could
not “break even” by keeping up with the modest pace of one signature every 5 minutes using the
base scheme. At larger time periods, the signing time moves into days. One noticeable aspect is
that the k = 1 (where k is the number of message chunks) time measurements are about a factor
of three greater than when k € {8,256} for this scheme and the square root one. This is due to the
cost difference of searching for and raising to 257-bit primes versus 80-bit primes which dominate
these schemes.

The square root tradeoff certainly does better, but cannot break even (on the processor mea-
sured) once we hit T = 22, Additionally, the keys are somewhat large on the order of a few
megabytes. This could be an issue if we would want to store several keys or a single key on a low
memory device.

On the other end of the spectrum when setting a = 1, we get relatively fast signatures. Here
things flip where it is significantly more expensive to sign for k = 256 than k € {1,8}. The reason
is that at this point the cost of raising to the u; values now dominates the computation — whereas
in the earlier schemes it was dominated by raising to the e; values. The main downside of this
setting is that the key sizes are huge — breaking into the terabyte range for T' = 232
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’ Setting of T' H Frequency of Signatures ‘

212 76,992 sec (=~ one per day)

216 4,812 sec (= one every 1.5 hours)
220 300 sec (= one every 5 minutes)
224 19 sec

228 1.2 sec

232 0.07 sec (= ten per second)

Figure 6: Approximate view of how to select T' based on how often an application needs the ability
to issue signatures during a key’s 10-year lifespan. (One can approximate a 20-year key lifespan by
cutting the above frequencies in half.)

We finally move to our log scheme of Section 6 where we start with Method 1. It scales well
with the number of time periods where even for T' = 232 it is only about 60ms for k € {1,8}. For
k = 256 the time is again dominated by the raising to the u; values at the end. Also, the private
keys can be kept in the range of ten to twenty kilobytes for lower k values. (We note that for
k = 256 one possibility is that the u; values could be generated from a pseudo random function
which could lower the key storage cost.) The second method of using the log storage is more costly
in terms of key storage cost. Its performance in signing time is slightly better for smaller values of
T, but for values higher than 22° turns worse. For this reason the first method seems to perform
better overall than the second.

Altogether, the log storage solution (of Section 6 using Method 1) offers practical time/space
costs and appears to provide the best overall practical performance of all schemes analyzed.
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A Identity-Based Synchronized Aggregate Signatures

Definition A.1 (Identity-Based Synchronized Aggregate Signatures [19]) An identity-based
synchronized aggregate signature scheme for a bounded number of periods, identity space Z(-), and
message space M(-) is a tuple of algorithms (Setup, Extract, Sign, Verify, Aggregate, AggVerify) such
that

Setup(l)‘, 1T) : On input the security parameter \ and the period bound T, the setup algorithm
outputs public parameters pp and a master secret key msk.

Extract(msk,ID) : On input the master secret key msk and an identity ID € Z(X), the key
extraction algorithm outputs a secret key sk.

Sign(pp, sk, M,t) : On input the public parameters pp, the signing algorithm takes in a secret key
sk, a message M € M(M), the current period t < T, and produces a signature o.

Verify(pp, ID, M,t,0) : On input the public parameters pp, the verification algorithm takes in an
identity ID, a message M, a period t and a purported signature o, and returns 1 if and only
if the signature is valid and t < T, and 0 otherwise.

Aggregate(pp, t, (ID1, M1,01),...,(IDy, My, 0,)) : On input the public parameters pp, a period
t, a sequence of identities (ID1,...,IDy), messages (M, ..., M,), and purported signatures
(01,...,00) for period t < T, it outputs an aggregate signature oqqq or error message L.

AggVerify(pp,t,(ID1,...,IDy,), (M, ..., M,),0499) : On input the public parameters pp, a pe-
riod t, a sequence of public keys (ID1,...,ID,) and messages (M, ..., M,), and a purported
aggregate signature 0qq4, the aggregate-verification algorithm outputs 1 if and only if 04gg is
a valid aggregate signature and t < T, and 0 otherwise.

Efficiency We require that the setup algorithm run in time polynomial in its inputs and all other
algorithms run in time polynomial in X\, T.

Correctness Let poly(z) denote the set of polynomials in x. In addition to the standard cor-
rectness properties of the base identity-based signature scheme, for an indentity-based synchronized
aggregation scheme, the correctness requirements on Aggregate and AggVerify stipulate that for all
A EN, T € poly()\),n € poly()\), pp € Setup(1*,17), ID4,...,ID,, € T(\), sk; € Extract(msk, ID;),
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1 <t<T, Mj € M(X), o; € Sign(sk;, ID;, M;,t) and 044y € Aggregate(pp,t,(ID1, M, 01),...,
(IDy, My, 04)), it holds that

AggVerify(pp,t, (ID1,...,IDy), (M, ..., My),0449) = 1.

Unforgeability The definition uses the following game between a challenger and an adversary
A for a given scheme IT = (Setup, Extract, Sign, Verify, Aggregate, Agg\Verify), security parameter A,
identity space Z(\) and message space M(\):

Setup: The adversary sends 17 to the challenger, who then runs Setup(1*,17) to obtain the
public parameters pp and the master secret msk. The adversary is sent pp.

Queries: At any time after Setup, the adversary can adaptively choose an identity ID and
request the secret key for this identity. For each period ¢ starting with 1 and incrementing
up to T" and any identity ID € 7, the adversary can also request one signature for ID on
any message of its choice My € M, or it can choose to skip that period. The challenger
responds to a query for My under ID during period t € [1,T] as Sign(pp, skip, My, t).

Output: Let o be a function mapping integers to [1,7]. Eventually, the adversary outputs
a tuple (¢, (ID1,...,IDy),(M],..., M]),0494) and wins the game if:

1. 1<t <T;and
2. all ID; € 7 and M| € M; and

3. there exists an z € [1, k| such that (ID,, M) is non-trivial (i.e., during the Queries
phase A did not request the private key for ID, and did not request a signature
including the pair (ID,, M))); and

4. AggVerify(pp,t,(ID1,...,IDy),(M{,..., M}),00gq) = 1, where 1 <k < T.

We define SigAdv 4 11 7 A¢(+) to be the probability that the adversary A wins in the above game
with scheme II for identity space Z, message space M and security parameter A taken over the coin
tosses made by A and the challenger.

Definition A.2 (Unforgeability) An identity-based synchronized aggregate signature scheme 11
for identity space I, message space M is existentially unforgeable under an adaptive chosen message
attack if for all sufficiently large A € N and all probabilistic polynomial-time in A adversaries A,
there exists a negligible function negl, such that SigAdv 4 117 p(A) < negl(A).

A.1 Proof of Security for Section 7 Construction

We now prove Theorem 7.1.

Proof. This proof is similar to the one of the base scheme in Section 4.1. We discuss the differences
here.

As before, the reduction algorithm receives an RSA challenge (N, e*, h) and needs to use the
attacker to compute h'/¢" mod N. We extend the definition of a “conforming” attacker as one
that will always make (1) a signing query for the forgery identity on the period t* that it forges
on, and (2) queries the random oracle on any identity that it uses in the forgery. Our proof will
assume a conforming attacker.
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Let @ = Q()A) be the maximum number of unique inputs that A queries to the random oracle
G.

We describe the changes required to the sequence of games for the ID-based proof.
Game 1: (Security Game) This game is the same as the security game of the ID scheme.

Game 2: (Guessing the forgery period, identity index and part of its queried message) As in the
base Game 2, the game guesses t' € [1,T], o € [1,k] and 8 € {0,1}¢. It also guesses the
index p € [1, Q] of the unique identity queried to G will be the identity ID* € Z that is used
as the forgery identity. An adversary wins this game iff: (1) it would have won in Game 1
with a forgery on period t* for identity /D* with message M* = mj|m}|...|m} where some
message M = mq|ma|...|my was queried to the signing oracle for identity ID* on period t*,
(2) t' =t*, (3) B =mq and (4) mqy # m},.

Games 3-7: Unchanged.

Proof that the adversary’s advantage in winning Game ¢ and Game ¢+ 1 are within a polynomial
follows from the claims in Section 4.1, except that the additional guess of the forgery identity in
Game 2 reduces that relationship by an additional factor of 1/|Z|. Formally, we have:

Claim A.3
Adv 4[Game 1]

T k-20.Q

Proof. Since there is no change to the adversary’s view of from Game 1, the probability of the
adversary winning in Game 2 is the same as Game 1 times the probability of the game’s guesses
being correct. There is a 1/T probability of guessing the forging period, a 1/@Q probability of
guessing the forgery identity, at least a 1/k probability of guessing a message chunk in the signing
query that will be different in the forgery (there may be more than one), and a 2¢ probability of
guessing that chunk’s value in the queried message. We note that this gives a polynomial-time
reduction for whenever £ is polylogarithmic in A. Recall that any adversary that is polynomial time
in A must give out a 17 that is polynomially bounded in A and can initiate at most a polynomial
in A number of random oracle queries. (|

Adv 4[Game 2] >

A.1.1 Main Reduction

We now show that if there exists a polynomial-time (in \) attacker that has advantage € = ¢() in
Game 7, then there exists a polynomial-time (in A) attacker for the RSA problem in Assumption 3.1
with advantage e.

On input an RSA challenge (N, e*, h), the reduction algorithm proceeds as follows:

Setup.

1. Obtain 17, 1™ from the aggregate signature adversary .A.

2. Make random guesses of t* € [1,T],u € Q,a € [1,k], 8 € {0,1}¢,i* € [1, A3 + \?].

3. Choose arandom PRF key K’. Let ¢ be the ) least significant bits of the RSA input e* and set
c =1y @ Fx/(t*,i*). Choose a random prime eqefan; € [2%,2M1 — 1]. Set K = (K, ¢, edefault)-
Thus, note that by construction when #* is the resolving index for ¢*,

epr = Hi(t*) = 22 + (¢ @ Fror (t7,i%)) =20 + 4/ = €*.
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4. Send to A the public parameters pp = (7, N, K). To evaluate G, A must submit queries to
the challenger.

G Queries. Proceeding adaptively, the adversary may request the evaluation of any ID € 7. Let
@ = Q()\) be the maximum number of unique inputs that A queries to the random oracle G or
causes the challenger. If the input has been queried before, return that value. If this is the ith
unique input, then choose random uy, ..., u; € [0, N] and compute Y = pl=res 1f 4 = i, then for
j = 1to k, where j # a, set U; = Y. Then set:

Uy = (h )iz i ywo — A1l e puollicees g, — pllie e yue,
Otherwise, for j = 0 to k, set U; = Y.

Extract Queries. Proceeding adaptively, the adversary may request the private key for any
ID € 7 which was previously queried to G. (If not, the challenger instructs the adversary to
do so.) If ID is the p-th unique index queried to G, then abort. This corresponds to the same
abort condition in Game 7. Otherwise, compute and return the private key skip = (do,...,dg) as
d; = h', where the challenger chose these u; values previously in a G query.

Signing Queries. For each period ¢ = 1 to T, the adversary can request one signature on a
message of its choice under any identities of its choice or skip that period. We assume the identity
was previously queried to G; if not, it must do so. If the identity is not the u-th unique query to
G, then the challenger can compute the private key and execute the normal signing algorithm.

Otherwise, recall that the adversary must be conforming and thus will request some signature
on the forgery period t* for the forgery identity ID*. However if ¢ = t* and m, = (3, it will abort as
would Game 7. When asked to sign M = mq|ma|...|my for period t # t*, the reduction algorithm
outputs:

k
o= (hiﬁ . hmﬂ)nwﬁt* i#t €, H ujm] [Licr\qey € (19)
7j=1
k
= (h~ 51_[1#* . ymo) 1/er . H 1/€t . hHiT#* e .Yua)ma/et (20)
k
:(UOHU;nj)l/et mod N. (21)

j=1
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and when ¢t = t* and m, = [, it outputs the signature:

k
_ (huo H hujmj)HiET\{t} €i (22)
. k
= (1)Hz‘7&t*,i¢t e, (hUO H hUjmj)HieT\{t} e (23)
j=1
k
= (h " hma)l'[m* it G H hUI™i) [liery ey & (24)
j=1
k
(h fBHz;ét* e; Yuo 1/es H 1/6,5 . thT;&t* e . Yua)ma/et (25)
=1,j#a
k
= [V mod N. (26)

j=1

Output. Eventually A outputs a tuple (t¢, (ID1,...,ID;),(M,...,M,),044). If the aggregate
signature does not verify or if any of the reduction’s guesses of t*,¢*, u, o, B were incorrect, then
abort. Note that these abort conditions are all consistent with the adversary not winning Game
7. We assume that the adversary has previously queried each identity in the list to G. (It would
add at most z queries to @ to change the argument to cover this case.) We assume without loss of
generality that D, = ID*, the u-th unique identity queried to G. Let E' = [Licr Jt+ €i We have:

agg H 7,0 H Umj ! (27)

7j=1
U1 o H m1 7, H 0 H Umj i (28)
7j=2
k n
_ (hE/(B—ma) . yuo H Yujm] H 0 H Um,] i (29)
i=1 j=2 =l

Since the reduction can compute the e*-th root of all values not in the h term, it can divide them
out as:

Gagg e B (hE’(B_ma) y o H L Yumiy . H »(Ujo 1‘[Z U mJ 3 30)
[T;-1 (g% [Ti, glaims )= [T5=1(g"0 [Ti, gtomai)e
= pE'(Bmma), (31)
Now, we have an equation of the form z% = 3, where = = —Jagg a=¢c¢,y=nh

119" 0TIy g“9i™38) B
and b = E'(f — m,). Recall that the game would have already aborted if e* was output for any
period other than ¢t* and thus, ged(e*, E’) = 1. The game would also have aborted if 8 = my,.
Finally since the |3| = |ma| = £ < X and e* > 2*, we can conclude that gcd(a,b) = 1. This allows
the reduction to apply Lemma 3.2 to efficiently compute h € Zy such that h*" = h mod N. The
reduction outputs this value as the RSA solution.
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Analysis. We argue that the above reduction will succeed in outputting the RSA solution when-
ever the adversary wins in Game 7. The adversary’s view in these scenarios differs only in the
way that elements Uy and U, are chosen for the forgery identity by the random oracle G versus
the challenger. They are chosen identically to the public keys of the base scheme in Game 7 ver-
sus the reduction. In both cases, they are chosen in a manner statistically close to choosing a
random element in QR,. The argument for this mirrors that of Section 4.1. It follows that the
polynomial-time adversary cannot distinguish between these games.

O
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