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Abstract. We propose the first linear-space searchable encryption scheme with
constant locality and sublogarithmic read efficiency, strictly improving the pre-
viously best known read efficiency bound (Asharov et al., STOC 2016) from
Θ(logN log logN) to O(logγ N) where γ = 2

3
+ δ for any fixed δ > 0. Our

scheme employs four different allocation algorithms for storing the keyword lists,
depending on the size of the list considered each time. For our construction we
develop (i) new probability bounds for the offline two-choice allocation problem;
(ii) and a new I/O-efficient oblivious RAM with Õ(n1/3) bandwidth overhead
and zero failure probability, both of which can be of independent interest.

1 Introduction
Searchable Encryption (SE), proposed by Song et al. [27] in 2000, enables a data owner
to outsource a private dataset D to a server, so that the latter can answer keyword
queries without learning too much information about the underlying dataset and the
posed queries. An alternative to expensive primitives such as oblivious RAM and fully-
homomorphic encryption, SE schemes are practical at the expense of formally-specified
leakage. In typical SE schemes, the data owner prepares a private index which is sent
to the server. To perform a query on a keyword w, the data owner engages in a pro-
tocol with the server such that by the end of the protocol execution the data owner
retrieves the list of document identifiers D(w) of documents containing w. During this
process, the server should learn nothing except for the (number of) retrieved document
identifiers—referred to as (size of) access pattern—and whether the keyword search
query w was repeated in the past or not—referred to as search pattern.

To retrieve the document identifiersD(w) (also referred to as keyword list in the rest
of the paper), most existing SE schemes require the server access approximately |D(w)|
randomly-assigned memory locations [27,21,11,20,9,28]. While this random allocation
is essential for security reasons, it creates a big bottleneck when accessing large indexes
stored on disk—due to expensive I/Os. Therefore the aforementioned schemes cannot
scale for data stored on disk1 due to their poor locality—the number of non-contiguous
memory locations that must be read to retrieve the result.

Locality and Read Efficiency Trade-offs. One trivial way to design an SE scheme
that has optimal localityL = 1 is to have the client download the whole encrypted index
for every queryw. Unfortunately, such an approach requiresO(N) bandwidth, whereN

1 Demertzis and Papamanthou [13] recently showed that low-locality SE may improve practical
performance for in-memory data too, due to reduced number of server crypto operations.



is the total number of keyword-document pairs. Cash et al. [9] were the first to observe
this trade-off: To improve the locality of SE, one should expect to read additional entries
per query. The ratio of the total number of entries read over the size of the query result
was defined as read efficiency. This trade-off was subsequently formalized by Cash and
Tessaro [10] who showed it is impossible2 to construct an SE scheme with linear space,
optimal locality and optimal read efficiency.

In response to this impossibility result, several positive results with various trade-
offs have appeared. Cash and Tessaro [10] presented a scheme with Θ(N logN) space,
O(1) read efficiency and O(logN) locality, which was later improved to O(1) by
Asharov et al. [6]. Demertzis and Papamanthou [13] presented a scheme with bounded
locality O(N ε), O(1) read efficiency and linear space (for constant ε < 1). More re-
cently, Asharov et al. [5] studied the locality in Oblivious RAMs, proposing a construc-
tion that, for an arbitrary sequence of accesses (and therefore for SE as well), achieves
O(N) space, O(log2N log2 logN) read efficiency, and O(logN log2 logN) locality.3

Finally significant speedups due to locality in SE implementations have been observed
by Miers and Mohassel [22] and Demertzis and Papamanthou [12].

Constant Locality with Linear Space. Practical reasons described above have mo-
tivated the study of even more asymptotically-efficient SE schemes, and in particular
those with constant locality and linear space. Asharov et al. [6] presented two such SE
schemes: The first one (A1) has very low read efficiency Θ(log logN log2 log logN)
but is based on the assumption that all keyword lists D(w) in the dataset have size less
than N1−1/ log logN .4 The second one (A2) has Θ(logN log logN) read efficiency and
depends on no assumptions about the dataset. To the best of our knowledge, A2 is the
best SE scheme with O(1) locality and linear space known to-date for general datasets.

Our Contribution. Motivated by the above positive results and the impossibility re-
sult of [10], we ask whether it is possible to build an SE scheme with: (i) linear space,
(ii) constant locality, and (iii) sublogarithmic read efficiency. We answer this question
in the affirmative by designing the first such SE scheme, strictly improving upon the
best known scheme A2 [6]: For the rest of the paper we set γ = 2/3 + δ for δ > 0
arbitrarily small. We show that the read efficiency of our scheme read is O(logγ N) as
opposed to that of A2 which is Θ(logN log logN).

We finally note that parameter δ affects the constants in the asymptotic notation
which grow with O(1/δ).

1.1 Summary of Our Techniques
Our techniques (like previous works on low-locality SE) use the notion of an allocation
algorithm, whose goal is to store the dataset’s keyword lists in memory such that each

2 The result holds for a setting where lists D(w) are stored at non-overlapping positions.
3 While asymptotically worse than [6], this work has better security as it leaks no access pattern.
4 We tested this assumption for 4 real datasets: One containing crime records in Chicago since

2001 [1], the Enron email dataset [2], the USPS dataset [4] and the TPC-H dataset [3]. The as-
sumption was not violated only in the Enron email dataset. For the crimes dataset, for example,
the assumption was violated in 12 out of 21 attributes for 31% of the keywords on average.



keyword list D(w) can be efficiently retrieved by accessing memory locations indepen-
dent of the distribution the SE dataset—this is needed for security reasons. Common
techniques to achieve this is to store keyword lists using a balls-and-bins procedure [6].

Starting Point. We first observe that keywords lists of size less than N1−1/ log1−γ N ,
for some γ < 1, can be allocated using (as a black box) the parameterized version of
scheme A1 of Asharov et al. [6]. In particular we show in Theorem 6 that for γ=2/3+δ
scheme A1 yields Θ(logγ N) read efficiency, as desired. Therefore we only need to
focus on allocating the dataset’s keyword lists that have size > N1−1/ log1−γ N .

Our Main Technique: Different Allocation Algorithms for Different Size Ranges.
Let γ = 2/3 + δ as defined above. We develop three allocation algorithms for the re-
maining ranges: Lists with size in (N1−1/ log1−γ N , N/ log2N ], also called medium, are
allocated using an offline two-choice allocation procedure [25] and multiple stashes to
handle overflows. Lists with size in (N/ log2N,N/ logγ N ], also called large, are first
split into further subranges based on their size and then each subrange is allocated into
a separate array using the same algorithm. Finally, for lists with size in (N/ logγ N,N ],
also called huge, there is no special allocation algorithm: We just read the whole dataset.
We now provide a summary of our allocation algorithms for medium and large lists.

1.2 Medium Keyword Lists Allocation
Our allocation algorithm for medium keyword lists is using an offline two-choice allo-
cation (OTA),5 where there are m balls and n bins and for each ball two possible bins
are chosen independently and uniformly at random. After all choices have been made,
one can run a maximum flow algorithm to find the final assignment of balls to bins such
that the maximum load is minimized. This strategy yields an almost perfectly balanced
allocation (where max-load ≤ dm/ne+ 1) with probability at least 1−O(1/n) [25].

Central Idea: One OTA Per Size and Then Merge. We use one OTA separately for
every size s that falls in the range (N1−1/ log1−γ N , N/ log2N ] as follows: Let As be an
array of M buckets As[1],As[2], . . . ,As[M ], for some appropriately chosen M . One
can visualize a bucket As[i] as a vertical structure of unbounded capacity. Let ks be the
number of keyword lists of size s and let bs = M/s be the number of superbuckets
in As, where a supebucket is a collection of s consecutive buckets in As. We perform
an OTA of ks keyword lists to the bs superbuckets. From [25], there will be at most
dks/bse + 1 lists of size s in each superbucket with probability at least 1 − O(1/bs),
meaning the load of each bucket due to lists of size s will be at most dks/bse+ 1 with
the same probability, given there are s buckets in a superbucket.

Our final allocation merges arrays As for all sizes s corresponding to medium key-
word lists into a new array A of M buckets—see Figure 6. To bound the final load of
each bucket A[i] in the merged array A one can compute

∑
s(dks/bse + 1) which is

O(N/M +logγ N)—see Lemma 4. If we setM = N/ logγ N , our allocation occupies
linear space and each bucket A[i] has load O(logγ N)—thus to read one list, one reads
the two superbuckets initially picked by the OTA yielding read efficiency O(logγ N).

5 Deriving the results of this paper using the, more lightweight, online version of the problem is
an interesting open problem. Section 7 elaborates on the difficulties that arise in that case.



Handling Bucket Overflows with Additional Stashes. Our analysis above assumes
the maximum load of each bucket is at most dks/bse+1. However, there is a noticeable
probability O(1/bs) of overflowing beyond this bound—this will cause our allocation
to fail, leaking information about the dataset. To deal with this problem, for each size
s, we place the lists of size s that overflow in a stash Bs (at the server) that can store
up to O(log2N) such overflowing lists. In particular we prove that when the OTA
described previously is performed for medium lists, at most O(log2N) lists of size s
overflow with non-negligible probability and thus our stashes Bs suffice, see Lemma 5.
We also stress that we need the condition s ≤ N/ log2N to keep the space of the stashes
linear—see Theorem 7, justifying the pick ofN/ log2N as endpoint of the range where
we apply OTA. Finally, the existence of stashes Bs differentiates our allocation from
those of [6], allowing us to avoid their impossibility result (see discussion in Section 7).

New Probability Bounds for OTA. Our proof for the O(log2N) stash size extends
the analysis of [25] non-trivially—we prove two new results in Section 3: First, in The-
orem 1 we show that in an OTA, the probability > τ bins overflow decreases with
(1/τ)τ . For this proof we show the 0/1 random variables indicating bin overflow are
negatively associated [14]. Second, in Theorem 2 we show the probability an OTA of
m balls to n bins yields a maximum load of > dm/ne+ τ is ≤ O(1/n)τ + exp(−n).
Accessing Stashes Obliviously. Because keyword lists of size s might now live in
the stash Bs, retrieving a keyword list D(w) is a two-step process: First, access the
superbuckets that were initially assigned by the OTA and then access a position x in
the stash. In case D(w) is not in the stash (because it was not an overflowing list), x
should be still assigned a stash position chosen from the unoccupied ones, if such a
position exists. If not, there will be a collision, in which case the adversary can deduce
information about the dataset distribution, e.g., that the dataset contains at least log2N
lists of size |D(w)|. To avoid such leakage, the stash must be accessed obliviously.

New ORAM with o(
√
n) Bandwidth, O(1) Locality & Zero Failure Probability.

Since the stash has only log2N entries of size |D(w)| each, one can access it obliviously
by reading it all. But this increases read efficiency to log2N , which is no longer sublog-
arithmic. Thus we need an ORAM with (i)O(1) locality, (ii) o(

√
n) bandwidth and (iii)

zero failure probability since it will be applied on only log2N indices. In Section 4, we
devise a new ORAM satisfying the above (with O(n1/3 log2 n) bandwidth) based on
one recursive application of Goldreich’s and Ostrovsky’s square-root ORAM [15]. This
protocol can be of independent interest. To finally ensure our new ORAM has O(1)
locality, we use I/O-efficient oblivious sorting by Goodrich and Mitchenmacher [17].

1.3 Large Keyword Lists Allocation
We develop an Algorithm AllocateLarge(min,max) that can allocate lists with sizes
in a general range (min,max]. We will be applying this algorithm for lists in the range
(N/ log2N,N/ logγ N ]. The algorithm works as follows. Let A be an array that has
2N entries, organized in N/max buckets of capacity 2max each. To store a list of size
s ∈ (min,max], a bucket with available size at least s is chosen. To retrieve a list, the
entire bucket where the list is stored is accessed using our ORAM construction from
Section 4—note that ORAM is relatively cheap for this range, since N/max is small.



In this way we always pay the cost of accessing lists of size max, even for smaller
list sizes s > min. The read efficiency of this approach is clearly at least max/min,
which for the specified range above is log2N/ logγ N = ω(logN) for γ < 1. Still,
this is not enough for our target, which is sublogarithmic read efficiency. Therefore, we
need to further split this range into multiple subranges and apply the algorithm for each
subrange independently. The number of subranges depends on the target read efficiency,
i.e., it depends on γ (but not on N ). For example, for γ < 1 it suffices to have 3
subranges, whereas setting γ = 0.75 would required splitting (N/ log2N,N/ logγ N ]
into a fixed number of 11 subranges. In general, as δ > 0 decreases and γ = 2/3 + δ
gets closer to 2/3 the number of subranges will increase. We note that using an ORAM
of better worst-case bandwidth (e.g., O(log1/5 log2N) instead of O(log1/3 log2N))
would significantly reduce the necessary number of subranges (see also discussion in
Section 7).

2 Notation and Definitions
We use the notation 〈C ′, S′〉 ↔ Π〈C, S〉 to indicate that protocol Π is executed be-
tween a client with input C and a server with input S. After the execution of the proto-
col the client receives C ′ and the server receives S′. Server operations are in light gray
background. All other operations are performed by the client. The client typically in-
teracts with the server via an Encrypt-And-Write data operation, with which the
client encrypts data locally with a CPA-secure encryption scheme and writes the en-
crypted data data remotely to server and via a Read-And-Decrypt data operation,
with which the client reads encrypted data data from server and decrypts them locally.

In the following,D will denote the searchable encryption dataset (SE dataset) which
is a set of keywords listsD(wi). Each keyword listD(wi) is a set of keyword-document
pairs (wi, id), called elements, where id is the document identifier containing keyword
wi. We denote with N the size of our dataset, i.e., N =

∑
w∈W |D(w)|, where W is the

set of unique keywords of our datasetD. Without loss of generality, we will assume that
all keyword lists D(wi) have size |D(wi)| that is a power of two. This can always be
enforced by padding with dummy elements, and will only increase the space at most by
a factor of 2. Finally, a function f(κ) is negligible, denoted neg(κ), if for sufficiently
large κ it is less than 1/p(κ), for all polynomials p(κ).

2.1 Searchable Encryption
Our new SE scheme uses a modification of the square-root ORAM protocol as a black
box, which is a two-round protocol. Therefore to model our SE scheme we use the
protocol-based definition (SETUP, SEARCH) as proposed by Stefanov et al. [28].

– 〈st, I〉 ↔ SETUP〈(1κ,D), 1κ〉: SETUP takes as input security parameter κ and SE
datasetD and outputs secret state st (for client), and encrypted index I (for server).

– 〈(D(w), st′), I ′〉 ↔ SEARCH〈(st, w), I〉: SEARCH is a protocol between client
and server, where the client’s input is secret state st and keyword w. Server’s input
is encrypted index I. Client’s output is set of document identifiers D(w) matching
w and updated secret state st′ and server’s output is updated encrypted index I ′.



bit← RealSE(κ):
1: D0 ← Adv(1κ); 〈st0, I0〉 ↔ SETUP〈(1κ,D0), 1

κ〉;
2: for k = 1 to q do
3: wk ← Adv(1k, I0,M1, . . . ,Mk−1);
4: 〈(D(wk), stk), Ik〉 ↔ SEARCH〈(stk−1, wk), Ik−1〉;
5: Let Mk be the messages from client to server in the SEARCH protocol above;
6: bit← Adv(1k, I0,M1,M2, . . . ,Mq);
7: return bit;
bit← IdealSE

L1,L2
(κ):

1: D0 ← Adv(1κ); (stS , I0)← SIMSETUP(1κ,L1(D0));
2: for k = 1 to q do
3: wk ← Adv(1k, I0,M1, . . . ,Mk−1);
4: (stS ,Mk, Ik)← SIMSEARCH(stS ,L2(wk), Ik−1);
5: bit← Adv(1k, I0,M1,M2, . . . ,Mq);
6: return bit;

Fig. 1. Real and ideal experiments for the SE scheme.

Just like in previous works [6], the goal of our SE protocols is for the client to retrieve
the document identifiers (i.e., the list D(w)) for a specific keyword w. The document
themselves can be downloaded from the server in a second round, by just providing
D(w). This is orthogonal to our protocols and we do not consider/model it here explic-
itly. We also note that we focus only on static SE. However, by using generic techniques,
e.g., [12], we can extend our schemes to the dynamic setting. The correctness definition
of SE is given in Appendix A. We now give the security definition.

Definition 1 (Security of SE). An SE scheme (SETUP, SEARCH) is secure in the semi-
honest model if for any PPT adversary Adv, there exists a stateful PPT simulator
(SIMSETUP, SIMSEARCH) such that

|Pr[RealSE(κ) = 1]− Pr[IdealSE
L1,L2

(κ) = 1]| ≤ neg(κ) ,

where experiments RealSE(κ) and IdealSE
L1,L2

(κ) are defined in Figure 1 and where the
randomness is taken over the random bits used by the algorithms of the SE scheme, the
algorithms of the simulator and Adv.

Leakage FunctionsL1 andL2. As in prior work [6],L1 andL2 are leakage functions
such that L1(D0) = |D0| = N and L2(wi) leaks the access pattern size |D(wi)| and
the search pattern of wi. Formally for a keyword wi searched at time i, L2(wi) is

L2(wi) =

{
(|D(wi)|, j) if wi was searched at time j < i
(|D(wi)|,⊥) if wi was never searched before . (1)

2.2 Oblivious RAM
Oblivious RAM (ORAM), introduced by Goldreich and Ostrovsky [15] is a compiler
that encodes the memory such that accesses on the compiled memory do not reveal



(chosen, alternative)← OfflineTwoChoiceAllocation(m,n)
1: Let {1, . . . ,m} be a set of balls and {1, . . . , n} be a set of bins;
2: Initialize A and B to be empty arrays of m entries;
3: for i = 1, . . . ,m do
4: Pick two bins ai and bi from {1, . . . , n} independently and uniformly at random;
5: A[i] = ai; B[i] = bi;
6: (chosen, alternative)← MaxFlowSchedule(m,n,A,B);
7: return (chosen, alternative);

Fig. 2. Offline two-choice allocation of m balls to n bins.

access patterns on the original memory. We give the definition for a read-only ORAM
as this is needed in our scheme—the definition naturally extends for writes as well:

– 〈σ,EM〉 ↔ ORAMINITIALIZE〈(1κ,M), 1κ〉: ORAMINITIALIZE takes as input se-
curity parameter κ and memory array M of n values (1, v1), . . . , (n, vn) of λ bits
each and outputs secret state σ (for client), and encrypted memory EM (for server).

– 〈(vi, σ′),EM′〉 ↔ ORAMACCESS〈(σ, i),EM〉: ORAMACCESS is a protocol be-
tween client and server, where the client’s input is secret state σ and an index i.
Server’s input is encrypted memory EM. Client’s output is value vi assigned to i
and updated secret state σ′. Server’s output is updated encrypted memory EM′.

The formal correctness and security definitions of ORAM are given in Appendix A.

3 New Bounds for Offline Two-Choice Allocation
As mentioned in the introduction, our medium-list allocation uses a variation of the
classic balls-in-bins problem, known as offline two-choice allocation—see Figure 2.
Assume m balls and n bins. In the selection phase, for the i-th ball, two bins ai and bi
are chosen independently and uniformly at random. After selection, in a post-processing
phase, the i-th ball is mapped to either bin ai or bi such that the maximum load is min-
imized. This assignment is achieved by a maximum flow algorithm [25] (for complete-
ness we give this algorithm in Figure 15 in the Appendix A section). The bin that ball
i is finally mapped to is stored in an array chosen[i] whereas the other bin that was
chosen for ball i is stored in an array alternative[i]. Let L∗max denote the maximum
load across all bins after this allocation process completes. Sanders et al. [25] proved
the following.

Lemma 1 (Sanders et al. [25]). Algorithm OfflineTwoChoiceAllocation in Figure 2
outputs an allocation chosen of m balls to n bins such that L∗max > dmn e + 1 with
probability at mostO(1/n).6 Moreover, the allocation can be performed in timeO(n3).

For our purposes, the bounds derived by Sanders et al. [25] do not suffice. In the
following we derive new bounds. In particular:
1. In Section 3.1, we derive probability bounds on the number of overflowing bins,

i.e., the bins that contain more than dmn e+ 1 balls after the allocation completes.

6 Sanders et al. [25] gave a better bound O(1/n)d
m
n
e+1 which is O(1/n) since dm/ne ≥ 0.

Our analysis is simplified when we take this looser bound O(1/n).



2. In Section 3.2, we derive probability bounds on the overflow size, i.e., the number
of balls beyond dmn e+ 1 that a bin contains.

3. In Section 3.3, we combine these to bound the total number of overflowing balls.

3.1 Bounding the Number of Overflowing Bins
For every bin ` ∈ [n], let us define a random 0-1 variable Z` such that Z` is 1 if bin
` contains more than dmn e + 1 balls after OfflineTwoChoiceAllocation returns and 0
otherwise. What we want is to bound is the random variable Z =

∑n
`=1 Zi , repre-

senting the total number of overflowing bins. Unfortunately we cannot use a Chernoff
bound directly, since (i) the variables Zi are not independent; (ii) we do not know the
exact expectation E[Z]. However, we observe that if we show that the variables Zi are
negatively associated (at a high level negative association indicates that for a set of vari-
ables, whenever some of them increase the rest decrease—see Appendix A for precise
definition) and if we can derive an upper bound on E[Z] we can use a Chernoff-like
bound that we prove in Lemma 8 in the Appendix. We begin by proving the following.

Lemma 2. The set of random variables Z1, Z2, . . . , Zn is negatively associated.

Proof. For all i ∈ [n], j ∈ [n] and k ∈ [m] let Xijk be the random variable such that

Xijk =

{
1 if OfflineTwoChoiceAllocation chose the two bins i and j for ball k
0 otherwise

.

For each k it holds that
∑
i,j Xijk = 1, since only one pair of bins is chosen for ball

k. Therefore, by [14, Proposition 11], it follows that each set Xk = {Xijk}i∈[n],j∈[n]
is negatively associated. Moreover, since the sets Xk,Xk′ for k 6= k′ consist of mu-
tually independent variables (as the selection of bins is made independently for each
ball), it follows from [14, Proposition 7.1] that the set X = {Xijk}i∈[n],j∈[n],k∈[m]

is negatively associated. Now consider the disjoint sets U` for ` ∈ [n] defined as
U` = {Xijk | chosen[k] = ` ∧ (` = i ∨ ` = j)} , where chosen is the array
output by OfflineTwoChoiceAllocation. Let us now define h`(Xijk, Xijk ∈ U`) =∑
Xijk∈U` Xijk for ` ∈ [n]. Clearly each h` is a non-decreasing function and therefore

by [14, Proposition 7.2] the set of random variables Y = {Y`}`∈[n] where Y` = h` is
also negatively associated. We can finally define Z` for ` = 1, . . . , n as

Z` = f(Y`) =

{
0 if Y` ≤ dm/ne+ 1

1 otherwise
.

Since f is also a non-decreasing function (as whenever Y` grows, Z` = f(Y`) may
only increase) therefore, again by [14, Proposition 7.2], it follows that the set of random
variables Z1, Z2, . . . , Zn is also negatively associated. ut

Lemma 3. The expected number of overflowing bins E[Z] is O(1).

Proof. For all bins ` ∈ [n], it is E[Z`] = Pr[L∗max > dm/ne+1] ≤ Pr[Yq > dm/ne+
1] = O(1/n), by Lemma 1 (where L∗max is the maximum load across all bins after
allocation). By linearity of expectation and since Z =

∑
Zi, it is E[Z] = O(1). ut



Theorem 1. Assume OfflineTwoChoiceAllocation from Figure 2 is used to allocate
m balls into n bins. Let Z be the number of bins that receive more than dm/ne + 1
balls. Then there exists a fixed positive constant c such that for sufficiently large n7 and
for any τ > 1 it is Pr[Z ≥ c · τ ] ≤

(
e
τ

)c·τ
.

Proof. By Lemma 3 we have that there exists a fixed constant c such that E[Z] ≤ c for
sufficiently large n. Therefore, by Lemma 2 and Lemma 8 in the Appendix (where we
set µH = c since E[Z] ≤ c) we have that for any δ > 0

Pr[Z ≥ (1 + δ) · c] ≤
(

eδ

(1 + δ)(1+δ)

)c
≤
(

e1+δ

(1 + δ)(1+δ)

)c
.

Setting δ = τ − 1 which is > 0 for τ > 1, we get the desired result. ut

3.2 Bounding the Overflow Size
Next, we turn our attention to the number of balls Y` that can be assigned to bin `. In
particular we want to derive a probability bound Pr[Y` > dm/ne+τ ] defined in general
for parameter τ ≥ 2—Sanders et al. [25] studied only the case where τ = 1. To do
that, we will bound the probability that after OfflineTwoChoiceAllocation returns the
maximum load L∗max is larger than dm/ne+ τ for τ ≥ 2. We now prove the following.

Theorem 2. Assume OfflineTwoChoiceAllocation from Figure 2 is used to allocate
m balls into n bins. Let L∗max be the maximum load across all bins. Then for any τ ≥ 2

Pr
[
L∗max ≥

⌈m
n

⌉
+ τ
]
≤ O(1/n)τ +O(

√
n · 0.9n) .

Proof. Our analysis here closely follows the one of [25]. Without loss of generality, we
assume the number of balls m to be a multiple of the number of bins n8 and we will set
b = m/n. Let now (ai, bi) be the two random choices that OfflineTwoChoiceAllocation
makes for ball i where i = 1, . . . ,m. For a subset U ⊆ {1, . . . , n} of bins we define
the random variables XU

1 , . . . , X
U
m such that

XU
i =

{
1 if ai ∈ U and bi ∈ U
0 otherwise

,

i.e., XU
i is 1 if both selections for the i-th ball are from subset U , which unavoidably

leads to this ball being assigned to a bin within subset U . The random variable LU =∑m
i=1X

U
i is called the unavoidable load of U . Also, for a set U and a parameter τ ,

let PU = Pr[LU ≥ (b + τ)|U | + 1]. Finally let L∗max be the optimal load, namely

7 This means that there exists a fixed constant n0 such that for n ≥ n0 the statement holds—we
provide a quick estimate of the constants c and n0 in Appendix C.

8 If not, we pad to m = ndm′/ne balls, where m′ is the original number of balls. Then, to
get an allocation for the m′ balls, we get an allocation for the m balls and we remove the
unnecessary balls. Clearly, if L∗ is the optimal maximum load for the m′ balls, then L∗ ≤
L∗max (if L∗ > L∗max you can get a better allocation for the m′ balls by allocating m balls, a
contradiction) and therefore whatever probability bounds we derive for L∗max hold for L∗.



the minimum maximum load that can be derived by considering all possible allocations
given the random choices (a1, b1), . . . , (am, bm). Since MaxFlowSchedule computes
an allocation with the optimal load, we must compute the probability Pr[L∗max > b+τ ],
where τ ≥ 2. From [26, Lemma 5] we have L∗max = max

∅6=U⊆{1,...,n}
{LU/|U |}. Thus

Pr[L∗max > b+ τ ] =Pr[∃U ⊆ [n] : LU/|U | > b+ τ ]

≤
∑
∅6=U⊆[n] Pr[LU ≥ (b+ τ)|U |+ 1] =

∑n
|U |=1

(
n
|U |
)
PU ,

where the inequality follows from a simple union bound and for the last step we used
the fact that PU is the same for all sets U of the same cardinality. This is because for all
sets U1 and U2 with |U1| = |U2| we have that Pr[LU1 ≥ (b+ τ)|U1|+ 1] = Pr[LU2 ≥
(b + τ)|U2| + 1] since U1 and U2 are identically distributed. Next, we need to bound
the sum

∑n
|U |=1

(
n
|U |
)
PU . For this we will split the sum into three separate summands

T1 =
∑

1≤|U |≤n8

(
n

|U |

)
PU , T2 =

∑
n
8<|U |< nb

b+τ

(
n

|U |

)
PU and T3 =

∑
nb
b+τ≤|U |≤n

(
n

|U |

)
PU .

We begin with the simple observation that T3 = 0. To see why, note that for |U | ≥
nb/(b+ τ) it holds that PU = Pr[LU ≥ (b+ τ)|U |+ 1] = Pr[LU ≥ (b+ τ)nb/(b+
τ) + 1] = Pr[LU ≥ m + 1] = 0 as m is a natural upper bound for LU (i.e., if both
selections fall within U for all balls). Regarding T2, from [25, Lemma 9] we have∑

n
8<|U |< nb

b+1

(
n

|U |

)
P ∗U = O(

√
n · 0.9n) ,

where P ∗U = Pr[LU ≥ (b + 1)|U | + 1]. Clearly, for all U , PU ≤ P ∗U . Moreover,∑
n
8<|U |< nb

b+τ
P ∗U ≤

∑
n
8<|U |< nb

b+1
P ∗U for all τ ≥ 2. Putting it all together, we have

T2 ≤
∑

n
8<|U |< nb

b+1

(
n

|U |

)
P ∗U = O(

√
n · 0.9n).

By Lemma 9 in the Appendix, T1 = O(1/n)b+τ = O(1/n)b+τ for all τ ≥ 2 hence for
all τ ≥ 2 it is

∑n
|U |=1

(
n
|U |
)
PU = O(1/n)τ , as b ≥ 0, which completes the proof. ut

3.3 Bounding the Total Number of Overflowing Balls
Let T > 0 be the number of overflowing balls, i.e., T =

∑`
i=1 Zi(Yi − dm/ne − 1).

Using Theorems 1 and 2, and by a simple application of the law of total probability, we
can now prove the following result.

Theorem 3. Assume OfflineTwoChoiceAllocation from Figure 2 is used to allocate
m balls into n bins. Let T be the number of overflowing balls as defined above. Then
there exist positive constants c, c1, c2 such that for large n and for any τ ≥ 2 it is

Pr[T > c · τ2] ≤
( e
τ

)c·τ
+
(c1
n

)τ
+ c2
√
n · 0.9n .



Proof. Define the events E : T > c · τ2, E1 : Z > τ and E2 : L∗max > dm/ne+ τ , for
some τ ≥ 2. By the law of total probability

Pr[E] = Pr[E|E1 ∧ E2] Pr[E1 ∧ E2] + Pr[E|E1 ∧ E′2] Pr[E1 ∧ E′2]
Pr[E|E′1 ∧ E2] Pr[E

′
1 ∧ E2] + Pr[E|E′1 ∧ E′2] Pr[E′1 ∧ E′2]

≤ Pr[E1] Pr[E2] + Pr[E1] Pr[E
′
2] + Pr[E′1] Pr[E2] + 0 ,

where Pr[E|E′1 ∧ E′2] Pr[E′1 ∧ E′2] = 0 since the probability Pr[E|E′1 ∧ E′2] = 0.
This is because there is no way there can be more than τ2 overflowing balls given
both the number of overflowing bins and the maximum overflow per bin is at most
τ . Therefore by Theorem 1 and Theorem 2 we have Pr[E] ≤ Pr[E1] + 2Pr[E2] ≤(
e
τ

)c·τ
+ O(1/n)τ + O(

√
n · 0.9n), which completes the proof by taking c1 and c2 to

be the constants in the O() notations O(1/n) and O(
√
n · 0.9n) respectively. ut

4 New ORAM with O(1) Locality and o(
√
n) Bandwidth

Our constant-locality SE construction uses an ORAM scheme as a black box. In partic-
ular, the ORAM scheme that is used must have the following properties:

1. It needs to have constant locality, meaning that for each oblivious access it should
only readO(1) non-contiguous locations in the encrypted memory. Existing ORAM
constructions with polylogarithmic bandwidth have logarithmic locality. For ex-
ample, a path ORAM access [30] traverses log n binary tree nodes stored in non-
contiguous memory locations—therefore we cannot use it here. This property is
required as our underlying SE scheme must have O(1) locality;

2. It needs to have bandwidth cost o(
√
n · λ). This property is required because we

would be applying the ORAM scheme on an array of O(log2N) entries, yielding
ovelall bandwidth equal to o(logN · λ), which would imply sublogarithmic read
efficiency for the underlying SE scheme.

We note here that an existing scheme that almost satisfies both properties above
is the ORAM construction from [24, Theorem 7] by Ohrimenko et al. (where we set
c = 3). This ORAM has O(1) locality and O(n1/3 log n · λ) bandwidth. However we
cannot apply it here due to its failure probability which is neg(n), where n is the size of
the memory array. Unfortunately, since our array has O(log2N) entries (N is the size
of the SE dataset), this gives a probability of failure neg(log2N) which is not neg(N).

Our proposed ORAM construction (Figure 3) is a hierarchical application of the
square-root ORAM construction of Goldreich and Ostrovsky [15]. We first provide a
description of the amortized version of our construction (i.e., the read-efficiency and
locality bounds we achieve are amortized over n accesses) in Figure 4. Its security and
efficiency analysis is in Appendix B. Our de-amortized ORAM construction is achieved
using techniques of Goodrich et al. [18] for de-amortizing the square root ORAM, in a
straight-forward manner (formal description and analysis is in Appendix B).

ORAM Setup. Given memory M with n index-value pairs (1, v1), . . . , (n, vn) we
allocate three main arrays for storage: A of size na = n+n2/3, B of size nb = n2/3 +
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Fig. 3. Our ORAM construction. In this example, element wi is accessed, located in B. All
positions represented by the blue color must be returned to the client, i.e. the entire array C, wi
from array B and one dummy element from array A. After this access, the element wi is written
in the next available position of C, the algorithm computes a fresh encryption of C and writes C
back to the server. Keyword wi−1 denotes a previously accessed element was placed in C.

n1/3, and C of size nc = n1/3. Initially A stores all elements encrypted with CPA-
secure encryption and permuted with a pseudorandom permutation9 πa : [na] → [na]
and B and C are empty, containing encryptions of dummy values. We also initialize
another pseudorandom permutation πb : [nb] → [nb] used for accessing elements from
array B. In particular, if an element x ∈ [n] is stored in array B, it is located at position
πb[Tab[x]] of B, where Tab is a locally-stored hash table mapping an element x ∈ [n]
to Tab[x] ∈ [nb]. Note the hash table is needed to index elements in B as nb < n.

ORAM Access. To access element x, the algorithm always downloads, decrypts and
sequentially scans array C. Similarly to the square-root ORAM, we consider two cases:

1. Element x is in C. In this case the requested element has been found and the algo-
rithm performs two additional dummy accesses for security reasons: it accesses a
random10 position in array A and a random position in array B.

2. Element x is not in C. In this case we distinguish the following subcases.
– Element x is not in B.11 In this case x can be retrieved by accessing the ran-

dom position πa[x] of array A. Like previously, the algorithm also accesses a
random position in array B.

– Element x is in B. In this case x can be retrieved by accessing the random
position πb[Tab[x]] of array B. Like previously, the algorithm also accesses a
random position in array A.

After the access above, the retrieved element x is written in the next available position
of C, the algorithm computes a fresh encryption of C and writes C back to the server.
Just like in square-root ORAM, some oblivious reshuffling must occur: In particular,
every n1/3 accesses, array C becomes full and both C and the contents of B are obliv-
iously reshuffled into B. Every n2/3 accesses, when B becomes full, all elements are
obliviously reshuffled into A. We describe this reshuffling process next.

Reshuffling, epochs and superepochs. Our algorithm for obliviously accessing an
element x described proceeds in epochs and superepochs. An epoch is defined as a
sequence of n1/3 accesses. A superepoch is defined as a sequence of n2/3 accesses.

9 In practice πa is implemented with efficient small-domain PRPs (e.g., [19,29,23]).
10 This position is not entirely random—it is chosen from those that have not been chosen so far.
11 This can be decided by checking whether Tab[x] is null or not.



Protocol 〈σ,EM〉 ↔ ORAMINITIALIZE〈(1κ,M),⊥〉:
1: Parse M as (1, v1), (2, v2), . . . , (n, vn) where |i, vi| = λ (the values are λ bits long);
2: Let na ← n+ n2/3, nb ← n2/3 + n1/3, nc ← n1/3;
3: Let A, B and C be arrays of size na, nb and nc respectively. Initialize them with 0 entries;
4: Let SCRATCH be an array of size nb. Initialize it with 0 entries;
5: Let πa : [na]→ [na] and πb : [nb]→ [nb] be pseudorandom permutations;
6: For i = 1, . . . , n, store (i, vi) at location πa[i] in A;
7: Encrypt-And-Write arrays A, B, C and SCRATCH and add them to EM ;
8: Let counta ← 0 and countb ← 0;
9: Let Tab be an empty hash table;

10: Set σ = (πa, πb,Tab, counta, countb);
11: return 〈σ,EM〉;
Protocol 〈(vi, σ′),EM′〉 ↔ ORAMACCESS〈(σ, i),EM〉:
1: Parse σ as (πa, πb,Tab, counta, countb) and EM as (A,B,C,SCRATCH);
2: Increment counta and countb;
3: Read-And-Decrypt array C;
4: if (i, vi) ∈ C then . (i, vi) was accessed before and is stored in C
5: indexa ← πa[n+ counta];
6: indexb ← πb[n

2/3 + countb];
7: else
8: if Tab[i] 6= null then . (i, vi) is stored in B[indexb]
9: indexa ← πa[n+ counta];

10: indexb ← πb[Tab[i]];
11: else . (i, vi) is stored in A[indexa]
12: indexa ← πa[i];
13: indexb ← πb[n

2/3 + countb];
14: Read-And-Decrypt A[indexa];
15: Read-And-Decrypt B[indexb];
16: Retrieve (i, vi) from either A[indexa] or B[indexb] or C;
17: C[countb]← (i, vi);
18: Encrypt-And-Write array C;
19: Tab[i]← counta;
20: Encrypt-And-Write element (Tab[i], vi) at position counta of array SCRATCH;
21: if counta > n2/3 then . Transition to a new superepoch
22: Let πa and πb be new pseudorandom permutations;
23: counta ← 0 and countb ← 0;
24: 〈⊥, A〉↔OBLIVIOUSSORTING〈(πa, na, n1/3 log2 n), A〉; . large rebuild
25: Set B ← ⊥; C ← ⊥; SCRATCH← ⊥; Set Tab← ⊥;

26: if countb > n1/3 then . Transition to a new epoch
27: Let πb be new pseudorandom permutation;
28: countb ← 0;
29: 〈⊥, B〉↔OBLIVIOUSSORTING〈(πb, nb, n1/3 log2 n),SCRATCH〉; . small rebuild
30: Set C ← ⊥;

31: return 〈(vi, (πa, πb,Tab, counta, countb)), (A,B,C,SCRATCH)〉;

Fig. 4. Read-only ORAM construction with O(n1/3 log2 n · λ) amortized bandwidth and O(1)
amortized locality.



At the end of every epoch C becomes full, and all elements in C along with the
ones that have been accessed in the current superepoch (and are now stored in B) are
obliviously reshuffled into B using a fresh pseudorandom permutation πb. In our im-
plementation in Figure 4, we store all the elements that must be reshuffled in an array
SCRATCH. After the reshuffling C can be emptied (denoted with ⊥ Line 30) so that it
can be used again in the future. At the end of every superepoch all the elements of the
dataset are obliviously reshuffled into array A using a fresh pseudorandom permutation
πa and arrays B, C and SCRATCH are emptied.
Oblivious Sorting With Good Locality. As in previous works, our reshuffling in the
ORAM protocol is performed using an oblivious sorting protocol. Since we are using
the ORAM scheme in an SE scheme that must have good locality, we must ensure that
the oblivious sorting protocol used has good locality as well, i.e., it does not access
too many non-contiguous locations. One way to achieve that is to download the whole
encrypted array, decrypt it, sort it and encrypt it back. This has excellent locality L = 1
but requires linear client space. A standard oblivious sorting protocol such as Batcher’s
odd-even mergesort [7] does not work either since its locality can be linear.

Fortunately, Goodrich and Mitzenmacher [17] developed an oblivious sorting pro-
tocol for an external memory setting that is a perfect fit for our application—see the
pseudocode of this protocol in Figure 17 in the Appendix. The client interacts with
the server only by reading and writing b consecutive blocks of memory. We call each
b-block access (either for read or write) an I/O operation. The performance of their
protocol is characterized in the following theorem.

Theorem 4 (Goodrich and Mitzenmacher [17], Goodrich [16]). Given an array X
containing n comparable blocks, we can sortX with a data-oblivious external-memory
protocol that uses O((n/b) log2(n/b) I/O operations and local memory of 4b blocks,
where an I/O operation is defined as the read/write of b consecutive blocks of X .

In the above oblivious sorting protocol the block size can be parametrized, af-
fecting the local space accordingly. In our case, we set the block size to be equal to
n1/3 log2 n—see Lines 24 and 29 in Figure 4, which is enough for achieving constant
locality in our SE scheme. Our final result is as follows (proofs and the de-amortization
described in Appendix B).

Theorem 5. Let n is the size of the memory array and λ be the size of the block. The
ORAM scheme of Figure 18 (i) is correct according to Definition 3; (ii) is secure accord-
ing to Definition 4 and assuming pseudorandom permutations and CPA-secure encryp-
tion; (iii) has O(n1/3 log2 n · λ) worst-case bandwidth and O(1) worst-case locality
per access and requires client space O(n2/3 log n+ n1/3 log2 n · λ).
Corollary 1. Let λ = Ω(n1/3) bits be the block size. Then the ORAM scheme of Fig-
ure 18 hasO(n1/3 log2 n·λ) worst-case bandwidth per access,O(1) worst-case locality
per access and O(n1/3 log2 n · λ) client space.

5 Allocation Algorithms
As we mentioned in the introduction, to construct our final SE scheme we are going
to use a series of allocation algorithms. The goal of an allocation algorithm for an SE



dataset D consisting of q keyword lists D(w1),D(w2), . . . ,D(wq) is to store/allocate
the elements of all lists into an array A (or multiple arrays).

Retrieval Instructions. To be useful, an allocation algorithm should also output a
hash table Tab such that Tab[w] contains “instructions” on how to correctly retrieve
a keyword list D(w) after the list is stored. For example, for a keyword list D(w)
that contains four elements stored at positions 5, 16, 26, 27 of A by the allocation al-
gorithm, some valid alternatives for the instructions Tab[w] are: (i) “access positions
5, 16, 26, 27 of array A”; (ii) “access all positions from 3 to 28 of array A”; (iii) “ac-
cess the whole array A”. Clearly, there are different tradeoffs among the above.

Independence Property. For security purposes, and in particular for simulating the
search procedure of the SE scheme, it is important that the instructions Tab[w] output
by an allocation algorithm for a keyword list D(w) are independent of the distribution
of the rest of the dataset—intuitively this implies that accessing D(w) does not reveal
information about the rest of the data. This independence property is easy to achieve
with a “read-all” algorithm, where the whole array is read every time a keyword is
accessed, but this is very inefficient. Another way to achieve this property is to store the
lists using a random permutation π—this is actually the allocation algorithm used by
most existing SE schemes, e.g., [11]. This “permute” approach has however very bad
locality since it requires |D(w)| random jumps in the memory to retrieve D(w). In the
following we present the details of our allocation algorithms for small, medium, large
and huge lists. We begin with some terminology.

5.1 Buckets and Superbuckets
Following terminology from [6], our allocation algorithms use fixed-capacity buckets
for storage. A bucket with capacity C can store up to C elements—in our case an
element is a keyword-document pair (w, id). To simplify notation, we represent a set of
B buckets A1, A2, . . . , AB as an array A of B buckets, referring to bucket Ai as A[i].
Additionally, a superbucket A{k, s} is a set of the following s consecutive buckets

A[(k − 1)s+ 1],A[(k − 1)s+ 2], . . . ,A[ks] .

We say that we store a keyword list D(w) = {(w, id1), (w, id2), . . . , (w, ids)} hor-
izontally into superbucket A{k, s} when each element (w, idi) is stored in a separate
bucket of the superbucket.12 Finally, the load of a bucket or a superbucket is the number
of elements stored in each bucket or superbucket.

5.2 Allocating Small Lists with Two-Dimensional Allocation
For small keyword lists we use the two-dimensional allocation algorithm of Asharov et
al. [6], by carefully setting the parameters from scratch. For completeness we provide
the algorithm in Figure 5, which we call AllocateSmall. Let C = cs · logγ N , for some
appropriately chosen constant cs. The algorithm uses B = N/C buckets of capacity C

12 E.g., consider an array A consisting of 20 buckets A[1],A[2] . . . ,A[20] where each bucket A[i]
has capacity C = 5. Superbucket A{3, 4} contains the buckets A[9], . . . ,A[12]. Horizontally
storing {a1, a2, . . . , a4} into A{3, 4} means storing a1 into A[9], a2 into A[10], and so on.



Algorithm (A,Tab)← AllocateSmall(D, N): (taken from [6])

1: Set ε← 1/ log1−γ N ;
2: Let max← N1−ε, C = cs · logγ N and B ← N/Ca ;
3: Let A be an array of B buckets—each bucket has capacity C;
4: Initialize an empty hash table Tab;
5: for sizes s = max,max/2,max/4, . . . , 1 do
6: for each keyword w such that |D(w)| = s do
7: Pick α and β from {1, . . . , B

s
} independently and uniformly at random;

8: Let A{α, s} and A{β, s} be two superbuckets;
9: Let x ∈ {α, β} correspond to the superbucket with the minimum load;

10: Store D(w) horizontally into superbucket A{x, s};
11: Tab[w] = (s, α, β,⊥);
12: if there is a bucket A[i] that overflows then return FAIL;
13: else
14: Pad every bucket A[i] to C elements using dummy values;
15: return (A,Tab);

a Constant cs can be appropriately chosen in [6].

Fig. 5. Allocation algorithm for small sizes from Asharov et al. [6].

each. It then considers all small keyword lists starting from the largest to the smallest,
and depending on the list’s size s, it picks two superbuckets from {1, 2 . . . , B/s} uni-
formly at random, horizontally placing the keyword list into the superbucket with the
minimum load. The algorithm records both superbuckets as instructions in a hash table
Tab. If, during this allocation process some bucket overflows, then the algorithm fails.
We now have the following result.

Theorem 6. Algorithm AllocateSmall in Figure 5 outputs FAIL with probability neg(N).
Moreover the output array of buckets A occupies space O(N).

Proof. For the algorithm to fail, the load of some bucket A[i] (i.e., maximum load) must
exceedO(logγ N). We show this probability is negligible for our choice of γ = 2/3+δ:
We recall AllocateSmall allocates all keyword lists using a two-dimensional balanced
allocation [6]. For our proof we apply [6, Theorem 3.5] that states: For max = N1−ε,
B ≥ N/ logN and for non-decreasing function f(N) such that f(N) = Ω(log logN),
f(N) = O(

√
logN) and f(2N) = O(f(N)) the maximum load of a two-dimensional

balanced allocation is 4N
B +O(log ε−1 · f(n)) with probability at least 1−O(log ε−1) ·

N−Ω(ε·f(Nε)). In our case, it ε = 1/ log1−γ N and B = N/ logγ N and we also pick
f(N) =

√
logN . Note that all conditions for f and B and ε of [6, Theorem 3.5] are

satisfied assuming 1/2 < γ < 1 . Also, for this choice of parameters we have that the
probability the maximum load is more than O(logγ N) is at most O(log(log1−γ N)) ·
N−Ω(`(N)) where `(N) is

1

log1−γ N

√
log
(
N1/ log1−γ N

)
=

√
logγ N

log1−γ N
= log3γ/2−1N .

Since our construction uses γ = 2/3+ δ for any small δ > 0 it is always 3γ/2− 1 > 0
and therefore the above probability is negligible. ut
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Fig. 6. Allocation of medium lists. Each ball represents a list of size N1−1/ log1−γ N . Two balls
chained together represent a keyword list of double the size and so on. Arrays Ai show the OTA
assignments for all lists of a specific size i. Arrays Ai are merged into array A of M buckets of
capacity O(logγ N) each. Overflowing lists of size i are placed in the stash Bi. Only light-gray
arrays are stored at the server—white arrays are only used for illustrating the intermediate results.

Note now that a list of size s can be read by accessing s consecutive buckets (i.e., a
superbucket), therefore the read efficiency for these lists is O(logγ N).

5.3 Allocating Medium Lists with OTA
The allocation process for medium lists is shown in Figure 6 and the algorithm is de-
scribed in Figure 7. The algorithm uses an array A of B = N/ logγ N buckets, where
each bucket has capacity C = 3 · logγ N . Just like AllocateSmall, the allocation algo-
rithm for medium sizes stores a list D(w) of size s horizontally into one of the super-
buckets A{1, s},A{2, s}, . . . ,A{B/s, s}.

However, unlike AllocateSmall, the superbucket that is finally chosen to store
D(w) depends only on keyword lists of the same size with D(w) that have already
been allocated and not on all other keyword lists encountered so far. In particular, let ks
be the number of keyword lists that have size s. Let also bs = B/s be the number of
superbuckets with respect to size s. To figure out which superbucket to pick for horizon-
tally storing a particular keyword list of size s, the algorithm views the ks keyword lists
as balls and the bs superbuckets as bins and performs an offline two-choice allocation
of ks keyword lists (balls) into bs superbuckets (bins), as described in Section 3. When,
during this process some superbucket contains dks/bse+ 1 keyword lists of size s, any
subsequent keyword list of size s meant for this superbucket is instead placed into a
stash Bs that contains exactly c · log2N buckets of size s each for some fixed constant
c derived in Theorem 1. Our algorithm will fail, if

– Some bucket A[i] overflows (i.e., the number of elements that are eventually stored
in A[i] exceeds its capacity C), which as we show in Lemma 4 never happens; or

– More than c · log2N keyword lists of size s must be stored at some stash Bs, which
as we show in Lemma 5 happens with negligible probability.

All the choices that the algorithm makes, such as the two superbuckets originally
chosen for every list during the offline two-choice allocation as well as the position



Algorithm (A,B,Tab)← AllocateMedium(D, N):

1: Set ε← 1/ log1−γ N ;
2: Let min← N1−ε, max← N

log2 N
, C ← 3 · logγ N , B ← N/C and ` = c · log2N ;a

3: Let A be an array of B buckets—each bucket has capacity C;
4: Initialize an empty hash table Tab;
5: for sizes s = 2min, 4min, . . . ,max do
6: Let Bs be an array of ` buckets—each bucket has capacity s; . This is the stash
7: Let ks be the number of keywords in D with |D(w)| = s;
8: Let bs ← B/s be the number of superbuckets with respect to size s;
9: Let inStashs ← 0; i← 0;

10: (chosen, alternative)← OfflineTwoChoiceAllocation(ks, bs);
11: for each keyword w such that |D(w)| = s do
12: Increment i;
13: Set α← chosen[i]; Set β ← alternative[i];
14: if superbucket A{α, s} contains ≤ d ks

bs
e keyword lists of size s then

15: Store D(w) horizontally into superbucket A{α, s};
16: Tab[w] = (s, α, β, 1);
17: else . Move to stash
18: Increment inStashs;
19: if inStashs > ` then return FAIL; . Stash overflows
20: Store D(w) in the bucket Bs[inStashs];
21: Tab[w] = (s, α, β, inStashs);
22: if there is a bucket A[i] that has overflown then return FAIL;
23: else Pad every bucket A[i] to C elements using dummy values;
24: return (A, (B2min,B4min,B8min,B16min . . . ,Bmax),Tab);

a Constant c is derived by Theorem 1.

Fig. 7. Allocation algorithm for medium sizes.

in the stash (in case the list was an overflowing one) are recorded in Tab as retrieval
instructions. We now prove the following lemma.

Lemma 4. During the execution of algorithm AllocateMedium in Figure 7, no bucket
A[i] (for all i = 1, . . . , B) will ever overflow.

Proof. For each size s = 2min, 4min, . . . ,max, Line 15 of AllocateMedium allows at
most dks/bse+1 keyword lists of size s to be stored in any superbucket A{i, s}. Since
every keyword list of size s is stored horizontally in a superbucket A{i, s}, it follows
that every bucket A[i] within every superbucket A{i, s}will have load, due to keywords
lists of size s, at most s · (dks/bse+ 1)/s = dks/bse+ 1. Therefore the total load of a
bucket A[i] due to all sizes s = 2min, 4min, . . . ,max is at most∑

s

(⌈
ks
bs

⌉
+ 1

)
≤
∑
s

ks
bs

+
∑
s

2 .

We now bound the above sums separately. Since bs = B/s,
∑
s ks · s ≤ N and B =

N/ logγ N it is ∑
s

ks
bs

=
1

B

∑
s

ks · s ≤
N

B
= logγ N .



Now as min = 2logN−log
γ N+1, max = N/ log2N = 2logN−2 log logN and size s

takes only powers of 2, there are at most logγ N − 2 log logN terms in the sum
∑
s 2

and therefore
∑
s

(⌈
ks
bs

⌉
+ 1
)
≤ 3 · logγ N − 4 · log logN ≤ 3 · logγ N , which equals

the bucket capacity C in AllocateMedium. Thus no bucket will ever overflow. ut

Lemma 5. During the execution of algorithm AllocateMedium in Figure 7, no stash
Bs (for s = 2min, 4min, . . . ,max) will ever overflow, except with probability neg(N).

Proof. Recall that for each s = 2min, 4min, . . . ,max, placing the ks keyword lists of
size s into the bs superbuckets of size s is performed via an offline two-choice alloca-
tion of ks balls into bs bins. Also recall that the lists that end up in the stash Bs (that
has capacity log2N ) are originally placed by the allocation algorithm in superbuckets
containing more than dks/bse+1 keyword lists of size s, thus they are overflowing. Let
Ts be the number of these lists. By Theorem 3, where we set T = Ts and n = bs and
τ = logN , we have that for large bs and for fixed constants c, c1 and c2

Pr[Ts > c · log2N ] ≤
(

e

logN

)c·logN
+

(
c1
bs

)logN

+ c2
√
bs · 0.9bs = neg(N) ,

as bs = B/s = N/s logγ N ≥ log2−γ N = ω(logN) as s ≤ max = N/ log2N . ut

Theorem 7. Algorithm AllocateMedium in Figure 7 outputs FAIL with probability
neg(N). Moreover, the size of the output array A and the stashes B is O(N).

Proof. AllocateMedium can fail either because a bucket A[i] overflows, which by
Lemma 4 happens with probability 0, or because some stash Bs ends up having to store
more than log2N elements for some s = 2min, 4min, . . . ,max, which by Lemma 5
happens with probability neg(N). For the space complexity, since no bucket A[i] over-
flows, array A occupies space O(N). Also each stash Bs contains log2N buckets of
size s each so the total size required by the stashes is c · log2N(min + 2min + 4min +
. . .+ max). Since max = N/ log2N , the above is ≤ 2c log2Nmax = O(N). ut

5.4 Allocating Large Lists
Recall that we call a keyword list large, if its size is in the range N/ log2N and
N/ logγ N (recall γ = 2/3 + δ). Algorithm AllocateLarge in Figure 8 is used to
allocate lists whose size falls within a specific subrange (min,max] of the above range.
Let step be an appropriately chosen parameter such that step < 3δ/2 and partition the
range (N/ log2N,N/ logγ N ] into 2−γ

step consecutive subranges 13

(
N

log2N
,

N

log2−step N

]
,

(
N

log2−step N
,

N

log2−2·step N

]
, . . . ,

(
N

logγ−step N
,

N

logγ N

]
.

13 If 2−γ
step is not an integer, we round up. Without loss of generality, the last subrange may be

of smaller size than the previous ones in order to stop at N/ logγ N . Note that, this can only
make allocation easier (since it may only reduce the number of lists in the last subrange).



Algorithm (A,Tab)← AllocateLarge(D, N,min,max):
1: Initialize an empty hash table Tab;
2: Let A be an array of t = N/max buckets—each bucket has capacity 2max;
3: for each keyword w such that min < |D(w)| ≤ max do
4: if there exists a bucket A[k] with at least |D(w)| available space then
5: Store D(w) in bucket A[k];
6: Tab[w]← (|D(w)|, k,⊥,⊥);
7: else return FAIL;
8: return (A,Tab);

Fig. 8. Allocation algorithm for large sizes.

Algorithm (A,Tab)← AllocateHuge(D, N):
1: Let min← N/ logγ N ;
2: Initialize an empty hash table Tab;
3: Let A be an array of N entries; count← 1;
4: for all keywords w such that |D(w)| > min do
5: Store D(w) in positions count, count + 1, . . . , count + |D(w)| − 1 of array A;
6: count← count + |D(w)|;
7: Tab[w]← (|D(w)|,⊥,⊥,⊥);
8: return (A,Tab);

Fig. 9. Allocation algorithm for huge sizes.

For a given subrange (min,max], AllocateLarge stores all keyword lists in an array
A of t = N/max buckets of capacity 2max each. In particular, for a large keyword
list D(w) of size s, the algorithm places the list in the first bucket that it can find with
available space. We later prove that there will always be such a bucket, and therefore no
overflow will ever happen. The formal description of the algorithm is shown in Figure 8.

Theorem 8. Algorithm AllocateLarge in Figure 8 never outputs FAIL.

Proof. Assume AllocateLarge fails. This means that at the time some list D(w) is
considered, all buckets of A store at least 2max − s + 1 elements each. Therefore the
total number of elements considered so far is

N

max
(2max− s+ 1) ≥ N

max
(max + 1) ≥ N +

N

max
≥ N + logγ N ,

since s ≤ max ≤ N/ logγ N . This is a contradiction, however, since the number of
entries of our dataset is exactly N . ut

5.5 Allocating Huge Lists with a Read-All Algorithm
Keyword lists that have size greater than N/ logγ N up to N are stored directly in an
array A of N entries, one after the other—see Figure 9. To read a huge list in our actual
construction, one would have to read the whole array A—however, due to the huge size
of the list, the read efficiency would still be small.



Protocol 〈st, I〉 ↔ SETUP〈(1κ,D),⊥〉:
1: Let N ←

∑
w∈W |D(w)|; Set step < 3δ/2;

2: Let Tab be an empty hash table of capacity N ;
3: (S,TabS)← AllocateSmall(D, N);
4: for all buckets S[i] ∈ S do
5: Encrypt-And-Write bucket S[i] and add encrypted S[i] to server index I;
6: (M,BM ,TabM )← AllocateMedium(D, N);
7: for all buckets M[i] ∈ M do
8: Encrypt-And-Write bucket M[i] and add encrypted M[i] to server index I;
9: for h = 1, . . . , 2−γ

step do
10: (Lh,TabLh)← AllocateLarge(D, N,N/ log2−(h−1)·step N,N/ log2−h·step N);
11: (H,TabH)← AllocateHuge(D, N);
12: Encrypt-And-Write array H and add encrypted H to server index I;

13: Set Tab← TabS ∪ TabM ∪
(⋃ 2−γ

step
h=1 TabLh

)
;

14: st← Tab;
15: for every stash Bs ∈ BM corresponding to size s do
16: 〈σs,EMs〉 ↔ ORAMINITIALIZE〈(1κ,Bs),⊥〉;
17: Encrypt-And-Write σs and add σs and EMs to server index I;
18: for h = 1, . . . , 2−γ

step do
19: 〈σh,EMh〉 ↔ ORAMINITIALIZE〈(1κ,Lh),⊥〉;
20: Encrypt-And-Write σh and add σh and EMh to server index I;
21: if AllocateSmall or AllocateMedium or AllocateLarge called above output FAIL then
22: return FAIL;
23: return 〈st, I〉;

Fig. 10. The setup protocol of our SE construction.

6 Our SE Construction
We now present our main construction that uses the ORAM scheme presented in Sec-
tion 4 and the allocation algorithms presented in Section 5 as black boxes. Our formal
protocols are shown in Figure 10 and Figure 11.

6.1 Setup Protocol of SE scheme
Our setup algorithm allocates lists depending on whether they are small, medium, large
or huge, as defined in Section 5. We describe the details below.

Small Keyword Lists. These are allocated to superbuckets using AllocateSmall from
Section 5.2. The allocation algorithm outputs an array of buckets S storing the small
keyword lists and the instructions hash table TabS storing, for each small keyword list
D(w), its size s and the superbuckets α and β assigned for this keyword list by the
allocation algorithm. The setup protocol of the SE scheme finally encrypts and writes
bucket array S and stores it remotely—see Line 5 in Figure 10. It stores TabS locally.

Medium Keyword Lists. These are allocated to superbuckets using AllocateMedium
from Section 5.3. AllocateMedium outputs (i) an array of buckets M; (b) the set of
stashes {Bs}s that handle the overflows, for all sizes s in the range; (iii) the instructions



Protocol 〈(D(w), st′), I′〉 ↔ SEARCH〈(st, w), I〉:
1: Parse st as Tab and I as (S,M,H, {σs,EMs}, {σh,EMh});
2: Let (s, α, β, x)← Tab[w]; Set step < 3δ/2;
3: if s > N/ logγ N then . Huge sizes
4: Read-And-Decrypt array H;
5: Retrieve D(w) from H;
6: else
7: if s ≤ N1−1/ log1−γ N then . Small sizes
8: Read-And-Decrypt superbuckets S{α, s} and S{β, s};
9: Retrieve D(w) from S{α, s} and S{β, s};

10: else
11: if N1−1/ log1−γN < s ≤ N/ log2N then . Medium sizes
12: Read-And-Decrypt σs;
13: 〈(vx, σs),EMs〉 ↔ ORAMACCESS〈(σs, x),EMs〉;
14: Encrypt-And-Write σs;
15: Read-And-Decrypt suberbuckets M{α, s} and M{β, s};
16: Retrieve D(w) from M{α, s} and M{β, s} or vx;
17: else . Large sizes
18: Find h ∈ {1, . . . , 2−γ

step } s.t. N/ log2−(h−1)·step N < s ≤ N/ log2−h·step N ;
19: Read-And-Decrypt σh;
20: 〈(vα, σh),EMh〉 ↔ ORAMACCESS〈(σh, α),EMh〉;
21: Encrypt-And-Write σh;
22: Retrieve D(w) from vα;
23: return 〈(D(w), st), I〉;

Fig. 11. The search protocol of our SE construction.

hash table TabM storing, for each keyword list D(w) that falls into this range, its size
s, the superbuckets α and β assigned for this keyword list and a stash position x in
the stash Bs where the specific keyword list could have been potentially stored, had it
caused an overflow (otherwise a dummy position is stored). The setup protocol finally
encrypts and writes M and stores it remotely—see Line 8 in Figure 10. It also builds an
ORAM per stash Bs—see Line 15 in Figure 10. Finally it stores TabM locally.

Large Keyword Lists. These are allocated to buckets using AllocateLarge from Sec-
tion 5.4. To keep read efficiency small, we run AllocateLarge for 2−γ

step distinct sub-
ranges, as we detailed in Section 5. For the subrange

(N/ log2−(h−1)·step N,N/ log2−h·step N ]

AllocateLarge outputs an array of buckets Lh and a hash table TabLh . The setup pro-
tocol builds an ORAM for the array Lh. Finally it stores TabLh locally.

Huge Keyword Lists. For these lists, we use AllocateHuge from Section 5.5. This
algorithm outputs an array H and a hash table TabH . Our setup protocol encrypts and
writes H remotely and stores TabH locally.

Local State and Using Tokens. For the sake of simplicity and readability of Fig-
ure 10, we assume that the client keeps locally the hash table Tab—see Line 13. This



occupies linear space O(N) but can be securely outsourced using standard SE tech-
niques [28], and without affecting the efficiency (read efficiency and locality): For ev-
ery hash table entry w → [s, α, β, x], store at the server the “encrypted” hash table
entry tw → ENCkw(s||α||β||x), where tw and kw comprise the tokens for keyword
w (these are the outputs of a PRF applied on w with two different secret keys that the
client stores) and ENC is a CPA-secure encryption scheme. To search for keyword w,
the client just needs to send to the server the tokens tw and kw and the server can then
search the encrypted hash table and retrieve the information s||α||β||x by decrypting.
Handling ORAM State and Failures. Our setup protocol does not store locally
the ORAM states σs and σh of the stashes Bs and the arrays Lh for which we build
an ORAM. Instead, it encrypts and writes them remotely and downloads them when
needed—see Line 17 in Figure 10. Also, note that our setup algorithm can fail, when-
ever any of the allocation algorithms fail. By Theorems 6, 7 and 8 we have the follow-
ing:

Lemma 6. Protocol SETUP in Figure 10 fails with probability neg(N).

Lemma 7. Protocol SETUP in Figure 10 outputs an encrypted index I that has O(N)
size and runs in O(N) time.

Proof. The space complexity follows from Theorems 6 and 7, by the fact that array H
output by AllocateHuge has size O(N), by the fact that we keep a number of arrays
for large keyword lists that is independent of N , and by the fact that the ORAM states
σs and σh, being asymptotically less than the ORAM themselves, occupy at most linear
space.

For the running time, note that AllocateSmall, AllocateLarge, AllocateHuge run
in linear time and the ORAM setup algorithms also run in linear time (same analysis
with the space can be made). By Lemma 1, AllocateMedium must perform a costly
O(n3) offline allocation (a maximum flow computation) where n is the number of su-
perbuckets defined for every size s in the range. The maximum number of superbuckets
M is achieved for the smallest size handled by AllocateMedium and is equal to

M =
N

N1−1/ log1−γ N · logγ N
= N1/ log1−γ N/ logγ N .

Recall that there are at most logγ N sizes handled by AllocateMedium and there-
fore the time required to do the offline allocation is at most O

(
logγ N ·M3

)
which is

equal to O(N3/ log1−γ N/ log2γ N) = O(N). Therefore the running time is O(N). ut

6.2 Search Protocol of SE scheme
Given a keyword w, the client first retrieves information (s, α, β, x) from Tab[w]. De-
pending on the size s of D(w) the client takes the following actions (see Figure 11):

– If the listD(w) is small, the client reads two superbuckets S{α, s} and S{β, s} and
decrypts them. Since the size of the buckets S[i] is logγ N and each superbucket
contains s of them, it follows that the read efficiency for small sizes is Θ(logγ N).
Note also that since only two superbuckets are read, the locality for small lists is
O(1).



– If the listD(w) is medium, the client reads two superbuckets M{α, s} and M{β, s}
and decrypts them. Also he performs an ORAM access in the stash Bs for location
x. Since the size of the buckets M[i] is O(logγ N) and each superbucket has s of
them, the read efficiency for medium sizes due to accessing array M is O(logγ N).
For the ORAM access, note that in our case it is n = c·log2N . Therefore by Corol-
lary 1, and since our block size is at leastN1−1/ log logN which isΩ(log2/3N), the
bandwidth required is O(n1/3 log2 n · s) = O(log2/3N log2 logN · s) and there-
fore the read efficiency due to the ORAM access is O(log2/3N log2 logN) =
o(logγ N), since γ = 2/3 + δ. Therefore the overall read efficiency for medium
sizes is O(logγ N). Again, since only two superbuckets are read and since the
ORAM locality is O(1) (Corollary 1), it follows that the locality for medium lists
is O(1).

– Suppose now the list D(w) is large such that min < |D(w)| ≤ max where min =

N/ log2−(h−1)·step N and max = N/ log2−h·step N for some h ∈ {1, 2, . . . , 2−γstep }.
To retrieve the list, our search algorithm performs our ORAM access on an array
onN/max blocks of size 2 ·max each. By Corollary 1, we have that the worst-case
bandwidth for this access is

O

((
N

max

)1/3

log2
(

N

max

)
max

)
= O

(
N
(
log2−h·stepN

)−2/3
log2 logN

)
.

For read efficiency, note that the client must use this bandwidth to read a keyword
list of size s ≥ min = N/ log2−(h−1)·step N . Thus the read efficiency is at most

O

(
log2−(h−1)·stepN ·

(
log2−h·stepN

)−2/3
log2 logN

)
= O(logγ

′
N log2 logN) ,

where for all h ≥ 1 it is γ′ ≤ 2/3 + 2 · step/3 < 2/3 + δ = γ since step < 3δ/2.
Therefore the above is o(logγ N) as required.

– For huge sizes, the read efficiency is at most O(logγ N) since the locality is con-
stant since the whole array H is read.

Therefore, overall, the locality is O(1), the read efficiency is O(logγ N) and the space
required at the server is O(N).

6.3 Security of our Construction
We now prove the security of our construction. For this, we build a simulator SIMSETUP
and SIMSEARCH in Figures 12 and 13 respectively.

Simulation of the Setup Protocol. To simulate the setup protocol, our simulator must
output I0 by just using the leakage L1(D0) = N . Our SIMSETUP algorithm outputs
I0 as CPA-secure encryptions of arrays (S,M,H) that contain dummy values and have
the same dimensions with the arrays of the actual setup algorithm. Also, it calls the
ORAM simulator from Figure 16 and also outputs {σs,EMs}) and {σh,EMh}). Due
to the security of the underlying ORAM scheme and the CPA-security of the underlying
encryption scheme, the adversary cannot distinguish between the two outputs.



Algorithm (stS , I0)← SIMSETUP(1κ,L1(D0)):
1: Parse L1(D0) as N ;
2: Let S to be an array that contains N dummy elements; Encrypt-And-Write S;
3: Let M to be an array of N dummy elements; Encrypt-And-Write M;
4: for h = 1, 2, . . . , 2−γ

step do
5: Set max = N/ log2−h·step N ;
6: (sthS ,EMh)← SIMORAMINITIALIZE(1κ, (N/max,max));
7: Parse sthS as σh; Encrypt-And-Write σh;
8: Let H be an array of N dummy elements; Encrypt-And-Write H;
9: Let min = N1−1/ log1−γ N and max = N/ log2N

10: for s = 2min, 4min, 8min, . . . ,max do
11: Set Bs to be an array of c · log2N entries of s dummy elements each;
12: (stsS ,EMs)← SIMORAMINITIALIZE(1κ, (c · log2N, s));
13: Parse stsS as σs; Encrypt-And-Write σs;
14: Let messages be an empty hash table;
15: Set I0 = (S,M,H, {σs,EMs}, {σh,EMh});
16: return ((N,messages, {stsS}, {sthS}, I0);

Fig. 12. The simulator of the setup protocol of our SE scheme.

One potential problem, however, is the fact that SIMSETUP always succeeds while
there is a chance that the setup algorithm can fail, which will enable the adversary
to distinguish between the two. However, by Lemma 6, this happens with probability
neg(N) = neg(κ), as required by our security definition, Definition 1.

Simulation of the Search Protocol. The simulator of the SEARCH protocol is shown
in Figure 13. For a keyword querywk, the simulator takes as input the leakageL2(wk) =
(s, b), as defined in Relation 1.

If the query on wk was performed before (thus b 6= ⊥), the simulator just outputs
the previous messages Mb plus the messages that were output by the ORAM simulator.

If the query on wk was not performed before, then the simulator generates the mes-
sages Mk depending on the size s of the list D(wk). In particular note that all accesses
on (S,M,H,Lh) are independent of the dataset and therefore can be simulated by re-
peating the same process with the real execution.

7 Conclusions and Observations
Basing the Entire Scheme on ORAM. Our construction is using ORAM as a black
box and therefore one could wonder why not use ORAM from the very beginning and
on the whole dataset. While ORAM can provide much better security guarantees, it
suffers from high read efficiency. E.g., to the best of our knowledge, there is no ORAM
that we could use that yields sublogarithmic read efficiency (irrespective of the locality).

Avoiding the Lower Bound of [6]. We note that Proposition 4.6 by Asharov et al. [6]
states that one could not expect to construct an allocation algorithm where the square
of the locality × the read efficiency is O(logN/ log logN). This is the case with our
construction! The reason this proposition does not apply to our approach is because our



Algorithm (stS ,Mk, Ik)← SIMSEARCH(stS ,L2(wk), Ik−1):

1: Parse stS as (N,messages, {stsS}, {sthS});
2: Parse Ik−1 as (S,M,H, {σs,EMs}, {σh,EMh});
3: Parse L2(wk) as (s, b);
4: Set mk = null; m1 = null; m2 = null;
5: if N/ log2N < s ≤ N/ logγ N then . For large sizes, perform a fresh ORAM access
6: Find h ∈ {1, 2, . . . , 2−γ

step } such that N/ log2−(h−1)·step N < s ≤ N/ log2−h·step N ;
7: Read-And-Decrypt σh. Let m1 be this message;
8: (sthS ,EMh,mk)← SIMORAMACCESS(sthS ,EMh);
9: Encrypt-And-Write σh. Let m2 be this message;

10: Set messages[k]← null;
11: Set stS ← (N,messages, {stsS}, {sthS});
12: Set Ik ← (S,M,H, {σs,EMs}, {σh,EMh});
13: return (stS , (mk,m1,m2), Ik);
14: if b 6= ⊥ then . Query has been asked before
15: if N1−1/ log1−γ N < s ≤ N/ log2N then
16: Read-And-Decrypt σh. Let m1 be this message;
17: (stsS ,EMs,mk)← SIMORAMACCESS(stsS ,EMs);
18: Encrypt-And-Write σh. Let m2 be this message;
19: Set stS ← (N,messages, {stsS}, {sthS});
20: Set Mk ← (messages[b], (mk,m1,m2));
21: Set Ik ← (S,M,H, {σs,EMs}, {σh,EMh});
22: return (stS ,Mk, Ik);
23: if s > N/ logγ N then . Huge sizes
24: Read-And-Decrypt array H;
25: Add the above message to messages[k];
26: if s ≤ N1−1/ log1−γ N then . Small sizes
27: Set C ← cs · logγ N a and B ← N/C;
28: Pick α and β independently and uniformly at random from {1, 2, . . . , B

s
};

29: Read-And-Decrypt superbuckets S{α, s} and S{β, s};
30: Add the above message to messages[k];
31: if N1−1/ log1−γ N < s ≤ N/log2N then . Medium sizes
32: Set C = 3 · logγ N and B ← N/C;
33: Pick α and β independently and uniformly at random from {1, 2, . . . , B

s
};

34: Read-And-Decrypt suberbuckets M{α, s} and M{β, s};
35: Add the above message to messages[k];
36: Read-And-Decrypt σh. Let m1 be this message;
37: (stsS ,EMs,mk)← SIMORAMACCESS(stsS ,EMs);
38: Encrypt-And-Write σh. Let m2 be this message;
39: Set stS ← (N,messages, {stsS}, {sthS});
40: Set Mk ← (messages[k], (mk,m1,m2));
41: Set Ik ← (S,M,H, {σs,EMs}, {σh,EMh});
42: return (stS ,Mk, Ik);

a Constant cs is appropriately chosen in [6].

Fig. 13. The simulator of the search protocol of our SE scheme.



allocation algorithm is using multiple structures for storage, e.g., stashes and multiple
arrays, and therefore does not fall into the model used to prove the negative result.
Reducing the ORAM Read Efficiency. Our technique for building our ORAM in
Section 4 relies on one hierarchical application of the method of square-root ORAM [15].
We believe this approach can be generalized to yield read efficiency O(n1/k log2 n · λ)
for general k. The necessary analysis, while tedious, seems technically non-challenging
and we leave it for future work (e.g., we could revisit some ideas from [31]). Such an
ORAM could also help us decrease the number of subranges on which we apply our
AllocateLarge algorithm.
Using Online Two-Choice Allocation. Our construction uses the offline variant of
the two-choice allocation problem. This allows us to achieve low bounds on both the
number of overflowing bins and the total overflow size in Section 3. However it re-
quires executing a maximum flow algorithm during our construction’s setup. A natural
question is whether we can use instead the (more efficient) online two-choice allocation
problem. The best known result [8] for the online version yields a maximum load of
O(log log n) beyond the expected value m/n, which suffices to bound the maximum
number of overflowing bins with our technique. However, deriving a similar bound for
the total overflow size would require entirely different techniques and we leave it as an
open problem. Still, it seems that even if we could get the same bound for the overflow
size as in the offline case, the read efficiency would beO(logγ N log logN), as opposed
to the better O(logγ N), which is what we achieve here.
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A Various Useful Lemmata and Definitions
Definition 2 (Correctness of SE). Let (SETUP, SEARCH) be an SE scheme. Let now
〈st0, I0〉 ↔ SETUP〈(1κ,D0), 1

κ〉) for some initial SE dataset D0. Consider q keyword
queries w1, . . . , wq . An SE scheme is correct if 〈(D(wk), stk),EMk〉 are the final out-
puts of the protocol SEARCH〈(stk−1, wk),Dk−1〉 for any 1 ≤ k ≤ q, where Dk, Ik,
stk are the SE dataset, the encrypted index and the secret state, respectively, after the
k-th query, and SEARCH is run between an honest client and an honest server.

Definition 3 (Correctness of ORAM). Let (ORAMINITIALIZE,ORAMACCESS) be
an ORAM scheme. Let 〈σ0,EM0〉 ↔ ORAMINITIALIZE〈(1κ,M0), 1

κ〉) for some ini-
tial memory M0 of n indexed values (1, v1), (2, v2), . . . , (n, vn). Consider q arbitrary
requests i1, . . . , iq . We say that the ORAM scheme is correct if 〈(vik , σk),EMk〉 are the
final outputs of the protocol ORAMACCESS〈(σk−1, ik),EMk−1〉 for any 1 ≤ k ≤ q,
where Mk, EMk, σk are the memory array, the encrypted memory array and the secret
state, respectively, after the k-th access operation, and ORAMACCESS is run between
an honest client and server.

Definition 4 (Security of ORAM). Assume (ORAMINITIALIZE,ORAMACCESS) is an
ORAM scheme. The ORAM scheme is secure if for any PPT adversary Adv, there exists
a stateful PPT simulator (SIMORAMINITIALIZE, SIMORAMACCESS) such that

|Pr[RealORAM(κ) = 1]− Pr[IdealORAM(κ) = 1]| ≤ neg(κ) ,

where experiments RealORAM(κ) and IdealORAM(κ) are defined in Figure 14 and where
the randomness is taken over the random bits used by the algorithms of the ORAM
scheme, the algorithms of the simulator and Adv.

Definition 5 (Dubhashi and Ranjan [14]). A set of random variables {X1, . . . , Xn}
is negatively associated if for every two disjoint index sets I ∈ [n] and J ⊆ [n] it is

E[f(Xi, i ∈ I)g(Xj , j ∈ J)] ≤ E[f(Xi, i ∈ I)]E[g(Xj , j ∈ J)]

for all f : R|I| → R , g : R|J| → R that are both non-increasing or non-decreasing14.
14 A function h : Rk → R is non-decreasing when h(x) ≤ h(y) whenever x ≤ y in the

component-wise ordering on Rk.



bit← RealORAM(κ):
1: M0 ← Adv(1κ); 〈σ0,EM0〉 ↔ ORAMINITIALIZE〈(1κ,M0), 1

κ〉;
2: for k = 1 to q do
3: ik ← Adv(1κ,EM0,m1, . . . ,mk−1);
4: 〈(vik , σk),EMk〉 ↔ ORAMACCESS〈(σk−1, ik),EMk−1〉;
5: Letmk be the messages from client to server in the ORAMACCESS protocol above;
6: bit← Adv(1k,EM0,m1,m2, . . . ,mq);
7: return bit;
bit← IdealORAM(κ):
1: M0 ← Adv(1κ); (stS ,EM0)← SIMORAMINITIALIZE(1κ, |M0|);
2: for k = 1 to q do
3: (stS ,EMk,mk)← SIMORAMACCESS(stS ,EMk−1);
4: bit← Adv(1k,EM0,m1,m2, . . . ,mq);
5: return bit;

Fig. 14. Real and ideal experiments for the ORAM scheme.

Lemma 8. Let {X1, . . . , Xn} be negatively associated 0-1 random variables and X
be their sum. Let µ = E[X] and µH be an upper bound on µ, i.e., µ ≤ µH . Then, for
any δ > 0, the following version of the Chernoff bound holds

Pr[X ≥ (1 + δ)µH ] ≤
(

eδ

(1 + δ)(1+δ)

)µH
.

Proof. For i = 1, . . . , n, let pi = Pr[Xi = 1]. By linearity of expectation, we have
that µ =

∑n
i=1 pi. Since variables Xi are negatively associated, from [14, Lemma 2],

we have that for t > 0, E[etX ] = E[etX1 · etX2 . . . etXn ] ≤
∏n
i=1 E[etXi ]. For each

E[etXi ], it holds that E[etXi ] = pie
t + (1 − pi) = 1 + pi(e

t − 1) ≤ epi(e
t−1), where

we used the fact that for any k, it holds that 1 + k ≤ ek. Replacing above we get that

E[etX ] ≤
n∏
i=1

E[etXi ] ≤
n∏
i=1

epi(e
t−1) = e

∑n
i=1 pi(e

t−1) = eµ(e
t−1) ≤ eµH(et−1) .

Finally, applying Markov’s inequality, for any t > 0 we get that

Pr[X ≥ (1 + δ)µH ] = Pr[etX ≥ et(1+δ)µH ] ≤ E[etX ]

et(1+δ)µH
≤ eµH(et−1)

et(1+δ)µH
.

By now setting t = ln(1 + δ) (since δ > 0) we get that

Pr[X ≥ (1 + δ)µH ] ≤
(

eδ

(1 + δ)(1+δ)

)µH
.

ut

Lemma 9. For any set U ⊆ {1, . . . , n} and for any τ ≥ 2 it holds that

∑
1≤|U |≤n8

(
n

|U |

)
PU ≤

(
|U |
n

)(b+τ−1)|U |+1

· e(b+1)|U |+1 = O(1/n)b+τ ,



where PU = Pr[LU ≥ (b + τ)|U | + 1] and LU is the unavoidable load of a subset of
bins U , where the unavoidable load LU is defined in Section 3.2.

Proof. By the Stirling approximation, we have that
(
n
|U |
)
≤
(
ne
|U |

)|U |
=
(
n
|U |

)|U |
e|U |.

To bound PU = Pr[LU ≥ (b + τ)|U | + 1] we note that the variables XU
i are

distributed independently from each other, and thus for a set U the variable LU follows
the binomial distribution with success probability p2 where p = |U |/n. By applying the
strong version of Chernoff bound, it follows from [25, Lemma 7] that for x ≥ E[LU ]

Pr[LU ≥ x] ≤
(
mp2

x

)x(
1− p2

1− x/m

)m−x
. (2)

By Equation 2, setting x = (b+ τ)|U |+ 1 ≥ E(LU ) (since |U | ≤ n) we get that

Pr[LU ≥ (b+τ)|U |+1] ≤
(

b|U |2/n
(b+ τ)|U |+ 1

)(b+τ)|U |+1(
1− |U |2/n2

1− ((b+ τ)|U |+ 1)/bn

)bn−(b+τ)|U |−1
.

Let f =
(

b|U |2/n
(b+τ)|U |+1

)(b+τ)|U |+1

and g =
(

1−|U |2/n2

1−((b+τ)|U |+1)/bn

)bn−(b+τ)|U |−1
, i.e.,

Pr[LU ≥ (b+ τ)|U |+ 1] ≤ f · g. We will proceed to bound these two values indepen-
dently. For f we have that

f =

(
b|U |2/n

(b+ τ)|U |+ 1

)(b+τ)|U |+1

=

(
b|U |2

n(b+ τ)|U |+ n

)(b+τ)|U |+1

≤
(

b|U |
n(b+ τ)

)(b+τ)|U |+1

≤
(
|U |
n

)(b+τ)|U |+1(
b

b+ τ

)(b+τ)|U |

=

(
|U |
n

)(b+τ)|U |+1(
1− τ

b+ τ

)(b+τ)|U |

≤
(
|U |
n

)(b+τ)|U |+1

· e−τ |U |.

Regarding g, first note that 1 − |U |2/n2 = (1 + |U |/n)(1 − |U |/n). We now split g
into two functions g1, g2 with g = g1g2 such that

g1 =

(
1 +
|U |
n

)bn−(b+τ)|U |−1
≤
(
1 +
|U |
n

)bn
≤ eb|U |

g2 =

(
1− |U |/n

1− ((b+ τ)|U |+ 1)/bn

)bn−(b+τ)|U |−1
=

(
bn− b|U |

bn− (b+ τ)|U | − 1

)bn−(b+τ)|U |−1
=

(
1 +

(b+ τ)|U | − b|U |+ 1

bn− (b+ τ)|U | − 1

)bn−(b+τ)|U |−1
≤ e(b+τ)|U |−b|U |+1 = eτ |U |+1.



By combining all the bounds, we get(
n

|U |

)
PU ≤

(
n

|U |

)|U |
e|U | ·

(
|U |
n

)(b+τ)|U |+1

· e−τ |U | · eb|U | · eτ |U |+1

=

(
|U |
n

)(b+τ−1)|U |+1

· e(b+1)|U |+1.

Let us view
(
|U |
n

)(b+τ−1)|U |+1

· e(b+1)|U |+1 as function h(|U |). Its second derivative

can be written in the formA ln2(|U |/n)+B ln(|U |/n)+C whereA,B,C are defined as
A =

(
τ2 + (2b− 2) τ + b2 − 2b+ 1

)
|U |, B =

(
2τ2 + (6b− 2) τ + 4b2 − 4b

)
|U | +

2τ + 2b − 2, and C =
(
τ2 + 4bτ + 4b2

)
|U | + 3τ + 5b − 1. Its discriminant is

−4 (τ + b− 1)
2
((τ + b− 1) |U | − 1) which is ≤ 0 when τ ≥ 2 and |U | > 0, as it

is in our scenario. Since also for τ ≥ 2 it is A ≥ 0 it follows that for positive |U |
the second derivative is always non-negative. Therefore, for any [x, y] interval with
x, y > 0, x ≤ y, h gets it maximum value as h(x) or h(y). Therefore, we can write

T1 =
∑

1≤|U |≤n8

(
n

|U |

)
PU ≤ h(1) + (n/8)max{h(2), h(n/8)}.

Moreover it holds that

(1) h(1) = n−(b+τ) · eb+2 = n−(b+τ) · eb+τe2−τ ≤ e2(e/n)b+τ = O(1/n)b+τ

(2) (n/8)h(2) = (n/8)(2/n)2b+2τ−1 · e2b+3 ≤ (1/16 · e3)(2e/n)2(b+τ) = O(1/n)2(b+τ).

Finally, it also holds that

(3) (n/8)h(n/8) = (n/8)

(
1

8

)(b+τ−1)(n/8)+1

· e(b+1)(n/8)+1

= (n/8) · e(ln
1
8 )
(
(b+τ−1)(n/8)+1

)
+(b+1)(n/8)+1

= (n/8) · e(n/8)
(
(ln 1

8 )(b+τ−1)+(b+1)
)
+1+ln 1

8

< O(n)e−(n/8)(b+2τ−3) = e−Ω(n) ,

where we used the fact that ln(1/8) < −2 and τ ≥ 2. Combining these three bounds
we get that T1 = O(1/n)b+τ (which is the weakest one). ut

Here we present the max flow algorithm (Section 3.3 of [25]) used as part of our
medium list allocation.

B Our ORAM construction
Lemma 10. The ORAM scheme in Figure 4 is correct according to Definition 3.

Proof. It is enough to prove that for all indices i, (i, vi) will be always stored either in
C or in A[πa[i]] or in B[πb[Tab[i]]]—these are the values from which we retrieve vi in
Line 16 of our construction in Figure 4. We consider the following disjoint cases.



(chosen, alternative)← MaxFlowSchedule(m,n,A,B)
1: Let G be a graph that has n nodes and the following m unit-capacity directed edges

{(A[1],B[1]), (A[2],B[2]) . . . , (A[m],B[m])} ;

2: Let s and t be two new nodes added to G serving as the source and the sink;
3: For all v ∈ G such that indeg(v) > dm/ne+ 1, add a directed edge (s, v) of capacity

indeg(v)− (dm/ne+ 1) ;

4: For all v ∈ G such that indeg(v) < dm/ne+ 1, add a directed edge (v, t) of capacity

(dm/ne+ 1)− indeg(v) ;

5: Compute the maximum flow in G from s to t;
6: if the maximum flow in G from s to t saturates all the edges having s as origin then
7: Change the direction of all edges (A[i],B[i]) by calling swap(A[i],B[i]) that carry flow;
8: Let chosen and alternative be emtpy arrays of m entries;
9: for i = 1 to m do

10: Set chosen[i]← B[i];
11: Set alternative[i]← A[i];
12: return (chosen, alternative);

Fig. 15. Maximum flow algorithm for finding allocation.

1. (i has been accessed since the last reshuffle) Then, (i, vi) can be found in C since
it was stored there during the last access to it and C has not been emptied since.

2. (i has not been accessed since the last large reshuffle) Then, (i, vi) can be found
inA[π[i]] since during a large reshuffle all the elements of the dataset are reshuffled
into A (and stay there if not accessed afterwards).

3. (i has been accessed since the last large reshuffle but not since the last small
reshuffle) Then, the element can be found in B[πb[Tab[i]]]. This is because, after
its first access that occurred after the large reshuffle element i moved to C and after
the small reshuffle element i moved to B with a new index Tab[i] in B and it was
stored at location πb[Tab[i]] during the small reshuffle. Since it was never accessed
after the small reshuffle, it remained in B.

ut

Lemma 11. The ORAM scheme in Figure 4 is secure according to Definition 4 and
assuming pseudorandom permutations and CPA-secure encryption.

Proof. Our simulator is shown in Figure 16. Note that all EMi are trivially indistin-
guishable from the EMi output by the real game due to the CPA-security of the en-
cryption scheme that is used—recall that whatever is being written on the server by our
protocols is always freshly encrypted. We now argue that the messagesm1,m2, . . . ,mq

in the real game are indistinguishable from the messagesm1,m2, . . . ,mq output by the
simulator. This is because for each 1 ≤ k ≤ q, the set of message mk is entirely inde-



Algorithm (stS ,EM0)← SIMORAMINITIALIZE(1κ, |M0|):
1: Let (n, λ) = |M0|; . Recall λ is the size of the ORAM block
2: for i = 1 to n do
3: Set vi = 0λ; M0[i] = (i, vi);
4: 〈σ0,EM0〉 ↔ ORAMINITIALIZE〈(1κ,M0),⊥〉;
5: return (σ0,EM0);

Algorithm (stS ,EMk,mk)← SIMORAMACCESS(stS ,EMk−1):
Parse stS as σk−1;
Choose ik ∈ [n];
〈(vik , σk),EMk〉 ↔ ORAMACCESS〈(σk−1, ik),EMk−1〉;
Let mk be the messages sent from client to server during the above ORAMACCESS protocol;
return (σk,EMk,mk);

Fig. 16. The simulator for the ORAM scheme of Figure 4

pendent of the queried value ik had we used truly random permutations for πa and πb.
This follows from the following facts:

– When accessing ik, array C is accessed in its entirety. Also (Tab[ik], vik) is up-
loaded encrypted at a fixed position counta in SCRATCH (see Line 20). So both
memory accesses are independent of the index ik.

– When accessing ik within a specific superepoch, a location x = πa[y] from array
A is accessed for the first and last time within the specific superepoch. Since x
is the output of a truly random permutation and is accessed only once within the
specific superepoch, x is independent of ik. The same argument applies for the
accesses made to arrayB. Now if we replace the truly random permutation with the
pseudorandom permutation of our construction, the adversary can gain a negligible
advantage which is acceptable.

– When accessing ik at the end of the current superepoch, an oblivious sorting is
executed whose memory accesses do not depend on the actual data that are being
sorted, but only on the size of the array that is being sorted. Same argument appies
for the case when ik is accessed at the end of an epoch. ut

Lemma 12. The ORAM scheme of Figure 4 hasO(n1/3 log2 n·λ) amortized bandwidth
per access andO(1) amortized locality per access and the client space isO(n2/3 log n+
n1/3 log2 n · λ).

Proof. Over the course of n accesses, each access 1 ≤ i ≤ n incurs the following:
– O(n1/3 ·λ) bandwidth andO(1) locality due to access ofA,B, C and SCRATCH;
– O(n2/3 log2 n · λ) bandwidth and O(n1/3) locality due to the small rebuilding

which happens only when i mod n1/3 = 0 (i.e., n2/3 times);
– O(n log2 n · λ) bandwidth and O(n2/3) locality due to the large rebuilding which

happens only when i mod n2/3 = 0 (i.e., n1/3 times).
Note that in order to derive the locality of the rebuilding above, we used Theorem 4 for
b = n1/3 log2 n. Now, the amortized bandwidth is

λ · n ·O(n1/3) + n2/3 ·O(n2/3 log2 n) + n1/3 ·O(n log2 n)

n
= O(n1/3 log2 n · λ)



and the amortized locality is n·O(1)+n2/3·O(n1/3)+n1/3·O(n2/3)
n = O(1). Finally, the

client must store Tab locally, that consists of n2/3 entries of log n bits each and also
needs to haveO(n1/3 log2 n·λ) space locally for the oblivious sorting—see Theorem 4.

ut

From Amortized to Worst-Case Bandwidth and Locality for our ORAM
To turn the amortized version of our scheme into worst-case we must perform some
reshuffling work (in particular c · n1/3 log2 n work where c is an appropriate constant)
during every regular ORAM access so that by the time n1/3 or n2/3 accesses have been
performed, the small or large reshuffling respectively is complete and therefore there is
no need for an expensive massive reshuffling. That idea was described for the square
root ORAM by Goodrich et al. [18]. Our ORAM construction with worst-case com-
plexities is in Figure 18. Its security and correctness follow directly from Lemmata 10
and 11. We now describe the main idea.

Large Reshuffling. Along with the first ORAM access, we can immediately perform
c · n1/3 log2 n work (or one I/O) of the large reshuffling, under another pseudorandom
permutation π′a. This is because we know ahead of time that what needs to be reshuffled
is the dataset we started with—this is because no writes are supported and therefore data
will never change.15 By continuing in this way, after n2/3 accesses, the large reshuffling
would be complete. To store the output of the new reshuffling of A under π′a we use
another array A of n+ n2/3 entries.

Small Reshuffling. Unlike the large one, the small reshuffling cannot start right along
with the first ORAM access. This is because when the first ORAM access is performed,
it is not known in advance which elements are going to be accessed in this epoch (this
information will only be available by the end of this epoch). To address this problem,
we introduce some artificial delay in the reshuffling. More formally, during the n1/3

accesses of an epoch i, what is being reshuffled are the elements that were accessed
during epochs 1, 2, . . . , i − 1 of the same superepoch—and we store these elements in
an array SCRATCH. Note that this implies that during the very first epoch (i = 1), we
are reshuffling an array that contains dummy elements. We now give some more details
concerning the implementation of the above.

As in the amortized version, while an epoch i proceeds, we move elements accessed
in epoch i into array C. However, we also maintain an other array C of size nc. When
epoch i finishes we perform the following steps:

1. We append the contents of array C to SCRATCH;
2. We set our new array C to be array C;
3. We empty array C.

At that point, all elements of epochs 1, 2, . . . , i − 1 are stored in SCRATCH and they
are ready for reshuffling.

15 We can support writes as well, but the de-amortization of the large reshuffling would be much
more complicated and we do not describe it here.



Protocol 〈⊥, Y 〉 ↔ OBLIVIOUSSORTING〈(π, n, b), X〉:
. Assume n and b are powers of 2 . Also assume that X[i] also stores the respective index i, so
that comparisons using π are possible while elements are being moved around
1: if n ≤ b then
2: Read-And-Decrypt array X . Set Y to be the sorted version of Xa;
3: else
4: 〈⊥, Y1〉 ↔ OBLIVIOUSSORTING〈(π, n/2, b), X[1, . . . , n/2]〉;
5: 〈⊥, Y2〉 ↔ OBLIVIOUSSORTING〈(π, n/2, b), X[n/2 + 1, . . . , n]〉;
6: 〈⊥, Y 〉 ↔ OBLIVIOUSMERGE〈(π, n, b), (Y1, Y2)〉;
7: Encrypt-And-Write array Y ;
8: return 〈⊥, Y 〉;

Protocol 〈⊥, Y 〉 ↔ OBLIVIOUSMERGE〈(π, n, b), (Y1, Y2)〉: . Y1, Y2 must be sorted
1: if n ≤ b then
2: Read-And-Decrypt array Y1;
3: Read-And-Decrypt array Y2;
4: Set Y to be the merged array of Y1 and Y2;
5: else
6: Let D be a 2× n/2 matrix and Y be a length n array stored at the server;
7: j = 0;
8: for i = 1, 2b+ 1, 4b+ 1, . . . , n/2− 2b+ 1 do
9: Initialize arrays D1, D2, D3, D4 of size b;

10: Read-And-Decrypt subarray Y1[i, . . . , i+ b− 1];
11: Read-And-Decrypt subarray Y1[i+ b, . . . , i+ 2b− 1];
12: Read-And-Decrypt subarray Y2[i, . . . , i+ b− 1];
13: Read-And-Decrypt subarray Y2[i+ b, . . . , i+ 2b− 1];
14: Store Y1[i], Y1[i+ 2], . . . , Y1[i+ 2b− 2] at the first available position of D1;
15: Store Y1[i+ 1], Y1[i+ 3], . . . , Y1[i+ 2b− 1] at the first available position of D3;
16: Store Y2[i], Y2[i+ 2], . . . , Y2[i+ 2b− 2] at the first available position of D2;
17: Store Y2[i+ 1], Y2[i+ 3], . . . , Y2[i+ 2b− 1] at the first available position of D4;
18: Encrypt-And-WriteD1 in D’s row 1, from position 1 + j · b onwards;
19: Encrypt-And-WriteD2 in D’s row 1, from position n/4 + 1 + j · b onwards;
20: Encrypt-And-WriteD3 in D’s row 2, from position 1 + j · b onwards;
21: Encrypt-And-WriteD4 in D’s row 2, from position n/4 + 1 + j · b onwards;
22: j ← j + 1;
23: 〈⊥, D[1, :]〉 ↔ OBLIVIOUSMERGE〈(π, n/2, b), (D[1, 1 : n/4], D[1, n/4+1 : n/2])〉;
24: 〈⊥, D[2, :]〉 ↔ OBLIVIOUSMERGE〈(π, n/2, b), (D[2, 1 : n/4], D[2, n/4+1 : n/2])〉;
25: Let Z1, . . . , Zn/2b be the 2× b submatrices that result from partitioning D horizontally;
26: for i = 1 to n/2b− 1 do
27: Read-And-Decrypt Zi;
28: Read-And-Decrypt Zi+1;
29: Sort Zi ∪ Zi+1 and let y1, . . . , y2b be the smallest resulting elements;
30: Encrypt-And-Write [y1, . . . , yb] starting at the first available position of Y ;
31: Encrypt-And-Write [yb+1, . . . , y2b] starting at the first available position of Y ;
32: Sort Zn/2b and let y1, . . . , y2b be the sorted sequence;
33: Encrypt-And-Write [y1, . . . , yb] starting at the first available position of Y ;
34: Encrypt-And-Write [yb+1, . . . , y2b] starting at the first available position of Y ;
35: return 〈⊥, Y 〉;

a We use π to perform comparisons between two elements ofX , i.e.,X[i] isLessThanX[j] iff
p[i] < p[j].

Fig. 17. Data-oblivious and I/O efficient sorting by Goodrich and Mitchenmacher [17].



Protocol 〈σ,EM〉 ↔ ORAMINITIALIZE〈(1κ,M),⊥〉:
1: Parse M as (1, v1), (2, v2), . . . , (n, vn) where |i, vi| = λ (the values are λ bits long);
2: Let na ← n+ n2/3, nb ← n2/3 + n1/3, nc ← n1/3;
3: Let A, B and C be arrays of size na, nb and nc respectively. Initialize them with 0 entries;
4: Let A, B and C be arrays of size na, nb and nc respectively. Initialize them with 0 entries;
5: Let SCRATCH be an array of size nb. Initialize it with 0 entries;
6: Let πa : [na]→ [na] and πb : [nb]→ [nb] be pseudorandom permutations;
7: Let π′a : [na]→ [na] and π′b : [nb]→ [nb] be pseudorandom permutations;
8: For i = 1, . . . , n, store (i, vi) at location πa[i] in A;
9: Encrypt-And-Write arrays A, B, C, A, B, C and SCRATCH and add them to EM ;

10: Let counta ← 0 and countb ← 0;
11: Let Tab be an empty hash table;
12: Set σ = (πa, πb, π

′
a, π
′
b,Tab, counta, countb);

13: return 〈σ,EM〉;
Protocol 〈(vi, σ′),EM′〉 ↔ ORAMACCESS〈(σ, i),EM〉:
1: Parse σ as (πa, πb, π′a, π′b,Tab, counta, countb), EM as (A,B,C,A,B, C,SCRATCH);
2: Increment counta and countb;
3: Read-And-Decrypt arrays C and C;
4: if (i, vi) ∈ C or (i, vi) ∈ C then . (i, vi) was accessed before and is stored in C or C
5: indexa ← πa[n+ counta]; indexb ← πb[n

2/3 + countb];
6: else
7: if Tab[i] 6= null then . (i, vi) is stored in B[indexb]
8: indexa ← πa[n+ counta]; indexb ← πb[Tab[i]];
9: else . (i, vi) is stored in A[indexa]

10: indexa ← πa[i]; indexb ← πb[n
2/3 + countb];

11: Read-And-Decrypt A[indexa]; Read-And-Decrypt B[indexb];
12: Retrieve (i, vi) from either A[indexa] or B[indexb] or C or C;
13: C[countb]← (i, vi);
14: Encrypt-And-Write arrays C and C;
15: Tab[i]← counta;
16: Execute one I/O of the protocol

〈⊥,A〉↔OBLIVIOUSSORTING〈(π′a, na, c · n1/3 log2 n), A〉 ;
17: Execute one I/O of the protocol

〈⊥,B〉↔OBLIVIOUSSORTING〈(π′b, na, c · n1/3 log2 n),SCRATCH〉 ;
18: if counta > n2/3 then
19: πa ← π′a;
20: Let π′a, πb, π′b be new pseudorandom permutations;
21: counta ← 0 and countb ← 0;
22: Set A← A; B ← ⊥; C ← ⊥; A ← ⊥; B ← ⊥; C ← ⊥; SCRATCH← ⊥; a

23: Set Tab← ⊥;
24: if countb > n1/3 then
25: πb ← π′b;
26: Let π′b be a new pseudorandom permutation;
27: countb ← 0;
28: Set C ← C; C ← ⊥; B ← B; B ← ⊥;
29: Read-And-Decrypt array C;
30: y ← counta − n1/3 and cnt← 0;
31: for (i, vi) ∈ C do
32: Increment cnt;
33: Encrypt-And-Write (Tab[i], vi) into SCRATCH[y + cnt];
34: return 〈(vi, (πa, πb, π′a, π′b,Tab, counta, countb)), (A,B,C,A,B, C,SCRATCH)〉;

a These are all pointer operations, and not actual copying.

Fig. 18. Read-only ORAM construction with O(n1/3 log2 n ·λ) worst-case bandwidth and O(1)
worst-case locality.



C Computing the Constants in the Asymptotics
In this section, we compute the hidden constants for c, n0 in Theorem 1. In order to do
this, we first provide the closed formula for an upper bound on Pr[L∗max > dm/ne+1]
from [25], which is the following:

Pr[L∗max > dm/ne+ 1] ≤ e(e/n)b+1 +B(n) +
∑

n
8<|U |< nb

b+1

(
n

|U |

)
P ∗U

where B(n)
def
= max{(n/8)(2/n)2b+1e2b+3, (n/8)(1/8)(1/8)nb+1e(n/8)(b+1)+1} and

P ∗U = Pr[LU ≥ (b+ 1)|U |+ 1].
Regarding the first term, note that ∀n > 2 it is upper bounded by e2/n. In order to

bound B(n), we handle the two values separately. For the first value we have that

(n/8)(2/n)2b+1e2b+3 = (e3/4)(2e/n)2b

which ∀n > 5 is upper bounded by e4/2n. For the second value we have that

(n/8)(1/8)(1/8)nb+1e(n/8)(b+1)+1 = (e/64) · n · eln(1/8)(nb/8)+(nb/8)+n/8

= (e/64) · n · e(n/8)(b(ln(1/8)+1)+1)

< (e/64) · n · e(n/8)(ln(1/8)+2)

where we used the fact that ln(1/8) + 1 < −1. For n > 655, the above is also upper
bounded by e4/2n.

Lastly, in order to bound the sum we proceed as follows. First, recall that we defined
p = |U |/n. Then, from [25, Lemma 7] we have that

P ∗U ≤

((
bp

b+ 1

)p(b+1)(
1− p2

1− p− p/b

)b−p(b+1)
)n

.

We can also write without loss of generality that
∑

n
8<|U |< nb

b+1

(
n

|U |

)
=

∑
1
8<|p|< b

b+1

(
n

pn

)
.

From the lower bound of Stirling’s approximation for the factorial, for these values of
p we have that(

n

pn

)
=

n!

pn!(n− pn)!
<

n!
√
2πpn

(
pn
e

)pn√
2π(n− pn)

(
n−pn
e

)n−pn
<

n!

2π
√

1/8 · n
(
n
e

)n
(pp(1− p)(1−p))n



Using the upper bound of Stirling’s approximation it is easy to verify that for n > 1 we
have that(
n

pn

)
<

n!

2π
√

1/8 · n
(
n
e

)n
(pp(1− p)(1−p))n

<
1.05
√
2πn

(
n
e

)n
2π
√

1/8 · n
(
n
e

)n
(pp(1− p)(1−p))n

=
1.05√
π/4
· 1√

n
·
(
p−p(1− p)(1−p)

)n
.

Finally, from [25, Lemma 9] we have that(
bp
b+1

)p(b+1) (
1−p2

1−p−p/b

)b−p(b+1)

pp(1− p)1−p
< 0.9

therefore we get that∑
n
8<|U |< nb

b+1

(
n

|U |

)
P ∗U ≤ n ·

1.05√
π/4
· 1√

n
· 0.9n =

1.05√
π/4
·
√
n · 0.9n

since the sum contains at most n terms, and for n > 57 the above is upper bounded by
1.05/(n

√
π/4).

Putting it all together, we have that ∀n > 655, it holds that

Pr[Y` > dm/ne+ 1] ≤ e2/n+ e4/2n+
1.05

nπ/4
<

36

n
.

From the above it follows that n0 = 655 and c = 36.16 Concretely, this implies that
in order to apply the bound of Theorem 1 for our main construction, one must ensure
that there exist at least 655 bins per layer for medium-size allocations. Recall that the
smallest number of bins in our scheme is logN log logN . For reasonable database
sizes, e.g., N = 232, this yields 89 bins. The desired minimum number can be easily
achieved by “padding” with the necessary amount of bins (e.g., by multiplying the
number of bins per layer by a constant factor of 8).

16 We also believe that a more mathematically involved analysis can yield a tighter bound.
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