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Abstract. Iterative collision search procedures play a key role in devel-
oping combinatorial algorithms for the subset sum and learning parity
with noise (LPN) problems. In both scenarios, the single-list pair-wise
iterative collision search finds the most solutions and offers the best effi-
ciency. However, due to its complex probabilistic structure, no rigorous
analysis for it appears to be available to the best of our knowledge.
As a result, theoretical works often resort to overly constrained and
sub-optimal iterative collision search variants in exchange for analytic
simplicity. In this paper, we present rigorous analysis for the single-list
pair-wise iterative collision search method and its applications in sub-
set sum and LPN. In the LPN literature, the method is known as the
LF2 heuristic. Besides LF2, we also present rigorous analysis of other
LPN solving heuristics and show that they work well when combined
with LF2. Putting it together, we significantly narrow the gap between
theoretical and heuristic algorithms for LPN.

1 Introduction

The Learning Parity with Noise (LPN) problem is a fundamental problem in cod-
ing theory, cryptography and machine learning. In cryptography, LPN attracts
most interest from lightweight constructions, i.e., those that run efficiently on
constrained devices such as RFID tags and wireless sensors. Many lightweight
constructions [9,11,7,13] build on the hardness of the LPN due to the simplic-
ity of the operations it entails. Studying the best algorithms for solving LPN is
vital to determine suitable parameters for these constructions and subsequent
improvements.

For a uniformly selected secret s ∈ Zn2 , the LPN problem is to find s given
input samples As+e, where A is uniformly random and each component of e is
a Bernoulli noise. For ease of exposition, we follow prior work and think of LPN
algorithms as consisting of two phases: a reduction phase and a solving phase.
The classical algorithm for LPN is the BKW algorithm [4]. At its core is an
iterative collision search procedure for the reduction phase. To start, partition
the samples into 2

n
k+1 groups such that the first n

k+1 bits are identical. Here, k is
a parameter of the algorithm and is set to Θ(log n). Then, select one sample in
each group and add it to the other ones in the group to cancel out the first n

k+1



bits. Each subsequent iterative step follows the same procedure to cancel out
the next n

k+1 bits. After a few iterations, the samples only depend on a single
bit in the secret. These samples are the outputs of the reduction phase and we
call them reduced samples. At this point, the algorithm enters the solving phase
to guess this secret bit and tests it on the reduced samples. The algorithm then
moves on to guess the next secret bit, repeating the reduction phase and the
solving phase therein.

The BKW algorithm needs a sub-exponential number of input samples.
Lyubashevsky [18] and Kirchner [14] modified the BKW algorithm to work with
a polynomial number of samples. Outside the “limited-sample” direction, how-
ever, theoretical advances for LPN algorithms have been stagnant for more than
a decade. On the other hand, heuristic and practical methods for LPN continue
to develop at a fast pace. Levieil and Fouque [15] proposed two important heuris-
tic methods. The first one, LF1, improves the solving phase by guessing multiple
secret bits at a time. It is augmented with the Fast Walsh-Hadamard transform
to further reduce runtime. The second method, LF2, is a more efficient itera-
tive collision search procedure in the reduction phase. The goal is to generate
more reduced samples for the solving phase. After partitioning input samples
into groups sharing a chunk of bits, instead of adding one sample to the others
in the group as in BKW, LF2 computes the sums of every pair in the group.
Recent works [15,8,25,5,6] have applied covering codes, partial secret guessing
and linear programming to improve the solving phase.

The LF1 and LF2 heuristics are two most important heuristic techniques in
the LPN literature, and have been adopted by every subsequent work we know
of [8,25,5,6]. The efficiency gain, however, presents a challenge for analysis since
the reduced samples now depend on each other in a complex manner. (LF1 was
initially presented as a rigorous algorithm [15], but Zhang et al. [25] pointed
out that the original proof incorrectly assumed independence between reduced
samples. Hence, LF1 should be treated as a heuristic prior to our work.) A main
contribution of this paper is to provide rigorous analysis for the LF1 and LF2
methods and establish them as rigorous LPN algorithms. In particular, we com-
pute the number of solutions (both expectation and distribution) produced by
LF2 in the reduction phase. We also show that the correlation between LF2 re-
duced samples has little impact on the success rate of the LPN solving phase for
both majority voting and LF1 Walsh-Hadamard transform. Our results signif-
icantly narrow the gap between theoretical and heuristic solutions to the LPN
problem.

LPN has a close connection to the subset sum problem. As Wagner sug-
gests [24], any improvement to the subset sum problem will also result in an
improvement to LPN. In this paper, we consider the random fixed-weighted
XOR variant of subset sum. Given a list L of elements sampled uniformly ran-
domly from Zn2 , find 2k elements from L such that they XOR to 0. One way is
to apply Wagner’s algorithm. However, Wagner’s algorithm was not tailored for
fixed weighted subset sum. Instead, it was presented for the generalized birth-
day problem [24]. In the generalized birthday problem, there are 2k separate
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lists and the goal is to find one element from each list such that they XOR to
0. In order to apply Wagner’s algorithm, one has to partition the single list L
into 2k smaller lists. Wagner’s algorithm then places the 2k lists as the leaves
of a depth-k binary tree. In step i, every pair of sibling lists are merged into a
new list at their parent node such that the i-th chunk of n

k+1 bits are canceled
out. To elaborate, the merge operation searches for two elements, one from each
input list, such that their i-th chunk of n

k+1 bits XOR to 0. After k steps, the
elements in the last list at the root of the tree are solutions to the problem.

Clearly, the partition into 2k separate lists is an artifact in order to invoke
Wagner’s algorithm. It not only increases the time complexity but also imposes
an unnecessary constraint that eliminates many valid candidate solutions. It is
much more natural to perform the same merge operation within the original
single list L: at step i, search for pairs of distinct elements in L that cancel out
the i-th chunk of n

k+1 bits, and add their XOR results to the new list for the
next step. This single-list pair-wise iterative collision search very much resem-
bles the LF2 method (there are also important differences which we describe in
Section 3.2). Also resembling LF2, it creates difficulties for the analysis. In Wag-
ner’s algorithm, in every merge operation, the two input elements (from different
lists) are independent of each other. In contrast, the single-list iterative collision
search introduces dependence across steps, making it hard to reason about the
expected list size after each step or the number of solutions produced in the end.
With a rigorous analysis, we establish the single-list pair-wise iterative collision
search as an improved algorithm over Wagner for random fixed weighted subset
sum.

The rest of the paper is organized as follows. We start with the fixed weighted
subset sum problem since the LPN problem additionally has to deal with the
solving phase. Section 2 presents our analysis for the single-list iterative collision
search algorithm for the fixed weighted subset sum problem. Section 3 presents
our analysis for the LF1 and LF2 methods for LPN. We conclude in Section 4.

2 Random Fixed Weighted Subset Sum

2.1 Background

Definition 1 (subset sum). Given a list L = {a1, a2, ..., aN} of N numbers
from an algebraic structure and an operation ⊕, find x ∈ {0, 1}N such that
〈x, S〉 = x1a1 ⊕ x2a2 ⊕ ...⊕ xNaN = t where t is a pre-defined target.

The subset sum problem is one of Karp’s 21 NP-complete problems [12]. The
classical subset sum problem considers integers and integer addition. In the last
three decades, there have also been a few important variants of the subset sum
problem that attracted interest in cryptography [17,19,10].

In this paper, we focus on the random fixed weighted variant of the problem.
The term fixed weighted means the solution vector x must have a Hamming
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Fig. 1: An illustration of Wagner’s algorithm.

weight of 2k.1 For concreteness, we start with the XOR case, i.e., a1, a2, · · · , aN
are n-bit binary string drawn independently and uniformly randomly from Zn2 ,
and the operator ⊕ is bit-wise XOR. Later , we will extend our analysis to other
groups and group operators, e.g., Znq for some prime q and addition on Znq . We
also focus on the special case where the target is t = 0.

Wagner’s Generalized Birthday Problem and Algorithm. Wagner intro-
duced the generalized birthday problem and an algorithm for it [24]. The gen-
eralized birthday problem bears some similarities to the random fixed-weighted
subset sum problem, but is also different in a fundamental way. Instead of finding
2k elements from a single list, the problem takes 2k lists and finds one element
from each list.

Definition 2 (generalized birthday problem). Given 2k lists
L1, L2, · · · , L2k each containing N elements in Zn2 , find one element from
each list a1 ∈ L1, a2 ∈ L2, · · · , a2k ∈ L2k such that a1 ⊕ a2 ⊕ · · · ⊕ a2k = 0.

Wagner’s algorithm performs iterative collision search in a tree fashion in k

steps. 2 Write the 2k input lists as L
(0)
1 , L

(0)
2 , ..., L

(0)

2k
and place them at the leaves

of a binary tree of depth k. In the j-th step (1 ≤ j < k), for each pair of lists

L
(j−1)
2i and L

(j−1)
2i+1 , find two elements l ∈ L(j−1)

2i and l′ ∈ L(j−1)
2i+1 such that the j-

th chunk of n
k+1 bits cancel out (i.e., XOR to 0), and then add l⊕ l′ to a new list

L
(j)
i . In the last step j = k, there are only two lists remaining, and the algorithm

looks for two elements, one from each list, such that they cancel out the last 2n
k+1

bits and XOR to 0n. Figure 1 gives an illustration of this algorithm. There have
been several improvements and analysis to Wagner’s algorithm [2,20,14,16], and
they all follow the tree-based collision search framework.

To ensure at least one solution is found in expectation, the size of each input
list should be at least N ≥ 2

n
k+1 . Crucially for the analysis, in each step, a pair

of elements l and l′ are independent because they are sums of elements that

1 Without the fixed weighted restriction, the problem can be solved with Gauss elim-
ination easily.

2 Different from our notation, Wagner denoted the number of lists as k and the number
of steps as log2 k [24].
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Input: A single list L, also written as L(0), of size N .
1. Initially, add the index alongside each element in L(0), i.e.,
each element in L(0) now has the form (ai, {i}).
2. for j = 1 : k − 1 do

For each pair of elements (a, α) and (a′, α′) in L(j−1), if
a⊕ a′ cancel out the j-th chunk of n

k+1
bits and α ∩ α′ = ∅,

then add (a⊕ a′, α ∪ α′) to the new list L(j).
end
3. At the last step, repeat the similar operation to find a pair
of elements (a, α) and (a′, α′) such that a⊕ a′ cancel out the
last 2n

k+1
bits and α ∩ α′ = ∅. Output L(k).

Algorithm 1: The single-list pair-wise iterative collision search algorithm.

come from disjoint lists. Thus, the expected list size at each step can be easily

calculated as N2 · 2−
n
k+1 ≥ N , and in the last step, N2 · 2−

2n
k+1 ≥ 1 solutions are

produced in expectation.

2.2 Single List Iterative Collision Search

The single-list pair-wise collision search algorithm is known as the LF2 method
in the LPN literature [15], which was in turn inspired by Wagner’s algorithm [24].
Algorithm 1 gives the pseudocode. Recently, it was also independently proposed,
though seemingly by accident, in a memory hard proof-of-work scheme called
Equihash [3]. The Equihash paper [3] used the above Algorithm 1 to solve the
random fixed-weighted subset sum, but confusingly, claimed to be using Wag-
ner’s algorithm and solving the generalized birthday problem throughout the
paper.

Complexities. Following previous works, we measure time complexity in the
number of ⊕ operations and measure time complexity in the number list entries,
essentially ignoring the number of bits ⊕ operates on and the number of bits
in each entry. For Algorithm 1, the time complexity is roughly O(kN) and the
space complexity is roughly O(N). As a comparison, for Wagner’s algorithm, the
time complexity is roughly O(2kN) and the space complexity is roughly O(kN).

As we have mentioned, analyzing the single-list pair-wise collision search
algorithm is much harder than analyzing Wagner’s algorithm because, after the
first step, elements in the list become correlated. They are no longer sums of non-
overlapping elements. Rather, they are now sums that contain common addends.
If the input list size at a certain step is N , the expected output list size is no
longer simply N2 · 2−

n
k+1 . Indeed, it seems difficult to derive the final expected

number of solutions by calculating the expected list size at each step. In the next
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subsection, we approach the problem from a different angle. We will calculate
the total number of distinct candidate solutions and the probability that each
one is an actual solution that Algorithm 1 produces.

2.3 Expected Number of Solutions

Theorem 1. Let p = 2−
n
k+1 . The expected number of solutions produced by

Algorithm 1 is

E
[
|L(k)|

]
= 2

(
N

2k

)
(2k)!(p/2)2

k

.

Proof. Consider an index vector α = (i1, i2, ..., i2k), and the candidate solution
it defines, aα = {ai1 , ai2 , · · · , ai2k }. Let Yα = 1 if aα is a solution produced by
Algorithm 1 and Yα = 0 otherwise. Before we proceed, we remark that a solu-
tion to the fixed-weighted subset sum problem is not necessarily a solution that
will be found by Algorithm 1. (The other direction is true). The reason is that
Algorithm 1 can only find solutions that meet stringent conditions, i.e., those
that cancel out a chunk of bits after each step. For example, if α = (1, 2, 3, 4)
and Yα = 1, it is not only required that a1 ⊕ a2 ⊕ a3 ⊕ a4 = 0, but also that
a1⊕a2 and a3⊕a4 both cancel out the first chunk of bits. The iterative collision
search framework in general only finds solutions with a specific structure rather
than all solutions.

It is also important to note that some index vectors represent the same solu-
tion and should be counted only once. For example, if α = (1, 2, 3, 4) and Yα = 1,
then for α′ = (1, 2, 4, 3), (2, 1, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (3, 4, 2, 1), (4, 3, 1, 2), or
(4, 3, 2, 1), we have Yα′ = 1. However, these eight vectors all represent the same
single solution that will be produced by Algorithm 1. Define I to be a maximal
set of index vectors that correspond to distinct candidate solutions. To calculate
|I|, we think of the indices in a vector as the leaves in a binary tree of depth k.
(This binary tree is just a tool for analyzing Algorithm 1 and should not be con-
fused with Wagner’s tree-based iterative collision search in Figure 1.) In the jth

step, swapping the two siblings would yield the same candidate solution. Thus,

for each subset of 2k elements, there are (2k)!∏k
j=1 22

k−j = (2k)!

22k−1
distinct candidate

solutions out of the (2k)! total possible index vectors. Therefore, |I| =
(
N
2k

) (2k)!

22k−1

is the number of distinct candidate solutions that Algorithm 1 can possibly pro-
duce. The expected number of solutions produced by Algorithm 1 can then be
calculated as E

[
|L(k)|

]
= E

[∑
α∈I Yα

]
.

After the jth step, the list L(j) contains (XOR) sums of 2j addends. We again
think of the 2j addends as leaves of a binary tree of depth j. To appear in L(j),
the two addends need to cancel out a chunk of n

k+1 bits at each node in the tree.

At each node, the probability is3 p = 2−
n
k+1 and there are 2j − 1 nodes in a tree

3 p = 2− n
k+1 is used throughout the paper.
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Table 1: The expected number of solutions found through experiments and The-
orem 1.

n 16 32 48 56 96 128 160 192
k 1 3 5 6 5 7 9 11

Experiments 2.00 1.90 0.76 0.03 2.00 1.8 0.8 0.0
Theorem 1 1.9961 1.8931 0.7437 0.0328 1.9924 1.8797 0.7362 2.1× 10−7

of depth j. So the probability that a sum of certain 2j addends appear in L(j)

is p2
j−1. The expected number of elements in L(j) is hence

E
[
|L(j)|

]
= |I| · p2

j−1 =

(
N

2j

)
(2j)!

22j−1
· p2

j−1 =

(
N

2j

)
(2j)!(p/2)2

j−1. (1)

The last step needs to cancel out 2n
k+1 bits which happens with probability p2.

Thus, we have Pr(Yα = 1) = p2
k

, and

E
[
|L(k)|

]
= |I| · p2

k

=

(
N

2k

)
(2k)!

22k−1
· p2

k

= 2

(
N

2k

)
(2k)!(p/2)2

k

Extension to Znq . Although we presented our analysis in the Zn2 and XOR case
for simplicity, our analysis can be easily modified to work with a larger modulus
q, i.e., when the operator ⊕ is modular addition over Znq . The only change in

the analysis above and in Section 2.5 is to replace p = 2−
n
k+1 with p = q−

n
k+1 .

2.4 Experimental Verification

In this subsection, we provide experimental results that corroborate the expected
number of solutions we derive in Theorem 1. Another purpose of this section is
to correct a mistake in the Equihash scheme [3]. Specifically, Equihash adopts
Algorithm 1 with a list size N = 2

n
k+1+1. It then claimed the expected number of

solutions is
(
N
2

)
·2−

2n
k+1 ≈ 2 citing Wagner’s analysis. As we mentioned, Wagner’s

analysis requires independence and does not hold in the single-list case.
Table 1 lists the expected number of solutions found through experiments as

well as the values given by Theorem 1 under different choices of n and k. Our
theorem accurately predicts the number of solutions. (Our theorem is precise.
The difference is due to errors in the experiments.) Equihash claims 2 solutions in
expectation under all parameter settings, which as we see can be orders of mag-
nitude off. We note that the latter four (n, k) pairs are among the recommended
parameter settings from the Equihash paper [3]. For readers who are interested,
this incorrect estimation will make the difficulty of the proof-of-work scheme
proportionally harder than intended. For example, if a protocol designer adopts
Equihash with (n, k) = (192, 11), the expected time to find a valid proof-of-work
will be 107× longer than intended!
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2.5 Distribution of Solutions

Knowing the expected number of solutions is in most cases sufficient to parame-
terize an algorithm. For example, to attack knapsack-based cryptosystems, one
may parameterize Algorithm 1 to produce a small constant number of solutions
in expectation, e.g., 1. But for a rigorous analysis, we would like to rule out a
possible bad corner case. With the expectation being 1, it is possible that Al-
gorithm 1 generates 230 solutions with a 2−30 probability, while producing no
solution most of the time. In this subsection, we study the distribution of the
number of solutions produced by Algorithm 1. Aside from ruling out that bad
corner case, a more precise distribution will be useful in our analysis for LPN
and possibly other applications.

We will show that the distribution of solutions is close to a Poisson distri-
bution. We will apply the Chen-Stein method of the second moment analysis as
the main tool to bound the difference.

Lemma 1 (Chen-Stein [1]). Let Π be a random variable that follows a Pois-
son distribution with mean λ = E

[
|L(k)|

]
. Let Jα be the neighborhood of depen-

dence for Yα (which means any Yβ 6∈ Jα is independent of Yα) and J∗α = Jα\{α}
where \ is set subtraction. Then,

∞∑
j=0

∣∣∣P (|L(k)| = j
)
− P (Π = j)

∣∣∣
≤4(1− e−λ)

λ

∑
α∈I

∑
β∈Jα

E [Yα] E [Yβ ] +
∑
α∈I

∑
β∈J∗α

E [YαYβ ]

 .

Define ∆ to be the right hand side of the above inequality.

The rest of this subsection bounds the two double sums in ∆ separately. The
first sum is∑

α∈I

∑
β∈Jα

E [Yα] E [Yβ ] = E
[
|L(k)|

] ∑
β∈Jα

E(Yβ)

= E
[
|L(k)|

]
p2
k (2k)!

22k−1

2k−1∑
i=0

(
2k

i

)(
N − 2k

i

)
≈ E

[
|L(k)|

]
· p.

In most applications (e.g., attack hash functions), finding a few solutions is
sufficient, so E

[
|L(k)|

]
will be much less than 1

p , and this first sum can be ignored.
The dominant part and also the difficulty of this analysis is the sum of the

correlation terms E(YαYβ). To start, we have

E [YαYβ ] = E [E [YαYβ |Yβ ]] = Pr(Yα = 1, Yβ = 1)

= Pr(Yα = 1) Pr(Yβ = 1|Yα = 1).

The last term above depends on the overlap pattern between two index vectors
(and their corresponding candidate solutions). For convenience, we denote a
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Fig. 2: Fewest black nodes occur when black nodes at the leaf level are clustered
in the smallest subtree possible.

candidate solution by an index vector, e.g., α = (1, 2, 3, 4) refers to the candidate
solution {a1, a2, a3, a4}. We again treat their elements as leaves of a binary tree.
For each node in the tree for β, we color it black if its XOR output is independent
of α. At the leaf level, any element in β that does not appear in α is independent
of α and is colored black. For each level above, a node is colored black if at least
one of its two children is black. This is because XORing with an independent and
uniformly random addend yields an independent and uniformly random output.

As black nodes in β’s tree are independent of α, we have
P (Yβ = 1|Yα = 1) ≤ p1+B where B is the number of black nodes in the
tree excluding the leaf level. This is because the candidate solution β needs to
cancel out a chunk of bits at each node, and what happens with β at the black
nodes are independent of α. The extra p is because the last step (the tree root)
cancels out 2n

k+1 bits which happens with p2. p1+B reaches its largest value when
there are fewest black nodes in the tree. For a certain number of black nodes at
the leaves (height 0), the number of black nodes in the entire tree is the fewest
if all the black nodes at height 0 are contained in the smallest subtree possible.
Figure 2 gives an illustration of this configuration with the minimal number of
black nodes. In this case, an upper bound on the number of black nodes in the
tree can be derived as follows:

γ0 = |β \ α|
γj = dγj−1/2e j > 0

γ(m) =
∑k
j=1 γj where m = γ0

(2)

Then, γ (|β \ α|) is an upper bound on B, and we have

E [YαYβ ] ≤ Pr(Yα = 1) Pr(Yβ = 1|Yα = 1) ≤ p2
k+1+γ(|β\α|) (3)

Next, to bound
∑
α∈I

∑
β∈J∗α

E [YαYβ ], we partition J∗α, into disjoint parts
U1, U2, · · · , U2k according to the number of elements that differ from α. In other
words, if β ∈ Ui, then |β \ α| = i. For example, for a candidate solution α =
(1, 2, 3, 4) (implying k = 2), U1 contains (1, 2, 3, 5), (1, 6, 2, 3), etc. By a simple
counting argument,

|Ui| =
(

2k

2k − i

)(
N − 2k

i

)
(2k)!

22k−1
(4)
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For β ∈ Um, we have derived an upper bound that E [YαYβ ] ≤ p2
k+1+γ(m)

in Inequality (3). In Lemma 2, we would like to bound the number of candidate
solutions in Um that can reach this upper bound. To do so, we introduce some
additional notations. For an integer 0 < m < 2k, write m as a sum of a powers
of 2 in ascending order li, i.e., m =

∑ζ
i=1 2li where 0 ≤ l1 < l2 < · · · lζ < k.

Lemma 2. Let Ûm ⊂ Um be the set of candidate solutions that achieve the

maximum correlation p2
k+1+γ(m). |Ûm| ≤

(
N−2k
m

)
· m!
2m−ζ

· 2k

2l1
.

Proof. As mentioned, the maximum correlation appears when black nodes at the
leaf label are closest to each other. We calculate how many such max-correlation
configurations exist. First, the 2lζ leaves of a certain subtree of depth lζ should

be taken up by black nodes. There are 2k

2lζ
subtrees of depth lζ in total. After

choosing one subtree of depth lζ , all the remaining black nodes should appear in
the sibling subtree of depth lζ . Similarly, within that sibling subtree of depth lζ ,
a certain subtree of depth lζ−1 should be taken by black nodes, giving 2lζ−lζ−1

possible ways. We then repeat the above argument on the next subtree of depth
lζ−2 until we place all the m black nodes. Therefore, the total number of the
candidate solutions in Um that achieve the maximum correlation is at most

|Ûm| ≤
(
N − 2k

m

)
· m!∏ζ

i=1 22
li−1

· 2k

2lζ
· 2lζ

2lζ−1
· ... · 2l2

2l1
=

(
N − 2k

m

)
· m!

2m−ζ
· 2k

2l1

We can now finally bound the correlation sum in Lemma 1. While ∀β ∈ Ûm
achieves the maximum correlation by definition, ∀β 6∈ Ûm will have a correlation
that is at most p times the maximum, because its corresponding binary tree has
at least one more black node. Therefore,∑

α∈I

∑
β∈J∗α

E [YαYβ ] ≤ |I| · Pr(Yα = 1)
∑
β∈J∗α

Pr(Yβ = 1|Yα = 1)

≤ E
[
|L(k)|

]
·
2k−1∑
i=0

[
|Ûi|+ p

(
|Ui| − |Ûi|

)]
p2
k+1+γ(i)

where E
[
|L(k)|

]
is given in Theorem 1, |Ûi| is given in Lemma 2, |Ui| is given in

Equation (4), p = 2−
n
k+1 , and γ(i) is defined in Equation (2).

Example numerical calculation. Suppose k = 2. For brevity, we temporarily
write Pr(Yβ = 1|Yα = 1) as Pβα for short. We have

– |U0| = 4!
23 = 3, and ∀β ∈ U0, Pβα ≤ p;

– |U1| = 3 ·
(
N−4
1

)
·
(
4
1

)
, |Û1| = 4(N − 4);

– |U2| = 3 ·
(
N−4
2

)
·
(
4
2

)
, |Û2| = 2

(
N−4
2

)
; and ∀β ∈ Û1 ∪ U2, Pβα ≤ p3.

– |U3| = |Û3| = 3 ·
(
N−4
3

)
·
(
4
3

)
, and ∀β ∈ U3, Pβα ≤ p4.

Denote the right hand side in Lemma 1 as ∆. Plugging in a few example values,
we have
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– For n = 30 and N = 2× 2
n
k+1 ,

∑
β∈J∗α

Pβα < 0.021 and ∆ < 0.037;

– For n = 100 and N = 2·2
n
k+1 ,

∑
β∈J∗α

Pβα < 2.033·10−9 and ∆ < 3.511·10−9;

– For a larger list size N = 10 · 2
n
k+1 with n = 100,

∑
β∈J∗α

Pβα < 1.942 · 10−7

and ∆ < 3.790 · 10−9;

For a few more examples,

– For k = 3, n = 100, and N = 4× 2
n
k+1 , ∆ < 2.1× 10−3;

– For k = 3, n = 120, and N = 5× 2
n
k+1 , ∆ < 3.1× 10−4;

– For k = 3, n = 120, and N = 10× 2
n
k+1 , ∆ < 3.8× 10−2;

– For k = 4, n = 200, and N = 4× 2
n
k+1 , ∆ < 3.8× 10−5;

– For k = 4, n = 250, and N = 5× 2
n
k+1 , ∆ < 1.1× 10−6.

The above calculations show that the distribution of the number of solutions
produced by Algorithm 1 can be closely approximated by a Poisson distribution.
The total variation distance ∆ between the two is small.

3 Learning Parity with Noise

3.1 Background

The Learning Parity with Noise (LPN) problem is a famous open problem that
is widely conjectured to be hard. It forms the foundation of several primitives
in lightweight cryptography and post-quantum cryptography. It is also a special
case of the Learning With Error (LWE) problem, which has a reduction from
the Shortest Independent Vector Problem (SIVP) [23] and has enabled numerous
works in lattice-based cryptography [22,21].

Definition 3 (LPN). Find the secret bit vector s ∈ Zn2 , given samples in the
form {(ai, bi)} where each ai ∈ Zn2 is a random n-bit string, and each ei ∈ {0, 1}
is a Bernoulli noise with parameter 0 < τ < 0.5 and bi = 〈ai, s〉 ⊕ ei

Starting from the seminal work by Blum, Kalai and Wasserman [4], LPN
solving algorithms and heuristics largely follow the “reduce-and-solve” frame-
work below.

– The reduction phase. Find a subset of samples {bi = 〈ai, s〉⊕ei} such that∑
ai is one of the n bases of Zn2 . The most popular choice is the standard

orthogonal bases, in which case the reduction phase becomes a subset sum
problem. For brevity and without loss of the generality, we focus on the first
bit of s, denoted by s1. The reduction phase looks for samples such that∑

ai = (1, 0, · · · , 0). Adding up the samples yield b̂ = s1⊕ ê where b̂ =
∑
bi

and ê =
∑
ei. We call these output samples of the reduction phase reduced

samples.
– The solving phase. With abundant reduced samples {b̂}, solve s1.

11



LPN solving algorithms/heuristics differ in the detailed strategies for the
reduction phase and the solving phase. In all existing proposals we know of, the
reduction phase always uses some type of iterative collision search procedure.
The reduction phase of BKW in each step adds one sample to a set of other
samples to cancel out a chunk of bits in

∑
ai, and in the end obtains one reduced

sample. BKW then repeats the collision search procedure on fresh samples to
obtain more independent reduced samples.

For the reduction phase, the two most popular techniques are simple majority
voting and Fast Walsh-Hadamard Transform. BKW uses simple majority voting:
given abundant reduced samples {b̂}, if there are more 0’s than 1’s, guess s1 = 1;
otherwise, guess s1 = 0. Levieil and Fouque [15] proposed recovering multiple
secret bits at a time in the solving phase and using the Fast Walsh-Hadamard
Transform, which we explain in Section 3.4.

3.2 LPN Reduction Phase using Iterative Collision Search

The BKW algorithm only obtains one reduced sample from each run of the
reduction phase in order to ensure independence among reduced samples to apply
the Chernoff bound in the solving phase. As a result, BKW is extravagant in
consuming input samples and does not mind “missing” many candidate reduced
samples. Similar to the subset sum case, the single-list pair-wise iterative collision
search, known as the LF2 method in the LPN literature, will produce far more
reduced samples given the same amount of initial samples. The LF2 method has
been an important technique, and has been adopted by every subsequent LPN
solving work that we know of. But prior to our work, LF2 remains a heuristic
with no rigorous analysis available. In particular, it remains open after a decade
how many reduced samples LF2 produces, to what degree these reduced samples
are correlated, and to what extent the correlation affects the solving phase. We
now answer these questions with rigorous analysis.

Although the reduction phase of LPN is almost exactly the same as a subset
sum problem if we think of the vectors {ai} as the bit-strings in the list L of
subset sum, several remarks should be made regarding the collision schedule,
i.e., how many bits to cancel at each step.

1. There is no agreed upon collision schedule in the literature. The original
LF2 method [15] was inspired by Wagner’s algorithm [24], which cancels out
2n
k+1 bits in the last step and n

k+1 bits in every other step. Many subsequent
works define LF2 to cancel out n

k bits in every step including the last one.
Our analysis will assume the original collision search schedule by Wagner,
but can be extended to other schedules. With Wagner’s schedule, our analysis
for the number of solutions (both expectation and distribution) in Section 2
would apply if we only output fixed weighted reduced samples. But we note
that it is OK for the LPN reduction phase to output reduced samples with
weights lower than 2k. So the total number of reduced samples will be greater
than what our analysis in Section 2 indicates. We omit the analysis of this
effect because more reduced samples improve the success rate of the solving
phase.

12



2. The number of input samples to the reduction phase (i.e., the original list
size N =

∣∣L(0)
∣∣) greatly influences the expected number of reduced samples

output by the reduction phase. If we set N = 2 × 2
n
k+1 as in Section 2.4,

then the list size at each step roughly remains the same (or slightly decreases)
and the expected number of output samples is less than 2. However, in LPN,
we would like the reduction phase to produce more samples for the solving
phase. An easy way to achieve this is to increase the initial list size N to be
slightly larger than 2× 2

n
k+1 . In this case, the list size will grow after every

step before the last step.

3. Another way to obtain more reduced samples is to adjust the collision search
schedule to cancel out slightly fewer than 2n

k+1 bits in the last step, and
slightly more than n

k+1 bits in every other step. The optimal collision schedule
is outside the scope of this paper.

4. Bogos et al. [5] used an oversimplified combinatorial method to estimate the
expected number of reduced samples, which led to the conclusion that N =
3 × 2

n
k+1 would keep the list size constant across steps. Our analysis shows

this is not true. Plugging into Equation (1), we can see that N = 3 × 2
n
k+1

will cause the list size to grow exponentially after each step.

5. Another flaw in previous work is the LF(4) proposal by Zhang et al. [25]. It
generalizes the LF2 method by with the intention to check all 4-tuple com-
binations instead of 2-tuple combinations. However, the scheme presented
in [25] approximates the 4-tuple collision search using a 2-tuple collision
search. This is essentially LF2 with the number of steps k doubled, and
hence will not produce the claimed number of reduced samples. On the
other hand, if a scheme really enumerates all 4-tuple combinations by brute
force, the time complexity will become much more formidable than what’s
reported in [25], and it remains unclear whether the increased number of
reduced samples can make up for it.

3.3 LPN Solving Phase with Majority Voting

This subsection and the next one analyze how the correlation between reduced
samples affects the solving phase. Several previous works [8,25,5] have exper-
imentally shown that the correlation does not seem to cause problems in the
solving phase. Our analysis will provide theoretical support for these experi-
mental results. We show the correlation between reduced samples produced by
the iterative collision search is weak and does not affect the success rate too
much. This subsection focuses on the majority voting method, while the next
subsection studies the fast Walsh-Hadamard transform method.

Recall that the majority voting method tallies the reduced samples {b̂}, and
guesses s1 = 1 if there are more 1’s than 0’s, and guesses 0 otherwise. Since
b̂ = s1 ⊕ ê, each ê = 1 contributes an incorrect vote. Define Zα = Yαêα where
Yα is defined in Section 2 and êα = ⊕i∈αei. Let W =

∑
α∈I Zα. W represents

the number of incorrect votes among the reduced samples. If W does not exceed
one half of the reduced samples, then the majority voting will guess s1 correctly.
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If {Zα} were independent, a Chernoff bound would suffice like in BKW [4].
The main difficulty we face is to bound Pr(W ≥ w) when {Zα} are not inde-
pendent. We will show that if we calculate this bound pretending that {Zα} are
independent, the error will be very small.

Let W ′ be the sum of |I| independent Bernoulli random variables (cf. the
definition of W ). Each addend Z ′ follows the same distribution as Zα, i.e.,
Pr(Z ′ = 1) = Pr(Zα = 1) = Pr(Yα = 1) Pr(êα = 1). We once again invoke
the Chen-Stein method [1] to bound the total variation distance between W and
W ′,

∆
′

=

∞∑
l=0

|Pr(W = l)− Pr(W ′ = l)|.

We introduce an intermediate random variable Π that follows a Poisson distribu-
tion with mean λ′ = E [W ]. Using the triangle inequality, we have ∆′ ≤ ∆′1 +∆′2
where ∆′1 and ∆′2 are the total variation distances between W and Π, and
between Π and W ′, respectively. ∆′1 can be bounded in the same way as in
Section 2.5. Recall that W =

∑
α∈I Zα, |L(k)| =

∑
α∈I Yα and Zα = Yαêα ≤ Yα.

So ∆′1 is no larger than ∆. (∆ is defined in Lemma 1.)
W ′ follows a binomial distribution, which is frequently approximated by a

Poisson distribution. Concretely, we can bound their total variation distance us-
ing the Chen-Stein method. Note that for each addend Z ′ of W ′, the neighbor-
hood of dependence of Z ′ is empty, so only the first double sum in the Chen-Stein
method (cf. Lemma 1) remains.

∆′2 =

∞∑
l=0

|Pr(W ′ = l)− Pr(Π = l)| ≤ 4(1− eλ′)
λ′

· |I| · (Pr(Z ′ = 1))
2

Observe that λ′ = E [W ′] = |I| · Pr(Z ′ = 1), Pr(Z ′ = 1) = Pr(Yα = 1) · Pr(êα =

1), Pr(Yα = 1) = p2
k

, and Pr(êα = 1) = Pr(⊕i∈αei = 1) = 1−(1−2τ)2
k

2 [4]. Thus,

∆′2 ≤ 4(1− eλ
′
) · Pr(Z ′ = 1) ≤ 4(1− eλ

′
) · p2

k

· 1− (1− 2τ)
2k

2
< 2p2

k

.

Clearly, ∆′2 is very small compared to ∆′1, so ∆′ ≈ ∆′1 ≤ ∆.
W ′ is a sum of independent Bernoulli random variables, so the Chernoff

bound can be applied to Pr(W ′ ≥ w). Pr(W ≥ w) can then be bounded by
≤ Pr(W ′ ≥ w) + ∆′. This means the correlation between votes (i.e., reduced
samples) resulting from the reduction phase lowers the success rate by at most
∆ compared to independent votes. Section 2.5 has shown that ∆ is very small,
ranging from 0.02 to 10−9. This explains why previous works observed that
majority voting using correlated reduced samples works well in reality.

3.4 LPN Solving Phase with Fast Walsh-Hadamard Transform

Levieil and Fouque [15] proposed applying the Fast Wash-Hadamard Transform
(FWHT) and recovering a block of secret bits at a time. They call this method
LF1. We describe the LF1 method below.
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Since LF1 tries to recover a block of y secret bits at a time, it needs to modify
the reduction phase to generate reduced samples that depend on y bits of the
secret. This is a straightforward modification that simply involves canceling out
fewer bits (n−y instead of n−1). Denote these reduced samples as b̂l = 〈âl, s〉⊕êl
where âl, s ∈ Zy2 , i.e., we focus on the y secret bits we are trying to guess.

In the solving phase, for x ∈ {0, 1}y define f(x) =
∑
l δ(al, x)(−1)bl where

δ(al, x) = 1 if al = x and 0 otherwise. LF1 applies FWHT to compute for each
v ∈ {0, 1}y,

f̂(v) =
∑
x

(−1)
〈x,v〉

f(x) =
∑
l

(−1)〈âl,s⊕v〉⊕êl

Observe that f̂(s) =
∑
l(−1)êl . Since Pr(êl = 0) > Pr(êl = 1), f(s) should

be noticeably larger than 0. On the other hand, for s′ 6= s, e′l = 〈âl, s′ ⊕ s〉 is
uniformly random, and f(s′) should be close to 0. LF1 then picks the largest

f̂(v) and guesses s = v. Thus, if there exists s′ 6= s such that f̂(s′) ≥ f̂(s), then

the LF1 method fails. For each s′, the probability that f̂(s′) ≥ f̂(s) is

ε = Pr
(
f̂(s′) ≥ f̂(s)

)
= Pr

(∑
l

e′l ≤
∑
l

êl

)
(5)

When analyzing the success rate of LF1, there are two places that prior
works argue heuristically [15,8,25,5,6]. One is that they assume reduced samples
are independent. The other one is that after noting LF1’s success requires ∀s′ ∈
{0, 1}y, f̂(s′) < f̂(s), they assume independence between the events f̂(s′) < f̂(s)
for different s′ and approximate LF1’s success rate as (1− ε)2y−1.

We now present a rigorous analysis for LF1’s success rate. We first bound ε.
The difficulty again lies in analyzing

∑
l êl for correlated {êl}. We use similar

techniques as before. Write S =
∑
l êl =

∑
α∈I Yαêα and T =

∑
l e
′
l =

∑
α∈I Yα ·

〈âα, s′ ⊕ s〉. Define S′ to be the sum of I independent Bernoulli random variables

each with mean Pr(Yαêα = 1) = 1
2 ·p

2k ·(1−(1− 2τ)
2k

). Define T ′ to be the sum
of I independent Bernoulli random variables each with mean Pr(e′l = 1) = 1

2 .
We again have

∑∞
l=0 |Pr(S = l) − Pr(S′ = l)| ≤ ∆′3 ≤ ∆ and

∑∞
l=0 |Pr(T =

l)− Pr(T ′ = l)| ≤ ∆′3 ≤ ∆. Therefore,

ε = Pr(T ≤ S) ≤ Pr(T ′ ≤ S′) + 2∆′3 ≤ Pr(T ′ ≤ S′) + 2∆. (6)

This means a heuristic estimation of ε by pretending that T and S are sums of
independent random variables (T ′ and S′) is only off by at most 2∆, which is
very small under suitable parameters as shown in Section 2.5. Pr(T ′ ≤ S′) can
be bounded rigorously using the Hoedffing bound. We continue the analysis in
the next subsection.

The second inaccuracy above can be easily fixed by a union bound. Thus,
the probability that LF1 recovers y secret bits fully correctly is

Pr(LF1 succeeds) < 1− 2yε.
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3.5 Complexity Analysis

In this section, we analyze the time and space complexities of the LF1+LF2
algorithm and compare it to the BKW algorithm [4] (the best previously known
non-heuristic algorithm).

The LF1 solving phase with FWHT recovers multiple bits at a time. A com-
mon practice in the literature [5,25] is to recover y = Θ(k) bits at time. This way,
the process of recovering the remaining n− y bits (still y bits at time) combined
cost roughly the same amount of time as the first y bits. This is because the

runtime of the reduction phase has a 2
n−y
k+1 term. When recovering the second

batch of y bits, that term becomes 2
n−2y
k+1 , which is a constant factor smaller

compared to the first batch.
Next, we determine how many reduced samples we should feed to LF1. Let

this quantity be NL. Recall that the failure probability of LF1 is 2yε from Sec-
tion 3.4). Using the Hoeffding inequality to bound Pr(T ′ ≤ S′) in Equation (6),
we can upper bound the failure probability of LF1 using NL reduced samples by

2yε ≤ 2y(e−NLδ
2/8 +2∆). Here, δ = (1−2τ)2

k

where τ is the error rate of initial
input samples, and 1/2 − δ is an upper bound on the error rate of the reduced
samples [4]. For the LF algorithm to work, we need ∆ to be small. Then, if we
want the above probability to be at most θ, we need NL ≈ 8δ−2 ln(2y/θ) reduced
samples.

The number of initial samples to feed into the LF2 reduction phase is thus

(NL)1/2
k

2
n
k+1+1. In practice, it is common to set k such that NL < 2

n
k+1 . The

time complexity of the LF2 reduction phase is TLF2 = O(
∑k−1
i=1 NL

2i−k2
n
k+1 +

NL) = O(
√
NL2

n
k+1 ) The time complexity of the LF1 solving phase is TLF1 =

O(y2y logNL + yNL) = O(yNL) due to [6]. Combining the two, the total time
complexity is TLF = TLF1 + TLF2 = O(

√
NL2

n
k+1 ). The maximum space usage

occurs at the (k − 1)
th

collision search, which is SLF = O(
√
NL2

n
k+1 ).

Next, we analyze the time and space complexities of the BKW algorithm.
In the reduction phase, BKW repeats its iterative collision search procedure
many times, each time with fresh initial samples, until it obtains sufficiently
many independent reduced samples. The solving phase is simply a majority
vote, so the time and space complexities are dominated by the reduction phase.
Again, we first need to calculate how many reduced samples are needed. Call this
quantity NB . The probability that a majority of reduced samples are erroneous

is Pr(
∑NB
l=1 êl ≥

NB
2 ) ≤ e−Nδ

2

2 . For a fair comparison, we want BKW to recover
the first y secret bits with a success probability of 1 − θ. This requires NB ≈
2δ−2 ln(y/θ). The time complexity is TBKW = O(yNBk

22
n
k+1 ) and the space

complexity is SBKW = O(k2
n
k+1 ).

Finally, we have

TBKW

TLF
= Θ

(
k2
√
y ln y

δ

)
= O(k2.5(ln k)δ−1),

and
SBKW

SLF
= O

(
k√
NL

)
= O(k0.5δ).
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In conclusion, the LF1 algorithm improves runtime by a factor of (slightly more
than) δ−1 by consuming a factor of (slightly less than) δ−1 more space.

4 Conclusion

Iterative collision search is a crucial technique in solving subset sum and LPN.
The single-list pair-wise variant has so far been the most efficient variant for
random fixed weighted subset sum and LPN, but has not been rigorously an-
alyzed prior to our work. In this paper, we presented rigorous analysis for the
single-list pair-wise iterative collision search procedure and its applications in
random fixed weighted subset sum and LPN. In the LPN context, we show that
while the reduced samples produced by this method are correlated, the correla-
tion is weak and barely decreases the success rate of LPN solving. Our analysis
of the single-list pair-wise iterative collision search is also applicable to LWE. It
remains interesting future work to study how it interacts with other techniques
in the LWE literature.
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