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Abstract

Non-malleable commitments are a central cryptographic primitive that guarantee security
against man-in-the-middle adversaries, and their exact round complexity has been a subject of
great interest. Pass (TCC 2013, CC 2016) proved that non-malleable commitments with respect
to commitment are impossible to construct in less than three rounds, via black-box reductions
to polynomial hardness assumptions. Obtaining a matching positive result has remained an
open problem so far.

While three-round constructions of non-malleable commitments have been achieved, begin-
ning with the work of Goyal, Pandey and Richelson (STOC 2016), current constructions require
super-polynomial assumptions.

In this work, we settle the question of whether three-round non-malleable commitments can
be based on polynomial hardness assumptions. We give constructions based on polynomial
hardness of Decisional Di�e-Hellman assumption or Quadratic Residuosity or N th Residuosity,
together with ZAPs. Our protocols also satisfy concurrent non-malleability.



1 Introduction

Non-malleable commitments are a fundamental primitive in cryptography, that help prevent man-in-
the-middle attacks. A man-in-the-middle (MIM) adversary participates simultaneously in multiple
protocol executions, using information obtained in one execution to breach security of the other
execution. To counter such adversaries, the notion of non-malleable commitments was introduced
in a seminal work of Dolev, Dwork and Naor [DDN91]. From their inception, non-malleable com-
mitments have been instrumental to building various several important non-malleable protocols,
including but not limited to non-malleable proof systems and round-e�cient constructions of secure
multi-party computation.

A commitment scheme is a protocol between two parties, a committer C and receiver R, where
the committer has an input message m. Both parties engage in an interactive probabilistic com-
mitment protocol, and the receiver's view at the end of this phase is denoted by com(m). Later
in a opening phase, the committer and receiver interact again to generate a transcript, that allows
the receiver to verify whether the message m was actually committed to, during the commit phase.
A cryptographic commitment must be binding, that is, with high probability over the randomness
of the experiment, no probabilistic polynomial time committer can claim to have used a di�erent
message m′ 6= m in the commit phase. In short, the commitment cannot be later opened to any
message m′ 6= m. A commitment must also be hiding, that is, for any pair of messages (m,m′),
the distributions com(m) and com(m′) should be computationally indistinguishable. Very roughly,
a commitment scheme is non-malleable if for every message m, no MIM adversary, intercepting a
commitment protocol com(m) and modifying every message sent during this protocol arbitrarily, is
able to e�ciently generate a commitment to a message m̃ related to the original message m.

Round Complexity. The study of the round complexity of non-malleable commitments has
been the subject of a vast body of research over the past 25 years. The original construction
of non-malleable commitments of [DDN91] was conceptually simple, but it required logarithmi-
cally many rounds. Subsequently, Barak [Bar02], Pass [Pas04], and Pass and Rosen [PR05] con-
structed constant-round protocols relying on non-black box techniques. Wee [Wee10], and then
Goyal [Goy11], Lin and Pass [LP] and Goyal, Lee, Ostrovsky and Visconti [GLOV12] then gave var-
ious (increasingly round-optimized) constant-round black-box constructions of non-malleable com-
mitments assuming sub-exponentially hard one-way functions, and one-way functions respectively.

In more recent years, there has been noteworthy progress in understanding the exact amount
of interaction necessary for non-malleable commitments, in the plain model. Pass [Pas13] showed
an impossibility for constructing non-malleable commitments using 2 rounds of communication or
less, via a black-box reduction to any �standard� polynomial intractability assumption. Goyal,
Richelson, Rosen and Vald [GRRV14] constructed four round non-malleable commitments in the
standard model based on the existence of one-way functions. Even more recently, Goyal, Pandey
and Richelson [GPR16] constructed three round non-malleable commitments (matching the lower
bound of [Pas13]) using quasi-polynomially hard injective one-way functions, by exploiting proper-
ties of non-malleable codes. Ciampi, Ostrovsky, Siniscalchi and Visconti [COSV16] showed how to
bootstrap the result of [GPR16] to obtain concurrent non-malleable commitments in three rounds
assuming sub-exponential one-way functions. In fact, in the sub-exponential hardness regime, Khu-
rana and Sahai [KS17] and concurrently Lin, Pass and Soni [LPS17] showed how to achieve two-
round non-malleable commitments from DDH and from time-lock puzzles, respectively. All these
works use complexity leveraging and therefore must inherently rely on super-polynomial hardness.
This state of a�airs begs the following fundamental question:
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�Can we construct round optimal non-malleable commitments from polynomial assumptions?�

We answer this question in the a�rmative, by giving an explicit construction of three-round
non-malleable commitments, based on polynomial hardness of any one out of the Decisional Di�e-
Hellman, Quadratic Residuosity or N th residuosity assumptions. We additionally assume ZAPs,
which can be built from trapdoor permutations [DN07], the decisional linear assumption on bilinear
maps [GOS12] or indistinguishability obfuscation together with one-way functions [BP15]. Our
construction additionally satis�es concurrent (many-many) non-malleability.

Informal Theorem 1. Assuming polynomially hard DDH or QR or N th-residuosity, together with
ZAPs, there exist three-round concurrent non-malleable commitments.

RelatedWork. Goyal, Khurana and Sahai [GKS16] recently constructed two-round non-malleable
commitments with respect to opening, secure against synchronizing adversaries, from polynomial
hardness of injective one-way functions. Their result is incomparable to ours because they achieve
a weaker notion of security (non-malleability with respect to opening), in two rounds, but against
only synchronizing adversaries.

2 Technical Overview

We now describe the key technical roadblocks that arise in constructing non-malleable commitments
from polynomial hardness, and illustrate how we overcome these hurdles.

Proving non-malleability requires arguing that the value committed by a man-in-the-middle
adversary remain independent of the value committed by the honest committer. This seems to
inherently require extraction (as also implicit in [Pas13]): a reduction must successfully extract the
value committed by the MIM and use this value to contradict an assumption. However, current pro-
tocols for non-malleable commitments, from polynomial assumptions, in three rounds [GPR16] su�er
from a problem known as over-extraction. That is, they admit an extractor that sometimes extracts
a valid value from the MIM even though the MIM committed to an invalid value. Non-malleable
commitments built using such extractors su�er from �selective abort� attacks: a man-in-the-middle
can choose to commit to invalid values depending upon the value in the honest commitment, and
an over-extracting reduction may never be able to detect such cheating.

Non-synchronizing adversaries. Let us begin by considering a simple non-synchronizing man-
in-the-middle (MIM) adversary that interacts with an honest committer C in a left session, then
tries to maul this message and commit to a related message when interacting with an honest
receiver R in a di�erent (right) session. By non-synchronizing, we mean that this MIM completes
the entire left execution before beginning the right session. Known protocols for achieving weaker
notions of non-malleability from polynomial hardness (these include the three-round sub-protocol
without the ZK argument from [GRRV14] which we will denote by Π, and the basic three-round
protocol from [GPR16] which we will denote by Π′) do not achieve non-malleability with respect to
commitment, even in this restricted setting1.

On the other hand, any extractable commitment is non-malleable in this restricted setting of
non-synchronizing adversaries. The reason is simple: Suppose a non-synchronizing MIM managed
to successfully maul the the honest commitment. For a �xed transcript of the honest commitment,
a reduction can rewind the MIM and use the extractor of the commitment scheme to extract the

1The basic protocol from [GPR16] however, does achieve non-malleability against synchronous adversaries.
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value committed by the MIM. If this value is related to the value within the honest commitment,
this can directly be used to contradict hiding of the honestly generated commitment.

The main technical goal of this paper is to �nd a way to bootstrap the basic schemes Π,Π′ to
obtain non-malleability against general synchronizing and non-synchronizing adversaries, while only
relying on polynomial hardness.

Barrier I: Over-Extraction. A natural starting point, then, is to add extractability to the
schemes Π,Π′, by using some variant of an AoK of committed values, and within three rounds.

We cannot rely on witness indistinguishable (WI) arguments of knowledge, since arguing hiding
of the scheme would require allowing a committer to commit to two witnesses to invoke WI security.
Moreover, all existing constructions of WI arguments with black-box proofs, involve a parallel
repetition of constant-soundness arguments. Now, a malicious committer could commit to two
di�erent witnesses: and use one witness in some parallel executions of the WI argument, and a
di�erent witness in some others. In this situation, even though the commitment may be invalid, one
cannot guarantee that an extractor will detect the invalidity of the commitment, and over-extraction
is possible. This is a known problem with 3 round protocols based on one-one one-way functions.

On the other hand, very recently, new protocols have been constructed in situations unrelated
to non-malleability, that do not su�er from over-extraction [JKKR17]. Assuming polynomial hard-
ness of DDH or Quadratic Residuosity or N th residuosity, [JKKR17] demonstrated how to achieve
arguments of knowledge in three rounds, that do not over-extract and have a �weak� ZK property2.

However, the protocols of [JKKR17] guarantee privacy only when proving statements that
are chosen from a distribution, by a prover, exclusively in the third round. On the other hand,
both schemes Π,Π′, and in fact most general non-malleable commitment schemes follow a commit-
challenge-response structure, where cryptography is necessarily used in the �rst round. Thus, the
statement being proved is already fully/partially decided in the �rst round, which are incompatible
withthe kind of statements that [JKKR17] allows proofs for. Thus ideally, we would either like to
inject non-malleability into the scheme of [JKKR17], or we would like to give an argument of knowl-
edge of the message committed in the �rst round of Π,Π′, that doesn't overextract. The protocols
of [JKKR17] are unlikely to directly help us achieve these objectives, because of their restriction
to proving messages generated in the third round. However, before describing how we solve this
problem, we describe another technical barrier.

Barrier II: Composing Non-Malleability with Extraction. Many state-of-the-art protocols
for non-malleable commitments admit black-box proofs of security. Naturally then, security reduc-
tions for these protocols must rely on rewinding the adversary in order to prove non-malleability.
This makes these protocols notoriously hard to compose with other primitives that rely on rewind-
ing. More speci�cally, it is necessary to ensure that the knowledge extractor for the extractable
commitment does not interfere with the rewinding strategies used in the proof of non-malleability,
and vice-versa.

A relatively straightforward technique to get around this di�culty, used in [Goy11, LP, GLOV12,
GRRV14] is to arrange the protocol such that the non-malleable component and the argument of
knowledge appear in completely di�erent rounds and do not overlap. A more challenging method
that does not add rounds, that is also used in prior work [GRRV14], is to use �bounded-rewinding-
secure� WIAoK's while making careful changes to the non-malleable commitment scheme.

2Very roughly, this means that for every (malicious) PPT veri�er and distinguisher D, there exists a distinguisher-
dependent simulator SimD, that can generate a simulated proof.
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Our Solution: First Attempt. Our �rst technical idea is to turn the problem of incompatibility
between non-malleability and arguments of knowledge on its head, and try to use the same com-
mitments to both argue non-malleability and perform knowledge-extraction. In other words, the
only extractable primitive that we rely on will be a non-malleable commitment. This is explained
in more detail below.

We will use non-malleable commitments with a weak extraction property. Very roughly, we will
require the existence of a probabilistic �over�-extractor E , that given a PPT (synchronizing) man-
in-the-middle adversary and a transcript of an execution between the MIM and honest committer,
successfully �extracts� the value committed by the MIM in the transcript unless the value is invalid,
without having to rewind the honest execution (except with some tunable inverse-polynomial error).
The weak extraction property is satis�ed, even in the one-many setting (where the MIM participates
in multiple right executions) by the protocol Π.

Note that this is not an extractable commitment (and in particular, does not imply non-
malleability with respect to commitment), because E is allowed to output a valid value even when
the MIM committed to an incorrect/invalid value in the transcript. Thus, a MIM may cheat for
example, by generating a commitment to an invalid value when the honest commitment is to 0, and
to a valid value when the honest commitment is to 1.

Now in order to gain con�dence in the correctness of the value we extract, our scheme will have
the committer generate two non-malleable commitments in parallel, and give a WI argument that
one of the two was correctly constructed. This argument will satisfy a speci�c type of security
under rewinding, and can be constructed based on ZAPs and DDH in three rounds via [JKKR17].
For the purposes of this overview, even though we don't actually require a non-interactive proof,
assume that we use a non-interactive witness indistinguishable proof, NIWI [BOV07, GOS12]. Let
φ1 denote the protocol that results from committing to the message twice using the non-malleable
commitment scheme Π, and giving a NIWI proof that one of the two was correctly computed.

This partial solution still leaves scope for over-extraction: how can we be sure that the extractor
does not output any valid value even when a malicious committer could be committing to two
di�erent values within the non-malleable commitments and using both witnesses for the WI?

Second Attempt. Since protocol φ1 also su�ers from over-extraction, it may seem like we made
no progress at all. However, note that the same protocol can be easily modi�ed to a WIAoK (witness
indistinguishable argument of knowledge): by committing to a witness twice using Π and proving
via NIWI that one of the two non-malleable commitments is a valid commitment to a witness. Let
us call the resulting protocol φ2. At a high level, the protocol φ2 has the following properties:

• Knowledge Extraction. φ2 is an argument of knowledge (which su�ers from over-extraction).

• Non-Malleability. Weak non-malleability of Π implies a limited form of non-malleability of
the protocol φ2.

Third Attempt. In order to prevent over-extraction, we will need to force any prover that gen-
erates a proof according to φ2 to use a unique witness in φ2. We will now try to rely on three
round �weak� zero-knowledge arguments of [JKKR17], which are secure when used to prove cryp-
tographic statements chosen by the prover in the last round. These arguments in fact, also retain
a limited type of security under rewinding, which will ensure that the simulation doesn't interfere
with extraction from the non-malleable commitment.

Assume again, for the purposes of this overview, that these arguments satisfy the standard
notion of simulation for zero-knowledge, except that the statement to be proved, must be chosen in
the last round. Let us denote them by wzk.
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We will now use wzk to set up a trapdoor for φ2. This trapdoor will include a statistically
binding commitment c1 using a non-interactive statistically binding commitment scheme com, and
a wzk argument that c1 was generated correctly as a commitment to 1. The trapdoor statement
will be that c1 is a commitment to 0. This trapdoor statement will serve as the `other' witness for
φ2.

Given these building blocks, our actual commitment scheme will have the following structure:

• Trapdoor: The committer will generate commitment c1 to 1, via com in the third round. In
parallel, the committer will prove via wzk, that c1 was correctly generated as a commitment
to 1.

• Actual Commitment: The committer will also generate commitment c to input message m,
via com, only in the third round. In parallel the committer will also run scheme φ2, proving
that either c was correctly generated, or that c1 was generated as a commitment to 0.

Note that the protocol φ2 as described is not delayed-input: the non-malleable commitment Π
requires an input (that is, the witness) in the �rst round, whereas the witness for the statement is
only decided in the third round. However, we can just use one-time pads to get this delayed-input
property from φ2.

A simple (informal) description that captures the essence of our �nal protocol, φ, is in Figure 1.
The scheme φ is opened up into its components: two non-malleable commitments and a WI argu-
ment. This scheme can be shown to be computationally hiding by the privacy properties of φ, wzk
and com.

Extraction. We �rst argue that the scheme in Figure 1 is an extractable commitment. We already
discussed that there exists a knowledge extractor for φ2 that extracts at least one out of γ1, γ2: which
can then be used to extract the randomness r via z1, z2. All we need to argue is that this extractor
does not over-extract. However, soundness of wzk already forces a computational committer to set
c1 as a commitment to 1, which means that there remains only one randomness (the randomness
used for committing to m), that the committer can use in order to generate z1 or z2 in the WI.
Extractability of this scheme is already enough to guarantee security against non-synchronizing
adversaries, even if such adversaries simultaneously participate in many parallel executions.

Non-malleability. We must also argue that non-malleability is preserved, and in fact, the re-
sulting scheme is concurrent non-malleable with respect to commitment, when instantiated with Π
from [GRRV14].

While arguing non-malleability, some subtle technical issues arise that require careful analysis.
For instance, the distinguisher-dependent simulation strategy of weak ZK if used naively, only guar-
antees that the view of the distinguisher remains indistinguishable under simulation. However, while
arguing non-malleability, it is imperative to ensure that not just the view, but the joint distribution
of the view and the value committed by the MIM remains indistinguishable under simulation. It is
here that the over-extraction property of Π helps: in hybrids where we must argue non-malleability
while also performing distinguisher-dependent simulation, we will use the extractor that is guaran-
teed by the weak non-malleability of Π, to extract the value committed by the MIMwithout having
to rewind the left non-malleable commitment. This helps us guarantee that the joint distribution
of the view and values committed by the MIM remains indistinguishable under simulation.

Our actual protocol is formalized in Section 5 and is identical to the protocol described above,
except the following modi�cation: For technical reasons, in our actual protocol, instead of masking
the randomness r′ with γ, we mask it with PRF(γ, α) for randomly chosen α. The committer must
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Inputs: Committer C has input a message m ∈ {0, 1}n, receiver R has no input.

1. • C samples γ1, γ2
$←{0, 1}n.

• Next, C sends the �rst message of wzk to R.
• Finally, C sends the �rst message of Π(γ1),Π(γ2).

2. • R sends the second message of wzk to C.
• R sends the second message for both executions of Π.

3. • C computes and sends c1 = com(1; r) for r
$←{0, 1}n.

• C sends the third message of wzk to R, proving that c1 is a commitment to 1.

• C computes and sends c = com(m; r′) for r′
$←{0, 1}n.

• C sends the third message of Π(γ1),Π(γ2).

• C sends z1 = (γ1 ⊕ r′), z2 = (γ2 ⊕ r′) to R.
• C uses (c,m, r′, γ1, z1) as witness to prove using the WI that :

� c is a valid commitment to some message m with randomness r′, and Π(γ1) is
a valid non-malleable commitment to γ1 and z1 = γ1 ⊕ r′, OR

� c is a valid commitment to some message m with randomness r′, and Π(γ2) is
a valid non-malleable commitment to γ2 and z2 = γ2 ⊕ r′, OR

� c1 is a valid commitment to 0 with randomness r, and Π(γ1) is a valid non-
malleable commitment to γ1 and z1 = γ1 ⊕ r, OR

� c1 is a valid commitment to 0 with randomness r, and Π(γ2) is a valid non-
malleable commitment to γ2 and z2 = γ2 ⊕ r

Figure 1: A simpli�ed description of the �nal non-malleable commitment scheme φ

also send α to the receiver. This is for similar reasons as [JKKR17]: the simulator for wzk sends
many third protocol messages for the same �xed transcript of the �rst two messages, and we require
security to hold even in this setting.

On Rewinding Techniques in the Proof. The weak ZK protocol of [JKKR17] that we use
in this work, relies on the simulator rewinding the distinguisher. Because of this, our actual proof
of security sometimes has two sequential rewindings happening within a three round protocol:
one which rewinds to the end of the �rst round, and helps extract values committed in the MIM
executions, and the second that rewinds (the distinguisher) to the end of the second round, in order
to simulate the proof while maintaining an indistinguishable joint distribution of view and values
with respect to a given distinguisher. This requires careful indistinguishability arguments that take
such sequential rewindings into account, and can also be found in Section 5.

2.1 Organization

The rest of this paper is organized as follows. In Section 3, we will recall the preliminaries that will
be of use in our constructions. In Section 4, we give de�nitions of non-malleable commitments. In
Section 5, we describe our construction and provide a proof of non-malleability.
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3 Preliminaries

In this section, we recall some preliminaries from [JKKR17] that will be useful in our constructions.

De�nition 1 (Non-adaptive Distributional ε-Weak Zero Knowledge). A delayed-input interactive
argument (P, V ) for a language L is said to be distributional ε-weak zero knowledge against non-
adaptive veri�ers if for every e�ciently samplable distribution (Xn,Wn) on RL, i.e., Supp(Xn,Wn) =
{(x,w) : x ∈ L ∩ {0, 1}n, w ∈ RL(x)}, every non-adaptive PPT veri�er V ∗, every z ∈ {0, 1}∗, ev-
ery PPT distinguisher D, and every ε = 1/poly(n), there exists a simulator S that runs in time
poly(n, ε) such that: ∣∣∣∣∣ Pr

(x,w)←(Xn,Wn)

[
D(x, z, viewV ∗ [〈P, V ∗(z)〉(x,w)] = 1

]

− Pr
(x,w)←(Xn,Wn)

[
D(x, z,SV ∗,D(x, z)) = 1

]∣∣∣∣∣ ≤ ε(n),

where the probability is over the random choices of (x,w) as well as the random coins of the parties.

De�nition 2 (Weak Resettable Non-adaptive Distributional ε-Weak Zero Knowledge). A three
round delayed-input interactive argument (P, V ) for a language L is said to be weak resettable
distributional weak zero-knowledge, if for every e�ciently samplable distribution (Xn,Wn) on RL,
i.e., Supp(Xn,Wn) = {(x,w) : x ∈ L ∩ {0, 1}n, w ∈ RL(x)}, every non-adaptive PPT veri�er V ∗,
every z ∈ {0, 1}∗, every PPT distinguisher D, and every ε = 1/poly(n), there exists a simulator

S that runs in time poly(n, ε) and generates a simulated proof for instance x
$←Xn, such that over

the randomness of sampling (x,w) ← (Xn,Wn), Pr[b′ = b] ≤ 1
2 + ε(n) + negl(n) in the following

experiment, where the challenger C plays the role of the prover:

• At the beginning, (C, V ∗) receive the size of the instance, V ∗ receives auxiliary input z, and
they execute the �rst 2 rounds. Let us denote these messages by τ1, τ2.

• Next, (C, V ∗) run poly(n) executions, with the same �xed �rst message τ1, but di�erent second
messages chosen potentially maliciously by V ∗. In each execution, C picks a fresh sample
(x,w)← (Xn,Wn), and generates a proof for it according to honest veri�er strategy.

• Next, C samples bit b
$←{0, 1} and if b = 0, for (x,w)

$← (Xn,Wn) it generates an honest proof

with �rst two messages τ1, τ2, else if b = 1, for x
$←Xn it generates a simulated proof with �rst

two messages τ1, τ2 using simulator S that has oracle access to V ∗,D.

• Finally, V ∗ sends its view to a distinguisher D that outputs b.

Remark 1. The three message protocols in [JKKR17], based on DDH/QR/N th residuosity, along
with ZAPs, satisfy weak resettable distributional ε-weak zero knowledge/strong WI against non-
adaptive veri�ers (refer to Remark 2 in [JKKR17], and Appendix A). In our protocols, we will always
use weak zero-knowledge/strong witness-indistinguishable arguments in the �non-adaptive/delayed-
input� setting, that is, to prove statements that are chosen by the prover only in the third round of
the execution.

De�nition 3 (Resettable Reusable WI Argument). We say that a two-message delayed-input inter-
active argument (P, V ) for a language L is resettable reusable witness indistinguisable, if for every
PPT veri�er V ∗, every z ∈ {0, 1}∗, Pr[b = b′] ≤ 1

2 + negl(n) in the following experiment, where we
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denote the �rst round message function by m1 = wi1(r1) and the second round message function by
wi2(x,w,m1, r2).

The challenger samples b
$← {0, 1}. V ∗ (with auxiliary input z) speci�es (m1

1, x
1, w1

1, w
1
2) where

w1
1, w

1
2 are (not necessarily distinct) witnesses for x1. V ∗ then obtains second round message

wi2(x
1, w1

b ,m
1
1, r) generated with uniform randomness r. Next, the adversary speci�es arbitrary

(m2
1, x

2, w2
1, w

2
2), and obtains second round message wi2(x

2, w2
b ,m

2
1, r). This continues m(n) =

poly(n) times for a-priori unbounded m, and �nally V ∗ outputs b.

Remark 2. Note that ZAPs (more generally, any two-message WI) can be modi�ed to obtain
resettable reusable WI, by having the prover apply a PRF on the veri�er message and the instance
to compute randomness for the proof. This allows to argue, via a hybrid argument, that fresh
randomness can be used for each proof, and therefore perform a hybrid argument so that each proof
remains WI. In our construction, we will use resettable reusable ZAPs.

4 De�nitions

4.1 Non-Malleability w.r.t. Commitment

Throughout this paper, we will use n to denote the security parameter, and negl(n) to denote any
function that is asymptotically smaller than 1

poly(n) for any polynomial poly(·). We will use PPT
to describe a probabilistic polynomial time machine. We will also use the words �rounds� and
�messages� interchangeably.

We follow the de�nition of non-malleable commitments introduced by Pass and Rosen [PR05] and
further re�ned by Lin et al [LPV] and Goyal [Goy11] (which in turn build on the original de�nition
of [DDN91]). In the real interaction, there is a man-in-the-middle adversary MIM interacting with
a committer C (where C commits to value v) in the left session, and interacting with receiver R in
the right session. Prior to the interaction, the value v is given to C as local input. MIM receives
an auxiliary input z, which might contain a-priori information about v. Let MIM〈C,R〉(value, z)

denote a random variable that describes the value ṽal committed by the MIM in the right session,
jointly with the view of the MIM in the full experiment. In the simulated experiment, a simulator
S directly interacts with R. Let Sim〈C,R〉(1n, z) denote the random variable describing the value ṽal
committed to by S and the output view of S. If the tags in the left and right interaction are equal,
the value ṽal committed in the right interaction, is de�ned to be ⊥ in both experiments.

De�nition 4 (Non-malleable Commitments w.r.t. Commitment). A commitment scheme 〈C,R〉
is said to be non-malleable if for every PPT MIM, there exists an expected PPT simulator S such
that the following ensembles are computationally indistinguishable:

{MIM〈C,R〉(value, z)}n∈N,v∈{0,1}n,z∈{0,1}∗ and {Sim〈C,R〉(1n, z)}n∈N,v∈{0,1}n,z∈{0,1}∗

4.2 Concurrent Non-Malleable Commitments

This setting considers an adversary that participates in multiple sessions with an honest committer,
acting as receiver. The adversary simultaneously participates in multiple sessions with an honest
receiver, acting as committer. In the left sessions, the MIM interacts with honest committer(s) ob-
taining commitments to valuesm1,m2, . . .mpoly(n) (say, from distribution val using tags t1, t2, tpoly(n)
of its choice. In the right session, A interacts with R attempting to commit to a sequence of related
values m̃1, . . . m̃poly(n) again using identities t̃1, . . . t̃poly(n). If any of the right commitments are in-
valid, or unde�ned, their value is set to ⊥. For any i such that t̃i = tj for some j, set m̃i (the value
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committed using that tag) to ⊥. Let MIM〈C,R〉(value, z) denote a random variable that describes

the values ṽal committed by the MIM in the right sessions, jointly with the view of the MIM in the
full experiment, when the value is the joint distribution of values committed in the left sessions. In
a simulated execution, there is an expected polynomial time simulator that interacts with the MIM
and generates a distribution Sim consisting of the views and values committed by the MIM. Then,
the de�nitions of concurrent non-malleable commitment scheme w.r.t. commitment, replacement
and opening are de�ned as above.

De�nition 5 (Concurrent Non-malleable Commitments w.r.t. Commitment). A commitment
scheme 〈C,R〉 is said to be concurrently non-malleable if for every PPT MIM, there exists an ex-
pected PPT simulator S such that the ensembles real and sim de�ned above are indistinguishable.

Remark 3. We will also consider the notion of non-malleability only against synchronizing ad-
versaries. [GPR16] give a construction of a three-round non-malleable commitment scheme secure
against synchronizing adversaries, based on polynomially hard injective one-way functions.

De�nition 6 (One-Many Weak Non-Malleable Commitments with respect to Synchronizing Ad-
versaries). A statistically binding commitment scheme 〈C,R〉 is said to be one-many weak non-
malleable with respect to synchronizing adversaries, if there exists a probabilistic �over�-extractor E
parameterized by ε, that given a PPT synchronizing MIM which participates in one left session and
p = poly(n) right sessions, and given the transcript of a main-thread interaction τ , outputs a set of
values v1, v2, . . . vp in time poly(n, 1ε ). These values are such that:

• For all j ∈ [p], if the jth commitment in τ is a commitment to a valid message mj, then
vj = mj over the randomness of the extractor and the transcript, except with probability ε

p .

• For all j ∈ [p], if the jth commitment in τ is a commitment to some invalid message (which
we will denote by ⊥), then vj need not necessarily be ⊥.

Remark 4. By the union bound, it is easy to see that by appropriately scaling to ε′ = ε
p(n) , the values

output by the extractor are correct for all sessions in which the MIM committed to valid messages
in the transcript τ , except with probability ε.

This formalization helps us to abstract out the exact properties satis�ed by existing three-round
schemes based on polynomial assumptions, which we can rely on for our bootstrapping protocol. We
note that this is an alternative way of formalizing the requirement of �security against non-aborting
adversaries� from [COSV17]. When invoking the security of non-malleable commitments in our
proof, the adversary will always be forced (via appropriate proofs) to behave in a non-aborting way.

Instantiating one-many weak non-malleable commitments. The three-round sub-protocol
in the non-malleable commitment scheme from [GRRV14] (their basic construction without the
zero-knowledge argument of knowledge), based on one-way functions, is a one-many weak non-
malleable commitment according to De�nition 6. In fact, their proof of non-malleability proceeds
via constructing such an extractor.

5 Non-Malleable Commitments w.r.t. Commitment

In this section, we describe a round-preserving way to transform (one-many) non-malleable com-
mitments with respect to replacement to (one-many) non-malleable commitments with respect to
commitment additionally assuming polynomial hardness of DDH and ZAPs.
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5.1 Construction

Our construction of three round non-malleable commitments is described in Figure 2.

Let Πi = (nmci1, nmci2, nmci3) for i ∈ {1, 2} denote the three messages of, two independent
instances (indexed by i) of a weak non-malleable commitment.
Let wi = (wi1,wi2) denote the two messages of a reusable resettable ZAP for delayed-input
statements. This can be instantiated via any ZAP, where the prover uses a PRF on veri�er
message and instance, to compute randomness for the proof.
Let wzk = (wzk1,wzk2,wzk3) denote the three messages of a weak resettable weak distribu-
tional ZK for delayed-input statements, against non-adaptive veri�ers.
Let PRF(K, r) denote the output of a pseudorandom function on key K and input r.
Let com(·) denote a non-interactive, statistically binding commitment scheme.

Tag: Let the tag for the interaction be tag ∈ [n]. Let n denote the security parameter.
Committer Input: A message m ∈ {0, 1}∗, along with tag tag.

1. Committer Message: Sample independent randomness r1, r2, γ1, γ2, and send
nmc11(γ1, r1, tag), nmc21(γ2, r2, tag) together with wzk1.

2. Receiver Message: Send the second message for both non-malleable commitments
(nmc12, nmc22) for tag, to the prover together with wi1,wzk2.

3. Committer Message: Sample r
$←{0, 1}∗ and send c = com(m; r) to R.

Additionally, sample r̂
$← {0, 1} and send c1 = com(1; r̂). Along with c1, send wzk3

proving that ∃r̂ such that c1 = com(1; r̂).
Send nmc13(γ1, r1, tag) and nmc23(γ2, r2, tag) to R.
Finally, sample {α1, α2}

$←{0, 1}2n and send δ1 = PRF(γ1, α1)⊕r and δ2 = PRF(γ2, α2)⊕
r. Send wi2 proving (using witness Π1) that:

• Either Π1 is a valid non-malleable commitment to some γ1 with randomness r1
AND r = PRF(γ1, α1)⊕ δ1 such that (c = com(m; r) OR c1 = com(0; r))

• Or, Π2 is a valid non-malleable commitment to some γ2 with randomness r2 AND
r = PRF(γ2, α2)⊕ δ2 such that (c = com(m; r) OR c1 = com(0; r))

4. Decommitment Phase: The committer reveals the message m and randomness r.
The veri�er accepts if and only if c is a commitment to m using randomness r.

Figure 2: Non-Malleable Commitment Scheme φ

5.2 Proof of Security

We begin by proving that the scheme is statistically binding and computationally hiding. We note
that computational hiding is in fact, implied by non-malleability: therefore as a warm up, we sketch
the proof of hiding via a sequence of hybrid experiments without giving formal reductions. In
Theorem 1, we prove formally that not only is the view of a receiver indistinguishable between
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these hybrids, in fact, the joint distribution of the view and values committed by a MIM interacting
with an honest committer remains indistinguishable between these hybrids.

Lemma 1. The protocol in Figure 2 is a statistically binding, computationally hiding, commitment
scheme.

Proof. (Sketch) The statistical binding property follows directly from statistical hiding property of
the underlying commitment scheme com(·).

The computational hiding property follows from the hiding of com and nmc, the weak zero-
knowledge property of wzk, and the witness indistinguishability of wi. Here, we sketch a proof of
computational hiding. Note that computational hiding is implied by non-malleability, therefore the
proof of Theorem 1 can also be treated as a formal proof of hiding of the commitment scheme φ.
Let 〈Cφ(m; r),R〉 denote the transcript of an execution where the committer uses input message m
and randomness R. We prove that 〈Cφ(m0; r),R〉 ≈c 〈Cφ(m1; r),R〉 for all m0,m1, via the following
sequence of hybrid experiments:

Hybridm0
: This hybrid corresponds to an interaction of C and R where C uses input message m0,

that is, 〈Cφ(m0; r),R〉.

Hybrid1 : In this hybrid, the challenger behaves identically to Hybridm0
, except that it generates

nmc2 as a non-malleable commitment to a di�erent randomness γ′2 than the (uniform) randomness
γ2 used to compute δ2. This hybrid is indistinguishable from Hybrid0 directly by the hiding of Π.

Hybrid2,D : In this hybrid, the challenger behaves identically to Hybrid1, except that it outputs the
transcript of an execution where the wzk argument is simulated3. Note that the challenger uses the
simulation strategy of the weak zero-knowledge argument wzk, which executes the last message of
the protocol multiple times, and learns the distinguisher's challenge to wzk. Each time, the simula-
tion strategy samples fresh α1, α2 at random, and furthermore, learns by generating commitments
to both m0 and m1. However, the main transcript that is output still contains a commitment to
m0, and is infact identical to Hybrid1 except that it contains a simulated wzk argument. By the
simulation security of wzk, for any distinguisher D, there exists a distinguisher-dependent simula-
tor/challenger such that Hybrid2,D is indistinguishable from Hybrid1.

Hybrid3,D : In this hybrid, the challenger behaves identically to Hybrid2,D, except that it sets
c1 = com(0; r̂) for some randomness r̂, in the main output transcript. Note that this is possi-
ble because the challenger is generating a simulated proof in the output transcript. This hybrid is
indistinguishable from Hybrid2,D by the computational hiding property of com.

Hybrid4,D : In this hybrid, the challenger behaves identically to Hybrid3,D except that in the output
transcript, it sets δ2 = PRF(γ2, α2)⊕ r̂ where r̂ is the randomness used to generate c1 = com(0; r̂).
Note that the committer is committing to a di�erent value γ′2 in the protocol Π2, thus the key γ2
does not appear anywhere in the rest of the protocol. Therefore, this hybrid is indistinguishable
from Hybrid3,D by the security of the PRF.

Hybrid5,D : In this hybrid, the challenger behaves identically to Hybrid4,D except that in all tran-
scripts, it sets nmc2 as a non-malleable commitment to the same randomness γ′2 that is used to

3Note that in all hybrid experiments, we will actually use the extended simulation strategy of the weak ZK
argument wzk � that is used for strong witness indistinguishability, and where the simulator takes into account both
messages m0 and m1 during simulation.
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compute δ2. This hybrid essentially �reverts� the cheating performed in Hybrid1. Indistinguishabil-
ity of this hybrid follows because of the hiding of Π2.

Note that the transcript output by the challenger in this experiment is such that Π1 is a
valid non-malleable commitment to γ1 with randomness r1 AND r = PRF(γ1, α1) ⊕ δ1 such that
c = com(m; r). Additionally, Π2 is a valid non-malleable commitment to γ2 with randomness r2
AND r̂ = PRF(γ2, α2)⊕ δ2 such that c1 = com(0; r̂).

Hybrid6,D : In this hybrid, the challenger behaves the same was as Hybrid5,D, except that it uses the
second witness, (r2, γ2), to generate the witness-indistinguishable proof wi in the output transcript.
This hybrid is indistinguishable from Hybrid5,D by the reusable witness-indistinguishability of wi,
that is, witness indistinguishability in the setting where multiple proofs are provided for di�erent
statements, using the same second message transcript.

Hybrid7,D : In this hybrid, the challenger behaves the same way as Hybrid6,D, except that it uses
the second witness, r2, γ2, to generate the witness-indistinguishable arguments wi all the �learning
executions� of the simulation strategy, as well as in the output transcript. That is, in every message
that the challenger sends, it uses the second witness instead of the �rst. This hybrid is indistin-
guishable from Hybrid6,D by the reusable witness-indistinguishability of wi.

Hybrid8,D : In this hybrid, the challenger behaves the same way as Hybrid7,D, except that in all
transcripts, it sets nmc1 as a non-malleable commitment to a di�erent randomness γ′1 than the
one used to compute δ1. The view of a malicious receiver in this hybrid is indistinguishable from
Hybrid7,D by the hiding of the non-malleable commitment Π1.

Hybrid9,D : In this hybrid, the challenger behaves the same way as Hybrid8,D, except that in the out-

put transcript, it sets δ1
$←{0, 1}∗, instead of setting δ1 = PRF(γ1, α1)⊕r. Note that the committer

is committing to a di�erent value γ′1 in the protocol Π1, thus the key γ1 does not appear in the rest
of the protocol. Therefore, this hybrid is indistinguishable from Hybrid8,D by the security of the PRF.

Hybrid10,D : In this hybrid, the challenger behaves the same way as Hybrid10,D except that it replaces
com(m0; r) with com(m1; r) in the output transcript. Note that at this point, r is not used anywhere
else in the protocol, and hence the commitment can be obtained externally. This hybrid is indistin-
guishable from Hybrid9,D by computational hiding of the non-interactive commitment scheme com.

At this point, we have successfully indistinguishably switched to an experiment where the com-
mitment is generated to message m1 instead of m0 in the main transcript output by the challenger.
Computational hiding follows by repeating the above hybrids in reverse order, until in Hybridm1

,
the challenger generates an honest commitment to message m1.

Lemma 2. There exists a polynomial-time extractor that extracts the value committed by any ad-
versary A in any accepting transcript, with probability 1− negl(n).

Proof. For any accepting commitment transcript generated by a committer, because of adaptive
soundness of wi, the ith extractable commitment is generated as a valid extractable commitment
to randomness ri, such that PRF(ri, ai) ⊕ xi yields a valid witness for wi, for some i ∈ {1, 2}.
Furthermore, by soundness of wzk, c1 is a commitment to 1, and by statistical binding of com,
c1 cannot be a commitment to 0. Thus, the only possible valid witness in wi, with overwhelming
probability, must necessarily be a witness for c, which is the actual commitment to the message.
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We now argue that this witness can be extracted by a polynomial time extractor. This follows
roughly because of the (over)-extraction property of Π and the soundness of wi, similar to [JKKR17].
Speci�cally, we consider a committer that generates an accepting transcript with probability p >

1
poly(n) for some polynomial poly(·). Then, within n

p rewindings, such a committer generates an

expected n accepting transcripts and, with overwhelming probability at least
√
n of the accepting

transcripts (in the rewinding thread) produce a valid commitment using scheme Π for the same
index i as the main thread, allowing for extraction from the over-extracting commitment. The
extracted value can be used to compute r, that checked against c to ensure that r is the correct
randomness that was used to compute c. We note that this commitment does not su�er from over-
extraction, since by the soundness of wzk and wi, a malicious committer is always forced to use the
unique witness corresponding to the commitment c. Furthermore, such an extractor extracts with
error at most ε by running in time poly(1/ε).

Next, we directly prove concurrent non-malleability of the resulting scheme when instantiated
with the basic protocol Π from [GRRV14]. We note that the scheme can also be instantiated with
the protocol from [GPR16], yielding one-one non-malleability.

Theorem 1. The protocol φ in Figure 2, when instantiated with the one-many weak non-malleable
commitment Π from [GRRV14], is a concurrent non-malleable commitment with respect to commit-
ment according to De�nition 5.

Proof. The proof of non-malleability against non-synchronizing adversaries, that complete the left
execution before beginning a right (malicious) execution, follows directly because φ is an extractable
commitment. In other words, given a non-synchronizing MIM adversary, there exists a reduction
that runs an extractor to extract the value committed by the MIM from the right execution(s) by
rewinding the adversary, and uses the view jointly with the values extracted from such a malleating
adversary to directly break hiding of the commitment in the left execution. This is possible because
of the non-synchronizing scheduling, it is possible to rewind the MIM's commitment and run the ex-
tractor of Lemma 2 without rewinding the honest commitment at all. This leads to a contradiction,
ruling out the existence of any PPT MIM adversary that successfully mauls the honest commitment
in the non-synchronizing setting.

Therefore, it only remains to argue non-malleability in the fully synchronizing setting (these
arguments directly combine to argue security against adversaries that are synchronizing in some
executions and non-synchronizing in others). We �rst note that it su�ces to argue non-malleability
against one-many adversaries, that participate in one left session and polynomially-many right
sessions. By [LPV], security against such adversaries already implies concurrent non-malleability.
Suppose the MIM opens p = poly(n) sessions on the right, for some polynomial p(·).

We argue non-malleability against synchronizing adversaries via a sequence of hybrid experi-
ments, relying on the non-malleability of Π, along with various properties of other primitives used
in the protocol. These hybrids are all parameterized by an inverse polynomial error parameter ε,
and sometimes require the challenger to run in time poly(n, 1ε ). Later, we will set ε to be signi�-
cantly smaller than the advantage of any distinguisher betweenMIM〈C,R〉(V1, z) andMIM〈C,R〉(V2, z)

(but ε will still be less than 1
poly(·)), thereby proving the lemma. We will use φ̃ to denote message

φ sent in the right execution, and a message φ sent during the left execution will just be denoted by φ.
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5.2.1 Overview of Hybrid Experiments

Before describing the hybrid arguments in detail, we provide an overview. The sequence of ex-
periments follows the same pattern as the proof of hiding, except that we now argue about the
joint distribution of the view and values committed by the MIM. Moreover, when we say that the
challenger rewinds and generates lookahead threads to learn γ or for the simulation of weak ZK, the
challenger always generates multiple lookahead threads where some commit to value V1 and some
to V2 (this is possible because the message is decided only in the last round), and takes the union
of the values extracted using both V1, V2.

In all these hybrids, the challenger will never generate simulated wzk proofs in any rewinding
execution. The wzk proof will be carefully simulated only in the main transcript (in some of
the hybrids). Thus, by soundness of the wi, the MIM will always commit to the witness for the
commitment, by correctly generating a non-malleable commitment to at least one of the γ values,
in any rewinding execution. Therefore, a rewinding extractor will correctly extract at least one γ
value committed by the MIM, with high probability. Furthermore, when relying on the extractor of
the non-malleable commitment scheme, we will again generate a transcript for the extractor that
does not contain any simulated proofs � therefore, this extractor is guaranteed to correctly extract
at least one of the γ values committed by the MIM.

The output of the �rst experiment, HybridV1 corresponds to the joint distribution of the view
and values committed by the MIM on input an honest commitment to value V1.

Hybrid1 : In the �rst hybrid, the challenger changes the left execution by �rst sampling (γ2, γ
′
2)

independently and uniformly at random. The value committed using the second non-malleable
commitment Π2 is γ′2, while the third message δ2 = PRF(γ2, α2) ⊕ r is computed honestly using
a di�erent γ2. At this point, we invoke soundness of the wi and wzk to argue that the MIM must
commit to at least one valid γ̃1i or γ̃2i in the main execution, for every i ∈ [p(n)]. Therefore, we
can invoke the extractor for Π2, to extract the joint distribution of the values committed by the
man-in-the-middle (MIM) in all right executions.

By the property of the non-malleable commitment, when the MIM commits to a valid value
in the main execution, such an extractor will successfully extract at least one of the committed
values γ̃1i or γ̃2i from the ith right interaction, for all i ∈ [p(n)]. Because of soundness of wi and
wzk, this extracted value will directly help recover the message committed by the MIM in this inter-
action. Since this extractor operates without rewinding the left execution, if the joint distribution
of the view and values changes from Hybrid0 to Hybrid1, we obtain a contradiction to the hiding of Π.

Hybrid2 : In the next hybrid, the challenger modi�es the left execution by generating an output view
where the left execution contains a simulated weak ZK proof. When applied naively, the simulation
guarantee is that the view of the MIM remains indistinguishable when provided a transcript with a
simulated proof. However, there are no guarantees about the values committed by the MIM.

In order to ensure that the joint distribution of committed values remains indistinguishable, we
modify the input to the distinguisher-dependent simulator. That is, we modify the experiment so
that, the challenger �rst rewinds the MIM and extracts the joint distribution of values γ̃ committed
by the MIM. Here, we rely on the fact that Π is stand-alone extractable (with over-extraction).
Note that once extracted, these γ̃'s can be used to extract the messages committed by the MIM in
any transcript with the same �xed �rst message, with overwhelming probability. The only situation
in which the γ̃bi extracted for some execution i does not help recover the message committed by
the MIM from transcript τ with the same �xed �rst message, is if the MIM uses a di�erent witness
γ̃1−bi in τ and uses γ̃bi in all the rewinding executions. It is easy to observe this event occurs with
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probability at most negl(n).
Upon extracting these values, with the same �xed �rst message, the challenger begins running

the simulation strategy of weak ZK to output a main transcript with a simulated proof. That is,
the challenger uses the γ̃'s to extract the joint distribution of the values committed by the MIM
from any right execution, and runs the distinguisher-dependent simulator on a distinguisher that
obtains the joint distribution of the view output by the MIM, together with these extracted values.
Now, by the guarantee of distinguisher-dependent simulation, we have that the joint distribution
remains indistinguishable between Hybrid1 and Hybrid2.

In our actual reduction, since we are �rst rewinding and then generating a simulated proof, we
require a special type of weak resettable security of the weak ZK. Thus, for the proof to go through,
it is crucial that we use a speci�c ordering to generate the lookahead threads for extracting theMIM's
values, and the lookahead threads for simulation. Additional details can be found in the next section.

Hybrid3 : In the next hybrid, the output transcript generated in the left execution, consists of a
commitment c1 = com(0; r̂) for some randomness r̂, instead of c1 being a commitment to 1. This is
allowed because the weak ZK proof is being simulated by this point. The joint distribution of the
view and values committed do not change in this hybrid, because c1 is non-interactive, and thus can
be replaced in the main transcript, while rewinding the MIM and extracting the joint distribution
of the values committed by the MIM in all right executions.

Hybrid4 : In this next hybrid, the challenger sets δ2 = PRF(γ2, α2)⊕ r̂ (instead of ⊕r), where r̂ is the
randomness used to generate c1. Since the PRF key γ2 does not appear elsewhere in the protocol,
the joint distribution of the view and values committed do not change in this hybrid. This is δ2 can
be replaced in the main transcript, while rewinding the MIM and extracting the joint distribution
of the values committed by the MIM in all right executions.

Hybrid5 : In this next hybrid, the challenger changes the non-malleable commitment Π2 to commit
to the same randomness γ2, that is used to compute δ2 in all threads (instead of committing to
a di�erent γ′2). In order to argue indistinguishability of the view and committed values, we now
rely on the non-malleability of Π2. The challenger runs the extractor for Π2 on a transcript that
contains honestly generated wzk proofs: again by soundness, at least one of the γ̃ values committed
by the MIM in every execution is a valid commitment in the main thread. Thus, the extractor
outputs this value. Next, the challenger uses this extracted value to recover the joint distribution
of messages from transcripts generated by the MIM. This helps the challenger generate an output
transcript with a simulated wzk proof, such that the joint distribution of the view of the MIM and
values committed remains indistinguishable.

Note that in this experiment, even though the left execution is rewound for distinguisher-
dependent simulation, this rewinding happens after the �rst two rounds have been �xed: thus,
the non-malleable commitment used in the left execution is never rewound, and can be obtained
externally. If the joint distribution of view and values output by the extractor for Π changes in this
hybrid, then this contradicts hiding of Π. The argument of indistinguishability for this hybrid again
requires a delicate ordering to generate the lookahead threads for extracting the MIM's committed
values, and the lookahead threads for simulation. Additional details can be found in the next section.

Hybrid6,Hybrid7 : By the end of these hybrids, the challenger will behave the same way as Hybrid5,
except that it will use the second witness γ2 in all executions (in the main as well as lookahead
threads). For the main thread, for which the witness is switched in Hybrid6, the challenger will
use witness γ2, r̂, δ2, c1 to compute the wi. In the rewinding threads, for which the witness is
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switched in Hybrid7, the challenger will use witness γ2, r, δ2, c. The joint distribution of the view
and value extracted remains indistinguishable because of the reusable resettable security of wi al-
lows for switching the witness even when multiple proofs are given in the main as well as rewinding
executions.

Hybrid8 : In this hybrid, the challenger sets Π1 as a non-malleable commitment to a di�erent indepen-
dently uniform randomness γ′1, than the randomness γ that is used to compute δ1 in all executions.
The joint distribution of view and values committed by the MIM remains indistinguishable by the
non-malleability of Π. The proof follows in a similar manner as that of the indistinguishability of
Hybrid5.

Hybrid9 : In this hybrid, the challenger behaves similar to the previous hybrid except setting δ1 to
uniformly at random, only in the output transcript. Since the key γ1 no longer appears elsewhere
in the protocol, indistinguishability of the view and committed values follows by security of the PRF.

Hybrid10: In this hybrid, the challenger behaves similar to the previous hybrid, except in the output
transcript, it sets c as a commitment to value V2 instead of to value V1. This is allowed because
the randomness used to compute c in the output transcript is not used elsewhere in the protocol.
Indistinguishability of the view and values committed by the MIM in this execution, follows by
hiding of the non-interactive commitment c.

At this point, the main transcript consists of a commitment to V2 instead of to V1, while the
lookahead transcripts are generated using both V1 and V2. Now, following the same sequence of
hybrids in reverse order, we get to a hybrid experiment where the challenger generates an honest
commitment to V2 in the left execution. Thus, the joint distribution of the view and values com-
mitted by the MIM remains indistinguishable between when the left commitment is to V1, versus to
V2, which is the guarantee required by the de�nition of non-malleability.

5.2.2 Hybrid Experiments

We now formally describe the hybrid arguments required to prove non-malleability.

HybridV1 : This hybrid corresponds to an interaction of the challenger and the MIM where the
challenger uses input message V1 in the honest interaction. Let MIM〈C,R〉(V1, z) denote the joint
distribution of the view and values committed by the MIM in this interaction.

Hybrid1 : In this hybrid, the challenger behaves identically to HybridV1 , except that it generates Π2

as a non-malleable commitment to a di�erent randomness γ′2 chosen uniformly and independently
at at random, from the randomness γ2 that was used to compute δ2. Let MIM〈C,R〉(value, z)Hybrid1
denote the joint distribution of the view and values committed by the MIM in this interaction, in
all the right sessions.

Lemma 3. For any PPT distinguisher D with auxiliary information z, |Pr[D(z,MIM〈C,R〉(V1, z)) =
1]− Pr[D(z,MIM〈C,R〉(value, z)Hybrid1) = 1]| ≤ ε+ negl(n).

Proof. The proof of this lemma follows via a reduction to the weak non-malleability of the scheme Π.
More speci�cally, given a distinguisherD that distinguishesMIM〈C,R〉(value, z)Hybrid1 andMIM〈C,R〉(V1, z),

we construct an adversary AD against the one-many non-malleability of Π.
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The adversary A participates in the experiment exactly as HybridV1 , except that it samples

γ2, γ
′
2

$← {0, 1}∗ and submits these to an external challenger. It obtains externally, the messages of
Π2, which are either a non-malleable commitment to γ2 or to γ′2. It complete the third message of
the protocol using γ2 to compute δ2.

By the weak non-malleability of Π, there exists an extractor that runs in time poly(1ε ) and
extracts the values committed by the MIM in all the non-malleable commitments for all j ∈ [p],
without rewinding the honest execution. Further, this extractor has the property that it only extracts
an incorrect value if the MIM is committing to ⊥ in the main thread in the honest execution, except
with error ε.

However, in both HybridV1 and Hybrid1, by the soundness of wi, the adversary is guaranteed to
generate at least one out of the two non-malleable commitments (to γ̃1 or γ̃2) from each session,
correctly in any execution, except with probability negl(n). Moreover, by soundness of wzk, the
extracted value from at least one of the non-malleable commitments generated by the MIM in each
session, will correspond to a witness for the commitment c, and therefore directly help recover the
value committed by the MIM in each right session.
A then samples a random main thread execution, and then just runs this extractor to extract

the values {γ̃1i , γ̃2i }i∈[n] committed by the MIM, and by soundness of wi and wzk, at least one is
correctly extracted. Depending upon whether the challenge non-malleable commitment is to γ2 or
γ′2, the joint distribution of the view and value extracted by A corresponds to either MIM〈C,R〉(V1, z)
or MIM〈C,R〉(value, z)Hybrid1 .

Therefore, if the joint distribution of the view and the values committed by the MIM changes
by more than ε between these executions, it can be used to contradict the one-many weak non-
malleability of Π. Thus, if

|Pr[D(z,MIM〈C,R〉(V1, z)) = 1]− Pr[D(z,MIM〈C,R〉(value, z)Hybrid1) = 1]| ≥ ε+
1

poly
(n),

then, |Pr[AD = 1|γ′]− Pr[AD = 1|γ]| ≥ 1

poly
(n).

This gives a contradiction, thus the distributions are indistinguishable upto ε error.

We note that in Hybrid1, soundness of the wi and wzk arguments in the left as well as right
interactions is still maintained, thus a rewinding extractor always successfully extracts the value
committed by the MIM.

Hybrid2,D : In this hybrid, the challenger behaves similarly to Hybrid1, except that it outputs the
transcript of an execution where the distinguisher-dependent weak zero-knowledge protocol wzk is
simulated as follows:

• Run the execution until the MIM sends the �rst message for the right execution. With �xed
�rst messages, φ1 and φ̃

j
1, run the rest of the protocol as follows.

• Send second messages φ̃j2 for the right interactions, and wait for the MIM's response φ2. These
will correspond to the �rst and second messages for the main transcript. Instead of completing
the experiment by sending the third message, proceed to the next step.

• With the same �xed �rst messages, φ1 and φ̃1, rewind the protocol poly(1/ε) times sending
various second round challenge messages to the MIM on behalf of honest receiver. When the
MIM sends a challenge for the left (honest) execution, complete the transcript as an honest
commitment to V1, and wait for the MIM's response.
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Use these rewinding executions to extract the value committed in at least one (or both) of
the non-malleable commitments provided by the MIM adversary, for each session. Whenever
the MIM completes a right execution (that is, it does not generate any invalid messages), by
soundness of the ZK argument, we have that except with probability at most negl(n), at least
one of the non-malleable commitments were generated correctly in each execution. Thus, by
the same argument as used in the Lemma 3, with overwhelming probability, the extractor
runs in time poly( 1√

ε
) and correctly extracts at least one of the values committed by the MIM

using the non-malleable commitment in all executions, except with error
√
ε.

For each right session j ∈ [p], let us denote the values extracted by the challenger by γ̃j1, γ̃
j
2,

where at least one value was correctly extracted except with failure probability
√
ε. More-

over, if for any right execution the extractor successfully extracted only one value, then by
a simple probabilistic argument, the MIM will continue to use the same value as witness for
the wi in other executions except with probability at most

√
ε (otherwise, if the MIM used a

di�erent value as witness for the wi, then that value would also be extracted with signi�cant
probability). Therefore, {γ̃j1, γ̃

j
2}j∈[p] can be used to recover the value committed by the MIM

from any transcript generated by the MIM with �xed �rst messages φ1, φ̃
j
1, except with failure

probability
√
ε.

• After completing the previous step, with the �rst message transcript �xed, go back to the main
transcript with messages φ1, φ̃

j
1, φ̃

j
2, φ2. These will remain �xed for the rest of the experiment.

Since these were �xed before the rewindings, by the weak resettable weak ZK property of wzk,
the simulation security of wzk holds with respect to the partial transcript (φ1, φ2, φ̃

j
1, φ̃

j
2).

In particular, weak resettable security implies that indistinguishability between real and sim-
ulated view must hold even against a distinguisher that rewinds and obtains {γ̃j1, γ̃

j
2}j∈[p] �

which can be used to extract the message committed in the string c by theMIM from any tran-
script generated by the MIM with �xed �rst messages φ1, φ̃

j
1, except with error

√
ε+ negl(n).

• Next, run the distinguisher-dependent simulation strategy S of the weak zero-knowledge argu-
ment, with error

√
ε, on the distinguisher D′. D′ is given the view of the MIM, together with

auxiliary information {γj1, γ
j
2}j∈[p]. On input the view of the MIM, it uses this information to

extract the value committed by the MIM from all its executions. It then runs the distinguisher
D on the joint distribution of the view and the extracted values and mirrors the output of D.
Recall, that the distinguisher-dependent simulation strategy S of [JKKR17] generates several
di�erent third messages (corresponding to the same �xed messages (φ1, φ2, φ̃

j
1, φ̃

j
2)), while sam-

pling fresh α1, α2 each time. Also note that the output transcript still contains a commitment
to V1, and is infact identical to Hybrid1 except that it contains a simulated wzk proof.

Let MIM〈C,R〉(value, z)Hybrid2,D denote the joint distribution of the view and value committed by the
MIM when interacting with an honest committer in this hybrid.

Lemma 4. For any PPT distinguisher D with auxiliary information z,

|Pr[D(z,MIM〈C,R〉(value, z)Hybrid2,D) = 1]− Pr[D(z,MIM〈C,R〉(value, z)Hybrid1) = 1]| ≤ ε+ negl(n).

Proof. This claim follows by the weak resettable security of distinguisher-dependent simulation:
sinceMIM〈C,R〉(value, z)Hybrid2,D is the result of executing distinguisher-dependent simulation against
distinguisher D′, which itself runs the distinguisher D on MIM〈C,R〉(value, z)Hybrid1 . Note that the
weak resettable security experiment for distinguisher-dependent simulation allows the adversary to
obtain, in addition to a real/simulated main transcript, several �lookahead� transcripts, where all
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lookahead transcripts contain honestly generated proofs, that all use the same �rst message of the
argument.

In other words, we consider a reduction that �rst �xes the �rst two messages of the honest and
MIM execution corresponding to the main thread. Next, it generates multiple lookahead threads, as
allowed by the security experiment of weak resettable wzk, using these threads to extract the values
committed by the MIM. It generates all messages on its own according to Hybrid1, except that it
obtains the honestly generated wzk proofs for these threads externally from a challenger for weak
resettable weak ZK.

Finally, the challenger �ips a bit b, and if b = 0, it outputs an honestly generated weak ZK
argument for the main transcript. On the other hand, if b = 1, it outputs a simulated argument
(with error at most

√
ε ·
√
ε = ε), while simulating the output of distinguisher D on input the

view and values extracted from the MIM. The reduction obtains this proof from the challenger
and uses it to complete the main transcript. Note that if b = 0, the experiment corresponds
to running D on MIM〈C,R〉(value, z)Hybrid1,D and if b = 1, the experiment corresponds to running
the distinguisher D on MIM〈C,R〉(value, z)Hybrid2,D . Thus, if |Pr[D(z,MIM〈C,R〉(value, z)Hybrid2,D) =
1] − Pr[D(z,MIM〈C,R〉(value, z)Hybrid1) = 1]| > ε + negl(n), this gives a distinguisher against the
weak resettable simulation security of the weak ZK argument according to De�nition 2, which is a
contradiction.

Hybrid3,D : In this hybrid, the challenger behaves identically to Hybrid2,D, except that it sets c1 =
com(0; r̂) for some randomness r̂, in the main transcript (instead of generating it as a commitment
to 1). Note that this is possible because the challenger is generating a simulated proof in the output
transcript, for the fact that c1 is a commitment to 1. Let MIM〈C,R〉(value, z)Hybrid3,D denote the joint
distribution of the view and values committed by the MIM when interacting with the challenger in
this hybrid.

Lemma 5. For any PPT distinguisher D with auxiliary information z,

|Pr[D(z,MIM〈C,R〉(value, z)Hybrid2,D) = 1]− Pr[D(z,MIM〈C,R〉(value, z)Hybrid3,D) = 1]| ≤ negl(n).

Proof. This hybrid is indistinguishable from Hybrid2 by the computational hiding property of the
non-interactive commitment scheme com. More formally, consider a reduction R that behaves
identically to Hybrid2,D, �rst extracting {γ̃

j
1, γ̃

j
2}j∈[p]. Next, it obtains the commitment c1 (only for

the main output transcript and not for any of the rewinding executions), externally, as either a
commitment to 0 or a commitment to 1, and uses this to complete the main transcript. It then
uses the extracted values {γ̃j1, γ̃

j
2}j∈[p] to recover the values committed by the MIM in the main

transcript. It outputs the joint distribution of the transcript and the values committed by the MIM
to distinguisher D. Then given a distinguisher D where:

|Pr[D(z,MIM〈C,R〉(value, z)Hybrid2,D) = 1]− Pr[D(z,MIM〈C,R〉(value, z)Hybrid3,D) = 1]| ≥ 1

poly(n)

The reduction mirrors the output of this distinguisher such that:

|Pr[R = 1|c1 = com(1; r)]− Pr[R = 1|c1 = com(0; r)]| ≥ 1

poly(n)

This is a contradiction to the hiding of com.

Hybrid4,D : In this hybrid, the challenger behaves identically to Hybrid3,D except that in the output
transcript, it sets δ2 = PRF(γ2, α2)⊕ r̂ where r̂ is the randomness used to generate c1 = com(0; r̂).
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Note that the committer is using PRF key γ′2 in the protocol Π2, thus the key γ2 does not appear
anywhere else in the rest of the protocol.

Let MIM〈C,R〉(value, z)Hybrid4,D denote the joint distribution of the view and value committed by
the MIM when interacting with an honest committer in this hybrid.

Lemma 6. For any PPT distinguisher D with auxiliary information z,

|Pr[D(z,MIM〈C,R〉(value, z)Hybrid4,D) = 1]− Pr[D(z,MIM〈C,R〉(value, z)Hybrid3,D) = 1]| ≤ negl(n).

Proof. This hybrid is indistinguishable from Hybrid3,D by the security of the PRF. More formally,
consider a reductionR that behaves identically to Hybrid3,D except that for all rewinding (recall that
the distinguisher is rewound several times) transcripts generated during distinguisher-dependent
simulation, it samples fresh α2 each time and obtains PRF(γ2, α2) ⊕ r̂ externally from a PRF
challenger.

Then, for the main output transcript it obtains the value δ2 externally as either PRF(γ2, α2)⊕ r̂,
or PRF(γ2, α2) ⊕ r, where r is the randomness used generate commitment c in the left execution,
and r̂ is the randomness used to generate commitment c1. It uses the externally obtained δ2 to
complete the main transcript. It then uses the extracted values {γ̃j1, γ̃

j
2}j∈[p] to obtain the values

committed by the MIM in the main transcript. It outputs the joint distribution of the transcript
and the values committed by the MIM to distinguisher D.

Given a distinguisher D where:

|Pr[D(z,MIM〈C,R〉(value, z)Hybrid4,D) = 1]− Pr[D(z,MIM〈C,R〉(value, z)Hybrid3,D) = 1]| ≥ 1

poly(n)

In this case, the reduction can mirror the output of this distinguisher to directly contradict the
security of the PRF.

Hybrid5,D : In this hybrid, the challenger behaves identically to Hybrid4,D except that it sets Π2 as a
non-malleable commitment to the same randomness γ2 that is used to compute δ2, for all executions.

This hybrid essentially �reverts� the changes performed in Hybrid1. Note that the challenger
in this hybrid, �rst extracts the values committed via the non-malleable commitments provided
by the MIM, and then rewinds the distinguisher multiple times � however, the �rst two messages
of the protocol are �xed at the time of rewinding the distinguisher. In particular, for �xed nmc21
and nmc22, the challenger gives the same response nmc23 for all the third messages it generates
while/before simulating wzk argument.

Since the main thread transcript output in this hybrid consists of a simulated proof, indistin-
guishability of this hybrid is the most interesting to argue. We prove that it follows by the weak
non-malleability of Π2. It is important, for the proof of non-malleability to go through, that the
witness used by the prover in the proof of WI in this hybrid, is always the randomness used to
compute Π1 and never the randomness used to compute Π2 � because the messages of Π2 will be
obtained externally. Moreover, recall that the proof of non-malleability of the weak non-malleable
commitment scheme Π requires a simulator-extractor to �cheat� in the scheme Π2 in rewinding
executions.

Note that the challenger in this hybrid, �xes the �rst two rounds for the output transcript. Then,
with the same �xed �rst round, it attempts to extract the values (γ̃j1, γ̃

j
2) committed by the MIM in

the non-malleable commitments in all executions. It then rewinds the distinguisher multiple times
� at this point the �rst two messages of the protocol are �xed. Note that the transcript output by
the challenger in this experiment is such that Π1 is a valid non-malleable commitment to γ1 with
randomness r1 AND r = PRF(γ1, α1) ⊕ δ1 such that c = com(m; r) (and this is the witness used
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in wi). Additionally, Π2 is also a valid non-malleable commitment to γ2 with randomness r2 AND
r̂ = PRF(γ2, α2)⊕ δ2 such that c1 = com(0; r̂). However, the witness used in wi is always Π1.

Let MIM〈C,R〉(value, z)Hybrid5,D denote the joint distribution of the view and value committed by
the MIM when interacting with an honest committer in this hybrid.

Lemma 7. For any PPT distinguisher D with auxiliary information z,

|Pr[D(z,MIM〈C,R〉(value, z)Hybrid5,D) = 1]− Pr[D(z,MIM〈C,R〉(value, z)Hybrid4,D) = 1]| ≤ ε+ negl(n).

Proof. Recall that the challenger strategy in both Hybrid5,D and Hybrid4,D is as follows: The chal-

lenger �rst generates and �xes the �rst two messages of the main transcript φ1, φ̃
j
1, φ̃

j
2, φ2. It then

rewinds the MIM multiple times with the same �xed �rst message but di�erent second round mes-
sages, to extract γ̃j1, γ̃

j
2 for all j ∈ [n]. Finally, it runs the distinguisher-dependent simulation

strategy with partial transcript φ1, φ̃
j
1, φ̃

j
2, φ2 to output a main transcript with a simulated proof.

The main di�erence between Hybrid4,D and Hybrid5,D is that the committer commits to γ′2 using
Π2 in Hybrid4,D, and uses a di�erent γ2 for the rest of the protocol, whereas in Hybrid5,D, γ

′
2 = γ2.

However, both hybrids involve the challenger rewinding the MIM (and consequently rewinding the
left session) several times in order to extract γ̃j1, γ̃

j
2 for j ∈ [n]. In this rewinding situation, invoking

weak one-malleability of Π2 requires care.
Our �rst observation is that by the weak non-malleability of Π, there exists an extractor that runs

in time poly(1ε ) and extracts the values committed by theMIM in all the non-malleable commitments
for all j ∈ [p], without rewinding the left execution. The reduction to one-many weak non-malleability
of Π uses this extractor and proceeds as follows:

• The reduction begins by �xing the �rst two messages in the left and right executions in the
main thread. For these messages, it obtains an externally generated non-malleable commit-
ment to either γ′2 = γ2 or γ′2 chosen uniformly at random independent of γ2. The former
corresponds to Hybrid5,D and the latter to Hybrid4,D.

Instead of rewinding the MIM providing honestly generated transcripts in the left interaction
as is done in Hybrid5,D and Hybrid4,D, we will now consider two sub-hybrids, Hybrid4,a,D and
Hybrid5,a,D where the reduction uses the extractor E for the non-malleable commitment to
extract the values committed by the MIM without rewinding the left interaction. We will
show that the view and values extracted from these sub-hybrids will remain identical to the
view and value extracted via rewinding in Hybrid4,D and Hybrid5,D, respectively. This will
essentially follow because of correctness of extractor E , and because of soundness of wi and
wzk in the interactions from which extraction occurs. We will also directly give a reduction
proving that the joint distribution of the views and values extracted must be indistinguishable
between these sub-hybrids.

• Recall that E extracts the values committed by the MIM in a main transcript, without rewind-
ing the messages sent in the non-malleable commitment in the left interaction (the extractor
E may still rewind the MIM, only in all such rewindings it will not need to rewind the left
non-malleable commitment, indeed it will su�ce to generate �fake� third round messages for
the non-malleable commitment to γ2 � please refer to [GRRV14] for details on the extraction
procedure). It is important to note that the wzk simulation strategy requires that the MIM's
committed values be extracted �rst, therefore we cannot generate a simulated wzk argument
without �rst extracting all values γ̃j1, γ̃

j
2 committed by the MIM.
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• Thus, in sub-hybrids Hybridi,a,D for i ∈ {4, 5}, the challenger just runs extractor E to extract

the values {γ̃j1, γ̃
j
2}j∈[n], instead of rewinding the left execution. E extracts the value committed

in a main transcript without rewinding the left execution. Thus, �rst the challenger generates
a special main transcript for the extractor E as follows. It generates φ1, φ̃

j
1, φ̃

j
2, φ2 the same

way as Hybrid4,D, and then completes the third message by generating an honest commitment
to V1, that is, giving an honestly generated wzk argument and using γ1 as witness for the wi

4.
It waits for the MIM to generate the third messages for the right executions, and now feeds the
transcript of the interaction to E (if the MIM aborts, the challenger just repeats again with
the same �xed �rst two messages, poly(1/ε) times). Whenever E requests to rewind the MIM,
the challenger rewinds the MIM, except that it obtains the messages for the left commitment
Π2 in all rewinding executions from E . Further, recall that E has the property that it only
extracts an incorrect value when the MIM is committing to ⊥ in the honest execution, except
with error ε, however, this is not true except with probability 1− negl(n), by soundness of wi
and wzk. The MIM waits for E to output the extracted values {γ̃j1, γ̃

j
2}. Next, the MIM repeats

this again with same �xed �rst two messages, waiting for the extractor to output (potentially
di�erent) extracted values. Finally the challenger uses the union of these extracted values to
complete the rest of the experiment according to Hybrid4,D.

Claim 1. The joint distribution of the views and values committed by the MIM remain indis-
tinguishable (with error at most ε+ negl(n)) between Hybridi,D and Hybridi,a,D for i ∈ {4, 5}.

Proof. Note that the special main transcript provided to E to facilitate extraction in the sub-
hybrids, is distributed identically to the transcripts provided in the lookahead executions for
extraction in Hybrid4,D and Hybrid5,D. Additionally, in all these executions, the challenger
always provides honestly generated proofs, thus the soundness of wi and wzk provided by the
MIM is guaranteed in all these executions. Therefore, the adversary is guaranteed to generate
at least one out of the two non-malleable commitments from each session correctly in any
non-aborting execution, except with probability negl(n).

Moreover, by soundness of wzk, the extracted value from at least one of the non-malleable
commitments generated by the MIM in the jth session, will correspond to a witness for the
commitment to γ̃1j or γ̃2j , directly allowing to recover the message committed by the MIM in
each non-aborting right session (if only one γ̃j was extracted, w.h.p. the MIM continues to use
the same witness). By correctness of extraction from E and because of soundness of wi and
wzk in all rewinding executions as well as the special main execution, the joint distribution of
views and value extracted via rewinding in Hybridi,D is ε-indistinguishable from the distribution
when A extracts using E in Hybridi,a,D for i ∈ {4, 5}.

• Next, keeping the �rst two messages of the transcript τ �xed, the challenger outputs a main
transcript with a simulated weak ZK argument, where the simulation strategy runs on the
distinguisher that obtains input the view of the MIM as well as the value extracted in the
previous step, in a similar manner to Hybrid4,D.

If the joint distribution of the view and values committed by the MIM between Hybrid4,a,D and
Hybrid5,a,D are more than ε-distinguishable, there exists a reduction to the hiding of the non-
malleable commitment Π2, which obtains the messages of Π2 externally to generate the �rst
two round messages. In response to the MIM's challenge for the left execution, it obtains the

4Note that the actual transcript that is output by the experiment must contain a simulated wzk argument: the
transcript with the honest wzk argument is only generated to facilitate extraction.
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third message of Π2 externally, and uses it to generate the special main transcript for E . Next,
it runs the extractor E , which does not need to rewind Π2 in the left execution. Once it obtains
{γ̃1j , γ̃2j }j∈[p] from E , it proceeds to run the distinguisher-dependent simulation strategy. In
this step, since the �rst two messages for the main transcript have already been �xed, the
challenger can use the same third message Π3

2 that it obtained externally, to complete the
second non-malleable commitment in the left execution, in all third messages it generates in
order to simulate the wzk argument by rewinding the distinguisher.

Therefore, if the joint distribution of the view and the values committed by the MIM changes
by more than ε between Hybrid4,a,D and Hybrid5,a,D, it can be used directly to contradict the hiding
of Π2. That is, if

|Pr[D(z,MIM〈C,R〉(value, z)Hybrid5,a,D) = 1]−Pr[D(z,MIM〈C,R〉(value, z)Hybrid4,a,D) = 1]| ≥ ε+ 1

poly
(n),

then, |Pr[AD = 1|γ2 = γ′2]− Pr[AD = 1|γ2 6= γ′2]| ≥
1

poly
(n).

This gives a contradiction, thus the distributions are indistinguishable upto at most ε-error.

Hybrid6,D : In this hybrid, the challenger behaves the same way as Hybrid5,D, except that it uses
the second witness, r2, γ2, to generate the witness-indistinguishable argument wi in the output
transcript.

Lemma 8. For any PPT distinguisher D with auxiliary information z,

|Pr[D(z,MIM〈C,R〉(value, z)Hybrid6,D) = 1]− Pr[D(z,MIM〈C,R〉(value, z)Hybrid5,D) = 1]| ≤ ε+ negl(n).

Proof. The proof of this lemma relies on the reusable resettable witness indistinguishability of wi.
The reduction R samples all messages for the experiment according to Hybrid5,D, except that

it obtains WI proofs for all lookahead (rewinding) executions externally from the challenger, by
providing the �rst witness to the challenger. In this experiment, note that some executions rewind
the MIM to the end of the �rst round, thus proofs for these executions are provided with respect
to new veri�er messages generated by the MIM. Some other executions (corresponding to weak ZK
simulation strategy) rewind the MIM to the end of the second round: thus di�erent statements are
proved in these executions, corresponding to the same veri�er message from the MIM, that is �xed
before the end of the second round. Thus, this experiment exactly corresponds to the security game
of resettable reusable WI.

For the main/output transcript generated during distinguisher-dependent simulation, R samples
all messages except the WI proof according to Hybrid5,D. Note that the statement being proved in
this transcript has two valid witnesses, w1 = (r1, γ1 randomness r and commitment c) and w2 =
(r2, γ2, randomness r̂ and commitment c1), which are sampled by the reduction R together with
the adversary. R forwards the veri�er message wi1 to the challenger, together with both witnesses,
and obtains wi2 that is generated using either witness w1 or w2. The reduction uses this externally
generated proof to complete the experiment. If w1 was used, the experiment is identical to Hybrid5,D,
otherwise it is identical to Hybrid6,D.

Note that in the experiment, R behaves according to Hybrid5,D or Hybrid6,D: that is, it �rst

extracts {γ̃j1, γ̃
j
2}j∈[p]. It then uses the extracted values {γ̃j1, γ̃

j
2}j∈[p] to obtain the values committed

by the MIM in the main transcript. It outputs the joint distribution of the transcript and the values
committed by the MIM to distinguisher D. Given a distinguisher D where:

|Pr[D(z,MIM〈C,R〉(value, z)Hybrid6,D) = 1]− Pr[D(z,MIM〈C,R〉(value, z)Hybrid5,D) = 1]| ≥ 1

poly(n)
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In this case, the reduction mirrors the output of this distinguisher to directly contradict the security
of wi. Thus, the joint distribution in this hybrid is indistinguishable from Hybrid5,D by the resettable
reusable witness-indistinguishability of wi.

Hybrid7,D : In this hybrid, the challenger behaves the same way as Hybrid6,D, except that it uses the
second witness, r2, γ2, to generate the witness-indistinguishable arguments wi in all the lookahead
executions. That is, in every message sent by the challenger, it uses the second witness instead
of the �rst. This hybrid is indistinguishable from Hybrid6,D by the resettable reusable witness-
indistinguishability of wi.

Lemma 9. For any PPT distinguisher D with auxiliary information z,

|Pr[D(z,MIM〈C,R〉(value, z)Hybrid7,D) = 1]− Pr[D(z,MIM〈C,R〉(value, z)Hybrid6,D) = 1]| ≤ negl(n).

Proof. The proof of this lemma follows similarly to that of Lemma 8, by relying on the resettable
reusable witness-indistinguishability of wi. In this experiment, note that some executions rewind
the MIM to the end of the �rst round, thus proofs for these executions are provided with respect
to new veri�er messages generated by the MIM. Some other executions (corresponding to weak ZK
simulation strategy) rewind the MIM to the end of the second round: thus di�erent statements are
proved in these executions, corresponding to the same veri�er message from the MIM, that is �xed
before the end of the second round. Thus, this experiment exactly corresponds to the security game
of resettable reusable WI.

That is, the reduction obtains WI proofs externally from the challenger by providing both
witnesses w1 = (r1, γ1, randomness r and commitment c) and w2 = (r2, γ2, randomness r and
commitment c). The challenger sends proofs that are all generated either using witness w1 or all
using witness w2. The reduction completes the rest of the protocol according to Hybrid6,D, except
using the externally generated proofs in the left execution. If the challenger used witness w1, the
game corresponds to Hybrid6,D otherwise it corresponds to Hybrid7,D.

Note that in the experiment, R behaves according to Hybrid6,D or Hybrid7,D: that is, it �rst

extracts {γ̃j1, γ̃
j
2}j∈[p]. It then uses the extracted values {γ̃j1, γ̃

j
2}j∈[p] to obtain the values committed

by the MIM in the main transcript. It outputs the joint distribution of the transcript and the values
committed by the MIM to distinguisher D. Given a distinguisher D where:

|Pr[D(z,MIM〈C,R〉(value, z)Hybrid7,D) = 1]− Pr[D(z,MIM〈C,R〉(value, z)Hybrid6,D) = 1]| ≥ 1

poly(n)

In this case, the reduction mirrors the output of this distinguisher to directly contradict the reset-
table reusable security of wi.

We note that the changes made in Hybrid7,D and Hybrid6,D can be collapsed into a single hybrid
experiment relying on resettable reusable security of WI, however we keep them separate for addi-
tional clarity � since the witness used in the main transcript refers to Π2 and the randomness for
c1 = com(0; r̂) while the witness used in the lookahead transcripts refer to Π2 and the randomness
for c = com(V1; r). Note that at this point, the value γ1 committed using the �rst non-malleable
commitment Π1 is not used as a witness in any of the WI proofs.

Hybrid8,D : In this hybrid, the challenger behaves the same way as Hybrid7,D, except that in all
transcripts, it sets Π1 as a non-malleable commitment to a di�erent randomness γ′1 than the one
used to compute δ1.
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Lemma 10. For any PPT distinguisher D with auxiliary information z,

|Pr[D(z,MIM〈C,R〉(value, z)Hybrid8,D) = 1]− Pr[D(z,MIM〈C,R〉(value, z)Hybrid7,D) = 1]| ≤ ε+ negl(n).

Proof. The proof of this lemma is exactly the same as that of Lemma 7. The joint distribution
of the view and value committed by a malicious receiver in Hybrid8,D is ε-indistinguishable from
Hybrid7,D by the non-malleability of the commitment Π1.

Hybrid9,D : In this hybrid, the challenger behaves the same way as Hybrid8,D, except that in the

output transcript, it sets δ1
$← {0, 1}∗, instead of setting δ1 = PRF(γ1, α1) ⊕ r. Note that the

committer is using PRF key γ′1 in the protocol Π1, thus the key γ1 does not appear in the rest of
the protocol.

Lemma 11. For any PPT distinguisher D with auxiliary information z,

|Pr[D(z,MIM〈C,R〉(value, z)Hybrid9,D) = 1]− Pr[D(z,MIM〈C,R〉(value, z)Hybrid8,D) = 1]| ≤ negl(n).

Proof. The proof of this lemma is the same as that of Lemma 6, by relying on the security of the
PRF.

Hybrid10,D : In this hybrid, the challenger behaves the same way as Hybrid9,D except that it replaces
c = com(V1; r) with c = com(V2; r) in the output transcript. Note that in this transcript, the
randomness r is not used elsewhere in the protocol.

Lemma 12. For any PPT distinguisher D with auxiliary information z,

|Pr[D(z,MIM〈C,R〉(value, z)Hybrid10,D) = 1]− Pr[D(z,MIM〈C,R〉(value, z)Hybrid9,D) = 1]| ≤ negl(n).

Proof. This hybrid is indistinguishable from Hybrid9,D because of computational hiding of the non-
interactive commitment scheme com. More formally, consider a reduction R that behaves identical
to Hybrid9,D except that it obtains the commitment c (only for the main output transcript and not
for any of the rewinding executions), externally, as either a commitment to V1 or a commitment
to V2. This is allowed because by the end of Hybrid9,D, the randomness used to generate this
commitment is not used anywhere else in the protocol.

Note that in the experiment, the reduction it �rst extracts {γ̃j1, γ̃
j
2}j∈[p]. It then uses the ex-

tracted values {γ̃j1, γ̃
j
2}j∈[p] to obtain the values committed by the MIM in the main transcript. It

outputs the joint distribution of the transcript and the values committed by theMIM to distinguisher
D. Then given a distinguisher D where:

|Pr[D(z,MIM〈C,R〉(value, z)Hybrid9,D) = 1]− Pr[D(z,MIM〈C,R〉(value, z)Hybrid10,D) = 1]| ≥ 1

poly(n)

The reduction mirrors the output of this distinguisher such that:

|Pr[R = 1|c = com(V1; r)]− Pr[R = 1|c = com(V2; r)]| ≥
1

poly(n)

This is a contradiction to the hiding of com.

At this point, we have successfully switched (with distinguishing advantage at most 5ε+negl(n))
to an experiment where the commitment is generated to message V2 instead of V1 in the transcript
output by the challenger. However, note that the wzk argument is still being simulated in this
hybrid. Also note that throughout these hybrids, lookahead threads for extraction are generated
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according to both values V1 and V2. Non-malleability follows by repeating the above hybrids in
reverse order, until in HybridV2 , the challenger generates an honest commitment to message V2. The
hybrids are at most 10ε+ negl(n)-distinguishable.

The proof of one-many non-malleability can then be completed by setting 10ε to be less than
the distinguishing advantage of the given distinguisher D, and arriving at a contradiction. By
invoking [LPV], this completes the proof of concurrent non-malleability.
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A Proof of Weak Resettable Security of [JKKR17] Protocol

In this section, we expand the proof sketch in [JKKR17], proving that the protocol in Figure
6, [JKKR17] satis�es weak resettable weak ZK in the distributional setting according to De�nition 2,
against non-adaptive veri�ers. We describe the protocol again in Figure 3. This protocol is modi�ed
as described in [JKKR17], where the randomness for ZAP and OT is computed via a PRF on the
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Distributional Weak Zero-Knowledge Argument

Prover Input: Distribution (X ,W).
Veri�er Input: Distribution (X ,W), language L.

• Prover Message: Pick r1, r2, r
′
1, r
′
2

$←{0, 1}∗, send c1 = com(r1; r
′
1), c2 = com(r2; r

′
2)

using non-interactive statistically binding commitment com.

• Veri�er Message: Pick challenge e
$← {0, 1}n for the Σ-protocol, and for i ∈ [n],

send o1 = OT1,i(ei) in parallel. Here, each ei is encrypted with a fresh OT instance.

Additionally send r̃1, r̃2
$←{0, 1}∗, and send wi1 as the �rst message of ZAP.

• Prover Message: Send r1, r2. Sample (x,w)
$← (X ,W) and send x.

Sample K
$←{0, 1}∗ and compute rwi||rOT = PRF(K,wi1||o1||x).

Use rwi to compute and send wi2 as the second message of ZAP proving that
∃r′1 such that c1 = com(r1; r

′
1) OR ∃r′2 such that c2 = com(r2; r

′
2).

Set pk1 = r1 ⊕ r̃1, pk2 = r2 ⊕ r̃2 as public keys for a dense cryptosystem. De�ne
commit(M ;R) = encpk1(M ; s1), encpk2(M ; s2) where R = s1||s2. This is decommitted
by revealing R.

For i ∈ [n], de�ne ai = commit(hi). Send ai,OT2,i(z
0
i , z

1
i ) in parallel, where OT2,i are

computed using randomness rOT. Note that the decommitment information in z0i , z
1
i

corresponding to any commitment in the Σ-protocol, only consists of the randomness
R used to generate the commitment using commit.

• Veri�er Output: The veri�er V recovers zi as the output of OTi for i ∈ [n], and
outputs accept if and only if wi is an accepting transcript and (ai, ei, zi)i∈[n] is an
accepting transcript of the underlying Σ-protocol, according to the commitment scheme
commit.

Figure 3: Three Round Argument System for NP

Theorem 2 (Distributional Weak Zero-Knowledge). The protocol in Figure 3 is distributional weak
zero-knowledge against malicious PPT veri�ers.

Proof. Fix any weak resetting PPT V ∗, any distinguisher D, any distribution (X ,W,Z), and any
ε > 0. We construct a simulator Simε that obtains non-uniform advice z, pε = poly(1/ε) random
instance-witness samples (x∗1, w

∗
1), (x∗2, w

∗
2), . . . (x∗pε , w

∗
pε) from the distribution (X ,W). Or, if the

distribution (X ,W) is e�ciently samplable, Simε samples (x∗1, w
∗
1), (x∗2, w

∗
2), . . . (x∗pε , w

∗
pε) on its own

using the sampler for (X ,W).
At a high level, the simulator uses these instances to approximately-learn the veri�er's challenge

string e (call this approximation ech), and then generates a transcript corresponding to a random x ∼
X , by using the honest-veri�er ZK simulation strategy of the underlying Σ-protocol, corresponding
to veri�er challenge ech.

We now describe this sequence of hybrid experiments, where hybrid HybridSimε corresponds to
our simulator Simε.
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Proof via Hybrid Experiments.

Hybrid0 : This hybrid corresponds to an honest prover in the real world, behaving according to
De�nition 2. That is, the challenger C and veri�er V ∗ execute the �rst two rounds where C behaves
according to honest prover strategy.

Next, (C, V ∗) run poly(n) executions, with the same �xed �rst message τ1, but di�erent second
messages chosen potentially maliciously by V ∗. In each execution, C picks a fresh sample (x,w)←
(Xn,Wn), and generates a proof according to honest veri�er strategy. Next, C again samples
(x,w)← (Xn,Wn) and for i ∈ [n] and outputs an honestly generated proof with �rst two messages
τ1, τ2.

Hybrid0,ε :5 This hybrid corresponds to a challenger behaving according to De�nition 2, except
instead of generating randomness for ZAP and OT via PRF, the challenger samples fresh randomness
for every thread where the veri�er sends a di�erent second round message. That is, the challenger
C and veri�er V ∗ execute the �rst two rounds where C behaves according to honest prover strategy.

Next, (C, V ∗) run poly(n) executions, with the same �xed �rst message τ1, but di�erent second
messages chosen potentially maliciously by V ∗. In each execution, C picks a fresh sample (x,w)←
(Xn,Wn), and generates a proof according to honest veri�er strategy, but using randomness sampled

uniformly and independently at random. Next, C samples (x,w)
$← (X ,W) and for i ∈ [n] and

outputs an honestly generated proof with uniform randomness and �rst two messages τ1, τ2.

Lemma 13. For all PPT distinguishers DV that obtain the view of the veri�er,

|Pr[DV(Hybrid0) = 1]− Pr[DV(Hybrid0,ε) = 1]| ≤ negl(n)

Proof. The proof of security of Lemma 13 follows by security of the PRF. Given a distinguisher that
distinguishes the view of the veri�er between both experiments, we construct a reduction to the
security of the PRF. For each execution, whenever the veri�er sends a fresh message, the reduction
obtains rwi||rOT externally from the challenger, as either outputs of the PRF or uniformly chosen ran-
domness. Then, if there exists a distinguisher DV where |Pr[DV(Hybrid0) = 1]−Pr[DV(Hybrid0,ε) =

1]| ≥ 1
poly(n) for some polynomial poly(·), the reduction mirrors the output of this distinguisher and

breaks security of the PRF.

Hybrid1,ε :

This hybrid is indexed by a small error parameter ε = 1
poly(n) for some polynomial poly(·), and

proceeds as follows. The challenger C and veri�er V ∗ execute the �rst two rounds where C behaves
according to Hybrid0,ε.

Next, (C, V ∗) run poly(n) executions, with the same �xed �rst message τ1, but di�erent second
messages chosen potentially maliciously by V ∗. In each execution, C picks a fresh sample (x,w)←
(Xn,Wn), and generates a proof according to Hybrid0,ε.

Next, C samples (x,w)
$← (X ,W), and for �xed �rst two rounds, it does the following.

1. Run the algorithm in Figure 4 parameterized by I = 1 with oracle access to the distinguisher
D, and error parameter ε, to obtain guess ech,1 for the �rst bit of the veri�er challenge.

2. Next, compute a1 = f1(x,w, r1), z
0
1 = f2(x,w, r1, ech,1), z

1
1 = f2(x,w, r1, ech,1).

3. For i ∈ [2, n], compute (ai, z
0
i , z

1
i ) honestly.

5This hybrid does not actually depend on ε and is only denoted as Hybrid0,ε for notational convenience.
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4. Send prover message according to Figure 3 using the ai, zi computed for i ∈ [n].

HybridI,ε for I ∈ [2, n] :

This hybrid is indexed by a small error parameter ε = 1
poly(n) for some polynomial poly(·), and

proceeds as follows. The challenger C and veri�er V ∗ execute the �rst two rounds where C behaves
according to Hybrid0,ε.

Next, (C, V ∗) run poly(n) executions, with the same �xed �rst message τ1, but di�erent second
messages chosen potentially maliciously by V ∗. In each execution, C picks a fresh sample (x,w)←
(Xn,Wn), and generates a proof according to Hybrid0,ε.

Next, C samples (x,w)
$← (X ,W), and for �xed �rst two round transcript, it does the following.

1. Run the algorithm in Figure 4 parameterized by I with oracle access to the veri�er V , dis-
tinguisher D, and error parameter ε, to obtain guess ech for the �rst I bits of the veri�er
challenge.

2. Next, for i ∈ [I], compute ai = f1(x,w, ri), z
0
i = f2(x,w, r

i, ech,i), z
1
i = f2(x,w, r

i, ech,i).

3. For i ∈ [I + 1, n], compute (ai, z
0
i , z

1
i ) honestly.

4. Send prover message according to Figure 3 using the ai, zi computed for i ∈ [n].

Lemma 14. For all I ∈ [0, n− 1],∣∣Pr[DV = 1|HybridI,ε]− Pr[DV = 1|HybridI+1,ε]
∣∣ ≤ ε

n+ 1

Proof. The only di�erence between HybridI,ε and HybridI+1,ε is that in HybridI+1, ech,I+1 is computed
according to the algorithm in Figure 4 and the challenger sets aI+1 = f1(x,w, rI+1), z

0
I+1 = z1I+1 =

f2(x,w, rI+1, eguess,I+1), and then sends prover message according to Figure 3.
For the �xed prover �rst message and �xed veri�er message (which �xes OT1), for i ∈ [n] and a

�xed pre�x epre = ech,[I], denoting the �rst I bits of ech,

• Let Depre,0,x denote the actual distribution output by the distinguisher when the challenger

samples random (x,w)
$← (X ,W),

� For j ≤ I, sets aj = f1(x,w, rj), z
0
j = z1j = f2(x,w, rj , ej = epre,j), and using these sends

prover message according to Figure 3. Here, epre,j denotes the j
th bit of epre.

� For j = I + 1, sets aj = f1(x,w, rj), z
0
j = z1j = f2(x,w, rj , ej = 0), and using these sends

prover message according to Figure 3.

� For j ∈ [I+2, n], sets aj = f1(x,w, rj), z
0
j = f2(x,w, rj , ej = 0), z1j = f2(x,w, rj , ej = 1),

and using these sends prover message according to Figure 3.

We will abuse notation and also use Depre,0,x to denote the probability that the distin-
guisher outputs 1 in this situation.

• Let Depre,1,x denote the actual distribution output by the distinguisher when the challenger

samples random (x,w)
$← (X ,W) and fresh randomness r,

� For j ≤ I, sets aj = f1(x,w, rj), z
0
j = z1j = f2(x,w, rj , ej = epre,j), and using these sends

prover message according to Figure 3.
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Algorithm MV,DV to approximate the veri�er's challenge upto the Ith bit.

• Set p = n2/ε3, i = 1, ech = ⊥. For �xed veri�er message r,

• While i ≤ I, repeat:

� Set D0 = 0 and for j ∈ [p], repeat:

1. For k < i, sample fresh randomness rk and set ak = f1(x
∗
j , w

∗
j , rk), z

0
k = z1k =

f2(x
∗
j , w

∗
j , rk, e = ech,k).

2. Sample fresh ri, set ai = f1(x
∗
j , w

∗
j , ri), z

0
i = z1i = f2(x

∗
j , w

∗
j , a, e = 0, ri).

3. For k ∈ [i + 1, n], sample fresh randomness rk and honestly set ak =
f1(x

∗
j , w

∗
j , rk), z

0
k = f2(x

∗
j , w

∗
j , a, e = 0, rk), z

1
k = f2(x

∗
j , w

∗
j , a, e = 1, rk)

4. Using (a, z) computed above, send prover message according to Figure 3, to-
gether with the instance x∗j .

Set D0 = D0+ 1
p if the output of the distinguisher DV = 1 (w.l.o.g., we assume

that the distinguisher DV outputs either 0 or 1).

� Set D1 = 0 and for j ∈ [p], repeat:

1. For k < i, sample fresh randomness rk and set ak = f1(x
∗
j , w

∗
j , rk), z

0
k = z1k =

f2(x
∗
j , w

∗
j , rk, e = ech,k).

2. Sample fresh ri, set ai = f1(x
∗
j , w

∗
j , ri), z

0
i = z1i = f2(x

∗
j , w

∗
j , a, e = 1, ri).

3. For k ∈ [i + 1, n], sample fresh randomness rk and honestly set ak =
f1(x

∗
j , w

∗
j , rk), z

0
k = f2(x

∗
j , w

∗
j , a, e = 0, rk), z

1
k = f2(x

∗
j , w

∗
j , a, e = 1, rk)

4. Using (a, z) computed above, send prover message according to Figure 3, to-
gether with the instance x∗j .

Set D1 = D1 + 1
p if the output of the distinguisher DV = 1.

� Set Dw = 0 and for j ∈ [p], repeat:

1. For k < i, sample fresh randomness rk and set ak = f1(x
∗
j , w

∗
j , rk), z

0
k = z1k =

f2(x
∗
j , w

∗
j , rk, e = ech,k).

2. For k ∈ [i, n], sample fresh randomness rk and honestly set ak =
f1(x

∗
j , w

∗
j , rk), z

0
k = f2(x

∗
j , w

∗
j , a, e = 0, rk), z

1
k = f2(x

∗
j , w

∗
j , a, e = 1, rk).

3. Using (a, z) computed above, send prover message according to Figure 3, to-
gether with the instance x∗j .

Set Dw = Dw + 1
p if the output of the distinguisher DV = 1.

� If |D1 −Dw| ≤ |D0 −Dw|, set ech,i = 1, else set ech,i = 0.

� Set i = i+ 1 and go to beginning of the while loop.

• Output ech.

Figure 4: Approximately Learning the Veri�er's Challenge

� For j = I + 1, sets aj = f1(x,w, rj), z
0
j = z1j = f2(x,w, rj , ej = 1), and using these sends

prover message according to Figure 3.

� For j ∈ [I + 2, n], sets aj = f1(x,w, rj), z
0
j = f2(x,w, rj , ej = 0), z1j = f2(x,w, r, ej =

1, rj), and using these sends prover message according to Figure 3.
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We will abuse notation and also use Depre,1,x to denote the probability that the distin-
guisher outputs 1 in this situation.

• Let Depre,w,x denote the actual distribution output by the distinguisher when the challenger

samples random (x,w)
$← (X ,W) and fresh randomness r,

� For j ≤ I, sets a = f1(x,w, rj), z
0
j = z1j = f2(x,w, rj , ej = epre,j), and using these sends

prover message according to Figure 3.

� For j ∈ [I + 1, n], sets a = f1(x,w, rj), z
0
j = f2(x,w, rj , ej = 0), z1j = f2(x,w, rj , ej = 1),

and using these sends prover message according to Figure 3.

We will abuse notation and also use Depre,w,x to denote the probability that the distin-
guisher outputs 1 in this situation.

Claim 2. Either of the following statements is true:

• For any pre�x epre ∈ {0, 1}I , e |Pr[Depre,0,x = 1]− Pr[Depre,w,x = 1]| ≤ negl(n)

• For any pre�x epre ∈ {0, 1}I , e|Pr[Depre,1,x = 1]− Pr[Depre,w,x = 1]| ≤ negl(n)

Proof. This claim follows from security of the OT. Assume, for contradiction, that there exist V and
DV for which the claim is not true. We will use them to break receiver security of the OT. Consider
a reduction R that �rst generates all the rewinding transcripts in the same way as Hybrid0,ε. For
the �nal transcript, obtains the OT receiver message from V and forwards this message to the OT
challenger.

The reduction also picks (x,w)
$← (X ,W), r

$← {0, 1}∗ and sets aI+1 = f1(x,w, r), z
0
I+1 =

f2(x,w, r, e = 0), z1I+1 = f2(x,w, r, e = 1), and sends (z0I+1, z
1
I+1) to the OT challenger.

The OT challenger generates either the real message OT2(z
0
I+1, z

1
I+1) corresponding to veri�er

input, or a simulated message OT2(z
∗, z∗), for some z∗ ∈ {z0, z1}. The reduction sets all other

(ai, zi0, z
i
1) for i 6= (I + 1) according to HybridI , and generates sender message accordingly.

Then, the output of distinguisher DV on input the simulated message is either distributed
identically to Depre,0,x or Depre,1,x (depending upon whether z∗ is 0 or 1). The reduction mirrors the
output of DV and it holds that, Pr[DV = 1|real OT message]−Pr[DV = 1|simulated OT message] ≥

1
poly(n) for some polynomial poly(·), for both z∗ = z0I+1 and z

∗ = z1I+1, which is a contradiction.

This claim establishes that for any pre�x pre, at least one of the distributions Depre,0,x and Depre,1,x
is negligibly close to Depre,w,x.

If both Depre,0,x and Depre,1,x are ε/(n+ 1)-close to Depre,w,x, then for any value of ech,I+1 ∈ {0, 1},∣∣Pr[DV = 1|HybridI,ε]− Pr[DV = 1|HybridI+1,ε]
∣∣ ≤ ε/(n+ 1) and we are done.

Therefore, for the rest of this lemma, we restrict ourselves to the case where one and only one
out of Depre,0,x and Depre,1,x is ε

n+1 -close to Depre,w,x. In particular, this also implies that |Depre,0,x −
Depre,1,x| > ε

n+1 .
If the challenger could �magically� set ech,I+1 to 0 if Depre,0,x was close to Depre,w,x, and to 1 if

Depre,0,x was close to Depre,w,x, then again we would have that∣∣Pr[DV = 1|HybridI,ε]− Pr[DV = 1|HybridI+1,ε]
∣∣ ≤ ε/(n+ 1)

Unfortunately, the challenger cannot magically know which distributions are close, and will
therefore have to approximate these distributions to obtain an answer. We now bound the probabil-
ity that the challenger's approximation ech,I is incorrect conditioned on |Depre,0,x −Depre,1,x| > ε

n+1 ,
i.e., we show:
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Claim 3.

Pr
[
(ech,I = b)

∣∣(Depre,1,x −Depre,0,x > ε

n+ 1
) ∧ (|Dcorrect,w −Dcorrect,b,w| >

ε

n+ 1
)
]
≤ negl(n)

Proof. We note that for the (I + 1)th iteration of Figure 4, D0 just consists of p random samples of
a distribution with mean Depre,0,x, D1 just consists of p random samples of a distribution with mean
Depre,1,x, and Dw just consists of p random samples of a distribution with mean Depre,w,x.

Then, using a simple Cherno� bound, we have:

• Pr[
(
D0 > Depre,0,x(1 + α)

)
∨
(
D0 < Depre,0,x(1− α)

)
≤ 2 exp−

α2pD0
2 ]

• Pr[
(
D1 > Depre,1,x(1 + α)

)
∨
(
D1 < Depre,1,x(1− α)

)
≤ 2 exp−

α2pD1
2 ]

• Pr[
(
Dw > Depre,w,x(1 + α)

)
∨
(
Dw < Depre,w,x(1− α)

)
≤ 2 exp−

α2pD1
2 ]

Setting α = ε
2n , and since p = n2

ε3
, by a simple union bound we have that

Pr
[(
|Depre,0,x −D0| >

ε

2n

)
∨
(
|Depre,1,x −D1| >

ε

2n

)
∨
(
|Depre,w,x −Dw| >

ε

2n

)]
≤ 6 exp−

1
8ε . Since ε will always be set to 1

poly(n) for some polynomial poly(·),

Pr
[(
|Depre,0,x −D0| >

ε

2n

)
∨
(
|Depre,1,x −D1| >

ε

2n

)
∨
(
|Depre,w,x −Dw| >

ε

2n

)]
≤ negl(n).

Recall that one of Depre,0,x and Depre,w,x is at least ε/(n+1)-far from Depre,w,x, and the other is at
most negl(n)-far. The bit ech,I is estimated via D0,D1,Dw which each have error at most ε

2n , from
the corresponding Depre,0,x,Depre,1,x,Depre,w,x. Thus,

Pr
[
ech,I = b

∣∣ |(Depre,1,x −Depre,0,x| > ε/(n+ 1))
∧

(|Depre,w,x −Depre,b,x| > ε/(n+ 1))
]
≤ negl(n).

This completes the proof of the lemma.

HybridSim,ε : This hybrid is similar to the interaction of the simulator with the veri�er and dis-

tinguisher. It is indexed by a small error parameter ε = 1
poly(n) for some polynomial poly(·), and

proceeds as follows.
The simulator Simε and veri�er V ∗ execute the �rst two rounds where Simε behaves according

to Hybrid0,ε. Next, (Simε, V
∗) run poly(n) executions, with the same �xed �rst message τ1, but

di�erent second messages chosen potentially maliciously by V ∗. In each execution, Simε picks a
fresh sample (x,w)← (Xn,Wn), and generates a proof according to Hybrid0,ε.

Next, Simε samples (x,w)
$← (X ,W), and for the �rst two round transcript that was �xed in the

beginning, it does the following.

1. Run the algorithm in Figure 4 parameterized by n with oracle access to the distinguisher D,
and error parameter ε, to obtain guess ech for the entire veri�er challenge (all n bits).
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2. Next, for i ∈ [n], compute (without using the witness), ai = f1(x,w, ech,i, ri), z
0
i = z1i =

f2(x,w, ech,i, ri) and send prover message according to Figure 3.

Lemma 15.
∣∣∣Pr[DV(Hybridn,ε) = 1]− Pr[DV(HybridSim,ε) = 1]

∣∣∣ ≤ negl(n)

Proof. Assume, for contradiction, that there exist V and DV for which the claim is not true.
We will describe a sequence of sub-hybrids where we use V,DV to break hiding of the commit-

ment scheme com or the IND-CPA security of the dense public-key cryptosystem.

Hybrida : In this sub-hybrid, the challenger C �rst conducts the experiment identically to Hybridn,ε,
except it obtains a public key pk2 externally and instead of opening the second commitment to
the correct value r2, it sets the opening r′2 := pk2 ⊕ r̃2. Note that it uses this value r′2 in all
lookahead/rewinding executions as well as the main transcript. Also note that r̃2 is �xed in the
�rst two rounds, at the beginning of the execution. Also, in this hybrid, the challenger uses r1 as
witness for wi.

The view of a veri�er in this experiment remains computationally indistinguishable from the
view in Hybridn,ε because of hiding of the commitment scheme com. If there exists a distinguisher
DV that distinguishes the view in Hybrida from the view in Hybridn,ε, the reduction can just mirror
the output of this distinguisher, to distinguish an experiment where the commitment to r2 is cor-
rectly opened to r2, from one where it is opened to a di�erent, uniformly random r′2.

Hybridb : This next sub-hybrid is identical to Hybrida, except after computing ech using Figure 4,
the challenger changes the second set of encryptions encpk2 in the �nal transcript, to be computed
without using the witness, using the honest-veri�er ZK strategy for the Σ-protocol. Since the ran-
domness used to compute the changed commitments is never revealed, the view of a veri�er in this
experiment remains computationally indistinguishable from the view in Hybrida by the IND-CPA
security of the dense public key encryption scheme. That is, the reduction obtains the public key pk2
externally along with the parts of commit that consist of encryptions corresponding to pk2 which are
not opened when the challenge is ech. If there exists a distinguisher DV that distinguishes the view
in Hybridb from the view in Hybrida, the reduction can just mirror the output of this distinguisher,
to break IND-CPA security of the encryption scheme.

Hybridc : In this next sub-hybrid, the challenger behaves the same was as Hybridb except that it
opens r2 honestly (instead of setting it as pk2⊕ r̃2 for externally obtained pk2). The view of a veri-
�er in this experiment remains computationally indistinguishable from the view in Hybridb because
of hiding of the commitment scheme com. The indistinguishability argument is identical to that
between Hybrida and Hybridn,ε.

Hybridd : In this next sub-hybid, the challenger uses r2 as witness for wi instead of using r1. Since
the ZAP is computed with fresh randomness, the view of a veri�er in this experiment remains com-
putationally indistinguishable from the view in Hybridc. Thus, if there exists a distinguisher DV
that distinguishes the view in Hybridc from the view in Hybridd, the reduction can just mirror the
output of this distinguisher, to break WI of the ZAP.

Next, the challenger changes the �rst set of encryptions encpk1 to be computed without using
the witness, corresponding to veri�er challenge ech for the Σ-protocol. Note that this is possible
because r2 is correctly opened and used as a witness for the WI in all these sub-hybrids. The view
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remains indistinguishable by the same sequence of hybrid arguments as Hybrida to Hybridc. This
corresponds to the simulation strategy, and therefore proves the lemma.

Suppose the distinguisher DV has a distinguishing advantage ε between Hybrid0 and HybridSimε ,
then it necessarily has advantage at least ε/(n+ 1) in distinguishing one consecutive pair of hybrids
between Hybrid0 and HybridSimε , which is a contradiction. This completes our proof.

Strong WI and Witness Hiding. The proof of strong witness indistinguishability and witness
hiding even against weak resetting veri�ers, follows from distributional weak ZK with extended
simulation, identically to [JKKR17].
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