
How to Prove Megabytes
(Per Second)

Yaron Gvili

Cryptomnium LLC
cryptomniumllc@gmail.com

Abstract. We propose the first provably secure zero-knowledge (ZK) ar-
gument of knowledge (AoK) protocol running at close to 1 megabyte per
second (MBps) on commodity hardware – about an order of magnitude
faster than relevant current protocols. It is a post-quantum, (efficient-
prover) honest-verifier (HV) statistical zero-knowledge (SZK) sigma pro-
tocol in the standard model under a hardness assumption on ideal lat-
tices. We further propose an overhead-efficient low-latency amortization
yielding a witness indistinguishable (WI) and witness hiding (WH) AoK
protocol running at> 100 MBps. Both protocols have absolute soundness
slack 1, or zero for small completeness error, and an argument size grow-
ing linearly, where amortization has slope 2 and latency 1 microsecond.
Non-interactive (NI), non-HV, resettable ZK (rZK) and resettable WI
(rWI) variations of the protocols are obtained using standard transforms.
Choices of parameters with concrete security ≥ 2100 against known at-
tacks are given along with experimental results showing practicality.

Keywords: zero-knowledge, witness indistinguishable, witness hiding,
argument of knowledge, lattice-based hashing, verifiable secret sharing,
large secrets

1 Introduction

A zero-knowledge proof of knowledge (ZK-PoK) is a fundamental cryptographic
primitive. It is a protocol that allows a verifier to be convinced by a prover
that the latter knows a secret satisfying some (public) NP-statement yet with-
out the verifier learning any information beyond this. This work focuses on ar-
guments (computationally-sound proofs [45]) of knowledge (AoK), where the
prover is computationally bound (i.e. a probabilistic polynomial time machine),
and specifically on AoK of a secret (AoKoS) where the NP-statement is that
a secret x maps to a public value y via a hard-to-invert (or one-way) function
h(·). An AoKoS is useful in constructing larger secure protocols, in particular
UC-secure ones [4]. While ZK-PoK/AoK protocols provide strong security guar-
antees, making them potent tools in designing cryptographic protocols, slow
speed and often high demand for computational resources of existing such pro-
tocols make them unacceptable for handling large secrets in practice. Our goal

2 Yaron Gvili

in this work is protocols that are practical for large secrets in terms of speed and
demand for computational resources.

The study of ZK-AoKoS for large secrets is motivated by privacy-preservation
applications. These often involve a commitment to a document, in which a party
makes a ZK-AoK of a secret document that maps via a cryptographic hash
function to a public value. As the amount and variety of personally identifying
information being collected increases [48], techniques for practical ZK-AoK for
large secrets would become increasingly useful in this context.

1.1 Overview of Our Techniques

Key to our techniques is fitting known and new ingredients to obtain high speed
AoKs. The first ingredient is SWIFFT, a fast lattice-based hash function due to
Lyubashevsky et al [44], used to identify secrets. It admits a high-performance
vectorized implementation fit to its structure and is a much better starting
point for high speed than e.g. large-prime modular arithmetic. The security
of SWIFFT comes from the difficulty of finding a pre-image in a certain small
sub-domain given an image. However, this applies to random secrets and not to
e.g. a class of documents. This is addressed by a second ingredient presented, a
statistically hiding (and computationally binding) commitment fit to SWIFFT
that may be viewed as randomizing. As shown in detail later, SWIFFT also
offers concrete security and can be extended to large secrets. However, how to
make a ZK-AoK of a pre-image in the sub-domain is not obvious. Existing range
proof methods can be slow e.g. due to per-bit encryption. Circuit-based ZK-
AoK methods are not helpful as they require arguing correct execution for a
complex (e.g. Boolean or arithmetic) circuit to represent the SWIFFT function;
hence, any speed gain from using the SWIFFT function would be dwarfed by
the much slower speed of such a method. Established verifiable secret sharing
methods are not helpful either since they do not work for a secret in the sub-
domain needed for SWIFFT. This is addressed by a third key ingredient we
introduce: embeddable-splits; it yields a verifiable secret sharing scheme that
can be used with SWIFFT while maintaining high speed. Critically, the struc-
ture of embeddable-splits (for verifiable secret sharing) is preserved under the
SWIFFT mapping for the same small sub-domain. This enables fast arguments
that work directly with SWIFFT, not with a circuit for it. However, a näıve pro-
tocol using only these ingredients (and repetition) is shown to leak secrets. This
is addressed by a fourth ingredient, a partially cheating protocol that eliminates
the leak while still yielding high speed. The basic protocol introduced makes use
of these ingredients (and repetition) to achieve close to 1 MBps on commod-
ity hardware experimented with. Next, an amortized protocol introduced uses a
modified partially cheating protocol to achieve a much higher rate of operation,
effectively recovering the slowdown due to repetitions in the basic protocol, yet
is shown to have a somewhat weaker security property, WI/WH, as compared to
ZK. Finally, a number of standard transformations, which apply to our protocols
due to their simple structure, are used to derive additional protocol variations.

How to Prove Megabytes (Per Second) 3

1.2 Related Work

Zero-knowledge (ZK) was introduced by Goldwasser, Micali, and Rackoff in a
seminal work [58] close to 30 years ago. A huge body of literature on zero-
knowledge has accumulated since and many research directions have branched,
e.g. zero-knowledge types, complexity classes, and protocols. We briefly evaluate
several such directions toward our rate goal, based on experimental results we are
aware of and on estimates otherwise, and provide justifications for our approach.
Direct ZK-PoKoS. An early direct method for ZK-PoKoS is Schnorr’s pro-
tocol [60]. This protocol is simple to implement, can run on limited hardware,
and does not require repetitions for amplifying the statistical security. However,
it is relatively slow and its security proof requires a hardness assumption. In
this protocol, x ∈ Zq for some large prime q, h(x) := gx, and g is a generator of
order q of a group G. For asymptotic security, an assumption is required that the
discrete logarithm problem (DLP) in G is hard, and for concrete security q must
be sufficiently large. For RSA, where G ⊂ Z

∗
n and q has about 2048 bits, the

protocol running time is about 8 milliseconds on commodity hardware, putting
its single-thread rate at about 30 kilobytes per second (KBps). We note that
2048 bits is the minimum recommended by NIST as of 2015 for an acceptable
level of security for RSA secret keys, defined over Z∗

n, for personal identification
verification [53] (though it is expected [40] to remain secure only until 2030). We
further note that our rate estimate is in line with Crypto++ benchmarks [24]
and that a low number of bits is in favor of the protocol for reporting its rate.
For elliptic curves (EC), where G = Fq and q has about 256 bits, the speed ad-
vantage of EC over RSA in the protocol is offset by a smaller domain of secrets,
yielding a rate of similar order of magnitude. We note that 256 bits is the mini-
mum recommended by NIST as of 2015 for an acceptable level of security for EC
for personal identification verification [53]. These yield a rate of tens of KBps
which does not meet our goal. Moreover, Schnorr’s protocol does not directly
extend to large secrets, i.e. it cannot be directly used to prove knowledge of a
large secret for a given small-sized public value.

A more recent set of direct protocols is the NI statistical ZK-PoKoS (SZK-
PoKoS) protocols based on lattice problems [51]. As our basic protocol, these
protocols are secure in the standard model, use a lattice-based one-way function
(OWF), and require repetition for amplifying the statistical security. Moreover,
these protocol have a theoretical advantage of being a PoK rather than AoK as
our protocols. However, they involve a relatively complicated procedure [32] of
sampling discrete Gaussian distributions over lattices (the use of discrete Gaus-
sian sampling in lattice-based cryptography was introduced in [56]), whereas
our protocols use simple sampling of uniformly distributed bit strings, and they
do not offer amortized variations, whereas our protocols do. Therefore, though
we are not aware of experimental results for these protocols, we expect a lower
rate for these protocols than for ours. Moreover, they provide proof systems for
promise problems [27] and a reduction to a lattice problem with some approx-
imation factor, whereas our protocols provide a concrete security guarantee for
decision problems. Hence, we believe these protocols do not meet our goal.

4 Yaron Gvili

Garbled circuits. Yao’s seminal work [62] introduced the technique of garbled
circuits. Using this technique, an NP-statement (to be proven) is captured in a
Boolean circuit that computes the relation corresponding to the language of the
statement. The gate-structure of the circuit is known to both the prover and
the verifier. The prover garbles the truth table of each gate and sends it to the
verifier. Then, the verifier chooses to either use the circuit, by challenging the
prover to run the protocol to evaluate the garbled circuit, or to check the circuit,
by challenging the prover to reveal the truth tables for validation. Evaluation
is more computationally demanding, often due to the use of oblivious transfers.
Garbled circuit based protocols often involve a cut-and-choose [17] protocol, in
which the prover sends commitments for multiple garbled circuits and the verifier
chooses which of these to use and which to check. The verifier may then take
the output value as a (possibly majority) vote among the output values of each
circuit used or abort if that fails. In this type of protocols, typical OWFs such as
SHA-256 involve a large Boolean circuit where each bit is represented by a much
larger garbled value. Various optimization techniques for garbled circuits [47, 5,
39, 7] have been devised, yet these still require significant running time. A recent
result [35] for a highly optimized implementation reports a measurement of 0.74
milliseconds per garbling of an AES circuit (having thousands of non-XOR-
gates and taking > 100 kilobytes to garble). Hence, the rate for 128-bit AES is
about 20 KBps, which does not meet our rate goal. Moreover, since AES is not
contracting, this rate does not extend to large secrets: more complex circuitry is
needed to prove knowledge of a large secret for a given small-sized public value.

PCP and ZK-SNARK. Probabilistically Checkable Proofs (PCPs) are inter-
active proof systems in which for a given proof, generated by the prover, the
verifier has oracle-access to a limited number of bits chosen using limited ran-
domness. Zero-Knowledge Succinct Non-interactive ARguments of Knowledge
(ZK-SNARKs) are ZK-AoK in which the complexity of the argument size is
small, possibly constant. PCP and ZK-SNARK protocols are similar for our
purposes here since in both types of protocols the bulk of the work is done by
the prover while the verifier is light-weight. The large prover effort required by
these protocols make them inappropriate for our goal, as elaborated next.

The PCP theorem [2] is an important result in complexity theory stating that
any NP language has a PCP system with logarithmic bound on the randomness
and a constant bound on the number of bits accessed. A large body of literature
followed on the connections between PCP and hardness of approximation as
well as cryptography [3]. Protocols with both a short PCP, e.g. [12], and a long
PCP, e.g. [36], have been proposed. Such protocols use a PCP for a Boolean or
arithmetic circuit for the NP-statement. However, they require at least a linear
and often super-linear number of slow (e.g. encryption) cryptographic prover
operations. Hence we believe these techniques are not appropriate for our goal.

ZK-SNARKs have received significant attention recently [34, 41, 31, 42, 14,
10, 8, 9, 26, 11, 20, 49]. Techniques presented in these papers build on Quadratic
Span Programs (QSP), Square Span Programs (SSP), or Quadratic Arithmetic
Programs (QAP), in which an NP-statement is formulated, and some only re-

How to Prove Megabytes (Per Second) 5

quire from the verifier a constant number of cryptographic operations. A recent
one [43] further requires just a linear number of cryptographic operations from
the prover. Experimental results reported in [10] for ZK-SNARKs with constant-
time verification are about 100 microseconds per gate for the prover and about 7
milliseconds for verification regardless of the number of gates; proving a 1 million
gate arithmetic circuit with a 1 thousand bit input took about 100 seconds [10].

However, these PCP and ZK-SNARK techniques do not meet our rate goal
since the size of a circuit, QSP, SSP, or QAP required for capturing a secure
one-way function is fairly large and the (often pairing-based) cryptographic op-
erations involved are fairly slow. For example, the prover running time reported
in [10] for the ZK-SNARK of the same 1 million gate circuit yields a rate of
about a few bytes per second; a similar rate can be estimated based on the re-
ported per-gate costs for proving a 128-bit AES circuit. While the ZK-SNARK
verifier running time is about 7 milliseconds for any circuit size, we will see later
that our amortized protocol verified about 1 MB within this duration.

MPC in the head. Secure Multi-Party Computation (MPC) is used for Se-
cure Function Evaluation (SFE) where a number of parties compute a common
function that inputs a secret held by each of the parties, without revealing any
information about secrets of honest parties even when up to t dishonest parties
collude – a property referred to as t-privacy. MPC-in-the-head [37] is a technique
for transforming an MPC protocol to a ZK-PoK protocol that roughly works as
follows. First, the ZK-PoK prover simulates the views of all parties in the MPC
protocol, including their send- and receive-tapes, and provides a commitment to
each of these views as well as for the final output of each view. Then, the ZK-
PoK verifier challenges the prover to reveal up to t views as well as outputs of
all views. Finally, the ZK-PoK verifier checks that each commitment was opened
correctly, and that the revealed outputs evaluate to the revealed final output,
and that each pair of revealed views has consistent sent- and received-messages.
Due to t-privacy, the revealed views do not provide any information about the
secrets, while their consistency contributes to reducing the soundness error.

A number of ZK-PoK constructions based on MPC-in-the-head have fol-
lowed. Bendlin and Damg̊ard [13] used an MPC protocol that involves packed
secret sharing [30], a generalization of Shamir’s secret sharing [61] where secret
values are assigned to more than one interpolation point, and hyper-invertible
matrices [6]. For a security parameter n, their protocol requires interpolating a
high-degree (at least 2n) polynomial over a large field (of Θ(n) bits) to prove
knowledge of a secret in the field. Moreover, the protocol requires super-linear
complexity (a loose bound O(n4 log q) is given in the paper). Damg̊ard and
López-Alt [25] described a comparatively improved MPC protocol where the
amortized complexity is linear in the lattice dimension, the message is in Zp,
and the gap between the size of the message and randomness that an honest
prover chooses and the size in which an accepting verifier is convinced is zero.
However, this protocol similarly requires interpolating a high-degree polynomial
due to the use of packed secret sharing. It also makes use of Lagrange’s four
square theorem, for proving that a secret is small, that adds to the overhead (as

6 Yaron Gvili

demonstrated in our discussion of [54]). Therefore, while we are not aware of
experimental results for these protocols, we believe they do not meet our goal.

Recently, ZKBoo [33] was described as a protocol for practically efficient
zero-knowledge arguments especially tailored for Boolean circuits. Common to
ZKBoo and our protocols is the linear argument size. However, the ZKBoo prover
and verifier reportedly take a few milliseconds each for SHA-1 with an input size
of 64 bytes. This yields a rate of a few KBps which does not meet our goal.

Generic ZK-PoK and ZK-AoK. Recent techniques for generic ZK-PoK and
ZK-AoK obtained a rate significantly lower than our goal. Ranellucci et al [55]
provide a generic ZK-PoK based on a XOR-commitment scheme that proved
knowledge of an AES key mapping a plaintext to a ciphertext in less than 4
seconds with statistical security 2−40. For a typical AES Boolean circuit with
35,000 gates, this yields a rate of about 10,000 gates per second. We estimate
Rabin et al [54] achieved a higher rate. They provide a fast ZK-AoK based on
a secret sharing scheme for secrets in a ring. Their method is similar to ours
in its use of split representations of secrets. They target financial transaction
applications and report a 2 millisecond running time for proving a 100 bidder
Vickrey auction. Given that 3 addition and 4 multiplication gates are required
for proving one inequality (of 99 in the Vickrey auction) using Lagrange’s four
square theorem, we estimate this translates to a proving rate of at most about
500,000 arithmetic gates per second. As typically the OWF involved require
about 1000 (bitwise and arithmetic) gates for a small secret (e.g., SHA-1 took
hundreds of gates [33] while AES took thousands [54]), we expect the proving
rate to be at most about 500 proofs per second. For SHA-1, with an input size
of 64 bytes, this yields a rate of at most about 30 KBps.

ZK-PoK for a small integer vector secret. We elaborate on this direction
and compare with our work in Section 1.3.

1.3 Our Contributions

A new (basic) protocol for a statistical ZK-AoK (SZK-AoK) of a small integer
vector secret is presented. This protocol is based on a new technique for ver-
ifiable secret sharing scheme that is introduced. This technique has a number
of theoretical and practical advantages over previous techniques for verifiable
secret sharing for a small integer vector secret. An amortized protocol that is
a statistically witness hiding (SWH) and statistically witness indistinguishable
(SWI) AoK of a small integer vector is presented as well. This protocol runs
at a rate about two orders of magnitude faster than that of the basic protocol.
While WI/WH is a weaker property than ZK, it is acceptable to many practical
applications [17]. We then show a rZK (reps. RWI) variation of the former (resp.
latter) protocol secure in a hybrid model. The variations are relatively simple to
describe and to implement. Next, we provide a choice of protocol parameters and
argue on its concrete security. Finally, experimental results for the basic protocol
show that the prover (resp. verifier) ran at a rate of about 4/5 (resp. 21/2) MBps
on commodity hardware, while the amortized one ran about two orders of mag-

How to Prove Megabytes (Per Second) 7

nitude faster yet. Thus, the protocols are practical for large secrets as defined
here. We proceed to provide more details about each of our contributions.

Fast protocols for SZK-AoK of a small integer vector secret. Recent
techniques that targeted ZK-AoK of a small integer vector secret are described
in [4, 23, 52]. The protocols in these papers, as does the basic protocol in this
work, apply to an additively homomorphic OWF over integer vectors (ivOWF)
where the secret is a pre-image of this function. However, these protocols are
computational ZK-AoK (CZK-AoK) whereas our basic protocols is SZK-AoK.
Further, the knowledge extractors for these protocols have a relative sound-
ness slack, i.e. they extract a pre-image with a norm bound that is a factor
more than that required of an honest prover, whereas our protocol provides ei-
ther a minimal absolute slack or no slack but with a small completeness error.
Amortized versions of such protocols [22, 21, 21] have a low overhead, i.e. they
generate few values using the OWF. The number of repetitions required in [4]
is fairly large (for a statistical security of k = 128, it is 64k(1 + log2 k) = 216),
and this leads to larger amortization batches and higher latency. Repetitions
are eliminated in [23], however relative soundness slack and high latency (due to
cut-and-choose) remain. We are not aware of experimental results for these tech-
niques. In comparison, our amortized protocol is overhead-efficient (i.e. one hash
per secret) and no repetitions, matching [23]. In addition, it ran at a rate > 100
MBps in our experiments. On the other hand, we show our amortized protocol
is SWH/SWI, but not ZK. Finally, whereas these protocols aim at complexity
measures, ours aim at execution speed on commodity hardware.

In our basic protocol we devise a new technique for a SZK-AoK of a small
integer secret x using a new verifiable secret sharing scheme. In this scheme, x
is split into small integer vector shares a, b. We use a fast lattice-based hash
function h secure in the standard model to get commitments h(a), h(b) for these
shares. We utilize the linearity and homomorphic properties of the hash function
to construct a SZK-AoK of x using the commitments for a, b. This construction
is based on a new technique for hiding secrets in a small subset of a larger cyclic
group that we hope is of independent interest.

An amortized protocol for SWI/SWH-AoK of a given set of small integer
secrets {x[e]}ve=1, v ∈ N is introduced. In it, the basic protocol is first applied to
a random small integer vector secret. Then, the resulting SZK-AoK is extended
to the given (non-random) secrets {x[e]}ve=1 at a very small amortized cost per
such secret, yielding weaker SWI/SWH properties as compared to SZK.

A number of protocol variations are obtained using known transformations
that apply to the introduced protocols. Each variation is secure in some hybrid
model. Variations for NI, non-HV, and rZK/rWI protocols are given.

How to apply the protocols in practice. The use of authenticated data
structures to extend the protocol to large secrets is described. A large secret is
split into small pieces from which a Merkle tree is constructed as an example
structure. The root hash of the Merkle tree yields the public value corresponding
to the large secret. In an extended protocol for a large secret, the (unextended)
protocol is applied to each secret corresponding to a leaf node in the Merkle tree.

8 Yaron Gvili

A choice of parameters for which the concrete security against known attacks
is at least 2100 based on a cryptanalysis by Lyubashevsky et al [44] are given. In
particular, a different choice of parameters for our protocol and its variations is
used, due to the requirements of the commitment scheme used.
Experimental results showing our protocols are practical for large se-

crets. Experimental results on commodity hardware confirming that our imple-
mentation of our protocol is practical for large secrets are discussed. The results
demonstrate that the basic variation of our protocol is practical for secret sizes
of at least 1 MB. On a single thread, the hasher, prover, and verifier ran at a
rate of about 40, 1/6 and 1/2 MBps respectively. On all 8 available threads, the
corresponding rates are about 175, 4/5, and 21/2 MBps. The amortized protocol
ran about two orders of magnitude faster than the basic protocol.

1.4 Preliminaries

Notation. Plain (resp. bold or bold capital) letters such as x (resp. x or M)
denote scalars (resp. vectors or matrixes). The jth element of x is xj . Indexes
in superscript square-brackets, as in x[i] or x[i,j], distinguish between distinct
objects. a⊕ b means a+ b mod 2 for a, b ∈ {0, 1}. The notation [a|b] stands for
a vertical (resp. horizontal) concatenation of vectors (resp. matrices) a, b. The
uniform distribution over a set or multiset b is U(b). a ← b means that a (a
scalar, vector or matrix) is drawn (and assigned) according to U(b). a ∼ b means
that a is claimed to uniformly distribute over b. The notation D{f(a)|a ← b}
denotes the distribution of f(a) given a ← b. For a distribution D, a ← D
means a is drawn according to D. D1 ≈ D2 means that D1, D2 are (statistically
or computationally) indistinguishable. For n ∈ N, we write [n] for {1, . . . , n} and
Zn for {0, . . . , n− 1}. Element-wise product is denoted by ⊙. The size in bits of
s is denoted #s. In |x|, the absolute value is applied element-wise. Except where
said otherwise, + (resp. −) is used interchangably with 1 (resp. −1).
Organization. The rest of this paper is organized as follows. Section 2 describes
constructions used in devising our protocols. Our basic and amortized protocols,
along with some variations, are described in Section 3. Section 4 describes ex-
perimental results for our implementation of our protocols. Section 5 concludes.

2 Constructions

2.1 Statistically Hiding Commitment

Scheme. We show a statistically hiding commitment scheme to be used in the
construction of our protocols. Our commitment scheme depends on lattice-based
hash functions that are conjectured to be secure against quantum attacks [50]. It
is an adaptation of one from [38]. Both schemes apply a lattice-based hash func-
tion to the concatenation of the secret and a random string (this will be shown
explicitly below). However, it differs in several ways. First, it uses SWIFFT hash
functions [44] that are defined for ideal lattices and admit a highly optimized

How to Prove Megabytes (Per Second) 9

implementation, rather than Ajtai hash functions [1] which are more general and
less efficient. Second, the security of this commitment scheme is conditioned on
the hardness of SIS (Small Integers Solution problem) over ideal lattices with
parameters for which a concrete cryptanalysis is available [44], rather than that
of GapSVP (Gap Small Vector Problem). Third, while both are secure in the
standard model, our commitment scheme is secure for a smaller p = 257, rather
than a larger p ≥ 216 as implied by a lower bound in [38].

The setting is as follows. Let p,m, n ∈ N be parameters. Let S := {0, 1},
D := Zp. Denote by SWS(p,m, n) the problem of finding a small pre-image for a
given SWIFFT function with parameters p,m, n. An instance of SWS is also one
of SIS. Fix p,m, n and let m′ := 2m. Suppose SWS(p,m, n) and SWS(p,m′, n)
are computationally hard (abusing terminology, here this refer to classical and/or
quantum hardness in the average case). Let F ,G ∈ Z

n×m
p be randomly chosen

SWIFFT matrices, which may be chosen as in [44]. Let f, g : Sm → Dn be the
corresponding SWIFFT functions f(x) := Fx mod p, g(x) := Gx mod p.

A commitment scheme to be used is described as follows. Let x ∈ Sm be a
secret of Alice. To make a commitment for x, Alice chooses a random r ∈ Sm,
computes y := hcom(x, r) := f(x) + g(r) mod p, sets y′ := y, and sends y′ to
Bob. To decommit, Alice sends x, r to Bob. Bob verifies the decommitment by
checking that y′ = hcom(x, r).

Lemma 1 Let p,m, n, S,D, hcom be as defined above. Suppose SWS(p,m, n)
and SWS(p,m′, n) are computationally hard and that w := ⌊2m/pn⌋ ≥ 2. Then
for any secret x ∈ Sm, r ← Sm the commitment y := hcom(x, r) is statistically
hiding and computationally binding, and except with negligble probability there
are ≥ w distinct vectors r′ such that y = hcom(x, r′).

Proof. Clearly, an honest decommitment is accepted by the verifier.
Statistically hiding. The distributions

(

D{hcom(x[i], r[i])|r[i] ← Sm}
)

i∈{0,1}

are statistically indistinguishable for any x[0],x[1] ∈ Sm. This follows from [46]
showing that D{g(r)|r ← Sm} ≈ U(Zn

p) and, by adding f(x) to the distribution,
that D{hcom(x, r)|r ← Sm} ≈ U(Zn

p) for any x ∈ Sm.
Computationally binding.We show that opening a commitment to more than
one value or finding a collision for the commitment are both computationally
hard for our choice of parameters. Finding x′, r′ ∈ Sm such that hcom(x, r) =
hcom(x′, r′) for given x, r ∈ Sm is an instance of SWS(p,m, n) which by as-
sumption is computationally hard. We now show that finding x, r,x′, r′ ∈ Sm

such that hcom(x, r) = hcom(x′, r′) is computationally hard as well. Since
hcom(x, r) is defined as F (x)+G(r) mod p, this is equivalent to solving Fa+
Gb = 0 mod p for a, b ∈ Tm ≡ {−1, 0, 1}m where a := x − x′, b := r − r′. In
turn, this is equivalent to solving Hc = 0 mod p for c ∈ T 2 where H := [F |G],
c := [a|b]. This is an instance of SWS(p,m′, n) assumed computationally hard.
Multiple witnesses. Given that w := ⌊2m/pn⌋ ≥ 2, and since the domain size
of r is 2m and the range size of hcom is pn, then on average there are 2m/pn

distinct r′ such that hcom(x, r′) = y for any choice of x, r,y := hcom(x, r).
Since D{hcom(x, r)|x, r ∈ Sm} is indistinguishable from a uniform distribution

10 Yaron Gvili

then except with negligble probability there are at least ⌊2m/pn⌋ distinct r′ such
that hcom(x, r′) = y for any choice x ∈ Sm, r ← Sm, y := hcom(x, r). �

We will later use the linearity of the commitment in this form:

hcom(x[0], r[0])+hcom(x[1], r[1]) = hcom(x[0]+x[1], r[0]+r[1]) (mod p) . (1)

SWIFFT functions, and thus our commitment scheme, extend to any finite
Abelian group (or subgroup), which is a direct sum of cyclic groups: a matrix F

acts on a vector g := (gxi)mi=1 of elements of a (multiplicative) cyclic group G of
order p with generator g as Fg mod p := (g(Fx mod p)i)ni=1.

Pre-processing. Stronger security is obtained by pre-processing that applies
a secure invertible transform. An all-or-nothing-transform (AONT), introduced
by Rivest [57], or one of its variations, qualifies and is used in the rest of this
paper. Fast [16] and low-cost [59] AONTs are known, including in the standard
model [18]. Formally, given an AONT T : {0, 1}m

′

→ {0, 1}m
′

, let the (non-pre-
processed) secrets be [x′|r′], let [x|r] := T ([x′|r′]) (randomness in r′ is passed
to T), and apply hcom to x, r. Without loss of generality, it is sufficient to use
an l-AONT defined as follows: T is easy to invert given all bits of [x|r] yet
is computationally (or statistically) hard to extract any information on [x′|r′]
unless all except l bits (l < m′ and l large enough for hardness) of [x|r] are
known. Since T is invertible, knowledge of (resp. an AoK for) [x|r]) implies
knowledge of (resp. AoK for) [x′|r′]. Further, for a set X := {[x|r]}vi=1 it may
be computationally (or statistically) hard to extract any bit of {T −1([x|r])}vi=1

even given knowledge of certain relations on vectors in X.

2.2 Splits and Embeddings

Informally, a split transforms a cyclic group element into a pair of elements of
the same group that compose back to the element. A split-embedding transforms
the pair from the cyclic group to another (at least as large) cyclic group while
maintaining the split structure. This is formalized next.

Definition 1 Let p ∈ N, p > 1, and let G be a (additive) cyclic group with
elements g0, . . . , gp−1 such that ∀i, j ∈ Zp : gi+gj = gi+j mod p. For convenience
of notation, denote gp := g0. For a given k ∈ N, k ≤ p, a k-split of G is the
pair of sets G[k,+], G[k,−], each of cardinality k, where G[k,+] := {g0, . . . , gk−1},
G[k,−] := {gp−k+1, . . . , gp}. We denote G[k,±] := G[k,+] ∪ G[k,−]. In the vector

case, given α ∈ {+,−}m,m ∈ N we denote G[k,i] := ×m
j=1G

[k,iαj] for i ∈ {+,−}

and G[k,±] := G[k,+α] ∪G[k,−α].

Definition 2 Let m, k, p,G,G[k,+], G[k,−], G[k,±] be as in Definition 1. A k-split
of g ∈ G[k,±] is a pair of group elements (g[+], g[−]) ∈ G[k,+] × G[k,−] such that
g[+]+g[−] = g. In the vector case, for α ∈ {+,−}m, we denote g[+α]+g[−α] = g.

How to Prove Megabytes (Per Second) 11

Definition 3 Let m, k, p,G,G[k,+], {gi}
p
i=0 be as in Definition 1. Let q ∈ N, q ≥

p, and let Z be a cyclic group of order q with z, {zi}
q
i=0, Z, Z

[k,+], Z [k,−], Z [k,±]

defined analogously to Definition 1. The k-split-embedding of G in Z is the map-
ping tuple (E[k,i] : G[k,i] → Z [k,i])i∈{±,+,−} such that E[k,±](gi) := E[k,+](gi) :=

zi, E
[k,±](gp−i) := E[k,−](gp−i) := zq−i for i ∈ Zk. In the vector case, we denote

E[k,i](g) :=
(

E[k,i](gj)
)m

j=1
for i ∈ {+,−,±}.

Definition 4 A k-RE-split is a k-split such that g[+] ∼ G[k,+], g[−] ∼ G[k,−].

RE-split stands for Random Embeddable split.
The following result shows that a k-split-embedding maintains the k-split

structure; it extends to vectors element-wise.

Proposition 2 Let notation be as in Definitions 2,3. Let z := E[k,±](g), z[+] :=
E[k,+](g[+]), z[−] := E[k,−](g[−]). Then z = z[+] + z[−].

Proof. Without loss of generality, g[+] = gi, g
[−] = gp−j , g = gi−j mod p for some

i, j ∈ Zp. Applying the k-split-embedding mappings, we get z[+] = zi, z
[−] =

zq−j , z = zi−j mod q and hence z[+] + z[−] = z. �

For simplicity of exposition, and without loss of generality, attention will
be restricted to random 2-split-embeddings in Z

n
p . In particular, RE-split will

mean 2-RE-split in the remainder of the paper. This will be sufficient for use
with SWIFFT hash functions in our protocols. It is stressed that our theoretical
results hold for general finite Abelian groups.

An RE-split to be used in our protocols is constructed as follows. An RE-split
of a secret x ∈ {0, 1} yields secret shares x[0], x[1] ∈ T where T := {−1, 0, 1}. It
may be obtained by choosing α ← {−1, 1}, i ← {0, 1}, x[i] ← {0, α} and setting
x[1−i] = αx−x[i]. The RE-split has the property that revealing either x[0] or x[1]

leaks no information about x. In fact, it has a stronger property: the RE-split
of x yields a perfectly hiding secret sharing scheme embeddable in Zp for any
p ∈ N, p > 1. The following lemma formalizes this.

Lemma 3 Let x, α, x[0], x[1] be as above. Then ∀j, v ∈ {0, 1}, w ∈ {−1, 0, 1} :
Pr(x = v | x[j] = w) = 1/2. Moreover, x[0] +x[1] = αx holds even when embedded
in Zp for any p ∈ N, p > 1.

Proof. A proof sketch is given by case analysis over the choices α← {−1, 1}, i←
{0, 1}, x[i] ← {0, α} followed by setting x[1−i] = αx−x[i]. The 8 equally-probable
cases are shown in the following table:

x 0 0 0 0 1 1 1 1
α -1 -1 1 1 -1 -1 1 1
αx 0 0 0 0 -1 -1 1 1
x[i] 0 -1 0 1 0 -1 0 1

x[1−i] 0 1 0 -1 -1 0 1 0

12 Yaron Gvili

Thus, for each of the two possible values of x, for each j ∈ {0, 1} there is
an equal number of cases, namely two (resp. one), of x[j] = 0 (resp. x[j] = 1
or x[j] = −1). This implies ∀j, v ∈ {0, 1}, w ∈ {−1, 0, 1} : Pr(x = v | x[j] =
w) = 1/2. Hence, the scheme is perfectly hiding. Moreover, since (x[i], x[1−i]) is
a 2-split of αx, it follows from Proposition 2 that x[i] + x[1−i] = αx holds when
embedded in Zp for any p ∈ N, p > 1. �

The RE-split construction extends naturally to vectors. Let m ∈ N, let x ∈
{0, 1}m be a secret, and let x[0],x[1] ∈ Tm. A (vector) RE-split may be obtained

by choosing α← {−1, 1}m, i← {0, 1}m, x
[ij]
j ← {0,αj} for j ∈ [m], and setting

x
[1−ij]
j = αjxj − x

[ij]
j for j ∈ [m]. This leads to the RE-split equation

x[0] + x[1] = α⊙ x (2)

by applying Lemma 3 element-wise. The linearity and embedding properties of
Equation 2 are useful in the construction of our protocol. In particular, linearity
is preserved under composition with linear functions over Zp. Let h : Zm

p → Z
n
p

be a linear hash function where p,m, n ∈ N. Embedding in Zp and applying h
to the equation, we have

h(x[0]) + h(x[1]) = h(α⊙ x) (mod p) . (3)

This yields a verifiable secret sharing scheme where the public values are the
hash values in Equation 3.

2.3 Slack

Some of the analyses below use notions of slack, referring to the gap between
the domain of the secret from which an honest prover chooses and the domain
in which an accepting verifier is convinced, as defined next.

Definition 5 A slack element of x is one that is not in G[k,±]. Its index in x is
called a slack index. A slack set Ξ is a maximal set of slack indexes over any x

given that the verifier accepted. The absolute slack ξ is the minimal non-negative
integer (in Z+) such that xj ∈ {−k + 1− ξ, . . . , k − 1 + ξ} (mod p) for j ∈ [m]
over any x given that the verifier accepted. The slack error φ is Pr(ξ > 0). All
probabilities are over the prover and verifier randomness.

We will often use these definitions for a worst-case x.
We proceed to describe protocols for AoKoS in Sm ≡ {0, 1}. We will implic-

itly use k = 2 for RE-splits and suppress k in the rest of this paper.

3 Protocols

We are now ready to describe our protocols. We begin with a (näıve but) leaky
protocol, correct it to a basic protocol, and finish with an amortized protocol.

The setting involves p,m, n, S,D, hcom such that Lemma 1 applies and hash
function h([a|b]) := hcom(a, b) where a, b ∈ {−1, 0, 1}m. Alice, the prover,
wishes to make an AoKoS to Bob, the verifier.

How to Prove Megabytes (Per Second) 13

3.1 Leaky Protocol

The leaky protocol is defined for the lattice-based hash function parameters, a
security parameter u, pre-determined secrets x ∈ {0, 1}m

′

,α← {−1, 1}m
′

where
x := [x′|r],x′ ∈ {0, 1}m, r ← {0, 1}m, and for public y := h(α ⊙ x) ∈ Z

n
p . It is

specified in Figure 1.

Leaky protocol. The steps of the leaky protocol with parameters p,m, n, u ∈ N

public and x ∈ {0, 1}m
′

,α ∈ {−1, 1}m
′

secret to Alice are as follows:

1. A sub-protocol, described in steps 2 through 8, is executed u times in parallela.
2. Alice makes a fresh RE-split x[0],x[1] of α⊙ x except that α is reused.
3. Alice sets y[0] := h(x[0]),y[1] := h(x[1]).
4. Alice sends y[0],y[1] to Bob.
5. Bob verifies that y[0],y[1] ∈ Z

n
p and y[0] + y[1] = y.

6. Bob chooses a bit b← {0, 1} and sends b to Alice.
7. Alice reveals x[b] to Bob.
8. Bob verifies that h(x[b]) = y[b].

a We drop an implicit execution index e to simplify notation.

Fig. 1: Steps of the leaky protocol.

The sub-protocol of the leaky protocol has the following property.

Lemma 4 Suppose that SWS(p,m, n) and SWS(p,m′, n) are computationally
hard. Then the sub-protocol of the leaky protocol is a perfect ZK (PZK) AoKoS.

A proof of Lemma 4 is deferred to Appendix A.
However, the (full) protocol is leaky as multiple rounds do leak information

– the entire secret after enough rounds. In particular, for each j, Bob infers that

αjxj is 0 (resp. 1 or −1) when observations of x
[b]
j follow draws from the multiset

{−1, 0, 0, 1} (resp. {0, 1} or {0,−1}) and recovers xj as |αjxj |. The leak arises
from reusing α; however, this reuse is needed to prove with the same y in all
rounds. The following protocol overcomes this difficultly.

3.2 Basic Protocol

Intuitively, the basic protocol works as follows. Each round of the leaky protocol
is replaced with a double-round. An argument for a double-round uses partial
cheating that results in a balanced distribution of the revealed shares, i.e. the
same distribution for both cases xj = 0 and xj = 1 even if αj is public, for each
j ∈ [m]. Prior to revealing, Alice chooses a random permutation of the 4 hidden
shares for a double-round and commits to them. Using the linear statistically
hiding commitment scheme, Alice is able to hide any elements. Alice and Bob

14 Yaron Gvili

each choose a bit that controls which share of each round of the double-round
must be revealed. This allows Alice to avoid revealing one share of choice of one
round of the double-round, which in turn allows Alice to balance the distribution
of the revealed shares. However, Alice does not control which share of the other
round must be revealed, which leads to soundness error 1/2 for each double-round.

The basic protocol is defined for the lattice-based hash function parameters, a
security parameter u, pre-determined secrets x ∈ {0, 1}m

′

where x := [x′|r],x′ ∈
{0, 1}m, r ← {0, 1}m, and for public α ∈ {−1, 1}m

′

. It is specified in Figure 2.
The basic protocol is a sigma protocol since Bob communicates only in step 8.

Basic protocol. The steps of the basic protocol with parameters p,m, n, u ∈ N,α ∈
{−1, 1}m

′

public and x ∈ {0, 1}m
′

secret to Alice are as follows:

1. Alice sets y := h(α⊙ x) and sends y to Bob.
2. Bob verifies that y ∈ Z

n
p .

3. A sub-protocol, described in steps 4 through 13, is executed u times in parallela.
4. Alice chooses k, l← {0, 1}.
5. Alice draws RE-splits (x[i,0],x[i,1]) of α⊙ x for i ∈ {0, 1}, with a reused α and

a modified splitting distribution: Alice sets Dj to {(0, 0, 0, 0), (αj ,−αj , 0, 0)}
if xj = 0 and otherwise to {(0,αj , 0,αj), (0,αj ,αj , 0)}, and then draws

(x
[k,l]
j ,x

[k,1−l]
j ,x

[1−k,l]
j ,x

[1−k,1−l]
j)← Dj , for j ∈ [m′].

6. For i ∈ {0, 1}, Alice sets y[i,0] := h(x[i,0]) and sends y[i,0] to Bob.
7. Bob verifies that y[i,0] ∈ Z

n
p and recovers y[i,1] = y − y[i,0] mod p for i ∈ {0, 1}.

8. Bob chooses b← {0, 1} and sends b to Alice.
9. Alice sets bk = l, b1−k = b⊕ bk and reveals b0.

10. Bob verifies b0 ∈ {0, 1} and recovers b1 = b⊕ b0.
11. For i ∈ {0, 1}, Alice sets x[i] := x[i,bi] and reveals x[i] to Bob.

12. Bob verifies that (x
[0]
j ,x

[1]
j) ∈ {(0, 0), (0,αj), (αj , 0)} for j ∈ [m′].

13. Bob verifies that h(x[i]) = y[i,bi] for i ∈ {0, 1}.

a We drop an implicit execution index e to simplify notation.

Fig. 2: Steps of the basic protocol.

The security properties of the basic protocol are formalized as follows.

Theorem 5 If SWS(p,m, n) and SWS(p,m′, n) are computationally hard then
the basic protocol is a SZK-AoKoS with soundness error 2−u and worst-case
slack error φ of 1− (1−2−u)m

′

for an absolute slack ξ of 1. Further, the verifier
can efficiently tell when ξ = 0.

A proof of Theorem 5 is deferred to Appendix B.

Corollary 6 A zero-slack protocol, defined as accepting if the basic protocol ac-
cepts and ξ = 0, is a SZK-AoKoS with soundness error 2−u, worst-case slack
error 0, and completeness error 1− (1− 2−u)m

′

.

How to Prove Megabytes (Per Second) 15

This follows directly from Definition 5 for slack error; the verifier efficiently
rejecting when ξ = 0 results in slack-error shifting to completeness-error.

Remark 7 Since α may be public per Theorem 5, Alice may use a fixed α

made known to Bob once and reused with any number of secrets.

Remark 8 Given sufficiently large u′,m, the slack error φ may be adjusted to
2−u′

by setting u ≈ 1 + u′ + log2 m, as derived using Stirling’s approximation:

φ = 1− (1− 2−u)m
′

≈ 1− (e−2−u

)m
′

= 1− e−21−u+log2 m

≈ 21−u+log2 m = 2−u′

.

We proceed to analyze the resources required by the protocol. We focus on the
number of random bits, communicated bits, and hash invocations required. For a
given hash function used in the protocol, let s be its input size (i.e. excluding the
random string) in bits and t be its output size in bits. For efficiency, since x[i] ∈
×m′

j=1{0,αj}, it is sufficient in step 11 for Alice to send m′ bits and in step 12

for Bob to recover x[i] from these bits, for i ∈ {0, 1}. This is reflected in Table 1
that summarizes the resources required by the basic protocol – the top (resp.
bottom) part is on a per step (resp. subtotal factor, e.g. u is per double-round)
basis. The required random bits, communicated bits, and hash invocations are
respectively O(su), O((s+ t)u), O(u) with very low hidden constants.

Table 1: Resources required by the basic protocol.

step number random bits communicated bits hash invocations by whom

1 t 1 Alice
4 2u Alice
5 2su Alice
6 2tu 2u Alice
8 u u Bob
9 u Alice
11 4su Alice
13 2u Bob

subtotal factor random bits communicated bit hash invocations by whom

1 t 1 Alice
u 2 + 2s 1 + 4s+ 2t 2 Alice
u 1 1 2 Bob

3.3 Amortized Protocol

We begin with a brief overview of the amortized protocol. Alice has u secrets,
each in {0, 1}m, to prove knowledge of. First, Alice and Bob execute the basic
protocol once on z, where z ∈ {0, 1}m

′

is a secret randomly chosen by Alice.
Then, for each execution e, Alice makes an RE-split of α ⊙ z with a T -pre-
processing (cf. Section 2.1) of the eth secret as one of its inputs. This is carefully

16 Yaron Gvili

Amortized protocol. The steps of the amortized protocol with parameters
p,m, n, u, v ∈ N,α ∈ {−1, 1}m

′

public and {x[e] ∈ {0, 1}m
′

}ve=1 pre-processed with
T that are secret to Alice are as follows:

1. Alice draws z ← {0, 1}m
′

.
2. Alice and Bob execute an instance of the basic protocol with parameters

p,m, n, u,α, z. Alice (resp. Bob) rejects if the instance is rejected. Otherwise,
Bob learns h(α⊙ z).

3. For j ∈ [m′], Alice sets βj := αj(2zj − 1).
4. A sub-protocol described in steps 5 through 8 is executed v times in parallela.
5. Now y := h(β ⊙ x) yet Alice does not compute y.
6. Alice sets w := β ⊙ x−α⊙ z and sends w to Bob.
7. For j ∈ [m′], Bob verifies that wj ∈ {0,−αj}.
8. Bob recovers y as h(w) + h(α⊙ z) mod p.

a We drop an implicit execution index e to simplify notation, e.g. we write x,y in
place of x[e],y[e] respectively.

Fig. 3: Steps of the amortized protocol.

designed to keep the secrets hidden. Bob verifies by checking that the RE-splits
are valid. The extra (amortized) work per secret of the amortized protocol over
the basic protocol is very low.

We proceed to a formal description. The amortized protocol is defined for
the lattice-based hash function parameters, a security parameter u, a number
(of secrets) v, pre-determined secrets x[e] ∈ {0, 1}m

′

pre-processed with T where

x[e] := [x′[e]|r[e]],x′[e] ∈ {0, 1}m, r[e] ← {0, 1}m for e ∈ [v], and for public
α ∈ {−1, 1}m

′

. It is specified in Figure 3. The amortized protocol is a sigma
protocol since Bob communicates bits only by invoking the basic protocol.

The security properties of the amortized protocol are formalized as follows.

Theorem 9 If SWS(p,m, n) and SWS(p,m′, n) are computationally hard, if T
is an l-AONT, and if 2m/pn ≥ 2 then the amortized protocol is a SWH/SWI-
AoKoS with soundness error 2−u, knowledge error at most 2−u, and worst-case
slack error φ of 1− (1−2−u)m

′

for an absolute slack ξ of 1. Further, the verifier
can efficiently tell when ξ = 0.

A proof of Theorem 9 is deferred to Appendix C.

Corollary 10 A zero-slack variation, defined as accepting if the amortized pro-
tocol accepts and ξ = 0, is a SWH/SWI-AoKoS with soundness error 2−u, knowl-
edge error 2−u, worst-case slack error 0, and completeness error 1−(1−2−u)m

′

.

This follows similarly to Corollary 6. Remarks 7 and 8 apply similarly.
We proceed to analyze the resources required by the amortized protocol. For

efficiency, since w ∈ ×m′

j=1{0,−αj}, it is sufficient in step 6 for Alice to send

How to Prove Megabytes (Per Second) 17

m′ bits and in step 7 for Bob to recover w from these bits. This is reflected in
Table 2 that summarizes the resources required by the amortized protocol. It
is structured the same as Table 1. The required amortized (per each of the v
secrets) resources for random bits, communicated bits, and hash invocations are
respectively O(s), O(s + t), O(1) with very low hidden constants. The required
overhead (per batch of v secrets) resources are low as well.

step number random bits communicated bits hash invocations by whom

1 2s Alice
2 † † † †
6 2sv Alice
8 v Bob

subtotal factor random bits communicated bit hash invocations by whom

1 2s t 1 Alice
u 2 + 2s 1 + 4s+ 2t 2 Alice
u 1 1 2 Bob
v 2s Alice
v 1 Bob

Table 2: Resources required by the amortized protocol.

† See Table 1

3.4 Protocol Variations in Hybrid Models

This section describes several transformations yielding variations of the basic
and amortized protocol that are secure in some hybrid model.
NI variation. The Fiat-Shamir [29] transform is used to obtain a NI variation
secure in the random oracle model. This transform replaces the verifier challenge
in a sigma protocol by the output of a pseudo-random function (PRF) on the
prover commitment data. Thus, in the resulting protocol variation the prover
computes the challenge on its own and the variation is NI.
Non-HV variation. A transform described in [37], based on Blum’s coin-
flipping [15], is used to obtain a non-HV variation of the protocol secure in
the commitment-hybrid model. This transform replaces each bit of the verifier’s
challenge with the result of a (sequential) coin-flipping between the prover and
the verifier. The coin-flipping ensures that the verifier’s challenge is not con-
trolled by the verifier, and hence the verifier is not required to be honest.
rZK and rWI variations. A transform due to Canetti et al [19] is used to
obtain a rZK (resp. rWI) variation of the basic (resp. amortized) protocol. The
admissibility requirements of the transform are satisfied by both protocols. The
resulting transformed protocol variations are secure in a hybrid model that re-
quires a perfectly binding (and computationally hiding) commitment scheme for
the prover and a perfectly hiding (and computationally binding) commitment
scheme for the verifier. In rZK and rWI protocols, the verifier may reset the

18 Yaron Gvili

prover to use the same randomness. Roughly, the transform adds a commit-
ment by the verifier to the challenge before the prover makes its commitment.
The former commitment is opened before the latter one. Moreover, the verifier
commitment is used as the determining message for the prover; specifically, the
prover uses a secure pseudo random function (PRF) to determine its (pseudo
random) actions based on the commitment of the verifier. Thus, even with the
power to reset the prover, it is infeasible to make the prover produce two different
responses for the same verifier challenge that underlies its commitment.

3.5 Extension to Large Secrets

In order to extend our protocols to large secrets, we take the approach of using
an authenticated data structure. Many such structures fit our approach; here we
describe a Merkle tree structure, which we chose to use. The leaves of the tree
correspond to blocks of secret data. Each parent node of the tree corresponds to
a hash value for its c children nodes (c is determined in Section 3.6). This hash
value is effectively for the secret data corresponding to the leaves of the subtree
of the parent node. In particular, the hash value of the root node is for secret
data corresponding to the leaves of the entire tree.

The Merkle tree is used in a hashing process for a large secret. In this process,
the hash value for the data corresponding to each leaf is computed and associated
with it. Then, the process recurses up to the root of the tree, by computing the
hash value for each parent node using the hash values of its children node as
data. This is well-defined when the hash function contracts by a factor of c, i.e.
the ratio of its input size to its output size is c.

Each of our protocols is extended to large secrets as follows. First, the depth
d of a Merkle tree for a large secret s, where #s > 0, is determined. For a block
size b, the tree depth is d := ⌈1 + logc(#s/b)⌉. If s does not exactly fit d, i.e.
1 + logc(#s/b) 6= d, then the secret may be padded to fit it. Standard padding
techniques requiring a small constant work and memory (without storing the
pad) exist. To avoid a length extension attack, some standard padding techniques
append the length of s in a suffix block prior to zero-padding. We denote the
padded secret s′. The hash value for each node in a Merkle tree of s′ is computed.
Zero-padding enables an optimization in this computation: the hash value of a
zero block is a zero hash value that need not be explicitly computed. The hash
value y computed for the root node is used as the public hash value for s. A
ZK-AoKoS for s given its public hash value y proceeds as follows. First, the
prover uses an instance of our basic protocol with the (padded) secret data
associated with each leaf node. If any instance is rejected, the verifier rejects.
Otherwise, the verifier sees a hash value for each leaf node. The verifier applies
the hashing process to compute the hash value y′ for the root node. Finally, the
verifier accepts if y = y′ and rejects otherwise. A SWH/SWI-AoKoS using the
amortized protocol proceeds analogously. The use of a single hash function in
the extended protocols leads to the same concrete security for large secrets as
for small ones.

How to Prove Megabytes (Per Second) 19

3.6 Choice of Parameters

For small secrets, we use a SWIFFT hash function. We choose the parameters
p = 257,m = 1024, n = 64 and define the SWIFFT hash function H [1] with
parameters (p,m, n). Thus, we have H [1] : {0, 1}1024 → Z

64
257. The output of H

[1]

may be represented in 65 bytes. The concrete security of H [1] is at least 106
bits of security against known attacks (the fastest of which also requires at least
2102 space as well), as shown in a cryptanalysis by Lyubashevsky et al [44]. The
cryptanalysis is similar when the statistically hiding commitment of Section 2.1
is considered. One alternative is to allocate half the domain size (64 bytes) to
the secret and half to the random string. In this case, the cryptanalysis does not
change. The number of witnesses (i.e. decommitment alternatives an unbounded
attacker views) is 2m/pn > 2511 and Lemma 1 applies. However, security may be
weaker than suggested by this; specifically, some types of attackers may be able to
reject many alternative witnesses, since randomization is not full, and thus obtain
non-negligible information about the secret. A second alternative is to double
the domain size, allocating the added space to the random string. In this case,
we define the SWIFFT hash function H [2] with parameters (p,m′, n),m′ := 2m.
Thus, we have H [2] : {0, 1}2048 → Z

64
257. The cryptanalysis changes only slightly1.

However, the average number of witnesses 2m
′

/pn > 21535 is much larger (so
Lemma 1 applies) and the randomization involved prevents leaks. This is the
alternative used in our implementation described in Section 4.

For large secrets, the Merkle tree of Section 3.5 is used. When applying the
basic protocol or its variations to a small secret for a leaf node, we use H for
which Equation 1 holds. Here H stands for either H [1] or H [2] per the alternative
used. When recursing up the tree in the hashing process, we use a modified hash
function H ′ that outputs a truncation to 64 bytes of the representation of the
output ofH. This truncation is quite tiny and has virtually no impact on concrete
security. Thus, H ′ is a function contracting by a factor of 4, from 256 to 64 bytes.
We set the tree arity c to 4. Since the input to the hash for a parent node is
defined as the concatenation of the hashes for each of its children nodes and since
the contracting factor matches the tree arity, the concatenation size matches the
input size of H ′, and so the recursion is well-defined. The amount of memory
required by the recursion is proportional to the depth d of the Merkle tree. In
many practical applications, d is relatively small: e.g. for a secret of size 1 MB
(resp. 1 gigabyte, or GB) we have d = 7 (resp. d = 12). The relative overhead of
extra hash values associated with internal nodes (i.e. beyond needed for hiding
the input) converges to 1/3.

1 A generalized birthday attack would require twice as many groups, doubling the
required work. An inversion attack would require sampling a larger space {0, 1}1984

when trying to invert while the probability that inversion would yield a binary vector
remains 264/|Z64

257| ≈ 2−448. A lattice attack would require an analysis over a much
larger lattice dimension of 2048.

20 Yaron Gvili

4 Experimental Results

We implemented the basic and amortized protocols described in Sections 3.2 and
3.3 and report here on experimental results obtained for them.
Structure. We report on these implementation stages:

– hash – compute a (root) hash for a large secret
– prove – Alice’s sub-protocol executions (for leaves)
– verify – Bob’s sub-protocol executions (for leaves)

For large secrets, Alice’s (resp. Bob’s) effort involves proving (resp. verifying)
and hashing for committing (resp. for verifying a commitment) to a large secret.
Setup. The statistical security parameter u for the basic protocol is set to 100.
The parameters (p,m, n) are set to (257, 1024, 64). The SWIFFT hash function
is set with parameters (p,m′, n) wherem′ := 2m. With this setup, the hash input
size s is equal to m = 1024 bits and its output size t is equal to n⌈log p⌉, which is
520 bits when rounded up to the nearest byte. As shown in Table 1, the argument
size A (counting bits communicated by the prover) is t+u(1+4s+2t) = 514220
bits, yielding a blowup factor B := A/s ≈ 502. In comparison, as shown in
Table 2, the argument size of the amortized protocol A′ is t+u(1+4s+2t)+2sv,
yielding a blowup factor B′ := A′/(sv) = 2 +B/v. Thus, B′ < B for v > 1 and
B′ converges to 2 (and very close to 2 for v > 104).

The experiment setup is as follows. We experimented with a single-threaded
and a multi-threaded version of our implementation. In both cases, the statistical
security parameter u was set to 100. The speed is approximately linear in the
size of the secret and is reported as a rate. All experiments reported here were
performed by running a 64-bit executable on a commodity machine with 8 GB
DDR4-2133 RAM and with a processor having 4 hyper-threaded (for a total
of 8 threads) cores at up to 3.5 GHz. The execution was performed in a single
process and hence does not involve inter-process-communication or networking.
Initialization, memory allocation, randomness generation, and pre-processing are
not included. We compiled our implementation code using GCC with AVX2
instructions enabled and optimization for speed. Our implementation includes
a highly-optimized SWIFFT hash function utilizing AVX2 instructions. Multi-
threading was implemented using OpenMP.
Measurements. The reported measurements focus on the sustained rate of
stages of the protocol. The input hashing rate in MBps and megahashes per
second (MHps) was measured by number of threads as shown in Figure 4. The
secret size used was 256 MB, and therefore the depth of the tree was d = 11.
The rate was about 42 MBps using 1 thread and about 175 MBps using all 8
threads. Up to 4 threads, the average rate was about 36 MBps per thread. Beyond
4 threads hyper-threads must be used and the rate per thread was lower.

The sub-protocol execution times and input rates for the prover and verifier
stages of the basic and amortized protocols are shown in Figures 5 and 6. The
measurements are the same yet in different units: each execution in Figure 5
corresponds to 128 input bytes in Figure 6. The basic protocol handles one
secret per u executions while the amortized protocol handles one secret per

How to Prove Megabytes (Per Second) 21

1 t
hre

ad

2 t
hre

ad
s

3 t
hre

ad
s

4 t
hre

ad
s

5 t
hre

ad
s

6 t
hre

ad
s

7 t
hre

ad
s

8 t
hre

ad
s

50

100

150

200

42.3
(0.33)

78.5
(0.62)

109.4
(0.86)

143.8
(1.13)

148.8
(1.19)

162.0
(1.27)

170.7
(1.34)

175.3
(1.38)

M
eg
a
b
y
te
s
(m

eg
a
h
a
sh
es
)
p
er

se
co
n
d

Fig. 4: Input hashing rate by number of threads (d = 11).

execution (out of v). The running times for the basic protocol were measured
at a few microseconds per execution for 1 thread and about 5 times less for
8 threads. The amortized prover was about twice as fast while the amortized
verifier was about two orders of magnitude faster than the correpsonding stages
of the basic protocol stages. Latency is captured by the running time per secret
on one thread. For the basic protocol, the latency is u times the running time per
execution; for u = 100, proving (resp. verifying) latency was about 800 (resp.
300) microseconds. For the amortized protocol, the respective latencies were
about 1/30 and 1 microsecond. On 8 threads, the basic prover (resp. verifier)
rate was about 4/5 (resp. 21/2) MBps; thus the basic protocol meets our goal.
The respective amortized protocol rates were about 8000 and 500 MBps. With
hashing (on 8 threads), the basic protocol rates were slightly slower than without
hashing, while for the amortized protocol they were about 170 and 250 MBps
respectively. Thus, the amortization speedup was about two orders of magnitude.

5 Conclusions

We presented the first provably secure, in the standard model under a hardness
assumption on ideal lattices, ZK-AoKoS and WI/WH-AoKoS protocols that
are practical for large secrets. Our protocols use a new verifiable secret sharing
scheme introduced. This scheme enables hiding secrets in a small subset of a
finite Abelian group using embeddable splits, a new construction we hope is
of independent interest. It further enables applying SWIFFT, a fast lattice-
based hash function having a concrete security guarantee, to the secret shares
in constructing our protocols. The SWIFFT hash function is conjectured to be
secure against quantum attacks, and our protocols inherit this property. We
argued that our basic protocol is about an order of magnitude faster than other
current techniques while our amortized protocols is overhead-efficient and runs
about two orders of magnitude faster yet. The argument size grows linearly, with
amortization slope 2. The prover and verifier resources involve small constants.

22 Yaron Gvili

basic
prove

r

amortize
d prove

r
basic

verifie
r

amortize
d verifie

r

0

2,000

4,000

6,000

8,000
7,918

36

2,811

1,060
1,603

15
499 258n

a
n
o
se
co
n
d
s
p
er

ex
ec
u
ti
o
n

1 thread 8 threads

Fig. 5: Sub-protocol execution time by
protocol stage.

basic
prove

r

amortize
d prove

r
basic

verifie
r

amortize
d verifie

r

10−1

100

101

102

103

104

0.16

3372

0.43

115

0.80

8178

2.44

474

0.79

171

2.40

249

M
eg
a
b
y
te
s
p
er

se
co
n
d

1 thread 8 threads with hashing

Fig. 6: Sub-protocol input rate by protocol
stage (u = 100).

Our basic protocol is SZK while our amortized protocol is only shown to be
SWI/SWH, a somewhat weaker property. Nevertheless, SWI/SWH is acceptable
in many practical applications, and the amortized protocol offers an attractive
speedup over the basic protocol. Each of the protocols has a negligible soundness
error, a minimal worst-case absolute slack, and a variation with a zero slack at the
expense of a negligible completeness error. Each is a sigma protocols that can be
transformed using standard technique into NI, non-HV, and rZK/rWI protocol
variations. The protocols can be used in the construction of larger (UC-)secure
protocols. Thus, the protocols are relevant to a wide range of applications.

We showed how to apply our protocols in practice. Extensions to large secrets
and a choice of parameters having concrete security at least 2100, were described.
Finally, experimental results on commodity hardware were presented. The results
show a hashing rate of about 175 MBps, and proving and verifying rates of about
4/5 MBps and 21/2 MBps (resp. about 8000 MBps and 500 MBps) for the basic
(resp. amortized) protocol. With hashing, the respective amortized rates were
about 170 and 250 MBps. The amortization speedup was about two orders of
magnitude with a latency (for one secret) of about 1 microsecond.

References

1. Ajtai, M.: Generating Hard Instances of Lattice Problems (Extended Abstract).
In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing. pp. 99–108. ACM (1996)

2. Arora, S., Safra, S.: Probabilistic Checking of Proofs; a New Characterization
of NP. In: Proceedings of the 33rd Annual Symposium on Foundations of Com-
puter Science. pp. 2–13. SFCS ’92, IEEE Computer Society, Washington, DC, USA
(1992)

3. Arora, S.: How NP Got a New Definition: A Survey of Probabilistically Checkable
Proofs. CoRR cs.CC/0304038 (2002)

How to Prove Megabytes (Per Second) 23

4. Baum, C., Damg̊ard, I., Larsen, K.G., Nielsen, M.: How to Prove Knowledge of
Small Secrets, pp. 478–498. Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

5. Beaver, D., Micali, S., Rogaway, P.: The Round Complexity of Secure Protocols. In:
Proceedings of the Twenty-second Annual ACM Symposium on Theory of Com-
puting. pp. 503–513. STOC ’90, ACM, New York, NY, USA (1990)

6. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with Linear Communica-
tion Complexity. In: Proceedings of the 5th Conference on Theory of Cryptography.
pp. 213–230. TCC’08, Springer-Verlag, Berlin, Heidelberg (2008)

7. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient Garbling from a
Fixed-Key Blockcipher. In: Proceedings of the 2013 IEEE Symposium on Security
and Privacy. pp. 478–492. SP ’13, IEEE Computer Society, Washington, DC, USA
(2013)

8. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
Verifying Program Executions Succinctly and in Zero Knowledge. In: CRYPTO.
pp. 90–108. Springer (2013)

9. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable Zero Knowledge via
Cycles of Elliptic Curves, pp. 276–294. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2014)

10. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct Non-interactive Zero
Knowledge for a Von Neumann Architecture. In: Proceedings of the 23rd USENIX
Conference on Security Symposium. pp. 781–796. SEC’14, USENIX Association,
Berkeley, CA, USA (2014)

11. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct Non-Interactive Zero
Knowledge for a von Neumann Architecture. In: 23rd USENIX Security Sympo-
sium (USENIX Security 14). pp. 781–796. USENIX Association, San Diego, CA
(2014)

12. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.: Short PCPs
Verifiable in Polylogarithmic Time. In: Proceedings of the 20th Annual IEEE Con-
ference on Computational Complexity. pp. 120–134. CCC ’05, IEEE Computer
Society, Washington, DC, USA (2005)

13. Bendlin, R., Damg̊ard, I.: Threshold Decryption and Zero-knowledge Proofs for
Lattice-based Cryptosystems. In: Proceedings of the 7th International Conference
on Theory of Cryptography. pp. 201–218. TCC’10, Springer-Verlag, Berlin, Hei-
delberg (2010)

14. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct Non-
interactive Arguments via Linear Interactive Proofs. In: Proceedings of the 10th
Theory of Cryptography Conference on Theory of Cryptography. pp. 315–333.
TCC’13, Springer-Verlag, Berlin, Heidelberg (2013)

15. Blum, M.: Coin Flipping by Telephone a Protocol for Solving Impossible Problems.
SIGACT News 15(1), 23–27 (Jan 1983)

16. Boyko, V.: On All-or-nothing Transforms and Password-authenticated Key Ex-
change Protocols. Ph.D. thesis, Cambridge, MA, USA (2000), aAI0801832

17. Brassard, G., Chaum, D., Crépeau, C.: Minimum Disclosure Proofs of Knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (Oct 1988)

18. Canetti, R., Dodis, Y., Halevi, S., Kushilevitz, E., Sahai, A.: Exposure-resilient
Functions and All-or-nothing Transforms. In: Proceedings of the 19th International
Conference on Theory and Application of Cryptographic Techniques. pp. 453–469.
EUROCRYPT’00, Springer-Verlag, Berlin, Heidelberg (2000)

19. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable Zero-knowledge
(Extended Abstract). In: Proceedings of the Thirty-second Annual ACM Sympo-

24 Yaron Gvili

sium on Theory of Computing. pp. 235–244. STOC ’00, ACM, New York, NY,
USA (2000)

20. Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M.,
Parno, B., Zahur, S.: Geppetto: Versatile Verifiable Computation. In: Proceedings
of the 2015 IEEE Symposium on Security and Privacy. pp. 253–270. SP ’15, IEEE
Computer Society, Washington, DC, USA (2015)

21. Cramer, R., Damg̊ard, I., Keller, M.: On the amortized complexity of zero-
knowledge protocols. J. Cryptology 27, 284–316 (2014)

22. Cramer, R., Damg̊ard, I., Pastro, V.: On the Amortized Complexity of Zero Knowl-
edge Protocols for Multiplicative Relations, pp. 62–79. Springer Berlin Heidelberg,
Berlin, Heidelberg (2012)

23. Cramer, R., Damg̊ard, I., Xing, C., Yuan, C.: Amortized Complexity of Zero-
Knowledge Proofs Revisited: Achieving Linear Soundness Slack. In: EUROCRYPT
(1). pp. 479–500. Springer (2017)

24. Dai, W.: Crypto++ – Speed Comparison of Popular Crypto Algorithms (retrieved
July 16th, 2017). http://cryptopp.com/benchmarks

25. Damg̊ard, I., López-Alt, A.: Zero-Knowledge Proofs with Low Amortized Commu-
nication from Lattice Assumptions. In: Proceedings of the 8th International Con-
ference on Security and Cryptography for Networks. pp. 38–56. SCN’12, Springer-
Verlag, Berlin, Heidelberg (2012)

26. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square Span Programs with
Applications to Succinct NIZK Arguments, pp. 532–550. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2014)

27. Even, S., Selman, A.L., Yacobi, Y.: The complexity of promise problems with
applications to public-key cryptography. Information and Control 61(2), 159 – 173
(1984)

28. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
in 22nd STOC. pp. 416–426. ACM Press (1990)

29. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In: Proceedings on Advances in cryptology—CRYPTO
’86. pp. 186–194. Springer-Verlag, London, UK, UK (1987)

30. Franklin, M., Yung, M.: Communication Complexity of Secure Computation (Ex-
tended Abstract). In: Proceedings of the Twenty-fourth Annual ACM Symposium
on Theory of Computing. pp. 699–710. STOC ’92, ACM, New York, NY, USA
(1992)

31. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic Span Programs and
Succinct NIZKs without PCPs, pp. 626–645. Springer Berlin Heidelberg, Berlin,
Heidelberg (2013)

32. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for Hard Lattices and
New Cryptographic Constructions. In: Proceedings of the Fortieth Annual ACM
Symposium on Theory of Computing. pp. 197–206. STOC ’08, ACM, New York,
NY, USA (2008)

33. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: Faster Zero-Knowledge for Boolean
Circuits. In: 25th USENIX Security Symposium (USENIX Security 16). pp. 1069–
1083. USENIX Association, Austin, TX (2016)

34. Groth, J.: Short Pairing-Based Non-interactive Zero-Knowledge Arguments, pp.
321–340. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

35. Gueron, S., Lindell, Y., Nof, A., Pinkas, B.: Fast Garbling of Circuits Under Stan-
dard Assumptions. In: Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security. pp. 567–578. CCS ’15, ACM, New York, NY,
USA (2015)

How to Prove Megabytes (Per Second) 25

36. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient Arguments Without Short PCPs.
In: Proceedings of the Twenty-Second Annual IEEE Conference on Computational
Complexity. pp. 278–291. CCC ’07, IEEE Computer Society, Washington, DC,
USA (2007)

37. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from Secure
Multiparty Computation. In: Proceedings of the Thirty-ninth Annual ACM Sym-
posium on Theory of Computing. pp. 21–30. STOC ’07, ACM, New York, NY,
USA (2007)

38. Kawachi, A., Tanaka, K., Xagawa, K., Kawachi, A., Tanaka, K., Xagawa, K.: Con-
currently Secure Identification Schemes and Ad Hoc Anonymous Identification
Schemes Based on the Worst-Case Hardness of Lattice Problems. In: Proceedings
of Asiacrypt. LNCS, vol. 5350, pp. 372–389. Springer-Verlag, Berlin, Heidelberg
(2008)

39. Kolesnikov, V., Schneider, T.: Improved Garbled Circuit: Free XOR Gates and
Applications. In: Proceedings of the 35th International Colloquium on Automata,
Languages and Programming, Part II. pp. 486–498. ICALP ’08, Springer-Verlag,
Berlin, Heidelberg (2008)

40. Laboratories, R.: TWIRL and RSA Key Size (retrieved July 16th, 2017.
http://emc.com/emc-plus/rsa-labs/historical/twirl-and-rsa-key-size.htm (2016)

41. Lipmaa, H.: Progression-free Sets and Sublinear Pairing-based Non-interactive
Zero-knowledge Arguments. In: Proceedings of the 9th International Conference
on Theory of Cryptography. pp. 169–189. TCC’12, Springer-Verlag, Berlin, Hei-
delberg (2012)

42. Lipmaa, H.: Succinct Non-Interactive Zero Knowledge Arguments from Span Pro-
grams and Linear Error-Correcting Codes. In: Part I of the Proceedings of the
19th International Conference on Advances in Cryptology - ASIACRYPT 2013 -
Volume 8269. pp. 41–60. Springer-Verlag New York, Inc., New York, NY, USA
(2013)

43. Lipmaa, H.: Prover-Efficient Commit-and-Prove Zero-Knowledge SNARKs, pp.
185–206. Springer International Publishing, Cham (2016)

44. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: A Modest Pro-
posal for FFT Hashing, pp. 54–72. Springer Berlin Heidelberg, Berlin, Heidelberg
(2008)

45. Micali, S.: Computationally Sound Proofs. SIAM J. Comput. 30(4), 1253–1298
(Oct 2000)

46. Micciancio, D.: The Geometry of Lattice Cryptography, pp. 185–210. Springer
Berlin Heidelberg, Berlin, Heidelberg (2011)

47. Naor, M., Pinkas, B., Sumner, R.: Privacy Preserving Auctions and Mechanism
Design. In: Proceedings of the 1st ACM Conference on Electronic Commerce. pp.
129–139. EC ’99, ACM, New York, NY, USA (1999)

48. Narayanan, A., Shmatikov, V.: Myths and Fallacies of ”Personally Identifiable
Information”. Commun. ACM 53(6), 24–26 (Jun 2010)

49. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly Practical Veri-
fiable Computation. Commun. ACM 59(2), 103–112 (Jan 2016)

50. Peikert, C.: A Decade of Lattice Cryptography. Found. Trends Theor. Comput.
Sci. 10(4), 283–424 (Mar 2016)

51. Peikert, C., Vaikuntanathan, V.: Noninteractive Statistical Zero-Knowledge Proofs
for Lattice Problems. In: Proceedings of the 28th Annual Conference on Cryptol-
ogy: Advances in Cryptology. pp. 536–553. CRYPTO 2008, Springer-Verlag, Berlin,
Heidelberg (2008)

26 Yaron Gvili

52. del Pino, R., Lyubashevsky, V.: Amortization with Fewer Equations for Proving
Knowledge of Small Secrets. In: Advances in Cryptology - CRYPTO 2017 - 37th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
20-24, 2017, Proceedings, Part III. pp. 365–394 (2017)

53. Polk, W.T., Dodson, D.F., Burr, W.E., Ferraiolo, H., Cooper, D.: Cryptographic
Algorithms and Key Sizes for Personal Identity Verification (2014), http://

nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-78-4.pdf

54. Rabin, M.O., Mansour, Y., Muthukrishnan, S., Yung, M.: Strictly-black-box Zero-
knowledge and Efficient Validation of Financial Transactions. In: Proceedings of the
39th International Colloquium Conference on Automata, Languages, and Program-
ming - Volume Part I. pp. 738–749. ICALP’12, Springer-Verlag, Berlin, Heidelberg
(2012)

55. Ranellucci, S., Tapp, A., Zakarias, R.W.: Efficient Generic Zero-Knowledge Proofs
from Commitments (Extended Abstract). In: Information Theoretic Security - 9th
International Conference, ICITS 2016, Tacoma, WA, USA, August 9-12, 2016,
Revised Selected Papers. pp. 190–212 (2016)

56. Regev, O.: On Lattices, Learning with Errors, Random Linear Codes, and Cryp-
tography. J. ACM 56(6), 34:1–34:40 (Sep 2009)

57. Rivest, R.L.: All-or-Nothing Encryption and the Package Transform. In: Proceed-
ings of the 4th International Workshop on Fast Software Encryption. pp. 210–218.
FSE ’97, Springer-Verlag, London, UK, UK (1997)

58. S. Goldwasser, S. Micali, C.R.: The knowledge complexity of interactive proof
systems. SIAM Journal of Computing 18, 186–208 (1989)

59. Schartner, P.: A Low-cost Alternative for OAEP. In: Proceedings of the Interna-
tional Workshop on Security and Dependability for Resource Constrained Embed-
ded Systemss. pp. 1:1–1:6. S&D4RCES ’11, ACM, New York, NY, USA (2011)

60. Schnorr, C.P.: Efficient Identification and Signatures for Smart Cards. In: Pro-
ceedings of the 9th Annual International Cryptology Conference on Advances in
Cryptology. pp. 239–252. CRYPTO ’89, Springer-Verlag, London, UK, UK (1990)

61. Shamir, A.: How to Share a Secret. Commun. ACM 22(11), 612–613 (Nov 1979)
62. Yao, A.C.C.: How to Generate and Exchange Secrets. In: Proceedings of the 27th

Annual Symposium on Foundations of Computer Science. pp. 162–167. SFCS ’86,
IEEE Computer Society, Washington, DC, USA (1986)

A Proof of Lemma 4

This section sketches a proof that if SWS(p,m, n) and SWS(p,m′, n) are com-
putationally hard then the sub-protocol of the leaky protocol is a PZK-AoKoS
by analyzing completeness, soundness, and perfect zero-knowledge.
Completeness. We have y ≡ h(α ⊙ x) ≡ h(x[0] + x[1]) ≡ h(x[0]) + h(x[1]) ≡
y[0] + y[1] (mod p) where the third equivalence follows from Equation 1.
Soundness. This follows from the computational hardness of SWS(p,m, n) and
SWS(p,m′, n) that prevents Alice, except with negligible probability, from find-
ing a value other than x[b] that hashes to y[b]. Moreover, a knowledge extractor
can extract Alice’s secret using two challenges 0, 1 in any round to reveal two
shares for the same RE-split of the secret. The soundness error is 1/2 since a
cheating Alice will have (at least) one fake share, which would not pass verifica-
tion if revealed, and with probability 1/2 Bob will challenge to reveal it.

How to Prove Megabytes (Per Second) 27

Perfect zero-knowledge. This follows from the RE-split being perfectly hid-
ing. Formally, the simulator produces a transcript by choosing b← {0, 1}, choos-
ing x[b] as in an RE-split, and setting y[b] := h(x[b]),y[1−b] := y − y[b]. The
revealed share in a simulated round is drawn from a distribution identical to
that in a real round, and the same is true for the bit. Since the revealed share
and the bit determine the transcript, it follows that the distribution of simulated
transcripts is identical to that of real transcripts.

B Proof of Theorem 5

This section sketches a proof that if SWS(p,m, n) and SWS(p,m′, n) are com-
putationally hard then the basic protocol of Section 3.2 is a SZK-AoKoS, that
its soundeness error is 2−u, that its worst-case slack error is 1− (1− 2−u)m

′

for
an absolute slack ξ = 1, and that the verifier can tell when ξ = 0. The properties
of completeness, soundness, statistical zero-knowledge, and slack are analyzed.

αjxj 0 0 + +

x
[k,bk]
j 0 + 0 0

x
[k,1−bk]
j 0 - + +

x
[1−k,b1−k]

j 0 0 0 +

x
[1−k,1−b1−k]

j 0 0 + 0

Table 3: Possibilities for variables in the basic protocol.

The analysis will refer to Table 3 which shows the possibilities for the shares
in the basic protocol. Each of the possibilities over the choices of xj , k, l and the
draw from Dj in double-round e (for e ∈ [u], j ∈ [m′]) of the basic protocol are
listed on the right side of Table 3. Values in the table are shown for variables
listed on its left side. The symbols +,− stand for αj ,−αj respectively.
Completeness. We show the RE-split equation x[k,0] + x[k,1] = α ⊙ x holds

for each k ∈ {0, 1} and each element j ∈ [m′]. If xj = 0 then (x
[k,l]
j ,x

[k,1−l]
j) is

either (αj ,−αj) or (0, 0); either way x[k,0]+x[k,1] = 0 = αjxj . Otherwise xj = 1

and then (x
[k,l]
j ,x

[k,1−l]
j) is either (0,αj) or (αj , 0); either way x

[k,0]
j + x

[k,1]
j =

αj = αjxj . Thus, in all cases the RE-split equation holds. Moreover, in both
xj cases, the share x[k,1−l] ≡ x[k,1−bk] is not revealed while the revealed shares

(x
[0,b0]
j ,x

[1,b1]
j) ∼ {(0, 0), (0, 0)(0,αj), (αj , 0)} as seen in Table 3. Finally, for i ∈

{0, 1} : y ≡ h(x) ≡ h(x[i,0]+x[i,1]) ≡ h(x[i,0])+h(x[i,1]) ≡ y[i,0]+y[i,1] (mod p)
where the third equivalence follows from Equation 1. This proves completeness.
Soundness. A cheating Alice is forced to have one fake share (i.e. one causing
a rejection in step 12 of the basic protocol) among y[k,0],y[k,1] for k ∈ {0, 1} due
to the computational hardness assumption. After Bob chooses the challenge b,
Alice may choose only one of b0, b1 and the other one is determined by b due to

28 Yaron Gvili

the verification that b0 ⊕ b1 = b. Hence, Alice can avoid revealing a fake share
for one round (of the double-round) while for the other round the cheating failur
probability is 1/2. Thus, the soundness error is 1/2 for a double-round and 2−u for
u double-rounds. Moreover, a knowledge extractor can use two challenges 0, 1 in
any double-round to reveal two shares for the same RE-split of the secret.
Statistical zero-knowledge. This follows from the RE-split being perfectly
hiding and the commitment scheme being statistically hiding. Formally, the sim-
ulator produces a transcript as follows. The simulator is given α ∈ {−1, 1}m

′

,y ∈
Z
n
p . For each double-round, the simulator performs these steps:

– choose b, k, l ← {0, 1} and set bk = l, b1−k = b⊕ bk;

– for k ∈ {0, 1}, j ∈ [m′] draw (x
[k,bk]
j ,x

[1−k,b1−k]
j)← {(0, 0), (0,αj)};

– for i ∈ {0, 1}, set x[i] := x[i,bi];
– for i ∈ {0, 1}, set y[i,bi] := h(x[i,bi]);
– for i ∈ {0, 1}, set y[i,1−bi] := y − y[i,bi] mod p.

The revealed vector shares in a simulated double-round are drawn from a dis-
tribution identical to that in a real double-round, while the real and simulated
choices b, k, l for i, j ∈ {0, 1} are distributed identically as well. Since these de-
termine the transcript, the distribution of simulated transcripts is identical to
that of real ones. SZK follows by Lemma 1 applied to h.
Slack. Given that Bob accepts, a cheating Alice can only obtain an absolute
slack of 1 by setting Dj′ := (0, 2αj′ ,αj′ ,αj′) for at least one element j′ (a higher
absolute slack has negligible success probability as it forces Alice to choose one
element of a share not in {0,αj′} in each round of each double-round). Hence,
at each such slack index j′, the revealed element of the shares in each double-
rounds would be 0,αj′ (but never 0, 0). However, from an honest prover one

expects (x
[0,b0]
j ,x

[1,b1]
j) ∼ {(0, 0), (0,αj)} for j ∈ [m′] in each double-round. We

now define and calculate probabilities of the following events:

1. Given i ∈ [u], j ∈ [m′], event Ai,j occurs if (0,αj) elements are revealed for
index j in double-round i. We have Pr(Ai,j) = 1/2.

2. Given j ∈ [m′], event Bj occurs if ∀i ∈ [u] : Ai,j . We have Pr(Bj) = 2−u.

3. Event C occurs if ∃j ∈ [m′] : Bj . We have Pr(C) = 1− (1− 2−u)m
′

.

Event C corresponds to a slack set Ξ 6= ∅ for absolute slack ξ = 1. Hence, the
slack error is 1 − (1 − 2−u)m

′

for an absolute slack ξ = 1. Moreover, Bob can
efficiently tell when ξ = 0 by checking that event C does not occur.

C Proof of Theorem 9

This section sketches a proof that if SWS(p,m, n) and SWS(p,m′, n) are com-
putationally hard, if T is an l-AONT and if 2m/pn ≥ 2 then the amortized
protocol is SWH/SWI-AoKoS with soundeness error 2−u, knowledge error at
most 2−u, and worst-case slack error 1− (1− 2−u)m

′

for an absolute slack of 1,

How to Prove Megabytes (Per Second) 29

αjzj 0 0 + +
xj 0 1 0 1
βj - - + +

βjxj 0 - 0 +
wj 0 - - 0

Table 4: Possibilities for variables in the amortized protocol.

and that the verifier can efficiently tell when the slack error is 0. The properties
of completeness, soundness, knowledge, WI, WH, and slack are analyzed.

The analysis will refer to Table 4 which shows the possibilities for the vari-
ables in the amortized protocol over the choices of zj and of xj in execution e.
Values in the table are shown for variables listed on its left side. The symbols
+,− stand for αj ,−αj respectively. Each of βj ,βjxj ,wj is determined by other
variables shown in the table. We begin with lemmata we will need.

Lemma 11 In each of the v executions of the amortized sub-protocol, (w,α⊙z)
is an RE-split of β ⊙ x.

Proof. αjzj ∼ {0,αj},wj ∼ {0,−αj} per Table 4 while step 6 of the amortized
protocol implies w +α⊙ z = β ⊙ x. The lemma follows using Definition 4. �

Lemma 12 Fix k,m, n, l, r ∈ N, l < m ≤ n, r < m. Let T : {0, 1}m → {0, 1}n be
a statistical (resp. computational) l-AONT with the last r bits for randomness.
For i ∈ [k], let x[i] ← D[i], y[i] := T (x[i]) where D[i] is any distribution on
{0, 1}m with the last r bits random. Let R be any relation on {y[i]}ki=1 with
one degree of freedom. Then for any j ∈ [k] and any L ⊂ [m], |L| < m − l,

the distribution D{x[j]|R,y
[j]
L } where y

[j]
L := {(i,y

[j]
i)}i∈L is statistically (resp.

computationally) indistinguishable from D[j].

Proof. The conditions for l-AONT and D[j] imply D{x[j]|y
[j]
L } ≈ D[j], while R

having one degree of freedom on {y[i]}ki=1 implies D{y[j]|R} ≈ D{y[j]}. There-

fore, D{x[j]|R,y
[j]
L } ≈ D{x

[j]|y[j] ← D{y[j]|y
[j]
L }} ≈ D{x

[j]|y
[j]
L } ≈ D[j]. �

Completeness. Step 8 of the amortized protocol recovers y in each execution:

y = h(β ⊙ x) = h(β ⊙ x−α⊙ z +α⊙ z)
= h(β ⊙ x−α⊙ z) + h(α⊙ z) = h(w) + h(α⊙ z)

(4)

where the third equality follows from Equation 1.
Soundness. Since, for e ∈ [v], any one of α ⊙ z,β ⊙ x[e] determines the other
(given w[e]) by step 6 of the amortized protocol, cheating about knowing one or
both of z, {x[e]}ve=1 is equivalent. The soundness error is 2−u, as for one secret.
Knowledge. The challenge in the amortized protocol is equal to the challenge
in the basic protocol it invokes. Therefore, as proven for the basic protocol in
Appendix B, a knowledge extractor is able to extract z given responses to two
different challenges, each from a domain of size 2u. Hence, the knowledge error

30 Yaron Gvili

for z is at most 2−u. The extractor will also be able to extract each of {x[e]}vi=1

since these are determined by their revealed shares (appearing in the protocol
transcript) together with z. Therefore, the extractor is able to extract the (non
pre-processed) secrets {T −1(x[e])}vi=1 with knowledge error at most 2−u as well.
Witness indistinguishability. Lemma 1 implies that except with negligible
probability y has multiple witnesses that are statistically indistinguishable and
that the same is true for each {y[e]}ve=1. It remains to show that the pre-
processing with T preserves SWI. By Theorem 5, z in the amortized protocol
is statistically hidden with soundness error 2−u. For e ∈ [v], Lemmata 11 and 3
imply that x[e] and its unrevealed share are statistically hidden. Step 6 of the
amortized protocol is the only one exposing information: for e ∈ [v], a difference
w[e] ∈ ×m′

j=1{0,−αj} between β ⊙ x[e] and α ⊙ z is exposed. Consequently,

x
[e1]
j ⊕ x

[e2]
j for each e1, e2 ∈ [v], j ∈ [m′] are exposed. Nevertheless, Lemma 12

with R determined by (y[i1]⊕y[i2])i1,i2∈[k] (having one degree of freedom) guar-

antees an attacker learns no useful information on {T −1(x[e])}ve=1. Since, for
e ∈ [v], any one of α ⊙ z,β ⊙ x[e] determines the other (with w[e] known),
an attacker can learn any information on each of {x[e]}ve=1 only by learning all
except ≤ l bits of any one of {T −1(x[e])}ve=1. Thus, SWI is preserved.
Witness hiding. The process for random drawing of r satisfies the conditions of
a generator2 with uniform distribution of inputs for the function T (hcom(x′, ·)),
for any choice of x′, that in turn satisfies the conditions of a proper claw-free
function3. Hence, a WI-to-WH theorem4 applies, proving the protocol is SWH.
Slack. Due to Lemma 11, if Alice is honest about z then Alice is also honest
about x[e]. Hence, to get a non-zero slack for x[e] for any e ∈ [v], Alice must
cheat about z. For this case Appendix B shows that zj′ = 2 at each slack index

j′. As steps 7 and 8 of the amortized protocol imply that w
[e]
j′ ∈ {0,−αj′} and

w
[e]
j′ +αj′zj′ = βj′x

[e]
j′ (mod p) at each slack index j′, Alice may only cheat with

w
[e]
j′ = 0 so that zj′ := x

[e]
j′ = 2 (and βj′ := αj′). This yields an absolute slack

ξ = 1 at any slack index j′ of Alice’s choice. Hence, using a similar argument as
in Appendix B, the worst-case slack error is 1− (1− 2−u)m

′

for ξ = 1 and Bob
can efficiently tell when ξ = 0. Note that since from an honest prover one expects

w
[e]
j ∼ {0,−αj} for j ∈ [m′], one may account (similarly to Appendix B) for

observations on {w[e]}ve=1 in analyzing the slack error; the details are omitted.

2 A definition is found in [28]. G is a generator for relation R if on input 1n it produces
instances (x,w) ∈ R of length n.

3 Informal description is found in [28]; For a claw-free function it is intractable in
non-uniform polynomial time to find a claw: two arguments which map to the same
image. A claw-free function is proper if any image has at least two pre-images.

4 Theorem 4.1 in [28]: Let G be a generator for a proper claw free function f , which
generates pairs (x,w) where x = f(w), with uniform distribution over the arguments
w. Let (P, V) be a proof of knowledge system for proving knowledge of a pre-image
of x. Then if (P, V) is WI over f , then it is WH over (f,G).

