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Abstract

Oblivious RAMs, introduced by Goldreich and Ostrovsky [JACM’96], compile any RAM
program into one that is “memory oblivious”, i.e., the access pattern to the memory is indepen-
dent of the input. All previous ORAM schemes, however, completely break the locality of data
accesses (for instance, by shuffling the data to pseudorandom positions in memory).

In this work, we initiate the study of locality-preserving ORAMs — ORAMs that preserve
locality of the accessed memory regions, while leaking only the lengths of contiguous memory
regions accessed. Our main results demonstrate the existence of a locality-preserving ORAM
with poly-logarithmic overhead both in terms of bandwidth and locality. We also study the
tradeoff between locality, bandwidth and leakage, and show that any scheme that preserves
locality and does not leak the lengths of the contiguous memory regions accessed, suffers from
prohibitive bandwidth.

To the best of our knowledge, before our work, the only works combining locality and obliv-
iousness were for symmetric searchable encryption [e.g., Cash and Tessaro (EUROCRYPT’14),
Asharov et al. (STOC’16)]. Symmetric search encryption ensures obliviousness if each keyword
is searched only once, whereas ORAM provides obliviousness to any input program. Thus, our

work generalizes that line of work to the much more challenging task of preserving locality in
ORAMs.
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1 Introduction

Oblivious RAM [GO96, Gol87, SCSL11a], originally proposed in the seminal work by Goldreich
and Ostrovsky [GO96, Gol87], allows a client to outsource encrypted data to an untrusted server,
and access the data in a way such that the access patterns observed by the server are provably
obfuscated.

Thus far, the primary metric used to analyze ORAM schemes has been bandwidth which is
the number of memory blocks accessed for every logical access. After a long sequence of works
(e.g., [GO96,SCSL11a,SvDSt13, WCS15, PPRY18)) it is now understood that ORAM schemes can
be constructed incurring only logarithmic bandwidth [AKL™]; and moreover, this is asymptotically
optimal [GO96,LN18].

An important performance metric that has been traditionally overlooked in the ORAM literature
is data locality. The majority of real-world applications and programs exhibit a high-degree of data
locality, i.e., if a program or application accesses some address it is very likely to access also a
neighboring address. This observation has profoundly influenced the design of storage systems —
for example, commodity hard-drive and SSD disks support sequential accesses faster than random
accesses.

Unfortunately, existing ORAM schemes (e.g., [GO96,Gol87,SCSL11a,SvDS™ 13, WCS15,CLP14,
AKL™]) are not locality-friendly. Randomization in ORAMs is inherent due to the requirement to
hide the access pattern of the program, and ORAM schemes (pseudo-)randomly permute blocks
and shuffle them in the memory. As a result, if a client wants to read a large file consisting of O(N)
contiguous blocks, all known ORAM schemes would have to access more than (N log N) random
(i.e., discontiguous) disk locations, introducing significant delays due to lack of locality.

In this paper, we ask the question: can we design ORAM schemes with data locality? At first
sight, this seems impossible. Intuitively, an ORAM scheme must hide whether the client requests
N random locations or a single contiguous region of size N. As a result, such a scheme cannot
preserve locality, and indeed we formalize this intuition and formally show that any ORAM scheme
that hides the differences between the above two extreme cases must necessarily suffer from either
high bandwidth or bad locality.

However, this does not mean that providing oblivious data accesses and preserving locality
simultaneously is a hopeless cause. In particular, in many practical applications, it may already
be public knowledge that a user is accessing contiguous regions; e.g., consider the following two
motivating scenarios:

e Qutsourced file server. Imagine that a client outsources encrypted files to a server, and then
repeatedly queries the server to retrieve various files. In this case, each file captures a contiguous
region in logical memory. Note that unless we pad all files to the maximum size possible (which
can be very expensive if files sizes vary greatly), we would already leak the file size (i.e., length
of contiguous memory region visited) on each request.

e Qutsourced range query database. Consider an outsourced (encrypted) database system where a
client makes range queries on a primary search key, e.g., an IoT database that allows a client to
retrieve all sensor readings during a specified time range. We would like to protect the client’s
access patterns from the server. As previous works argued [KKNO17,CCMS19], in this case one
can leverage differential privacy to hide the number of matching records and it may be safe to
reveal a noisy version of the length of the contiguous region accessed.

Note that in both of the above scenarios, some length leakage seems unavoidable unless we always
pad to the maximum with every request — and this is true even if we employ ORAM to outsource



the files/database! Further, disk IO may be more costly than network bandwidth depending on the
deployment scenario: for example, if the server is serving many clients simultaneously (e.g., serving
many users from the same organization sharing a secret key, or if the server has a trusted CPU such
as Intel SGX and is serving multiple mutually distrustful clients), the system’s bottleneck may well
be the server’s disk I/O rather than the server’s aggregate bandwidth.

Motivated by these practical scenarios, we ask the following question.

Can we construct a bandwidth-efficient ORAM that preserves data locality while
leaking only the lengths of contiguous regions accessed?

We answer the question in the affirmative and prove the following result:

Theorem 1.1 (Informal). Let N be the size of the logical address space. There is an ORAM scheme
that makes use of only 2 disks and O(1) client storage, such that upon receiving a sufficiently long
request sequence containing T logical addresses, the ORAM can correctly answer the requests paying
only T - polylog N bandwidth; and moreover, if the T addresses requested contains £ discontiguous
regions, the ORAM server visits only £ - polylog N discontiguous regions on its 2 disks.

To the best of our knowledge, we are the first to consider and formulate the problem of locality-
friendly ORAM. Even formulating the problem turns out to be non-trivial, since it requires teasing
out the boundaries between theoretical feasibility and impossibility, and capturing what kind of
leakage is reasonable in practical applications and yet does not rule out constructions that are both
bandwidth-efficient and locality-friendly. Besides the conceptual definitional contributions, we also
describe novel algorithmic techniques that result in the first non-trivial locality-friendly ORAM
construction.

To help the reader understand the technical nature of our work, we point out that our problem
formulation in fact generalizes a line of work on optimizing locality in Searchable Symmetric En-
cryption (SSE) schemes. The issue of locality was encountered in recent implementations [CJJT13]
of searchable symmetric encryption in real-world databases, showing that the practical performance
of known schemes that overlook the issue of locality do not scale well to large data sizes. The prob-
lem of optimizing locality in searchable symmetric schemes has received considerable attention
recently (see, e.g., [CT14, ANSS16, DP17, ASS18, DPP18]). Our problem generalizes this line of
work, and achieving good locality in oblivious RAM is significantly more challenging due to the
following reasons: (1) In SSE, obliviousness is guaranteed only if each “file” is accessed at most
once (and the length of the file is also leaked in SSE)!; and (2) SSE assumes that rebuilding the
“server-side oblivious data structure” happens on a powerful client with linear storage, and thus
the rebuilding comes “for free”. We show, for the first time, how to remove both of these above
restrictions, and provide a generalized, full-fledged oblivious memory abstraction that supports
unbounded polynomial accesses and yet preserves both bandwidth and locality.

2 Technical Roadmap

In the following we provide a summary of results and techniques. In Section 2.1 we discuss our
modeling of locality. In Section 2.2 we discuss our lower bounds, providing tradeoffs between the
locality of a program, leakage and bandwidth. Towards introducing our construction, we start
in Section 2.3 with a warmup— oblivious sort with “good” locality. In Section 2.4 we introduce
range ORAM, our core building block for achieving locality, in which in Section 2.5 we overview its

Hntuitively, a file stores the identifiers of the documents matching a keyword search in SSE schemes.



construction. In Section 2.6 we overview a variant of Range ORAM, called “Online Range ORAM”,
which can also be viewed as a locality preserving ORAM.

2.1 A Generalized Model of Locality

How do we model locality of an algorithm (e.g., an ORAM or SSE algorithm)? A natural option is
to use the well-accepted approach adopted by the SSE line of work [CT14,ANSS16,ASS18,DPP18].
Imagine that every time an algorithm (e.g., SSE or ORAM) needs to read an item from disk, it
has two choices: (1) read the next contiguous address; and (2) jump to a new address (often called
“seek” in the systems literature). While both types of operations contribute to the bandwidth
measure; only the latter type contributes to the locality measure [CT14, ANSS16, ASS18, DPP18]
since seeks are significantly more expensive than sequential reads on real-world disks. We point
out that locality alone is not a meaningful measure since we can always achieve better locality and
minimize jumps by scanning through the entire memory extracting the values we want along the
way. Thus we always use locality in conjunction with a bandwidth metric too, i.e., how many blocks
we must must fetch from the disk upon each request. This model was adopted by the SSE line of
work, however, is very constraining in the sense that they assume that the server has access to only
1 disk. In practice, cloud-hosting services such as EC2 and Azure provide servers with multiple
disks. Constraining to such a single-disk model might rule out interesting cryptographic algorithms
of practical value. Therefore, we generalize the locality definition as follows.

Defining (D, ¢)-locality. We consider the scenario where the ORAM server may have multi-
ple (but ideally a small number) of disks, where eack disk still supports the aforementioned two
types of instructions: “read the next contiguous address” and “jump to a new address”. Henceforth,
we say that an ORAM scheme satisfies (D, ¢)-locality and 8 bandwidth cost iff for a sufficiently
long input sequence containing B requests spanning L non-contiguous regions, the ORAM server,
with access to D disks, may access at most 3 - B blocks and issue at most £ - L jump instructions.
Of course, the adversary can observe all disks, and all movements operations in these disks. We
refer the readers to Section 3.1 for the formal definition.

Under these new definitions, our result can be stated technically as “an ORAM scheme with
(2, poly log N)-locality and poly log N bandwidth (amortized) cost” where N is the total number of
logical blocks. Moreover, as mentioned, our ORAM scheme leaks only the length of each contiguous
region in the request sequence and nothing else (and as mentioned, some leakage is inherent if we
desire efficiency).

Open questions. Given our new modeling techniques and results, we also suggest several ex-
citing open questions, e.g., is it possible to have an ORAM scheme that achieves (1, ¢)-locality
and 8 bandwidth cost where £ and  are small? Can we compile source programs that exhibit
(D, ¢)-locality where D > 1 with meaningful leakage? For the former question, if there is a lower
bound that shows a sharp separation between 1 and 2 disks, it would be technically really intrigu-
ing. For the latter question, the constructions in this paper directly imply that if one is willing to
leak the disk each request wants to access, such schemes are possible. However, depending on the
practical application such leakage vary from reasonable to extremely harmful. Thus the challenge
is to understand the feasibility /infeasibility of achieving such compilation while hiding which disk
each request wants to access. We refer the reader to Section 7 for other open problems.



2.2 Locality with No Leakage

As we already discussed, preserving both bandwidth and locality with no leakage is impossible. We
formalize this claim, and study tradeoffs between leakage profiles and performance. We consider
schemes that leak only the total number of accesses (just as in standard ORAM?) and show that a
scheme with good locality must incur a high bandwidth, even when allowing large client-side space
blowup. We prove the following;:

Theorem 2.1. For any £,c < %, any (D, 0)-local ORAM scheme with ¢ blocks of client storage
that leaks no information (besides the total number of requests) must incur Q(%) bandwidth.

To intuitively understand the lower bound, consider a simplified case where the ORAM must
satisfy (1,1)-locality. Consider the following two scenarios: (1) requesting contiguous blocks at
addresses 1,2,...N; and (2) requesting blocks at random addresses. By the locality constraint,
in the former scenario the ORAM scheme can access only 1 contiguous region on 1 disk. Now
the oblivious requirement says that the address distributions under these two scenarios must be
indistinguishable, and thus even for the second scenario the ORAM server can only access a single
contiguous region too. Now, if each request’s address is generated at random, in expectation the
desired block is at least N/2 far from where the disk’s head currently is — and this holds no
matter how one arranges the contents stored on the disk, and even when the server’s disk may be
unbounded! Since the ORAM scheme must perform a single linear scan even in the second scenario,
it must read in expectation N/2 locations to serve each randomized request. Note that one key
idea in this lower bound proof is that we generate the request sequence at random in the second
scenario, such that even if the ORAM scheme is allowed to perform arbitrary, possibly randomized
setup, informally speaking it does not help. In Section 6, we make non-trivial generalizations to
the above intuition and prove a lower bound for generalized choices of D and /.

On leaking the lengths. Given our lower bound, our constructions presented next leak the
lengths of the accessed regions to achieve good locality. Before proceeding with our construction,
we remark the following points regarding this leakage: (1) The input program can always break
locality (say, via fictitious non-contiguous accesses) and therefore our scheme can be viewed as a
strict generalization of ordinary ORAM schemes. In other words, the user can choose to opt out of
the locality feature. (2) As we mentioned above, in many applications it is already public knowledge
that the client accesses contiguous regions. In those cases, the leakage is the same had we used
an ordinary ORAM [KKNO16]. (3) Finally, we stress that just like the case of ordinary ORAM,
our locality-friendly ORAM can be combined with differential privacy techniques as Kellaris et
al. [KKNO17] suggested to offer strengthened privacy guarantees.

Despite these arguments, in some applications with good locality, such leakage might be harmful.
For example, a program may access several regions of different lengths and which regions are
accessed depend on some sensitive data. Whether the locality feature of our scheme should be used
or not is application dependent, and we encourage using the locality feature only in places where
the leakage pattern is clear and is public information to begin with.

2.3 Warmup: Locality-Friendly Oblivious Sort

Before describing our main construction, we first introduce a new building block called locality-
friendly oblivious sort which we will repeatedly use. First, we observe that not all known oblivious

2We emphasize that many practical applications leak some more information even when using standard ORAM,
e.g., in the form of communication volume. See discussion in below.



sorting algorithms are “locality-friendly”. For example, algorithms such as AKS sort [AKS83]
and Zig-zag sort [Gool4] are described with a sorting circuit whose wiring has good randomness-
like properties (e.g., in AKS the wiring involve expander graphs, which have proven random-walk
properties), thus making these algorithms difficult to implement with small locality consuming a
small number of disks (while preserving the algorithm’s runtime).

Fortunately, we observe that there is a particular method to implement the Bitonic Sort [Bat68]
algorithm such that with only 2 disks, the algorithm can be accomplished using O(log?n) “jumps”
(note also that “natural” implementations of the Bitonic Sort circuit do not seem to have such
locality friendliness).

We defer the details of this specific locality-friendly implementation of Bitonic-Sort to Ap-
pendix A, stating only the theorem here:

Theorem 2.2 (Locality-friendly oblivious sort). Bitonic sort (when implemented as in Appendiz A)
is a perfectly oblivious sorting algorithm that sorts n elements using O(nlog®n) bandwidth and
(2, 0(log? n))-locality.

2.4 Range ORAM: An Intermediate, Relaxed Abstraction

We now start to give an informal exposition of our upper bound results. This is perhaps the most
technically sophisticated part of our work.

To achieve the final result, we will do it in two steps. In our final ORAM scheme (henceforth
called Online Range ORAM), the ORAM client receives the requests one by one in an online fashion,
and it is not informed a-priori when a contiguous scan would occur in the request sequence. That
is, it has exactly the same syntax as an ordinary ORAM, but when the client accesses contiguous
addresses, the online range ORAM has to recognize this fact, and fetch contiguous regions from the
memory. To reach this final goal, however, we need an intermediate stepping stone called Range
ORAM, which is an “offline” version of Online Range ORAM. In a Range ORAM, imagine that
the ORAM client receives a request sequence that can look ahead into the future, i.e., the client is
informed that the next len requests will scan contiguously through the logical memory.

More formally, in a Range ORAM, the ORAM client receives requests of the form Access(op, [s, t], data),
where op € {read,write}, s, € [N], s < t, and data € ({0,1}°)(=s+1) where b is the block size.
Upon each request, the client interacts with the server to update the server-side data structure and
fetch the data it needs:

e If op = read, at the end of the request, all blocks whose logical addresses belong to the range
[s,t] are written down in server memory starting at a designated address; the server may then
return the blocks to the client one-by-one in a single contiguous scan.

e If op = write, then imagine that the client has already written down a data array consisting
of t — s+ 1 blocks on the server in a designated, contiguous region; the client and the server
then perform interactions to update the server-side data structure to reflect that the logical
address range [s, t] should now store the contents of data.

Note that as described above, a Range ORAM is well-defined even for a client that has only O(1)
blocks of storage — and indeed we give a more general formulation by assuming O(1) client storage.

As for obliviousness, we require that the distribution of memory addresses accessed by the
Range ORAM can be simulated from the lengths of the accessed ranges only, which implies that
there is no other leakage other than these lengths. We prove the following theorem:



Theorem 2.3. There exists a perfectly secure Range ORAM construction consuming O(N log N)
space with (amortized) len - polylog N bandwidth and (2, polylog N)-locality, for accessing a range
of length len.

In comparison, for all existing ORAM schemes, accessing a single region of len contiguous
blocks involves accessing €)(len - log V) blocks residing at discontiguous physical locations. We now
overview the high level ideas behind our range ORAM construction.

Strawman scheme: read-only Range ORAM. Assuming that the CPU sends only read in-
structions, we can achieve locality and obliviousness as follows. The idea is to make replications
of a set of super-blocks that form contiguous memory regions. Specifically, let N' be a power of 2
that bounds the size of the logical memory. A size-2* super-block consists of 2¢ consecutive blocks
with the starting address being a multiple of 2/. We call size-1 blocks as “primitive blocks”. We
store log N different ORAMSs, where the i-th ORAM (for i = 0,...,log N — 1) stores all size-2!
(super-)blocks (exactly N/ 2% blocks of size 2! each). Since any contiguous memory region of length
2 is “covered” by two super-blocks of that length, reading any contiguous memory of length 2
region would boil down to making two accesses to the i-th ORAM.

However, this approach breaks down once we also need to support writes. The main challenge
is to achieve data coherency in different ORAMSs. Since there are multiple replicas of each data
block, either a write must update all replicas, or a read must fetch all replicas to retrieve the latest
copy. Both strategies break data locality.

2.5 Constructing Range ORAM

Range Trees. The aforementioned strawman scheme demonstrates the challenges we face if we
want a Range ORAM supporting both reads and writes. To achieve this we need more sophisticated
data structures.

We first describe a logical data structure called a Range Tree (without specifying at this point
how to actually store this logical Range Tree on physical memory). A Range Tree of size 2 is
the following (logical) data-structure: the leaves store 2¢ primitive blocks sorted by their (possibly
non-contiguous) addresses, whereas each internal node replicates and stores all blocks contained in
the leaves of its subtree. For example, in Figure 1, each of Ty, T1, T2 and T3 is a logical Range Tree
of sizes 1, 2, 4, 8 respectively. In such a Range Tree, each node at height j stores a super-block of
size 27 (leaves have height 0 and store primitive blocks).

Range ORAM’s data structure. As shown in Figure 1, our full Range ORAM (supporting
both reads and writes) will logically contain a hierarchy of such Range Trees of sizes 1,2,4,8,..., N,
denoted Ty, Ty,..., T respectively where L = O(log N). These trees form a hierarchy of stashes
just like in hierarchical ORAM [GO96, Gol87], i.e., each T; is a stash for T;;; which is twice as
large. Thus, if a block at some logical address is replicated multiple times in multiple Range Trees,
the copy in a smaller Range Tree is always more fresh (e.g., in Figure 1, notice that the block at
logical address 1 appears in both T3 and T3). Within each Range Tree, a logical block also appears
multiple times within super-blocks (or primitive blocks) of different sizes, but all these copies within
the same tree contain the same value.

We now specify how these logical Range Trees are stored in the physical memory. Basically, in
each Range Tree, all super-blocks at the same height will be stored in a separate ORAM — thus
an ORAM at height j of the tree stores super-blocks of size 2.



|4 56 7|:—>ORAM[T3,2}

ORAM(T3, 1]

ORAM(T3, 0]

[]

Figure 1: Hierarchy of range trees. Logically, data is divided into trees of exponentially
increasing sizes. In each tree block, a parent super-block stores the contents of both its children.
If a block appears in more than one tree, the smallest tree contains the freshest copy. The above
figure shows the state of the data structure after two accesses (read,5,2, 1) and (read, 1,2, L1). h
denotes height of a node in the Range Tree.

Besides the ORAMSs storing each height of each Range Tree, we also need an auxiliary data
structure that facilitates lookup. The client can access this data structure to figure out, for a re-
quested range [s, t], which super-blocks in a specific tree height intersect the request. This auxiliary
data structure is stored on the server in an ORAM, and it can be viewed as a variant of “oblivious
binary search tree”.

Fetch phase of the Range ORAM. Let us now consider how to read and write contiguous
ranges of blocks (i.e., implement the read and write operations of Range ORAM). Each request, no
matter read or write requests, proceed in two phases, a fetch phase and a maintain phase. We first
describe the fetch phase whose goal is to write down the requested range in a designated contiguous
space on the server.

Suppose that the range [s, t] is requested. Without loss of generality, assume that the length of
the range t — s + 1 = 2¢ (otherwise round it up to the nearest power of 2). Roughly speaking, we
would like to achieve the following effect:

e For every Range Tree at least 27 in size, we would like to fetch all size-2! super-blocks that
intersect the range requested — it is not difficult to see that there are at most two such
super-blocks.

e For every Range Tree smaller than 2° in size, we simply fetch the root.

e Write down all these super-blocks fetched in a contiguous region on the server, and then obliv-
iously reconstruct the freshest value of each logical address (using locality-friendly oblivious
sort).

Henceforth we focus only on the Range Trees that are at least 2 in size since for the smaller trees
it is trivial to read the entire root. To achieve the above, roughly speaking, the client may proceed
in the following steps. For each Range Tree that is not too small,

1. Look up the auxiliary data structure (stored on the server) to figure out which two super-
blocks to request in the desired height that stores super-blocks of size 2¢;

2. Fetch these two desired super-blocks from the corresponding ORAM and write down the
fetched super-block in a contiguous region (starting at a designated position) on the server’s
memory.



All these fetched super-blocks are written down on the server’s memory contiguously (including
the root nodes for the smaller Range Trees which we have ignored above). The client now relies on
oblivious sorting to reconstruct the freshest copy of each logical address requested, and the result
is stored in a designated contiguous region on the server.

Notice that the entire read procedure reads only polylogarithmically many contiguous memory
regions:

e Queries to the oblivious auxiliary data structure accesses polylogarithmically many “small”
metadata blocks using ordinary oblivious data structures;

e There are only logarithmically many requests to per-height ORAMs storing super-blocks of
size 2'. Using an ordinary ORAM scheme, this step requires reading polylogarithmically
many regions of size 2°. Here, since every super-block of size 2° is bundled together, we do
not need to read 2! separate small blocks from an ORAM, and this is inherently why the
algorithm’s locality is independent of the length of the range requested.

e The oblivious sorting needed for reconstruction also consumes polylogarithmic locality as
mentioned in Section 2.3.

Maintain phase of the Range ORAM. Inspired by the hierarchial ORAM [GO96, Gol87], here
a super-block fetched will be written to the smallest Range Tree that is large enough to fit this
super-block. If this Range Tree is full, we will then perform a cascading merge to merge consecutive,
full Range Trees into the next empty Range Tree.

During this rebuilding process, we must also maintain correctness, including but not restricted
to the following:

e for duplicated copies of each block, figure out the freshest copy and suppress duplicates; and
e correctly rebuild the oblivious auxiliary data structure in the process.

Without going into algorithmic details at this point, most of this rebuilding process can be
accomplished through a locality-friendly oblivious sorting procedure as mentioned earlier in Sec-
tion 2.3. However, technically instantiating all the details and making everything work together is
non-trivial. To enable this, we in fact introduce a new algorithmic abstraction, that is, an ordinary
ORAM scheme with a locality-friendly initialization procedure (see Section 4.3). We will use this
new building block to instantiate both the oblivious auxiliary data structure and each tree height’s
ORAM. In comparison with a traditional ORAM where rebuilding can be supported by writing
the blocks one by one (which will consume super-linear locality), here we would like to rebuild
the server-side ORAM data structure using a special locality-friendly algorithm upon receiving a
possibly large input array of the blocks. In subsequent technical sections, we show how to have
such a special ORAM scheme where initializing the server-side data structure can be accomplished
using locality-friendly oblivious sorting as a building block. We refer the reader to Section 5 for
the algorithmic details.

2.6 Online Range ORAM

Given our Range ORAM abstraction, we are now ready to construct Online Range ORAM. The
difference is that now, when the client receives request, it is unaware whether the future requests
will be contiguous. In fact, Online Range ORAM provides the same interface as an ordinary
ORAM: each request the client receives is of the form (op,addr,data) where op € {read,write},
and addr € [N] specifies a single address to read or write (with data). Yet the Online Range ORAM
must preserve the locality that is available in the request sequence up to polylogarithmic factors.



Roughly speaking, we can construct Online Range ORAM from Range ORAM as follows, by
using a predictive prefetching idea: when a request (containing a single address) comes in, the
client first requests that singe address. When a new request comes in, it checks whether the request
is consecutive to the address of the previous request. If so, it requests 2 contiguous blocks — the
specified address and also its next address. This can be done by requesting a range in Range
ORAM. If the next 2 requests happen to be contiguous, then the client prefetches the next 4 blocks
with Range ORAM; and if the requests are still contiguous, it will next prefetch 8 blocks with Range
ORAM. At any time if the contiguous pattern stops, back off and start requesting a region of size 1
again. It is not hard to see that the Online Range ORAM still preserves polylogarithmic bandwidth
blowup; moreover, if the request sequence contains a contiguous region of length len, it will be
separated into at most log(len) Range ORAM requests. Thus the Online Range ORAM’s locality
is only a logarithmic factor worse than the Range ORAM. The reader is referred to Section 5.5 for
further details.

2.7 Related Work

Related work on locality. Algorithmic performance with data stored on the disk has been
studied in the external memory models (e.g., [RW94, AFGV97,Vit01, Vit06] and references within).
Fundamental problems in this area include scanning, permuting, sorting, range searching, where
there are known lower bounds and matching upper bounds.

Relationship to locality-preserving SSE. Searchable symmetric encryption (SSE) enables
a client to encrypt an index of record/keyword pairs and later retrieve all records matching a
keyword. The typical approach (e.g., [CGKOO06, CK10, VLSD"10, KO13, KP13], and references
within) is to store an inverted index. Our work is inspired by recent works that study locality in
SSE schemes [CT14, ANSS16,DP17, ASS18, DPP18]. Our new locality ORAM formulation can be
viewed as a generalization of the one-time ORAM (with free rebuild) construct adopted in recent
SSE constructions.

In a concurrent work, Demertzis, Papadopoulos and Papamanthou [DPP18] also consider such a
one-time ORAM (with free rebuild) abstraction for an SSE application. In their construction, they
leverage as a building block a perfectly secure (multi-use) ORAM with O(1)-locality, by blowing up
the bandwidth to O(v/N) and the client storage to O(N?/3). This construction fails to preserve the
locality of the input program, and when accessing a region of size len will result in O(len)-locality,
and O(len-v/N)-bandwidth. In contrast, we achieve poly log N-locality and len-poly log N-bandwidth
when accessing a region of size len, and with O(1)-client space.

Oblivious RAM (ORAM). Numerous works [KLO12, WSC08, WS08, GM11, WS12, SCSL11a,
SvDST13, WCS15, WHC " 14, PPRY 18, AKL '] construct ORAMs in different settings. Most of
ORAM constructions follow one of two frameworks: the hierarchical framework, originally pro-
posed by Goldreich and Ostrovsky [GO96,Gol87], or the tree-based framework proposed by Shi et
al. [SCSL11a].

Up until recently, the asymptotically most efficient scheme was given by [KLO12], providing
O(log? N/loglog N) bandwidth. A recent improvement was given by Patel et al. [PPRY18], re-
ducing the bandwidth to O(log N - poly loglog N). The scheme of Asharov et al. [AKL™] achieves
O(log N) bandwidth, and matches the lower bounds given by Goldreich and Ostrovsky [GO96,
Gol87] and Larsen and Nielsen [LN18]. Further, the Goldreich-Ostrovsky lower bound is also



known not to hold when the memory (i.e., ORAM server) is capable of performing computa-
tion [AKST14,DvDF"16], which is beyond the scope of this paper.

In a subsequent work, Chakraborti et al. [CAC*19] show an ORAM called rORAM with good
locality and with O(log? N) bandwidth assuming Q(log? N) block size. Their scheme is based on
tree-based ORAM. The construction works with large client storage (i.e., linear in the sequential
data to be read/write), and reducing this client storage to O(1) would incur multiplicative poly
log N factors in locality and bandwidth in addition to using more disks to achieve locality.

3 Definitions

Notations and conventions. We let [n] denote the set {1,...,n}. We denote by p.p.t. proba-
bilistic polynomial time Turing machines. A function negl(-) is called negligible if for any constant
¢ > 0 and all sufficiently large X’s, it holds that negl(A) < A7¢. We let A denote the security
parameter. For an ensemble of distributions {D,} (parametrized with ), we denote by x < D)

a sampling of an instance according to the distribution D). Given two ensembles of distributions
N
{X)} and {Y)}, we use the notation {X,} E(E) {Y,} to say that the two ensembles are statistically

(resp. computationally) indistinguishable if for any unbounded (resp. p.p.t.) adversary A,

Pr [A(2) =1] - Pr [A(1%y) = 1” < e(N)
X YY)y

Throughout this paper, for underlying building blocks, we will use n to denote the size of the
instance and use A to denote the security parameter. For our final ORAM constructions, we use
N to denote the size of the total logical memory size as well as the security parameter — note
that this follows the convention of most existing works on ORAMs [GO96, Gol87, GM11, KL.O12,
SCSL11a,SvDS*13, WCS15].

3.1 Memory with Multiple Disks and Data Locality

To understand the notion of data locality, it may be convenient to view the memory as D rotational
hard drives or other storage mediums where sequential accesses are faster than random accesses.
The program interacting with the memory has to specify which disk to access. Each disk is equipped
with one read/write head. In order to serve a read or write request with address addr in some disk
d € [D], the memory has to move the read/write head of the disk d to the physical location addr to
perform the operation. Any such movement of the head introduces cost and delays, and the machine
that interacts with the memory would like to minimize the number of move head operations.
Traditionally, the latter can be improved by ensuring that the program accesses contiguous regions
of the memory. However, this poses a great challenge for oblivious computation in which data is
often continuously shuffled across memory.

More formally, a memory is denoted as mem|[N,b, D], consisting of D disks, indexed by the
address space [N] ={1,2,..., N}, where D - N is the size of the logical memory. We refer to each
memory word also as a block and we use b to denote the bit-length of each block. The memory
supports the following two types of instructions.

e Move head operation (move, d, addr) moves the head of the d-th disk (d € [D]) to point to
address addr within that disk.
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e A read/write operation (op,d,data), where op € {read,write}, d € [D] and data €
{0,1}° U {L}. If op = read, then data = L and mem should return the content of the block
pointed to by the d-th disk; If op = write, the block pointed to by the d-th disk is updated
to data. The d-th head is then incremented to point to the next consecutive address, and
wrapped around when the end of the disk is reached.

Locality. A sequence of memory operations has (D, ¢) worst-case locality if it contains ¢ move
operations to a memory that is equipped with D disks.

Examples. The above formalism enables us to distinguish between different degrees of locality,
such that:

e An algorithm that just accesses an array sequentially can be described using a program that
is (1,0(1))-local.

e An algorithm that computes the inner product of two vectors can be implemented with
(2,0(1))-local (but cannot be implemented with O(1) locality with 1 disk).

e An algorithm that merges two sorted arrays is (3,0(1))-local (and cannot be implemented
with O(1) locality with only 2 disks).

e An algorithm that makes N random accesses to an array is (D, ©(N))-local for any constant
number of D disks with overwhelming probability.

Relation to the standard memory definition. Instead of specifying which disk to read
from/write to, we can define a memory of range [D - N] = {1,...,D - N}. The address space
determines the disk index, and therefore also whether or not to move the read/write head. Thus,
one can consider the regular notion of a RAM program, and our definition provides a way to mea-
sure the locality of the program. Different implementations of the same functionality can have
different locality, similarly to other metrics.

3.2 Oblivious Machines

In this section, we define oblivious simulation of functionalities, either stateless (non-reactive) or
stateful (reactive). As most prior works, we consider oblivious simulation of deterministic function-
alities only. We capture a stronger notion than what is usually considered, in which the adversary
is adaptive and can issue request as a function of previously observed access pattern.

Warmup: Oblivious simulation of a stateless deterministic functionality. We con-
sider machines that interact with the memory via move and read/write operations. In case of
a stateless (non-reactive) functionality, the machine M receives one instruction I/ as input, in-
teracts with the memory, computes the output and halts. Formally, we say that the stateless
algorithm M obliviously simulates a stateless, deteministic functionality f w.r.t. to the leakage
function leakage : {0,1}* — {0,1}", iff

e Correctness: there exists a negligible function p(-) such that for every X and I, M(1*, 1) =
f(I) except with () probability.
e Obliviousness: there exists a stateless p.p.t. simulator Sim, such that for any A and I,

e(A
Addr(M (17, 1)) (E) Sim(1*, leakage(I)), where Addr(M (1*,1)) is a random variable denoting
the addresses incurred by an execution of M over the input I.
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A
Depending on whether E(E) refers to computational or statistical indistinguishability, we say

M is computationally or statistically oblivious. If €(-) = 0, we say M is perfectly oblivious. For
example, an oblivious sorting algorithm is an oblivious simulation of the functionality that receives
an array and sorts it (according to some specified preference function), where the leakage function
contains only the length of the array being sorted.

Oblivious simulation of a stateful functionality. We often care about oblivious simulation
of stateful functionalities. For example, the ordinary ORAM is an oblivious simulation of a logical
memory abstraction. We define a composable notion of security for oblivious simulation of a state-
ful functionality below. This time, the machine M, the simulator Sim, the functionality f and the
leakage function leakage are all interactive machines that might receive instructions as long as they
are activated, and each might maintain a secret state. Moreover, we explicitly introduce the distin-
guisher A, which is now also an interactive machine. In each step, the distinguisher A observes the
access pattern and selects the next command to perform. We write (out;,addr;) < M(I;), where
out; denotes the intermediate output of M for the instruction I;, and addr; denote the memory
addresses accessed by M when answering the instruction I;. We have:

Definition 3.1 (Adaptively secure oblivious simulation of stateful functionalities). Let M, leakage, f
be interactive machines. We say that M obliviously simulates a possibly randomized, stateful func-
tionality f w.r.t. to the leakage function leakage iff there exists an (interactive) p.p.t. simulator

Sim, such that for any non-uniform (interactive) p.p.t. adversary A, A’s view in the following two
real, M ideal, f

experiments, Expt , and Expt 4 ;>0 are computationally indistinguishable.
Expts M (1) Exptlyeyl (1Y)
outg = addrg = L outg = addrg = L
Fori=1,2,...poly(\): Fori=1,2,...poly(\):
I; ./4(1)‘, out;_q, addri,l) I; A(lA, out;_1, addri,l)
out;, addr; + M(IZ) out; < f([z)
addr; < Sim(leakage(1;))

In the above definition, if we replace computational indistinguishability with statistical indis-
tinguishability (or identically distributed resp.) and remove the requirement for the adversary
to be polynomially bounded, then we say that the stateful machine M obliviously simulates the
stateful functionality f with statistical (or perfect resp.) security. Besides the leakage of the
individual instruction, the simulator might have some additional information in the form of the
public parameters of the functionality. We also remark that Definition 3.1 captures correctness
and obliviousness simultaneously, and capture both deterministic and randomized functionalities.
We refer the reader to the relevant discussions in the literature of secure computation for the
importance of capturing correctness and obliviousness simultaneously for the case of randomized
functionalities [Can00, Gol04].

Our definition of oblivious simulation is general and captures any stateless or stateful function-
ality, and thus later in the paper, whenever we define any oblivious algorithm, it suffices to state 1)
what functionality it computes; 2) what is the leakage; and 3) what security (i.e., computational,
statistical, or perfect) we achieve. We use ordinary ORAM as an example to show how to use our
definitions.

Ordinary ORAM. As an example, a conventional ORAM, first proposed by Goldreich and Os-
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trovsky [Gol87], is an oblivious simulation of a “logical memory functionality”, parameterized by
(N,b), where N is the size of the logical memory and b is the block size:

e Functionality: The internal state of the functionality consists of an array mem € ({0, 1}%).
Upon each instruction of the form (op, addr, data), with op € {read, write}, addr € [N], and
data € {0,1}° U{L}, the functionality proceeds as follows. If op = write, then mem|addr] =
data. In both cases, the functionality returns memiaddr].

e Leakage: The simulator has the public parameters of the functionality — N and b. With
each instruction (op,addr,data), the leakage is just that an access has been performed.

We remark that previous constructions of ORAM [KLO12,SvDS"13, WCS15] in fact satisfy
Definition 3.1.

Bandwidth, and private storage of oblivious machines. Throughout the paper, we use
the terminology bandwidth to denote the total number of memory read/write operations of size
Q(log N) a machine needs to use. We assume the machine/algorithm has only O(1) blocks of
private storage.

Remark. In this paper, we focus on hiding the access patterns to the memory, but not the
data contents. Therefore, we do not explicitly mention that data is (re-)encrypted when it is ac-
cessed, but encryption should be added since the adversary can observe memory contents. That is,
while we assume that the adversary completely sees the instructions (move, d, addr) and (op, d, data)
that are sent to the memory, data should be encrypted. Note, however, that the adversary sees in
particular the contents and accesses of all disks.

4 Locality-Friendly Building Blocks

In this section, we describe several locality-friendly building blocks that are necessary for our
constructions.

4.1 Oblivious Sorting Algorithms with Locality

An important building block for our construction is an oblivious sorting algorithm that is locality-
friendly. In Appendix A, we describe an algorithm for Bitonic sort to achieve good locality, and
provide a detailed analysis.

Theorem 4.1 ((Theorem 2.2, restated) Perfectly secure oblivious sort with locality). Bitonic sort
(when implemented as in Appendix A) is a perfectly oblivious sorting algorithm that sorts n elements
using O(nlog®n) bandwidth and (2,0(log?n)) locality.

4.2 Oblivious Deduplication with Locality

We define a handy subroutine that removes duplicates obliviously. Y « Dedup(X,ny), where
X contains some real elements and dummy elements, and ny is some target output length. It
is assumed that each real element is of the form ((k,k’),v) where k is a primary key and £’ is a
secondary key. The subroutine outputs an array Y of length ny in which for each primary key k
in X, only the element with the smallest secondary key k' remains (possibly with some dummies
at the end). It is assumed that the number of primary keys k is bounded by ny-.
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Given a locality-friendly oblivious sort, we can easily realize oblivious Dedup with locality. We
obliviously sort X by the (k,k’) tuple, scan X to replace duplicates with dummies, and sort X
again to move dummies towards the end. Finally, pad or truncate X to have length ny and output.
The procedure is just few scans of the array and 2 invocations of oblivious sort, and therefore the
bandwidth and locality is the same as the oblivious sort. Concretely, using Theorem 4.1 this can
be implemented using O(]X|log? |X|)-bandwidth and (2, O(log? |X|))-locality.

4.3 Locally Initializable ORAM

In this section, we show that the oblivious sort can be utilized to define an (ordinary) ORAM
scheme that is also locally initializable.

A locally initializable ORAM is an ORAM with the additional property that it can be initial-
ized efficiently and in a locality-friendly manner given a batch of initial blocks. The syntax and
definitions of a locally initializable ORAM is the same as a normal ORAM, except that the first
operation in the sequence is a locality-friendly initialization procedure. More formally, a locally
initializable ORAM is an oblivious implementation of the following functionality, parametrized by
N and b:

e Secret state: an array mem of size N and block size b. Initially all are 0.

e T.Build(X) takes an input array X of |X| < N blocks of the form (addr;, data;) where each
addr; € [N] and data; € {0,1}° . Blocks in X have distinct integer addresses that are not
necessarily contiguous. The functionality has no output, but it updates its internal state: For

every i = 1,...,|X]| it writes mem[addr;] = data;.

e B « T.Access(op,addr,data) with op € {read,write}, addr € [N], and data € {O,I}b. If
op = write then mem[addr] = data. In both cases of op = read and op = write, return
mem/addr].

The leakage function of locally initializable ORAM reveals | X | and the number of Access operations
(as well as the public parameters N and b). Obliviousness is defined as in Definition 3.1 with the
above leakage and functionality.

Locality-friendly initialization. We now show that the hierarchical ORAM by Goldreich and
Ostrovsky [Gol87] can be initialized in a locality-friendly manner, i.e., how to implement Build with
(2,0(polylogn)) locality, where n = |X|. To initialize a hierarchical ORAM, it suffices to place
all the n blocks in the largest level of capacity n. In the Goldreich and Ostrovsky ORAM, each
block is placed into one of the n bins by applying a pseudorandom function PRF g (addr) where K
is a secret key known only to the CPU and addr is the block’s address. By a simple application
of the Chernoff bound, except with negl(\) probability, each bin’s utilization is upper bounded by
alog A for any super-constant function a. Goldreich and Ostrovsky [Gol87] show how to leverage
oblivious sorting to obliviously initialize such a hash table. For us to achieve locality, it suffices to
use a locality-friendly oblivious sort algorithm such as Bitonic sort. This gives rise to the following
theorem:

Theorem 4.2 (Computationally secure, locally initializable ORAM). Assuming one-way functions
exist, there exists a computationally secure locally-initializable ORAM scheme that has negl(\)
failure probability, and can be initialized with n blocks using (n + A) - polylog(n + X) bandwidth
and (2,polylog(n + X)) locality, and can serve an access using polylog(n + A) bandwidth and
(2, polylog(n + X)) locality.
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Notice that for ordinary ORAMs, since the total work for accessing a singe block is only poly-
logarithmic, obtaining polylogarithmic locality per access is trivial. Our goal later is to achieve
ORAMSs where even if you access a large file or large region, the locality is still polylogarithmic,
i.e., one does not need to split up the file into little blocks and access them one by one. Our
constructions later will leverage a locally initializable, ordinary ORAM as a building block.

5 Range ORAM

In this section, we define range ORAM and present a construction with poly-logarithmic bandwidth
and poly-logarithmic locality. The construction uses a building block which we call an oblivious
range tree (Section 5.2). It supports read-only range lookup queries with low bandwidth and good
locality. From an oblivious range tree, we show how to construct a range ORAM, which supports
reads and updates (Section 5.3). Then, we discuss statistical and perfect security in Section 5.4.
Finally, we extend Range ORAM to online Range ORAM (Section 5.5).

Our ORAM construction uses multiple disks only when it invokes an oblivious sort operation
(and Dedup operation which invokes an oblivious sort). Thus, for the following algorithms, it can
be assumed that the entire data is stored on a single disk. Multiple disks are used only transiently
using during an oblivious sort or a Dedup operation.

5.1 Range ORAM Definition

A Range ORAM is an oblivious machine that supports read/write range instructions, and interacts
with the memory while leaking only the size of the range. Formally, using Definition 3.1, Range
ORAM is defined as follows, parameterized by N and b:

Functionality: The internal state is an array mem of size N and blocksize b. Range ORAM takes
as input range requests in the form Access(op, [s, ], data), where op € {read,write}, s,t € [N],
s < t, and data € ({0,1}")=5+1_ If op = read, then it returns mem(s, ... t]. If op = write, then
mem][s, ..., t] = data.

Leakage: With each instruction Access(op;, [s;, ti], data;), range ORAM leaks t; — s; + 1.

5.2 Oblivious Range Tree

A necessary building block for construction Range ORAM is a Range Tree. An oblivious Range Tree
is a read-only Range ORAM with an initialization procedure from a list of blocks with possibly non-
contiguous addresses. Formally, it is an oblivious simulation of the following reactive functionality
with the following leakage (where obliviousness is defined using Definition 3.1):

Functionality: Formally, an oblivious Range Tree T supports the following operations:

e T.Build(X) takes in a list X of blocks of the form (addr,data). Blocks in X have distinct
integer addresses that are not necessarily contiguous. Store X as the secret state. Build has
no output.

e B <+ T.Access(read, [s,t], L) takes in a range [s, t] and returns all (and only) blocks in X that
has addr in the range [s,t]. We assume len =t — s + 1 = 2! is a power of 2 for simplicity.

Leakage: T.Build(X) leaks |X|. Each T.Access(read, [s,t], L) leaks t — s + 1.
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Figure 2: An oblivious Range Tree with Locality.

A logical Range Tree. For simplicity, assume n := |X| is a power of 2; if not, we simply
pad with dummy blocks that have addr = co. A logical Range Tree is a full binary tree with n
leaves. Each leaf contains a block in X, sorted by addr from left to right. Each internal node is
a super-block, i.e., blocks from all leaves in its subtree concatenated and ordered by addresses. A
height-i super-block thus has size 2¢. The leaves are at height 0, and the root is at height log, n.

Metadata tree. Each super-block in the logical Range Tree defines a range: [as, am,a;] where
as is the lowest address, a; is the highest address, and a,, is the middle address (the address of
the 2°=1-th block for a height-i super-block). We use another full binary tree to store the range
metadata of each super-block, henceforth referred to as the metadata tree. The metadata tree is a
natural binary search tree that supports the following search operations:

e Given a request range [s,t] with len :== t —s+1 = 2, find the leftmost and rightmost height-i
(super)-blocks whose ranges intersect [s,t], or return L if none is found.

Since t — s + 1 = 2¢, the leftmost and rightmost height-i (super-)blocks that intersect [s,t] (if they
exist) are either contiguous or the same node.

Next, to achieve obliviousness, we will put the metadata tree and each height of the logical
range tree into a separate ORAM, as shown in Figure 2.

Algorithm 5.1: T.Build(X). The Build algorithm takes a list of blocks X, constructs the logi-
cal Range Tree and metadata tree, and then puts them into ORAMs through local initialization
(Section 4.3).

1. Create leaves. Obliviously sort X by the addresses. Pad X to the nearest power of 2 with
dummy blocks that have addr = co. Let height[0] denote the sorted X, which will be the
leaves of the logical Range Tree.
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2. Create super-blocks. For each height ¢ = 1,2,..., L := log, n, create height-¢ super-blocks
by concatenating their two child nodes. Let height[i] denote the set of height-i super-blocks.
Tag each super-block with its offset in the height.

3. Create metadata tree. Let metadata be the resulting metadata tree represented as an
array, i.e., metadatali] is the parent of metadata[2i + 1] and metadata[2i + 2]. Tag each node
in the metadata tree with its offset in metadata.

4. Put each height and metadata tree in ORAMSs. For each height ¢ =0,1,..., L, let H;
be a locally initializable ORAM from Section 4.3, and call H;.Build(height[¢]) in which each
height-i super-block behaves as an atomic block. Let Hpyeta be a locally initializable ORAM,
and call Hyeta.Build(metadata).

Algorithm 5.2: T.Access(read, [s,t], L) (with len =t — s+ 1 = 2%)

1. Look up address. Call Hyeta-Access(-) 2L times to obliviously search for the leftmost and
rightmost height-i (super-)blocks in the logical Range Tree that intersects [s,t]. Suppose they
have addresses addr; and addre (which may be the same and may both be ).

2. Retrieve super-blocks. Call B; « H;.Access(read, addry, 1) and By < H;.Access(read, addry, 1)
to retrieve the two (super-)blocks.

3. Output. Remove blocks from By and Bs that are not in [s, ]. Output B = Dedup(B; || B2, len).

We prove the following theorem in the full version.

Theorem 5.3 (Oblivious Range Tree). Assuming one-way functions exist, there exists a compu-
tationally secure oblivious Range Tree scheme that has correctness except with negl(X) probability,
and

e Build requires n - poly log(n + \) bandwidth and (2, polylog(n + X)) locality,

e Access requires polylog(n 4+ \) bandwidth and (2, polylog(n + X)) locality.

Proof. We start with efficiency analysis and proceed to obliviousness.

Efficiency. The T.Build algorithm invokes the initialization procedure of O(log n) locally-initializable
ORAMSs (Section 4.3); the T.Access algorithm invokes a poly-logarithmic number of ORAM ac-
cesses, each having poly-logarithmic bandwidth and (2, poly logn) locality. It is also not hard to
see that the other steps in the above algorithms have O(n) bandwidth and (2, O(1))-locality.

Obliviousness. We first claim the existence of adaptive simulators Simg, ..., Simr, where Sim;
corresponds to ORAM H;. In addition, there exists a simulator Simmeta, corresponding to Hmeta,
Simpedyp for the algorithm Dedup, and Simget for the oblivious sorting algorithm. We construct a
simulator for satisfying Definition 3.1 where the function f,leakage are as defined above.

The simulator Sim. The simulator is online, receiving leakage of instructions from the adver-
sary and outputs memory distribution. With each instruction I:

e Build: Upon receiving leakage | X|, invoke Simgor and output its output. Then, restart all
simulators Simg,...,Sim; where Sim, is parameterized with block size 2¢ - b and leakage
| X/ 2¢ and output their output. Activate the additional simulator Simmets Wwith the input
|X'|. Output the outputs of all these simulators.

e Access: Upon receiving leakage corresponding to (t — s 4+ 1) = 2%, simulate an access to a
range [s, t]:

17



1. Invoke Simpeta for L accesses, simulating the accesses to the metadata ORAM, and
output them.

2. Since (t — s + 1) = 2!, we access the i-th level only. Invoke the simulator Sim; twice,
simulating two accesses to it, and appending the simulated instructions to the output.

3. Invoke Simpequp ON size 20,

The updated state of the simulator is simply the states of all activated simulators.

We show that Expt™®* (1)) is indistinguishable from Expt'9®®:/(1%) through a sequence of
hybrid experiments:

e Hyby(X): This is exactly the real execution. With each instruction I received from the
adversary, we hand it to the real construction to receive the memory addresses. In addition,
the construction interacts with the real memory and generates the output out; in each stage,
which is also given to the adversary.

e Hyb; (\): Same as Hyb;()\), where now the we use the Range Tree functionality in order to
produce the output out; in each step.

e Hyby (M) with £ € [L]: In this execution, upon receiving some instruction I from the
adversary, we proceed as follows:

1. Build(X): Perform Steps 1-3 in Algorithm 5.1. Then,
— For all ¢ < k, call to Sim;(]X|/2") as in the simulation.
— For all ¢ > k, perform H;.Build(height[i]).
2. Access(read, [s,t], L): (with t — s = 2¢), perform the following steps:
(a) Call Hpeta to obliviously search for the metadata addr;, addrs as in the real execution.
(b) If i <k, call to the simulator Sim; for simulating two accesses.
(c) If @ > k, then call to the real oblivious RAM H; to access both addr; and addrs.

In each step, output the concatenation of all memory address defined as above and proceed
to the next instruction.

e Hyb3(\): Same as Hyb, ; (A), except that the metadata ORAM is replaced with Simpeta.

e Hyby(X): Same as Hybs(\) except that we replace Dedup with Simpedyp.

e Hybg(\): Same as Hyb, () except that we replace the oblivious sort with Simsort.
As a result, the experiment uses only the leakage of the instruction, and this is exactly the
simulator Sim.

We show that for every adversary A, its view in each one of the hybrid experiment is indis-
tinguishable. Specifically, Hybs(A) is indistinguishable from Hyb,()A) due to the security of the
oblivious sorting algorithm. The view of the adversary in Hybs()\) is indistinguishable from its
view in Hybs(\), due to the security of the Dedup function.

The view of the adversary Hybs() is indistinguishable from Hyb, ; () due to the security of the
metadata ORAM. In a more detail, assume by contradiction that there exists an adversary A that
succeeds to distinguish between Hyb3(A) and Hyb, 7 (A). We show the existence of an adversary A’

that succeeds to distinguish between Exptj,al’MORAM(l)‘) and Exptﬁ,e‘rgli’n]:ﬁi‘:"(lk) as follows:

1. A’ is activated with input (1%, L, 1) and activates A on the same input.

2. Upon receiving an instruction I = Build(X) or I = Access(read, [s,t], L) from 4, the adver-
sary A’ simulates the hybrid experiment, in which all levels Ty,..., Ty are simulated using
Simg, ...,Simy, and invocations of Dedup and sort are the real constructions. In order to
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simulate instructions to Hpeta, A’ outputs that instruction to its own challenger, receives the
output and the memory addresses and uses them to answer A instruction I.

3. When A outputs a bit b distinguishing between Hybs(\) and Hyb, ; (), the adversary A" uses
this bit to distinguish between interacting with Simpneta and the corresponding real ORAM
construction.

Likewise, for every k € {0,...,L — 1} it holds that the view of the adversary in Hyby()) is
indistinguishable from Hyby \11()) due to the security of the k& + 1th ORAM. Finally, Hybs o(A, I)
and Hyb;()\) are indistinguishable due to the security of the ORAM Ty. Finally, Hyb,(\) and
Hyb,(A) are indistinguishable due to the correctness of the Range Trees. O

5.3 Range ORAM from Oblivious Range Tree

In this section, we show how to construct a Range ORAM from oblivious Range Tree scheme. Since
the underlying oblivious Range Tree has good efficiency /locality, so will the resulting Range ORAM.
The idea behind our construction is similar to that of the standard hierarchical ORAM [GO96,
Gol87]. Intuitively, where a standard hierarchical ORAM employs an oblivious hash table, we
instead employ an oblivious Range Tree.

Data structure. We use N to denote both the total size of logical data blocks as well as the secu-
rity parameter. There are log N + 1 levels numbered 0,1, ..., L respectively, where L := [logy N |
is the maximum level. Each level is an oblivious Range Tree denoted Tg, T1,..., Ty where T; has
capacity 2°. Data will be replicated across these levels. We maintain the invariant that data in
lower levels are fresher. At any time, each T; can be in two possible states, non-empty or empty.
Initially, the largest level is marked non-empty, whereas all other levels are marked empty.

Algorithm 5.4: Range ORAM Access(op, [s, t],data) (with ¢ — s + 1 = 2¢ for some 7).

1. Retrieve all blocks in range trees of capacity no more than 2¢, i.e., fetched := U;-;loTj. This
can be easily done by fetching its root. Mark blocks in fetched that are not in the range [s, ¢]

as dummy.
Each real block in fetched is tagged with its level number j as a secondary key so that later

after calling Dedup(fetched,t — s + 1), where Dedup is defined in Section 4.2, only the most
fresh version of each block remains. We assume each block also carries a copy of its address.
2. Foreach j =i,i+1,...,L,if T; is non-empty, let fetched = fetchedUT;.Access(read, [s, ], L).
3. Let data* := Dedup(fetched, 2). If op = read , then data* will be returned at the end of the
procedure. Else, data® := data.
4. If all levels < i are marked empty then perform T;.Build(data®) and mark it as ready. Other-
wise:
(a) Let ¢ denote the smallest level greater than ¢ that is empty. If no such level exists, let
{:= L.
(b) Let S := Ug;(l)Tj. If ¢ = L, additionally include S := SUTy. Call T,.Build(Dedup(S,2%))
and T;.Build(data®). Mark levels ¢ and i as non-empty, and all other levels below ¢ as
empty.

Example. We show a simple example for how levels are updated after some accessed. We as-
sume initially that all blocks are stored in the largest Range Tree. Consider the following sequence
of ranges [1, 1], 2, 3],[4, 5, 6, 6].
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e Access [1,1]: A block of size 1. Added to Ty.

e Access [2,3]: A block of size 2, and so i = 1. Levels < i are not empty. The smallest empty
level larger than ¢ = 1 is 2. Thus, move [1, 1] to Ty (which has capacity 4), and then put [2, 3]
to T1. At this point, Tg is empty and T; and T, are occupied.

e Access [4,5]: A block of size 2, and so i = 1. Levels < i are not empty. The smallest empty
level larger than ¢ = 1 is 3. Thus, move {1,2,3} to T3 (which has capacity 8), and then put
[4,5] to Ty1. At this point, To and Ty are empty, and T; and T3 are occupied.

e Access [6,6]: A block of size 1, and so i = 0. Levels < i are empty. [6,6] is added to Ty. At
this point, To is empty, and Ty, T1 and Tg are occupied.

Theorem 5.5 (Range ORAM). Assuming one-way functions exist, there exists a computation-
ally secure Range ORAM consuming O(N log N) space with negl(N) failure probability, and len -
polylog N bandwidth and (2, polylog N) locality for accessing a range of size len.

We remark that the both bandwidth and locality are in an amortized sense: for sufficiently
large amount of accesses of contiguous addresses leny, .. ., len,,, the total bandwidth is (3", len;) -
poly log N and locality is (2, m - polylog N).

Proof. We start with efficiency analysis and proceed to obliviousness.

Efficiency. We now analyze the efficiency and locality of our Range ORAM.

e Read phase. The read phase (Step 1 to 3) invokes one access to each of the O(logn) oblivious
Range Trees, and hence has len - poly log N bandwidth and (2, poly log N) locality.

e Rebuild phase. An alternative way to view our algorithm is to think all each levels’ empty
bit (where empty denotes 0 and non-empty denotes 1), when concatenated, form a binary
counter. Level i is rebuilt every 2! counter increments. Rebuilding a level 4 involves initializing
(building) the underlying oblivious Range Tree, which costs n - polylogn bandwidth and
locality where n = 2. Thus, the per-increment bandwidth for rebuilding is polylog N —
recall that NV is both the total logical memory size and the security parameter. It is not hard
to see that every time a memory range of size 2’ is requested, the counter’s value increases
by at most 3 - 2°. So the amortized bandwidth for rebuilding is O(len - polylog N) for an
access requesting len blocks. The locality of the rebuild phase is straightforward: every access
request involves rebuilding at most 2 levels.

Correctness. The key argument for correctness of Algorithm 5.4 is to ensure that for any address,
if it is stored at a smaller level, the smaller level contains fresher data. Let us show this by contra-
diction. Suppose this is violated, i.e., for some address addr, T; contains a fresher version than T;
(j > 4). When addr was written to T}, a stale version of addr is in T;. However, addr was written
to T; by either steps 4 or 4a. In both cases, all levels < ¢ were empty.

Obliviousness. Let Simg, ..., Simy, denote the simulators of the Range Trees. Let Simpegyp denote
the simulator for the Dedup algorithm. Consider the functionality of Range ORAM as defined in
Section 5.1. We show the existence of an online simulator Sim for Range ORAM, participating in

the experiment Exptije;lr’fa”geom'\" (1*), defined as follows:
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The simulator Sim. Upon initialization, initialize L + 1 bits corresponding to whether a level is
ready or empty. Mark all levels as empty, except for the last level. Invoke Simy, with leakage 2°.
Access: Upon receiving leakage(I) with leakage(I) = 2" for some integer i

1. For j =0,...,7— 1, access the memory locations devoted to Sim;.
2. For j =4,...,L, if the level j is marked ready, invoke the simulator Sim; on simulating an
access with leakage 2°.
3. Invoke the simulator Simpedyp(2°).
4. If all levels < 4 are marked empty, then invoke Sim; with Build and leakage 2. Otherwise,
(a) Let ¢ denote the smallest level greater than ¢ that is empty. If no such level exists, let
{=1L.
(b) Call SimDedup(2£). Terminate all running simulators Simg, . .., Simy; and mark all corre-
sponding bits as empty. Restart Simy with Build on leakage 2¢, and Sim; with leakage
2", and mark corresponding bits as ready.

The internal state of the simulator is the bits indicating whether a level is ready/empty, and the
internal states of the underlying simulators.

We show that the adversary cannot distinguish between a real execution and the ideal one. We
show that through a sequence of hybrids:

e Hyb,(A): This is exactly the real execution. Upon receiving instruction I = (op, [s, t], data)
from the adversary, we invoke Algorithm 5.4 and output the memory addresses it produces,
and out;.

e Hyb; (\): Same as Hyby(A) but the adversary receives in each step the output of the Range
ORAM functionality and not the output of the construction. The memory addresses are still
according to the construction.

e Hyb, ;(X) with & € {0,...,L}: In this hybrid, we replace all range trees 0,...,k — 1 with

simulators Simg, ..., Simg_1. ‘
Upon receiving some instruction I = (op, [s,t],data) with ¢ — s + 1 = 2* for some integer
i, we follow Algorithm 5.4. Whenever the algorithm performs T;.Build(X) for some j < k
and some X, we replace it with an invocation of Sim; for Build instruction with leakage | X|.
Whenever the Algorithm performs T;.Access, we invoke Sim; for Access with leakage 20

e Hyb3(\): Same as Hyb, ;(A), where here also the Dedup algorithm is replaced with Simpedup-
As a result, we do not use any information in the instruction I beyond leakage(I), and this is
exactly the simulator Sim.

We now claim that the view of the adversary in the experiment Hybs()) is indistinguishable
from its view in Hyby | (A) due to the security of the Dedup Algorithm. Likewise, for every k €
{0,..., L —1} it holds that the view of the adversary in Hyb; \()) is indistinguishable from its view
in Hyby k11()) due to the security of the k + 1th Tree ORAM. The views in Hyb, 4(A) and Hyb; (\)
are identical. Finally, the views in Hyb, () and Hyb,(\) are indistinguishable from the correctness
of the Range ORAM construction. O

5.4 Perfectly Security Range ORAM

The computational security in our construction is due to the use of a computationally secure locally
initializable hierarchical ORAM (Theorem 4.2).
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We can achieve perfect security by making the perfectly secure ORAM construction with poly-
logarithmic bandwidth in Chan et al. [CNS18] locally initializable.

For a hierarchical ORAM, within each level, the position of a data block is determined by
applying a PRF to the block’s logical address. To achieve perfect security, Chan et al. [CNS18]
replace the PRF with a truly random permutation. To access a block within a level, the client
must first figure out the block’s correct location within the level. If the client had linear storage,
it could simply store the locations (or position labels). To achieve small client storage, Chan et
al. recursively store the position labels in a smaller ORAMSs, similar to the idea of recursion in
tree-based ORAMSs [SCSL11b]. Thus, there are logarithmically many ORAMs (each is a perfectly
secure hierarchical ORAM), where the ORAM at depth d stores position labels for the ORAM at
depth d + 1; and finally, the ORAM at the maximum depth D = O(log N) stores the real data
blocks.

The Build procedure for one ORAM depth relies only on oblivious sorts and linear scans, and
thus consumes (2, poly log N) locality using locality-preserving Bitonic sort. The Build procedure
for one ORAM depth outputs its position map, which is subsequently used to initialize the next
ORAM depth. Thus, all ORAM depths combined can be initialized with (2, polylog N) locality.
Thus, we have the following theorem.

Theorem 5.6 (Perfectly secure Range ORAM). There exists a perfectly secure Range ORAM
consuming O(N log N) space, len - polylog N bandwidth and (2, polylog N) locality for accessing a
range of size len.

5.5 Online Range ORAM

So far, our range ORAM assumes an abstraction where we have foresight on how many contiguous
locations of logical memory we wish to access. We now consider an online variant, where the
memory requests arrive one by one just as in normal ORAM. Formally:

Functionality: A logical memory functionality that supports the following types of
instructions:

e (op,addr,data): where op € {read,write}, addr € [N] and data € {0,1}° U {L}.
If op = write, then write mem[addr] = data. In both cases, return memf[addr|.

Leakage: Consider a sequence of requests I = ((opy, addry, datay),. .., (op,, addr;, data;), .. .).
Each instruction leaks one bit indicating whether the last instruction is contiguous, i.e.,
for every i, the leakage is 1 iff addr; ;1 = addr; + 1.

Blackbox construction of online range ORAM from range ORAM. Given a range ORAM
construction, we can convert it to an online range ORAM scheme as follows, incurring only log-
arithmic further blowup. Intuitively, the idea is to prefetch a contiguous region of size 2% every
time a 2 contiguous region has been accessed. That is, if a contiguous region of overall size 2¥ is
being read, then it is fetched as k distinct blocks of size 1,2,4,8, ..., 2*. The detailed construction
is given below:

Let prefetch be a dedicated location in memory storing prefetched contiguous memory regions.
Initially, let rsize := 1, p = 1, and let prefetch := 1. Upon receiving a memory request:

o If prefetch[p] does not match the logical address requested, then do the following.
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1. First, write back the entire prefetch back into the range ORAM.
2. Next, request a region of length 1 consisting of only the requested logical address, store
the result in prefetch;
3. Reset p:=1 and rsize := 1;
e Read and write prefetch[p], and let p := p + 1.
o If p > rsize, then do the following.
1. First, let rsize := 2 - rsize.
2. Next, write prefetch back into the range ORAM.

3. Now, prefetch the next contiguous region containing rsize logical addresses, and store
them in prefetch, and let p := 1.

It is not hard to see that given the above algorithm, accessing each range of size R will be
broken up into at most O(log R) accesses, to regions of sizes 1,2,4,..., R respectively, and each
size has one read request and one write request. Security is straightforward as range ORAM is
oblivious, and the transformation between the leakage profiles of online range ORAM and range
ORAM is straightforward. Thus we have the following theorem.

Theorem 5.7 (Online Range ORAM). There exists a perfectly secure online Range ORAM, which
on receiving len consecutive memory locations online performs len-poly log N bandwidth and achieves
(2, polylog N) locality.

6 Lower Bound for More Restricted Leakage

In Section 5.5, the online range ORAM leaks which instructions form a contiguous group of ad-
dresses. In this section, we show that if we restrict the leakage and do not allow the adversary to
learn whether adjacent instructions access contiguous addresses, the lower bound for bandwidth to
achieve locality will be significantly worse.

Model assumptions. We first clarify the model in which we prove the lower bound.

1. We restrict the leakage such that the adversary knows only the number N of logical blocks
stored in memory, and the total number T of online operations, each of which has the form
(op, addr, data), where op € {read,write}, addr € [N] and data € {0,1}° U {L}.

2. Just like earlier ORAM lower bounds [GO96,Gol87, BN16]), we assume the so-called balls-
and-bins model, i.e., the blocks are opaque objects and the algorithm, for instance, cannot use
encoding techniques to combine blocks in the storage. Note that all known ORAM algorithms
indeed fall within this model.

3. We assume that the algorithm has an offline phase in which it can preprocess memory before
seeing any instructions. However, recall that the instructions are online, i.e., the algorithm
must finish serving an instruction before seeing the next one.

Notation. Recall that we use D to denote the number of disks (each of which has a single head),
¢ to denote the locality (where we consider the very general case ¢ < 1—]\6), m to denote the memory
size blowup?, and /3 to denote the bandwidth. Moreover, suppose the CPU has only ¢ block of local
cache, where we just need a loose bound ¢ < %. We shall prove the following theorem.

3However, as we shall see, m does not play a role in the lower bound.
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Theorem 6.1. For any ¢,c < %, any Online Range ORAM satisfying the restricted leakage that

has (D, £)-locality with ¢ blocks of cache storage will incur Q(%) bandwidth.

Proof Intuition. By our leakage restriction assumption, the adversary cannot distinguish between
the following two scenarios.

1. There are N operations that access contiguous addresses in the order from 0 to N — 1.

2. There are N operations, each of which access an address chosen independently uniformly at
random from [N].

Observe that to achieve (D, ¢)-locality, in scenario 1, there can be at most ¢ jumping moves for
the disk heads. Therefore, the same must hold for scenario 2. To serve an online request in scenario
2, we consider the following cases.

1. The block of the requested address is already in the cache. (However, the ORAM might still
pretend to do some accesses.) Observe this happens with probability at most £ < %0, since
the next requested address is chosen independently uniformly at random.

2. The online request is served by some disk head jump, which takes O(1) physical accesses.
Again, the ORAM might make other accesses to hide the access pattern. Observe at most
{< % requests can be served this way.

3. The online request is served by linear scan of the disk heads. By the Chernoff Bound, except
with e=©W) probability, at least % of the requests are served by linear scan. The following
lemma gives a stochastic lower bound on the number of physical accesses in this case.

For ease of notation, we assume that K := ND_ € is an integer.

Lemma 6.2 (Stochastic Lower Bound on the Number of Physical Accesses). Suppose in Scenario
2, the block of the next random address requested is not in the ORAM’s cache. Moreover, suppose
this request is served by only linear scan of disk heads, i.e., no jump move is made. Then, the
random variable of the number of physical accesses for serving this request stochastically dominates

the random variable with uniform distribution on {1,2,..., ND_C}.

Proof. Consider some configuration of the disk heads. Without loss of generality, assume that the
cache currently stores the blocks for exactly ¢ distinct addresses. For each of the remaining N — ¢
addresses, we can assign it to the disk head that takes a minimum number of accesses to reach a
corresponding block by linear scan, where a tie can be resolved arbitrarily. For each j € [D], let a;
be the number of addresses assigned to disk head j; observe that we have jep] @ = N —c.

For each integer 1 <1 < K = NE; €. observe that the number of addresses that take at least @
physical accesses to reach is at least };cpjmax{0,a; —i+ 1} > D - (K — i+ 1), where the last

equality holds when all a;’s equal K.

e . . . . D-(K—i+1) _ K—i+1
Hence, the probability that at least ¢ physical accesses is needed is at least —{—— = =5,

which implies the required result. O

(N)

Lemma 6.3 (Lower Bound on Bandwidth). Ezcept with probability at most e W) the average

number of physical accesses to serve each request in Scenario 2 is at least Q(%)

Proof. As observed above, except with at most e=®) probability, at least % of the online requests

must be served by linear scan of disk heads. By Lemma 6.2, the number of physical accesses for

(N)
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each such request stochastically dominates the uniform distribution on {1,2,..., NS €}, which has
expectation @(%), since we assume the cache size ¢ < %.

Since the addresses of the online requests are picked independently after the previous requests
are served, by Chernoff bound, except with probability e OW) | the average number of physical
accesses to serve each such online request is at least Q(%), as required. O

7 Conclusions and Open Problems

We initiate a study of locality in oblivious RAM. For conclusion, we obtain the following results:

e There is an ORAM scheme that makes use of only 2 disks, that preserves the locality of the
input program. Namely, if the input program accesses in total ¢ discontiguous regions, the
ORAM scheme accesses at most £- poly log IV discontiguous regions. Moreover, if the program
accesses in total T logical addresses, then the ORAM accesses in total T -poly log N addresses.
The ORAM leaks the sizes of the contiguous regions being accessed.

e Without leaking the sizes, we show a lower bound that the bandwidth of an oblivious program
must be (N), assuming O(1)-disks.

Open problems. We hope that our result will inspire future work on this topic. In the following,
we provide several open questions on further understanding the trade-off between locality and
bandwidth in oblivious compilation.

Preserving the number of disks. Our ORAM construction compiles (1, ¢)-local program
into (2, poly log N)-local program that is oblivious. Is it possible to achieve a compiler that preserve
the number of disks? We emphasize that our construction uses the second disk only in the oblivious
sorting, and it unclear whether sorting with (1, ¢ - poly log IV)-locality is possible to achieve.

Supporting more expressive input programs. Our motivated applications (e.g., out-
sourced file server, outsourced range query database), involve fetching some region from the mem-
ory and then accessing it in a streaming fashion. That is, we focused so far on supporting ORAM
for (1,¢)-local programs. A natural generalization is to construct an ORAM scheme that supports
more expressive input programs, such as (D, £)-local programs for D > 2. This allows, for instance,
computing inner products of D-arrays, or merging D-arrays. The input program sends to the mem-
ory instructions that also specify which disks to access, i.e., instructions of the form (move, d, addr)
and (op, d, data), as defined in Section 3. As we discuss further in the appendices of the online full
version [ACN™], depending on how we formulate the allowable leakage, the problem can be easy or
an open challenge.

Such an ORAM scheme can be constructed quite easily using online range ORAM, and moreover,
the ORAM even preserves the number of disks, i.e., it converts (D,¢)-local program to (D, -
poly log N)-local program. In a nutshell, the ORAM just holds D instances of online range ORAM
on each disk. Observe that each range ORAM mainly uses one disk and the second disks only
serves as a “workspace” for performing the oblivious sorts. We can reuse disks as the “workspaces”
for other disks, e.g., if the online range ORAM of disk 1 wants to sort an array, it uses disk 2 as
its workspace: It stores the current address in disk 2 and moves the head to a designated empty
place. When completing the sort, it restores the address of disk 2. It is easy to see that this at
most doubles the number of “jumps” in a simulation of an online range ORAM.

However, such a scheme not only reveals the lengths accessed in each disk, but also reveals
the interleaving pattern of the accesses, i.e., each access also reveals which disk is being accessed.
While this seems reasonable leakage for supporting, e.g., a program that computes inner product of
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two arrays, this leakage seems much more harmful in other computations, e.g., merging two sorted
arrays. Understanding what computations are reasonable while leaking the interleaving pattern, or
how to hide this pattern while preserving the number of disks, are intriguing open problems.

Locality preserving OPRAM. We have considered a single CPU in this work. A natural
question is whether we can extend the construction to support multiple CPUs, namely, to construct
an oblivious parallel RAM (OPRAM) that preserves locality.

Asymptotic efficiency. We have showed the theoretic feasibility of constructing a Range
ORAM with poly-logarithmic work and locality. In this feasibility result, we favored conceptual
simplicity over optimizing poly-logarithmic factors. Nevertheless, it is interesting to see to what
extent the constructions can be optimized. Perhaps locality-preserving ORAM can be constructed
with the same bandwidth efficiency as a regular ORAM?

Acknowledgments

This work was partially supported by a Junior Fellow award from the Simons Foundation to Gilad
Asharov. This work was supported in part by NSF grants CNS-1314857, CNS-1514261, CNS-
1544613, CNS-1561209, CNS-1601879, CNS-1617676, an Office of Naval Research Young Investiga-
tor Program Award, a Packard Fellowship, a Sloan Fellowship, Google Faculty Research Awards,
a VMWare Research Award, and a Baidu Faculty Research Award to Elaine Shi. Kartik Nayak
was partially supported by a Google Ph.D. Fellowship Award. T-H. Hubert Chan was partially
supported by the Hong Kong RGC under the grant 17200418.

References

[ACNT] Gilad Asharov, T-H. Hubert Chan, Kartik Nayak, Rafael Pass, Ling Ren, and Elaine
Shi. Locality-preserving oblivious ram. Online full version of this paper, https:
//eprint.iacr.org/2017/772.

[AFGV97] Lars Arge, Paolo Ferragina, Roberto Grossi, and Jeffrey Scott Vitter. On sorting
strings in external memory (extended abstract). In ACM Symposium on the Theory
of Computing (STOC ’97), pages 540-548, 1997.

[AKLT] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico, and
Elaine Shi. OptORAMa: Optimal oblivious RAM. Cryptology ePrint Archive, Report
2018/892.

[AKS83] M. Ajtai, J. Komlds, and E. Szemerédi. An O(N log N) sorting network. In ACM
Symposium on Theory of Computing (STOC '83), pages 1-9, 1983.

[AKST14] Daniel Apon, Jonathan Katz, Elaine Shi, and Aishwarya Thiruvengadam. Verifiable
oblivious storage. In Public Key Cryptography (PKC’14), pages 131-148, 2014.

[ANSS16] Gilad Asharov, Moni Naor, Gil Segev, and Ido Shahaf. Searchable symmetric encryp-
tion: optimal locality in linear space via two-dimensional balanced allocations. In ACM
Symposium on Theory of Computing (STOC ’16), pages 1101-1114, 2016.

[ASS18] Gilad Asharov, Gil Segev, and Ido Shahaf. Tight tradeoffs in searchable symmetric
encryption. In CRYPTO (1), volume 10991, pages 407-436, 2018.

[Bat68] K. E. Batcher. Sorting Networks and Their Applications. AFIPS ’68, 1968.

26


https://eprint.iacr.org/2017/772
https://eprint.iacr.org/2017/772

[bit]

[BN16]

[CAC+19]

[Can00]

[CCMS19]

[CGKOO6]

[CJI*13]

[CK10]

[CLP14]

[CNS18]

[CT14]

[DP17]

[DPP18]

[DvDF+16]

[GM11]

Bitonic sorter. https://en.wikipedia.org/wiki/Bitonic_sorter. Online; accessed
October 2018.

Elette Boyle and Moni Naor. Is there an oblivious RAM lower bound? In ACM
Conference on Innovations in Theoretical Computer Science (ITCS ’16), pages 357—
368, 2016.

Anrin Chakraborti, Adam J. Aviv, Seung Geol Choi, Travis Mayberry, Daniel S. Roche,
and Radu Sion. rORAM: Efficient Range ORAM with O(log? N) Locality. In Network
and Distributed System Security (NDSS), 2019.

Ran Canetti. Security and composition of multiparty cryptographic protocols. J.
Cryptology, 13(1):143-202, 2000.

TH Hubert Chan, Kai-Min Chung, Bruce Maggs, and Elaine Shi. Foundations of
differentially oblivious algorithms. In Symposium on Discrete Algorithms (SODA),
2019.

Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable sym-
metric encryption: improved definitions and efficient constructions. In ACM Confer-
ence on Computer and Communications Security (CCS ’06), pages 79-88, 2006.

David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin
Rosu, and Michael Steiner. Highly-scalable searchable symmetric encryption with
support for boolean queries. In Advances in Cryptology - CRYPTO 2013. Proceedings,
Part I, pages 353-373, 2013.

Melissa Chase and Seny Kamara. Structured encryption and controlled disclosure. In
Asiacrypt, pages 577-594. Springer, 2010.

Kai-Min Chung, Zhenming Liu, and Rafael Pass. Statistically-secuare ORAM with
O(log2 n) overhead. In Asiacrypt, 2014.

T.-H. Hubert Chan, Kartik Nayak, and Elaine Shi. Perfectly secure oblivious parallel
RAM. In Theory of Cryptography Conference (TCC), 2018.

David Cash and Stefano Tessaro. The locality of searchable symmetric encryption. In
Advances in Cryptology - EUROCRYPT 2014, volume 8441, pages 351-368, 2014.

Toannis Demertzis and Charalampos Papamanthou. Fast searchable encryption with
tunable locality. In SIGMOD Conference, pages 1053-1067. ACM, 2017.

Toannis Demertzis, Dimitrios Papadopoulos, and Charalampos Papamanthou. Search-
able encryption with optimal locality: Achieving sublogarithmic read efficiency. In

CRYPTO, 2018.

Srinivas Devadas, Marten van Dijk, Christopher W Fletcher, Ling Ren, Elaine Shi,
and Daniel Wichs. Onion ORAM: a constant bandwidth blowup oblivious RAM. In
TCC, 2016.

Michael T. Goodrich and Michael Mitzenmacher. Privacy-preserving access of out-
sourced data via oblivious RAM simulation. In ICALP, 2011.

27


https://en.wikipedia.org/wiki/Bitonic_sorter

[GOY6]

[Gol8T]

[Gol04]

[Gool4]

[KKNO16]

[KKNO17]

[KLO12]

[KO13]

[KP13]

[LN18]

[PPRY18]

[RW94]

[SCSL11a]

[SCSL11b]

[SvDS*13]

[Vit01]

[Vit06]

Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
RAMs. J. ACM, 1996.

O. Goldreich. Towards a theory of software protection and simulation by oblivious
RAMs. In STOC, 1987.

Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, 2004.

Michael T. Goodrich. Zig-zag sort: a simple deterministic data-oblivious sorting algo-
rithm running in o(n log n) time. In STOC, 2014.

Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. Generic attacks
on secure outsourced databases. In ACM CCS, pages 1329-1340, 2016.

Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. Accessing data
while preserving privacy. CoRR, abs/1706.01552, 2017.

Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security of hash-based
oblivious RAM and a new balancing scheme. In SODA, 2012.

Kaoru Kurosawa and Yasuhiro Ohtaki. How to update documents verifiably in search-
able symmetric encryption. In International Conference on Cryptology and Network
Security, pages 309-328. Springer, 2013.

Seny Kamara and Charalampos Papamanthou. Parallel and dynamic searchable sym-
metric encryption. In Financial Cryptography and Data Security, pages 258-274, 2013.

Kasper Green Larsen and Jesper Buus Nielsen. Yes, there is an oblivious RAM lower
bound! In CRYPTO, pages 523-542, 2018.

Sarvar Patel, Giuseppe Persiano, Mariana Raykova, and Kevin Yeo. Panorama: Obliv-
ious RAM with logarithmic overhead. FOCS, 2018.

Chris Ruemmler and John Wilkes. An introduction to disk drive modeling. IEEFE
Computer, 27(3):17-28, 1994.

Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM with
O((log N)3) worst-case cost. In ASTACRYPT, 2011.

Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious ram with
o((logn)3) worst-case cost. In ASTACRYPT, pages 197-214, 2011.

Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao
Yu, and Srinivas Devadas. Path ORAM — an extremely simple oblivious ram protocol.
In CCS, 2013.

Jeffrey Scott Vitter. External memory algorithms and data structures. ACM Comput.
Surv., 33(2):209-271, 2001.

Jeffrey Scott Vitter. Algorithms and data structures for external memory. Foundations
and Trends in Theoretical Computer Science, 2(4):305-474, 2006.

28



[VLSD"10] Peter Van Liesdonk, Saeed Sedghi, Jeroen Doumen, Pieter Hartel, and Willem Jonker.
Computationally efficient searchable symmetric encryption. In Workshop on Secure
Data Management, pages 87-100. Springer, 2010.

[WCS15]  Xiao Wang, T.-H. Hubert Chan, and Elaine Shi. Circuit ORAM: on tightness of the
goldreich-ostrovsky lower bound. In ACM Conference on Computer and Communica-
tions Security, pages 850-861. ACM, 2015.

[WHC'14] Xiao Shaun Wang, Yan Huang, T-H. Hubert Chan, Abhi Shelat, and Elaine Shi.
SCORAM: Oblivious RAM for Secure Computation. In C'CSS, 2014.

[WSO08] Peter Williams and Radu Sion. Usable PIR. In Network and Distributed System
Security Symposium (NDSS), 2008.

[WS12] Peter Williams and Radu Sion. Round-optimal access privacy on outsourced storage.
In ACM Conference on Computer and Communication Security (CCS), 2012.

[WSC08]  Peter Williams, Radu Sion, and Bogdan Carbunar. Building castles out of mud: practi-
cal access pattern privacy and correctness on untrusted storage. In CCS, pages 139148,
2008.

A Appendix: Locality of Bitonic sort

In this section, we first analyze the locality of Bitonic sort, which runs in O(nlog?n) time.
We call an array of numbers bitonic if it consists of two monotonic sequences, the first one
ascending and the other descending, or vice versa. For an array S, we write it as S if it is bitonic,

%
as S (resp. S) if it is sorted in an ascending (resp. descending) order.
The algorithm is based on a “bitonic split” procedure Split, which receives as input a bitonic

sequence :Siof length n and outputs a sorted sequence 5. Split first separates S into two bitonic
sequences S1, 99, such that all the elements in S; are smaller than all the elements in Sy. It then

calls Split recursively on each sequence to get a sorted sequence.
— %
Procedure A.1: S = Split(S)

— Let §1 = <min(a07an/2)>min(alaan/2+1)a o ,min(an/z—hanfl»-

— Let §2 = <maX(a0, an/2)7 max (a1, an/2+1)7 S maX(an/Q—l) an71)>'

S = Split(S1), S = Split(Sy) and & = (51, Sa).

Similarly, 5= m(g ) sorts the array in a descending order. We refer to [Bat68] for details.

To sort an array S of n elements, the algorithm first converts S into a bitonic sequence using
the Split procedures in a bottom up fashion, similar to the structure of merge-sort. Specifically, any
size-2 sequence is a bitonic sequence. In each iteration i = 1,...,logn — 1, the algorithm merges
each pair of size-2' bitonic sequences into a size-2!*! bitonic sequence. Towards this end, it uses
the STlI')C and % alternately, as two sorted sequences (?1, gg) form a bitonic sequence. The full
bitonic sort algorithm is presented below:

Algorithm A.2: BitonicSort(S)
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1. Convert S to a bitonic sequence: For ¢ =1,...,logn — 1:
(a) Let S = (So,...,S,/2i_1) be the size-2" bitonic sequences from the previous iteration.

) ~ — s ~
(b) For j =0,... ,n/2”1 -1, Bj = (Split(SQj), §p|it(52j+1)).
(c) Set S = (By,...,B,pi+1_1).
5. . . RIS .
2. The array S is now a bitonic sequence. Apply ? = Split(S) to obtain a sorted sequence.

Locality and obliviousness. It is easy to see that the sorting algorithm is oblivious, as allﬁ;
cesses to the memory are independent of the input data. For locality, first note that procedure Split
and % are (2,0(logn))-local. No move operations are needed between instances of recursions,
as these can be executed one after another as iterations (and using some vacuous reads). Thus,
Algorithm A.2 is (2,0(log?n))-local as it runs in logn iterations, each invoking S?M and m
Figure 3 gives a graphic representation of the algorithm for input size 8 and Figure 4 illustrates its
locality. The (2, O(log®n)) locality of Bitonic sort is also obvious from the figure.

Remark. Observe that in each pass of STIVE (or %), a min/max operation is a read-compare-write
operation. Thus, strictly speaking, each memory location is accessed twice for this operation — once
for reading and once for writing. When the write is performed, the read/write head has already
moved forward and is thus not writing back to the same two locations that it read from. Going back
to the same two locations would incur an undesirable move head operation. However, we can easily
convert this into a solution that still preserves (2, O(1))-locality for each pass of Split by introducing
a slack after every memory location (and thus using twice the amount of storage). In this solution,
every memory location a; is followed by a}; the entire array is stored as ((ag, ag), - - -, (an—1,0al,_1))
where a; stores real blocks and a] is a slack location. When a; and a; are compared, the results
can be written to a, and a;- respectively without incurring a move operation. Before starting the
next iteration, we can move the data from slack locations to the actual locations in a single pass,

thus preserving (2, O(1))-locality for each pass of Sm (and m)

O T B £l
W 3 T T
4 + A4

; v 11 x| ISuNL
7 dl 1 v vy v

Figure 3: Bitonic sorting network for 8 inputs. Input come in from the left end, and outputs are on the
right end. When two numbers are joined by an arrow, they are compared, and if necessary are swapped such that
the arrow points from the smaller number toward the larger number. This figure is modified from [bit].

Time
Pass 1 Pass 2 Pass 3
Disk 1 01 2 3 4 5 6 01 2 3 4 5 01 2 3 4 5 6
Disk 2 1 2 3 4 5 6 7 2 3 4 5 6 7 1 2 3 4 5 6 7
Operation ‘ il f 1 ‘ 1 ? ‘ ‘ 1 L ? ? ‘ 1 ¢ 1L ? 1 ?

Figure 4: Locality of Bitonic Sort for 8 elements. The figure shows the allocation of the data in the two
disks for an 8 element array. For each input, either a compare-and-swap operation is performed in the specified
direction or the input is ignored as denoted by L. The figure shows the first 3 passes out of the required 6 passes for
8 elements (see Figure 3).
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