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Abstract. In this work, we study a class of randomized weak pseudorandom functions, which we call
weak PRFs with hidden auxiliary input (HIwPRF). Compared to Learning Parity with Noise (LPN)
or Learning with Errors (LWE) based randomized weak PRFs, it provides less algebraic structure such
that many known techniques and constructions do not translate to this class.

We investigate the potential of HIwPRFs for secure message and user authentication. We construct
a protocol that gives as strong security guarantees when instantiated with a HIwPRF as known from
weak PRF, LPN or LWE based protocols.

1 Introduction

A weak pseudorandom function (wPRF) is a weakened notion of a pseudorandom function (PRF).
While a PRF has pseudorandom outputs for any set of inputs, wPRF outputs are only indistin-
guishable from uniform if the inputs are chosen uniformly at random. In particular for adversarially
chosen inputs, it might be easy to distinguish wPRF outputs from uniform.

For many assumptions such as DDH or LWR, it is much easier to construct a wPRF, which follows
straightforwardly from these assumptions, than a PRF [BPR12,NR04]. In general, the existence of a
wPRF also implies the existence of a PRF, since a wPRF implies a pseudorandom generator, which
can be combined with a tree structure to construct a PRF using the GGM paradigm [GGM86].
Nevertheless, this transformation requires many wPRF evaluations and large circuit depth, which
makes it considerably less efficient.

In fact for many applications not the full strength of a PRF is required and a wPRF is suffi-
cient. One application that has received much attention is authentication, where a prover wants to
convince a verifer of its authenticity, given a shared secret key. For security, the verifier needs to
reject unauthentic interactions. In this setting, there have been considered roughly three different
kinds of adversaries. A passive adversary solely eavesdropping the communication while an active
adversary can interact with a prover, but not with a verifier. Passive and active adversaries are
successful if they convince in a second phase a verifier of their authenticity. A stronger notion,
called man-in-the-middle (MIM) can alter an interaction between a prover and a verifier. Such an
adversary is considered already successul when altering at least one message without causing the
verifier to reject.

Dodis et. al. [DKPW12] proposed an actively secure 3-round protocol from any wPRF. This
was extended by Lyubashevsky and Masny [LM13] to hold against MIM adversaries. Both results
follow a line of research to base authentication on the learning parity with noise (LPN) assumption
[GKL90,BFKL94] which has started with the HB protocols [HB01] and resulted in 2 and 3-round
protocols being secure against various notions of adversaries [JW05,GRS08,KSS10,KPC+11,HKL+12,CKT16].
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The LPN or also the learning with errors (LWE) [Reg05] assumption can be modeled as a distin-
guishing problem of a special class of wPRFs that are called randomized wPRFs (rwPRF) [ACPS09].
In particular for LPN and LWE, a rwPRF f simply takes a uniformly chosen linear function f ′

as key and adds a noise term which follows a Bernoulli or discrete Gaussian distribution. For an
input a, this rwPRF is defined by f(a) = f ′(a) + e, where e is a noise term with small norm.
This provides a rich algebraic structure that implies key-homomorphism, verifiability [ACPS09]
and even public key encryption for sufficiently small noise by rerandomizing input output pairs
[Ale03,Reg05]. Here, verifiability means that there is an efficient algorithm that takes two rwPRF
evaluations and outputs with overwhelming probability 1 if and only if both outputs are evaluations
for the same input, but not necessarily for the same randomness. A wPRF is trivially verifiable and
a LPN or LWE based rwPRF as well as long as the noise terms are sufficiently small such that
f ′(a) + e1 − (f ′(a) + e2) = e1 − e2 has still a small norm. This property seems to be crucial for
3-round protocols, since during the proof of security a rewinding argument is used to extract and
compare two rwPRF evaluations for the same input, but not necessarily the same randomness.

In this work, we consider a different generalization of wPRFs, which we call weak pseudorandom
functions with hidden auxiliary input (HIwPRF). A HIwPRF f takes two inputs, a public label a
and a hidden value r. A distinguisher for a HIwPRF is asked to distinguish samples of the form
a, f(r, a) for uniform a and r from uniform. In case of LPN or LWE, the hidden auxiliary input
would be the noise term. Nonetheless, we require for a HIwPRF that the auxiliary input has at most
logarithmic size in the security parameter, while the output has at least linear size. This is not the
case for LPN and LWE, which require noise with a large support, but it ensures that we exclude
trivial constructions like a function that solely outputs the hidden auxiliary input, i.e. f(r, a) = r.

Our main contribution is to provide MIM secure message authentication from any HIwPRF,
where a MIM adversary has sequential access to a prover and concurrent access to a verifier. This
is a strengthening of the security notion compared to previous results [LM13,CKT16] which relied
on sequential access. Though it still falls short of full concurrent MIM security. In a different line of
research, Damgard and Park [DP14] considered a notion of concurrent, stateful MIM security that
led to a secure authentication protocol from PRGs, though it is not secure against adversaries with
access to an unbounded amount of provers without using strong underlying primitives. A trivial
solution for settings with multiple provers in our as well as in their case could be the use of provers
with independent secret keys.

In general, a HIwPRF is non-verifiable, simply since the tuple a, f(r, a), f(r′, a) could be still
indistinguishable from uniform. Therefore, by giving a secure authentication protocol, we overcome
the paradigm that verifiablity is necessary for cryptographically useful generalizations of wPRFs.

A simple candidate construction of a HIwPRF that is not already a wPRF is obtained by a
problem called Random Selection [CKK08,KH12]. As in case of LPN and LWE, it relies on the
efficiency and simplicity of linear functions with the difference that instead of adding noise, a random
linear function is picked from a small set of linear functions. In more detail, a Random Selection
based HIwPRF takes a set of uniform linear functions S1, . . . , S` in Zm×n2 as key. For any evaluation,
it samples a uniform random 1 ≤ r ≤ ` and outputs f(r, a) = Sra ∈ Zm2 . The best known attack on
this assumption is an algebraic attack which has a running time of magnitude 2O(` log(n)) [KH12].
This HIwPRF seems to be non-verifiable since for keys Si, Sj , f(i, a) − f(j, a) = (Si − Sj)a seems
to be still hard to distinguish from uniform unless the trivial case where i = j.
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2 Preliminaries

We use x← D, x← A, to sample from a distribution D or the output distribution of an algorithm
A. When D is a set, it denotes sampling from the uniform distribution over D. We use κ to denote
the security parameter and call an algorithm probabilistic polynomial time (ppt) if its random tape
and running time is polynomial in κ.

Pairwise Independent Functions. We use the following pairwise independent function classes.

Definition 1. [Pairwise Independent Hash Functions (PIH)]. A family of efficiently computable
hash functions H from D to I is called pairwise independent if for any x ∈ D and x2 ∈ D \ {x} and
d1, d2 ∈ I

Prh←H[h(x) = d1 | h(x2) = d2] =
1

|I|
.

Definition 2. [Pairwise Independent Permutations (PIP)]. A family of efficiently computable per-
mutations PIP from D to I = D is called pairwise independent if for any x ∈ D and x2 ∈ D \ {x}
and d1, d2 6= d1 ∈ D

Prg←PIP[g(x) = d1 | g(x2) = d2] =
1

|I| − 1
.

Rewinding. Rewinding resets an algorithm to a previous state in order to receive an additional
output for fresh random coins. Therefore, rewinding could be seen as two executions of an algorithm,
where both runs use identical random coins til the rewound state and independent coins afterwards.
Clearly, the two output distributions are not necessarily independent. We use two simple technical
lemmas when using rewinding (for proofs, see Appendix B).

Lemma 1. Let A be an algorithm with random tape T← {0, 1}` and XA, X ′A be random variables
over T← {0, 1}` that might depend on A. Then, for XA with range S and y ∈ sup(X ′A),

Pr[XA(T0,T1) = XA(T0,T2) | X ′A(T0,T1) = X ′A(T0,T2) = y] ≥ 1

|S |
,

where the probabilities are taken over (T0,T1) ← {0, 1}` and T2, which has the same distribution
as T1.

Lemma 2. Let E0, E1 be two events over a discrete probability space, then

1. Pr[E1] Pr[E0 | E1]
2 + Pr[¬E1] Pr[E0 | ¬E1]

2 ≥ Pr[E0]
2,

2. Pr[E1]
2 Pr[E0 | E1]

2 + Pr[¬E1]
2 Pr[E0 | ¬E1]

2 ≥ 1

2
Pr[E0]

2.

Authentication. We consider 3-round message authentication protocols between a prover P and
a verifier V, which share a secret key. The protocol consists of two sets Cmt , Ch, a message space
M, and three ppt algorithms (Gen,Rsp,Vrfy). For m ∈M, cmt ∈ Cmt , and ch ∈ Ch,

Gen(1κ) : Generates and outputs a secret key sk.
Rsp(sk,m, cmt, ch) : Computes and outputs a response rsp for message m, commitment cmt and

challenge ch.
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Vrfy(sk,m, cmt, ch, rsp) : Outputs 1 iff (m, cmt, ch, rsp) is valid and otherwise 0.

During the protocol, P sends a commitment cmt ← Cmt and a message m ∈ M to V, which
responds with a challenge ch← Ch. P computes and sends rsp← Rsp(sk,m, cmt, ch) and V verifies
its authenticity by computing Vrfy(sk,m, cmt, ch, rsp). We will call a authentication protocol correct
if for any m ∈M,

Pr[1 = Vrfy(sk,m, cmt, ch,Rsp(sk,m, cmt, ch))] ≥ 1− negl(κ),

where the probability is taken over sk← Gen(1κ), cmt← Cmt , ch← Ch, and the random coins of
Vrfy and Rsp.

For security, we define two games, GMIM and GU, in Figure 1. We call a protocol sequential

GMIM(1κ,A):

fb := 0;
(mP, cmtP) := (⊥,⊥);
LP ∪ LV := ∅;
sk← Gen(1κ);
Invoke AO(1κ);
Return fb

OP,Cmt(m):

cmt← Cmt ;
mP := m;
cmtP := cmt;
Return cmt

OP,Rsp(ch):

If((mP, cmtP) ∈ LP) Return ⊥
rsp← Rsp(sk,mP, cmtP, ch);
LP := LP ∪ {(mP, cmtP, ch, rsp)};
Return rsp

OV,Ch(m, cmt):

ch← Ch
LV := LV ∪ {(m, cmt, ch)};
Return ch

OV,Vrfy(m, cmt, ch, rsp):

If((m, cmt, ch) 6∈ LV) Return ⊥
b← Vrfy(sk,m, cmt, ch, rsp);
fb := fb ∨ (b ∧ [(m, cmt, ch, rsp) 6∈ LP]);
LV := LV \ {(m, cmt, ch)};
Return b

Fig. 1. The game GMIM, where A has access to the oracles OP,Cmt , OP,Rsp, OV,Ch , OV,Vrfy, which we denote with O,
and fb is the output after A terminates. (mP, cmtP ) is the state of the prover P, for which OP,Rsp outputs at most one
response rsp. LV is the state of the verifier V with concurrent access and LP stores all valid output tuples generated
by P.

prover, concurrent verifier Man-in-the-Middle (MIM) secure if for any ppt algorithm A

εA = Pr[GMIM(1κ,A) = 1] ≤ negl(κ),

where the probability is taken over the random coins of GMIM and εA is the success probability of
A. In Appendix C, we discuss user authentication, which is strictly weaker than message authenti-
cation.

3 Weak Pseudorandom Functions with Hidden Auxiliary Input

For a PRF, outputs for any set of inputs are indistinguishable from uniform. A wPRF weakens this
notion by demanding the pseudorandomness of outputs only for uniformly chosen inputs, but not
necessarily any set of inputs. In this work, we consider a generalization of wPRF’s which we call
weak pseudorandom functions with hidden auxiliary input (HIwPRF). This class of function takes
an additional input from a set R that remains unseen by a distinguisher.

4



Definition 3. [HIwPRF]. Let R be a set and F be a family of efficiently computable functions with
domain D×R and image I, which are functions in κ. F is called a family of HIwPRF’s if for f ← F,
oracles OF, OU,

OF : Sample r ← R, output a← D, t := f(r, a).
OU : Output a← D, t← I.

and any ppt algorithm A

εA = |Pr[AOF = 1]− Pr[AOU = 1]| ≤ negl(κ),

where the probabilities are taken over f ← F and the random coins of A, OF, OU. εA is the success
probability of A.

A HIwPRF is a potentially weaker primitive than a wPRF. If one allows a sufficiently large set
R, a HIwPRF f could be constructed unconditionally by defining f(r, a) := r. Since such a HIwPRF
does not seem to be useful, we require that |R| = O(poly(κ)) and |I| = Ω(2κ). In this setting, a
HIwPRF implies a one-way function and therefore there are generic constructions of a PRF from a
HIwPRF, though this would require a high computational depth with many HIwPRF evaluations for
a single PRF output.

A natural candidate of a HIwPRF is provided by Random Selection. One chooses |R| uniform
linear functions f1, . . . , f|R| from D to I and the HIwPRF candidate f would be f(r, a) := fr(a). In
Appendix A we give a formal definition of Random Selection and state known hardness results.

4 Secure Message Authentication

Let F be a sufficiently large finite field, e.g. |F| = O(2κ). For our proposed authentication protocol,
we need a PIP family from F → F, a PIH family from Cmt ×M → F and a HIwPRF family from
R × Cmt → F.

We define Gen, Rsp and Vrfy as follows, which is sufficient to fully describe a message authenti-
cation protocol.

Gen(1κ) : Sample f ← F, h← H, g ← PIP and output sk := (f, h, g).
Rsp(sk,m, cmt, ch) : Sample r ← R and output

rsp := g(f(r, cmt)) + ch · h(m, cmt) ∈ F.

Vrfy(sk,m, cmt, ch, rsp) : Outputs 1 iff ∃r ∈ R such that

rsp− ch · h(m, cmt) = g(f(r, cmt))

and otherwise 0.

The scheme is perfectly correct. For a given cmt, ch and m, there are exactly |R| many potential
outputs rsp of Rsp and Vrfy will compare rsp to all of them. The running time of Vrfy is polynomial
in |R| = O(poly(κ)). While this brute forcing approach seems to have a very negative impact on
the efficiency, the efficiency heavily depends on the length of the hidden auxiliary input, which is
relatively short. Further, this process is highly parallelizeable and in for example the Rfid setting,
it is carried out by a reader device for which a low computational complexity is not as critical as
it is for an Rfid chip.
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5 Security

Theorem 1. If F is HIwPRF, PIP is PIP and H is PIH, then the proposed protocol is MIM-secure. In
more detail, for every ppt algorithm A there exist a ppt algorithm D breaking the HIwPRF property
of F in time tD ≤ 2tA and Q ≤ 2QCmt queries with probability

εD ≥
1

2|R| ·QCmt ·Q2
Ch

Pr[GMIM(A) = 1]2 − negl(κ),

where QCh , QCmt , is an upper bound on the amount of queries that A makes to oracle OCh , OCmt

respectively, and R is the domain of the random input of F.

Proof. We use three games, GMIM, G1 and GU, which are shown in Figure 2. Any efficient adversary
with a non negligible success probability in GMIM also has a non negligible success probability in
G1 and GU.

An important aspect of G1 is that the HIwPRF is only evaluated for random inputs, but not
on adversarially chosen inputs. Therefore it is easy to replace HIwPRF values in G1 with uniform
values as in GU by using the pseudorandomness assumption of the HIwPRF. In GU crucial parts of
the secret key are information theoretically hidden such that no adversary can win the game with
a non negligible success probability.

The hardest part of the proof is the transition from GMIM to G1. In GMIM, the verification
oracle requires to evaluate HIwPRF on adversarially chosen inputs to determine the correctness of
a response rsp. G1 guesses the interaction of A with V at which A makes its first successful forgery.
This guess denoted with j is correct with good probability. If this is the case, previous responses
of A are either trivially correct, i.e. generated by P and hence contained in LP, or incorrect. Still,
checking the correctness of A’s forgery during interaction j is non-trivial and replaced by three
different strategies. An adversary A could simply use a HIwPRF evaluation used already by the
prover P. This case is easy to handle. More problematic is when an adversary generates a fresh
HIwPRF evaluation, i.e. which was not generated by P, by either choosing a fresh input or choosing
solely a fresh hidden auxiliary input. In these two cases, G1 will rewind A to different states, which
we denote with either A1 or A2. By a rewinding argument, A and A1, or A and A2 will use exactly the
same HIwPRF outputs, i.e. with the same input and hidden auxiliary input, with a good probability
if A is successful in GMIM. It turns out that it is sufficient to compare these two evaluations for
consistency. Any adversary that does not distinguish HIwPRF outputs from uniform, i.e. behaves
like in GU, is not able to answer consistently when being rewinded.

Lemma 3. For any algorithm A making at most QCh , QCmt , queries to OCh , OCmt respectively,
within GMIM,

Pr[G1(A) = 1] ≥ 1

2|R|QCmtQ2
Ch

Pr[GMIM(A) = 1]2,

where R is the domain of the hidden auxiliary input of F and the running time and the amount of
queries to OCmt of A in G1 is at most two times the running time and the amount of queries OCmt

of A in GMIM.

Proof. In G1, A, A1, A2 are invoked with partially identical random coins. Therefore, we are more
explicit about how G1 uses its random tape T to generate a secret key sk and run A, A1, A2 and
the oracles O, O1 and O2. Let T = (T0,T1,T2,T5) = (T3,T4,T2,T5) be the random tape of G1.
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GMIM,1,U(1κ,A):

fb := 0;
(mP, cmtP) := (⊥,⊥);
LP ∪ LV := ∅;
(f, h, g0)← Gen(1κ);
g := g0; sk := (f, h, g);
Return fb ← AO(1κ) \MIM
j ← [QCh ]; ` := 0; rew := 0; \1,U
(fb, fj , cmt`, f`, rew)← AO(1κ); \1,U
If(rew = 0) Return fb \1,U
If(rew = 2) g2 ← PIP; g := g2; \1,U

(mP, cmtP) := (⊥,⊥); \1,U
LP ∪ LV := ∅; \1,U

f ′j ← AOrew
rew (1κ); \1,U

Return f ′j = fj \1,U

OP,Cmt(m):

cmt← Cmt ;
rP ← R;
uP ← F; \U
mP := m;
cmtP := cmt;
Return cmt

OP,Cmt,2(m):

If `th query
Then cmt := cmt`;
Else cmt← Cmt ;
rP ← R;
uP ← F; \U
mP := m;
cmtP := cmt;
Return cmt

OP,Rsp(ch):

If((mP, cmtP) ∈ LP) Return ⊥

x := g(f(rP, cmtP)); \MIM, 1
x := g(uP); \U
rsp := x + ch · h(cmtP,mP);
LP := LP ∪ {(mP, cmtP, ch, rsp)};
Return rsp

OP,Rsp,2(ch):

If((mP, cmtP) ∈ LP) Return ⊥
If cmtP = cmtA
Then x := f`;
Else x := g(f(rP, cmtP)); \1

x := g(uP); \U
rsp := x + ch · h(cmtP,mP);
LP := LP ∪ {(mP, cmtP, ch, rsp)};
Return rsp

OV,Ch(m, cmt):

If jth query
Then mj := m

cmtj := cmt
ch← Ch
LV := LV ∪ {(m, cmt, ch)};
Return ch

OV,Vrfy(m, cmt, ch, rsp):

If((m, cmt, ch) 6∈ LV) Return ⊥
b := [∃r ∈ R : rsp = g(f(r, cmt)) + ch · h(cmt,m)]; \MIM
b := [(m, cmt, ch, rsp) ∈ LP]; \1,U
If ((mj , cmtj) = (m, cmt)) ∧ (cmt ∈ LP) \1,U
Then fj := g−1(rsp− h(cmt,m)ch); \1,U

Set m′, ch′, rsp′ s.t. (m′, cmt, ch′, rsp′) ∈ LP \1,U
f ′ := g−1(rsp′ − h(cmt,m′)ch′); \1,U
b := [f = f ′]; \1,U
If b = 0 \1,U
Then Set ` s.t. cmt was `th output of OP,Cmt\1,U

(cmt`, f`, rew) := (cmt, f ′, 2); \1,U
If ((mj , cmtj) = (m, cmt)) ∧ (cmt 6∈ LP) \1,U
Then fj := g−1(rsp− h(cmt,m)ch); \1,U

rew := 1 \1,U
fb := fb ∨ (b ∧ [(m, cmt, ch, rsp) 6∈ LP]);
LV := LV \ {(m, cmt, ch)};
Return b

Fig. 2. The games GMIM, G1 and GU. (fb, fj , cmt`, f`, rew) ← A denotes the state of (fb, fj , cmt`, f`, rew) after A’s
termination. While O1 is identical to O, O2 replaces OP,Cmt , OP,Rsp with OP,Cmt,2, OP,Rsp,2. A1 is A rewound to its
state after the jth query mj , cmtj is made to OV,Ch , where the state of P and V, (mP, cmtP, LP, LV), is rewound as
well. A2 is identical to A.
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G1 uses T0 til A makes the jth query to OCh . Afterwards it uses T1 til A’s termination. T2 is used
during the execution of A1. T3, which is a part of T0, is used to sample f and h of the secret key
sk. For sampling g and during the run of A, T4 is used, which consists of the remaining parts of
(T0,T1). G1 uses T5 to sample g2 and during the run of A2.

Now, we can model any interaction between A and the oracles as random variables in T. Of
particular interest is A’s jth query (mj , cmtj) to OV,Ch , where random variable j is uniformly
distributed over [QCh ]. We use chj to denote the output of this query and rspj is rsp of A’s next
query of the form (mj , cmtj , chj , rsp) to OV,Vrfy. Here we assume that A does not make trivial queries
where OV,Vrfy outputs ⊥. We also consider OV,Vrfy’s internal variable fj as a random variable.

Additionally, we define random variable X1 ∈ {0, 1} and X2 ∈ {0, 1},

X1 := [∃r : rspj = g(fj) + chj · h(mj , cmtj) ∧ (mj , cmtj , chj , rspj) 6∈ LP],

X2 := [cmtj ∈ LP].

Note that X1 is identical to bit fb of A running in GMIM. X2 determines which of the internal “if
loops” of OV,Vrfy is entered. In particular, X2 = 1 when cmtj was generated by P and X2 = 0 when
cmtj was generated by A. When cmtj ∈ LP, i.e. X2 = 1, then OP,Rsp has output a response for cmtj
and OV,Vrfy defines random variable f ′, which is a valid output of function f for input cmtj .

Since the oracles O, O1, O2 have the same output distribution, all the random variables that
we have considered so far have the same distribution during the executions of A, A1, A2. Therefore,
we use the same notation for the random variables, but consider the different underlying random
tapes.

From the description of G1 one can see that G1(T,A) outputs 1, if any of the three following
conditions are met.

X1(T0,T1) ∧ ¬X2(T0) ∧X1(T0,T2) ∧
(
fj(T0,T1) = fj(T0,T2)

)
, (1)

X1(T3,T4) ∧X2(T3,T4) ∧X1(T3,T5) ∧X2(T3,T5)

∧
(
fj(T3,T5) = fj(T3,T4) 6= f ′(T3,T4)

)
, (2)

X1(T3,T4) ∧X2(T0) ∧
(
fj(T3,T4) = f ′(T3,T4)

)
. (3)

In (1), rew = 1 and A, A1 output the same fj for the same cmtj , which is not contained in LP, i.e.
not an output of P. In (2), rew = 2 and A, A2 output the same fj for the same cmtj , which is in
LP, but differs from f ′ used by P’s response for cmtj . In (3), cmtj and fj are both identical to ones
used by P, but (mj , cmtj , chj , rspj) is not in LP.

Remark that G1 does not check if ∃r : rspj = g(fj) + chj ·h(mj , cmtj), therefore it might output
1 even if X1 = 0. This is not a problem, since we lower bound the probability for G1(A) = 1 with
the probability for GMIM(A) = 1. In the following, we consider each of the cases (1), (2), and (3)
separately and combine the bounds in the end. GMIM(A) = 1 implies that A makes a query for some
m′, cmt′, ch′, rsp′ to OVrfy such that there exists a r′ ∈ R such that

rsp′ = g(f(r′, cmt′)) + ch′ · h(m′, cmt′)),

and that will flip fb from 0 to 1. It is easy to see, that fb does not change anymore and hence we do
not need to take care what happens afterwards.

This query to OVrfy corresponds to a query (m′, cmt′) to OCh with output ch′. Let this be the
kth query to OCh . For any A, k is a random variable with range [QCh ]. If G1 guesses k correctly,
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i.e. j = k, the outcome of GMIM is identical to X1 for the same random tape.

We start with the first case, which refers to (1), to lower bound G1(A) = 1 when cmt 6∈ LP, i.e.
¬X2(T0). By (1),

PrT[G1(T,A) = 1 | ¬X2(T0)]

≥ Pr[X1(T0,T1) ∧X1(T0,T2) ∧ (fj(T0,T1) = fj(T0,T2)) | ¬X2(T0)],

which we split to

Pr[X1(T0,T1) ∧X1(T0,T2) | ¬X2(T0)] (4)

Pr[fj(T0,T1) = fj(T0,T2) | X1(T0,T1), X1(T0,T2),¬X2(T0)]. (5)

Without loss of generality 0 ∈ sup(X2). Then, by Lemma 1

Pr[k(T0,T1) = k(T0,T2) | ¬X2(T0)] ≥
1

QCh
.

Since j is independent and uniform over [QCh ], this yields

Pr[X1(T0,T1) ∧X1(T0,T2) | ¬X2(T0)]

≥ Pr[X1(T0,T1) ∧X1(T0,T2) ∧ j = k(T0,T1) = k(T0,T2) | ¬X2(T0)]

≥ 1

Q2
Ch

Pr[X1(T0,T1) ∧X1(T0,T2) | j = k(T0,T1) = k(T0,T2),¬X2(T0)].

j = k(T0,T1) = k(T0,T2) means that k is guessed correctly for A and for A2. Therefore, A, A2

behave like in GMIM and

Pr[X1(T0,T1) ∧X1(T0,T2) | j = k(T0,T1) = k(T0,T2),¬X2(T0)]

= Pr[GMIM(T0,T1,A) = 1 ∧ GMIM(T0,T2,A) = 1 | ¬X2(T0)]

and by Jensen’s Inequality

PrT[GMIM(T0,T1,A) = 1 ∧ GMIM(T0,T2,A) = 1 | ¬X2(T0)]

= ET0,T1,T2 [GMIM(T0,T1,A) = 1 ∧ GMIM(T0,T2,A) = 1 | ¬X2(T0)]

= ET0 (ET1 [GMIM(T0,T1,A) = 1 | ¬X2(T0)])
2

≥ (ET0,T1 [GMIM(T0,T1,A) = 1 | ¬X2(T0)])
2

= PrT[GMIM(A) = 1 | ¬X2(T0)]
2.

Since (4) is lower bounded by Pr[GMIM(A) = 1 | ¬X2(T0)]
2, w.l.o.g. 1 ∈ sup(X1(T0,T1) ∧

X1(T0,T2)).
Notice that for X1(T0,T1) = X1(T0,T2) = 1, rspj(T0,T1) and rspj(T0,T2) are valid and hence

fj(T0,T1) and f(T0,T2) are valid outputs of function f for input cmtj . Therefore fj has a range
of size of at most |R|, since there are at most |R| many outputs of f for input cmtj . By Lemma 1

Pr[fA(T0,T1) = fA(T0,T2) | X1(T0,T1), X1(T0,T2),¬X2(T0)] ≥
1

|R|
.
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This yields the bound for case ¬X2(T0), i.e. (1), which is

PrT[G1(T,A) = 1 | ¬X2(T0)] ≥
1

|R|Q2
Ch

PrT[GMIM(A) = 1 | ¬X2(T0)]
2.

In the second case, i.e. (2), we include the randomness for sampling cmt` and f` in random tape
T3. Then, the oracles O and O2 are identical. Notice that X2(T3,T4) 6= X2(T3,T5) could hold,
where by definition (T3,T4) = (T0,T1). By Jensen’s inequality, the probability that X2(T3,T4) =
X2(T3,T5) = 1, fj(T3,T4) 6= f`(T3) and fj(T3,T5) 6= f`(T3), which we will denote with

X6(T) := [X2(T3,T4) ∧X2(T3,T5) ∧ (fj(T3,T4) 6= f`(T3))

∧ (f`(T3,T5) 6= f`(T3))],

is sufficiently good:

Pr[X6(T)]

= ET3 (ET4 [X2(T3,T4) ∧ (fj(T3,T4) 6= f`(T3))])
2

≥ Pr[X2(T3,T4) ∧ (fj(T3,T4) 6= f`(T3))]
2.

Now, we give a bound for this case, i.e. (2). By (2),

PrT[G1(T,A) = 1 | X6(T)]

≥ Pr[X1(T3,T4) ∧X1(T3,T5) ∧ (fj(T3,T4) = fj(T3,T5)) | X6(T)],

which splits into

Pr[X1(T3,T4) ∧X1(T3,T4) | X6(T)] (6)

Pr[fj(T3,T4) = fj(T3,T5) | X1(T3,T4), X1(T3,T5), X6(T)]. (7)

As previously, we can bound (6) by

Pr[X1(T3,T4) ∧X1(T3,T5) | X6(T)]

≥ 1

Q2
Ch

Pr[GMIM(A) = 1 | X2(T3,T4), fj(T3,T4) 6= f`(T3)]
2.

For (7), we consider random variable `.

Pr[fj(T3,T4) = f`(T3,T5) | X1(T3,T4), X1(T3,T5), X6(T)]

≥ Pr[(fj(T3,T4) = fj(T3,T5)) ∧ (`(T3,T4) = `(T3,T5))

| X1(T3,T4), X1(T3,T5), X6(T)].

W.l.o.g., 1 ∈ sup(X1(T3,T4) ∧ X1(T3,T5) ∧ X6(T)). ` has a range of a size of at most QCmt . By
Lemma 1

PrT[`(T3,T4) = `(T3,T5) | X1(T3,T4) ∧X1(T3,T5) ∧X6(T)] ≥ 1

QCmt
.
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Further, under the condition `(T3,T4) = `(T3,T5),

cmtj(T3,T4) = cmt`(T3,T4) = cmt`(T3,T5) = cmtj(T3,T5)

holds and therefore for X1(T3,T4) ∧X1(T3,T5), fj(T3,T4) and fj(T3,T5) have the same range of
a size of at most |R|. W.l.o.g. 1 ∈ sup(`(T3,T4) = `(T3,T5)), which implies by Lemma 1

Pr[fj(T3,T4) = fj(T3,T5) | `(T3,T4) = `(T3,T5), X1(T3,T4),

X1(T3,T5), X6(T)] ≥ 1

|R|
.

Hence, we receive a bound for (7)

Pr[fj(T3,T4) = fj(T3,T5) | X1(T3,T4), X1(T3,T5), X6(T)] ≥ 1

|R|QCmt

and therefore also for (2)

Pr[G1(T,A) = 1 | X6(T)]

≥ 1

|R|QCmtQ2
Ch

Pr[GMIM(A) = 1 | X2(T3,T4), fj(T3,T4) 6= f`(T3)]
2.

In the third case, i.e. (3), where X2(T0) = 1 and fj(T0,T1) = f`(T0,T1), it is easy to obtain a
lower bound, we do not even need to consider rewinding, just j needs to be guessed correctly.

Pr[G1(A) = 1 | X2(T0), fj(T0,T1) = f`(T0,T1)]

≥ 1

QCh
Pr[GMIM(A) = 1 | X2(T0), fj(T0,T1) = f`(T0,T1)].

For the final bounds, we define three probabilities

ρ1 := PrT[¬X2(T0)],

ρ2 := PrT[X2(T0) ∧ (fj(T0,T1) 6= f`(T0,T1))],

ρ3 := PrT[X2(T0) ∧ (fj(T0,T1) = f`(T0,T1))].

and a random variable

X1∨3(T0,T1) := [¬X2(T0) ∨
(
X2(T0) ∧ (fj(T0,T1) = f`(T0,T1))

)
].

Notice that ¬X1∨3(T0,T1) = [X2(T0)∧(fj(T0,T1) 6= f`(T0,T1))]. Using the three bounds,
∑3

i=1 ρi =
1 and Lemma 2, we obtain

(1− ρ2) Pr[G1(A) = 1 | X1∨3]

= ρ1 Pr[G1(A) = 1 | ¬X2] + ρ3 Pr[G1(A) = 1 | X2(T0) ∧X1∨3]

≥ ρ1
|R|Q2

Ch

Pr[GMIM(A) = 1 | ¬X2]
2 +

ρ3
QCh

Pr[GMIM(A) = 1 | X2 ∧X1∨3]

≥ 1

|R|Q2
Ch

(ρ1 Pr[GMIM(A) = 1 | ¬X2]
2 + ρ3 Pr[GMIM(A) = 1 | X2 ∧X1∨3]

2)

≥ 1− ρ2
|R|Q2

Ch

Pr[GMIM(A) = 1 | X1∨3]
2.
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We apply again Lemma 2 and conclude with

Pr[G1(A) = 1]

= (1− ρ2) Pr[G1(A) = 1 | X1∨3] + ρ2 Pr[G1(A) = 1 | ¬X1∨3]

≥ (1− ρ2) Pr[G1(A) = 1 | X1∨3] + ρ22 Pr[G1(A) = 1 | XA,6]

≥ (1− ρ2)2 Pr[GMIM(A) = 1 | X1∨3]
2 + ρ22 Pr[GMIM(A) = 1 | ¬X1∨3]

2

|R|QCmtQ2
Ch

≥ 1

2|R|QCmtQ2
Ch

Pr[GMIM(A) = 1]2.

This concludes the proof of this lemma. ut

Now we can replace HIwPRF samples by uniform samples. Based on the assumption that f is
a HIwPRF, an adversary cannot distinguish G1 from GU. The next lemma proves this observation
and is identical to the lemmata of the previous proofs and therefore its proof is omitted.

Lemma 4. For any algorithm A, there is a distinguisher D that breaks the HIwPRF property of F
in time tD ≤ 2tA for Q ≤ 2QCmt queries with success probability

εD = |PrT[G1(T,A) = 1]− PrT[GU(T,A) = 1]|,

where tA is the running time of A, and QCmt a bound on its amount of queries to OCmt .

Proof. Notice that G1 and GU are almost identical with the difference that G1 evaluates f and GU

uses uniform values instead.

We construct a distinguisher D which breaks the HIwPRF hardness assumption if an adversary
A has a different success probability in G1 and GU. D receives access to an oracle O? and needs to
distinguish O? = OF from O? = OU. D simply samples h, g0, g2 but not f . To evaluate f it uses its
access to O? and therefore it can answer queries to OCmt and ORsp. Due to the rewinding, D needs
to query O? at most 2QCmt times. Everything else in G1 can be done without knowing f .

It is easy to see that if O? = OF, i.e O? outputs samples of the form cmt, f(r, cmt) for cmt ←
Cmt , r ← R, D simulates G1 and if t is uniform, D simulates GU. Hence, Pr[G1(A) = 1] is the
probability that D outputs 1 when O? = OF and Pr[GU(A) = 1] is the probability that D outputs
1 when O? = OU, which concludes the lemma. ut

In GU we exploit that h and g are hidden and an adversary needs to evaluate them in order
to forge successfully. From an adversaries view, h and g are not determined and hence to evaluate
them is infeasible such that the success probability of any algorithm is negligible in GU.

Lemma 5. For any algorithm A,

PrT[GU(T,A) = 1] ≤ 2

F
.

Proof. During the execution of A, the oracle OP,Rsp has the same output distribution when out-
putting uniform outputs u′ ← F. The same holds for A1 with one exception. Let (mP, cmtP) be the
rewound state of P. Let rspP be the response for mP, cmtP and chP during A’s execution. Then the
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response rsp′P generated for the query mP to OP,Cmt with output cmt′P and for a challenge ch′P has
distribution

rsp′P = rspP + (ch′P − chP) · h(mP, cmtP),

where rspj is uniform in F. As for A1, there is also a single exception for A2. Let m` be the `th
query to OP,Cmt with output cmt`, rsp` and ch` the corresponding response and challenge during
the execution of A. Let m′`, rsp

′
`, ch

′
` the to cmt` corresponding message, response and challenge

during A2’s run. Then rsp′` has distribution

rsp′` = g2(f`) + ch′` · h(m′`, cmt`),

where f` = g−10 (rsp` − h(m`, cmt`)ch`) and rsp` is uniform in F. Therefore, A,A1 learns at most
output h(mP, cmtP) of h and A,A2 learns at most output g2(g

−1
0 (rsp` − h(m`, cmt`)ch`)) of g2.

Let us now consider the winning probability of A. When A1 is invoked, i.e. rew = 1, GU outputs
1 if and only if fj = f ′j , which corresponds to

rspj − h(mj , cmtj)chj = rsp′j − h(mj , cmtj)ch
′
j .

This determines h(mj , cmtj) = (rspj − rsp′j)/(chj − ch′j), if ch′j − chj 6= 0, which is the case with
probability 1/|F|, since chj , ch

′
j are outputs of OV,Ch . Further cmtj 6= cmtP and therefore, for any

rspj , rsp
′
j , chj , ch

′
j 6= chj , h(mP, cmtP) ∈ F, (mj , cmtj), (mP, cmtP) 6= (mj , cmtj) ∈ DH,

Prh←H[h(mj , cmtj) = (chj − ch′j)
−1(rspj − rsp′j) | h(mP, cmtP)] ≤ 1

|F|

and hence, A wins in this case at most with probability 2
|F| .

When A2 is invoked, i.e. rew = 2, A wins if and only if f ′j = fj , or similarly iff

g2(fj) = rsp′j − h(m′j , cmt`)ch
′
j .

For this case f` 6= fj holds, but for any fj , f` 6= fj , rsp
′
j−h(m′j , cmt`)ch

′
j , u := rsp′`−h(m′`, cmt`)ch

′
` ∈

F, (mj , cmtj) ∈ DH,

Prg2←PIP[g2(fj) = rsp′j − h(m′j , cmt`)ch
′
j | g2(f`) = u] ≤ 1

|F| − 1
,

which upper bounds A’s winning probability by 2
|F| in this case.

In the last case, where A is not rewound, i.e. rew = 0, there is a tuple (m′, cmtj , ch
′, rsp) in set

LP. A wins if and only if

rspj − h(mj , cmtj)chj = rsp′ − h(m′, cmtj)ch.

and (mj , cmtj , chj , rspj) 6∈ LP. This implies that mj 6= m′ or chj 6= ch′. We first handle the case chj 6=
ch′ and mj = m′. h information theoretically hidden, therefore A wins for any rspj , rsp

′, chj , ch
′ 6=

chj ∈ F, (mj , cmtj) ∈ DH with probability

Prh←H[h(mj , cmtj) = (chj − ch′)−1(rspj − rsp′)] =
1

|F|
.
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Further, chj is sampled by OV,Ch which implies ch = 0 with probability 1
|F| . Hence, for any m′,mj 6=

m′ ∈M, cmtj ∈ Cmt , rspj , rsp
′, ch′, chj 6= 0, u := h(m′, cmtj) ∈ F

Prh←H[h(mj , cmtj) = ch−1j (rspj − rsp′ + ch′ · u) | h(m′, cmtj) = u] =
1

|F|
.

Hence, the success probability of any algorithm A is upper bounded by 2
|F| . ut

ut
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A Random Selection

Historically, the CCK protocols [CKK08] were using this principle of randomly selecting a linear
function to provide protection against adversaries in the RFID setting but without giving a security
reduction. These protocols were broken by Krause and Stegemann [KS09]. They gave an exponential
time algorithm to solve the problem of Learning Unions of L Linear Subspaces (LULS). Nevertheless,
this algorithm efficiently recovered the secret key of the CCK protocols. Krause and Hamann [KH12]
extended this work and introduced the Random Selection problem, which is a special case of the
LULS problem. Random Selection is defined as follows.

Definition 4. [Random Selection]. For parameters n,m, ` ∈ N, which are functions in κ, secrets
Si ← Zm×n2 for i ∈ [`] and oracles ORS, OU,

ORS : Sample i← [`], output a← Zn2 , t := Sia.
OU : Output a← Zn2 , t← Zm2 .

there is a search and a decisional problem:

An algorithm A solves search Random Selection if

εA = Pr[AORS(1κ) = (S1, . . . , S`)] > negl(κ).

An algorithm D solves decisional Random Selection if

εD = |Pr[DORS(1κ) = 1]− Pr[DOU(1κ) = 1]| > negl(κ).

The algebraic attack by [KH12] on search Random Selection has a running time of magnitude
2O(` logn), which is superpolynomial when n is linear and ` logarithmic in κ. Yet, it is not clear
whether decisional Random Selection is as hard as its search variant. For constructing a HIwPRF,
we need to rely on its decisional variant.
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B Proof of Lemma 1 and 2

Proof (Proof of Lemma 1). The proof is straightforward using Jensen’s Inequality.

Pr[XA(T0,T1) = XA(T0,T2) | X ′A(T0,T1) = X ′A(T0,T2) = y]

= ET0,T1,T2 [XA(T0,T1) = XA(T0,T2) | X ′A(T0,T1) = X ′A(T0,T2) = y]

=
∑
s∈S

ET0(ET1 [XA(T0,T1) = s | X ′A(T0,T1) = y])2

= |S |(Es←S ,T0(ET1 [XA(T0,T1) = s | X ′A(T0,T1) = y])2)

≥ |S |(Es←S ,T0,T1 [XA(T0,T1) = s | X ′A(T0,T1) = y])2 =
1

|S |
.

ut

Proof (Proof of Lemma 2). From the simple observation

(Pr[E0 | E1]− Pr[E0 | ¬E1])
2 ≥ 0

⇔ Pr[E0 | E1]
2 + Pr[E0 | ¬E1]

2 ≥ 2 Pr[E0 | E1] Pr[E0 | ¬E1],

we obtain for ρ1 = Pr[E1] and ρ2 = Pr[¬E1]

ρ1 Pr[E0 | E1]
2 + ρ2 Pr[E0 | ¬E1]

2

= ρ21 Pr[E0 | E1]
2 + ρ1ρ2(Pr[E0 | E1]

2 + Pr[E0 | ¬E1]
2) + ρ22 Pr[E0 | ¬E1]

2

≥ ρ21 Pr[E0 | E1]
2 + 2ρ1ρ2 Pr[E0 | E1] Pr[E0 | ¬E1] + ρ22 Pr[E0 | ¬E1]

2

= (ρ1 Pr[E0 | E1] + ρ2 Pr[E0 | ¬E1])
2 = Pr[E0]

2.

We use a similar approach to show the second inequality.

ρ21 Pr[E0 | E1]
2 + ρ22 Pr[E0 | ¬E1]

2

= ρ21 Pr[E0 | E1]
2 + ρ22 Pr[E0 | ¬E1]

2 + (1− 1)ρ1ρ2 Pr[E0 | E1] Pr[E0 | ¬E1]

=
(ρ1 Pr[E0 | E1] + ρ2 Pr[E0 | ¬E1])

2

2
+

(ρ1 Pr[E0 | E1]− ρ2 Pr[E0 | ¬E1])
2

2

≥ 1

2
Pr[E0]

2.

ut

C Secure User Authentication

Once we have a secure message authentication, secure user authentication is trivial. One could
simply use the message authentication protocol for a fixed message m. This will result in the
protocol in Figure 3. The correctness and security of a message authentication protocol need to
hold for any message m and will therefore also hold for any choice of the fixed message in the
protocol of Figure 3. Thus, the protocol in Figure 3 is correct and secure based on the correctness
and security of the applied message authentication protocol. When choosing the empty message,
the protocol is besides the pairwise independent permutation very similar to the Man-in-the-Middle
secure user authentication protocols of [LM13] for wPRFs, LPN and LWE.
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P(sk,m) V(sk,m)

cmt← Cmt

ch← Ch

rsp← Rsp(sk,m, cmt, ch) Vrfy(sk,m, cmt, ch, rsp)

cmt

ch
rsp

Fig. 3. A prover P and verifier V share a secret key sk and a fixed message m, which might be public. P will convince
V that he is authentic by sending a valid response rsp such that Vrfy outputs 1.
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