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Abstract. We propose new key recovery attacks on the two minimal
two-round n-bit Even-Mansour ciphers that are secure up to 22/3 queries
against distinguishing attacks proved by Chen et al. Our attacks are
based on the meet-in-the-middle technique which can significantly re-
duce the data complexity. In particular, we introduce novel matching
techniques which enable us to compute one of the two permutations
without knowing a part of the key information. Moreover, we present
two improvements of the proposed attack: one significantly reduces the
data complexity and the other reduces the time complexity. Compared
with the previously known attacks, our attack first breaks the birthday
barrier on the data complexity although it requires chosen plaintexts.
When the block size is 64 bits, our attack reduces the required data from
245 known plaintexts to 22¢ chosen plaintexts with keeping the time com-
plexity required by the previous attacks. Furthermore, by increasing the
time complexity up to 252, the required data is further reduced to 2%,
and DT = 27°, where DT is the product of data and time complexities.
We show that our low-data attack on the minimal n-bit two-round Even-
Mansour ciphers requires DT = 2"%% in general cases. Since the proved
lower bound on the required DT for the one-round n-bit Even-Mansour
ciphers is 2", our results imply that adding one round to the one-round
Even-Mansour ciphers does not sufficiently improve the security against
key recovery attacks.
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1 Introduction

1.1 Even-Mansour Cipher

The Even-Mansour cipher consisting of two direct key XORs separated by one
public permutation was proposed in 1991 [9,10]. Since then, it has been consid-
ered as one of the simplest block cipher design. Indeed, its description is rather
simple:

Ek, i, (v) = P(x ® Ko) ® K1,



where P is an n-bit fixed and public permutation with two n-bit secret keys K
and K.

Bogdanov et al. generalized it as the multiple-round Even-Mansour construc-
tions, and presented the first security bounds against distinguishing attacks for
them [1]. As opposed to the original Even-Mansour cipher, the multiple-round
Even-Mansour construction can comprise ¢ independent public permutations on
n-bit words separated by n-bit independent key additions:

EW(z) = Bk, (x) = P (Py(Piz & Ko) @ K1) & K3) -+ ) & K.

There has been a series of results towards the provable security of the iterated
Even-Mansour ciphers with independently and randomly drawn permutations
since then. The aforementioned work [1] proves that at least 2% queries are
required to distinguish E® with ¢ > 2 from a random permutation and conjec-
tures that the bound is roughly 27", Steinberger [16] improves this result by
proving that the bound of 21" holds for t > 3. Lampe, Patarin and Seurin [14]
prove a security of 272" for all even values of t, which is slightly lower than
conjectured. Chen and Steinberger [4] have managed to prove the conjectured
971" bound on the number of queries required for a distinguishing attack, and
then Hoang and Tessaro proved the exact bound of it [12].

1.2 Minimal Construction

The original Even-Mansour cipher, which only consists of a single permutation
surrounded by key XORs, ensures security up to 2"/2 queries of the adversary
who has access to the encryption function Fx and the internal permutation
P [9,10]. Even and Mansour proved an information-theoretic bound that any at-
tack on the scheme must satisfy the equation of DT = 2(2"), where D and T are
the data and time complexities, i.e. the number of queries to the encryption func-
tion Ex and the permutation P, respectively. The case of (D,T) = (2%/2,2"/?)
satisfies the bound of 2"/2 queries. Shortly after the introduction of the scheme,
Daemen [5] presented a key recovery attack matching the bound DT = O(2")
in the chosen-plaintext model. Dunkelman, Keller and Shamir [8] proposed the
slidex attack and its application to close the gap between the upper and lower
bounds on the security of the Even-Mansour scheme for a variety of tradeoff
points. Moreover, they specifically consider the minimalistic single-key Even-
Mansour, with Ky = K7, which provides exactly the same security. As pointed
out by Dunkelman et al. [8], this construction is minimal in the sense that if
one removes any component, i.e. either the addition of one of the keys, or the
permutation P, the construction becomes trivially breakable.

Chen et al. [3] proved that two variants of two-round Even-Mansour ciphers
are secure up to 22/3 queries against distinguishing attacks, while the one-round
Even-Mansour cipher guarantees security up to birthday bound, namely 27/2.
One consists of two independent n-bit permutations P; and P, and a single
n-bit key K:

(2EM-1) EQ(2)=P(Pizd K)® K) ® K.



The other consists of a single n-bit permutation P, and a single n-bit key K
with a simple key scheduling function m,

(2EM-2) EP(2) = P(P(z® K) ® 7(K)) @ K,

where 7 is any linear orthomorphism of 5. Hereafter we refer to E;?) and E}g)
as 2EM-1 and 2EM-2, respectively. These constructions can be considered as
minimal two-round Even-Mansour ciphers delivering security beyond the birth-
day bound, since they have no redundant component for the security. The proved
lower bounds of 2EM-1 and 2EM-2 for distinguishing attacks by Chen et al. [3]
are captured in Fig. 1. Regarding tightness of their security bounds for distin-
guishing attacks, Gazi proposed a generic distinguishing attack with the time
complexity of 27~ 1/2 19820 for any D [11], i.e. DT? = 22", The attack matches
the proved bound only in the specific case (D, T) = (22%/3,227/3),

Along with the distinguishing attacks, several key recovery attacks on 2EM-
1 construction have been presented [7,15]. Unlike the one-round Even-Mansour
construction, for the two-round Even-Mansour ciphers, a dedicated information-
theoretic bound on D and T for any attack including key recovery attacks has
not been known. At least, D and T required for key recovery attacks on the two-
round constructions must satisfy DT = (2(2") which is the bound for the one-
round construction. Moreover, since a distinguishing attack is directly derived
from a key recovery attack, D and T for the key recovery attacks must follow
the lower bounds for distinguishing attacks on 2EM-1 and 2EM-2 given by Chen
et al. [3]. For n = 64, Nikoli¢ et al. proposed the first key recovery attacks on
2EM-1 requiring the time complexity of 26! with 259 known plaintexts [15]. Dinur
et al. generalized it and reduced the data requirements to 2*°, while keeping
the time complexity [7]. Therefore, the published best upper bound on DT is
estimated as 2'%° for n = 64. Since it is much larger than the lower bound
for the one-round Even-Mansour (DT = 254), the two-round Even-Mansour
cipher seems more secure against key recovery attacks than the one-round Even-
Mansour cipher. However, due to the gap between the proved lower bound and
the presented upper bound, the accurate security of the two-round construction
is still unknown and it is an important open problem in the field of symmetric

cryptography.

1.3 Owur Contributions

In this paper, we propose new key recovery attacks on the two minimal two-round
Even-Mansour ciphers 2EM-1 and 2EM-2. First, we present a basic attack on
2EM-1 by using the advanced meet-in-the-middle technique which potentially
reduces the data complexity. In particular, we introduce novel matching tech-
niques called partial invariable pair and matching with input-restricted public
permutation, which enable us to compute one of the two permutations without
knowing a part of the key information. Then, we improve the basic attack: one
significantly reduces data complexity (low-data attack) and the other reduces
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Fig. 1. Comparison of the previous results and our results when n = 64. The blue solid
line is the lower bound of the one-round Even-Mansour cipher, i.e. DT = 2(2") [9,10].
The blue dashed and dot lines are the lower bound for distinguishing attacks on 2EM-1
and 2EM-2 by Chen et al. [3], respectively. The black solid line is the upper bound for
distinguishing attacks on 2EM-1 and 2EM-2 by Gazi [11].

time complexity (time-optimized attack) by dynamically finding partial invari-
able pairs. Our results are summarized in Table 1. In our attacks, there are some
tradeoff points of data and time complexities by choosing the parameters of a, b
and d under the conditions. We emphasize that all of our attacks do not contain
any operation over 2", and can be regarded as exponential-advantage attacks as
with the previous attack [7,15].

Figure 1 and Table 2 show the comparative results with the previous attacks
when n = 64. Our attacks can drastically reduce the required data from 24 to
226 with keeping the time complexity of the previous attacks [7,15], although our
attacks require chosen plaintexts. By increasing time complexity up to 22, the
required data is further reduced to 28. Since the previous attacks are based on
multi collisions of the n-bit state, they cannot break the birthday barrier of data
and time complexity. On the other hand, our attacks essentially exploit multi
collisions of one part of the state, which we call partial invariable pairs in this
paper. The required time and data complexity for finding such invariable pairs
are much less than those required for finding multi collisions of the whole state.
Therefore, our attacks are feasible even if the required data is restricted to be
less than 2"/2. In the time-optimized attacks, we can reduce the computation
cost of the internal permutation to 2°3, but it requires 262 memory accesses. Ba-
sically, it is hard to fairly compare the costs of one encryption and one memory
access, because these costs strongly depend on the execution environments, the



Table 1. Summary of our results for 2-round Even-Mansour ciphers.

’Time T‘ Data D ‘ DT ‘Condition of the parameters of a, b, and d
Basic Attack (Section 3)
gn—a—1] gnma cp 227 D) a-2"—1<n-—a
Low-Data Attack (Section 4)
2n—e Jgn~(aFd Cp[22(mo ] a-2°+d<n-a
Time-Optimized Attack (Section 5)
2P F[ grmegp [22 et b-2°+(b—a)<n—b

1. The attack includes 2" ™% memory access. CP: Chosen Plaintext

size of the table, and the underlying permutation. Thus, we do not claim that
our time-optimized attacks sufficiently reduce the time complexity required for
the previously known key recovery attacks. However, obviously the cost of en-
cryptions is non trivially reduced. We believe that it is an interesting tradeoff to
know the concrete security of the minimal two-round Even-Mansour construc-
tion. Finally, we show that all of our attacks on 2EM-1 can be applied to the
other minimal variant 2EM-2.

The minimum value of DT for n = 64 is estimated as 270, which is close to
the proved lower bound for the single Even-Mansour cipher DT = 254 and Chen
et al’s lower bounds for distinguishing attacks on the two-round Even-Mansour
ciphers as shown in Fig. 1. Table 1 shows that our low-data attack requires
DT = 22(n=a)=d gnd DT? = 23(=0)=d for any n as long as a-2* +d < n — a.
When choosing a = 2, the maximum d is d = n — 10, and thus DT and DT? are
estimated as DT = 2776 and DT? = 22"*4 for any n, respectively. These results
reveal that adding one round does not sufficiently improve the key recovery
security with respect to the product of D and T, while there has not been
attacks with time complexity less than the birthday bound unlike the single
Even-Mansour cipher.

1.4 Outline of the Paper

The remainder of the paper is organized as follows. In Section 2, we introduce the
specification of Even-Mansour ciphers and review previous work. In Section 3,
we explain a basic attack on 2EM-1. Then Sections 4 and 5 present the improved
attacks on 2EM-1 with respect to data and time complexities, respectively. In
Section 6, we show that our attacks on 2EM-1 are applicable to 2EM-2. Section
7 is the conclusion.



Table 2. Comparison of the previous results and our results for key recovery attacks
on 2-round Even-Mansour ciphers when n = 64.

’Time T‘Data D‘ DT ‘ Reference ‘
One-round EM: Eg)(x) =Plzd K)® K) [9,10]
264 | oz p | 264 5]
96—z | g e p | 964 8]
Two-round EM1:E2 (z) = P,(Pi(z & K) ® K) & K
260 |29 K P 2!20 [15]
260.1 245KP 2105.1 [7}
200 1926Cp | 286 Section 4
262 128 cp | 2™ Section 4
258 12 1961 cp| 29 Section 5
2°8 18 1262 cp| 2115 Section 5
Two-round EM2: E}f)(x) =PPzoK)on(K))o K
200 | 226Cp| 2% Section 6
202 | 28 Ccp | 270 Section 6
258 12 1961 cp| 27 Section 6
253 13 962 cp| 2115 Section 6

2. The attack includes 2% memory accesses.
3. The attack includes 252 memory accesses.
KP: Known Plaintext, CP: Chosen Plaintext

2 Even-Mansour Ciphers

In this section, we introduce the two minimal two-round Even-Mansour ciphers
we focus on this paper, and review the previous results on the ciphers.

2.1 Two-Round Even-Mansour Ciphers

Let Pp,...,P; : {0,1}" — {0,1}" be independent public permutations and let
Ko, ..., K; € {0,1}" be round keys. The t-round Even-Mansour cipher E(®) :
{0,117 x {0, 1} — {0,1}" consists of ¢ public permutations and (¢ + 1) key
injections is defined as follows [1]:

EW(z) = Bk, (x) = P (P(Piz & Ko) @ K1) & Kp) -+ ) @ Ky,

where z is an n-bit input of E®).
In this paper, we focus on the following two variants of two-round Even-
Mansour ciphers (¢ = 2), which are provably secure up to 227/3 queries of the
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Fig. 2. Minimal Two-round Even-Mansour ciphers, 2EM-1 and 2EM-2.

encryption function and the internal permutation(s) [3]:

(2EM-1) E@ (@) =Pz K)eK)a K,
(2EM-2)  EP(2)=P(P(ro K)®n(K)) @K,

where P;, P> and P are independent n-bit permutations, K is n-bit key, and 7w
is any linear orthomorphism of F3. As examples of orthomorphism, a simple
rotation, Feistel-like construction (e.g. 7 : (x,y) — (y,z @ y)), field multiplica-
tion (e.g. 7 : (z) — (z X ¢), where ¢ # 0,1) are well known. Figure 2 illustrates
these constructions. These constructions are regarded as minimal Even-Mansour
ciphers delivering security beyond the birthday bound, since removing any com-
ponent causes security to drop back to 0(2"/ 2) queries.

2.2 Previous Key Recovery Attacks on 2EM-1

Along with results on provable security of 2EM-1 [1,3,4,11,14,16], several key
recovery attacks on the construction have been published [7,15].

Nikoli¢ et al. proposed the first key recovery attacks on 2EM-1 [15]. They
considered the graph of the function P'(x) = x ® P(z) and showed that vertices
with a large in-degree in this graph can be exploited to bypass an additional
round of 2EM-1. Specifically, they define a keyed function inside of Eg)(x) as
Q(K,z) = K® P(z® K). Since the same key K is XORed before and after the
first permutation P, the relation of x ® Q(K,z) = (x ® K) ® P(z @ K) holds
for any key K. If some output values of P’ appear more than the average, then
we can predict the value of Q(K,z) with a higher probability than expected
even when K is unknown. Then, K can be recovered by using the relation of
K=QK,z)® Eg) (z). In this attack, they exploit t-way multi collisions on the
value P'(z) = & P(z), namely x1, z, ..., x; such that x1®P(z1) = 2o ® P(x2) =
s ooy =2t ® P(x4) = v for some value of v. Using it, Q(K, z) can be guessed with
a probability which is ¢ times higher than the expected 27" without knowing K.
For n = 64, their attack can recover the key of Eg)(x) with time complexity of
261 and 2% known plaintexts [15]. After that, Dinur et al. generalized their attack
using concepts from graph theory [7]. In particular, they estimated the highest



expected in-degree in the bipartite graph of P’'(z) = 2 & P(x) depending on the
number of input size. By considering all the vertices with an in-degree of at least
8, they reduced the data requirements to 24°, while keeping the time complexity.
Therefore, the published upper bound of DT is estimated as 210° (= 260 x 245) for
n = 64. Since it is significantly larger than the bound of one-round Even-Mansour
(DT = 25%), two-round Even-Mansour cipher seems to sufficiently improve the
key recovery security of the one-round Even-Mansour cipher. However, due to the
gap between the proved lower bound [3,9,10] and the presented upper bound [7,
15], the accurate security of the two-round construction is still unknown and it
is an important open problem.

3 Basic Attacks on 2EM-1

This section presents a basic attack on 2EM-1, Eg) consisting of two public
permutations P; and P, interleaved with three identical key injections by K.
Our attack is based on the meet-in-the-middle (MitM) framework [2,13], i.e., two
functions f and g from EE?) are independently computable while the previous
attacks [6] use a multi-collision technique.

In our attack, we introduce a novel matching technique called matching with
input-restricted public permutation, which enables us to compute one of two
permutations without knowing a part of the key information. Our new matching
technique is based on partial invariable pairs, which is used for constructing an
input restricted table for any permutation.

3.1 Definitions of Invariable Pair

Let f be an n-bit keyed function using a k-bit key, namely fx : {0,1}"™ — {0,1}",
where K € {0,1}*. We use the following two notations for an input-output pair.

Definition 1 (Invariable Pair [13]). If there exists an input-output pair (z,y)
of f such that fx(x) =y for any K, such an input-output pair (z,y) is defined
by an invariable input-output pair of f.

Definition 2 ((Target) Partial Invariable Pair). If there exists a pair of a
fized input and a b-bit partial output (z,y’) of [ such that try(fx(x)) =y for
any K, such a pair (x,y') is defined by a partial b-bit invariable input-output
pair of f, where y' € {0,1}* (b < n) and try(y) represents a b-bit truncation of
an n-bit output y.

If the value of b bits to be fized is predetermined, it is called a target partial
b-bit invariable input-output pair.

3.2 How to Find Partial Invariable Pair

Assuming that an a-bit key is involved in f, the procedure for finding a b-bit
partial invariable input-output pair is given as follows:
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Fig. 3. Attack overview of 2EM-1.

Step 1: Set an n-bit input x randomly.

Step 2: Compute y; = fx(x) with a key K from the set of 2% keys.

Step 3: Store b bits of y1 (b < n) as y'(= try(y1)).

Step 4: Compute yo» = fx(z) with another key K’ from the set of 2% keys,
where K' # K.

Step 5: Check whether b bits of y2 are equal to 3’ at the same position. If so,
repeat Steps 4 and 5. Then, if all possible K’ are checked, output (z,y’) as
a b-bit partial invariable input-output pair of f. Otherwise, go back to Step
1 and restart with a different x.

The probability of the matching in Step 5 is 27° assuming that f is a suffi-
ciently random function. Thus, the complexity of finding a b-bit partial invari-
able pair is estimated as 1/(27°)2" 1. If b bits of y; are predetermined, which is
called target partial b-bit invariable input-output pair, the required complexity
of finding such a pair is estimated as 1/(27%)2".

3.3 Attack Overview

As illustrated in Fig. 3, we first divide the n-bit key K into an a-bit kg and
the remaining (n — a)-bit k1. Then, we introduce a function f that consists of
P, and two key injections by kg, and a function g that consists of an initial
key injection by k; and a final key injection by k;. Note that f and g are
independently computed with ko and kj, respectively. An output of f and an
input of g are represented as (zo|z1) and (yoly1), also an input and an output
of P, are denoted as (vg|v1) and (zg|z1), respectively, where g, vo, ko, 20, Y0 €
{0, 1}117 x1,v1, k1, 21,y1 € {0, 1}n—a.

At first glance, it seems to be difficult to do the matching between f and
g, because f and g need ki and k¢ to compute the matching state around P,
respectively. Thus, if the underlying permutation has sufficiently good diffusion
property such as AES-128 with a fixed-key, it seems infeasible to construct the
matching. To overcome this problem, we introduce a novel matching technique
called matching with input-restricted public permutation.



Matching with Input-Restricted Public Permutation. The idea behind
our new technique is to construct the input-restricted table of P, to find the
corresponding n-bit value (vg|v1) from only an (n—a)-bit value y; (= z1) without
knowing ko while computing g. In a straightforward way, given a value of y; (=
z1), 2%(= 2" /2" *) candidates of (vp|v1) are found with 2* P, computations.
Since all ko values are tested in the function g, it totally requires 2" (= 2"~% x 2%)
P, computations. Thus, two functions f and g from Eg)
computed.

are not independently

In order to get rid of this problem, b bits of inputs (vg|v1) are fixed, then
the precomputation table of P, indexed by values of (n — a)-bit y;, is con-
structed with less than 2" P, computations, namely 2", Given an (n — a)-bit
Y1, 277t /2n7a = 29-b candidates of (vp|v1) are found with only one memory
access of the precomputation table without the knowledge of kg. If @ = b, it is
expected that one candidate is left. If a < b, it is expected that less than one
candidate is left.

Since a partial invariable pair in function f allows us to fix b bits of inputs
(vo|v1) during the MitM procedure, the combination use of two techniques, the
partial invariable pair and the matching with precomputation, enables us to
mount a MitM attack on 2EM-1.

In summary, we mount the attack on Eg) by using partial invariable pair to
the permutation P; in conjunction with the matching with the input-restricted
public permutation technique to the permutation Ps.

3.4 Attack Procedure

The attack consists of an offline and an online phase. In the offline phase, a b-bit
partial invariable pair of f is found, then an input-restricted precomputation
table of P, is constructed. In the online phase, the MitM attack is mounted by
using the precomputation table and querying the encryption oracle Eg).

In this attack, more than a bits of input of P, are not fixed by kg, because
an (n — a)-bit k; is used between f and P,. Thus we consider the case where a

is equal to b, which is optimal with respect to the time complexity.

Offline Phase.

Step 1: Find an a-bit partial invariable pair of f, (S, zo) such that trq(fx, (S)) =
xq for any a-bit kq.

Step 2: For all a-bit kg, compute the remaining data of the invariable pair, and
make a table of (k((f), xgl)) such that fké>(5’) = (:vo\mgi)), where 1 <7 < 2%

Step 3: For all (n — a)-bit vy, compute (n — a)-bit value z; by P», then make
a table of (vgj),zy)), where vy = xo, PQ(U0|U§j)) = (z(()j)|z§j)) and 1 < j <

anTae,
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Table 3. Summary of computational costs for the basic attack on 2EM-1.

Offline Online
Time Memory Time Data| Memory
(242"~ 4 2772) P[2% and 2" ¢[(2"* ) MA|2"~%[2% and 2" ¢
n=32,a=3 228 enc. 229 229 MA | 2%° 229
n=~64,a=4 260 enc. 200 200 MA | 260 200
n=128,a =4 2123 enc. 2124 2124 MA [ 2124 o124
n=256a=>5 2250 enc. 2251 221 MA | 2231 2251

P: Internal permutation call, MA: Memory Access.

enc. : encryption function call (= 2 permutation calls).

Online Phase.

Step 1: Guess an (n — a)-bit k; and compute the corresponding plaintext P
from the start state S and k.

Step 2: Send P to the encryption oracle EE?), then obtain the corresponding
ciphertext C.

Step 3: Compute an (n — a)-bit y; from C and k;.

Step 4: Look for an index d in the table of (’U{j),zij)) such that z%d) =y If
there is no such index, go back to Step 1.

Step 5: Compute 2} = vgd) @ k1, and check if there exists an index e in the

table of (k(()i),xgi)) satisfying ] = a:@. If there is no such index, go back to

Step 1.

Step 6: Check if P2(00|U§d)) = (z{)|z§d)) holds, where z{, is computed from C
and k(()e). If so, K/ = (k(()e)|k1) is regarded as the correct key. Otherwise, go
back to Step 1.

3.5 Evaluation

Here, we evaluate the cost required in each phase.

Offline Phase. In Steps 1 and 2, the time complexity required for finding an a-
bit partial invariable pair is (2“)2a’1 P; computations and the required memory
is 2% blocks. In Step 3, the required time complexity is 2"~® P, computations
and the required memory is 2"~¢ blocks.

-Time complexity : ((2%)2"~! 4+ 2"~%) P computations, where P denotes P,
or Pg,
-Memory : 2% and 2"~ “ blocks.

For simplicity, hereafter computation costs for P; and P, are assumed to be the
same and it denotes P computations. In addition, the cost of one encryption call
is approximately estimated as two P computations.

11



Online Phase. Steps 1 to 4 are performed 2"~% times. These steps include two
XOR operations in Steps 1 and 3 and one memory access in Step 4. Note that, in
Step 4, about one candidate is expected to be found due to the relation of a = b,
if P, is a sufficiently good permutation. Step 5 is performed 2"~¢ times with one
XOR operation and one memory access. It is expected that 2¢/2n~¢ = 2—n+2a
candidates will survive in Step 5.

We assume that the cost of one memory access in step 4 is sufficiently larger
than one XOR operation and memory access in step 5, because the size of table in
step 4 for the matching with input-restricted public permutation is much larger
than one in step 5. Then, the time complexity of Steps 1 to 5 is approximately
estimated as (2"~%) memory accesses (MA). Step 6 is mounted only 27724 x
2"~ = 2% times with P computations. Step 2 requires 2"~ data, since a bits
of state S are fixed when computing the function g with each k;.

-Time complexity : 2 P computations + (2"~*) MA,
-Data complexity : 2"~ ¢ chosen plaintexts.

Summary. The computational costs of offline and online phases for the basic
attacks on the 2EM-1 are estimated as Table 3, where we choose a so that
time complexity is minimized. Specifically, we freely choose a as long as it holds
the condition of (2¢)2"~1 < 27 If (2¢)2"~1 is less than 2", time complexity is
estimated as 2"~% P computations (2"~ %! encryptions) in the offline phase and
2"~% memory accesses in the online phase. Thus, maximizing a is optimal with
respect to time complexity. Assuming the cost of memory access is sufficiently
smaller than that of the encryption3, DT is expressed as DT = 2"79/2x 2"~ % =
22(n=a=1) ynder the condition of (2¢)2"~1 < 2n~¢,

4 Low-Data Attacks on 2EM-1

In this section, we introduce low-data attacks on 2EM-1 based on the attack in
Section 3. The low-data attacks aim to reduce data requirement (i.e. access to

encryption oracle Eg)) by fixing parts of plaintexts while keeping lower time
complexity than that of the brute force attack. In our attacks, the (n —a)-bit ky
is further divided into a d-bit k17, and an (n—(a+d))-bit k1 r. A start state S and
a plaintext P are represented as S = (so|sir|s1r) and P = (po|piL|pir), respec-
tively, where sg, po € {0,1}%, s11,p1z € {0,1}% and s1g,p1r € {0,1}7~(@Fd),
The main idea is to control si; depending on ki; so that the d bits of
(s1r @ k1r) are always fixed. If s is also fixed, (a + d) bits of a plaintext are
always fixed, i.e., the required data is reduced to 27~ (*+4) To be more specific,
given a value k1., a b-bit target partial invariable pair of f, (S, z¢) is dynamically

3 For example, if the underlying permutation is AES-128 with a fixed-key, one P
computation requires about 160 memory accesses to compute 160 S-boxes. However,
since the comparison of these costs heavily depends on the execution environments,
the size of the table, and underlying permutation, we just assume that the cost of
memory access is sufficiently smaller than that of the encryption.
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Fig. 4. Attack overview of low-data attacks on 2EM-1.

found in the online phase, where sg is fixed and s1 1, is chosen such that (s;7,®k1r)
is fixed.

4.1 Attack Procedure

In the offline phase, a b-bit input-restricted precomputation table of P, is con-
structed, where b is assumed to be equal to a. In the online phase, the MitM
attack is mounted by dynamically finding a b-bit target partial invariable pair
of f by the precomputation table.

Offline Phase.

Step 1: Fix a-bit vy and (a + d)-bit of plaintext to po|pirL-
Step 2: For all (n — a)-bit vy, compute an (n — a)-bit value z; by P, then
make a table of (’ug]), 29)), where PQ(’U()|U§])) = (zéj)|z§])) and 1 < j <277t

Online Phase.

Step 1: Guess a d-bit k17, and compute the c-bit s17, as s1;, = k1, D p1r.

Step 2: Find a a-bit target partial invariable pair of f, try(fi,(S)) = (xo)
where so and sq7, are fixed. Then make a table of (kj,z%) for all a-bit ko,
where 1 <4 < 2%,

Step 3: Guess k1p and compute the corresponding plaintext P from the start
state S and kq.

Step 4: Send P to the encryption oracle E%, then obtain the corresponding
ciphertext C.

Step 5: Compute (n — a)-bit y; from k; and C.

Step 6: Look for an index d in the table of (v%‘j), z%‘j)) such that z%d) =y If

there is no such index, go back to Step 3.

Step 7: Compute zf = vgj) @ k1, and check if there exists an index e in the
table of (k(()l), xgq’)) satisfying =} = :Cge). If there is no such index, go back to
Step 3.
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Step 8: Check if P, (U0|U§d)) = (26|z§d)) holds, where z{ is computed from C
and k§. If so, K/ = (ké€)|k1) is regarded as the correct key. Otherwise go
back to Step 3.

Step 9: For all d-bit k1, repeat Steps 1 to 8.

4.2 Evaluation

This section gives estimations of the cost required for our low-data attacks on
2EM-1.

Offline Phase. Step 2 in the offline phase requires 2""~% P computations and
2"~% blocks memory.

-Time complexity : (2"~%) P computations,
-Memory : 2"~ blocks.

Online Phase. Step 2 requires (2“)2a P computations to find a-bit target
partial invariable pair of f by changing n — (a + d)-bit s;g. Thus, it should
hold the equation of (24)%" < 27~ (¢+4) namely a x 2 < n — (a + d). Step 2 is
performed 2¢ times with (2%)% P computations and 2* memory. Steps 3 to 6
are performed 2"~ % times. These steps include two XOR operations in Steps 3
and Step 5, one memory access in Step 6. Note that Step 4 is performed under
the chosen-plaintext setting. Step 7 is performed 2%~% x 2" % = 2"~ times with
one XOR and one memory access. The required time complexity of Steps 3 to 7
is approximately estimated as (2"~%) memory accesses because the size of table
in step 6 for the matching with input-restricted public permutation is assumed
to be much larger than one in step 7. Step 8 is mounted only 27" +24 x 27—¢ = 2@
times with P computations. The 2"~ (¢+4) data is required in Step 4.

-Time complexity : ((2%)%" -2 + 2%) P computations + (2"~%) MA,
-Memory : 2% blocks,
-Data : 2" (@+4) chosen plaintexts.

Summary. The computational costs for the low-data attack on 2EM-1 are
estimated as Table 4. For n = 64, 128, 256, data complexity is drastically reduced
compared to the basic attack and previous attacks [7,15] while keeping the
time complexity of basic attacks. Moreover, by increasing time complexity, i.e.
choosing small a, the required data can be reduced to 28, where it does not
include any 2™ operations. Assuming the cost of memory access is sufficiently
smaller than that of the encryption, DT is expressed as DT = 2"~ x 2n—(a+d) —
92(n=a)=d ynder the condition of (2“)2a .24 < 2n=¢ QOnce n and a are determined,
the maximal d is easily obtained from the condition. The minimal value of DT of
n = 64,128, and 256 are 270(= 262 x 28), 2134(= 2126 x 28) and 2262 (= 2254 x 28),
respectively. These are very close to the bound for single Even-Mansour cipher,
i.e. 264 2128 and 2256,
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Table 4. Summary of computational costs for the low-data attack on the 2-round

Even-Mansour cipher.

Offline Online
Time Memory Time Data |Memory
(2"7%) P[2% and 2"7¢[((24)*" - 27 4 29) P 4 (2"~ ) MA[2n~(eFd] gn—e
n =32
a=3,d=9 | 2% enc. 229 2%0 enc. + 22° MA 220 2%9
a=2,d=22]|2% enc. 230 230 enc. + 23° MA 28 230
n = 64
a=3,d=235]|2 enc. 261 258 enc. + 261 MA 226 261
a=2,d=>54]|2% enc. 262 261 enc. + 262 MA 28 262
n = 128
a=4,d=060|2"3 enc. o124 2'23 enc. + 2'%* MA 264 o124
a=3,d=101|2'?* enc. 2125 2124 enc. + 225 MA 224 2125
a=2,d=118/2"% enc. 2126 2'25 enc. + 2126 MA 28 9126
n = 256
a=>5,d=160[2%°° enc. 2251 2750 enc. + 225t MA 2160 2251
a=2,d=118/2%3 enc. 9254 2253 enc. + 225 MA 28 9254

The bounds by low-data attacks can be generalized for any n as follows: when
choosing a = 2, the maximum d is d = n — a — 8, and then DT is estimated as
DT = 2"%56 for any value of n, respectively.

5 Time-Optimized Attacks on 2EM-1

In this section, we try to reduce the cost of P computations (i.e. access to the
internal permutation oracle) of the basic attacks presented in Section 3. In this
attack, an (n—a)-bit &y is further divided into a ¢-bit k1, and an (n— (a+c))-bit
k1gr. Similarly, z; and vy are represented as 1 = (z11|x1r) and v = (viL|v1R),
respectively, where 17, v17, € {0,1}¢ and 21, v1p € {0,1}"~(@+¢) (see Fig. 5).
The cost for P computations is dominated by the cost for constructing an
input-restricted public permutation table in the offline phase, whose cost is es-
timated as 2"~ P computations and 2"~% memory. If additional ¢ bits of the
input of P» can also be fixed, it is reduced to 2"~ (@+¢) P computations and
memory. However, the additional ¢ bits are not fixed in the online phase even if
a c-bit x1, is fixed in f, since such a c-bit input of P depends on ki, between
f and Ps, and all values of ki, are tested during the MitM procedure. To solve
this problem, we control x1; depending on ki; so that the ¢ bits of 11 & ki
are always fixed in order to reduce the computational cost. In particular, given
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Fig. 5. Attack overview of time-optimized attacks on 2EM-1.

a value ki in the online phase, a b(= a + ¢)-bit target partial invariable pair of
f is dynamically found.

5.1 Attack Procedure

In the offline phase, a b(= a + ¢)-bit input-restricted precomputation table of Py
is constructed. In the online phase, the MitM attack is mounted by dynamically
finding a b-bit target partial invariable pair of f by using the precomputation
table.

Offline Phase.

Step 1: Fix an a-bit vg and a c-bit vy,
Step 2: For all (n—b)-bit v1 g, compute (n— a)-bit values z; by P», then make
a table of (vﬁ%,zm), where Pg(vo\vlL\vg%) = (z(()])|z¥)) and 1 <j<2n?

Online Phase.

Step 1: Guess a c-bit ki1, and choose a ¢-bit x17, as 17 = k1 D v1L.

Step 2: Find a b-bit target partial invariable pair of f, t74(fx, (S)) = (xo|21L)
where b-bit zo|z1z is fixed as vo|(k1 @ v1r), and make a table of (kj,z%p)
for all a-bit kg, where 1 <7 < 2°.

Step 3: Guess k1p and compute the corresponding plaintext P from the start
state S and kq.

Step 4: Send P to the encryption oracle E%, then obtain the corresponding
ciphertext C.

Step 5: Compute an (n — a)-bit y; from k; and C.

Step 6: Look for an index d in the table of (vﬁ%, zﬁj)) such that z%d) =y If
there is no such index, go back to Step 3.

Step 7: Compute 2} = vﬁ% ® k1r, and check if there exists an index e in the
table of (k(()m),x(l%) satisfying o}, = xﬁ% If there is no such index, go back
to Step 3.
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Step 8: Check if P2(1)0|U1L|U§(Ii%)) = (z(')\zid)) holds, where z{, is computed from
C and kﬁ%. If so, K’ = (k:(()e) |k1) is regarded as the correct key. Otherwise go
back to Step 3.

Step 9: For all ¢-bit k1, repeat Steps 1 to 8.

5.2 Evaluation

We evaluate each cost of our time-optimized attack on 2EM-1.

Offline Phase. Step 2 requires 2" % P computations and 2"~® blocks memory.

-Time complexity : (2"~%) P computations,
-Memory : 2" blocks.

Online Phase. Step 2 is performed 2¢ times with (2°)2" P computations and
2% memory. Steps 3 to 6 are performed 2"~ ¢ times. These steps include two
XOR operations in Steps 3 and 5 and one memory access in Step 6. Note that,
in Step 6, it is expected that there exist 2¢7°(= 27~ /2n~¢) desired pairs, if P
is a sufficiently good permutation. Step 7 is performed 2470 x 27~ = 27~ times
with one XOR operation and one memory access. The required time complexity
of Steps 3 to 7 is approximately estimated as (2"~%) memory accesses, assuming
2"~ is sufficiently larger than 27~°. Step 8 is mounted only 277122 x 27—¢ = 29
times with P computations. Step 4 requires 2"~ % data, since a bits of state S
are fixed when computing the g function with each k.

-Time complexity : ((2°)%" - 2¢ +29) P computations + (2"~%) MA,
-Memory : 2% blocks,
-Data : 2"~ % chosen plaintexts.

Summary. The computational costs for the time-optimized attack on the 2EM-
1 are estimated as Table 5. For n = 64, 128, 256, time complexity is reduced
by properly choosing the values of b, although number of memory access is
unchanged. Basically, it is very hard to compare the cost of encryption and
memory access because it strongly depend on the execution environments, the
size of table and the underlying permutation. Thus, we do not claim that time
complexity is sufficiently improved by this algorithm. However, obviously the
cost of encryptions are significantly reduced. We believe that it is an interesting
tradeoff.

6 Application to 2EM-2

Our key recovery attacks on 2EM-1 are applicable to the other minimized con-
struction 2EM-2:

B (@) = P(Pz @ K) & m(K)) & K,
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Table 5. Summary of computational costs for the time-optimized attack on the 2-
round Even-Mansour cipher.

Offline Online
Time [Memory Time Data|Memory
(2770 Pl 277t [((29)27 - 2079 4 29) P 4 (27 ) MA[2n | 2nt
n = 32
a=2b=6[2" enc.| 2% | 27 enc. + 2% MA [250] 2%
n = 64
a=3,b=6|2enc.| 2° 260 enc. + 2% MA 261 | 258
a=2,b=11|2%2 enc.| 2°2 252 enc. + 2%2 MA 262 | 253
n =128
a=4,b="7 2120 ope.| 212! 2115 enc. + 2124 MA 9124 o121
a=2,b=20[27 enc.| 2!03 298 enc. + 2126 MA 2126 | 9103
n = 256
a="5b=7|2%8 enc.| 224 2226 enc. + 221 MA 2251 | 9249
a=2,b=142|2'3 enc.| 2%°° 2208 enc. + 2254 MA 2254 | 9205

where 7 is any linear orthomorphism of Fy. In this section, we consider the 2EM-
2 whose 7 is Feistel-like construction (7 : (z,y) — (v @ y,z)) as an example.
The same idea is naturally applied to another candidate of 7.

Recall that the point of our attacks is to find (target) partial invariable
pairs to mount the matching with input-restricted public permutations in the
line of the meet-in-the-middle attack. To take care of the key scheduling func-
tion w, we further divide the (n — a)-bit ky into an (n/2 — a)-bit k1 and
an (n/2)-bit k1p in the basic attack on 2EM-1. Then, 7(K) is expressed as
(kir @ (k1p|lko))||(k1L||ko), and 2EM-2 is illustrated as shown in Fig. 6. Here,
a-bit kg, which is for partial invariable pairs, is used twice after the first permu-
tation P. Since the bottom a-bit input of the second permutation P is affected
by only the value of kg after the first permutation, i.e. k1;, and kyr does not
affect the a-bit input of the second permutation, we can use partial invariable
pairs of a-bit kg to fix a bits of inputs of second permutation. Using it, we can
mount basic attacks on 2EM-2 in the same manner of 2EM-1. For low-data at-
tacks or time-optimized attacks, by dynamically finding invariable pairs of kg
in the online phase to fix the the part of the plaintext or inputs of the second
permutation, we can mount the same attacks of 2EM-1 to 2EM-2.

In the case of different linear orthomorphism functions as a key scheduling
function, our attacks are feasible as long as we can find partial invariable pairs
that fix the part of inputs of the second permutation. In the other examples
such as a simple rotation and a field multiplication (e.g. 7 : (z) — (x X ¢), where
¢ # 0,1), there exist such invariable pairs of a-bit k¢ that is able to fix a-bit of
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Fig. 6. Application to 2EM-2.

inputs of the second permutation, because these orthomorphism functions are
not full diffusion function in which an input bit affect any bit of the output.

7 Conclusion

In this paper, we proposed new key recovery attacks on the two minimal two-
round Even-Mansour ciphers. Our attacks are based on the advanced meet-in-
the-middle technique combined with our novel matching approach called partial
invariable pair and the matching with the input-restricted public permutation.
We presented the first attack that the data complexity is less than the birth-
day barrier, i.e. 27/2, on the minimal two-round n-bit Even-Mansour ciphers,
although in the chosen-plaintext setting. Then, by dynamically finding partial
invariable pairs, the further improvements on the attacks that require the less
data or the less time complexity were shown. We emphasize that our low-data
attack on the two-round 64-bit Even-Mansour ciphers requires only 28 chosen
plaintexts. In this case, the minimum value of the product of time and data
complexity is 270 which is close to the proved lower bound on the product of
time and data complexity for the one-round Even-Mansour ciphers (264). Our
results revealed that adding one round to the one-round Even-Mansour ciphers
does not sufficiently improve the security against the key recovery attacks.
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