
The Algebraic Group Model and its Applications

Georg Fuchsbauer1 Eike Kiltz2 Julian Loss2

April 15, 2019

1 Inria, ENS, CNRS, PSL, France
georg.fuchsbauer@ens.fr

2 Ruhr University Bochum, Germany
{eike.kiltz,julian.loss}@rub.de

Abstract

One of the most important and successful tools for assessing hardness assumptions in
cryptography is the Generic Group Model (GGM). Over the past two decades, numerous
assumptions and protocols have been analyzed within this model. While a proof in the GGM
can certainly provide some measure of confidence in an assumption, its scope is rather limited
since it does not capture group-specific algorithms that make use of the representation of the
group.

To overcome this limitation, we propose the Algebraic Group Model (AGM), a model
that lies in between the Standard Model and the GGM. It is the first restricted model of
computation covering group-specific algorithms yet allowing to derive simple and meaningful
security statements. To prove its usefulness, we show that several important assumptions,
among them the Computational Diffie-Hellman, the Strong Diffie-Hellman, and the interactive
LRSW assumptions, are equivalent to the Discrete Logarithm (DLog) assumption in the
AGM. On the more practical side, we prove tight security reductions for two important
schemes in the AGM to DLog or a variant thereof: the BLS signature scheme and Groth’s
zero-knowledge SNARK (EUROCRYPT 2016), which is the most efficient SNARK for which
only a proof in the GGM was known. Our proofs are quite simple and therefore less prone
to subtle errors than those in the GGM.

Moreover, in combination with known lower bounds on the Discrete Logarithm assumption
in the GGM, our results can be used to derive lower bounds for all the above-mentioned
results in the GGM.

Keywords: Algebraic algorithms, generic group model, security reductions, crypto-
graphic assumptions.

1 Introduction
Starting with Nechaev [Nec94] and Shoup [Sho97], much work has been devoted to studying
the computational complexity of problems with respect to generic group algorithms over cyclic
groups [BL96, MW98, Mau05]. At the highest level, generic group algorithms are algorithms
that do not exploit any special structure of the representation of the group elements and can
thus be applied in any cyclic group. More concretely, a generic algorithm may use only the
abstract group operation and test whether two group elements are equal. This property makes it
possible to prove information-theoretic lower bounds on the running time for generic algorithms.

Such lower bounds are of great interest since for many important groups, in particular for elliptic
curves, no helpful exploitation of the representation is currently known.

The class of generic algorithms encompasses many important algorithms such as the baby-
step giant-step algorithm and its generalization for composite-order groups (also known as
Pohlig-Hellman algorithm [HP78]) as well as Pollard’s rho algorithm [Pol78]. However, part
of the common criticism against the generic group model is that many algorithms of practical
interest are in fact not generic. Perhaps most notably, index-calculus and some factoring attacks
fall outside the family of generic algorithms, as they are applicable only over groups in which
the elements are represented as integers. Another example is the “trivial” discrete logarithm
algorithm over the additive group Zp, which is the identity function.

With this motivation in mind, a number of previous works considered extensions of the generic
group model [Riv04, LR06, AM09, JR10]. Jager and Rupp [JR10] considered assumptions over
groups equipped with a bilinear map e : G1 × G2 −→ G3, where G1 and G2 are modeled as
generic groups, and G3 is modeled in the Standard Model. (This is motivated by the fact that
in all practical bilinear groups, G1 and G2 are elliptic curves whereas G3 is a sub-group of a
finite field). However, none of these models so far capture algorithms that can freely exploit the
representation of the group. In this work, we propose a restricted model of computation which
does exactly this.

1.1 Algebraic Algorithms

Let G be a cyclic group of prime order p. Informally, we call an algorithm Aalg algebraic if it
fulfills the following requirement: whenever Aalg outputs a group element Z ∈ G, it also outputs
a “representation” ~z = (z1, . . . , zt) ∈ Ztp such that Z =

∏
i L

zi
i , where ~L = (L1, . . . ,Lt) is the list

of all group elements that were given to Aalg during its execution so far.
Such algebraic algorithms were first considered by Boneh and Venkatesan [BV98] in the

context of straight-line programs computing polynomials over the ring of integers Zn, where
n = pq. Later, Paillier and Vergnaud [PV05] gave a more formal and general definition of
algebraic algorithms using the notion of an extractor algorithm which efficiently computes the
representation ~z.

In our formalization of algebraic algorithms, we distinguish group elements from all other
parameters at a syntactical level, that is, other parameters must not depend on any group
elements. This is to rule out pathological exploits of the model, see below. While this class of
algebraic algorithms certainly captures a much broader class of algorithms than the class of
generic algorithms (e.g., index-calculus algorithms), it was first noted in [PV05] that the class of
algebraic algorithms actually includes the class of generic algorithms.

Algebraic algorithms have mostly been studied so far in the context of proving impossibility
results [BV98, Cor02, PV05, BMV08, GBL08, AGO11, KMP16], i.e., to disprove the existence
of an algebraic security reduction between two cryptographic primitives (with certain good
parameters). Only quite recently, a small number of works have considered the idea of proving
statements with respect to algebraic adversaries [ABM15, BFW16].

1.2 Algebraic Group Model

We propose the algebraic group model (AGM) — a computational model in which all adversaries
are modeled as algebraic. In contrast to the GGM, the AGM does not allow for proving
information-theoretic lower bounds on the complexity of an algebraic adversary. Similar to
the Standard Model, in the AGM one proves security implications via reductions. Specifically,
H ⇒alg G for two primitives H and G means that every algebraic adversary Aalg against G can
be transformed into an algebraic adversary Balg against H with (polynomially) related running

2

times and success probabilities. It follows that if H is secure against algebraic adversaries, so
is G. While algebraic adversaries have been considered before (see above), to the best of our
knowledge, our work is the first to provide a clean and formal framework for security proofs
with respect to algebraic adversaries. We elaborate further on our model below.
Concrete Security Implications in the AGM. Indeed, one can exploit the algebraic nature
of an adversary in the AGM to obtain stronger security implications than in the Standard Model.
The first trivial observation is that the classical knowledge of exponent assumption1 [Dam92]
holds by definition in the AGM.

We are able to show that several important computational assumptions are in fact equivalent
to the Discrete Logarithm assumption over prime-order groups in the AGM, including the
following:

• Diffie-Hellman assumption [DH76]

• (Interactive) strong Diffie-Hellman assumption [ABR01]

• (Interactive) LRSW assumption [LRSW99, CL04].

The significance of the Strong Diffie-Hellman Assumption comes from its equivalence to the
IND-CCA security of Hashed ElGamal encryption (also known as Diffie-Hellman Integrated
Encryption Standard) in the random oracle model [ABR01]. The LSRW assumption (named
after its authors [LRSW99]) is of importance since it is equivalent to the (UF-CMA) secu-
rity of Camenisch-Lysyanskaya (CL) signatures [CL04]. CL signatures are a central building
block for anonymous credentials [CL04, BCL04, BCS05], group signatures [CL04, ACHdM05],
e-cash [CHL05], unclonable functions [CHK+06], batch verification [CHP07], and RFID encryp-
tion [ACdM05]. Via our results, the security of all these schemes is implied by the discrete
logarithm assumption in the AGM.

Our result can be interpreted as follows. Every algorithm attacking one of the above-
mentioned problems and schemes must solve the standard discrete logarithm problem directly,
unless the algorithm relies on inherently non-algebraic operations. In particular, powerful
techniques such as the index-calculus algorithms do not help in solving these problems any better
then they do for solving the discrete logarithm problem directly.

Moreover, we show the tight equivalence of the security of the following schemes to the
underlying hardness assumptions in the AGM:

• IND-CCA1 (aka lunchtime) security of the standard ElGamal Encryption to a parametrized
variant of Decisional Diffie-Hellman assumption where in addition to gx, gy the adversary
receives gx2

, . . . , gx
q , where q is the maximal number of decryption queries.

• The UF-CMA security of the BLS signature scheme [BLS04] to the discrete logarithm
problem in the random oracle model. Previous reductions non-tightly reduced from the
CDH problem, with a tightness loss linear in the number of signing queries. This loss is
known to be inherent [Cor02, KK12], even in the random oracle model.

• The security of the so far most efficient zero-knowledge SNARK scheme by Groth [Gro16]
to a parametrized variant of the discrete logarithm problem, where in addition to gx
the adversary receives gx2

, . . . , gx
2n−1 , where n is the degree of the quadratic arithmetic

programs. The only previous proof of the security of this scheme is in the generic group
model.

1The knowledge of exponent assumption states that for every algorithm A that, given g and X = gx, outputs
(A, B) with B = Ax, there exists an extractor algorithms that, given the same input, outputs a satisfying
(A, B) = (ga, Xa).

3

Relation to the Generic Group Model. The AGM is stronger (in the sense that it puts
more restrictions on the attackers) than the Standard Model, but weaker than the GGM. In
spite of this, all of our reductions are purely generic algorithms. As mentioned above, any
generic algorithm can be modeled within the AGM. In particular, combining arbitrary generic
operations with algebraic ones will yield an algebraic algorithm. This suggests the following
idea. Let H and G be two computational problems and let Aalg be an algebraic algorithm that
solves problem G. If we can convert Aalg by means of a generic reduction algorithm Rgen into
an algorithm Balg for problem H, then clearly, Balg is also an algebraic algorithm. However, we
obtain an even stronger statement for free: Namely, if Agen is a generic algorithm solving G,
then Bgen is a generic algorithm solving H. This means that results in the AGM directly carry
over to the GGM.

For this reason, we believe that our model offers an alternative, perhaps simpler method of
proving the hardness of computational problems within the GGM. This applies in particular
to interactive assumptions, which can be rather difficult to analyze in the GGM. For example,
we prove that the discrete logarithm assumption implies the LRSW assumption in the AGM.
As the discrete logarithm assumption holds in the GGM, we instantly obtain that the LRSW
assumption holds in the GGM. The first (rigorous) proof of the LRSW assumption within the
GGM was presented in the work of [BFF+14] (the original work [LRSW99] provided only a
proof sketch), but was derived from a more general theorem and proven using an automated
proof verification tool. We hope that our proof can offer some additional insight over the proof
of [BFF+14]. Another example is our tight equivalence of the IND-CCA1 security of ElGamal
and our parametrized variant of the Decisional Diffie-Hellman (DDH) assumption in the algebraic
group model. Together with the known generic

√
p/q attack on ElGamal [BG04] for certain

primes p (see also [Che06]), our result proves the tight generic bound Θ̃(
√
p/q) on the complexity

of breaking IND-CCA1 security of ElGamal in the GGM.
We also remark that proofs in the AGM have an inherently different interpretation than

proofs in the GGM. To analyze the hardness of an assumption in the GGM, one must explicitly
augment the model by any functionality that is offered by the structure of the group. As a
simple example, let us consider a group G which is equipped with a symmetric bilinear map
e : G×G −→ GT . The bilinear map can be modeled in the GGM via an oracle. However, it is
not clear whether e can be used to gather even further information about the elements of G.
Though it is widely believed that this is not the case, a proof in the GGM provides no answer
to this question, because the GGM itself is based on the conjecture that e does not offer any
functionality beyond a bilinear map. In contrast, the AGM captures any such exploit without
the need of having to model it explicitly and considers the relation between two problems instead
of their individual hardness. This means that if one can reduce H to G in the AGM and H is
conjectured to remain hard with respect to algebraic algorithms, even when given e, then also G
remains hard. No similar statement can be inferred in the GGM. Thus, the AGM allows for a
more fine grained assessment of the hardness of computational problems than the GGM.

The gap between the two models becomes even more apparent if one considers structural
properties of G which cannot be meaningfully modeled as an oracle in the GGM. As an example,
consider the Jacobi symbol, which was shown to be generically hard to compute in [JS09]. Indeed,
it was left as an open problem in [AM09] to re-examine the equivalence of factoring and breaking
the RSA assumption if an additional oracle for the Jacobi symbol were given. Though their
results are stated in the generic ring model rather than the GGM, it seems they are similarly
confronted with the issue of explicitly modeling such an oracle.

Limitations of the AGM. As already noted, one of the main benefits of our model over
the GGM is the ability to reason about algorithms that arbitrarily exploit the structure of

4

the group. So which algorithms are not covered in this manner? Obviously, outputting an
obliviously sampled group element (with unknown representation) is forbidden. This coincides
with the GGM of Maurer [Mau05] and which also excludes the possibility of obliviously sampling
a random group element. For this reason, our model is strictly weaker than the one from [Mau05]
in the sense that any security reduction derived in Maurer’s GGM also holds in the AGM. In
contrast, the GGM defined by Shoup [Sho97] does allow for such a sampling process. Similar
to Maurer’s GGM, we can allow obliviously sampling a random group element X through an
additional oracle O() that can be called during the execution of Aalg. By definition, the outputs
of O() are added to the list ~L. We have thus argued that both versions of the GGM (i.e., the
ones by Maurer and Shoup) are strictly stronger than the AGM. Also note that simulating O() to
Aalg as part of a reduction is straight-forward and always possible; the reduction simply samples
r and returns gr to the adversary. As the reduction knows r, adding O() to an experiment does
not change it and is completely without loss of generality. From a practical point of view, it
seems that generating and outputting a random group element without knowing a representation
is generally not of much help. We therefore believe that the AGM captures most algorithms of
practical interest.

1.3 Related Work and Open Questions

We have already mentioned the semi generic group model (SGGM) [JR10] as related work, but
we discuss here some key differences of their model to ours in more detail. First, the SGGM
is a very restrictive model in the sense that the class of problems it captures is limited. The
main theorem of [JR10] (Theorem 3) holds only for pairing-based computational problems in
which the output consists of a single element in either one of the base groups. In contrast,
the AGM does not require a pairing group setting and thus applies to a much broader class
of computational problems. Second, by extending the AGM to pairing groups, we are able to
model all three groups as algebraic and reason again about a broader class of problems, in which
the output can also consist of elements in the target group. To extend the AGM to the pairing
setting, we allow the algebraic adversary to compute any element in the target group by applying
the pairing to elements in the respective base groups.

Dent [Den02] shows that the generic group model as proposed Shoup [Sho97] inherits the
known weaknesses in the random oracle model [CGH98]. Thus, there exist schemes which
can be proven secure in Shoup’s GGM, but are pathologically insecure when viewed in the
standard model. An interesting open question is whether the AGM bears similar weaknesses.
A promising line of research related to this question has recently been initiated by Bitansky
et al. [BCPR16]. Namely, they show that indistinguishability obfuscation (iO) implies the
existence of non-extractable one-way functions. If these non-extractable one-way functions were
furthermore algebraic (such as the knowledge of exponent assumption [Dam92]), then this would
invalidate the AGM (under the assumption that iO exists).

Another promising direction for future research is to prove further reductions between
common computational assumptions in the AGM. In particular, it would be interesting to
classify different such assumptions within the AGM, for example along the lines of work
[SS01, Kil01, Boy08, JR15, CM14, MRV16, GG17].

At a technical level, the main difficulty in this task arises from the fact that an algorithm,
i.e., distinguisher, in a decisional problem is asked to output a bit rather than a group element.
Therefore, such an algorithm is trivially considered algebraic in our framework. It would therefore
be interesting to develop a model which captures the algebraic properties of such algorithms in
more detail.

A further potential for follow-up work would be to investigate whether it is possible to

5

automate proofs in the AGM. Indeed, for the case of the GGM this has been considered
in [BFF+14, ABS16] and it would be interesting to see if similar automated tools can be derived
for the AGM.

Finally, we remark that all of our results require prime-order groups and do not yet extend to
the setting of pairing groups. When generalizing our results to composite-order groups, we expect
to encounter the following technical difficulty: Given, e.g., an equation of the form ax ≡n b,
where n is composite, there might be (exponentially) many solutions for the unknown x in case
gcd(a, n) > 1. This interferes with the proof strategies presented in this work and requires a
more involved analysis. In fact, proving a reduction from the discrete logarithm problem to
the CDH problem in the AGM for group orders containing multiple prime factors (eg, n = p2)
is excluded by [MW98]. Hardness bounds in the GGM for composite-order groups have been
considered in [Sho97, MW98, Mau05]. Generalizing the GGM to pairing groups has been the
subject, e.g., of the works of [Boy08, KSW08, RLB+08]. Extending the AGM to either one of
these regimes is an interesting line of research for future work.

2 Algebraic Algorithms

Algorithms. We denote by s $← S the uniform sampling of the variable s from the (finite) set
S. All our algorithms are probabilistic (unless stated otherwise) and written in uppercase letters
A,B. To indicate that algorithm A runs on some inputs (x1, . . . , xn) and returns y, we write
y $← A(x1, . . . , xn). If A has access to an algorithm B (via oracle access) during its execution, we
write y $← AB(x1, . . . , xn).

Security games. We use a variant of (code-based) security games [BR04]. In game Gpar

(defined relative to a set of parameters par), an adversary A interacts with a challenger that
answers oracle queries issued by A. It has a main procedure and (possibly zero) oracle procedures
which describe how oracle queries are answered. We denote the output of a game Gpar between
a challenger and an adversary A via GA

par. A is said to win if GA
par = 1. We define the advantage

of A in Gpar as AdvG
par,A := Pr

[
GA
par = 1

]
and the running time of GA

par as TimeG
par,A.

Security Reductions. Let G,H be security games. We write Hpar
(∆ε,∆t)=⇒ Gpar if there exists

an algorithm R (called (∆ε,∆t)-reduction) such that for all algorithms A, algorithm B defined as
B := RA satisfies

AdvH
par,B ≥

1
∆ε
·AdvG

par,A, TimeH
par,B ≤ ∆t ·TimeG

par,A.

2.1 Algebraic Security Games and Algorithms

We consider algebraic security games GG for which we set par to a fixed group description
G = (G, g, p), where G is a cyclic group of prime order p generated by g. In algebraic security
games, we syntactically distinguish between elements of group G (written in bold, uppercase
letters, e.g., A) and all other elements, which must not depend on any group elements. As an
example of an algebraic security game, consider the Computational Diffie-Hellman game cdhA

G ,
depicted in Figure 1 (left).

We now define algebraic algorithms. Intuitively, the only way for an algebraic algorithm
to output a new group element Z is to derive it via group multiplications from known group
elements.

Definition 2.1 (Algebraic algorithm) An algorithm Aalg executed in an algebraic game GG is
called algebraic if for all group elements Z that Aalg outputs (i.e., the elements in bold uppercase

6

cdhA
G

00 x, y $← Zp
01 (X,Y) := (gx, gy)
02 Z $← A(X,Y)
03 Return (Z = gxy)

cdh
Aalg
G

00 x, y $← Zp
01 (X,Y) := (gx, gy)
02 [Z]~z $← Aalg(X,Y)
03 Return (Z = gxy)

Figure 1: Left: Algebraic game cdh relative to group description G = (G, g, p) and adversary A.
All group elements are written in bold, uppercase letters. Right: Algebraic game cdh relative
to group description G = (G, g, p) and algebraic adversary Aalg. The algebraic adversary Aalg
additionally returns a representation ~z = (a, b, c) of Z such that Z = gaXbYc.

letters), it additionally provides the representation of Z relative to all previously received group
elements. That is, if ~L is the list of group elements L0, . . . ,Lm ∈ G that Aalg has received so far
(w.l.o.g. L0 = g), then Aalg must also provide a vector ~z such that Z =

∏
i L

zi
i . We denote such

an output as [Z]~z.

Remarks on Our Model. Algebraic algorithms were first considered in [BV98, PV05], where
they are defined using an additional extractor algorithm which computes for an output group
element a representation in basis ~L. We believe that our definition gives a simpler and cleaner
definition of algebraic algorithms. If one assumes that the extractor algorithm has constant
running time, then our definition is easily seen to be equivalent to theirs. Indeed, this view makes
sense for algorithms in the GGM since the representation ~z trivially follows from the description
of the algorithm. However, if running the extractor algorithm imposes some additional cost, then
this will clearly affect the running times of our reductions. If the cost of the extractor is similar
to that of the solver adversary, then reductions in our model that neither call an algebraic solver
multiple times nor receive from it a non-constant amount of group elements (along with their
representations) will remain largely the same in both models.

For the inputs to algebraic adversaries we syntactically distinguish group elements from other
inputs and require that the latter not depend on any group elements. This is necessary to rule
out pathological cases in which an algorithm receives “disguised” group elements and is forced
to output an algebraic representation of them (which it might not know). To illustrate the issue,
consider an efficient algorithm A, which on input X ′ := X‖⊥ returns X, where X is a group
element, but X ′ is not. If A is algebraic then it must return a representation of X in g (the only
group element previously seen), which would be the discrete logarithm of X.

Allowing inputs of form X ′ while requiring algorithms to be algebraic leads to contradictions.
(E.g., one could use Aalg to compute discrete logarithms: given a challenge X = gx, run
[X]x $← Aalg(X‖⊥) and return x.) We therefore demand that non-group-element inputs must not
depend on group elements. (Note that if Aalg’s input contains X explicitly then it can output
[X](0,1) with a valid representation of X relative to ~L = (g,X).)

Finally, we slightly abuse notation and let an algebraic algorithm also represent output group
elements as combinations of previous outputs. This makes some of our proofs easier and is
justified since all previous outputs must themselves have been given along with an according
representation. Therefore, one can always recompute a representation that depends only on the
initial inputs to the algebraic algorithm.

Integrating with Random Oracles in the AGM. As mentioned above, an algorithm A that
samples (and outputs) a group element X obliviously, i.e., without knowing its representation,
is not algebraic. This appears to be problematic if one wishes to combine the AGM with the
Random Oracle Model [BR93]. However, group elements output by the random oracle are

7

included by definition in the list ~L. This means that for any such element, a representation is
trivially available to Aalg.

2.2 Generic Security Games and Algorithms

Generic algorithms Agen are only allowed to use generic properties of group G. Informally, an
algorithm is generic if it works regardless of what group it is run in. This is usually modeled by
giving an algorithm indirect access to group elements via abstract handles. It is straight-forward
to translate all of our algebraic games into games that are syntactically compatible with generic
algorithms accessing group elements only via abstract handles.

We say that winning algebraic game GG is (ε, t)-hard in the generic group model if for every
generic algorithm Agen it holds that

TimeG
G,Agen ≤ t =⇒ AdvG

G,Agen ≤ ε.

We remark that usually in the generic group model one considers group operations (i.e., oracle
calls) instead of the running time. In our context it is more convenient to measure the running
time instead, assuming every oracle call takes one unit time.

As an important example, consider the algebraic Discrete Logarithm Game dlogG in Figure 2
which is

(
t2/p, t

)
-hard in the generic group model [Sho97, Mau05].

We assume that a generic algorithm Agen additionally provides the representation of Z
relative to all previously received group elements, for all group elements Z that it outputs.
This assumption is w.l.o.g. since a generic algorithm can only obtain new group elements by
multiplying two known group elements; hence it always knows a valid representation. This way,
every generic algorithm is also an algebraic algorithm.

Furthermore, if Bgen is a generic algorithm and Aalg is an algebraic algorithm, then Balg :=
BAalg

gen is also is an algebraic algorithm. We refer to [Mau05] for more on generic algorithms.

2.3 Generic Reductions Between Algebraic Security Games

Let GG and HG be two algebraic security games. We write HG (∆ε,∆t)=⇒alg GG if there exists a generic
algorithm Rgen (called generic (∆ε,∆t)-reduction) such that for every algebraic algorithm Aalg,
algorithm Balg defined as Balg := RAalg

gen satisfies

AdvH
G,Balg ≥

1
∆ε
·AdvG

G,Aalg , TimeH
G,Balg ≤ ∆t ·TimeG

G,Aalg .

Note that we deliberately require reduction Rgen to be generic. Hence, if Aalg is algebraic,
then Balg := RAalg

gen is algebraic; if Aalg is generic, then Balg := RAalg
gen is generic. If one is only

interested in algebraic adversaries, then it suffices to require reduction Rgen to be algebraic. But
in that case one can no longer infer that Balg := RAalg

gen is generic in case Aalg is generic.
Composing information-theoretic lower bounds with reductions in the AGM. The
following lemma explains how statements in the AGM carry over to the GGM.

Lemma 2.2 Let GG and HG be algebraic security games such that HG (∆ε,∆t)=⇒alg GG and winning
HG is (ε, t)-hard in the GGM. Then, GG is (ε ·∆ε, t/∆t)-hard in the GGM.

Proof. Let Agen be a generic algorithm playing in game GG . Then by our premise there exists a
generic algorithm Balg = RAalg

gen such that

AdvH
G,Balg ≥

1
∆ε
·AdvG

G,Aalg
, TimeH

G,Balg
≤ ∆t ·TimeG

G,Aalg
.

8

dlogA
G

00 x $← Zp
01 X := gx

02 z $← A(X)
03 Return (z = x)

lc-dhA
G

00 x, y $← Zp
01 (X,Y) := (gx, gy)
02 (Z, u, v, w) $← A(X,Y)
03 Return

(
Z = gux

2+vxy+wy2

∧ (u 6= 0 ∨ v 6= 0 ∨ w 6= 0)
)

sq-dhA
G

00 x $← Zp
01 X := gx

02 Z $← A(X)
03 Return

(
Z = gx

2)

Figure 2: Discrete Logarithm Game dlog, Square Diffie-Hellman Game sq-dh, and Linear
Combination Diffie-Hellman Game lc-dh relative to group G and adversary A.

sq-dhAalg
G

00 x $← Zp
01 X := gx

02 [Z](a,b) $← Aalg(X)
03 Return

(
Z = gx

2)
Figure 3: Algebraic adversary Aalg playing in sq-dhG .

Assume TimeG
G,Aalg

≤ t/∆t; then TimeH
G,Balg

≤ ∆t · TimeG
G,Aalg

≤ t. Since winning HG is
(ε, t)-hard in the GGM, it follows that

ε ≥ AdvH
G,Balg ≥

1
∆ε
·AdvG

G,Aalg

and thus ε ·∆ε ≥ AdvG
G,Aalg

, which proves that GG is (ε∆ε, t/∆t)-hard in the GGM.

3 The Diffie-Hellman Assumption and Variants
In this section we consider some variants of the standard Diffie-Hellman assumption [DH76] and
prove them to be equivalent to the discrete logarithm assumption (defined via algebraic game
dlogG of Figure 2) in the Algebraic Group Model.

3.1 Computational Diffie-Hellman

Consider the Square Diffie-Hellman Assumption [MW99] described in algebraic game sq-dhG
and the Linear Combination Diffie-Hellman Assumption described in algebraic game lc-dhG
(both in Figure 2), which will be convenient for the proof of Theorem 3.3.

As a warm-up we now prove that the Discrete Logarithm assumption is tightly equivalent
to the Diffie-Hellman, the Square Diffie-Hellman, and the Linear Combination Diffie-Hellman
Assumption in the Algebraic Group Model. The equivalence of the Square Diffie-Hellman and
Diffie-Hellman problems was previously proven in [MW99, BDZ03].

Theorem 3.1 dlogG
(1,1)=⇒alg

{
cdhG , sq-dhG

}
and dlogG

(3,1)=⇒alg lc-dhG .

Proof. Let Aalg be an algebraic adversary executed in game sq-dhG ; cf. Figure 3.
As Aalg is an algebraic adversary, it returns a solution Z together with a representation

(a, b) ∈ Z2
p such that

Z = gx
2 = ga(gx)b. (1)

9

sdhA
G

00 x, y $← Zp
01 (X,Y) := (gx, gy)
02 Z $← AO(·,·)(X,Y)
03 Return (Z = gxy)

O(Y′,Z′)
04 Return

(
Z′ = (Y′)x

)

Figure 4: Strong Diffie-Hellman Game sdh relative to G and adversary A.

We now show how to construct a generic reduction Rgen that calls Aalg exactly once such that
for Balg := RAalg

gen we have
Advdlog

G,Balg
= Advsq-dh

G,Aalg
.

Rgen works as follows. On input a discrete logarithm instance X, it runs Aalg on X. Suppose
Aalg is successful. Equation (1) is equivalent to the quadratic equation x2 − bx− a ≡p 0 with
at most two solutions in x. (In general such equations are not guaranteed to have a solution
but since the representation is valid and Aalg is assumed to be correct, there exists at least one
solution for x.) Rgen can test which one (out of the two) is the correct solution x by testing
against X = gx. Moreover, it is easy to see that Rgen only performs generic group operations
and is therefore generic. Hence, Balg := RAalg

gen is algebraic, which proves

dlogG
(1,1)=⇒alg sq-dhG .

The statement dlogG
(1,1)=⇒alg cdhG follows, since given an adversary against cdhG (see

Figure 1), we can easily construct an adversary against sq-dhG that runs in the same time and
has the same probability of success (given X = gx, sample r $← Zp, run the cdh adversary on
(X,Xr), obtain Z and return Z

1
r).

It remains to show that sq-dhG
(3,1)=⇒alg lc-dhG . Given an algebraic solver Calg executed in

game lc-dhG , we construct an adversary Aalg against sq-dhG as follows: On input X = gx, Aalg
samples r $← Zp and computes either (X, gr), (gr,X), or (X,Xr) each with probability 1/3. Note
that this instance is correctly distributed. It then runs Calg on the resulting tuple (X1,X2) and
receives (Z, u, v, w) together with (a, b, c) s.t. Z = gaXb

1Xc
2. If u 6= 0, then the choice X1 = X,

X2 = gr yields Z = gux
2+vxr+wr2 , from which gx2 can be computed as gx2 = (ZX−vrg−wr2)

1
u .

Clearly, Aalg is able to compute an algebraic representation of gx2 from the values (a, b, c) and
thus is algebraic itself. The cases v 6= 0, w 6= 0 follow in a similar fashion.

Corollary 3.2 cdhG and sq-dhG are
(
t2/p, t

)
-hard in the generic group model and lc-dhG is(

3t2/p, t
)
-hard in the generic group model.

For the subsequent sections and proofs, we will not make explicit the reduction algorithm
Rgen every time (as done above).

3.2 Strong Diffie-Hellman

Consider the Strong Diffie-Hellman Assumption [ABR01] described via game sdhG in Figure 4.
We now prove that the Discrete Logarithm Assumption (non-tightly) implies the Strong Diffie-
Hellman Assumption in the Algebraic Group Model. We briefly present the main ideas of
the proof. The full proof of Theorem 3.3 can be found in Appendix A.1. Let Aalg be an
algebraic adversary playing in sdhG and let Z = gz denote the Discrete Logarithm challenge. We
show an adversary Balg against dlogG that simulates sdhG to Aalg. Balg appropriately answers

10

Aalg’s queries to the oracle O(·, ·) by using the algebraic representation of the queried elements
provided by Aalg. Namely, when (Y′,Z′) is asked to the oracle, Balg obtains vectors ~b,~c such
that Y′ = gb1Xb2Yb3 and Z′ = gc1Xc2Yc3 . As long as b2 = b3 = 0, Balg can answer all of Aalg’s
queries by checking whether Xb1 = Z′. On the other hand, if b2 6= 0 or b3 6= 0, then Balg simply
returns 0. Informally, the simulation will be perfect unless Aalg manages to compute a valid
solution to lc-dhG . All of these games can be efficiently simulated by Balg, as we have shown in
the previous section.

Theorem 3.3 dlogG
(4q,1)=⇒alg sdhG , where q is the maximum number of queries to oracle O(·, ·)

in sdhG.

Corollary 3.4 sdhG is
(
t2

4pq , t
)
-hard in the generic group model.

4 The LRSW Assumption
The interactive LRSW assumption [LRSW99, CL04] is defined via the algebraic security game
lrsw in Figure 5.

lrswA
G

00 Q := ∅
01 x, y $← Zp
02 X := gx,Y := gy

03 (m∗,A∗,B∗,C∗) $← AO(·)(X,Y)
04 Return

(
m∗ 6∈ Q ∧ m∗ 6= 0 ∧ A∗ 6= 1
∧ B∗ = (A∗)y ∧ C∗ = (A∗)m

∗xy+x)

O(mj) //For query j
05 rj

$← Zp;
06 Aj := grj

07 Bj := grjy

08 Cj := grjmjxy+rjx

09 Q := Q ∪ {mj}
10 Return (Aj ,Bj ,Cj)

Figure 5: Game lrsw relative to G and adversary A.

We now prove that the LRSW assumption is (non-tightly) implied by the Discrete Logarithm
Assumption in the Algebraic Group Model. We give a high-level sketch of the main ideas here
and defer the full proof of Theorem 4.1 to Appendix A.2. Let Aalg be an algebraic adversary
playing in lrswG and let Z = gz denote the Discrete Logarithm challenge. We construct an
adversary Balg against dlogG , which simulate lrswG to Aalg by embedding the value of z in one
of three possible ways. Namely, it either sets X := Z or Y := Z, or it chooses a random the
query by Aalg to the oracle O(·) in lrswG to embed the value of z. These behaviours correspond
in our proof to the adversaries Calg,Dalg, and Ealg, respectively. After obtaining a solution
(m∗, [A∗]~a, [B∗]~b, [C

∗]~c) on a fresh value m∗ 6= 0 from Aalg, the adversaries use the algebraic
representations ~a,~b,~c obtained from Aalg to suitably rewrite the values of A∗,C∗ (Lemma A.1).
They then make use of the relation (A∗)(xm∗y+x) = C∗ to obtain an equation mod p, which in
turn gives z.

Theorem 4.1 dlogG
(6q,1)=⇒alg lrswG , where q ≥ 6 is the maximum number of queries to O(·) in

lrswG .

Corollary 4.2 lrswG is
(
t, t2

6pq
)
-hard in the generic group model.

5 ElGamal Encryption
In this section we prove that the IND-CCA1 (aka. lunchtime security) of the ElGamal encryption
scheme (in its abstraction as a KEM) is implied by a parametrized (“q-type”) variant of the

11

ind-cca1A
KEM,par,b

00 (pk, sk) $← Gen(par)
01 b′ $← ADec,Enc(pk)
02 Return b′

Dec(C)
//Before Enc is called
03 K $← Dec(C, sk)
04 Return K

Enc() //One time
05 (K∗0 , C∗) $← Enc(pk)
06 K∗1

$← K
07 Return (K∗b , C∗)

Figure 6: IND-CCA1 Game ind-cca1 relative to KEM KEM = (Gen,Enc,Dec), parameters par,
and adversary A.

Decision Diffie-Hellman Assumption in the Algebraic Group Model.
Advantage for decisional algebraic security games. We parameterize a decisional
algebraic game G (such as the game in Figure 7) with a parameter bit b. We define the advantage
of adversary A in G as

AdvG
par,A :=

∣∣Pr
[
GA
par,0 = 1

]
− Pr

[
GA
par,1 = 1

]∣∣.
We define TimeG

par,Aalg
independently of the parameter bit b, i.e., we consider only the worst-case

running time of Aalg in either game. In order to cover games that define the security of schemes
(rather than assumptions), instead of par = G, we only require that G be included in par. Let
Gpar,Hpar be decisional algebraic security games. As before, we write Hpar

(∆ε,∆t)=⇒ alg Gpar if
there exists a generic algorithm Rgen (called generic (∆ε,∆t)-reduction) such that for algebraic
algorithm Balg defined as Balg := RAalg

gen , we have

AdvH
par,Balg ≥

1
∆ε
·AdvG

par,Aalg , TimeH
par,Balg ≤ ∆t ·TimeG

par,Aalg .

Key Encapsulation Mechanisms. A key encapsulation mechanism (KEM for short) KEM =
(Gen,Enc,Dec) is a triple of algorithms together with a symmetric-key space K. The randomized
key generation algorithm Gen takes as input a set of parameters, par, and outputs a public/secret
key pair (pk, sk). The encapsulation algorithm Enc takes as input a public key pk and outputs a
key/ciphertext pair (K,C) such that K $← K. The deterministic decapsulation algorithm Dec
takes as input a secret key sk and a ciphertext C and outputs a key K ∈ K or a special symbol
⊥ if C is invalid. We require that KEM be correct: For all possible pairs (K,C) output by
Enc(pk), we have Dec(sk, C) = K. We formalize IND-CCA1 security of a KEM via the games
(for b = 0, 1) depicted in Figure 6.

In the following, we consider the ElGamal KEM EG defined in Figure 8. We also consider
a stronger variant of the well-known Decisional Diffie-Hellman (DDH) assumption that is
parametrized by an integer q. In the q-DDH game, defined in Figure 7, the adversary receives,
in addition to (gx, gr), the values gx2

, . . . , gx
q .

Lemma 5.1 [Che06] For q < p1/3, q-ddhG is
(t2q
p log p , t

)
-hard in the generic group model.

The proof of the following theorem can be found in Appendix A.3.

q-ddhA
G,b

00 x, r, z $← Zp
01 b′ $← A(gx, gx2

, ..., gx
q
, gr, gxr+zb)

02 Return b′

Figure 7: q-Decisional Diffie-Hellman Game q-ddh relative to G and adversary A.

12

Gen(G)
00 x $← Zp
01 X := gx

02 Return (pk, sk) := (X, x)

Enc(pk) :
03 r $← Zp
04 C := gr

05 K := Xr

06 Return (K,C)

Dec(C, sk) :
07 If C 6∈ G
08 Return ⊥
09 K̃ := Cx

10 Return K̃

Figure 8: ElGamal KEM EG = (Gen,Enc,Dec)

Theorem 5.2 ind-cca1EG,G
(1,1)⇐⇒alg q-ddhG , where q − 1 is the maximal number of queries to

Dec(·) in ind-cca1EG,G .

ind-cca1A
EG,G,0 ind-cca1A

EG,G,1

00 x $← Zp
01 X := gx

02 b′ $← ADec,Enc
alg (X)

03 Return b′

Dec([C]~a)
//Before Enc is called
04 K := Cx

05 Return K

Enc() //One time
06 r $← Zp
07 C∗ := gr

08 K∗ := Xr

09 K∗ $← K
10 Return (K∗,C∗)

Figure 9: Games ind-cca1A
EG,G,0 and ind-cca1A

EG,G,1 with algebraic adversary Aalg. The boxed
statement is only executed in ind-cca1A

EG,G,1.

Corollary 5.3 For q < p1/3, ind-cca1EG,G is (t2q
p log p , t)-hard in the generic group model, where

q − 1 is the maximal number of queries to Dec(·) in ind-cca1EG,G .

6 Tight Reduction for the BLS Scheme
For this section, we introduce the notion of groups G equipped with a symmetric, (non-
degenerate) bilinear map e : G×G→ GT , where GT denotes the so-called target group. We now
set G = (p,G,GT , g, e).
Signature Schemes. A signature scheme SIG = (SIGGen, SIGSig, SIGVer) is a triple of algo-
rithms. The randomized key generation algorithm SIGGen takes as input a set of parameters,
par, and outputs a public/secret key pair (pk, sk). The randomized signing algorithm SIGSig
takes as input a secret key sk and a message m in the message spaceM and outputs a signature
σ in the signature space S. The deterministic signature verification algorithm SIGVer takes as
input a public key pk, a message m, and a signature σ and outputs b ∈ {0, 1}. We require
that SIG be correct: For all possible pairs (pk, sk) output by SIGGen and all messages m ∈M,
we have Pr[SIGVer(pk,m, SIGSig(m, sk)) = 1] = 1. We formalize unforgeability under chosen
message attacks for SIG via game uf -cmaSIG,par depicted in Figure 10.

In the following, we show how in the AGM with a random oracle, the security of the BLS
signature scheme [BLS04], depicted in Figure 11, can be tightly reduced to the discrete logarithm
problem. Boneh, Lynn and Shacham [BLS04] only prove a loose reduction to the CDH problem.
In the AGM we can improve the quality of the reduction by leveraging the fact that a forgery
comes with a representation in the basis of all previously answered random-oracle and signature
queries. We embed a discrete logarithm challenge in either the secret key or inside the random
oracle queries—a choice that remains hidden from the adversary. Depending on the adversary’s
behavior we always solve the discrete logarithm challenge in one of the cases.

13

uf -cmaA
SIG,par

00 (pk, sk) $← SIGGen
01 Q := ∅
02 (m∗, σ∗) $← AO(·)(pk)
03 Return

(
m∗ 6∈ Q ∧ SIGVer(m∗, σ∗)

)

O(m)
04 Q := Q ∪ {m}
05 σ $← SIGSig(m, sk)
06 Return σ

Figure 10: Game uf -cma defining (existential) unforgeability under chosen-message attacks for
signature scheme SIG, parameters par and adversary A.

BLSGen(G)
00 x $← Zp
01 X := gx

02 sk := x
03 pk := X
04 Return (pk, sk)

BLSSig(m)
05 Σ := H(m)x
06 Return Σ

BLSVer(m,Σ)
07 Return

(
e(H(m),X) = e(Σ, g)

)

Figure 11: Boneh, Lynn and Shacham’s signature scheme BLSG . Here, H is a hash function that
is modeled as a random oracle.

Theorem 6.1 dlogG
(4,1)=⇒alg uf -cmaBLS,G in the random oracle model.

Proof. Let Aalg be an algebraic adversary playing in G := uf -cmaAalg
BLS,G , depicted in Figure 12.

As Aalg is an algebraic adversary, at the end of G it returns a forgery Σ∗ on a message
m∗ 6∈ Q together with a representation ~a = (â, a′, ā1, ..., āq , ã1, ..., ãq) s.t.

Σ∗ = H(m∗)x = gâXa′
q∏
i=1

Hāi
i

q∏
i=1

Σãi
i . (2)

Here, the representation is split (from left to right) into powers of the generator g, the public
key X, all of the answers to hash queries Hi, i ∈ [q], and the signatures Σi, i ∈ [q], returned by
the signing oracle. In the following, we let r∗ and ri, for i ∈ [q], be such that H(m∗) = gr

∗ and
H(mi) = gri . Equation (2) is thus equivalent to

xr∗ ≡p x(a′ + Σiriãi) + (â+ Σiriāi). (3)

We remark that since Aalg wins G, the sum Σiriãi may not include a term of the form r∗ã∗ (since
Aalg may not query the signing oracle on m∗). We will now describe the behavior of adversaries
Calg,Dalg (depicted in Figures 13 and 14, respectively) playing in the discrete logarithm game.
Each of these adversaries simulates G to Aalg in a different way.

GAalg

00 x $← Zp
01 X := gx

02 Q := ∅
03 (m∗, [Σ∗]~a) $← AO(·),H(·)

alg (X)
04 Return

(
m∗ 6∈ Q ∧ Σ∗ = H(m∗)x

)

O(mi)
05 Q := Q ∪ {mi}
06 Σi ← H(mi)x
07 Return Σi

H(mi)
08 Hi ← H(mi)
09 Return Hi

Figure 12: Game G = uf -cmaAalg
BLS,G relative to adversary Aalg.

14

Calg(Z = gz)
00 X := Z
01 (m∗, [Σ∗]~a) $← AO(·),H(·)(X)
02 Compute z (see description)
03 Return z

O(mi)
04 If H(mi) = ⊥
05 ri

$← Zp
06 H(mi)← gri

07 Σi ← Xri

08 Return Σi

H(mi)
09 If H(mi) 6= ⊥
10 Return H(mi)
11 ri

$← Zp
12 H(mi)← gri

13 Return H(mi)

Figure 13: Adversary Calg against dlogG in the proof of Theorem 6.1.

Lemma 6.2 Let G be as defined in Figure 12 and, with a′, ãi, r∗ and ri defined as above, let
F denote the event that a′ + Σiriãi − r∗ 6≡p 0. Then there exist Calg,Dalg playing in the discrete
logarithm game such that:

Pr
[
dlogCalg = 1

]
= Pr

[
G = 1 | F

]
(4)

Pr
[
dlogDalg = 1

]
≥ p−1

p Pr
[
G = 1 | ¬F

]
(5)

Proof. Let Z denote the discrete logarithm instance. Calg and Dalg simulate G to Aalg.

Adversary Calg(Z = gz): Adversary Calg is depicted in Figure 13 and works as follows. It
sets X := Z, which implicitly sets x := z. To answer a query H(mi), Calg first checks whether
H(mi) = ⊥. If so, it samples ri $← Zi and sets H(mi) := gri . It then returns H(mi). To answer a
query O(mi), it first checks whether H(mi) has previously been queried. If not, it first calls H(mi)
which defines H(mi) (and thus ri). It then computes and returns Σi := Xri . It is easy to see that
Calg’s simulation is perfect. Suppose that Aalg wins G given that F = 1⇔ a′ + Σiriãi − r∗ 6≡p 0.
If r∗ has not been defined at this point, Calg makes an additional query H(m∗) which defines r∗.
Now, by (3) we have:

zr∗ ≡p z(a′ + Σiriãi) + (â+ Σiriāi). (6)
Calg efficiently computes z from (6) as z = (â+ Σiriāi)(r∗ − a′ − Σiriãi)−1 mod p.

Dalg(Z = gz)
00 x $← Zp
01 X := gx

02 (m∗, [Σ∗]~a) $← AO(·),H(X)
03 Compute z (see above)
04 Return z

O(mi)
05 Σi := H(mi)x
06 Return Σi

H(mi)
07 bi, r̂i

$← Zp
08 Return gzbi+r̂i

Figure 14: Adversary Dalg against dlogG in the proof of Theorem 6.1.

Adversary Dalg(Z = gz): Adversary Dalg is depicted in Figure 14 and works as follows. It
samples its own secret key x $← Zp and sets X := gx. To answer a query H(mi), Dalg first checks
whether H(mi) = ⊥. If so, it samples r̂i $← Zp and bi $← Zp and sets H(mi) = gri := Zbigr̂i ,
which implicitly sets ri := r̂i + zbi. It then returns H(mi). To answer a query O(mi), it
first checks whether H(mi) has previously been queried. If not, it first queries H(mi), which
defines H(mi) and the values r̂i ∈ Zp, bi ∈ Zp, and ri = r̂i + zbi. It then computes and returns
Σi := H(mi)x. Again, it is straight-forward to verify that Dalg’s simulation is perfect. Suppose
that Aalg wins G given that F = 0⇔ a′ + Σiriãi − r∗ ≡p 0. Now,

zb∗ + r̂∗ ≡p r∗ ≡p a′ + Σiriãi ≡p (a′ + Σir̂iãi) + z(Σibiãi) ≡p Az +B, (7)

15

q-dlog A
G

00 x $← Z∗p
01 z $← A(gx, gx2

, ..., gx
q)

02 Return (z = x)

Figure 15: q-Discrete Logarithm Game q-dlog relative to G and adversary A.

where A := Σibiãi and B := (a′ + Σir̂iãi). Note that the value of b∗ is information-theoretically
hidden from Aalg and thus independent from the value of A. As we have argued, the sum
Σiriãi may not contain a term of the form a∗r∗. This means in particular that a′ + Σiriãi is
not composed of the singleton term r∗ ≡p zb∗ + r̂∗. Therefore, with probability 1− 1

p , we have
b∗ −A 6≡p 0 and thus Dalg can compute z as z := (B − r̂∗)(b∗ −A)−1 mod p.

Now, we can simply let an adversary Balg choose to emulate one of the described adversaries
Calg or Dalg with probability 1

2 each. All in all, AdvBalg,G
dlog ≥

p−1
2p AdvAalg,G

uf-cmaBLS
≥ 1

4AdvAalg,G
uf-cmaBLS

.

Corollary 6.3 uf -cmaBLS,G is
(
t, t

2

4p
)
-hard in the generic group model with a random oracle.

7 Groth’s Near-Optimal zk-SNARK
In order to cover notions such as knowledge soundness, which are defined via games for two
algorithms, we generalize the notion of algebraic games and reductions between them. We write
GA,X
par to denote that A and X play in Gpar and define the advantage AdvG

par,A,X := Pr[GA,X
par = 1]

and the running time TimeG
par,A,X as before. To capture definitions that require that for every

A there exists some X (which has black-box access to A) such that AdvG
par,A,X is small, we define

algebraic reductions for games Gpar of this type as follows.
We write Hpar

(∆ε,∆t)=⇒ alg Gpar if there exist generic algorithms Rgen and Sgen such that for all
algebraic algorithms Aalg we have

AdvH
par,Balg ≥

1
∆ε
·AdvG

par,Aalg,Xalg , TimeH
par,Balg ≤ ∆t ·TimeG

par,Aalg,Xalg ,

with Balg defined as Balg := RAalg
gen and Xalg defined as Xalg := SAalg

gen .
The q-discrete logarithm assumption. We define a parametrized (“q-type”) variant of
the DLog assumption via the algebraic security game q-dlog in Figure 15. We will show that
Groth’s [Gro16] scheme, which is the most efficient SNARK system to date, is secure under
q-DLog in the algebraic group model.
Non-interactive zero-knowledge arguments of knowledge. Groth [Gro16] considers
proof systems for satisfiability of arithmetic circuits, which consist of addition and multiplication
gates over a finite field F. As a tool, Gennaro et al. [GGPR13] show how to efficiently convert
any arithmetic circuit into a quadratic arithmetic program (QAP) R, which is described by F,
integers ` ≤ m and polynomials ui, vi, wi ∈ F[X], for 0 ≤ i ≤ m, and t ∈ F[X], where the
degrees of ui, vi, wi are less than the degree n of t. (The relation R can also contain additional
information aux.) A QAP R defines the following binary relation of statements φ and witnesses ω,
where we set a0 := 1:

R =
{

(φ, ω)
∣∣∣∣∣ φ = (a1, . . . , a`) ∈ F`, ω = (a`+1, . . . , am) ∈ Fm−`(∑m

i=0 aiui(X)
)
·
(∑m

i=0 aivi(X)
)
≡
∑m
i=0 aiwi(X) (mod t(X))

}

16

knw-snd A,XA
SNK,R

00 crs $← Setup(R)
01 ((φ, π);ω) $← (A ‖XA)(R, crs)
02 Return

(
(φ, ω) /∈ R
∧ Vfy(R, crs, φ, π) = 1

)

k-snd-aff X,A
NILP,R

03 ~σ $← LinSetup(R)
04 (φ, P) $← A(R)
05 ω $← X(R,φ, P)
06 Return

(
P ∈ Fν×µ ∧ (φ, ω) /∈ R
∧ LinVfy(R,~σ, φ, P~σ) = 1

)
Figure 16: Left: Knowledge soundness game knw-snd relative to SNK = (Setup,Prv,Vfy),
adversary A and extractor XA. Right: Knowledge soundness game k-snd-aff relative to
NILP = (LinSetup,PrfMtrx,Test), extractor X and affine adversary A (right).

Relation R defines an NP language LR := {φ ∈ F` | ∃ω ∈ Fm−` : (φ, ω) ∈ R}.
A non-interactive argument system for a class of relations R is a tuple SNK = (Setup,Prv,Vfy)

of algorithms. Setup on input a relation R ∈ R outputs a common reference string crs; prover
algorithm Prv on input crs and a statement/witness pair (φ, ω) ∈ R returns an argument π;
Verification Vfy on input crs, φ and π returns either 0 (reject) or 1 (accept). We require SNK to
be complete, i.e., for all crs output by Setup, all arguments for true statements produced by Prv
are accepted by Vfy.

Knowledge soundness requires that for every adversary A there exists an extractor XA that
extracts a witness from any valid argument output by A. We write (y; z) $← (A ‖XA)(x) when
A on input x outputs y and XA on the same input (including A’s coins) returns z. Knowledge
soundness is defined via game knw-snd A,XA

SNK,R in Figure 16.
Zero knowledge for SNK requires that arguments do not leak any information besides the

truth of the statement. It is formalized by demanding the existence of a simulator which on
input a trapdoor (which is an additional output of Setup) and a true statement φ returns an
argument that is indistinguishable from an argument for φ output by Prv when given a witness
for φ (see [Gro16] for a formal definition).

A (preprocessing) succinct argument of knowledge (SNARK) is a knowledge-sound non-
interactive argument system whose arguments are of size polynomial in the security parameter
and can be verified in polynomial time in the security parameter and the length of the statement.
Non-interactive linear proofs of degree 2. NILPs (in Groth’s [Gro16] terminology)
are an abstraction of many SNARK constructions introduced by Bitansky et al. [BCI+13]. We
only consider NILPs of degree 2 here. Such a system NILP is defined by three algorithms as
follows. On input a quadratic arithmetic program R, LinSetup returns ~σ ∈ Fµ for some µ. On
input R, φ and ω, algorithm PrfMtrx generates a matrix P ∈ Fν×µ (where ν is the (short)
proof length). And on input R and φ, Test returns matrices T1, . . . , Tη ∈ Fµ+ν . The last two
algorithms implicitly define a prover and a verification algorithm as follows:

◦ ~π $← LinPrv(R,~σ, φ, ω): run P $← PrfMtrx(R,φ, ω); return ~π := P~σ.

◦ b $← LinVfy(R,~σ, φ, ~π): (T1, . . , Tη) $←Test(R,φ); return 1 iff for all 1 ≤ k ≤ η:

(~σ> |~π>)Tk (~σ> |~π>)> = 0. (8)

By symmetry of (8), for Tk =: (tk,i,j)µ+ν
i,j=1 we can w.l.o.g. assume that tk,i,j = 0 for all k, i and

j < i.
We require a NILP to satisfy statistical knowledge soundness against affine prover strategies,

which requires the existence of an (efficient) extractor X that works for all (unbounded) adver-
saries A. Whenever A returns a proof matrix P which leads to a valid proof P~σ for a freshly

17

Setup(R)
00 g $← G
01 ~σ $← LinSetup(R)
02 Return ~Σ := 〈~σ〉

Prv(R, ~Σ, φ, ω)
03 P $← PrfMtrx(R,φ, ω)
04 Parse P = (pi,j)i,j
05 For i = 1 . . . ν:
06 Πi :=

∏µ
j=1 Σpi,j

j

07 π := (Π1, . . . ,Πν)
08 Return π
//Note that π := 〈P~σ〉

Vfy(R, ~Σ, φ, ~Π)
09 T1, . . . , Tη

$← Test(R,φ)
10 Parse Tk = (tk,i,j)i,j
11 Return 1 iff for all 1 ≤ k ≤ η:

0 =
∏µ
i=1

∏µ
j=i e(Σi,Σj)tk,i,j

·
∏µ
i=1

∏µ+ν
j=µ+1 e(Σi,Πj)tk,i,j

·
∏µ+ν
i=µ+1

∏µ+ν
j=i e(Πi,Πj)tk,i,j

//This evaluates (8) in the exponent

Figure 17: Argument system (Setup,Prv,Vfy) from a NILP (LinSetup,PrfMtrx,Test).

LinSetup(R)
00 α, β, γ, δ, τ $← F∗

01 ~σ :=
(
α, β, γ, δ, {τ i}n−1

i=0 ,
{ 1
γ

(
βui(τ) + αvi(τ) + wi(τ)

)}`
i=0,{1

δ

(
βui(τ)+αvi(τ)+wi(τ)

)}m
i=`+1,

{1
δ (τ it(τ))

}n−2
i=0

)
02 Return ~σ ∈ Fµ with µ := m+ 2n+ 4

PrfMtrx(R,φ, ω)
03 Let h(X) be as in (10)
04 r, s $← F
05 Return P ∈ F3×µ s.t. P~σ = (A,B,C) with
06 A := α+

∑m
i=0 aiui(τ) + rδ

07 B := β +
∑m
i=0 aivi(τ) + sδ

08 C := 1
δ

(∑m
i=`+1 ai(βui(τ)+αvi(τ)+wi(τ))+h(τ)t(τ)

)
+As+rB−rsδ

Test(R,φ)
09 Return T ∈ F(µ+3)×(µ+3) corresponding to the test

A ·B = α · β +
∑`
i=0 ai

1
γ

(
βui(τ) + αvi(τ) + wi(τ)

)
· γ + C · δ

Figure 18: Groth’s NILP (LinSetup,PrfMtrx,Test).

sampled ~σ, X can extract a witness from P . The notion is defined via game k-snd-aff X,A
NILP,R in

Figure 16.
Non-interactive arguments from NILPs. From a NILP for a quadratic arithmetic program
over a finite field F = Zp for some prime p, one can construct an argument system over a bilinear
group G = (p,G, g, e). We thus consider QAP relations R of the form

R =
(
G,F = Zp, `,

{
ui(X), vi(X), wi(X)

}m
i=0, t(X)

)
, (9)

and define the degree of R as the degree of n of t(X).
The construction of SNK = (Setup,Prv,Vfy) from NILP = (LinSetup,PrfMtrx,Test) is given

in Figure 17, where we write 〈~x〉 for (gx1 , . . . , gx|~x|). Setup samples a random group generator g
and embeds the NILP CRS “in the exponent”. Using group operations, Prv computes LinPrv in
the exponent, and using the pairing, Vfy verifies LinVfy in the exponent.
Groth’s near-optimal SNARK for QAPs. Groth [Gro16] obtains his SNARK system by
constructing a NILP for QAPs and then applying the conversion in Figure 17. Recall that R,
as in (9), defines a language of statements φ = (a1, . . . , a`) ∈ F` with witnesses of the form

18

ω = (a`+1, . . . , am) ∈ Fm−` such that (with a0 := 1):(∑m
i=0 aiui(X)

)
·
(∑m

i=0 aivi(X)
)

=
∑m
i=0 aiwi(X) + h(X)t(X) (10)

for some h(X) ∈ F[X] of degree at most n− 2. Groth’s NILP is given in Figure 18.

Theorem 7.1 ([Gro16, Theorem 1]). The construction in Figure 18 is a NILP with perfect
completeness, perfect zero knowledge and statistical knowledge soundness against affine prover
strategies.

Groth embeds his NILP in asymmetric bilinear groups, which yields a more efficient SNARK.
He then shows that the scheme is knowledge-sound in the generic group model for symmetric
bilinear groups (which is a stronger result, as the adversary is more powerful than in asymmetric
groups). Since we aim at strengthening Groth’s security statement, we also consider the
symmetric-group variant (which is what the transformation in Figure 17 yields). We now show
how from an algebraic adversary breaking knowledge soundness one can construct an adversary
against the q-DLog assumption.

Theorem 7.2 Let SNK denote Groth’s [Gro16] SNARK for degree-n QAPs defined over a
(symmetric) bilinear group G of order p with n2 ≤ (p − 1)/8. Then we have q-dlog (3,1)=⇒alg
knw-sndSNK with q := 2n− 1.

Let us start with a proof overview. Consider an algebraic adversary Aalg against knowledge
soundness (as defined in Figure 16): Aalg has input (R, 〈~σ〉) and returns a statement φ and a
proof ~Π consisting of 3 group elements. Since Aalg is algebraic and its group-element inputs
are ~Σ = 〈~σ〉, the adversary returns [Πi]~ai

for 1 ≤ i ≤ 3 with Πi =
∏µ
i=1 Σai,j

j = 〈
∑µ
i=1 σjai,j〉.

Letting P := (ai,j)i,j ∈ F3×µ, we have ~Π = 〈P~σ〉 and we denote Aalg’s group-element output as
[~Π]P .

By definition, ~Π passes Vfy iff P~σ satisfies LinVfy. In this case, by Groth’s theorem (Theo-
rem 7.1), there exists an extractor X, which on input P such that P~σ satisfies LinVfy extracts a
witness (see game k-snd-aff NILP,R in Figure 16).

So it seems this extractor X should also work for Aalg (which returns P as required). However,
X is only guaranteed to succeed if P~σ verifies for a randomly sampled ~σ, whereas for Aalg
in knw-snd SNK,R it suffices to return P so that P~σ verifies for the specific ~σ for which it
received 〈~σ〉. To prove knowledge soundness, we must show that an adversary can only output
P which works for all choices of ~σ (from which X will then extract a witness).

In the generic group model this follows rather straight-forwardly, since the adversary has
no information about the concrete ~σ. In the AGM however, Aalg is given 〈~σ〉, and if Aalg could
compute discrete logarithms, it could compute P which only verifies for the specific ~σ (in the
same way as proofs are simulated to show zero knowledge of the scheme [Gro16]). Our proof
strategy is to show that computing discrete logarithms is basically the only way to compute P
which only works for the specific ~σ.

Examining the structure of a NILP CRS ~σ (Figure 18), we see that its components are
defined as multivariate (Laurent) polynomials evaluated at a random point ~x = (α, β, γ, δ, τ).

Now what does it mean for Aalg to output a valid P ? By the definition of LinVfy via Test (cf.
Equation (8) with ~π := P~σ), it means that Aalg found P such that

(~σ> | (P~σ))>)T (~σ> | (P~σ)>)> = 0. (11)

If we interpret the components of ~σ as polynomials over X1, . . . , X5 (corresponding to ~x =
(α, β, γ, δ, τ)) then the left-hand side of (11) defines a polynomial QP (~X).

19

XA(R, 〈~σ〉)
00 (φ, [~Π]P) $← Aalg(R, 〈~σ〉)
01 ω $← X(R,φ, P)
02 Return ω.

knw-snd Aalg,XA
SNK,R

03 ~σ $← LinSetup(R)
04 (φ, [~Π]P) $← Aalg(R, 〈~σ〉)
05 ω $← X(R,φ, P)
06 Return

(
(φ, ω) /∈ R ∧ LinVfy(R,~σ, φ, P~σ) = 1

)
Figure 19: Extractor XA defined from X and Aalg (left) and knowledge soundness game knw-snd
for a SNARK built from NILP = (LinSetup,PrfMtrx,Test), algebraic adversary Aalg and XA
(right).

On the other hand, what does it mean that P~σ verifies for the specific ~σ from Aalg’s input but
not in general? It means that QP (~x) = 0, but QP 6≡ 0, that is, QP is not the zero polynomial
(since otherwise (11) would hold for any choice of ~x, that is, P~σ′ would verify for any ~σ′).

We now bound the probability that Aalg behaves “badly”, that is, it returns a proof that
only holds with respect to its specific CRS. To do so, we bound the probability that given 〈~σ〉,
Aalg (implicitly) returns a nonzero polynomial QP which vanishes at ~x, the point that defines ~σ.
By factoring QP , we can then extract information about ~x, which was only given as group
elements 〈~σ〉.

Concretely, we embed a q-DLog instance simultaneously into α, . . . , τ of a CRS 〈~σ〉, for which
we thus need q to be at least the maximum of the total degrees of the polynomials defining σ,
which for Groth’s NILP is 2n− 1. The technical part of the proof is to show that the left-hand
side of (11), when viewed as a univariate polynomial, one of whose roots is the DLog challenge,
is non-zero. The reduction can then compute the DLog by factoring this polynomial to obtain
its roots.

Proof of Theorem 7.2. Let R be a QAP of degree n (cf. (9)). Let NILP = (LinSetup,PrfMtrx,
Test) denote Groth’s NILP (Figure 18). By Theorem 7.1 there exists an extractor X, which on
input R, statement φ ∈ LR, and P ∈ Fν×µ such that LinVfy(R,~σ, φ, P~σ) = 1 for ~σ $← LinSetup(R)
returns a witness ω with probability Advk-snd-affNILP,R,X,F for any affine F.

Let SNK denote Groth’s SNARK obtained from NILP via the transformation in Figure 17
and let Aalg be an algebraic adversary in the game knw-snd SNK,R. From X we construct an
extractor XA for Aalg in Figure 19. Note that since Aalg is algebraic, we have ~Π = 〈P~σ〉, for
which we have

Vfy(R, ~Σ, φ, ~Π) = Vfy(R, ~Σ, φ, 〈P~σ〉) = LinVfy(R,~σ, φ, P~σ) (12)

by the definition of Vfy (Figure 17). Using this, we write out Game knw-snd Aalg,XA
SNK,R in Figure 19.

Our goal is to upperbound Advknw-sndSNK,R,Aalg,XA
.

Consider the affine prover A′ in Figure 20 and k-snd-aff X,A′
NILP, with the code of A′ written out,

also in Figure 20. Comparing the right-hand sides of Figures 19 and 20, we see that the outputs
of the games only differ in the following: if LinVfy returns 0 for P~ρ w.r.t. ~ρ, but it returns 1 for
P~σ w.r.t. ~σ, then knw-snd returns 1 whereas k-snd-aff returns 0. Let bad denote the event
when this happens; formally defined as a flag in game k-snd-aff in Figure 20. By definition, we
have

Advknw-sndSNK,R,Aalg,XA ≤ Advk-snd-affNILP,R,X,A′ + Pr
[
bad = 1

]
. (13)

In order to simplify our analysis, we first make a syntactical change to NILP by multiplying

20

A′(R)
00 ~σ $← LinSetup(R)
01 (φ, [~Π]P) $← Aalg(R, 〈~σ〉)
02 Return (φ, P).

k-snd-aff X,A′
NILP,R

03 ~ρ $← LinSetup(R)
04 ~σ $← LinSetup(R)
05 (φ, [~Π]P) $← Aalg(R, 〈~σ〉)
06 ω $← X(R,φ, P)
07 If

(
(φ, ω) /∈ R ∧ LinVfy(R,~σ, φ, P~σ) = 1

∧ LinVfy(R, ~ρ, φ, P ~ρ) = 0
)

08 Then bad := 1
09 Return

(
(φ, ω) /∈ R ∧ LinVfy(R, ~ρ, φ, P ~ρ) = 1

)
Figure 20: Affine prover A′ defined from Aalg (left) and game k-snd-aff for NILP, extractor X
and A′ (right).

out all denominators, that is, we let LinSetup (cf. Figure 18) return

~σ :=
(
δγ, αδγ, βδγ, δγ2, δ2γ, {δγτ i}n−1

i=0 ,
{
δ
(
βui(τ) + αvi(τ) + wi(τ)

)}`
i=0,{

γ
(
βui(τ) + αvi(τ) + wi(τ)

)}m
i=`+1,

{
γτ it(τ)

}n−2
i=0

)
. (14)

Note that this does not affect the distribution of the SNARK CRS as running the modified
LinSetup amounts to the same as choosing g′ $← G and running the original setup with g := (g′)δγ ,
which again is a uniformly random generator.

Observe that the components of LinSetup defined in (14) can be described via multivariate
polynomials Si(~x), 1 ≤ i ≤ µ, of total degree at most 2n−1 with ~x := (α, β, γ, δ, τ), and LinSetup
can be defined as picking a random point ~x $← (F∗)5 and returning the evaluations σi := Si(~x)
of these polynomials.

Let T be as defined by Test in Figure 18. By (8) we have

LinVfy(R,~σ, φ, P~σ) = 1 ⇐⇒ ~σ>
(
(Id |P>) · T · (Id |P>)>

)
~σ = 0.

Let ~S be the vector of polynomials defined by LinSetup. For a matrix P ∈ F3×µ define the
following multivariate polynomial

QP (~X) := (~S(~X))>
(
(Id |P>) · T · (Id |P>)>

)
~S(~X) (15)

of degree at most (2n− 1)2. Then for any ~x ∈ (F∗)5 and ~σ := ~S(~x) we have

LinVfy
(
R,~σ, φ, P~σ)

)
= 1 ⇐⇒ QP (~x) = 0. (16)

Groth [Gro16] proves Theorem 7.1 by showing that from a proof P with QP ≡ 0 (that is, P
verifies for any choice of σ), an extractor X can efficiently compute a witness. Thus in order to
win game k-snd-aff NILP,R, the adversary must return P with QP 6≡ 0 (thus the extractor fails),
but which verifies for σ, which by (16) means QP (~x) = 0.

The affine adversary has no information on σ and thus the polynomial QP is independent of
it. The Schwartz-Zippel lemma states that a non-zero multivariate polynoimal over Fp of total
degree d evaluates to 0 on a uniformly random point with probability at most d

p−1 .
Since the total degree of QP is at most d = (2n− 1)2 (using the modified ~σ from (14)), the

probability that QP (~x) = 0 for a random ~x $← (F ∗)5 is thus bounded by d
p−1 . This yields

Advk-snd-affNILP,R,X,A′ ≤
(2n−1)2

p−1 . (17)

21

In order to bound Advknw-sndSNK,R,Aalg,XA
in (13), we will construct an adversary Balg such that

Pr
[
bad = 1

]
≤
(
1− (2n−1)2

p−1
)
·Advq-dlogG,Balg

with q = 2n− 1. (18)

For bad to be set to 1, Aalg’s output P must be such that QP 6≡ 0: otherwise, LinVfy returns 1
for any ~x and in particular LinVfy(R, ~ρ, φ, P ~ρ) = 1.

Event bad = 1 implies thus that Aalg on input 〈~σ〉 = 〈~S(~x)〉 returns P such that

QP 6≡ 0 and QP (~x) = 0. (19)

We now use such Aalg to construct an adversary Balg that solves q-DLog with q := 2n− 1.

Adversary Balg(〈z〉, 〈z2〉, ..., 〈zq〉): On input a q-DLog instance, Balg simulates k-snd-aff X,A′
NILP,R

for Aalg. It first picks a random values ~r ← (F∗)5 and ~s ← F5 and (implicitly) sets
xi := riz + si, that is:

α := r1z + s1 β := r2z + s2 γ := r3z + s3 δ := r4z + s4 τ := r5z + s5

If xi = 0 for some i (which Balg can check using 〈z〉) then Balg stops and outputs z :=
−sir−1

i mod p. (∗)
Otherwise, Balg generates a CRS 〈~σ〉 := 〈~S(~x)〉 = 〈~S(α, β, γ, δ, τ)〉 as defined in (14). Since
the total degree of the polynomials Si defining ~σ is bounded by 2n− 1 = q (the degree of
the last component of ~σ), Balg can compute 〈~σ〉 from its q-DLog instance.

Next, Balg runs (φ, [~Π]P) $← Aalg(R, 〈~σ〉) and from P computes the multivariate polynomial
QP (~X) as defined in (15). If QP ≡ 0 or QP (~x) 6= 0 (by (19) this means that event bad
has not occurred) then Balg aborts. (∗∗)
Otherwise Balg defines the univariate polynomial

Q′P (Z) := QP (r1Z + s1, . . . , r5Z + s5).

If Q′P ≡ 0 then Balg aborts. (∗∗∗)
Otherwise Balg factors Q′P to obtain its roots (of which by (15) there are at most (2n−1)2),
checks them against its DLog instance to determine whether z is among them, and if so,
returns z.

In case Balg does not stop at (∗), it perfectly simulates k-snd-aff X,A′
NILP,R for Aalg. We now analyze

the probability that Balg finds the target z provided that bad = 1. As in this case Balg will not
abort at (∗∗), it remains to bound the probability of aborting at (∗∗∗).

Since Q′P (z) = QP (r1z + s1, . . . , r5z + s5) = QP (~x), by (19) we have Q′P (z) = 0. Thus if
Q′P 6≡ 0 then Balg finds z by factoring Q′P , and it remains to argue that Q′P 6≡ 0.

QP is of the form QP (~X) =
∑
i1,...,i5 ci1,...,i5

∏5
j=1X

ij
j for coefficients ci1,...,i5 and thus

Q′P (Z) =
∑

i1,...,i5

ci1,...,i5

5∏
j=1

(rjZ + sj)ij =
∑
~i

c~i

5∏
j=1

(∑ij
k=0

(ij
k

)
rkj Z

k s
ij−k
j

)

=
∑
~i

c~i

i1,...,i5∑
k1,...,k5

5∏
j=1

(ij
kj

)
r
kj

j Zkj s
ij−kj

j =
∑
`

∑
~i

c~i

~i∑
~k : Σjkj=`

5∏
j=1

(ij
kj

)
r
kj

j Zkj s
ij−kj

j

=
∑
`

c′` Z
` with c′` :=

∑
~i

c~i

~i∑
~k : Σjkj=`

5∏
j=1

(ij
kj

)
r
kj

j s
ij−kj

j .

22

By (19) we have QP 6≡ 0. Let d∗ be the total degree of QP , thus for some i1, . . . , i5 ≥ 0 with∑
j ij = d∗ we have ci1,...,i5 6= 0, while ci1,...,i5 = 0 when

∑
j ij > d∗. By the latter we have

c′d∗ =
∑

~i : Σjij≤d∗
c~i

~i∑
~k : Σjkj=d∗

5∏
j=1

(ij
kj

)
r
kj

j s
ij−kj

j =
∑

~i : Σjij≤d∗
c~i

5∏
j=1

r
ij
j ,

since kj ≤ ij , for all j, and
∑
j ij ≤ d∗ and

∑
j kj = d∗ implies kj = ij for all j.

We now lower-bound the probability that c′d∗ 6= 0 and thus Q′P 6≡ 0. First note that
from 〈~σ〉 = 〈~S(~x)〉 the adversary obtains information on ~x, which might influence its choice
of QP ; however, the values s1, . . . , s5 perfectly blind the values r1z, . . . , r5z, and c′d∗ , which is
independent of (s1, . . . , s5) is thus also independent of (r1, . . . , r5). Consider c′d∗ as a polynomial
in variables (R1, . . . , Rn) of degree d∗, that is, C ′d∗(~R) :=

∑
~i c~i

∏5
j=1R

ij
j . By the Schwartz-Zippel

lemma, the probability that for a random ~r $← (F∗)5 we have C ′d∗(~r) = 0 is bounded by d∗

p−1
where d∗ is upper-bounded by the total degree of QP , which is at most (2n− 1)2. We thus have
Q′P 6≡ 0 with probability at least 1 − (2n−1)2

p−1 . Since, conditioned on bad = 1, the adversary
returns the solution to the q-DLog instance, with q = 2n− 1, whenever Q′P 6≡ 0, we have:

Advq-dlogG,Balg
≥
(
1− (2n−1)2

p−1
)
· Pr

[
bad = 1

]
≥ 1

2 · Pr
[
bad = 1

]
,

where the last inequality comes from n2 ≤ (p− 1)/8. Putting this together with (13) and (17),
we have shown that

Advknw-sndSNK,R,Aalg,XA ≤
q2

p−1 + 2 ·Advq-dlogG,Balg
.

Following the generic bound for Boneh and Boyen’s SDH assumption [BB08] (see below), we
may assume that Advq-dlogG,Balg

≥ q2

p−1 . The above equation thus implies

Advknw-sndSNK,R,Aalg,XA ≤ 3 ·Advq-dlogG,Balg
,

which concludes the proof.

Corollary 7.3 In the generic group model breaking knowledge soundness of Groth’s SNARK
[Gro16] for a degree-n QAP is

(3t2q+3q3

p , t
)
-hard for q = 2n− 1.

The corollary follows from the generic
(t2q+q3

p , t
)
-hardness of q-dlog , which is derived

analogously to the bound for Boneh and Boyen’s SDH assumption [BB08].
We remark that the above result is not specific to Groth’s SNARK; it applies to any SNARK

built from a NILP whose setup evaluates multivariate polynomials on a random position. The
maximal total degree of these polynomials determines the parameter q in the q-DLog instance.

Acknowledgments
We thank Balthazar Bauer for pointing out a flaw and a fix in the proof of Theorem 7.2. We
also thank Dan Brown for valuable comments, Pooya Farshim for discussions on polynomiels
and Helger Lipmaa for sharing with us his independent security proof for Groth’s SNARK. The
first author is supported by the French ANR EfTrEC project (ANR-16-CE39-0002). The second
author was supported in part by ERC Project ERCC (FP7/615074) and by DFG SPP 1736 Big
Data. The third author was supported by ERC Project ERCC (FP7/615074).

23

References
[ABM15] Michel Abdalla, Fabrice Benhamouda, and Philip MacKenzie. Security of the

J-PAKE password-authenticated key exchange protocol. In 2015 IEEE Symposium
on Security and Privacy, pages 571–587. IEEE Computer Society Press, May 2015.
(Cited on page 2.)

[ABR01] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman
assumptions and an analysis of DHIES. In David Naccache, editor, CT-RSA 2001,
volume 2020 of LNCS, pages 143–158. Springer, Heidelberg, April 2001. (Cited on
page 3, 10.)

[ABS16] Miguel Ambrona, Gilles Barthe, and Benedikt Schmidt. Automated unbounded
analysis of cryptographic constructions in the generic group model. In Marc Fischlin
and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of
LNCS, pages 822–851. Springer, Heidelberg, May 2016. (Cited on page 6.)

[ACdM05] Giuseppe Ateniese, Jan Camenisch, and Breno de Medeiros. Untraceable RFID
tags via insubvertible encryption. In Vijayalakshmi Atluri, Catherine Meadows,
and Ari Juels, editors, ACM CCS 05, pages 92–101. ACM Press, November 2005.
(Cited on page 3.)

[ACHdM05] Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno de Medeiros.
Practical group signatures without random oracles. Cryptology ePrint Archive,
Report 2005/385, 2005. http://eprint.iacr.org/2005/385. (Cited on page 3.)

[AGO11] Masayuki Abe, Jens Groth, and Miyako Ohkubo. Separating short structure-
preserving signatures from non-interactive assumptions. In Dong Hoon Lee and
Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 628–646.
Springer, Heidelberg, December 2011. (Cited on page 2.)

[AM09] Divesh Aggarwal and Ueli Maurer. Breaking RSA generically is equivalent to
factoring. In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS,
pages 36–53. Springer, Heidelberg, April 2009. (Cited on page 2, 4.)

[BB08] Dan Boneh and Xavier Boyen. Short signatures without random oracles and the
SDH assumption in bilinear groups. Journal of Cryptology, 21(2):149–177, April
2008. (Cited on page 23.)

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.
Succinct non-interactive arguments via linear interactive proofs. In Amit Sahai,
editor, TCC 2013, volume 7785 of LNCS, pages 315–333. Springer, Heidelberg,
March 2013. (Cited on page 17.)

[BCL04] E. Bangerter, J. Camenisch, and A. Lysyanskaya. A cryptographic framework
for the controlled release of certified data. In Security Protocols Workshop, pages
20–24, 2004. (Cited on page 3.)

[BCPR16] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of
extractable one-way functions. SIAM Journal on Computing, 2016. (Cited on
page 5.)

[BCS05] M. Backes, J. Camenisch, and D. Sommer. Anonymous yet accountable access
control. In WPES, pages 40–46, 2005. (Cited on page 3.)

24

http://eprint.iacr.org/2005/385

[BDZ03] Feng Bao, Robert H. Deng, and Huafei Zhu. Variations of Diffie-Hellman problem.
In Sihan Qing, Dieter Gollmann, and Jianying Zhou, editors, ICICS 03, volume
2836 of LNCS, pages 301–312. Springer, Heidelberg, October 2003. (Cited on
page 9.)

[BFF+14] Gilles Barthe, Edvard Fagerholm, Dario Fiore, John C. Mitchell, Andre Scedrov,
and Benedikt Schmidt. Automated analysis of cryptographic assumptions in generic
group models. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part I, volume 8616 of LNCS, pages 95–112. Springer, Heidelberg, August 2014.
(Cited on page 4, 6.)

[BFW16] David Bernhard, Marc Fischlin, and Bogdan Warinschi. On the hardness of proving
CCA-security of signed ElGamal. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe
Persiano, and Bo-Yin Yang, editors, PKC 2016, Part I, volume 9614 of LNCS,
pages 47–69. Springer, Heidelberg, March 2016. (Cited on page 2.)

[BG04] Daniel R. L. Brown and Robert P. Gallant. The static diffie-hellman problem.
Cryptology ePrint Archive, Report 2004/306, 2004. http://eprint.iacr.org/
2004/306. (Cited on page 4.)

[BL96] Dan Boneh and Richard J. Lipton. Algorithms for black-box fields and their appli-
cation to cryptography (extended abstract). In Neal Koblitz, editor, CRYPTO’96,
volume 1109 of LNCS, pages 283–297. Springer, Heidelberg, August 1996. (Cited
on page 1.)

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing.
Journal of Cryptology, 17(4):297–319, September 2004. (Cited on page 3, 13.)

[BMV08] Emmanuel Bresson, Jean Monnerat, and Damien Vergnaud. Separation results
on the “one-more” computational problems. In Tal Malkin, editor, CT-RSA 2008,
volume 4964 of LNCS, pages 71–87. Springer, Heidelberg, April 2008. (Cited on
page 2.)

[Boy08] Xavier Boyen. The uber-assumption family (invited talk). In Steven D. Galbraith
and Kenneth G. Paterson, editors, PAIRING 2008, volume 5209 of LNCS, pages
39–56. Springer, Heidelberg, September 2008. (Cited on page 5, 6.)

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73.
ACM Press, November 1993. (Cited on page 7.)

[BR04] Mihir Bellare and Phillip Rogaway. Code-based game-playing proofs and the
security of triple encryption. Cryptology ePrint Archive, Report 2004/331, 2004.
http://eprint.iacr.org/2004/331. (Cited on page 6.)

[BV98] Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be equivalent
to factoring. In Kaisa Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS,
pages 59–71. Springer, Heidelberg, May / June 1998. (Cited on page 2, 7.)

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited (preliminary version). In 30th ACM STOC, pages 209–218. ACM Press,
May 1998. (Cited on page 5.)

25

http://eprint.iacr.org/2004/306
http://eprint.iacr.org/2004/306
http://eprint.iacr.org/2004/331

[Che06] Jung Hee Cheon. Security analysis of the strong Diffie-Hellman problem. In Serge
Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 1–11. Springer,
Heidelberg, May / June 2006. (Cited on page 4, 12.)

[CHK+06] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya, and
Mira Meyerovich. How to win the clonewars: Efficient periodic n-times anonymous
authentication. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di
Vimercati, editors, ACM CCS 06, pages 201–210. ACM Press, October / November
2006. (Cited on page 3.)

[CHL05] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-cash. In
Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 302–321.
Springer, Heidelberg, May 2005. (Cited on page 3.)

[CHP07] Jan Camenisch, Susan Hohenberger, and Michael Østergaard Pedersen. Batch
verification of short signatures. In Moni Naor, editor, EUROCRYPT 2007, volume
4515 of LNCS, pages 246–263. Springer, Heidelberg, May 2007. (Cited on page 3.)

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous cre-
dentials from bilinear maps. In Matthew Franklin, editor, CRYPTO 2004, volume
3152 of LNCS, pages 56–72. Springer, Heidelberg, August 2004. (Cited on page 3,
11.)

[CM14] Melissa Chase and Sarah Meiklejohn. Déjà Q: Using dual systems to revisit
q-type assumptions. In Phong Q. Nguyen and Elisabeth Oswald, editors, EURO-
CRYPT 2014, volume 8441 of LNCS, pages 622–639. Springer, Heidelberg, May
2014. (Cited on page 5.)

[Cor02] Jean-Sébastien Coron. Optimal security proofs for PSS and other signature schemes.
In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages
272–287. Springer, Heidelberg, April / May 2002. (Cited on page 2, 3.)

[Dam92] Ivan Damgård. Towards practical public key systems secure against chosen cipher-
text attacks. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages
445–456. Springer, Heidelberg, August 1992. (Cited on page 3, 5.)

[Den02] Alexander W. Dent. Adapting the weaknesses of the random oracle model to the
generic group model. In Yuliang Zheng, editor, ASIACRYPT 2002, volume 2501 of
LNCS, pages 100–109. Springer, Heidelberg, December 2002. (Cited on page 5.)

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976. (Cited on page 3, 9.)

[FKL17] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its
applications. Cryptology ePrint Archive, Report 2017/620, 2017. (Cited on page .)

[GBL08] Sanjam Garg, Raghav Bhaskar, and Satyanarayana V. Lokam. Improved bounds
on security reductions for discrete log based signatures. In David Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 93–107. Springer, Heidelberg, August
2008. (Cited on page 2.)

[GG17] Jens Groth and Essam Ghadafi. Towards a classification of non-interactive com-
putational assumptions in cyclic groups. In Tsuyoshi Takagi and Thomas Peyrin,

26

editors, ASIACRYPT 2017, volume 10625 of LNCS, pages 66–96, Hong Kong,
December 2017. Springer. (Cited on page 5.)

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
span programs and succinct NIZKs without PCPs. In Thomas Johansson and
Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages
626–645. Springer, Heidelberg, May 2013. (Cited on page 16.)

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume
9666 of LNCS, pages 305–326. Springer, Heidelberg, May 2016. (Cited on page 3,
16, 17, 18, 19, 21, 23.)

[HP78] M. E. Hellman and S. C. Pohlig. An improved algorithm for computing logarithms
over GF (p) and its cryptographic significance. IEEE Transactions on Information
Theory, 24(1):106–110, 1978. (Cited on page 2.)

[JR10] Tibor Jager and Andy Rupp. The semi-generic group model and applications to
pairing-based cryptography. In Masayuki Abe, editor, ASIACRYPT 2010, volume
6477 of LNCS, pages 539–556. Springer, Heidelberg, December 2010. (Cited on
page 2, 5.)

[JR15] Antoine Joux and Antoine Rojat. Security ranking among assumptions within the
Uber Assumption framework. In Yvo Desmedt, editor, ISC 2013, volume 7807 of
LNCS, pages 391–406. Springer, Heidelberg, November 2015. (Cited on page 5.)

[JS09] Tibor Jager and Jörg Schwenk. On the analysis of cryptographic assumptions in
the generic ring model. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912
of LNCS, pages 399–416. Springer, Heidelberg, December 2009. (Cited on page 4.)

[Kil01] Eike Kiltz. A tool box of cryptographic functions related to the Diffie-Hellman
function. In C. Pandu Rangan and Cunsheng Ding, editors, INDOCRYPT 2001,
volume 2247 of LNCS, pages 339–350. Springer, Heidelberg, December 2001. (Cited
on page 5.)

[KK12] Saqib A. Kakvi and Eike Kiltz. Optimal security proofs for full domain hash,
revisited. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 537–553. Springer, Heidelberg, April 2012. (Cited on
page 3.)

[KMP16] Eike Kiltz, Daniel Masny, and Jiaxin Pan. Optimal security proofs for signatures
from identification schemes. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part II, volume 9815 of LNCS, pages 33–61. Springer, Heidelberg,
August 2016. (Cited on page 2.)

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In Nigel P. Smart, editor,
EUROCRYPT 2008, volume 4965 of LNCS, pages 146–162. Springer, Heidelberg,
April 2008. (Cited on page 6.)

[LR06] Gregor Leander and Andy Rupp. On the equivalence of RSA and factoring regarding
generic ring algorithms. In Xuejia Lai and Kefei Chen, editors, ASIACRYPT 2006,
volume 4284 of LNCS, pages 241–251. Springer, Heidelberg, December 2006. (Cited
on page 2.)

27

[LRSW99] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym
systems. In Howard M. Heys and Carlisle M. Adams, editors, SAC 1999, volume
1758 of LNCS, pages 184–199. Springer, Heidelberg, August 1999. (Cited on page 3,
4, 11.)

[Mau05] Ueli M. Maurer. Abstract models of computation in cryptography (invited paper).
In Nigel P. Smart, editor, 10th IMA International Conference on Cryptography and
Coding, volume 3796 of LNCS, pages 1–12. Springer, Heidelberg, December 2005.
(Cited on page 1, 5, 6, 8.)

[MRV16] Paz Morillo, Carla Ràfols, and Jorge Luis Villar. The kernel matrix Diffie-Hellman
assumption. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016,
Part I, volume 10031 of LNCS, pages 729–758. Springer, Heidelberg, December
2016. (Cited on page 5.)

[MW98] Ueli M. Maurer and Stefan Wolf. Lower bounds on generic algorithms in groups.
In Kaisa Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS, pages 72–84.
Springer, Heidelberg, May / June 1998. (Cited on page 1, 6.)

[MW99] Ueli Maurer and Stefan Wolf. The relationship between breaking the diffie-
hellman protocol and computing discrete logarithms. SIAM Journal on Computing,
28(5):1689–1721, 1999. (Cited on page 9.)

[Nec94] V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm.
Mathematical Notes, 55(2):165–172, 1994. (Cited on page 1.)

[Pol78] J. M. Pollard. Monte Carlo methods for index computation mod p. Mathematics
of Computation, 32:918–924, 1978. (Cited on page 2.)

[PV05] Pascal Paillier and Damien Vergnaud. Discrete-log-based signatures may not be
equivalent to discrete log. In Bimal K. Roy, editor, ASIACRYPT 2005, volume
3788 of LNCS, pages 1–20. Springer, Heidelberg, December 2005. (Cited on page 2,
7.)

[Riv04] Ronald L. Rivest. On the notion of pseudo-free groups. In Moni Naor, editor,
TCC 2004, volume 2951 of LNCS, pages 505–521. Springer, Heidelberg, February
2004. (Cited on page 2.)

[RLB+08] Andy Rupp, Gregor Leander, Endre Bangerter, Alexander W. Dent, and Ahmad-
Reza Sadeghi. Sufficient conditions for intractability over black-box groups: Generic
lower bounds for generalized DL and DH problems. In Josef Pieprzyk, editor,
ASIACRYPT 2008, volume 5350 of LNCS, pages 489–505. Springer, Heidelberg,
December 2008. (Cited on page 6.)

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In
Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266.
Springer, Heidelberg, May 1997. (Cited on page 1, 5, 6, 8.)

[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332, 2004. http://eprint.iacr.org/
2004/332. (Cited on page 29.)

28

http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332

[SS01] Ahmad-Reza Sadeghi and Michael Steiner. Assumptions related to discrete log-
arithms: Why subtleties make a real difference. In Birgit Pfitzmann, editor,
EUROCRYPT 2001, volume 2045 of LNCS, pages 244–261. Springer, Heidelberg,
May 2001. (Cited on page 5.)

A Deferred Proofs

A.1 Proof of Theorem 3.3

Proof. We prove that
Advcdh

G,Balg ≥ Advsdh
G,Aalg − q ·Advlc-dh

G,Calg . (20)

Applying Theorem 3.1 yields the theorem. We now prove (20) via a sequence of games.

G0 : Let Aalg be an algebraic adversary playing in G0 := sdhAalg
G . As Aalg is an algebraic

adversary, it returns a vector ~a along with Z at the end of the game such that Z = ga1Xa2Ya3 .
Furthermore, for any query asked to O(·, ·), it includes vectors ~b,~c such that Y′ = gb1Xb2Yb3

and Z′ = gc1Xc2Yc3 . Game G0 is depicted in Figure 21.

G0, G1

00 x, y $← Zp
01 (X,Y) := (gx, gy)
02 [Z]~a $← AO(·,·)

alg (X,Y)
03 Return Z = gxy

O([Y′]~b, [Z
′]~c) :

04 If b2 6= 0 ∨ b3 6= 0
05 Return 0
06 Return (Z′ = (Y′)x)

Figure 21: Games G0 and G1. The boxed statements are only executed in G1.

G1 : For game G1 we alter the way that the oracle O(·, ·) answers queries. Namely, if b2 6=
0 ∨ b3 6= 0, it always returns 0. Game G1 is depicted in Figure 21. The check performed by the
oracle in G1 amounts to checking whether Z′ = Xb1 , since if b2 = b3 = 0 then Y′ = gb1 . Using
this property of G1, we show an adversary Balg against cdhG such that Advcdh

G,Balg
= Pr[G1 = 1].

Balg is depicted in Figure 22.

Balg(X = gx,Y = gy)
00 [Z]~a $← AO(·,·)

alg (X,Y)
01 Return Z

O([Y′]~b, [Z
′]~c) :

02 If b2 6= 0 ∨ b3 6= 0
03 Return 0
04 Return Z′ = Xb1

Figure 22: Behavior of adversary Balg.

We now show the existence of adversary Calg such that∣∣∣AdvG0
G,Aalg

−AdvG1
G,Aalg

∣∣∣ ≤ q ·Advlcdh
G,Calg .

Let F denote the event that Z′ = (Y′)x∧(b2 6= 0∨b3 6= 0) in at least one call to the oracle. Clearly,
as long as F does not occur, the games behave identically. By the difference lemma [Sho04], we
obtain

|Pr[G0 = 1]− Pr[G1 = 1]| ≤ Pr[F].

We show the existence of Ealg such that

Pr[F] ≤ q ·Advlc-dh
G,Calg .

29

Calg(X = gx,Y = gy)
00 Q := ∅
01 [Z]~a $← AO(·,·)

alg (X,Y)
02 Z̃ $← Q
03 Obtain b1, b2, b3 as described
04 Return (Z̃X−b1 , b2, b3, 0)

O([Y′]~b, [Z
′]~c) :

05 If b2 6= 0 ∨ b3 6= 0
06 If b2 6= 0 ∧ b3 6= 0
07 Q := Q ∪ {Z′}
08 Return 0
09 Return (Z′ = Xb1)

Figure 23: Behavior of adversary Calg.

Calg is depicted in Figure 23.
We now analyze Calg. Clearly, Ealg runs in the same time as Aalg. Once Aalg halts, Calg picks

at random Z̃ that was input by Aalg as one of at most q queries to O(·, ·) along with Ỹ and ~b,~c
such that b2 6= 0 ∨ b3 6= 0, and

Ỹ = gb1Xb2Yb3 ,

Z̃ = gc1Xc2Yc3 .

Clearly, if (Ỹ)x = Z̃ then (Z̃X−b1 , b2, b3, 0) yields a winning solution for lc-dhCalg
G as

Z̃X−b1 = (Ỹ)xX−b1 = gb2x2+b3xy.

As Calg picks Z̃ at random from at most q elements in Q, it picks a correct solution with
probability at least Advlc-dh

G,Calg
≥ Pr[F]

q . This yields Pr[F] ≤ q ·Advlc-dh
G,Calg

). Thus, we now have

Advcdh
G,Balg = Pr[G1 = 1]

≥ Pr[G0 = 1]− |AdvG0
G,Aalg

−AdvG1
G,Aalg

|

≥ Advsdh
G,Aalg − q ·Advlc-dh

G,Calg .

It is straight forward to see that all the steps performed in the above simulations are generic.
This proves (20).

A.2 Proof of Theorem 4.1

Proof. We prove the statement via a sequence of games.

G0: Let Aalg be an algebraic adversary playing in G0 := lrswAalg
G . Game G0 is depicted in

Figures 24. As Aalg is an algebraic adversary, at the end of the game, it outputs a winning tuple
(m∗,A∗,B∗,C∗) along with vectors ~a,~b,~c that provide the representation of A∗,B∗,C∗ relative
to g,X,Y and the answers A1, ...,Aq,B1, ...,Bq,C1, ...,Cq from previous oracle queries, where
Ai = gri , Bi = griy, and Ci = gri(yxmi+x).

Concretely, the representations of A∗, B∗, and C∗ are as follows:

A∗ =
q∏
i=1

Aai
i g

aq+1
2q+1∏
i=q+2

Bai
i−q−1

3q+1∏
i=2q+2

Cai
i−2q−1X

a3q+2Ya3q+3 , (21)

B∗ =
q∏
i=1

Abi
i g

bq+1
2q+1∏
i=q+2

Bbi
i−q−1

3q+1∏
i=2q+2

Cbi
i−2q−1X

b3q+2Yb3q+3 , (22)

C∗ =
q∏
i=1

Cci
i Xcq+1

2q+1∏
i=q+2

Aci
i−q−1

3q+1∏
i=2q+2

Bci
i−2q−1g

c3q+2Yc3q+3 . (23)

30

G0, G1

00 `∗, k∗, i∗ $← {1, ..., q}
01 If k∗ = `∗ ∨ k∗ = i∗ ∨ `∗ = i∗

02 Abort
03 Q := ∅
04 x, y $← Zp
05 X := gx,Y := gy

06 (m∗, [A∗]~a, [B∗]~b, [C
∗]~c) $← AO(·)

alg (X,Y)
07 Return m∗ 6∈ Q ∧m∗ 6= 0
∧ A∗ 6= 1∧ B∗ = (A∗)y ∧ C∗ = (A∗)xm

∗y+x

O(mj) //For query j
08 rj

$← Zp;
09 Aj := grj

10 Bj := gyrj

11 Cj := grjmjxy+rjx

12 Q := Q ∪ {mj}
13 Return (Aj ,Bj ,Cj)

Figure 24: Games G0 and G1 with algebraic adversary Aalg. The boxed statements are only
executed in G1.

We assume that Aalg never queries the oracle on the same message mi more than once.
(Multiple queries can be simulated by rerandomization.)
G1: In G1 we consider a slightly altered game that is defined as follows. Before the first query is
asked, the challenger in G1 also chooses values k∗, `∗, i∗ $← {1, ..., q} . If k∗ = `∗∨k∗ = i∗∨`∗ = i∗,
it aborts the game. G1 is depicted in Figure 24. Clearly,

(
1− 3

q

)
AdvG0

G,Aalg
= AdvG1

G,Aalg
. By

defining s1, s2, t1, t2, u1, u2, v1, v2 ∈ Zp as

s1 := a3q+2 +
3q+2∑
i=2q+3

airi−2q−2,

t1 :=
3q+2∑
i=2q+3

aimiri−2q−2,

u1 := a3q+3 +
2q+1∑
i=q+2

airi−q−1,

v1 := gaq+1 +
q∑
i=1

airi,

s2 := cq+1 +
q∑
i=1

ciri,

t2 :=
q∑
i=1

cimiri,

u2 := c3q+3 +
3q+1∑
i=2q+2

ciri−q−1,

v2 := gc3q+2 +
2q+1∑
i=q+2

ciri−q−1,

equations (21) and (23) can be further simplified to

A∗ = gs1x+t1xy+u1y+v1 ,

C∗ = gs2x+t2xy+u2y+v2 .

We also define the parameters ∆,∆′,∆′′ as

∆ := m∗t1y
2 + t1y + s1m

∗y + s1, (24)
∆′ := u1m

∗y2 +m∗yv1 + u1y − t2y − s2 + v1, (25)
∆′′ := u2y + v2, (26)

and the boolean variable F ∗ as

F ∗ = 1⇔ s1 ≡p t1 ≡p u1 ≡p u2 ≡p v2 ≡p 0. (27)

We prove the following lemma that allows us to rewrite A∗ and C∗ in a more convenient
form.

31

Lemma A.1 If F ∗ = 1, then

A∗ =
q∏
i=1

Aεi
i , C∗ =

q∏
i=1

Cδi
i

holds for

δi :=


ci i 6∈ {k∗, `∗}
c`∗ − rk∗mk∗cq+1

(r`∗m`∗)(rk∗−rk∗
mk∗
m`∗

) i = `∗

ck∗ + cq+1
rk∗−rk∗

mk∗
m`∗

i = k∗

and

εi :=
{
ai i 6= k∗

ak∗ + aq+1
rk∗

i = k∗
.

Using Lemma A.1, we can now formulate the following conditions whenever G1 does not
abort. To further simplify the notation, we define the following Boolean variables:

G∗ = 1 ⇔ ∆ 6≡p 0 ∨∆′ 6≡p 0 ∨∆′′ 6≡p 0
H∗ := 1 ⇔ ∀j 6∈ {`∗, k∗} : rjεj(1 +m∗y)− rjδj(1 + ymj) ≡p 0.

Note that H∗ is only well defined (by Lemma A.1) if F ∗ = 1.

• Condition F1 : This condition holds iff G∗.

• Condition F2 : This condition holds iff (¬G∗ ∧ ¬F ∗) ∨ (F ∗ ∧H∗).

• Condition F3 : This condition holds iff F ∗ ∧ ¬H∗.

It is easy to see that F1 ∨ F2 ∨ F3 = 1. We will now describe the behavior of adversaries
Calg,Dalg,Ealg playing in the discrete logarithm game. Each of these adversaries simulates G1 to
Aalg in a different way. Concretely, we prove the following Lemma.

Lemma A.2 There exist Calg,Dalg,Ealg playing in the discrete logarithm game such that:

Pr
[
dlogCalg = 1

]
= Pr[G1 = 1 | F1] (28)

Pr
[
dlogDalg = 1

]
≥ (1− 2

q
) Pr[G1 = 1 | F2] (29)

Pr
[
dlogEalg = 1

]
≥ 1

q
Pr[G1 = 1 | F3]. (30)

of Lemma A.1. We first note that δl∗ , δk∗ are well defined, because `∗ 6= k∗ and thus m`∗ 6= mk∗ .
Otherwise G1 aborts and there is nothing to prove (since nothing is returned by Aalg in this
case). Observe that since F ∗ = 1⇔ s1 ≡p t1 ≡p u1 ≡p u2 ≡p v2 ≡p 0, we have

A∗ = gaq+1
q∏
i=1

Aai
i and C∗ = Xcq+1

q∏
i=1

Cci
i .

Now, the choices of δ1, ..., δq, ε1, ..., εq satisfy

A∗ =
q∏
i=1

Aεi
i and C∗ =

q∏
i=1

Cδi
i .

32

To see this, first observe that X can be written as

X =
(
Xrk∗ (1−mk∗/m`∗)

) 1
rk∗ (1−mk∗/m`∗)

=
(
grk∗ (x+yxmk∗)g−r`∗ (x+yxm`∗)(rk∗mk∗)/(r`∗m`∗)

) 1
rk∗ (1−mk∗/m`∗)

=
(
Ck∗C

−(rk∗mk∗)/(r`∗m`∗)
`∗

) 1
rk∗ (1−mk∗/m`∗) .

Because of this, setting

δk∗ := ck∗ + cq+1
rk∗ − rk∗mk∗

m`∗

,

δ`∗ := c`∗ −
rk∗mk∗cq+1

(r`∗m`∗)(rk∗ − rk∗mk∗
m`∗

) ,

and δi := ci for i 6∈ {`∗, k∗} we obtain

Xcq+1Cck∗
k∗ Cc`∗

`∗ = Cck∗
k∗ Cc`∗

`∗

(
Ck∗C

−(rk∗mk∗)/(r`∗m`∗)
`∗

) cq+1
rk∗ (1−mk∗/m`∗) = Cδk∗

k∗ Cδ`∗
`∗ .

This means that

Xcq+1
∏
i

Cci
i = (Xcq+1Cck∗

k∗ Cc`∗
`∗)

∏
i 6=k∗,`∗

Cci
i = Cδk∗

k∗ Cδ`∗
`∗

∏
i 6=k∗,`∗

Cδi
i =

∏
i

Cδi
i .

Also observe that Aεk∗
k∗ = Aak∗

k∗ g
aq+1 and thus

A∗ = gaq+1
∏
i

Aai
i =

∏
i

Aεi
i .

Using Lemma A.2 and the fact that F1 ∨ F2 ∨ F3 = 1, it is now straightforward to construct
an adversary Balg such that

Pr
[
dlogBalg = 1

]
≥ 1

3q Pr[G1 = 1]

by letting Balg emulate one of the adversaries Calg,Dalg,Ealg (chosen uniformly at random).

of Lemma A.2. Let Z = gz denote the discrete logarithm instance. Calg,Dalg,Ealg simulate G1
to Aalg. They begin by sampling k∗, `∗, i∗ $← {1, ..., q} . If k∗ = `∗ ∨ k∗ = i∗ ∨ `∗ = i∗, they abort
the simulation. Thus, assume throughout the proof that k∗ 6= `∗, k∗ 6= i∗, `∗ 6= i∗

Adversary Calg. Adversary Calg samples α $← Zp and computes (X,Y) = (Z, gα). This
implicitly sets x = z and y = α. Recall that

F1 = 1⇔ ∆ 6≡p 0 ∨∆′ 6≡p 0 ∨∆′′ 6≡p 0.

We now analyze Calg. Suppose Aalg wins G1 given that F1 = 1. Then C∗ = (A∗)x+m∗xy which
is equivalent to

x2∆ + x∆′ −∆′′ ≡p 0 (31)

where ∆,∆′,∆′′ are defined in (24)-(26). Quadratic equation (31) in indeterminate x has exactly
two (possibly equal) solutions, say x1 and x2, that can be computed efficiently by Calg. One of
them has to be equal to z = x, which one can be tested by comparing gxi to Z. This proves
equation (28).

33

Calg(Z = gz)
00 Q := ∅
01 α $← Zp
02 (m∗, [A∗]~a, [B∗]~b, [C

∗]~c) $← AO(·)
alg (Z, gα)

03 Solve for x : x2∆ + x∆′ −∆′′ ≡p 0
04 Return x

O(mj) : //For query j
05 rj

$← Zp;
06 Aj := grj

07 Bj := gαrj

08 Cj := Zrjmjα+rj

09 Q := Q ∪ {mj}
10 Return (Aj ,Bj ,Cj)

Figure 25: Behavior of adversary Calg.

Dalg(Z = gz)
00 Q := ∅
01 α $← Zp
02 (m∗, [A∗]~a, [B∗]~b, [C

∗]~c) $← AO(·)
alg (gα,Z)

03 Compute y as described below
04 Return y

O(mj) : //For query j
05 rj

$← Zp;
06 Aj := grj

07 Bj := Zrj

08 Cj := Zrjmjαgαrj

09 Q := Q ∪ {mj}
10 Return (Aj ,Bj ,Cj)

Figure 26: Behaviour of Dalg.

Adversary Dalg: Adversary Dalg does the following. It samples α $← Zp and computes
(X,Y) = (gα,Z). This implicitly sets x = α and y = z. Recall that F2 = 1 iff

¬F ∗ ∧ ¬(∆ 6≡p 0 ∨∆′ 6≡p 0 ∨∆′′ 6≡p 0)∨
F ∗ ∧ ∀j 6∈ {`∗, k∗} : rjεj(1 +m∗y)− rjδj(1 + ymj) ≡p 0,

where F ∗ is defined in (27).
We analyze and describe Dalg. Suppose that Aalg wins G1 given that F2 = 1. As before, we

have

C∗ = (A∗)x+m∗xy ⇔ x2∆ + x∆′ −∆′′ ≡p 0.

If ∆ ≡p ∆′ ≡p ∆′′ ≡p 0 ∧ ¬F ∗ then Dalg can efficiently solve one of the equations

∆ ≡p 0,
∆′ ≡p 0,
∆′′ ≡p 0.

in indeterminate y = z. This can be seen as follows.

• If s1 6≡p 0 ∨ t1 6≡p 0, it can solve the quadratic equation

∆ ≡p m∗t1y2 + t1y + s1m
∗y + s1 ≡p 0,

because m∗ 6≡p 0 by assumption.

• If u1 6≡p 0, it can solve the quadratic equation

∆′ ≡p u1m
∗y2 +m∗yv1 − t2y + u1y + v1 − s2 ≡p 0,

where again we use the fact that m∗ 6≡p 0.

34

• If v2 6≡p 0, then since
∆′′ ≡p v2 + u2y ≡p 0,

also u2 6≡p 0 and so Dalg can solve for y the equation

v2 + u2y ≡p 0

whenever v2 6≡p 0 ∨ u2 6≡p 0.

Given two possible solutions y1, y2 for a quadratic equation, Dalg can determine the correct one
by comparing gyi to Z.

If F ∗ = 1, Lemma A.1 guarantees that Dalg can efficiently compute parameters δ1, ..., δq, ε1, ..., εq
such that A∗ =

∏
i A

εi
i ,C∗ =

∏
i C

δi
i .We distinguish two cases.

• Case 1: ∃j 6∈ {`∗, k∗} : εj 6≡p 0 ∨ δj 6≡p 0. Without loss of generality, assume that εj 6≡p 0.
Since

∀j 6∈ {`∗, k∗} : rjεj(1 +m∗y)− rjδj(1 + ymj) ≡p 0, (32)

Dalg solves the equation
δj
εj
− 1 ≡p y

(
m∗ −mj

δj
εj

)
for y, which is obtained from rearranging terms in (32). This equation has a unique
solution for y, and its coefficient can not become zero; this would imply that m∗ ≡p mj , a
contradiction.

• Case 2: ∀j 6∈ {`∗, k∗} : εj ≡p δj ≡p 0. This means that

A∗ = Aε`∗
`∗ Aεk∗

k∗ = gaq+1Aak∗
k∗ Aa`∗

`∗ ,

C∗ = Cδk∗
k∗ Cδ`∗

`∗ = Xcq+1Cck∗
k∗ Cc`∗

`∗ .

If a`∗ ≡p ak∗ ≡p ck∗ ≡p c`∗ ≡p 0, then A∗ = gaq+1 ,C∗ = Xcq+1 and therefore

cq+1 − aq+1 ≡p ym∗aq+1.

Again, this equation has a unique solution for y and its coefficient can not become zero,
because aq+1 6≡p 0 (recall that A∗ 6≡p 1) and m∗ 6≡p 0.
Finally, we note that with probability at most 2

q−1 , Aalg succeeds in setting

(
a`∗ 6≡p 0 ∨ ak∗ 6≡p 0 ∨ ck∗ 6≡p 0 ∨ c`∗ 6≡p 0

)
∧
(
∀j 6∈ {`∗, k∗} : εj ≡p aj ≡p cj ≡p δj ≡p 0

)
.

This argument is true, because the indices `∗, k∗ are information theoretically hidden from
A′algs view and so it guesses either of them with probability at most 2

q−1 . All in all, Dalg

succeeds in computing y with probability at least 1− 2
q−1 . This proves equation (29).

35

Ealg(Z = gz)
00 Q := ∅
01 α, β $← Zp
02 (m∗, [A∗]~a, [B∗]~b, [C

∗]~c) $← AO(·)
alg (gα, gβ)

03 Compute z as described below
04 Return z

O(mj) : //For query j
05 b := (j = i∗)
06 r′j

$← Zp;
07 Aj := gz

br′j

08 Bj := gz
bβr′j

09 Cj := gz
br′jmjβαgz

bαr′j

10 Q := Q ∪ {mj}
11 Return (Aj ,Bj ,Cj)

Figure 27: Behaviour of Ealg.

Adversary Ealg: To simulate G1 to Aalg, the adversary Ealg does the following. It samples
α, β $← Zp and computes (X,Y) = (gα, gβ). This implicitly sets x = α and y = β. It embeds z
into the answer to the i∗th oracle query as shown in Figure 27. We now analyze Ealg. If F3 = 1,
then

F ∗ ∧ ∃j 6∈ {`∗, k∗} : rjεj(1 +m∗y)− rjδj(1 + ymj) 6≡p 0.

Lemma A.1 guarantees that Ealg can efficiently compute the parameters

δ1, ..., δq, ε1, ..., εq

such that A∗ =
∏
i A

εi
i ,C∗ =

∏
i C

δi
i . By assumption

∃j 6∈ {`∗, k∗} : rjεj(1 +m∗y)− rjδj(1 + ymj) 6≡p 0.

With probability 1
q , j = i∗, because i∗ is information theoretically hidden from Aalg and thus

independent of its computation. This yields the equation

(
∏
i

griεi)x+m∗xy = (
∏
i

Aεi
i)x+m∗xy = (A∗)(x+m∗xy)

= C∗ =
∏
i

Cδi
i =

∏
i

gδiri(x+miyx),

which is equivalent to

(
∑
i

riεi)(x+m∗xy)−
∑
i

riδi(x+miyx) ≡p 0.

Rearranging terms yields

z[r′i∗εi∗(1 +m∗y)− r′i∗δi∗(1 +mi∗y)] ≡p
∑
i 6=i∗

riδi(1 + ymi)− (
∑
i 6=i∗

riεi)(1 +m∗y).

By assumption, the coefficient of z in this expression is not zero. Therefore, Ealg can efficiently
solve the modular equation to obtain z. Putting things together, we obtain for the adversary
Balg emulating one of Calg,Dalg,Ealg the following bound on the advantage Advdlog

Balg,G :

Advdlog
Balg,G ≥

1
3qAdvG1

Aalg,G = q − 3
3q2 AdvG0

Aalg,G ≥
1
6qAdvG0

Aalg,G ,

where the last inequality holds for q ≥ 6.

36

A.3 Proof of Theroem 5.2

Proof. First note that given an adversary Aalg against q-ddhG one can easily construct an
adversary Balg against ind-cca1EG,G . Balg first calls Dec(·) to compute the elements (gx, ..., gxq).
When it is presented with a challenge (K∗,C∗), it calls Aalg on input (gx, ..., gxq

,C∗,K∗) and then
outputs Aalg’s output bit b′. Clearly, (gx, ..., gxq

,C∗,K∗) is correctly distributed and therefore

Advq-ddh
G,Aalg

= Advind-cca1
EG,G,Balg , Timeq-ddh

G,Aalg
= Timeind-cca1

EG,G,Balg .

For the converse, let Aalg be an algebraic adversary playing in one of the games ind-cca1Aalg
EG,G,0,

ind-cca1Aalg
EG,G,1. We construct an adversary Balg against q-ddh that interpolates between

ind-cca1Aalg
EG,G,0 and ind-cca1Aalg

EG,G,1 by simulating one of these games to Aalg. Balg is depicted in
Figure 28.

Balg(g, (Xi)qi=1,R,Z)
00 X := gx

01 b′ $← ADec(·),Enc
alg (X)

02 Return b′

Dec([C]~c)
//Let this be the i-th query

03 Compute ~a s.t.
C =

∏i
j=1 g

ajx
j

04 K := Cx =
∏i
j=1 Xaj

j+1
05 Return K

Enc() //One time
06 C∗ := R
07 K∗ := Z
08 Return (K∗,C∗)

Figure 28: Adversary Balg against q-ddh.

Let (g,X1 =gx,X2 =gx2
, . . . ,Xq=gxq

,R = gr,Z=gxr+zb) be the problem instance given to
Balg in q-ddhBalg

G,b . As Aalg is algebraic, along with its i-th query C to Dec(·) it sends a vector ~c
such that C =

∏
i L

ci
i where ~L consists of group elements g,X,K1, ...,Ki−1. Here, K1, ...,Ki−1

denote the answers to the first i− 1 queries asked to Dec(·).
Observe that given ~c, Balg can express C as C =

∏
i≥j≥0 g

ajx
j , for some known constants

aj . As Aalg asks at most q − 1 such queries, Balg can answer them using the group elements
(g, gx, gx2

, ..., gx
q) from its instance. When Aalg queries Enc(), Balg returns (gxr+zb, gr). When

Aalg halts with output b′, Balg returns b′. Clearly, Balg perfectly simulates either ind-cca1Aalg
EG,G,0

or ind-cca1Aalg
EG,G,1 to Aalg. Finally, ind-cca1Aalg

EG,G,b returns 1 if and only if q-ddhBalg
G,b returns 1.

Therefore,
Advq-ddh

G,Balg
= Advind-cca1

EG,G,Aalg , Timeq-ddh
G,Balg

= Timeind-cca1
EG,G,Aalg .

37

	Introduction
	Algebraic Algorithms
	Algebraic Group Model
	Related Work and Open Questions

	Algebraic Algorithms
	Algebraic Security Games and Algorithms
	Generic Security Games and Algorithms
	Generic Reductions Between Algebraic Security Games

	The Diffie-Hellman Assumption and Variants
	Computational Diffie-Hellman
	Strong Diffie-Hellman

	The LRSW Assumption
	ElGamal Encryption
	Tight Reduction for the BLS Scheme
	Groth's Near-Optimal zk-SNARK
	Deferred Proofs
	Proof of Theorem 3.3
	Proof of Theorem 4.1
	Proof of Theroem 5.2

