GAZELLE: A Low Latency Framework for Secure
Neural Network Inference

Chiraag Juvekar
MIT MTL
chiraag@mit.edu

Abstract—The growing popularity of cloud-based machine
learning raises a natural question about the privacy guarantees
that can be provided in such a setting. Our work tackles this
problem in the context where a client wishes to classify private
images using a convolutional neural network (CNN) trained by
a server. Our goal is to build efficient protocols whereby the
client can acquire the classification result without revealing their
input to the server, while guaranteeing the privacy of the server’s
neural network.

To this end, we design GAZELLE, a scalable and low-latency sys-
tem for secure neural network inference, using an intricate com-
bination of homomorphic encryption and traditional two-party
computation techniques (such as garbled circuits). GAZELLE
makes three contributions. First, we design the GAZELLE homo-
morphic encryption library which provides fast algorithms for
basic homomorphic operations such as SIMD (single instruction
multiple data) addition, SIMD multiplication and ciphertext
permutation. Second, we implement the GAZELLE homomorphic
linear algebra kernels which map neural network layers to
optimized homomorphic matrix-vector multiplication and convo-
lution routines. Third, we design optimized encryption switching
protocols which seamlessly convert between homomorphic and
garbled circuit encodings to enable implementation of complete
neural network inference.

We evaluate our protocols on benchmark neural networks
trained on the MNIST and CIFAR-10 datasets and show that
GAZELLE outperforms the best existing systems such as MiniONN
(ACM CCS 2017) by 20x and Chameleon (Crypto Eprint
2017/1164) by 30X in online runtime. Similarly when compared
with fully homomorphic approaches like CryptoNets (ICML
2016) we demonstrate three orders of magnitude faster online
run-time.

I. INTRODUCTION

Fueled by the massive influx of data, sophisticated algo-
rithms and extensive computational resources, modern ma-
chine learning has found surprising applications in such di-
verse domains as medical diagnosis [12], [39], facial recogni-
tion [35] and credit risk assessment [2]. We consider the setting
of supervised machine learning which proceeds in two phases:
a training phase where a labeled dataset is turned into a model,
and an inference or classification phase where the model is
used to predict the label of a new unlabelled data point.
Our work tackles a class of complex and powerful machine
learning models, namely convolutional neural networks (CNN)
which have demonstrated better-than-human accuracy across
a variety of image classification tasks [25].

One important use-case for such CNNs is for medical
diagnosis. A large hospital with a wealth of data on, say, retinal

Vinod Vaikuntanathan
MIT CSAIL

vinodv@csail.mit.edu

Anantha Chandrakasan
MIT MTL
anantha@mtl.mit.edu

images of patients can use techniques from recent works,
e.g., [39], to train a convolutional neural network that takes a
retinal image as input and predicts the occurrence of a medical
condition called diabetic retinopathy. The hospital may now
wish to make the model available for use by the whole world
and additionally, to monetize the model.

The first solution that comes to mind is for the hospital
to make the model available for public consumption. This is
undesirable for at least two reasons: first, once the model is
given away, there is clearly no opportunity for the hospital to
monetize it; and secondly, the model, which has been trained
on private patient data, and may reveal information about
particular patients, violating their privacy and perhaps even
regulations such as HIPAA.

A second solution that comes to mind is for the hospital to
adopt the “machine learning as a service” paradigm and build
a web service that hosts the model and provides predictions
for a small fee. However, this is also undesirable for at least
two reasons: first, the users of such a service will rightfully be
concerned about the privacy of the inputs they are providing
to the web service; and secondly, the hospital may not even
want to know the user inputs for reasons of legal liability in
case of a data breach.

The goal of our work is to resolve this conundrum of secure
neural network inference. More concretely we aim to provide
a way for the hospital and the user to interact in such a way
that the user eventually obtains the prediction (without learning
the model) and the hospital obtains no information about the
user’s input.

Modern cryptography provides us with many tools, in
particular fully homomorphic encryption and garbled circuits,
that can help us address this issue. The first key take-away
from our work is that both techniques have their limitations;
understanding their precise trade-offs and using a combination
of them judiciously in an application-specific manner helps
us overcome the individual limitations and achieve substantial
gains in performance. Thus let us begin by discussing these
two techniques and their relative merits and shortcomings.

Homomorphic Encryption: Fully Homomorphic Encryp-
tion, or FHE, is an encryption method that allows anyone
to compute an arbitrary function f on an encryption of z,
without decrypting it and without knowledge of the private
key [5], [14], [31]. As a result, one obtains an encryption of
f(x). Weaker versions of FHE, collectively called partially

homomorphic encryption or PHE, permit the computation of
a subset of all functions, typically functions that perform only
additions or functions that can be computed by depth-bounded
arithmetic circuits. An example of an additively homomor-
phic encryption (AHE) scheme is the Paillier scheme [28].
Examples of depth-bounded homomorphic encryption scheme
(called leveled homomorphic encryption or LHE) are the
family of lattice-based schemes such as the Brakerski-Gentry-
Vaikuntanathan [4] scheme and its derivatives [6], [13]. Recent
efforts, both in theory and in practice have given us large gains
in the performance of several types of PHE schemes and even
FHE schemes [4], [7], [8], [15], [19], [32].

The major bottleneck for these techniques, notwithstanding
these recent developments, is their computational complexity.
The computational cost of LHE, for example, grows dramat-
ically with the number of levels of multiplication that the
scheme needs to support. Indeed, the recent CryptoNets system
gives us a protocol for secure neural network inference using
LHE [16]. Largely due to its use of LHE, CryptoNets has
two shortcomings. First, they need to change the structure of
neural networks and retrain them with special LHE-friendly
non-linear activation functions such as the square function
(as opposed to commonly used functions such as ReLU
and Sigmoid) to suit the computational needs of LHE. This
has a potentially negative effect on the accuracy of these
models. Secondly, and perhaps more importantly, even with
these changes, the computational cost is prohibitively large.
For example, on a neural network trained on the MNIST
dataset, the end-to-end latency of CryptoNets is 297.5 seconds,
in stark contrast to the 30 milliseconds end-to-end latency
of GAZELLE. In spite of the use of interaction, our online
bandwidth per inference for this network is a mere 0.05MB
as opposed to the 372MB required by CryptoNets.

In contrast to the LHE scheme in CryptoNets, GAZELLE
employs, a much simpler packed additively homomorphic
encryption (PAHE) scheme, which we show can support very
fast matrix-vector multiplications and convolutions. Lattice-
based AHE schemes come with powerful features such as
SIMD evaluation and automorphisms (described in detail in
Section III) which make them the ideal tools for common
linear-algebraic computations. The second key take-away from
our work is that even in applications where only additive
homomorphisms are required, lattice-based AHE schemes far
outperform other AHE schemes such as the Paillier scheme
both in computational and communication complexity.

Two Party Computation: Yao’s garbled circuits [40] and
the Goldreich-Micali-Wigderson (GMW) protocol [17] are two
leading methods for the task of two-party secure computation
(2PC). After three decades of theoretical and applied work
improving and optimizing these protocols, we now have
very efficient implementations, e.g., see [9]-[11], [30]. The
modern versions of these techniques have the advantage of
being computationally inexpensive, partly because they rely on
symmetric-key cryptographic primitives such as AES and SHA
and use them in a clever way [3], because of hardware support
in the form of the Intel AES-NI instruction set, and because of

techniques such as oblivious transfer extension [3], [24] which
limit the use of public-key cryptography to an offline reusable
pre-processing phase.

The major bottleneck for these techniques is their com-
munication complexity. Indeed, three recent works followed
this paradigm and designed systems for secure neural net-
work inference: the SecureML system [27], the MiniONN
system [26], the DeepSecure system [33]. All three rely on
Yao’s garbled circuits.

DeepSecure uses garbled circuits alone; SecureML uses
Paillier’s AHE scheme to speed up some operations; and
MiniONN uses a weak form of lattice-based AHE to generate
so-called “multiplication triples” for the GMW protocol, fol-
lowing the SPDZ framework [9]. Our key claim is that under-
standing the precise trade-off point between AHE and garbled
circuit-type techniques allows us to make optimal use of both
and achieve large net computational and communication gains.
In particular, in GAZELLE, we use optimized AHE schemes in
a completely different way from MiniONN: while they employ
AHE as a pre-processing tool for the GMW protocol, we use
AHE to dramatically speed up linear algebra directly.

For example, on a neural network trained on the CIFAR-
10 dataset, the most efficient of these three protocols, namely
MiniONN, has an online bandwidth cost of 6.2GB whereas
GAZELLEhas an online bandwidth cost of 0.3GB. In fact, we
observe across the board a reduction of 20-80x in the online
bandwidth per inference which gets better as the networks
grow in size. In the LAN setting, this translates to an end-to-
end latency of 3.6s versus the 72s for MiniONN.

Even when comparing to systems such as Chameleon [29]
that rely on trusted third-party dealers, we observe a 30x
reduction in online run-time and 2.5x reduction in online
bandwidth, while simultaneously providing a pure two-party
solution, without relying on third-party dealers. (For more
detailed performance comparisons with all these systems, we
refer the reader to Section VIII).

(F)HE or Garbled Circuits? The Million-dollar Question:
To use (F)HE and garbled circuits optimally, we need to un-
derstand the precise computational and communication trade-
offs between them. Additionally, we need to (a) identify
applications and the right algorithms for these applications;
(b) partition these algorithms into computational sub-routines
where each of these techniques outperforms the other; and (c)
piece together the right solutions for each of the sub-routines
in a seamless way to get a secure computation protocol for
the entire application. Let us start by recapping the trade-offs
between (F)HE and garbled circuits.

Roughly speaking, homomorphic encryption performs better
than garbled circuits when (a) the computation has small multi-
plicative depth, ideally multiplicative depth O meaning that we
are computing a linear function; and (b) the Boolean circuit
that performs the computation has large size, say quadratic
in the input size. Matrix-vector multiplication (namely, the
operation of multiplying a plaintext matrix with an encrypted
vector) provides us with exactly such a scenario. Furthermore,
the most time-consuming computations in a convolutional

neural network are indeed the convolutional layers (which are
nothing but a special type of matrix-vector multiplication).
The non-linear computations in a CNN such as the ReLU
or maxpool functions can be written as simple linear-size
circuits which are best computed using garbled circuits. This
analysis is the guiding philosophy that enables the design
of GAZELLE(For detailed descriptions of convolutional neural
networks, we refer the reader to Section II).

Our System: The main contribution of this work is
GAZELLE, a framework for secure evaluation of convolutional
neural networks. It consists of three components:

o The first component is the Gazelle Homomorphic Layer
which consists of very fast implementations of three
basic homomorphic operations: SIMD addition, SIMD
scalar multiplication, and automorphisms (For a detailed
description of these operations, see Section III). Our inno-
vations in this part consist of techniques for division-free
arithmetic and techniques for lazy modular reductions.
In fact, our implementation of the first two of these
homomorphic operations incurs only 10-20x slower than
the corresponding operations on plaintext, when counting
the number of clock cycles.

o The second component is the Gazelle Linear Algebra ker-
nels which consists of very fast algorithms for homomor-
phic matrix-vector multiplications and homomorphic con-
volutions, accompanied by matching implementations.
In terms of the basic homomorphic operations, SIMD
additions and multiplications turn out to be relatively
cheap whereas automorphisms are very expensive. At a
very high level, our innovations in this part consists of
several new algorithms for homomorphic matrix-vector
multiplication and convolutions that minimize the expen-
sive automorphism operations.

o The third and final component is Gazelle Network In-
ference which uses a judicious combination of garbled
circuits together with our linear algebra kernels to con-
struct a protocol for secure neural network inference.
Our innovations in this part are two-fold. First, the net-
work mapping component extracts and pre-processes the
necessary garbled circuits that are required for network
inference. Second, the network evaluation layer consists
of efficient protocols that switch between secret-sharing
and homomorphic representations of the intermediate
results.

Our protocol also hides strictly more information about the

neural network than other recent works such as the MiniONN
protocol. We refer the reader to Section II for more details.

II. SECURE NEURAL NETWORK INFERENCE

The goal of this section is to describe a clean abstraction of
convolutional neural networks (CNN) and set up the secure
neural inference problem that we will tackle in the rest of
the paper. A CNN takes an input and processes it through a
sequence of linear and non-linear layers in order to classify it
into one of the potential classes. An example CNN is shown
is Figure 1.

A. Linear Layers

The linear layers, shown in Figure 1 in red, can be of
two types: convolutional (Conv) layers or fully-connected (FC)
layers.

Conv Layers: We represent the input to a Conv layer by the
tuple (w;, h;, c;) where w; is the image width, h; is the image
height, and ¢; is the number of input channels. In other words,
the input consists of ¢; many w; x h; images. The convolutional
layer is then parameterized by c, filter banks each consisting
of ¢; many f,, x fp filters. This is represented in short by the
tuple (fw, fn,¢i,Co). The computation in a Conv layer can
be better understood in term of simpler single-input single-
output (SISO) convolutions. Every pixel in the output of a
SISO convolution is computed by stepping a single f,, X fj
filter across the input image as shown in Figure 2. The output
of the full Conv layer can then be parameterized by the tuple
(wo, hyo, co) Which represents ¢, many w, X h, output images.
Each of these images is associated to a unique filter bank
and is computed by the following two-step process shown in
Figure 2: (i) For each of the c; filters in the associated filter
bank, compute a SISO convolution with the corresponding
channel in the input image, resulting in ¢; many intermediate
images; and (ii) summing up all these c¢; intermediate images.

There are two commonly used padding schemes when
performing convolutions. In the “valid” scheme, no input
padding is used, resulting in an output image that is smaller
than the initial input. In particular we have w, = w; — f, +1
and h, = h; — fr+ 1. In the “same” scheme, the input is zero
padded such that output image size is the same as the input.

In practice, the Conv layers sometimes also specify an
additional pair of stride parameters (s,,sy) which denotes
the granularity at which the filter is stepped. After accounting
for the strides, the output image size (w,,h,), is given by
([(wi — fw+1)/sw], [(hi = frn+1)/sn]) for valid style con-
volutions and (|w; /S |, | hi/sn|) for same style convolutions.

FC Layers: The input to a FC layer is a vector v; of length
n; and its output is a vector v, of length n,. A fully connected
layer is specified by the tuple (W, b) where W is (n, x n;)
weight matrix and b is an n, element bias vector. The output
is specified by the following transformation: v, = Wv,; + b.

The key observation that we wish to make is that the number
of multiplications in the Conv and FC layers are given by (w,-
hoCo fuw+ frn-¢;) and n;-n,, respectively. This makes both the
Conv and FC layer computations quadratic in the input size.
This fact guides us to use homomorphic encryption rather than
garbled circuit-based techniques to compute the convolution
and fully connected layers, and indeed, this insight is at the
heart of the much of the speedup achieved by GAZELLE.

B. Non-Linear Layers

The non-linear layers, shown in Figure 1 in blue, consist of
an activation function that acts on each element of the input
separately or a pooling function that reduces the output size.
Typical non-linear functions can be one of several types: the
most common in the convolutional setting are max-pooling
functions and ReLU functions.

Input Image
o
" Conv of
(wi'! hi'! Ci)

(fW‘! fh! Ci, co)

Convolution Neural Networks

(f\'h fh! Ci, co)

Output Classes
Input flattened
y v . airplane

- = - Layer 3 - _
é FC . automobile

. truck

[Non-Linear Layers

(nh "o)

M Linear Layers

Fig. 1. A CNN with two Conv layers and one FC layer. ReLU is used as the activation function and a MaxPooling layer is added after the first Conv layer.

i ® =

Filter

W Wo

Input Image Output Image
(a) SISO Convolution

sets

fw
fn \ w; W,
T Input Channels Output Channels

Filter . .
(a) Multi-Channel Convolution

Fig. 2. SISO convolutions and multi-channel Conv layers

The key observation that we wish to make in this context
is that all these functions can be implemented by circuits
that have size linear in the input size and thus, evaluating
them using conventional 2PC approaches does not impose any
additional asymptotic communication penalty.

For more details on CNNs, we refer the reader to [37].

C. Secure Inference

In our setting, there are two parties A and B where A holds
a convolutional neural network (CNN) and B holds an input
to the network, typically an image. We make the distinction
between the architecture of the CNN which includes the
number of layers, the size of each layer, and the activation
functions applied in layer, versus the parameters of the CNN
which includes all the numbers that describe the convolution
and the fully connected layers.

We wish to design a protocol that A and B engage in at
the end of which B obtains the classification result, namely
the output of the final layer of the neural network, whereas A
obtains nothing.

The Threat Model: Our threat model is the same as in
the previous works, namely the SecureML, MiniONN and
DeepSecure systems and, as we argue below, leaks even less
information than in these works.

To be more precise, we consider semi-honest corruptions as
in [26], [27], [33]. That is, A and B adhere to the software
that describes the protocol, but attempt to infer information
about the other party’s input (the network parameters or the
image, respectively) from the protocol transcript. We ask for
the cryptographic standard of ideal/real security [17], [18]. A
comment is in order about the security model.

Our protocol does not completely hide the network architec-
ture; however, we argue that it does hide the important aspects
which are likely to be proprietary. First of all, the protocol
hides all the weights including those involved in the convo-
Iution and the fully connected layers. Secondly, the protocol
hides the filter and stride size in the convolution layers, as
well as information on which layers are convolutional layers
and which are fully connected. What the protocol does reveal
is the number of layers and the size (the number of hidden
nodes) of each layer. At a computational expense, we are able
to pad each layer and the number of layers and hide their
exact numbers as well. In contrast, other protocols for secure
neural network inference such as the MiniONN protocol [26]
reveal strictly more information, e.g., they reveal the filter size.
As for party B’s security, we hide the entire image, but not
its size, from party A. All these choices are encoded in the
definition of our ideal functionality.

Paper Organization: The rest of the paper is organized as
follows. We first describe our abstraction of a packed addi-
tively homomorphic encryption (PAHE) that we use through
the rest of the paper. We then provide an overview of the entire
GAZELLE protocol in section IV. In the next two sections,
Section V and VI, we elucidate the most important technical
contributions of the paper, namely the Gazelle Linear Algebra
Kernels for fast matrix-vector multiplication and convolution.
We then present detailed benchmarks on the implementation of
the Gazelle Homomorphic Layer and the linear algebra kernels

in Section VII. Finally, we describe the evaluation of neural
networks such as ones trained on the MNIST or CIFAR-10
datasets and compare GAZELLE’s performance to prior work
in Section VIII.

III. PACKED ADDITIVELY HOMOMORPHIC ENCRYPTION

In this section, we describe a clean abstraction of packed
additively homomorphic encryption (PAHE) schemes that we
will use through the rest of the paper. As suggested by the
name, the abstraction will support packing multiple plaintexts
into a single ciphertext, performing SIMD homomorphic ad-
ditions (SIMDAdd) and scalar multiplications (SIMDScMult),
and permuting the plaintext slots (Perm). In particular, we
will never need or use homomorphic multiplication of two ci-
phertexts. This abstraction can be instantiated with essentially
all modern lattice-based homomorphic encryption schemes,
e.g., [4], [6], [13], [15].

For the purposes of this paper, a private-key PAHE suffices.
In such an encryption scheme, we have a (randomized) en-
cryption algorithm (PAHE.Enc) that takes a plaintext message
vector u from some message space and encrypts it using a
key sk into a ciphertext denoted as [u], and a (deterministic)
decryption algorithm (PAHE.Dec) that takes the ciphertext
[u] and the key sk and recovers the message u. Finally, we
also have a (randomized) homomorphic evaluation algorithm
(PAHE.Eval) that takes as input one or more ciphertexts that
encrypt messages My, My, ..., and outputs another ciphertext
that encrypts a message M = f(My,M;,...) for some
function f constructed using the SIMDAdd, SIMDScMult and
Perm operations.

We require two security properties from a homomorphic
encryption scheme: (1) IND-CPA Security, which requires that
ciphertexts of any two messages u and u’ are computationally
indistinguishable; and (2) Function Privacy, which requires
that the ciphertext generated by homomorphic evaluation,
together with the private key sk, reveals the underlying mes-
sage, namely the output f(-), but does not reveal any other
information about the function f.

The lattice-based PAHE constructions that we consider
in this paper are parameterized by four constants: (1) the
cyclotomic order m, (2) the ciphertext modulus ¢, (3) the
plaintext modulus p and (4) the standard deviation o of a
symmetric discrete Gaussian noise distribution ().

The number of slots in a packed PAHE ciphertext is
given by n = ¢(m) where ¢ is the Euler Totient function.
Thus, plaintexts can be viewed as length-n vectors over Zj,
and ciphertexts are viewed as length-n vectors over Z,. All
fresh ciphertexts start with an inherent noise 1 sampled from
the noise distribution y. As homomorphic computations are
performed n grows continually. Correctness of PAHE.Dec is
predicated on the fact that || < g/(2p), thus setting an upper
bound on the complexity of the possible computations.

In order to guarantee security we require a minimum value
of o (based on ¢ and n), ¢ = 1 mod m and p is co-prime
to ¢. Additionally, in order to minimize noise growth in the
homomorphic operations we require that the magnitude of r =

g mod p be as small as possible. This when combined with
the security constraint results in an optimal value of r = +£1.

In the sequel, we describe in detail the three basic operations
supported by the homomorphic encryption schemes together
with their associated asymptotic cost in terms of (a) the run-
time, and (b) the noise growth. Later, in Section VII, we
will provide concrete micro-benchmarks for each of these
operations implemented in the GAZELLE library.

A. Ciphertext Addition: SIMDAdd

Given ciphertexts [u] and [v], SIMDAdd outputs an encryp-
tion of their componentwise sum, namely [u + v].

The asymptotic run-time for homomorphic addition is n -
CostAdd(q), where CostAdd(q) is the run-time for adding two
numbers in Z, = {0,1,...,¢—1}. The noise growth is at most
Nu+1v Where 7, (resp. 1) is the amount of noise in [u] (resp.
in [v]).

B. Scalar Multiplication: SIMDScMult

If the plaintext modulus is chosen such that p =1 mod m,
we can also support a SIMD compenentwise product. Thus
given a ciphertext [u] and a plaintext v, we can output an
encryption [uov] (where o denotes component-wise multipli-
cation of vectors).

The asymptotic run-time for homomorphic scalar multipli-
cation is n - CostMult(q), where CostMult(g) is the run-time
for multiplying two numbers in Z,. The noise growth is at
MOSt Nyl * Nu Where Nmuie = || V]|, - /1 is the multiplicative
noise growth of the SIMD scalar multiplication operation.

For a reader familiar with homomorphic encryption
schemes, we note that ||v||., is the largest value in the
coefficient representation of the packed plaintext vector v, and
thus, even a binary plaintext vector can result in 7y as high
as p - v/n. In practice, we alleviate this large multiplicative
noise growth by bit-decomposing the coefficient representation
of v into log(p/2"7) many wpy-sized chunks v such that
vV = 22‘““"“ - vi. We refer to wy; as the plaintext window
size.

We can now represent the product [u o v] as > [uy o vi]
where uy, = [2%* .u]. Since ||vg||., < 2" the total noise in
the multiplication is bounded by), 2" -\/n -1y, as opposed
to p - /1 - Nu. The only caveat is that we need access to low
noise encryptions [ug] as opposed to just [u] as in the direct
approach.

C. Scalar Multiplication: Perm

Given a ciphertext [u] and one of a set of primitive permuta-
tions 7 defined by the scheme, the Perm operation outputs a ci-
phertext [u,], where u is defined as (ur (1), Ur (2, - - -, Ur(n))»
namely the vector u whose slots are permuted according to the
permutation 7. The set of permutations that can be supported
depends on the structure of the multiplicative group mod m
i.e. (Z/mZ)*. When m is prime, we have n (= m — 1) slots
and the permutation group supports all cyclic rotations of the
slots, i.e. it is isomorphic to C, (the cyclic group of order n).
When m is a sufficiently large power of two (m = 2, m > 8),

L

Fig. 3. Ciphertext Structure and Operations. Here, n is the number of slots,
q is the size of ciphertext space (so a ciphertext required [log, ¢] bits to
represent), p is the size of the plaintext space (so a plaintext can have at most
[log, p] bits), and 7 is the amount of noise in the ciphertext.

i
1

Fig. 4. A Plaintext Permutation in action. The permutation 7 in this example
swaps the first and the second slots, and also the third and fourth slots. The
operation incurs a noise growth from 7 to 7’ & 7 + nrot. Here, Mrot =
nlogq - mo where 79 is some small “base noise”.

12,64 i
22 I 2 i [
4

2 1

w [&]
» [E]
N [E]
w [E]

we have n = 2F~1 and the set of permutations is isomorphic
to the set of half-rotations i.e. C, /o x C2, as illustrated in
Figure 4.

Permutations are by far the most expensive operations in a
homomorphic encryption scheme. A single permutation costs
as much as performing a number theoretic transform (NTT),
the analog of the discrete Fourier transform, plus the cost of
O(log ¢) inverse number theoretic transforms (NTT ™). Since
NTT and NTT ™! have an asymptotic cost of ©(nlogn), the
cost is therefore ©(n log nlog q). The noise growth is additive,
namely, 7y, = Nu~+"Mrot Where 7ot is the additive noise growth
of a permutation operation.

D. Faillier vs. Lattice-based PAHE

The PAHE scheme used in GAZELLE is dramatically more
efficient than conventional Paillier based AHE. Homomorphic
addition of two Paillier ciphertexts corresponds to a modular
multiplication modulo a large RSA-like modulus (2048bits) as
opposed to a simple addition mod ¢ as seen in SIMDAdd.
Similarly multiplication by a plaintext turns into a modular
exponentiation for Paillier. Furthermore the large sizes of the
Paillier ciphertexts makes encryption of single small integers
extremely bandwidth-inefficient. In contrast, the notion of
packing provided by lattice-based schemes provides us with
a SIMD way of packing many integers into one ciphertext,
as well as SIMD evaluation algorithms. We are aware of
one system [34] that tries to use Paillier in a SIMD fashion;
however, this lacks two crucial components of lattice-based
AHE, namely the facility to multiply each slot with a separate
scalar, and the facility to permute the slots. We are also aware
of a method of mitigating the first of these shortcomings [23],
but not the second. Our fast homomorphic implementation of

linear algebra uses both these features of lattice-based AHE,
making Paillier an inherently unsuitable substitute.

E. Parameter Selection for PAHE

Parameter selection for PAHE requires a delicate balance
between the homomorphic evaluation capabilities and the
target security level. We detail our procedure for parameter
selection to meet a target security level of 128 bits. We first
set our plaintext modulus to be 20 bits to represent the fixed
point inputs (the bit-length of each pixel in an image) and
partial sums generated during the neural network evaluation.
Next, we require that the ciphertext modulus be close to, but
less than, 64 bits in order to ensure that each ciphertext slot
fits in a single machine word while maximizing the potential
noise margin available during homomorphic computation.

The Perm operation in particular presents an interesting
tradeoff between the simplicity of possible rotations and the
computational efficiency of the number-theoretic transform
(NTT). A prime m results in a (simpler) cyclic permutation
group but necessitates the use of an expensive Bluestein
transform. Conversely, the use of m = 2% allows for a 8x
more efficient Cooley-Tukey style NTT at the cost of an
awkward permutation group that only allows half-rotations.
In this work, we opt for the latter and adapt our linear algebra
kernels to deal with the structure of the permutation group.
Based on the analysis of [1], we set m = 4096 and o = 4 to
obtain our desired security level.

Our chosen bit-width for ¢, namely 60 bits, allows for lazy
reduction, i.e. multiple additions may be performed without
overflowing a machine word before a reduction is necessary.
Additionally, even when ¢ is close to the machine word-size,
we can replace modular reduction with a simple sequence
of addition, subtraction and multiplications. This is done by
choosing ¢ to be a pseudo-Mersenne number.

Next, we detail a technique to generate prime moduli that
satisfy the above correctness and efficiency properties, namely:

1) ¢g=1 (mod m)

2) p=1 (mod m)

3) Jqmod p| = r| ~ 1

4) ¢ is pseudo-Mersenne, i.e. ¢ = 20 — §, (6 < \/q)
Below, we describe a fast method to generate p and ¢ (We
remark that the obvious way to do this requires at least p ~ 22°
primality tests, even to satisfy the first three conditions).

Since we have chosen m to be a power of two, we observe
that 6 = —1 (mod m). Moverover = ¢ (mod p) implies
that 6 = (¢ —) (mod p). These two CRT expressions for §
imply that given a prime p and residue r, there exists a unique
minimal value of § mod (p-m).

Based on this insight our prime selection procedure can be
broken down into three steps:

1) Sample for p = 1 mod m and sieve the prime candi-

dates.

2) For each candidate p, compute the potential 2|r| candi-

dates for § (and thus g).
3) If q is prime and ¢ is sufficiently small accept the pair

(p,q).

TABLE I
PRIME SELECTION FOR PAHE

[log(p)] P q |7|

18 307201 200 _212.63548 +1 1

22 5324801 260 _212.192130 + 1 1

26 115351553 260 _ 212 .9259 4 1 1

30 1316638721 260 — 212 . 54778 + 1 2

ST SN ST B ',' """""" S\
[+] =
1
1
1
P2 =
1
5 o]
'
x 1
1
> i
1
1
H
. P S PP Y P J

Fig. 5. Our optimized circuit for step (b) namely Yao garbling. The “+” gates
refer to an integer addition circuit and “-” refers to an integer subtraction
circuit. The trapeziods are multiplexers and the “>" refers to the circuit that
outputs 1 if and only if the input is larger than p/2.

Heuristically, this procedure needs log(q)(p - m)/(2|r|\/q)
candidate primes p to sieve out a suitable ¢. Since p ~ 220
and ¢ ~ 254 in our setting, this procedure is very fast. A
list of reduction-friendly primes generated by this approach is
tabulated in Table I. Finally note that when [log(p)] - 3 < 64
we can use Barrett reduction to speed-up reduction modp.

The impact of the selection of reduction-friendly primes on
the performance of the PAHE scheme is described in section
VIL.

IV. OUR PROTOCOL AT A HIGH LEVEL

Our protocol for solving the above problem is based on the
alternating use of packed additively homomorphic encryption
(PAHE) and garbled circuits (GC) to evaluate the neural
network under consideration. Thus, the client B first encrypts
their input using the GAZELLE SIMD linear homomorphic en-
cryption scheme and sends it to the server A. The server A first
uses the GAZELLE homomorphic neural network kernel for the
first layer (which is either convolution or fully connected). The
result is a packed ciphertext that contains the input to the first
non-linear (ReLU) layer.

To evaluate the first non-linear layer, we employ a garbled
circuit based evaluation protocol. Our starting point is the
scenario where A holds a ciphertext [x] (where x is a vector)
and B holds the private key. A and B together do the
following:

(a) Translate from Ciphertext to Shares: The first step is
to convert this into the scenario where A and B hold
an additive secret sharing of x. This is accomplished
by the server A adding a random vector r to her
ciphertext homomorphically to obtain an encryption

[x + r] and sends it to the client B. The client B
decrypts it; the server A sets her share s, = r and
B sets his share ¢, = x+r (mod p). This is clearly
an additive (arithmetic) secret sharing of x.

(b) Yao Garbled Circuit Evaluation: We now wish to
run the Yao garbled circuit protocol for the non-
linear activation functions f (in parallel for each
component of x) to get a secret sharing of the output
y = f(x). This is done using our circuit from
Figure 5, described in more detail below. The output
of the garbled circuit evaluation is a pair of shares
sy (for the server) and c, (for the client) such that
sy + ¢y =y (mod p).

(c) Translate back from Shares to a Ciphertext: The
client A encrypts her share c, using the homomor-
phic encryption scheme and sends it to B; B in
turn homomorphically adds his share s, to obtain
an encryption of ¢, + s, =y = f(x).

Once this is done, we are back where we started. The
next linear layer (either fully connected or convolutional) is
evaluated using the GAZELLE homomorphic neural network
kernel, followed by Yao’s garbled circuit protocol for the next
non-linear layer, so we rinse and repeat until we evaluate the
full network. We make the following two observations about
our proposed protocols:

1) By using AHE for the linear layers, we ensure that the
communication complexity of protocol is linear in the
number of layers and the size of inputs for each layer.

2) At the end of the garbled circuit protocol we have
an additive share that can be encrypted afresh. As
such, we can view the re-encryption as an interactive
bootstrapping procedure that clears the noise introduced
by any previous homomorphic operation.

For the second step of the outline above, we employ the
Boolean circuit described in Figure 5. The circuit takes as
input three vectors: s, = r and s, = r’ (chosen at random)
from the server, and ¢, from the client. The first block of
the circuit computes the arithmetic sum of s, and c, over
the integers and subtracts p from to obtain the result mod p.
(The decision of whether to subtract p or not is made by the
multiplexer). The second block of the circuit computes a ReLU
function. The third block adds the result to s, to obtain the
client’s share of y, namely c,. For more detailed benchmarks
on the ReLU and MaxPool garbled circuit implementations,
we refer the reader to Section VIII.

In our evaluations, we consider ReLU, Max-Pool and the
square activation functions, the first two are by far the most
commonly used ones in convolutional neural network de-
sign [22], [25], [36], [38]. Note that the square activation
function popularized for secure neural network evaluation in
[16] can be efficiently implemented by a simple interactive
protocol that use the PAHE scheme to generate the cross-
terms.

TABLE II
COMPARING MATRIX-VECTOR PRODUCT ALGORITHMS BY OPERATION COUNT, NOISE GROWTH AND NUMBER OF OUTPUT CIPHERTEXTS

Perm (Hoisted)? Perm SIMDScMult SIMDAdd Noise #out_ct®

Naive 0 no - logn; No no - logn; nnaiv_,'_e?;:t n(()nlniuit) i o
Naive i) _ . . . Tnaive * Timult * Mo

(Output packed) 0 no - logni +no — 1 mo moclogmitmo T (e — 1) !

Naive Nnong . Mo My Mo Ny | . 70 * Mmult * T No-Mj

(Input packed) 0 n o log D n logn ot - (i — 1) n

Diagonal n; —1 0 ng ng (M0 + 7rot) * Mmult * 14 1

Hybrid nomi _q log nong noni 4 1oe (M0 + Mrot) - Nmult - M 1
ybri -~ g g n P 8 o +nrot.(%_1)

2 Rotations of the input with a common PermDecomp
¢ All logarithms are to base 2

V. FAST HOMOMORPHIC MATRIX-VECTOR
MULTIPLICATION

We next describe the GAZELLE homomorphic linear algebra
kernels that compute matrix-vector products (for FC layers)
and 2-d convolutions (for Conv layers). In this section, we
focus on matrix-vector product kernels which multiply a
plaintext matrix with an encrypted vector. We start with the
easiest to explain (but the slowest and most communication-
inefficient) methods and move on to describing optimizations
that make matrix-vector multiplication much faster. In partic-
ular, our hybrid method (see Table IV and the description
below) gives us the best performance among all our homo-
morphic matrix-vector multiplication methods. For example,
multiplying a 128 x 1024 matrix with a length-1024 vector
using our hybrid scheme takes about 16ms on a commodity
machine. (For detailed benchmarks, we refer the reader to
Section VII-C). In all the subsequent examples, we will use an
FC layer with n; inputs and n, outputs as a running example.
For simplicity of presentation, unless stated otherwise we
assume that n, n; and n, are powers of two. Similarly we
assume that n,, and n; are smaller than n. If not, we can split
the original matrix into n X n sized blocks that are processed
independently.

A. The Naive Method

In the naive method, each row of the n, X n; plaintext
weight matrix W is encoded into a separate plaintext vectors
(see Figure 6). Each such vector is of length n; where the first
n; entries contain the corresponding row of the matrix and
the other entries are padded with 0. These plaintext vectors
are denoted wo, w1, ..., W, _1). We then use SIMDScMult
to compute the componentwise product of with the encrypted
input vector [v] to get [u;] = [w; ov]. In order to compute the
inner-product what we need is actually the sum of the entries
in each of these vectors u,;.

This can be achieved by a “rotate-and-sum” algorithm,
where we first rotate the entries of [u;] by n;/2 positions.
The result is a ciphertext whose first n;/2 entries contain
the sum of the first and second halves of u;. One can then
repeat this process for log, n; iterations, rotating by half the

b Number of output ciphertexts

previous rotation on each iteration, to get a ciphertext whose
first slot contains the first component of Wv. By repeating
this procedure for each of the n, rows we get n, ciphertexts,
each containing one element of the result.

Based on this description, we can derive the following
performance characteristics for the naive method:

o The total cost is n, SIMD scalar multiplications, n, -
logy n rotations (automorphisms) and n, - log, n SIMD
additions.

o The noise grows from 7 to 7 Nmuit - 7+ Mot - (R — 1) where
Nmult 1S the multiplicative noise growth factor for SIMD
multiplication and 7, is the additive noise growth for
a rotation. This is because the one SIMD multiplication
turns the noise from 7 + 7 - Pmuit, and the sequence of
rotations and additions grows the noise as follows:

N Mmute = (7 Tmute) -2+ Trot = (7 Nmuie) -4+ N0t -3 > - ...

which gives us the above result.
« Finally, this process produces n, many ciphertexts each
one containing just one component of the result.

This last fact turns out to be an unacceptable efficiency
barrier. In particular, the total network bandwidth becomes
quadratic in the input size and thus contradicts the entire
rationale of using PAHE for linear algebra. Ideally, we want
the entire result to come out in packed form in a single
ciphertext (assuming, of course, that n, < n).

A final subtle point that needs to noted is that if n is not a
power of two, then we can continue to use the same rotations
as before, but all slots except the first slot leak information
about partial sums. We therefore must add a random number
to these slots to destroy this extraneous information about the
partial sums.

B. Output Packing

The very first thought to mitigate the ciphertext blowup is-
sue we just encountered is to take the many output ciphertexts
and somehow pack the results into one. Indeed, this can be
done by (a) doing a SIMD scalar multiplication which zeroes
out all but the first coordinate of each of the out ciphertexts;
(b) rotating each of them by the appropriate amount so that

W v D:J(:lj Wv
of . W mrm
LT Jrrr
(a) Naive [TT1E
w v HIE
LT Wy
® ok [TTTH
I:I:)I(:I:I
(b) Diagonal ETT
w ., HH
LLTH T
® ED;I:I T
[I:!:I T 11
(c) Hybrid T w

Fig. 6. The naive method is illustrated on the left and the diagonal method
of Halevi and Shoup [20] is illustrated on the right. The entries in a single
color live in the same ciphertext. The key feature of the diagonal method is
that no two elements of the matrix that influence the same output element
appear with the same color.

the numbers are lined up in different slots; and (c) adding all
of them together.

Unfortunately, this results in unacceptable noise growth.
The underlying reason is that we need to perform two serial
SIMD scalar multiplications (resulting in an 7?2, factor; see
Table IV). For most practical settings, this noise growth forces
us to use ciphertext moduli that are larger 64 bits, thus
overflowing the machine word. This necessitates the use of a
Double Chinese Remainder Theorem (DCRT) representation
similar to [15] which substantially slows down computation.
Instead we use an algorithmic approach to control noise
growth allowing the use of smaller moduli and avoiding the
need for DCRT.

C. Input Packing

Before moving on to more complex techniques we describe
an orthogonal approach to improve the naive method when
n; < n. The idea is to pack multiple copies of the input into
a single ciphertext. This allows us better utilization of the slots
by computing multiple outputs in parallel.

In detail we can (a) pack n/n; many different rows into
a single plaintext vector; (b) pack n/n; copies of the input
vector into a single ciphertext; and (c) perform the rest of the
naive method as-is except that the rotations are not applied

to the whole ciphertext but block-by-block (thus requiring
log(n;) many rotations). Roughly speaking, this achieves
communication and computation as if the number of rows
of the matrix were n/ = (n, X n;)/n instead of n,. When
n; € n, we have n/, < n,.

D. The Diagonal Method

The diagonal method as described in the work of Halevi
and Shoup [20] (and implemented in [19]) provides another
potential solution to the problem of a large number of out-
put ciphertexts. The key high-level idea is to arrange the
matrix elements in such a way that after the SIMD scalar
multiplications, “interacting elements” of the matrix-vector
product never appear in a single ciphertext. Here, “interacting
elements” are the numbers that need to be added together to
obtain the final result. The rationale is that if this happens, we
never need to add two numbers that live in different slots of
the same ciphertexts, thus avoiding ciphertext rotation.

To do this, we encode the diagonal of the matrix into
a vector which is then SIMD scalar multiplied with the
input vector. The second diagonal (namely, the elements
Wo.1,Wio,...,W, _10) is encoded into another vector
which is then SIMD scalar multiplied with a rotation (by one)
of the input vector, and so on. Finally, all these vectors are
added together to obtain the output vector in one shot.

The cost of the diagonal method is:

o The total cost is n; SIMD scalar multiplications, n; — 1
rotations (automorphisms), and n; — 1 SIMD additions.

o The noise grows from 1 to (1 + Mot) * Nmuie X 1; Which,
for the parameters we use, is larger than that of the naive
method, but much better than the naive method with
output packing. Roughly speaking, the reason is that in
the diagonal method, since rotations are performed before
scalar multiplication, the noise growth has a 7ot * Jmut
factor whereas in the naive method, the order is reversed
resulting in a Nmuit + Mot factor.

« Finally, this process produces a single ciphertext that has
the entire output vector in packed form already.

In our setting (and we believe in most reasonable settings),
the additional noise growth is an acceptable compromise given
the large gain in the output length and the corresponding gain
in the bandwidth and the overall run-time. Furthermore, the
fact that all rotations happen on the input ciphertexts prove
to be very important for an optimization of [21] we describe
below, called “hoisting”, which lets us amortize the cost of
many input rotations.

E. Book-keeping: Hoisting

The hoisting optimization reduces the cost of the ciphertext
rotation when the same ciphertext must be rotated by multiple
shift amounts. The idea, roughly speaking, is to “look inside”
the ciphertext rotation operation, and hoist out the part of the
computation that would be common to these rotations and then
compute it only once thus amortizing it over many rotations.
It turns out that this common computation involves computing
the NTT! (taking the ciphertext to the coefficient domain),

followed by a wy|i,-bit decomposition that splits the ciphertext
[(logs q)/Weelin] ciphertexts and finally takes these ciphertexts
back to the evaluation domain using separate applications of
NTT. The parameter w,ji, is called the relinearization window
and represents a tradeoff between the speed and noise growth
of the Perm operation. This computation, which we denote
as PermDecomp, has © (nlogn) complexity because of the
number theoretic transforms. In contrast, the independent
computation in each rotation, denoted by PermAuto, is a
simple © (n) multiply and accumulate operation. As such,
hoisting can provide substantial savings in contrast with direct
applications of the Perm operation and this is also borne out
by the benchmarks in Table VII.

F. A Hybrid Approach

One issue with the diagonal approach is that the number
of Perm is equal to n;. In the context of FC layers n, is
often much lower than n; and hence it is desirable to have
a method where the Perm is close to n,. Our hybrid scheme
achieves this by combining the best aspects of the naive and
diagonal schemes. We first extended the idea of diagonals for
a square matrix to squat rectangular weight matrices as shown
in Figure 6 and then pack the weights along these extended
diagonals into plaintext vectors. These plaintext vectors are
then multiplied with n,, rotations of the input ciphertext similar
to the diagonal method. Once this is done we are left with a
single ciphertext that contains n/n, chunks each contains a
partial sum of the n, outputs. We can proceed similar to the
naive method to accumulate these using a “rotate-and-sum”
algorithm.

We implement an input packed variant of the hybrid method
and the performance and noise growth characteristics (follow-
ing a straightforward derivation) are described in Table IV. We
note that hybrid method trades off hoistable input rotations in
the Diagonal method for output rotations on distinct cipher-
texts (which cannot be “hoisted out”). However, the decrease
in the number of input rotations is multiplicative while the
corresponding increase in the number of output rotations is the
logarithm of the same multiplicative factor. As such, the hybrid
method almost always outperforms the Naive and Diagonal
methods. We present detailed benchmarks over a selection of
matrix sizes in Table VIIIL.

We close this section with two implementation details. First,
recall that in order to enable faster NTT, our parameter
selection requires n to be a power of two. As a result the
permutation group we have access to is the group of half
rotations (C), /2 X C3), i.e. the possible permutations are
compositions of rotations by up to n/2 for the two n/2-
sized segments, and swapping the two segments. The packing
and diagonal selection in the hybrid approach are modified
to account for this by adapting the definition of the extended
diagonal to be those entries of W that would be multiplied
by the corresponding entries of the ciphertext when the above
Perm operations are performed as shown in Figure 7. Finally,
as described in section III we control the noise growth in

Fig. 7. Four example extended digaonals after accounting for the rotation
group structure

SIMDScMult using plaintext windows for the weight matrix
W.

VI. FAST HOMOMORPHIC CONVOLUTIONS

We now move on the implementation of homomorphic
kernels for Conv layers. Analogous to the description of FC
layers we will start with simpler (and correspondingly less
efficient) techniques before moving on to our final optimized
implementation. In our setting, the server has access to a
plaintext filter and it is then provided encrypted input images,
which it must homomorphically convolve with its filter to
produce encrypted output images. As a running example for
this section we will consider a (f,,, fn, ¢i, ¢,)-Conv layer with
the “same” padding scheme, where the input is specified by
the tuple (wj, hs,c;). In order to better emphasize the key
ideas, we will split our presentation into two parts: first we
will describe the single input single output (SISO) case, i.e.
(c; =1,¢c, = 1) followed by the more general case where we
have multiple input and output channels, a subset of which
may fit within a single ciphertext.

A. Padded SISO

As seen in section II, same style convolutions require that
the input be zero-padded. As such, in this approach, we start
with a zero-padded version of the input with (f,, —1)/2 zeros
on the left and right edges and (f;, — 1)/2 zeros on the top
and bottom edges. We assume for now that this padded input
image is small enough to fit within a single ciphertext i.e.
(w; + fw—1) - (hi + f — 1) < n and is mapped to the
ciphertext slots in a raster scan fashion. We then compute f,, -
fr rotations of the input and scale them by the corresponding
filter coefficient as shown in Figure 8. Since all the rotations
are performed on a common input image, they can benefit
from the hoisting optimization. Note that similar to the naive
matrix-vector product algorithm, the values on the periphery
of the output image leak partial products and must be obscured
by adding random values.

ofarz] <o ¥ o] oot e i+
3[4(5 3|4|5 3|4]5
s[7l8l_,(in) sl7l8] 17_.(in) 6[7]s T_a(in)
o[1]2 0[1]2 1]2
alals] <o+ alalsl | oot [Elals *f10 +
6[7(8 6|7|8 6|7|8
m_,(in) o (in) 7, (in)
0f[1(2 0]1]2 0)1]2
3[4(5 3|4|5 3|4]5 0|1(2
svaxf‘—ﬂ‘*' 6[7]s *fo, 1)+ 6|7]8 "fi'w:— 3|a]s
6|7(8
774“”) TTs(m) T(G(m) out
Fig. 8. Padded SISO Convolution
5[6]7 6[7]8 7[8]o
8lo[1]x + [o]1]2] + [1]2]3] x +
2]3]a 3|45 A0
m_,(in) fq g m_3(n) fo.q m_,(in) fqq
8Jo]1 of1]2 1]2]3
2[3[a]x + [3]a]s5] x + [a]5]6] x +
5|6]7 6|78 7]8]0
m_(in) me(in) m(in) fao
2[3]4 3[4]5 4]5]6 o[1]2
5[6]7]% + [6][7]8] + [7[8]0] x = [3[4]5
801 of1]2 1]2]3 6|7]8
m,(in) fea m4(in) fo m,(in) fiaa out

Fig. 9. Packed SISO Convolution. (Zeros in the punctured plaintext shown
in white.)

B. Packed SISO

While the above the technique computes the correct 2D-
convolution it ends up wasting (w; + fi, — 1) (hi + frn— 1) —
w; - h; slots in zero padding. If either the input image is small
or if the filter size is large, this can amount to a significant
overhead. We resolve this issue by using the ability of our
PAHE scheme to multiply different slots with different scalars
when performing SIMDScMult. As a result, we can pack the
input tightly and generate f,, - f; rotations. We then multiply
these rotated ciphertexts with punctured plaintexts which have
zeros in the appropriate locations as shown in Figure 9.
Accumulating these products gives us a single ciphertext that,
as a bonus feature, contains the convolution result without any
leakage of partial information.

Finally, we note that the construction of the punctured
plaintexts does not depend on either the encrypted image or the
client key information and as such, the server can precompute
these values once for multiple clients. We summarize these
results in Table III.

Now that we have seen how to compute a single 2D-

TABLE III
COMPARING SISO 2D-CONVOLUTIONS

Perm # slots
Padded fwfh —1 (wl + fw — 1)(hl + fh — 1)
Packed fufn — 1 w;h;

convolution we will look at the more general multi-channel
case.

C. Single Channel per Ciphertext

The straightforward approach for handling the multi-channel
case is to encrypt the various channels into distinct ciphertexts.
We can then SISO convolve these c;-ciphertexts with each of
the ¢, sets of filters to generate c, output ciphertexts. Note that
although we need ¢, - ¢; - fp, - fu» SIMDAdd and SIMDScMult
calls, just ¢;- fy, - f, many Perm operations on the input suffice,
since the rotated inputs can be reused to generate each of the
¢, outputs. Furthermore, each these rotation can be hoisted
and hence we require just ¢; many PermDecomp calls and
¢+ fn - fnw many PermAuto calls.

D. Channel Packing

Similar to input-packed matrix-vector products, the compu-
tation of multi-channel convolutions can be further sped up by
packing multiple channels in a single ciphertext. We represent
the number of channels that fit in a single ciphertext by c,.
Channel packing allows us to perform c,,-SISO convolutions
in parallel in a SIMD fashion. We maximize this parallelism
by using Packed SISO convolutions which enable us to tightly
pack the input channels without the need for any additional
padding.

For simplicity of presentation, we assume that both c¢;
and c, are integral multiples of c,. Our high level goal is
to then start with ¢;/¢, input ciphertexts and end up with
o/ cr, output ciphertexts where each of the input and output
ciphertexts contains c¢,, distinct channels. We achieve this in
two steps: (a) convolve the input ciphertexts in a SISO fashion
to generate (¢, - ¢;)/cy, intermediate ciphertexts that contain
all the ¢, - ¢;-SISO convolutions and (b) accumulate these
intermediate ciphertexts into output ciphertexts.

Since none of the input ciphertexts repeat an input chan-
nel, none of the intermediate ciphertexts can contain SISO
convolutions corresponding to the same input channel. A
similar constraint on the output ciphertexts implies that none
of the intermediate ciphertexts contain SISO convolutions
corresponding to the same output. In particular, a potential
grouping of SISO convolutions that satisfies these constraints
is the diagonal grouping. More formally the k" intermediate
ciphertext in the diagonal grouping contains the following
ordered set of ¢,,-SISO convolutions:

{ (lk/ci] - en +1,
[(k mod ¢;)/cn] - en + (K+1) mod ey,)) | 1 €[0,¢) }

where each tuple (z,,z;) represents the SISO convolution
corresponding to the output channel z, and input channel
x;. Given these intermediate ciphertexts, one can generate the
output ciphertexts by simply accumulating the ¢, /c,,-partitions
of ¢; consecutive ciphertexts. We illustrate this grouping and
accumulation when ¢; = ¢, = 8 and ¢,, = 4 in Figure 10.
Note that this grouping is very similar to the diagonal style of
computing matrix vector products, with single slots now being
replaced by entire SISO convolutions.

Lo T an T e [@3 | [@ [60 [62 [@3 |
+ +

[y T o2 [e [6o | [@ [62 | 63 [@0 |
+ +

[T 3 [@ [660 | [@ [63 [60 [@1 |
+ +

Loy [T a0 T en [2 | [@) [60 [6) [@2 |
+ +

[0 T a5 [@6 [660 | [@y [&5 [68 [@0 |
+ +

Loy [o8 [@en [e | [@ [68 [60 [04 |
+ +

[oo [an [ea [@ | [@ [60 | 64 [@5 |
+ +

[on T oo [@5 [68 | [@n [6o [68 [@6 |

o T+ T =2 [5 J[& [s [& [7 |

Fig. 10. Diagonal Grouping for Intermediate Ciphertexts (¢; = ¢, = 8 and
cnp =4)

Since the second step is just a simple accumulation of
ciphertexts, the major computational complexity of the convo-
lution arise in the computation of the intermediate ciphertexts.
If we partition the set of intermediate ciphertexts into c,,-
sized rotation sets (shown in grey in Figure 10), we see that
each of the intermediate ciphertexts is generated by different
rotations of the same input. This observation leads to two
natural approaches to compute these intermediate ciphertexts.

Input Rotations: In the first approach, we generate c,
rotations of the every input ciphertext and then perform Packed
SISO convolutions on each of these rotations to compute
all the intermediate rotations required by ¢,/c, rotation sets.
Since each of the SISO convolutions requires f, - f5 rotations,
we require a total of (¢, - fu - frn — 1) rotations (excluding the
trivial rotation by zero) for each of the ¢;/c, inputs. Finally
we remark that by using the hoisting optimization we compute
all these rotations by performing just ¢;/c, PermDecomp
operations.

Output Rotations: The second approach is based on the
realization that instead of generating (c,, - fy - fn — 1) input
rotations, we can reuse (f, - fn, — 1) rotations in each rotation-
set to generate ¢, convolutions and then simply rotate (c,, —
1) of these to generate all the intermediate ciphertexts. This
approach then reduces the number of input rotations by factor
of ¢, while requiring (¢, — 1) for each of the (c; - ¢,)/c?
rotation sets. Note that while (f, - f, — 1) input rotations per
input ciphertext can share a common PermDecomp each of
the output rotations occur on a distinct ciphertext and cannot
benefit from hoisting.

We summarize these numbers in Table IV. The choice
between the input and output rotation variants is an interesting
trade-off that is governed by the size of the 2D filter. This
trade-off is illustrated in more detail with concrete benchmarks
in section VIIL. Finally, we remark that similar to the matrix-
vector product computation, the convolution algorithms are
also tweaked to work with the half-rotation permutation group
and use plaintext windows to control the scalar multiplication
noise growth.

o

. J . J

Fig. 11. Decomposing a strided convolutions into simple convolutions (f,, =
frn=3and s; =5y =2)

Strided Convolutions: We handle strided convolutions by
decomposing the strided convolution into a sum of simple
convolutions each of which can be handled as above. We
illustrate this case for f, = f, = 3 and s, = 5, = 2 in
Figure 11.

Low-noise Batched Convolutions: We make one final re-
mark on a potential application for padded SISO convolutions.
Padded SISO convolutions are computed as a sum of rotated
versions of the input images multiplied by corresponding
constants f; ,. The coefficient domain representation of these
plaintext vectors is (fy,,0,...,0). As a result, the noise
growth factor iS Nmur = fz,y - v/ as opposed to p - \/n,
consequently noise growth depends only on the value of the
filter coefficients and not on the size of the plaintext space p.
The direct use of this technique precludes the use of channel
packing since the filter coefficients are channel dependent. One
potential application that can mitigate this issue is when we
want to classify a batch of multiple images. In this context,
we can pack the same channel from multiple classifications
allowing us to use a simple constant filter. This allows us
to trade-off classification latency for higher throughput. Note
however that similar to padded SISO convolutions, this has
two problems: (a) it results in lower slot utilization compare
to packed approaches, and (b) the padding scheme reveals the
size of the filter.

VII. IMPLEMENTATION AND MICRO-BENCHMARKS

Next we describe the implementation of the GAZELLE
framework starting with the chosen cryptographic primitives
(VII-A). We then describe our evaluation test-bed (VII-B) and
finally conclude this section with detailed micro-benchmarks
(VII-C) for all the operations to highlight the individual con-
tributions of the techniques described in the previous sections.

A. Cryptographic Primitives

GAZELLE needs two main cryptographic primitives for
neural network inference: a packed additive homomorphic en-
cryption (PAHE) scheme and a two-party secure computation
(2PC) scheme. Parameters for both schemes are selected for
a 128-bit security level. For the PAHE scheme we instantiate
the Brakerski-Fan-Vercauteren (BFV) scheme [6], [13], which
requires selection of the following parameters: ciphertext mod-
ulus (q), plaintext modulus (p), the number of SIMD slots (n)
and the error parameter (o). Maximizing the ¢/p ratio allows
us to tolerate more noise, thus allowing for more computation.
A plaintext modulus p of 20 bits is enough to store all the

TABLE IV
COMPARING MULTI-CHANNEL 2D-CONVOLUTIONS

PermDecomp Perm #in_ct #out_ct
One Channel per CT ¢ (fwfn—1) ¢ c; Co
Input Rotations L% (enfuwfn—1)- L% LCTZ %Z
; (en—1)-co) ci (en=1)-co\ ci i o
Output Rotations (1 + T) P (fwfh -1+ T) o o =
intermediate values in the network computation . This choice TABLE V

of the plaintext modulus size also allows for Barrett reduction
on a 64-bit machine. The ciphertext modulus (q) is chosen
to be a 60-bit psuedo-Mersenne prime that is slightly smaller
than the native machine word on a 64-bit machine to enable
lazy modular reductions.

The selection of the number of slots is a more subtle trade-
off between security and performance. In order to allow an
efficient implementation of the number-theoretic transform
(NTT), the number of slots (n) must be a power of two. The
amortized per-slot computational cost of both the SIMDAdd
and SIMDScMult operations is O(1), however the correspond-
ing cost for the Perm operation is O(logn). This means that
as n increases, the computation becomes less efficient while
on the other hand for a given ¢, a larger n results in a higher
security level. Hence we pick the smallest power of two that
allows for a 128-bit security which in our case is n = 2048.

For the 2PC framework, we use Yao’s Garbled circuits [40].
The main reason for choosing Yao over Boolean secret
sharing schemes (such as the Goldreich-Micali-Wigderson
protocol [17] and its derivatives) is that the constant number
of rounds results in good performance over long latency links.
Our garbling scheme is an extension of the one presented
in JustGarble [3] which we modify to also incorporate the
Half-Gates optimization [41]. We base our oblivious trans-
fer (OT) implementation on the classic Ishai-Kilian-Nissim-
Petrank (IKNP) [24] protocol from libOTe [30]. Since we
use 2PC for implementing the ReLU, MaxPool and FHE-
2PC transformation gadget, our circuit garbling phase only
depends on the neural network topology and is independent
of the client input. As such, we move it to the offline phase of
the computation while the OT Extension and circuit evaluation
is run during the online phase of the computation.

B. Evaluation Setup

All benchmarks were generated using c4.xlarge AWS in-
stances which provide a 4-threaded execution environment (on
an Intel Xeon E5-2666 v3 2.90GHz CPU) with 7.5GB of sys-
tem memory. Our experiments were conducted using Ubuntu
16.04.2 LTS (GNU/Linux 4.4.0-1041-aws) and our library was
compiled using GCC 5.4.0 using the -O3’ optimization setting
and enabling support for the AES-NI instruction set. Our
schemes are evaluated in the LAN setting similar to previous
work with both instances in the us-east-1a availability zone.

FAST REDUCTION FOR NTT AND INV. NTT

Fast Reduction Naive Reduction

Operation Speedup
t (us) cyc/bfly t(us) cyc/bfly
NTT (q) 57 7.34 393 50.59 6.9
Inv. NTT (q) 54 6.95 388 49.95 7.2
NTT (p) 43 5.54 240 30.89 5.6
Inv. NTT (p) 38 4.89 194 24.97 5.1
TABLE VI
FHE MICROBENCHMARKS
Operation Fast Reduction Naive Reduction Speedup
t (us) cyc/slot t(us) cyc/slot
KeyGen 232 328.5 952 1348.1 4.1
Encrypt 186 263.4 621 879.4 33
Decrypt 125 177.0 513 726.4 4.1
SIMDAdd 5 8.1 393 49.7 6.1
SIMDScMult 10 14.7 388 167.1 11.3
PermKeyGen 466 659.9 1814 2568.7 39
Perm 268 379.5 1740 2463.9 6.5
PermDecomp 231 327.1 1595 2258.5 6.9
PermAuto 35 49.6 141 199.7 4.0

C. Micro-benchmarks

In order to isolate the impact of the various techniques and
identify potential optimization opportunities, we first present
micro-benchmarks for the individual operations.

1) Arithmetic and PAHE Benchmarks: We first benchmark
the impact of the faster modular arithmetic on the NTT and
the homomorphic evaluation run-times. Table V shows that
the use of a pseudo-Mersenne ciphertext modulus coupled
with lazy modular reduction improves the NTT and inverse
NTT by roughly 7x. Similarly Barrett reduction for the
plaintext modulus improves the plaintext NTT runtimes by
more than 5X. These run-time improvements are also reflected
in the performance of the primitive homomorphic operations
as shown in Table VI.

Table VII demonstrates the noise performance trade-off
inherent in the permutation operation. Note that an individual
permutation after the initial decomposition is roughly 8-9x
faster than a permutation without any pre-computation. Finally
we observe a linear growth in the run-time of the permutation
operation with an increase in the number of windows, allowing
us to trade off noise performance for run-time if few future

TABLE VII
PERMUTATION MICROBENCHMARKS

wi . PermKeyGen Key Size PermAuto Noise
windows
t (us) kB t (us) bits
3 466 49.15 35 29.3
6 925 98.30 57 19.3
12 1849 196.61 100 14.8

operations are desired on the permuted ciphertext.

2) Linear Algebra Benchmarks: Next we present micro-
benchmarks for the linear algebra kernels. In particular we
focus on matrix-vector products and 2D convolutions since
these are the operations most frequently used in neural net-
work inference. Before performing these operations, the server
must perform a one-time client-independent setup that pre-
processes the matrix and filter coefficients. In contrast with
the offline phase of 2PC, this computation is NOT repeated
per classification or per client and can be performed without
any knowledge of the client keys. In the following results, we
represent the time spent in this amortizable setup operation as
tsetup- Note that tofine for both these protocols is zero.

The matrix-vector product that we are interested in corre-
sponds to the multiplication of a plaintext matrix with a packed
ciphertext vector. We first start with a comparison of three
matrix-vector multiplication techniques:

1) Naive: Every slot of the output is generated indepen-
dently by computing an inner-product of a row of the
matrix with ciphertext column vector.

2) Diagonal: Rotations of the input are multiplied by the
generalized diagonals from the plaintext matrix and
added to generate a packed output.

3) Hybrid: Use the diagonal approach to generate a single
output ciphertext with copies of the output partial sums.
Use the naive approach to generate the final output from
this single ciphertext

We compare these techniques for the following matrix sizes:
2048 x 1, 1024 x 128, 128 x 16. For all these methods we
report the online computation time and the time required
to setup the scheme in milliseconds. Note that this setup
needs to be done exactly once per network and need not be
repeated per inference. The naive scheme uses a 20bit plaintext
window (wp:) while the diagonal and hybrid schemes use
10bit plaintext windows. All schemes use a 7bit relinearization
window (Wyefin)-

As seen in Section V the online time for the matrix
multiplication operation can be improved further by a judicious
selection of the window sizes based on the size of the matrix
used. Table IX shows the potential speed up possible from
optimal window sizing. Note that although this optimal choice
reduces the online run-time, the relinearization keys for all the
window sizes must be sent to the server in the initial setup
phase.

Finally we remark that our matrix multiplication scheme
is extremely parsimonious in the online bandwidth. The two-

TABLE VIII
MATRIX MULTIPLICATION MICROBENCHMARKS

#in_rot #out_rot #mac tonline tsetup
N 0 11 1 7.9 16.1
20481 D 2047 0 2048 383.3 33268
H 0 11 1 8.0 16.2
N 0 1280 128 880.0 18492
1024128 D 1023 1024 2048 192.4 1662.8
H 63 4 64 16.2 108.5
N 0 160 16 1103 2314
102416 D 1023 1024 2048 1924 1662.8
H 7 7 8 7.8 21.8
N 0 112 16 77.4 162.5
12816 D 127 128 2048 254 206.8
H 0 7 1 5.3 10.5
TABLE IX
HYBRID MATRIX MULTIPLICATION WINDOW SIZING
Wpt Wrelin tonline ~ Speedup tsetup Speedup
2048 1 20 20 3.6 22 5.7 2.9
1024x128 10 9 14.2 1.1 87.2 1.2
102416 10 7 7.8 1.0 21.5 1.0
128x 16 20 20 2.5 2.1 3.7 2.8

way online message sizes for all the matrices are given by
(w + 1) % cts, where ctg, is the size of a single ciphertext (32
kB for our parameters).

Next we compare the two techniques we presented for
2D convolution: input rotation (I) and output rotation (O) in
Table X. We present results for four convolution sizes with
increasing complexity. Note that the 5x5 convolution is strided
convolution with a stride of 2. All results are presented with
a 10bit wp; and a 8bit wiein.

As seen from Table X, the output rotation variant is usually
the faster variant since it reuses the same input multiple times.
Larger filter sizes allow us to save more rotations and hence
experience a higher speed-up, while for the 1x 1 case the input
rotation variant is faster. Finally, we note that in all cases we

TABLE X
CONVOLUTION MICROBENCHMARKS

Input Filter Algorithm tonjine tsetup
(WxH, C) (WxH, C) (ms) (ms)
(28x28,1) (5%5,5) o P
(16 x 16,128) (1 x 1,128) (I) }% ;gg
(32x32,32) (3x3,32) o oo
(16 x 16,128) (3 x 3, 128) o o

TABLE XI
ACTIVATION AND POOLING MICROBENCHMARKS

TABLE XII
MNIST BENCHMARK

: . toffline tonline BWoffIine BWc:nline
Algorithm Outputs (ms) (ms) (MB) (MB)
Square 2048 0.5 14 0 0.093
1000 89 201 5.43 1.68
ReLU o000 551 1307 543 16.8
MaxPool 1000 164 426 15.6 8.39
10000 1413 3669 156.0 83.9

pack both the input and output activations using the minimal
number of ciphertexts.

3) Square, ReLU and MaxPool Benchmarks: We round our
discussion of the operation micro-benchmarks with the various
activation functions we consider. In the networks of interest,
we come across two major activation functions: Square and
ReLU. Additionally we also benchmark the MaxPool layer
with (2 x 2)-sized windows.

For square pooling, we implement a simple interactive pro-
tocol using our additively homomorphic encryption scheme.
For ReLU and MaxPool, we implement a garbled circuit based
interactive protocol. The results for both are presented in
Table XI.

VIII. NETWORK BENCHMARKS AND COMPARISON

Next we compose the individual layers from the previ-
ous sections and evaluate complete networks. For ease of
comparison with previous approaches, we report runtimes
and network bandwidth for MNIST and CIFAR-10 image
classification tasks. We segment our comparison based on
the CNN topology. This allows us to clearly demonstrate the
speedup achieved by GAZELLE as opposed to gains through
network redesign.

A. The MNIST Dataset.

MNIST is a basic image classification task where we are
provided with a set of 28 x 28 grayscale images of handwritten
digits in the range [0 — 9]. Given an input image our goal is to
predict the correct handwritten digit it represents. We evaluate
this task using four published network topologies which use a
combination of FC and Conv layers:
1) A: 3-FC layers with square activation from [27].
2) B: 1-Conv and 2-FC layers with square activation from
[16].

3) C: 1-Conv and 2-FC layers with ReLU activation from
[33].

4) D: 2-Conv and 2-FC layers with ReLU and MaxPool
from [26].

Runtime and the communication required for classifying a
single image for these four networks are presented in table
XII.

For all four networks we use a 10bit wy; and a 9bit wyejin.

Networks A and B use only the square activation function
allowing us to use a much simpler AHE base interactive
protocol, thus avoiding any use of GC’s. As such we only need

Runtime (s) Communication (MB)
Framework
Offline Online Total Offline Online Total
SecureML 4.7 0.18 4.88 - - -
A MiniONN 0.9 0.14 1.04 38 12 47.6
GAZELLE 0 0.03 0.03 0 0.5 0.5
CryptoNets - - 297.5 - - 372.2
B MiniONN 0.88 04 1.28 3.6 44 15.8
GAZELLE 0 0.03 0.03 0 0.5 0.5
DeepSecure - - 9.67 - - 791
C Chameleon 1.34 1.36 2.7 7.8 5.1 12.9
GAZELLE 0.15 0.05 0.20 59 2.1 8.0
MiniONN 3.58 5.74 9.32 20.9 636.6 6575
D ExPC - - 5.1 - - 501
GAZELLE 0.481 0.33 0.81 475 22.5 70.0
TABLE XIII
CIFAR-10 BENCHMARK
Framework Runtime (s) Communication (MB)
Offline Online Total Offline Online Total
A MiniONN 472 72 544 3046 6226 9272
GAZELLE 9.34 3.56 12.9 940 296 1236

to transmit short ciphertexts in the online phase. Similarly our
use of the AHE based FC and Conv layers as opposed to
multiplications triples results in 5-6x lower latency compared
to [26] and [27] for network A. The comparison with [16] is
even more the stark. The use of AHE with interaction acting as
an implicit bootstraping stage allows for aggressive parameter
selection for the lattice based scheme. This results in over
3 orders of magnitude savings in both the latency and the
network bandwidth.

Networks C and D use ReLLU and MaxPool functions which
we implement using GC. However even for these the network
our efficient FC and Conv implementation allows us roughly
30x and 17x lower runtime when compared with [29] and
[26] respectively. Furthermore we note that unlike [29] our
solution does not rely on a trusted third party.

B. The CIFAR-10 Dataset.

The CIFAR-10 task is a second commonly used image
classification benchmark that is substantially more compli-
cated than the MNIST classification task. The task consists of
classifying 32 x 32 color with 3 color channels into 10 classes
such as automobiles, birds, cats, etc. For this task we replicate
the network topology from [26] to offer a fair comparison. We
use a 10bit wy; and a 8bit Wiejin.

We note that the complexity of this network when measure
by the number of multiplications is 500x that used in the
MNIST network from [33], [29]. By avoiding the need for
multiplication triples GAZELLE offers a 50x faster offline
phase and a 20x lower latency per inference showing that
our results from the smaller MNIST networks scale to larger
networks.

IX. CONCLUSIONS AND FUTURE WORK

In conclusion, this work presents GAZELLE, a low-latency
framework for secure neural network inference. GAZELLE uses
a judicious combination of packed additively homomorphic
encryption and garbled circuit based two-party computation
to obtain 20 — 30x lower latency and 2.5 — 88x lower
online bandwidth when compared with multiple two-party
computation based state-of-art secure network inference so-
lutions [26], [27], [29], [33], and more than 3 orders of
magnitude lower latency and 2 orders of magnitude lower
bandwidth than purely homomorphic approaches [16]. We
briefly recap the key contributions of our work that enable
this improved performance:

1) Selection of prime moduli that simultaneously allow
single instruction multiple data (SIMD) operations, low
noise growth and division-free and lazy modular reduc-
tion.

2) Avoidance of ciphertext-ciphertext multiplications to re-
duce noise growth.

3) Use of secret-sharing and interaction to emulate a
lightweight bootstrapping procedure allowing for the
composition of multiple layers to evaluate deep net-
works.

4) Homomorphic linear algebra kernels that make efficient
use of the automorphism structure enabled by a power-
of-two slot-size.

5) Sparing use of garbled circuits limited to ReLU and
MaxPooling non-linearities that require linear-sized
Boolean circuits.

6) A compact garbled circuit-based transformation gadget
that allows to securely compose the PAHE-based and
garbled circuit based layers.

We envision the following avenues to extend our work on
GAZELLE and make it more broadly applicable. A natural next
step is to handle larger application-specific neural networks
that work with substantially larger inputs to tackle data analyt-
ics problems in the medical and financial domains. In ongoing
work, we extend our techniques to a large variety of classic
two-party tasks such as privacy-preserving face recognition
[34] which can be factored into linear and non-linear phases
of computation similar to what is done in this work. In
the low-latency LAN setting, it would also be interesting to
evaluate the impact of switching out the garbled-circuit based
approach for a GMW-based approach which would allow us
to trade off latency to substantially reduce the online and
offline bandwdith. A final, very interesting and ambitious line
of work would be to build a compiler that allows us to easily
express arbitrary computations and automatically factor the
computation into PAHE and two-party primitives.

ACKNOWLEDGMENTS: We thank Kurt Rohloff, Yuriy
Polyakov and the PALISADE team for providing us with
access to the PALISADE library. We thank Shafi Goldwasser,
Rina Shainski and Alon Kaufman for delightful discussions.
We thank our sponsors, the Qualcomm Innovation Fellowship
and Delta Electronics for supporting this work.

[1

[2

—

[3

[t}

[4

=

[5]
[6

=

[7

—

[8

[t

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

REFERENCES

Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete
hardness of learning with errors. Journal of Mathematical Cryptology,
9(3):169-203, 2015.

Eliana Angelini, Giacomo di Tollo, and Andrea Roli. A neural network
approach for credit risk evaluation. The Quarterly Review of Economics
and Finance, 48(4):733 — 755, 2008.

Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rog-
away. Efficient garbling from a fixed-key blockcipher. In 2013 IEEE
Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA, May
19-22, 2013, pages 478-492, 2013.

Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homo-
morphic encryption without bootstrapping. In ITCS, 2012.

Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) lwe. In FOCS, 2011.

Zvika Brakerski. Fully homomorphic encryption without modulus
switching from classical gapsvp. In Advances in Cryptology - CRYPTO
2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2012. Proceedings, pages 868—886, 2012.

Tlaria Chillotti, Nicolas Gama, Maria Georgieva, and Malika Izabachene.
Tfhe: Fast fully homomorphic encryption over the torus, 2017. https:
/ltthe.github.io/tfhe/.

Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachene. Faster fully homomorphic encryption: Bootstrapping in less
than 0.1 seconds. In Advances in Cryptology - ASIACRYPT 2016
- 22nd International Conference on the Theory and Application of
Cryptology and Information Security, Hanoi, Vietnam, December 4-8,
2016, Proceedings, Part I, pages 3-33, 2016.

Ivan Damgard, Valerio Pastro, Nigel Smart, and Sarah Zacharias. The
spdz and mascot secure computation protocols, 2016. https://github.com/
bristolcrypto/SPDZ-2.

Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A
framework for efficient mixed-protocol secure two-party computation.
In 22nd Annual Network and Distributed System Security Symposium,
NDSS 2015, San Diego, California, USA, February 8-11, 2015. The
Internet Society, 2015.

Yael Ejgenberg, Moriya Farbstein, Meital Levy, and Yehuda Lindell.
Scapi: Secure computation api, 2014. https://github.com/cryptobiu/scapi.
Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M.
Swetter, Helen M. Blau, and Sebastian Thrun. Dermatologist-level
classification of skin cancer with deep neural networks. Nature,
542(7639):115-118, 2017.

Junfeng Fan and Frederik Vercauteren. Somewhat practical fully
homomorphic encryption. IACR Cryptology ePrint Archive, 2012:144,
2012.

Craig Gentry. A fully homomorphic encryption scheme. PhD Thesis,
Stanford University, 2009.

Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic
encryption with polylog overhead. In Advances in Cryptology - EU-
ROCRYPT 2012 - 31st Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Cambridge, UK, April
15-19, 2012. Proceedings, pages 465-482, 2012.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter,
Michael Naehrig, and John Wernsing. Cryptonets: Applying neural
networks to encrypted data with high throughput and accuracy. In
Proceedings of the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016, pages 201-210,
2016.

O. Goldreich, S. Micali, and A. Wigderson. How to play any mental
game or a completeness theorem for protocols with honest majority. In
STOC, 1987.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. SIAM J. Comput., 18(1):186—
208, 1989.

Shai Halevi and Victor Shoup. An implementation of homomorphic
encryption, 2013. https://github.com/shaih/HElib.

Shai Halevi and Victor Shoup. Algorithms in HElib. In Advances in
Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, pages 554—
571, 2014.

Shai Halevi and Victor Shoup, 2017. Presentation at the Homomorphic
Encryption Standardization Workshop, Redmond, WA, July 2017.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. CoRR, abs/1512.03385, 2015.

https://tfhe.github.io/tfhe/
https://tfhe.github.io/tfhe/
https://github.com/bristolcrypto/SPDZ-2
https://github.com/bristolcrypto/SPDZ-2
https://github.com/cryptobiu/scapi
https://github.com/shaih/HElib

[23

[24]

[25]

[26]

[27]

[28

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

[39

[40]

[41]

Piotr Indyk and David P. Woodruff. Polylogarithmic private approxima-
tions and efficient matching. In Theory of Cryptography, Third Theory
of Cryptography Conference, TCC 2006, New York, NY, USA, March
4-7, 2006, Proceedings, pages 245-264, 2006.

Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending
oblivious transfers efficiently. In Advances in Cryptology - CRYPTO
2003, 23rd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 2003, Proceedings, pages 145-161,
2003.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet
classification with deep convolutional neural networks. In Advances in
Neural Information Processing Systems 25: 26th Annual Conference on
Neural Information Processing Systems 2012. Proceedings of a meeting
held December 3-6, 2012, Lake Tahoe, Nevada, United States., pages
11061114, 2012.

Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious neural network
predictions via minionn transformations. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, pages
619-631, 2017.

Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable
privacy-preserving machine learning. In 2017 IEEE Symposium on
Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017,
pages 19-38, 2017.

Pascal Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Advances in Cryptology — EUROCRYPT 99,
pages 223-238, 1999.

M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M.
Songhori, Thomas Schneider, and Farinaz Koushanfar. Chameleon: A
hybrid secure computation framework for machine learning applications.
Cryptology ePrint Archive, Report 2017/1164, 2017. https://eprint.iacr.
org/2017/1164.

Peter Rindal. Fast and portable oblivious transfer extension, 2016. https:
//github.com/osu-crypto/libOTe.

Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. On data
banks and privacy homomorphisms. Foundations of Secure Computa-
tion, 1978.

Kurt Rohloff and Yuriy Polyakov. The PALISADE Lattice Cryptography
Library, 1.0 edition, 2017. Library available at https://git.njit.edu/
palisade/PALISADE.

Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushan-
far. Deepsecure: Scalable provably-secure deep learning. CoRR,
abs/1705.08963, 2017.

Ahmad-Reza Sadeghi, Thomas Schneider, and Immo Wehrenberg. Effi-
cient privacy-preserving face recognition. In Information, Security and
Cryptology - ICISC 2009, 12th International Conference, Seoul, Korea,
December 2-4, 2009, Revised Selected Papers, pages 229-244, 2009.
Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet:
A unified embedding for face recognition and clustering. In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2015,
Boston, MA, USA, June 7-12, 2015, pages 815-823, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. CoRR, abs/1409.1556, 2014.
Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Efficient
processing of deep neural networks: A tutorial and survey. CoRR,
abs/1703.09039, 2017.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In Computer Vision and
Pattern Recognition (CVPR), 2015.

Gulshan V, Peng L, Coram M, and et al. Development and validation of
a deep learning algorithm for detection of diabetic retinopathy in retinal
fundus photographs. JAMA, 316(22):2402-2410, 2016.

A. C. Yao. How to generate and exchange secrets (extended abstract).
In FOCS, 1986.

Samee Zahur, Mike Rosulek, and David Evans. Two halves make a
whole - reducing data transfer in garbled circuits using half gates. In
Advances in Cryptology - EUROCRYPT 2015 - 34th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II,
pages 220-250, 2015.

https://eprint.iacr.org/2017/1164
https://eprint.iacr.org/2017/1164
https://github.com/osu-crypto/libOTe
https://github.com/osu-crypto/libOTe
https://git.njit.edu/palisade/PALISADE
https://git.njit.edu/palisade/PALISADE

	Introduction
	Secure Neural Network Inference
	Linear Layers
	Non-Linear Layers
	Secure Inference

	Packed Additively Homomorphic Encryption
	Ciphertext Addition: SIMDAdd
	Scalar Multiplication: SIMDScMult
	Scalar Multiplication: Perm
	Paillier vs. Lattice-based PAHE
	Parameter Selection for PAHE

	Our Protocol at a High Level
	Fast Homomorphic Matrix-Vector Multiplication
	The Naïve Method
	Output Packing
	Input Packing
	The Diagonal Method
	Book-keeping: Hoisting
	A Hybrid Approach

	Fast Homomorphic Convolutions
	Padded SISO
	Packed SISO
	Single Channel per Ciphertext
	Channel Packing

	Implementation and Micro-benchmarks
	Cryptographic Primitives
	Evaluation Setup
	Micro-benchmarks
	Arithmetic and PAHE Benchmarks
	Linear Algebra Benchmarks
	Square, ReLU and MaxPool Benchmarks

	Network Benchmarks and Comparison
	The MNIST Dataset.
	The CIFAR-10 Dataset.

	Conclusions and Future Work
	References

