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Abstract

The Fujisaki-Okamoto (FO) transformation (CRYPTO 1999 and Journal of Cryptology 2013)
turns any weakly secure public-key encryption scheme into a strongly (i.e., IND-CCA) secure one in
the random oracle model. Unfortunately, the FO analysis suffers from several drawbacks, such as a
non-tight security reduction, and the need for a perfectly correct scheme. While several alternatives
to the FO transformation have been proposed, they have stronger requirements, or do not obtain all
desired properties.

In this work, we provide a fine-grained and modular toolkit of transformations for turning weakly
secure into strongly secure public-key encryption schemes. All of our transformations are robust
against schemes with correctness errors, and their combination leads to several tradeoffs among
tightness of the reduction, efficiency, and the required security level of the used encryption scheme. For
instance, one variant of the FO transformation constructs an IND-CCA secure scheme from an IND-CPA
secure one with a tight reduction and very small efficiency overhead. Another variant assumes only
an OW-CPA secure scheme, but leads to an IND-CCA secure scheme with larger ciphertexts.

We note that we also analyze our transformations in the quantum random oracle model, which
yields security guarantees in a post-quantum setting.

Keywords: public-key encryption, Fujisaki-Okamoto transformation, tight reductions, quantum
random oracle model

Errata

In previous versions of this paper, the theorems stating security of transformations U⊥m (Theorem 3.5) and
U6⊥m (Theorem 3.6) were incorrect. This was observed by Bernstein and Persichetti [BP18] who also noted
that the theorems can be fixed by additionally requiring the underlying deterministic PKE scheme to be
rigid. Rigidity means that unless decryption of a ciphertext c fails, decrypting c and then re-encrypting
yields c, i.e., Enc(pk,Dec(sk, c)) = c. This issue does not affect our overall results for the respective
Fujisaki-Okamoto transformations (FO 6⊥m = U6⊥m ◦ T, FO⊥m = U⊥m ◦ T) since the rigidity requirement is
naturally met by transformation T.

This version furthermore corrects the following counting mistakes: The δ-term in the ROM bounds
for T (i.e., the bounds in Theorem 3.1 and 3.2) is (qG + qP) · δ instead of qG · δ. Similarly, the term in the
respective QROM bound (see Theorem 4.4) is 8 · (qG + qP + 1)2 · δ instead of 8 · (qG + 1)2 · δ. Furthermore,
the advantage term in Theorem 3.1 is (qG + qp + 1) ·AdvOW-CPA

PKE (A) instead of (qG + 1) ·AdvOW-CPA
PKE (A).

These corrections do not affect the overall ROM results for the Fujisaki-Okamoto transformations, as the
bounds given in Section 3.3 already covered the additional term (because qG + qP translates to qRO).

An updated version of this work with an improved presentation of the proofs is given in [Höv21,
Sections 2.1 and 2.2].
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1 Introduction
The notion of INDistinguishability against Chosen-Ciphertext Attacks (IND-CCA) [RS92] is now widely
accepted as the standard security notion for asymmetric encryption schemes. Intuitively, IND-CCA
security requires that no efficient adversary can recognize which of two messages is encrypted in a given
ciphertext, even if the two candidate messages are chosen by the adversary himself. In contrast to
the similar but weaker notion of INDistinguishability against Chosen-Plaintext Attacks (IND-CPA), an
IND-CCA adversary is given access to a decryption oracle throughout the attack.
Generic Transformations achieving IND-CCA Security. While IND-CCA security is in many
applications the desired notion of security, it is usually much more difficult to prove than IND-CPA
security. Thus, several transformations have been suggested that turn a public-key encryption (PKE)
scheme with weaker security properties into an IND-CCA one generically. For instance, in a seminal paper,
Fujisaki and Okamoto [FO99, FO13] proposed a generic transformation (FO transformation) combining
any One-Way (OW-CPA) secure asymmetric encryption scheme with any one-time secure symmetric
encryption scheme into a Hybrid encryption scheme that is (IND-CCA) secure in the random oracle
model [BR93]. Subsequently, Okamoto and Pointcheval [OP01] and Coron et al. [CHJ+02] proposed two
more generic transformations (called REACT and GEM) that are considerably simpler but require the
underlying asymmetric scheme to be One-Way against Plaintext Checking Attacks (OW-PCA). OW-PCA
security is a non-standard security notion that provides the adversary with a plaintext checking oracle
Pco(c,m) that returns 1 iff decryption of ciphertext c yields message m. A similar transformation was
also implicitly used in the “Hashed ElGamal” encryption scheme by Abdalla et al. [ABR01].
KEMs. In his “A Designer’s Guide to KEMs” paper, Dent [Den03] provides “more modern” versions
of the FO [Den03, Table 5] and the REACT/GEM [Den03, Table 2] transformations that result in
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IND-CCA secure key-encapsulation mechanisms (KEMs). Recall that any IND-CCA secure KEM can
be combined with any (one-time) chosen-ciphertext secure symmetric encryption scheme to obtain a
IND-CCA secure PKE scheme [CS03]. Due to their efficiency and versatility, in practice one often works
with such hybrid encryption schemes derived from a KEM. For that reason the primary goal of our paper
will be constructing IND-CCA secure KEMs.

We remark that all previous variants of the FO transformation require the underlying PKE scheme to
be γ-spread [FO99], which essentially means that ciphertexts (generated by the probabilistic encryption
algorithm) have sufficiently large entropy.
Security against Quantum Adversaries. Recently, the above mentioned generic transformations
have gathered renewed interest in the quest of finding an IND-CCA secure asymmetric encryption scheme
that is secure against quantum adversaries, i.e., adversaries equipped with a quantum computer. In
particular, the NIST announced a competition with the goal to standardize new asymmetric encryption
systems [NIS17] with security against quantum adversaries. Natural candidates base their IND-CPA
security on the hardness of certain problems over lattices and codes, which are generally believed to resists
quantum adversaries. Furthermore, quantum computers may execute all “offline primitives” such as
hash functions on arbitrary superpositions, which motivated the introduction of the quantum (accessible)
random oracle model [BDF+11]. Targhi and Unruh recently proved a variant of the FO transformation
secure in the quantum random oracle model [TU16]. Helping to find IND-CCA secure KEM with provable
(post-quantum) security will thus be an important goal in this paper.
Discussion. Despite their versatility, the above FO and REACT/GEM transformations have a couple of
small but important disadvantages.

• Tightness. The security reduction of the FO transformation [FO99, FO13] in the random oracle
model is not tight, i.e., it loses a factor of qG, the number of random oracle queries. A non-tight
security proof requires to adapt the system parameters accordingly, which results in considerably
less efficient schemes. The REACT/GEM transformations have a tight security reduction, but
they require the underlying encryption scheme to be OW-PCA secure. As observed by Peikert
[Pei14], due to their decision/search equivalence, many natural lattice-based encryption scheme are
not OW-PCA secure and it is not clear how to modify them to be so. In fact, the main technical
difficulty is to build an IND-CPA or OW-PCA secure encryption scheme from an OW-CPA secure
one, with a tight security reduction.

• Correctness error. The FO, as well as the REACT/GEM transformation require the underlying
asymmetric encryption scheme to be perfectly correct, i.e., not having a decryption error. In general,
one cannot exclude the fact that even a (negligibly) small decryption error could be exploited by a
concrete IND-CCA attack against FO-like transformed schemes. Dealing with imperfectly correct
schemes is of great importance since many (but not all) practical lattice-based encryption schemes
have a small correctness error, see, e.g., DXL [DXL12], Peikert [Pei14], BCNS [BCNS15], New Hope
[ADPS16], Frodo [BCD+16], Lizard [CKLS16], and Kyber [BDK+17].1

These deficiencies were of little or no concern when the FO and REACT/GEM transformations were
originally devised. Due to the emergence of large-scale scenarios (which benefit heavily from tight security
reductions) and the increased popularity of lattice-based schemes with correctness defects, however, we
view these deficiencies as acute problems.

1.1 Our contributions
Our main contribution is a modular treatment of FO-like transformations. That is, we provide fine-grained
transformations that can be used to turn an OW-CPA secure PKE scheme into an IND-CCA secure one
in several steps. For instance, we provide separate OW-CPA → OW-PCA and OW-PCA → IND-CCA
transformations that, taken together, yield the original FO transformation. However, we also provide
variants of these individual transformations that achieve different security goals and tightness properties.

1Lattice-based encryption schemes can be made perfectly correct by putting a limit on the noise and setting the modulus
of the LWE instance large enough, see e.g. [BCLvV16, HGSW05]. But increasing the size of the modulus makes the LWE
problem easier to solve in practice, and thus the dimension of the problem needs to be increased in order to obtain the same
security levels. Larger dimension and modulus increase the public-key and ciphertext length.
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IND-CPA

OW-PCVA IND-CCA

OW-CPA

T[PKE,G]

T[PKE,G]

U 6⊥[PKE1,H], U⊥[PKE1,H],
QU⊥m [PKE1,H,H′]

U6⊥m [PKE1,H],U⊥m [PKE1,H,H′]
S`[PKE,F]

Transformation Security implication QROM? ROM
Tightness? Requirements

PKE1 = T[PKE,G] (§3.1) OW-CPA⇒ OW-PCA X — none
PKE1 = T[PKE,G] (§3.1) IND-CPA⇒ OW-PCA X X none
PKE1 = T[PKE,G] (§3.1) OW-CPA⇒ OW-PCVA X — γ-spread
PKE1 = T[PKE,G] (§3.1) IND-CPA⇒ OW-PCVA — X γ-spread
KEM 6⊥ = U 6⊥[PKE1,H] (§3.2) OW-PCA⇒ IND-CCA — X none
KEM⊥ = U⊥[PKE1,H] (§3.2.1) OW-PCVA⇒ IND-CCA — X none
KEM 6⊥m = U6⊥m[PKE1,H] (§3.2.3) OW-CPA⇒ IND-CCA — X det. PKE1
KEM⊥m = U⊥m[PKE1,H] (§3.2.3) OW-VA⇒ IND-CCA — X det. PKE1
QKEM⊥m = QU⊥m[PKE1,H,H′] (§4.3.1) OW-PCA⇒ IND-CCA X X none
PKE` = S`[PKE,F] (§3.4) OW-CPA⇒ IND-PCA — X none

Figure 1: Our modular transformations. Top: solid arrows indicate tight reductions, dashed arrows
indicate non-tight reductions. Bottom: properties of the transformations. The tightness row only refers
to tightness in the standard random oracle model; all our reductions in the quantum random oracle model
are non-tight.

All of our individual transformations are robust against PKE schemes with correctness errors (in the
sense that the correctness error of the resulting schemes can be bounded by the correctness error of the
original scheme).

The benefit of our modular treatment is not only a conceptual simplification, but also a larger variety of
possible combined transformations (with different requirements and properties). For instance, combining
two results about our transformations T and U6⊥, we can show that the original FO transformation yields
IND-CCA security from IND-CPA security with a tight security reduction. Combining S` with T and U6⊥,
on the other hand, yields tight IND-CCA security from the weaker notion of OW-CPA security, at the
expense of a larger ciphertext. (See Figure 1 for an overview.)

1.1.1 Our transformations in detail

In the following, we give a more detailed overview over our transformations. We remark that all our
transformations require a PKE scheme (and not a KEM). We view it as an interesting open problem to
construct similar transformations that only assume (and yield) KEMs, since such transformations have
the potential of additional efficiency gains.
T: from OW-CPA to OW-PCA Security (“Derandomization”+“re-encryption”). T is the
Encrypt-with-Hash construction from [BBO07], originally proposed in [BHSV98, Sec. 5]: Starting
from an encryption scheme PKE and a hash function G, we build a deterministic encryption scheme
PKE1 = T[PKE,G] by defining

Enc1(pk,m) := Enc(pk,m; G(m)),

where G(m) is used as the random coins for Enc. Note that Enc1 is deterministic. Dec1(sk, c) first decrypts
c into m′ and rejects if Enc(pk,m′; G(m′) 6= c (“re-encryption”). Modeling G as a random oracle, OW-PCA
security of PKE1 non-tightly reduces to OW-CPA security of PKE and tightly reduces to IND-CPA security
of PKE. If PKE furthermore is γ-spread (for sufficiently large γ), then PKE1 is even OW-PCVA secure.
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OW-PCVA security2 is PCA security, where the adversary is additionally given access to a validity oracle
Cvo(c) that checks c’s validity (in the sense that it does not decrypt to ⊥, see also Definition 2.1).
U6⊥ (U⊥): from OW-PCA (OW-PCVA) to IND-CCA Security (“Hashing”). Starting from an
encryption scheme PKE1 and a hash function H, we build a key encapsulation mechanism KEM6⊥ =
U6⊥[PKE1,H] with “implicit rejection” by defining

Encaps(pk) := (c ← Enc1(pk,m),K := H(c,m)), (1)

where m is picked at random from the message space.

Decaps 6⊥(sk, c) =
{

H(c,m) m 6= ⊥
H(c, s) m = ⊥

, (2)

where m := Dec(sk, c) and s is a random seed which is contained in sk. Modeling H as a random oracle,
IND-CCA security of KEM 6⊥ tightly reduces to OW-PCA security of PKE1. In the context of the FO
transformation, implicit rejection was first introduced by Persichetti [Per12, Sec. 5.3].

We also define KEM⊥ = U⊥[PKE1,H] with “explicit rejection” which differs from KEM6⊥ only in
decapsulation:

Decaps⊥(sk, c) =
{

H(c,m) m 6= ⊥
⊥ m = ⊥

, (3)

where m := Dec(sk, c). Modeling H as a random oracle, IND-CCA of KEM⊥ security tightly reduces to
OW-PCVA security of PKE1. We remark that transformation U⊥ is essentially [Den03, Table 2], i.e., a
KEM variant of the REACT/GEM transformations.
U6⊥m (U⊥m): from deterministic OW-CPA (OW-VA) to IND-CCA Security (“Hashing”). We consider
two more variants of U6⊥ and U⊥, namely U6⊥m and U⊥m . Transformation U6⊥m (U⊥m) is a variant of U6⊥ (U⊥),
where K = H(c,m) from Equations (1)-(3) is replaced by K = H(m). We prove that IND-CCA security of
KEM 6⊥m := U6⊥m [PKE1,H] (KEM⊥m := U⊥m [PKE1,H]) in the random oracle model tightly reduces to IND-CPA
(IND-VA3) security of PKE1, if encryption of PKE1 is deterministic.
QU⊥m: from OW-PCA to IND-CCA Security in the Quantum ROM. We first prove that transfor-
mation T also works in the quantum random oracle model. Next, to go from OW-PCA to IND-CCA in the
QROM, we build a key encapsulation mechanism QKEM⊥m = QU⊥m[PKE1,H,H′] with explicit rejection by
defining

QEncapsm(pk) := ((c ← Enc1(pk,m), d := H′(m)),K := H(m)),

where m is picked at random from the message space.

QDecaps⊥m(sk, c, d) =
{

H(m′) m′ 6= ⊥
⊥ m′ = ⊥ ∨ H′(m′) 6= d

,

where m′ := Dec(sk, c). QU⊥m differs from U 6⊥ only in the additional hash value d = H′(m) from the
ciphertext and H′ is a random oracle with matching domain and image. This trick was introduced in
[Unr15] and used in [TU16] in the context of the FO transformation. Modeling H and H′ as a quantum
random oracles, IND-CCA security of KEM reduces to OW-PCA security of PKE1.

1.1.2 The resulting FO transformations

Our final transformations FO 6⊥ (“FO with implicit rejection”), FO⊥ (“FO with explicit rejection”), FO 6⊥m
(“FO with implicit rejection, K = H(m)”), FO⊥m (“FO with explicit rejection, K = H(m)”), and QFO⊥m
(“Quantum FO with explicit rejection, K = H(m)”) are defined in the following table.

2OW-PCVA security is called OW-CPA+ security with access to a Pco oracle in [Den03].
3OW-VA security is OW-CPA security, where the adversary is given access to a validity oracle Cvo(c) that checks c’s

validity (cf. Definition 2.1).
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Transformation QROM? ROM
Tightness? Requirements

FO 6⊥[PKE,G,H] := U6⊥[T[PKE,G],H] — X none
FO⊥[PKE,G,H] := U⊥[T[PKE,G],H] — X γ-spread
FO 6⊥m[PKE,G,H] := U6⊥m[T[PKE,G],H] — X none
FO⊥m[PKE,G,H] := U⊥m[T[PKE,G],H] — X γ-spread
QFO⊥m[PKE,G,H,H′] := QU⊥m[T[PKE,G],H,H′] X X none

As corollaries of our modular transformation we obtain that IND-CCA security of FO 6⊥[PKE,G,H],
FO⊥[PKE,G,H], FO 6⊥m[PKE,G,H], and FO⊥m[PKE,G,H] non-tightly reduces to the OW-CPA security of
PKE, and tightly reduces to the IND-CPA security of PKE, in the random oracle model. We remark that
transformation FO⊥m essentially recovers a KEM variant [Den03, Table 5] of the original FO transformation
[FO99]. Whereas the explicit rejection variants FO⊥ and FO⊥m require PKE to be γ-spread, there is no
such requirement on FO 6⊥ and FO 6⊥m. Further, IND-CCA security of QFO⊥m[PKE,G,H,H′] reduces to the
OW-CPA security of PKE, in the quantum random oracle model. Our transformation QFO⊥m essentially
recovers a KEM variant of the modified FO transformation by Targhi and Unruh [TU16]. As it is common
in the quantum random oracle model, all our reductions are (highly) non-tight. We leave it as an open
problem to derive a tighter security reduction of T, for example to IND-CPA security of PKE.
Correctness Error. We stress that all our security reductions also take non-zero correctness error
into account. Finding the “right” definition of correctness that is achievable (say, by currently proposed
lattice-based encryption schemes) and at the same time sufficient to prove security turned out to be a
bit subtle. This is the reason why our definition of correctness (see Section 2.1) derives from the ones
previously given in the literature (e.g. [DNR04, ?]). The concrete bounds of FO 6⊥, FO⊥, FO 6⊥m, and FO⊥m
give guidance on the required correctness error of the underlying PKE scheme. Concretely, for “κ bits
security”, PKE requires a correctness error of 2−κ.

1.1.3 Example Instantiations

In the context of ElGamal encryption one can apply {FO 6⊥,FO⊥,FO 6⊥m,FO⊥m} to obtain the schemes of
[KML03, BLK00, GMMV05] whose IND-CCA security non-tightly reduces to the CDH assumption, and
tightly reduces to the DDH assumption. Alternatively, one can directly use U6⊥/U⊥ to obtain the more
efficient schemes of [OP01, CHJ+02, ABR01, Sho04a] whose IND-CCA security tightly reduces to the
gap-DH (a.k.a. strong CDH) assumption. In the context of deterministic encryption schemes such as RSA,
Paillier, etc, one can apply U6⊥/U⊥ to obtain schemes mentioned in [Sho04a, Den03] whose IND-CCA
security tightly reduces to one-way security. Finally, in the context of lattices-based encryption (e.g.,
[Reg05, LPR13]), one can apply FO 6⊥, FO⊥, FO 6⊥m, FO⊥m, and QFO⊥m to achieve IND-CCA security.

1.1.4 Transformation S`: from OW-CPA to IND-CPA, Tightly

Note that T requires PKE to be IND-CPA secure to achieve a tight reduction. In case one has to rely
on OW-CPA security, transformation S` offers the following tradeoff between efficiency and tightness. It
transforms an OW-CPA secure PKE into an IND-CPA secure PKE`, where ` is a parameter. The ciphertext
consists of ` independent PKE ciphertexts:

Enc`(pk,m) := (Enc(pk, x1), . . . ,Enc(pk, x`),m ⊕ G(x1, . . . , x`)).

The reduction (to the OW-CPA security of PKE) loses a factor of q1/`
G , where qG is the number of G-queries

an adversary makes.
Observe that the only way to gather information about m is to explicitly query G(x1, . . . , xn), which

requires to find all xi . The reduction can use this observation to embed an OW-CPA challenge as one
Enc(pk, xi∗) and hope to learn xi∗ from the G-queries of a successful IND-CPA adversary. In this, the
reduction will know all xi except xi∗ . The difficulty in this reduction is to identify the “right” G-query
(that reveals xi∗) in all of the adversary’s G-queries. Intuitively, the more instances we have, the easier
it is for the reduction to spot the G-query (x1, . . . , x`) (by comparing the xi for i 6= i∗), and the less
guessing is necessary. Hence, we get a tradeoff between the number of instances ` (and thus the size of
the ciphertext) and the loss of the reduction.
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1.2 Related work
As already pointed out, FO⊥m = U⊥m ◦ T is essentially a KEM variant of the Fujisaki-Okamoto transform
from [Den03, Table 5]. Further, U⊥ is a KEM variant [Den03] of the GEM/REACT transform [OP01,
CHJ+02, ABR01]. Our modular view suggest that the FO transform implicitly contains the GEM/REACT
transform, at least the proof technique. With this more general view, the FO transform and its variants
remains the only known transformation from CPA to CCA security. It is an interesting open problem
to come up with alternative transformations that get rid of derandomization or that dispense with
re-encryption (which preserving efficiency). Note that for the ElGamal encryption scheme, the “twinning”
technique [CKS08, CKS09] does exactly this, but it uses non-generic zero-knowledge proofs that are
currently not available for all schemes (e.g., for lattice-based schemes).

In concurrent and independent work, [AOP+17] considers the IND-CCA security of LIMA which in
our notation can be described as FO⊥m[RLWE,G,H]. Here RLWE is a specific encryption scheme based
on lattices associated to polynomial rings from [LPR10], which is IND-CPA secure under the Ring-LWE
assumption. As the main result, [AOP+17] provides a tight reduction of LIMA’s IND-CCA security to
the Ring-LWE assumption, in the random oracle model. The proof exploits “some weakly homomorphic
properties enjoyed by the underlying encryption scheme” and therefore does not seem to be applicable to
other schemes. The tight security reduction from Ring-LWE is recovered as a special case of our general
security results on FO⊥m. We note that the security reduction of [AOP+17] does not take the (non-zero)
correctness error of RLWE into account.

2 Preliminaries
For n ∈ N, let [n] := {1, . . . , n}. For a set S , |S | denotes the cardinality of S. For a finite set S , we denote
the sampling of a uniform random element x by x $← S , while we denote the sampling according to some
distribution D by x ← D. For a polynomial p(X) with integer coefficients, we denote by Roots(p) the
(finite) set of (complex) roots of p. By JBK we denote the bit that is 1 if the Boolean Statement B is true,
and otherwise 0.
Algorithms. We denote deterministic computation of an algorithm A on input x by y := A(x). We
denote algorithms with access to an oracle O by AO. Unless stated otherwise, we assume all our algorithms
to be probabilistic and denote the computation by y ← A(x).
Random Oracles. We will at times model hash functions H : DH → =(H) as random oracles. To keep
record of the queries issued to H, we will use a hash list LH that contains all tuples (x,H(x)) of arguments
x ∈ DH that H was queried on and the respective answers H(x). We make the convention that H(x) = ⊥
for all x 6∈ DH.
Games. Following [Sho04b, BR06], we use code-based games. We implicitly assume boolean flags to
be initialized to false, numerical types to 0, sets to ∅, and strings to the empty string ε. We make the
convention that a procedure terminates once it has returned an output.

2.1 Public-Key Encryption

Syntax. A public-key encryption scheme PKE = (Gen,Enc,Dec) consists of three algorithms and a
finite message spaceM (which we assume to be efficiently recognizable). The key generation algorithm
Gen outputs a key pair (pk, sk), where pk also defines a randomness space R = R(pk). The encryption
algorithm Enc, on input pk and a message m ∈ M, outputs an encryption c ← Enc(pk,m) of m
under the public key pk. If necessary, we make the used randomness of encryption explicit by writing
c := Enc(pk,m; r), where r $← R and R is the randomness space. The decryption algorithm Dec, on
input sk and a ciphertext c, outputs either a message m = Dec(sk, c) ∈M or a special symbol ⊥ /∈M to
indicate that c is not a valid ciphertext.
Injectivity. We call a public-key encryption scheme PKE injective if for all key pairs (pk, sk)← Gen, it
holds that Enc(pk,m; r) = Enc(pk,m′; r ′)⇒ (m, r) = (m′, r ′) for all m,m′ ∈M and r , r ′ ∈ R.
Correctness. We call a public-key encryption scheme PKE δ-correct if

E[ max
m∈M

Pr [Dec(sk, c) 6= m | c ← Enc(pk,m)]] ≤ δ,

7



where the expectation is taken over (pk, sk) ← Gen. In particular, δ-correctness means that for all
(possibly unbounded) adversaries A, Pr[CORA

PKE ⇒ 1] ≤ δ, where the correctness game COR is defined as
in Figure 2 (left). That is, an (unbounded) adversary obtains the public and the secret key and wins if it
finds a message inducing a correctness error. Note that our definition of correctness slightly derives from
previous definitions (e.g. [DNR04, ?]) but it has been carefully crafted such that it is sufficient to prove
our main theorems (i.e., the security of the Fujisaki-Okamoto transformation) and at the same time it is
fulfilled by all recently proposed lattice-based encryption schemes with correctness error.

If PKE = PKEG is defined relative to a random oracle G, then defining correctness is a bit more subtle
as the correctness bound might depend on the number of queries to G.4 We call a public-key encryption
scheme PKE in the random oracle model δ(qG)-correct if for all (possibly unbounded) adversaries A
making at most qG queries to random oracle G, Pr[COR-ROA

PKE ⇒ 1] ≤ δ(qG), where the correctness game
COR-RO is defined as in Figure 2 (right). If PKE is defined relative to two random oracles G, H, then the
correctness error δ is a function in qG and qH.

Note that our correctness definition in the standard model is a special case of the one in the random
oracle model, where the number of random oracle queries is zero and hence δ(qG) is a constant.

GAME COR:
01 (pk, sk)← Gen
02 m ← A(sk, pk)
03 c ← Enc(pk,m)
04 return JDec(sk, c) = mK

GAME COR-RO:
05 (pk, sk)← Gen
06 m ← AG(sk, pk)
07 c ← Enc(pk,m)
08 return JDec(sk, c) = mK

Figure 2: Correctness game COR for PKE in the standard model (left) and COR-RO for PKE defined
relative to a random oracle G (right).

Rigidity. Following [BP18], we call a deterministic public-key encryption scheme PKE rigid if for all key
pairs (pk, sk)← Gen, and all ciphertexts c, it holds that either Dec(sk, c) = ⊥ or Enc(pk,Dec(sk, c)) = c.
Min-Entropy. [FO13] For (pk, sk) ← Gen and m ∈ M, we define the min-entropy of Enc(pk,m) by
γ(pk,m) := − log maxc∈C Prr←R [c = Enc(pk,m; r)]. We say that PKE is γ-spread if, for every key pair
(pk, sk)← Gen and every message m ∈M, γ(pk,m) ≥ γ. In particular, this implies that for every possible
ciphertext c ∈ C, Prr←R [c = Enc(pk,m; r)] ≤ 2−γ .
Security. We now define three security notions for public-key encryption: One-Wayness under Chosen
Plaintext Attacks (OW-CPA), One-Wayness under Plaintext Checking Attacks (OW-PCA) and One-
Wayness under Plaintext and Validity Checking Attacks (OW-PCVA).

Definition 2.1 (OW-ATK). Let PKE = (Gen,Enc,Dec) be a public-key encryption scheme with message
spaceM. For ATK ∈ {CPA,PCA,VA,PCVA}, we define OW-ATK games as in Figure 3, where

OATK :=


− ATK = CPA
Pco(·, ·) ATK = PCA
Cvo(·) ATK = VA
Pco(·, ·),Cvo(·) ATK = PCVA

.

We define the OW-ATK advantage function of an adversary A against PKE as AdvOW-ATK
PKE (A) :=

Pr[OW-ATKA
PKE ⇒ 1].

A few remarks are in place. Our definition of the plaintext checking oracle Pco(m, c) (c.f. Figure 3)
implicitly disallows queries on messages m ∈M. (With the convention that Pco(m 6∈ M, c) yields ⊥.)
This restriction is important since otherwise the ciphertext validity oracle Cvo(·) could be simulated as
Cvo(m) = Pco(⊥, c). Similarly, the ciphertext validity oracle Cvo(c) implicitly disallows queries on the
challenge ciphertext c∗.

Usually, the adversary wins the one-way game iff its output m′ equals the challenge message m∗.
Instead, in game OW-ATK the correctness of m′ is checked using the Pco oracle, i.e., it returns 1 iff
Dec(sk, c∗) = m′. The two games have statistical difference δ, if PKE is δ-correct.

4For an example why the number of random oracle queries matters in the context of correctness, we refer to Theorem 3.1.

8



GAME OW-ATK:
09 (pk, sk)← Gen
10 m∗ $←M
11 c∗ ← Enc(pk,m∗)
12 m′ ← AOATK (pk, c)
13 return Pco(m′, c∗)

Pco(m ∈M, c)
14 return JDec(sk, c) = mK

Cvo(c 6= c∗)
15 m := Dec(sk, c)
16 return Jm ∈MK

Figure 3: Games OW-ATK (ATK ∈ {CPA,PCA,VA,PCVA}) for PKE, where OATK is defined in Defini-
tion 2.1. Pco(·, ·) is the Plaintext Checking Oracle and Cvo(·) is the Ciphertext Validity Oracle.

Additionally, we define Indistinguishability under Chosen Plaintext Attacks (IND-CPA).

Definition 2.2 (IND-CPA). Let PKE = (Gen,Enc,Dec) be a public-key encryption scheme with message
spaceM. We define the IND-CPA game as in Figure 4, and the IND-CPA advantage function of an adversary
A = (A1,A2) against PKE (such that A2 has binary output) as AdvIND-CPA

PKE (A) := |Pr[IND-CPAA ⇒ 1]−1/2|.

We also define OW-ATK and IND-CPA security in the random oracle model model, where PKE and
adversary A are given access to a random oracle H. We make the convention that the number qH of
the adversary’s random oracle queries count the total number of times H is executed in the experiment.
That is, the number of A explicit queries to H(·) plus the number of implicit queries to H(·) made by the
experiment.

It is well known that IND-CPA security of PKE with sufficiently large message space implies its
OW-CPA security.

Lemma 2.3 For any adversary B there exists an adversary A with the same running time as that of B
such that AdvOW-CPA

PKE (B) ≤ AdvIND-CPA
PKE (A) + 1/|M|.

2.2 Key Encapsulation

Syntax. A key encapsulation mechanism KEM = (Gen,Encaps,Decaps) consists of three algorithms.
The key generation algorithm Gen outputs a key pair (pk, sk), where pk also defines a finite key space
K. The encapsulation algorithm Encaps, on input pk, outputs a tuple (K , c) where c is said to be an
encapsulation of the key K which is contained in key space K. The deterministic decapsulation algorithm
Decaps, on input sk and an encapsulation c, outputs either a key K := Decaps(sk, c) ∈ K or a special
symbol ⊥ /∈ K to indicate that c is not a valid encapsulation. We call KEM δ-correct if

Pr [Decaps(sk, c) 6= K | (pk, sk)← Gen; (K , c)← Encaps(pk)] ≤ δ .

Note that the above definition also makes sense in the random oracle model since KEM ciphertexts do
not depend on messages.
Security. We now define a security notion for key encapsulation: Indistinguishbility under Chosen
Ciphertext Attacks (IND-CCA).

Definition 2.4 (IND-CCA). We define the IND-CCA game as in Figure 4 and the IND-CCA advantage
function of an adversary A (with binary output) against KEM as AdvIND-CCA

KEM (A) := |Pr[IND-CCAA ⇒
1]− 1/2| .
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GAME IND-CPA
01 (pk, sk)← Gen
02 b $← {0, 1}
03 (m∗0 ,m∗1 , st)← A1(pk)
04 c∗ ← Enc(pk,m∗b )
05 b′ ← A2(pk, c∗, st)
06 return Jb′ = bK

GAME IND-CCA
07 (pk, sk)← Gen
08 b $← {0, 1}
09 (K∗0 , c∗)← Encaps(pk)
10 K∗1 $← K
11 b′ ← ADecaps(c∗,K∗b )
12 return Jb′ = bK

Decaps(c 6= c∗)
13 K := Decaps(sk, c)
14 return K

Figure 4: Games IND-CPA for PKE and IND-CCA game for KEM.

3 Modular FO Transformations
In Section 3.1, we will introduce T that transforms any OW-CPA secure encryption scheme PKE into a
OW-PCA secure encryption scheme PKE1. If PKE is furthermore IND-CPA, then the reduction is tight.
Furthermore, if PKE is γ-spread, then PKE1 even satisfied the stronger security notion of OW-PCVA
security. Next, in Section 3.2 (Section 3.2.1), we will introduce transformations U6⊥, U6⊥m (U⊥, U⊥m)
that transform any OW-PCA (OW-PCVA) secure encryption scheme PKE1 into an IND-CCA secure KEM.
The security reduction is tight. Transformations U6⊥m and U⊥m can only be applied for deterministic
encryption schemes. Combining T with {U 6⊥,U 6⊥m,U⊥,U⊥m}, in Section 3.3 we provide concrete bounds for
the IND-CCA security of the resulting KEMs. Finally, in Section 3.4 we introduce S` that transforms any
OW-CPA secure scheme into an IND-CPA secure one, offering a tradeoff between tightness and ciphertext
size.

3.1 Transformation T: from OW-CPA/IND-CPA to OW-PCVA
T transforms an OW-CPA secure public-key encryption scheme into an OW-PCA secure one.
The Construction. To a public-key encryption scheme PKE = (Gen,Enc,Dec) with message spaceM
and randomness spaceR, and random oracle G :M→R, we associate PKE1 = T[PKE,G]. The algorithms
of PKE1 = (Gen,Enc1,Dec1) are defined in Figure 5. Note that Enc1 deterministically computers the
ciphertext as c := Enc(pk,m; G(m)).

Enc1(pk,m)
01 c := Enc(pk,m; G(m))
02 return c

Dec1(sk, c)
03 m′ := Dec(sk, c).
04 if m′ = ⊥ or Enc(pk,m′; G(m′)) 6= c
05 return ⊥
06 else return m′

Figure 5: OW-PCVA-secure encryption scheme PKE1 = T[PKE,G] with deterministic encryption.

Non-tight Security from OW-CPA. The following theorem establishes that OW-PCVA security of
PKE1 (cf. Definition 2.1) non-tightly reduces to the OW-CPA security of PKE, in the random oracle model,
given that PKE is γ-spread (for sufficiently large γ). If PKE is not γ-spread, then PKE1 is still OW-PCA
secure.

Theorem 3.1 (PKE OW-CPA ROM⇒ PKE1 OW-PCVA). If PKE is δ-correct, then PKE1 is δ1-correct in
the random oracle model with δ1(qG) = qG · δ. Assume PKE to be γ-spread. Then, for any OW-PCVA
adversary B that issues at most qG queries to the random oracle G, qP queries to a plaintext checking
oracle Pco, and qV queries to a validity checking oracle Cvo, there exists an OW-CPA adversary A such
that

AdvOW-PCVA
PKE1

(B) ≤ (qG + qP) · δ + qV · 2−γ + (qG + qP + 1) ·AdvOW-CPA
PKE (A)

and the running time of A is about that of B. Furthermore, PKE1 is rigid.

The main idea of the proof is that since Enc1 is deterministic, the PCA(·, ·) oracle can be equivalently
implemented by “re-encryption” and the Cvo(·) oracle by controlling the random oracles. Additional
care has to be taken to account for the correctness error.
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Proof. To prove correctness, consider an adversary A playing the correctness game COR-RO (Figure 2) of
PKE1 in the random oracle model. Game COR-RO makes at most qG (distinct) queries G(m1), . . . ,G(mqG)
to G. We call such a query G(mi) problematic iff it exhibits a correctness error in PKE1 (in the sense
that Dec(sk,Enc(pk,mi ; G(mi))) 6= mi). Since G outputs independently random values, each G(mi) is
problematic with probability at most δ (averaged over (pk, sk)), since we assumed that PKE is δ-correct.
Hence, a union bound shows that the probability that at least one G(mi) is problematic is at most qG · δ.
This proves Pr[COR-ROA ⇒ 1] ≤ qG · δ and hence PKE1 is δ1-correct with δ1(qG) = qG · δ.

To prove security, let B be an adversary against the OW-PCVA security of PKE1, issuing at most qG
queries to G, at most qP queries to Pco, and at most qV queries to Cvo. Consider the sequence of games
given in Figure 6.

GAMES G0-G3
01 (pk, sk)← Gen
02 m∗ $←M
03 c∗ ← Enc(pk,m∗)
04 m′ ← BG(·),Pco(·,·),Cvo(·)(pk, c∗)
05 return Jm′ = m∗K

G(m)
06 if ∃r s. th.(m, r) ∈ LG
07 return r
08 if m = m∗ �G3
09 QUERY := true �G3
10 abort �G3
11 r $←R
12 LG := LG ∪ {(m, r)}
13 return r

Pco(m ∈M, c)
14 m′ := Dec(sk, c) �G0-G1
15 return Jm′ = mK and JEnc(pk,m′; G(m′)) = cK �G0-G1
16 return JEnc(pk,m,G(m)) = cK �G2-G3

Cvo(c 6= c∗)
17 m′ := Dec(sk, c) �G0-G1
18 return Jm′ ∈MK and JEnc(pk,m′; G(m′)) = cK �G0
19 return J∃(m, r) ∈ LG and Enc(pk,m; r) = c and m′ = mK �G1
20 return J∃(m, r) ∈ LG and Enc(pk,m; r) = cK �G2-G3

Figure 6: Games G0-G3 for the proof of Theorem 3.1.

Game G0. This is the original OW-PCVA game. Random oracle queries are stored in set LG with the
convention that G(m) = r iff (m, r) ∈ LG. Hence,

Pr[GB
0 ⇒ 1] = AdvOW-PCVA

PKE1
(B) .

Game G1. In game G1 the ciphertext validity oracle Cvo(c 6= c∗) is replaced with one that first computes
m′ = Dec(sk, c) and returns 1 iff there exists a previous query (m, r) to G such that Enc(pk,m; r) = c
and m = m′.

Consider a single query Cvo(c) and define m′ := Dec(sk, c). If Cvo(c) = 1 in G1, then G(m′) =
G(m) = r and hence Enc(pk,m′;G(m′)) = c, meaning Cvo(c) = 1 in G0. If Cvo(c) = 1 in G0, then we
can only have Cvo(c) = 0 in G1 only if G(m′) was not queried before. This happens with probability
2−γ , where γ is the parameter from the γ-spreadness of PKE. By the union bound we obtain

|Pr[GB
1 ⇒ 1]− Pr[GB

0 ⇒ 1]| ≤ qV · 2−γ .

Game G2. In game G2 we replace the plaintext checking oracle Pco(m, c) and the ciphertext validity
oracle Cvo(c) by a simulation that does not check whether m = m′ anymore, where m′ = Dec(sk, c)

We claim
|Pr[GB

2 ⇒ 1]− Pr[GB
1 ⇒ 1]| ≤ (qG + qP) · δ . (4)

To show Equation (4), observe that the whole Game G1 (and also the whole Game G2) makes at most qG
(distinct) queries G(m1), . . . ,G(mqG) to G. Again, we call such a query G(mi) problematic iff it exhibits
a correctness error in PKE1 (in the sense that Dec(sk,Enc(pk,mi ; G(mi))) 6= mi). Clearly, if B makes a
problematic query, then there exists an adversary F that wins the correctness game COR-RO in the random
oracle model. Hence, the probability that at least one G(mi) is problematic is at most δ1(qG) ≤ qG · δ.

However, conditioned on the event that no query G(mi) is problematic, Game G1 and Game G2
proceed identically (cf. Figure 6). Indeed, the two games only differ if B submits a Pco query (m, c) or a
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C(pk, c∗)
01 m′ ← BG(·),Pco(·,·)(pk, c∗)
02 return m′

D(pk, c∗)
03 m ← BG(·),Pco(·,·)(pk, c∗)
04 (m′, r ′) $← LG
05 return m′

Figure 7: Adversaries C and Dagainst OW-CPA for the proof of Theorem 3.1. Oracles Pco, Cvo are
defined as in game G3, and G is defined as in game G2 of Figure 6.

Cvo query c together with a G query m such that G(m) is problematic and c = Enc(pk,m; G(m)). (In
this case, G1 will answer the query with 0, while G2 will answer with 1.) This shows Equation (4).
Game G3. In Game G3, we add a flag QUERY in line 09 and abort when it is raised. Hence, G2 and
G3 only differ if QUERY is raised, meaning that B made a query G on m∗, or, equivalently, (m∗, ·) ∈ LG.
Due to the difference lemma [Sho04b],

|Pr[GB
3 ⇒ 1]− Pr[GB

2 ⇒ 1]| ≤ Pr[QUERY].

We first bound Pr[GB
3 ⇒ 1] by constructing an adversary C in Figure 7 against the OW-CPA security of

the original encryption scheme PKE. C inputs (pk, c∗ ← Enc(pk,m∗)) for random, unknown m∗, perfectly
simulates game G3 for B, and finally outputs m′ = m∗ if B wins in game G3.

Pr[GB
3 ⇒ 1] = AdvOW-CPA

PKE (C) .

So far we have established the bound

AdvOW-PCVA
PKE1

(B) ≤ (qG + qP) · δ + qV · 2−γ + Pr[QUERY] + AdvOW-CPA
PKE (C) . (5)

Finally, in Figure 7 we construct an adversary D against the OW-CPA security of the original encryption
scheme PKE, that inputs (pk, c∗ ← Enc(pk,m∗)), perfectly simulates game G3 for B. If flag QUERY is
set in G3 then there exists en entry (m∗, ·) ∈ LG and D returns the correct m′ = m∗ with probability at
most 1/qG. We just showed

Pr[QUERY] ≤ (qG + qP) ·AdvOW-CPA
PKE (D) .

Combining the latter bound with Equation (5) and folding C and D into one single adversary A against
OW-CPA yields the required bound of the theorem.

By definition, OW-PCA security is OW-PCVA security with qV := 0 queries to the validity checking
oracle. Hence, the bound of Theorem 3.1 shows that PKE1 is in particular OW-PCA secure, without
requiring PKE to be γ-spread.
Tight Security from IND-CPA. Whereas the reduction to OW-CPA security in Theorem 3.1 was
non-tight, the following theorem establishes that OW-PCVA security of PKE1 tightly reduces to IND-CPA
security of PKE, in the random oracle model, given that PKE is γ-spread. If PKE is not γ-spread, then
PKE1 is still OW-PCA secure.

Theorem 3.2 (PKE IND-CPA ROM⇒ PKE1 OW-PCVA). Assume PKE to be δ-correct and γ-spread. Then,
for any OW-PCVA adversary B that issues at most qG queries to the random oracle G, qP queries to a
plaintext checking oracle Pco, and qV queries to a validity checking oracle Cvo, there exists an IND-CPA
adversary A such that

AdvOW-PCVA
PKE1

(B) ≤ (qG + qP) · δ + qV · 2−γ + 2qG + 1
|M|

+ 3 ·AdvIND-CPA
PKE (A)

and the running time of A is about that of B.

Proof. Considering the games of Figure 6 from the proof of Theorem 3.1 we obtain by Equation (5)

AdvOW-PCVA
PKE1

(B) ≤ (qG + qP) · δ + qV · 2−γ + Pr[QUERY] + AdvOW-CPA
PKE (C)

≤ (qG + qP) · δ + qV · 2−γ + Pr[QUERY] + 1
|M|

+ AdvIND-CPA
PKE (C) ,
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D1(pk)
06 st := (m∗0 ,m∗1 ) $←M2

07 return st

D2(pk, c∗, st)
08 m′ ← BG(·),Pco(·),Cvo(·)(pk, c∗)

09 b′ :=


0 |LG(m∗0 )| > |LG(m∗1 )|
1 |LG(m∗1 )| < |LG(m∗0 )|

$← {0, 1} otherwise
10 return b′

Figure 8: Adversary D = (D1,D2) against IND-CPA for the proof of Theorem 3.2. For fixed m ∈ M,
LG(m) is the set of all (m, r) ∈ LG. Oracles Pco, Cvo are defined as in game G3, and G is defined as in
game G2 of Figure 6.

where the last inequation uses Lemma 2.3.
In Figure 8 we construct an adversary D = (D1,D2) against the IND-CPA security of the original

encryption scheme PKE that wins if flag QUERY is set in G3. The first adversary D1 picks two random
messages m∗0 ,m∗1 . The second adversary D2 inputs (pk, c∗ ← Enc(pk,m∗b ), st), for an unknown random
bit b, and runs B on (pk, c∗), simulating its view in game G3. Note that by construction message m∗b is
uniformly distributed.

Consider game IND-CPAD with random challenge bit b. Let BADG be the event that B queries
random oracle G on m∗1−b. Since m∗1−b is uniformly distributed and independent from B’s view, we
have Pr[BADG] ≤ qG/|M|. For the remainder of the proof we assume BADG did not happen, i.e.
|LG(m∗1−b)| = 0.

If QUERY happens, then B queried the random oracle G on m∗b , which implies |LG(m∗b )| > 0 =
|LG(m∗1−b)| and therefore b = b′. If QUERY does not happen, then B did not query random oracle G on
m∗b . Hence, |LG(m∗b )| = |LG(m∗1−b)| = 0 and Pr[b = b′] = 1/2 since A picks a random bit b′. Overall, we
have

AdvIND-CPA
PKE (D) + qG

|M|
≥

∣∣∣∣Pr[b = b′]− 1
2

∣∣∣∣
=

∣∣∣∣Pr[QUERY] + 1
2 Pr[¬QUERY]− 1

2

∣∣∣∣
= 1

2 Pr[QUERY].

Folding C and D into one single IND-CPA adversary A yields the required bound of the theorem.

With the same argument as in Theorem 3.1, a tight reduction to OW-PCA security is implied without
requiring PKE to be γ-spread.

3.2 Transformations U6⊥, U6⊥
m, U⊥, U⊥

m

In this section we introduce four variants of a transformation U, namely U6⊥, U6⊥m, U⊥, U⊥m, that convert
a public-key encryption scheme PKE1 into a key encapsulation mechanism KEM. Their differences are
summarized in the following table.

Transformation Rejection of invalid ciphertexts KEM key PKE1’s requirements
U 6⊥ implicit K = H(m, c) OW-PCA
U⊥ explicit K = H(m, c) OW-PCVA
U 6⊥m implicit K = H(m) det. + OW-CPA
U⊥m explicit K = H(m) det. + OW-VA

3.2.1 Transformation U⊥: from OW-PCVA to IND-CCA

U⊥ transforms an OW-PCVA secure public-key encryption scheme into an IND-CCA secure key encapsula-
tion mechanism. The ⊥ in U⊥ means that decapsulation of an invalid ciphertext results in the rejection
symbol ⊥ (“explicit rejection”).
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The Construction. To a public-key encryption scheme PKE1 = (Gen1,Enc1,Dec1) with message space
M, and a hash function H : {0, 1}∗ → {0, 1}n, we associate KEM⊥ = U⊥[PKE1,H]. The algorithms of
KEM⊥ = (Gen1,Encaps,Decaps⊥) are defined in Figure 9.

Encaps(pk)
01 m $←M
02 c ← Enc1(pk,m)
03 K := H(m, c)
04 return (K , c)

Decaps⊥(sk, c)
05 m′ := Dec1(sk, c)
06 if m′ = ⊥ return ⊥
07 else return

K := H(m′, c)

Figure 9: IND-CCA-secure key encapsulation mechanism KEM⊥ = U⊥[PKE1,H].

Security. The following theorem establishes that IND-CCA security of KEM⊥ tightly reduces to the
OW-PCVA security of PKE1, in the random oracle model.

Theorem 3.3 (PKE1 OW-PCVA ROM⇒ KEM⊥ IND-CCA). If PKE1 is δ1-correct, so is KEM⊥. For any
IND-CCA adversary B against KEM⊥, issuing at most qD queries to the decapsulation oracle Decaps⊥

and at most qH queries to the random oracle H, there exists an OW-PCVA adversary A against PKE1 that
makes at most qH queries both to the Pco oracle and to the Cvo oracle such that

AdvIND-CCA
KEM⊥ (B) ≤ AdvOW-PCVA

PKE1
(A)

and the running time of A is about that of B.

The main idea of the proof is to simulate the decapsulation oracle without the secret-key. This can be
done by answering decryption queries with a random key and then later patch the random oracle using
the plaintext checking oracle Pco(·, ·) provided by the OW-PCVA game. Additionally, the ciphertext
validity oracle Cvo(·) is required to reject decapsulation queries with inconsistent ciphertexts.

Proof. It is easy to verify the correctness bound. Let B be an adversary against the IND-CCA security of
KEM⊥, issuing at most qD queries to Decaps⊥ and at most qH queries to H. Consider the games given
in Figure 10.
Game G0. Since game G0 is the original IND-CCA game,∣∣∣∣Pr[GB

0 ⇒ 1]− 1
2

∣∣∣∣ = AdvIND-CCA
KEM⊥ (B) .

Game G1. In game G1, the oracles H and Decaps⊥ are modified such that they make no use of the secret
key any longer except by testing if Dec1(sk ′, c) = m for given (m, c) in line 15 and if Dec1(sk, c) ∈M for
given c in line 27. Game G1 contains two sets: hash list LH that contains all entries (m, c,K ) where H
was queried on (m, c), and set LD that contains all entries (c,K ) where either H was queried on (m′, c),
m′ := Dec1(sk ′, c), or Decaps⊥ was queried on c. In order to show that the view of B is identical in
games G0 and G1, consider the following cases for a fixed ciphertext c and m′ := Dec1(sk ′, c).

• Case 1: m′ /∈ M. Since Cvo(c) = 0 is equivalent to m′ = ⊥, Decaps⊥(c) returns ⊥ as in both
games.

• Case 2: m′ ∈ M. We will now show that H in game G1 is “patched”, meaning that it is ensures
Decaps⊥(c) = H(m′, c), where m′ := Dec1(sk, c), for all ciphertexts c with m′ ∈M. We distinguish
two sub-cases: B might either first query H on (m′, c), then Decaps⊥ on c, or the other way round.

– If H is queried on (m′, c) first, it is recognized that Dec1(sk, c) = m in line 15. Since Decaps
was not yet queried on c, no entry of the form (c,K) can already exist in LD. Therefore,
besides adding (m, c,K $← K) to LH , H also adds (c,K) to LD in line 22, thereby defining
Decaps⊥(c) := K = H(m′, c).
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GAMES G0 - G2
01 (pk, sk)← Gen1
02 m∗ $←M
03 c∗ ← Enc1(pk,m∗)
04 K∗0 := H(m∗, c∗)
05 K∗1 $← {0, 1}n

06 b $← {0, 1}
07 b′ ← BDecaps⊥,H(pk, c∗,K∗b )
08 return Jb′ = bK

Decaps⊥(c 6= c∗) �G0

09 m′ := Dec1(sk, c)
10 if m′ = ⊥ return ⊥
11 return K := H(m′, c)

H(m, c)
12 if ∃K such that (m, c,K) ∈ LH
13 return K
14 K $← K
15 if Dec1(sk, c) = m �G1-G2
16 if c = c∗ �G2
17 CHAL := true �G2
18 abort �G2
19 if ∃K ′ such that (c,K ′) ∈ LD �G1-G2
20 K := K ′ �G1-G2
21 else �G1-G2
22 LD := LD ∪ {(c,K)} �G1-G2
23 LH := LH ∪ {(m, c,K)}
24 return K

Decaps⊥(c 6= c∗) �G1-G2
25 if ∃K s. th. (c,K) ∈ LD
26 return K
27 if Dec1(sk, c) 6∈ M
28 return ⊥
29 K $← K
30 LD := LD ∪ {(c,K)}
31 return K

Figure 10: Games G0 - G2 for the proof of Theorem 3.3.

– If Decaps⊥ is queried on c first, no entry of the form (c,K) exists in LD yet. Therefore,
Decaps⊥ adds (c,K $← K) to LD, thereby defining Decaps⊥(c) := K . When queried on
(m′, c) afterwards, H recognizes that Dec1(sk, c) = m′ in line 15 and that an entry of the form
(c,K ) already exists in LD in line 19. By adding (m, c,K ) to LH and returning K , H defines
H(m′, c) := K = Decaps⊥(c).

We have shown that B’s view is identical in both games and

Pr[GB
1 ⇒ 1] = Pr[GB

0 ⇒ 1]| .

Game G2. From game G2 on we proceed identical to the proof of Theorem 3.4. That is, we abort
immediately on the event that B queries H on (m∗, c∗). Denote this event as CHAL. Due to the difference
lemma,

|Pr[GB
2 ⇒ 1]− Pr[GB

1 ⇒ 1]| ≤ Pr[CHAL] .

In game G2, H(m∗, c∗) will not be given to B; neither through a hash nor a decryption query, meaning
bit b is independent from B’s view. Hence,

Pr[GB
2 ] = 1

2 .

It remains to bound Pr[CHAL]. To this end, we construct an adversary A against the OW-PCVA
security of PKE1 simulating G2 for B as in Figure 11. Note that the simulation is perfect. Since CHAL
implies that B queried H(m∗, c∗) which implies (m∗, c∗,K ′) ∈ LH for some K ′, and A returns m′ = m∗.
Hence,

Pr[CHAL] = AdvOW-PCVA
PKE (A) .

Collecting the probabilities yields the required bound.

3.2.2 Transformation U6⊥: from OW-PCA to IND-CCA

U6⊥ is a variant of U⊥ with “implicit rejection” of inconsistent ciphertexts. It transforms an OW-PCA
secure public-key encryption scheme into an IND-CCA secure key encapsulation mechanism.
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APco(·,·)(pk, c∗)
01 K∗ $← K
02 b′ ← BDecaps⊥(·),H(·,·)(pk, c∗,K∗)
03 if ∃(m′, c′,K ′) ∈ LH

s. th. Pco(m′, c∗) = 1
04 return m′
05 else
06 abort

H(m, c)
07 if ∃K such that (m, c,K) ∈ LH
08 return K
09 K $← K
10 if Pco(m, c) = 1
11 if ∃K ′ such that (c,K ′) ∈ LD
12 K := K ′
13 else
14 LD := LD ∪ {(c,K)}
15 LH := LH ∪ {(m, c,K)}
16 return K

Figure 11: Adversary A against OW-PCVA for the proof of Theorem 3.3, where Decaps⊥ is defined as in
Game G2 of Figure 10.

The Construction. To a public-key encryption scheme PKE1 = (Gen1,Enc1,Dec1) with message space
M, and a random oracle H : {0, 1}∗ →M we associate KEM6⊥ = U 6⊥[PKE1,H] = (Gen6⊥,Encaps,Decaps 6⊥).
The algorithms of KEM 6⊥ are defined in Figure 12, Encaps is the same as in KEM⊥ (Figure 9). Note
that U⊥ and U6⊥ essentially differ in decapsulation: Decaps⊥ from U⊥ rejects if c decrypts to ⊥, whereas
Decaps 6⊥ from U6⊥ returns a pseudorandom key K .

Gen6⊥
01 (pk′, sk′)← Gen1
02 s $←M
03 sk := (sk′, s)
04 return (pk′, sk)

Encaps(pk)
05 m $←M
06 c ← Enc1(pk,m)
07 K := H(m, c)
08 return (K , c)

Decaps 6⊥(sk, c)
09 Parse sk = (sk′, s)
10 m′ := Dec1(sk′, c)
11 if m′ 6= ⊥
12 return K := H(m′, c)
13 else return K := H(s, c)

Figure 12: IND-CCA-secure key encapsulation mechanism KEM6⊥ = U6⊥[PKE1,H].

Security. The following theorem establishes that IND-CCA security of KEM6⊥ tightly reduces to the
OW-PCA security of PKE1, in the random oracle model.

Theorem 3.4 (PKE1 OW-PCA ROM⇒ KEM IND-CCA). If PKE1 is δ1-correct, then KEM6⊥ is δ1-correct
in the random oracle model. For any IND-CCA adversary B against KEM6⊥, issuing at most qD queries
to the decapsulation oracle Decaps6⊥ and at most qH queries to the random oracle H, there exists an
OW-PCA adversary A against PKE1 that makes at most qH queries to the Pco oracle such that

AdvIND-CCA
KEM6⊥ (B) ≤ qH

|M|
+ AdvOW-PCA

PKE1
(A)

and the running time of A is about that of B.

The proof is very similar to the one of Theorem 3.3. The difference is the handling of decapsulation
queries with inconsistent ciphertexts. Since the OW-PCA experiment does not provide a Cvo oracle, the
simulation of such queries has to be integrated into the random oracle patching technique.

Proof. It is easy to verify the correctness bound. Let B be an adversary against the IND-CCA security
of KEM, issuing at most qD queries to Dec and at most qH queries to H. Consider the games given in
Figure 13.
Game G0. Since game G0 is the original IND-CCA game,∣∣∣∣Pr[GB

0 ⇒ 1]− 1
2

∣∣∣∣ = AdvIND-CCA
KEM6⊥ (B) .

Game G1. In game G1 we make two changes. First, we raise flag QUERY and abort if H(s, ·) is queried
(lines 18 and 19). Second, we make the pseudorandom keys output by Decaps6⊥ perfectly random.
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GAMES G0 - G3
01 (pk′, sk′)← Gen1
02 s $←M
03 sk := (sk′, s)
04 m∗ $←M
05 c∗ ← Enc1(pk,m∗)
06 K∗0 := H(m∗, c∗)
07 K∗1 $← {0, 1}n

08 b $← {0, 1}
09 b′ ← BDecaps6⊥(·),H(·)(pk′, c∗,K∗b )
10 return Jb′ = bK

Decaps6⊥(c 6= c∗) �G0-G1

11 m′ := Dec1(sk′, c)
12 if m′ = ⊥ return K := H(s, c) �G0
13 if m′ = ⊥ return K := H′(c) �G1
14 if m′ = s return K := H′(c) �G1
15 return K := H(m′, c)

H(m, c)
16 if ∃K s. th. (m, c,K) ∈ LH return K
17 K $← K
18 if m = s �G1-G3
19 QUERY := true; abort �G1-G3
20 if Dec1(sk′, c) = m �G2-G3
21 if c = c∗ �G3
22 CHAL := true; abort �G3
23 if ∃K ′ such that (c,K ′) ∈ LD �G2-G3
24 K := K ′ �G2-G3
25 else �G2-G3
26 LD := LD ∪ {(c,K)} �G2-G3
27 LH := LH ∪ {(m, c,K)}
28 return K

Decaps6⊥(c 6= c∗) �G2-G3
29 if ∃K s. th. (c,K) ∈ LD
30 return K
31 else
32 K $← K
33 LD := LD ∪ {(c,K)}
34 return K

Figure 13: Games G0 - G3 for the proof of Theorem 3.4 . H′ (lines 13 and 14) is an independent internal
random oracle that cannot be accessed by B.

That is, in Decaps6⊥(c), we replace K = H(s, c) by K = H′(c) if m′ = Dec1(sk ′, c) = ⊥ (lines 13) or
if m′ = Dec1(sk ′, c) = s (line 14), where H′ is an independent internal random oracles that cannot be
accessed by B. The latter remains unnoticed by B unless H(s, ·) is queried, in which case G1 aborts. (Also
note that m′ := Dec1(sk, c) is unique.) Since B’s view is independent of (the uniform secret) s unless G1
aborts,

|Pr[GB
1 ⇒ 1]− Pr[GB

0 ⇒ 1]| ≤ qH
|M|

.

Game G2. In game G2, the oracles H and Decaps6⊥ are modified such that Decaps6⊥ does not make use
of the secret key any longer except by testing if Dec1(sk ′, c) = m for given (m, c) in line 20. In game G2
we will use two lists, LH and LD, for bookkeeping. (m, c,K ) ∈ LH indicates that H was queried on (m, c)
and H(m, c) = K holds; (c,K ) ∈ LD indicates that Decaps6⊥(c) = K holds and either H was queried on
(m := Dec1(sk ′, c), c) or Decaps6⊥ was queried on c. In order to show that the view of B is identical in
games G1 and G2, consider the following cases for a fixed ciphertext c and m′ := Dec1(sk ′, c).

• Case 1: m′ ∈ {⊥, s}. Since H cannot be queried on (m′, c) (i.e., H(⊥, ·) is not allowed and H(s, c)
results in abort), the simulation of H can never add a tuple of the form (c,K) to LD. Hence,
querying Decaps6⊥(c) in game G2 will return a uniformly random key, as in Game G1.

• Case 2: m′ /∈ {⊥, s}. We will now show that H in game G2 is “patched”, meaning that it is ensured
Decaps6⊥(c) = H(m′, c), where m′ := Dec1(sk ′, c), for all valid ciphertexts c with Dec1(sk ′, c) 6= s.
We distinguish two sub-cases: B might either first query H on (m′, c), then Decaps6⊥ on c, or the
other way round.

– If H is queried on (m′, c) first, it is recognized that Dec1(sk ′, c) = m′ in line 20. Since
Decaps6⊥ was yet not queried on c, no entry of the form (c,K ) already exists in LD. Therefore,
besides adding (m′, c,K $← K) to LH , H also adds (c,K) to LD in line 26, thereby defining
Decaps6⊥(c) := K = H(m′, c) .

– If Decaps6⊥ is queried on c first, no entry of the form (c,K) exists in LD yet. Therefore,
Decaps6⊥ adds (c,K $← K) to LD thereby defining Decaps6⊥(c) := K . When queried on
(m′, c) afterwards, H recognizes that Dec1(sk ′, c) = m′ in line 20 and that an entry of the form
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APco(·)(pk, c∗)
01 K∗ $← K
02 s $←M
03 b′ ← BDecaps6⊥(·),H(·)(pk, c∗,K∗)
04 if ∃(m′, c′,K ′) ∈ LH

s. th. Pco(m′, c∗) = 1
05 return m′
06 else
07 abort

H(m, c)
08 if ∃K s. th. (m, c,K) ∈ LH return K
09 K $← K
10 if m = s
11 abort
12 if Pco(m, c) = 1
13 if ∃K ′ s. th. (c,K ′) ∈ LD
14 K := K ′
15 else
16 LD := LD ∪ {(c,K)}
17 LH := LH ∪ {(m, c,K)}
18 return K

Figure 14: Adversary A against OW-PCA for the proof of Theorem 3.4. Oracle Decaps6⊥ is defined as in
game G3 of Figure 13.

(c,K ) already exists in LD in line 23. By adding (m′, c,K ) to LH and returning K , H defines
H(m′, c) := K = Decaps6⊥(c).

We have shown that B’s view is identical in both games and

Pr[GB
2 ⇒ 1] = Pr[GB

1 ⇒ 1]| .

Game G3. In game G3, we abort immediately (and raise flag CHAL) on the event that B queries H on
(m∗, c∗), where m∗ is the challenge message. Due to the difference lemma,

|Pr[GB
3 ⇒ 1]− Pr[GB

2 ⇒ 1]| ≤ Pr[CHAL] .

In game G3, H(m∗, c∗) will not be given to B; neither through a hash nor a decryption query, meaning
bit b is independent from B’s view. Hence,

Pr[GB
3 ] = 1

2 .

It remains to bound Pr[CHAL]. To this end, we construct an adversary A against the OW-PCA
security of PKE1 simulating G3 for B as in Figure 14. Note that the simulation is perfect. Since CHAL
implies that B queried H(m∗, c∗) which implies (m∗, c∗,K ′) ∈ LH (for some K ′), A returns m′ = m∗ and
wins its OW-PCA game. Hence,

Pr[CHAL] = AdvOW-PCA
PKE (A) .

Collecting the probabilities yields the required bound.

3.2.3 Transformations U6⊥m/U⊥m: from OW-CPA/OW-VA to IND-CCA for deterministic Encryp-
tion

Transformation U⊥m is a variant of U⊥ that derives the KEM key as K = H(m), instead of K = H(m, c).
It transforms a OW-VA secure public-key encryption scheme with deterministic encryption (e.g., the ones
obtained via T from Section 3.1) into an IND-CCA secure key encapsulation mechanism. We also consider
an implicit rejection variant U6⊥m that only requires OW-CPA security of the underlying encryption scheme
PKE.
The Construction. To a public-key encryption scheme PKE1 = (Gen1,Enc1,Dec1) with message space
M, and a random oracle H : {0, 1}∗ → {0, 1}n, we associate KEM6⊥m = U6⊥m[PKE1,H] = (Gen6⊥,Encapsm,
Decaps 6⊥m) and KEM⊥m = U⊥m [PKE1,H] = (Gen1,Encapsm,Decaps⊥m). Algorithm Gen6⊥ is given in Figure 12
and the remaining algorithms of KEM 6⊥m and KEM⊥m are defined in Figure 15.
Security of KEM⊥m. The following theorem establishes that IND-CCA security of KEM⊥m tightly reduces
to the OW-VA security of PKE1, in the random oracle model.
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Encapsm(pk)
01 m $←M
02 c := Enc1(pk,m)
03 K := H(m)
04 return (K , c)

Decaps 6⊥m(sk, c)
05 Parse sk = (sk′, s)
06 m′ := Dec1(sk′, c)
07 if m′ 6= ⊥
08 return K := H(m′)
09 else return K := H(s, c)

Decaps⊥m(sk, c)
10 m′ := Dec1(sk, c)
11 if m′ = ⊥ return ⊥
12 else return

K := H(m′)

Figure 15: IND-CCA-secure key encapsulation mechanisms KEM6⊥m = U6⊥m[PKE1,H] and KEM⊥m =
U⊥m[PKE1,H].

GAMES G0 - G2
01 (pk, sk)← Gen1
02 m∗ $←M
03 K∗0 := H(m∗)
04 K∗1 $← {0, 1}n

05 c∗ := Enc1(pk,m∗)
06 b $← {0, 1}
07 b′ ← BDecaps⊥m ,H(pk, c∗,K∗b )
08 return Jb′ = bK

Decaps⊥m(c 6= c∗) �G0

09 m′ := Dec1(sk, c)
10 if m′ = ⊥ return ⊥
11 return K := H(m′)

H(m)
12 if ∃K such that (m,K) ∈ LH
13 return K
14 if m = m∗ and c∗ defined �G2
15 CHAL := true �G2
16 abort �G2
17 c′ := Enc1(pk,m) �G1-G2
18 K $← K
19 if ∃K ′ such that (c′,K ′) ∈ LD �G1-G2
20 K := K ′ �G1-G2
21 else �G1-G2
22 LD := LD ∪ {(c′,K)} �G1-G2
23 LH := LH ∪ {(m,K)}
24 return K

Decaps⊥m(c 6= c∗) �G1-G2
25 if ∃K s. th. (c,K) ∈ LD
26 return K
27 if Dec1(sk, c) 6∈ M
28 return ⊥
29 K $← K
30 LD := LD ∪ {(c,K)}
31 return K

Figure 16: Games G0 - G2 for the proof of Theorem 3.5

Theorem 3.5 (PKE1 det., OW-VA ROM⇒ KEM⊥m IND-CCA). If PKE1 is δ1-correct, then so is KEM⊥m.
Furthermore, assume PKE1 to be rigid. Let G denote the random oracle that PKE1 uses (if any), and let
qEnc1,G and qDec1,G denote an upper bound on the number of G-queries that Enc1, resp. Dec1 makes upon
a single invocation. If Enc1 is deterministic then, for any IND-CCA adversary B against KEM⊥m, issuing
at most qD queries to the decapsulation oracle Decaps⊥m and at most qG, resp. qH queries to its random
oracles G and H, there exists an OW-VA adversary A against PKE1 that makes at most qD queries to the
Cvo oracle such that

AdvIND-CCA
KEM⊥m

(B) ≤ AdvOW-VA
PKE1

(A) + δ1(qG + (qH + qD)(qEnc1,G + qDec1,G))

and the running time of A is about that of B.

The proof is similar to the one of Theorem 3.3. A naive adaptation would reduce to PKE1’s OW-PCVA
security and make O(qHqD) queries to the Pco oracle. Instead, we exploit the deterministic Enc1 to
(implicitly) simulate our own Pco oracle via re-encryption during the proof.

Proof. It is easy to verify the correctness bound. (Note that the correctness error δ1 of KEM⊥m is
independent of the number of H-queries that an adversary on KEM⊥m’s correctness makes.)

To show security of KEM⊥m, let B be an adversary against the IND-CCA security of KEM⊥m, issuing at
most qD queries to Decaps⊥m and at most qH queries to H. Consider the games given in Figure 16.
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Game G0. Since game G0 is the original IND-CCA game,∣∣∣∣Pr[GB
0 ⇒ 1]− 1

2

∣∣∣∣ = AdvIND-CCA
KEM⊥m

(B) .

Game G1. In game G1, the oracles H and Decaps⊥m are changed such that they make no use of the
secret key any longer except for testing if Dec1(sk, c) ∈ M for given c in line 27. Game G1 contains
two sets: hash list LH which contains all entries (m,K) where H was queried on m, and set LD which
contains all entries (c,K ) where either Decaps⊥m was queried on c, or H was queried on some message m
such that c = Enc1(pk,m).

Let QUERY denote the event that LH contains an entry (m,K) with Dec1(sk,Enc1(pk,m)) 6= m.
Intuitively, QUERY denotes the event that a correctness error of PKE1 actually occurs. We will show
that the view of B is identical in games G0 and G1 unless a query to H occurs on a plaintext that induces
a correctness error, i.e., we show that the view only differs if QUERY happens.

To do so, we have to examine if Decaps⊥m and H handle queries consistently in game G1: In game G0,
it holds that Decaps⊥m(c) = H(Dec1(sk, c)) for all ciphertexts c such that Dec1(sk, c) 6= ⊥. To analyze
game G1, let c be a query to Decaps⊥m, and let m′ := Dec1(sk, c).

We first show that before the query to Decaps⊥m on c and the query to H on m′, no entry of the form
(c,K) could already exist in LD yet unless QUERY happened: Since neither Decaps was yet queried
on c nor H was yet queried on m′, existence of an entry (c,K) in LD implies that H was queried on
some message m 6= m′ such that Enc1(pk,m) = c. Hence, Dec1(sk,Enc1(pk,m)) = Dec1(sk, c) = m′ 6= m,
meaning that m induces a correctness error and QUERY happened.

We will now analyze the games’ behaviour in the case that H was not queried on such an error-inducing
message, i.e., conditioned on ¬QUERY. If Dec1(sk, c) = ⊥, Decaps⊥m(c) returns ⊥ in both games. It
remains to show that Decaps⊥m(c) = H(m′) if m′ 6= ⊥. We distinguish two sub-cases: B might either
first query H on m′, then Decaps⊥m on c, or the other way round.

• If H is queried on m′ first, no entry of the form (c,K ) already exists in LD. Hence, besides adding
(m′,K $← K) to LH , H also computes c′ := Enc1(pk,m′), where c′ = c due to PKE1’s rigidity. By
adding (c,K ) to LD in line 22, H defines Decaps⊥m(c) := K = H(m′).

• If Decaps⊥m is queried on c first, it adds (c,K $← K) to LD, thereby defining Decaps⊥m(c) := K .
When queried on m′ afterwards, H computes Enc1(pk,m′) = c, and recognizes that an entry of the
form (c,K ) already exists in LD in line 19. By adding (m′,K ) to LH and returning K , H defines
H(m′) := K = Decaps⊥m(c).

We have shown that B’s view is identical in both games unless a correctness error (in the form of
QUERY) occurs.

|Pr[GB
1 ⇒ 1]− Pr[GB

0 ⇒ 1]| ≤ Pr[QUERY] .

We can bound Pr[QUERY] with a straightforward reduction to the δ1-correctness of PKE1. In this
reduction, an adversary on PKE1’s correctness simulates Game G0 and additionally checks for QUERY
upon every Decaps⊥m and every H query. In total, this takes qG + (qH + qD)(qEnc1,G + qDec1,G) queries to
G: qG queries from B, and qEnc1,G + qDec1,G additional queries upon each query to H and Decaps⊥m (in
order to check for QUERY. Hence,

Pr[QUERY] ≤ δ1(qG + (qH + qD)(qEnc1,G + qDec1,G)) .

Game G2. In game G2, we abort (with uniformly random output) immediately on the event that B
queries H on m∗. Denote this event as CHAL. Due to the difference lemma,

|Pr[GB
2 ⇒ 1]− Pr[GB

1 ⇒ 1]| ≤ Pr[CHAL] .

In game G2, H(m∗) will not be given to B; neither through a hash nor a decryption query, meaning
bit b is independent from B’s view. Hence,

Pr[GB
2 ] = 1

2 .
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ACvo(·)(pk, c∗)
01 K∗ $← K
02 b′ ← BDecaps⊥m (·),H(·)(pk, c∗,K∗)
03 if ∃(m′,K ′) ∈ LH

s. th. Enc1(pk,m′) = c∗
04 return m′
05 else
06 abort

Decaps⊥m(c 6= c∗)
07 if ∃K s. th. (c,K) ∈ LD
08 return K
09 if Cvo(c) = 0
10 return ⊥
11 K $← K
12 LD := LD ∪ {(c,K)}
13 return K

Figure 17: Adversary A against OW-VA for the proof of Theorem 3.5, where H is defined as in Game G2
of Figure 16.

It remains to bound Pr[CHAL]. To this end, we construct an adversary A against the OW-VA security
of PKE1 simulating G2 for B as in Figure 17.

Note that the simulation is perfect until CHAL occurs. Furthermore, CHAL implies that B queried
H(m∗), which implies that (m∗,K ′) ∈ LH for some K ′. In this case, we have Enc1(pk,m∗) = c∗ (since
Enc1 is deterministic), and thus A returns m∗. Hence,

Pr[CHAL] = AdvOW-VA
PKE (A) .

Collecting the probabilities yields the required bound.

Security of KEM 6⊥m. The following theorem establishes that IND-CCA security of KEM6⊥m tightly reduces
to the OW-CPA security of PKE1, in the random oracle model. Its proof is easily obtained by combining
the proofs of Theorem 3.4 and Theorem 3.5.

Theorem 3.6 (PKE1 OW-CPA ROM⇒ KEM 6⊥m IND-CCA). If PKE1 is δ1-correct, then so is KEM6⊥m. Fur-
thermore, assume PKE1 to be rigid. Let G denote the random oracle that PKE1 uses (if any), and let
qEnc1,G and qDec1,G denote an upper bound on the number of G-queries that Enc1, resp. Dec1 makes upon
a single invocation. If Enc1 is deterministic then, for any IND-CCA adversary B against KEM6⊥m, issuing
at most qD queries to the decapsulation oracle Decaps6⊥m and at most qG, resp. qH queries to its random
oracles G and H, there exists an OW-CPA adversary A against PKE1 such that

AdvIND-CCA
KEM6⊥m

(B) ≤ AdvOW-CPA
PKE1

(A) + qD

|M|
+ δ1(qG + (qH + qD)(qEnc1,G + qDec1,G))

and the running time of A is about that of B.

3.3 The resulting KEMs
For completeness, we combine transformation T with {U6⊥,U⊥,U6⊥m,U⊥m} from the previous sections to
obtain four variants of the FO transformation FO := U6⊥ ◦ T, FO⊥ := U⊥ ◦ T, FO 6⊥m := U6⊥m ◦ T, and
FO⊥m := U⊥m ◦ T. To a public-key encryption scheme PKE = (Gen,Enc,Dec) with message spaceM and
randomness space R, and hash functions G :M→R, H : {0, 1}∗ → {0, 1}n we associate

KEM6⊥ = FO 6⊥[PKE,G,H] := U 6⊥[T[PKE,G],H] = (Gen6⊥,Encaps,Decaps 6⊥)
KEM⊥ = FO⊥[PKE,G,H] := U⊥[T[PKE,G],H] = (Gen,Encaps,Decaps⊥)
KEM 6⊥m = FO 6⊥m[PKE,G,H] := U 6⊥m[T[PKE,G],H] = (Gen6⊥,Encapsm,Decaps 6⊥m)
KEM⊥m = FO⊥m[PKE,G,H] := U⊥m[T[PKE,G],H] = (Gen,Encapsm,Decaps⊥m) .

Their constituting algorithms are given in Figure 18.
The following table provides (simplified) concrete bounds of the IND-CCA security of KEM ∈

{KEM 6⊥,KEM⊥,KEM6⊥m,KEM⊥m}, directly obtained by combining Theorems 3.1–3.6. Here qRO := qG + qH
counts the total number of B’s queries to the random oracles G and H and qD counts the number of B’s
decryption queries. The left column provides the bounds relative to the OW-CPA advantage, the right
column relative to the IND-CPA advantage.
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Gen 6⊥
01 (pk, sk)← Gen
02 s $←M
03 sk′ := (sk, s)
04 return (pk, sk′)

Decaps⊥(sk, c) Decaps⊥m(sk, c)
05 m′ := Dec(sk, c)
06 if c 6= Enc(pk,m′; G(m′)) or m′ = ⊥
07 return ⊥
08 else return K := H(m′, c) K := H(m′)

Encaps(pk) Encapsm(pk)
09 m $←M
10 c := Enc(pk,m; G(m))
11 K := H(m, c) K := H(m)
12 return (K , c)

Decaps 6⊥(sk′ = (sk, s), c) Decaps 6⊥m(sk′(sk, s), c)
13 m′ := Dec(sk, c)
14 if c 6= Enc(pk,m′; G(m′)) or m′ = ⊥
15 return K := H(s, c)
16 else return K := H(m′, c) K := H(m′)

Figure 18: IND-CCA secure Key Encapsulation Mechanisms KEM6⊥ = (Gen6⊥,Encaps,Decaps 6⊥), KEM⊥ =
(Gen,Encaps,Decaps⊥), KEM6⊥m = (Gen6⊥,Encapsm,Decaps 6⊥m), and KEM⊥m = (Gen,Encapsm,Decaps⊥m)
obtained from PKE = (Gen,Enc,Dec).

KEM Concrete bounds on AdvIND-CCA
KEM (B) ≤

KEM6⊥ qRO · δ + 2qRO
|M| + 2qRO ·AdvOW-CPA

PKE (A) qRO · δ + 3qRO
|M| + 3 ·AdvIND-CPA

PKE (A′)
KEM⊥ qRO · (δ + 2−γ) + 2qRO ·AdvOW-CPA

PKE (A) qRO ·
(
δ + 2−γ

)
+ 3qRO
|M| + 3 ·AdvIND-CPA

PKE (A′)
KEM6⊥m (2qRO + qD) · δ + 2qRO

|M| + 2qRO ·AdvOW-CPA
PKE (A) (2qRO + qD) · δ + 3qRO

|M| + 3 ·AdvIND-CPA
PKE (A′)

KEM⊥m (2qRO + qD) · δ + qRO · 2−γ + 2qRO ·AdvOW-CPA
PKE (A) (2qRO + qD) · δ + qRO · 2−γ + 3 ·AdvIND-CPA

PKE (A′)

Concrete parameters. For “κ bits of security” one generally requires that for all adversaries B with
advantage Adv(B) and running in time Time(B), we have

Time(B)
Adv(B) ≥ 2κ.

The table below gives recommendations for the information-theoretic terms δ (correctness error of PKE,
γ (γ-spreadness of PKE), andM (message space of PKE) appearing the concrete security bounds above.

Term in concrete bound Minimal requirement for κ bits security

qRO · δ δ ≤ 2−κ
qRO · 2−γ γ ≥ κ

qRO/|M| |M| ≥ 2κ

For example, if the concrete security bound contains the term qRO · δ, then with δ ≤ 2−κ one has

Time(B)
Adv(B) ≥

qRO
qRO · δ

= 1
δ
≥ 2κ,

as required for κ bits security.

3.4 S`: from OW-CPA to IND-CPA Security, tightly
S` transforms an OW-CPA secure public-key encryption scheme into an IND-CPA secure scheme. The
security reduction has a parameter ` which allows for a tradeoff between the security loss of the reduction
and the compactness of ciphertexts.
The Construction. Fix an ` ∈ N. To a public-key encryption scheme PKE = (Gen,Enc,Dec) with
message space M = {0, 1}n and a hash function F : M` → R, we associate PKE` = S`[PKE,F]. The
algorithms of PKE` are defined in Figure 19.
Security. The following theorem shows that PKE` is IND-CPA secure, provided that PKE is OW-CPA
secure.
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Enc`(pk,m)
01 x := (x1, . . . , x`) $← ({0, 1}n)`
02 c0 := m ⊕ F(x)
03 for i = 1 to ` do
04 ci := Enc(pk, xi)
05 return c := (c0, . . . , c`)

Dec`(sk, c = (c0, . . . , c`))
06 for i = 1 to ` do
07 xi := Dec(sk, ci)
08 x := (x1, . . . , x`)
09 return c0 ⊕ F(x)

Figure 19: Tightly IND-CPA secure encryption PKE` obtained from PKE.

Theorem 3.7 (PKE OW-CPA ⇒ PKE` IND-CPA). If PKE is δ-correct (in the ROM), then PKE` is
` · δ-correct. Moreover, for any IND-CPA adversary B that issues at most qF queries to random oracle F,
there exists an OW-CPA adversary A such that

AdvIND-CPA
PKE`

(B) ≤ q1/`
F ·AdvOW-CPA

PKE (A)

and the running time of A is about that of B.

Proof. We first sketch correctness. Consider a public key pk and an encryption c = (c0, . . . , c`) of
generated by Enc`. Let xi denote the respective value chosen by Enc` when generating c. Furthermore,
let QUERYi denote the event that, when decrypting c, the partial ciphertext ci is decrypted to a value
x ′i 6= xi . If no QUERYi occurs (for any i), then this implies that c is decrypted correctly. Hence, we have

Pr[c decrypts incorrectly] ≤ Pr[
∨̀
i=1

QUERYi ] ≤
∑̀
i=1

Pr[QUERYi ]
(∗)= ` · δ,

where the probability is over the random coins of Gen`, Enc`, and Dec`, and (∗) follows from the
δ-correctness of PKE. We note that this argument also applies verbatim in the ROM.

As for security, let B = (B1,B2) be an adversary against the IND-CPA security of PKE`, issuing at
most qF queries to F. Consider the games given in Figure 20.

GAMES G0-G1
01 (pk, sk)← Gen()
02 b $← {0, 1}
03 (m0,m1, st) $← B1(pk)
04 x∗ := (x∗1 , . . . , x∗` ) $← ({0, 1}n)`
05 c∗0 := mb ⊕ F(x∗)
06 for i = 1 to ` do
07 c∗i := Enc(pk, xi)
08 c∗ := (c∗0 , . . . , c∗` )
09 b′ $← B2(pk, c∗, st)
10 return Jb′ = bK

F(x)
11 if ∃r s.t. (x, r) ∈ LF
12 return r
13 if x = x∗ �G1
14 QUERY := true �G1
15 abort �G1
16 r $←R
17 LF := LF ∪ {(x, r)}
18 return r

Figure 20: Games G0 - G1 for the proof of Theorem 3.7

Game G0. Since game G0 is the original IND-CPA game,∣∣Pr[GB
0 ⇒ 1]− 1/2

∣∣ = AdvIND-CPA
PKE`

(B) . (6)

Game G1. In Game G1, we add lines 13-15, and in particular a flag QUERY in line 14, and abort
(such that the game outputs an independently random bit) when QUERY is raised. QUERY is raised
whenever random oracle F is queried with the vector x∗ that was chosen during the generation of the
challenge ciphertext c∗. Games G0 and G1 proceed identically until QUERY occurs. Hence, we have∣∣Pr[GB

0 ⇒ 1]− Pr[GB
1 ⇒ 1]

∣∣ ≤ Pr[QUERY] . (7)

Moreover, observe that in Game G1, B’s view is independent of the bit b chosen by the game: b is only
used in the computation of c∗0 , which in turn is blinded by F(x∗). But since the game aborts (with a
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A(pk, ĉ):
01 (m0,m1, st) $← BF

1(pk)
02 c∗0 $← {0, 1}n

03 for i = 1 to ` with i 6= i∗
04 x∗i $← {0, 1}n

05 c∗i $← Enc(pk, x∗i )
06 i∗ $← [`]
07 c∗i∗ := ĉ
08 c∗ := (c∗0 , . . . , c∗` )
09 b′ $← BF

2(pk, c∗, st)
10 if Li∗ empty
11 x = ⊥
12 else
13 x $← Li∗

14 return x

F(x)
15 if ∃r s. th.(x, r) ∈ LF
16 return r
17 r $←R
18 LF := LF ∪ {(x, r)}
19 parse x = (x1, . . . , x`)
20 if ∀i < i∗ : xi = x∗i
21 Li∗ := Li∗ ∪ {xi∗}
22 return r

Figure 21: Adversary A against IND-CPA from B against OW-PCA for Lemma 3.8. Note that the sampling
operation in line 13 refers to the list (not the set) Li∗ (such that multiple F queries with the same xi∗

may raise the probability that that xi∗ is sampled).

random output) as soon as B queries F(x∗), this means that c∗0 is independently random in B’s view.
This means that also B’s output b′ and b are independent, which implies that the game’s output Jb′ = bK
is a uniformly random bit in case no abort occurs. But since the game also outputs a random bit upon
an abort, we get that

Pr[GB
1 ⇒ 1] = 1/2. (8)

Taking (6-8) together, we thus get

AdvIND-CPA
PKE`

(B) ≤ Pr[QUERY] ,

and the theorem follows from the next lemma.

Lemma 3.8 In the situation of Game G1, we have

Pr[QUERY] ≤ q1/`
F ·AdvOW-CPA

PKE (A)

for an adversary A (of roughly the same complexity as Game G1).

Proof. We may assume that Pr[QUERY] > 0 (so that it is possible to condition on QUERY). We
describe adversary A in Figure 21.

To analyze B, let x∗ := (x∗1 , . . . , x∗` ), where x∗i∗ is the value encrypted in A’s own challenge ĉ, and,
for i 6= i∗, the x∗i are defined in line 4 in Figure 21. (That is, up to decryption errors, x∗i = Dec(sk, c∗i )
for all i.) Now observe that B’s views in Game G1 and in the simulation inside A are identical until B
queries F(x∗). In this latter case, Game G1 would abort, while A would simply continue the simulation.
In particular, if we let QUERY denote the event that B queries F(x∗), then the probability of QUERY
is the same in Game G1 and in A’s simulation. We can thus show the lemma by bounding the probability
for QUERY in A’s simulation.

To this end, for each i ∈ [`], consider the probability

pi := Pr[ xi = x∗i | (x1, . . . , xi−1) = (x∗1 , . . . , x∗i−1) ∧ QUERY ]

in an execution with A, where the probability is over a uniform choice of x = (x1, . . . , x`) among the
set of all of F-queries from B. (Note that the condition QUERY guarantees that at least one such x
exists.) Intuitively, pi denotes the probability that a F-query matches the challenge message in the i-th
component when they already match in the first i − 1 components (assuming that QUERY occurs).

It will be helpful to first note a useful property of the pi : namely, we have

∏̀
i=1

pi
(i)= Pr[ x = x∗ | QUERY ] (ii)= 1/qF , (9)
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where (i) follows by using Pr[A | B] ·Pr[B] = Pr[A∧B] for arbitrary events A,B (such that B is possible),
and (ii) follows by definition of QUERY.

Furthermore, we can connect the pi to A’s output as follows. Observe that B’s view in A’s simulation
does not depend on i∗, and thus, that the pi do not change when conditioning on a specific choice of i∗.
Now by construction of A and the list Li∗ , for each fixed choice of i∗, and assuming that QUERY occurs,
we have that x = x∗i∗ is sampled in line 13 with probability pi∗ . Note that in this case, A wins its own
OW-CPA game. Formally:

AdvOW-CPA
PKE (A) = Pr[ A⇒ x∗i∗ ] = 1

`

∑̀
i=1

Pr[ A⇒ x∗i | i∗ = i ]

= Pr[QUERY]
`

∑̀
i=1

Pr[ A⇒ x∗i∗ | i∗ = i ∧QUERY ] = Pr[QUERY]
`

∑̀
i=1

pi

(∗)
≥ Pr[QUERY] ·

(∏̀
i=1

pi

)1/`
(9)= Pr[QUERY] · 1

q1/`
F

,

where (∗) follows by the inequality between the arithmetic and geometric means. Rearranging terms
yields the lemma.

4 Modular FO Transformation in the QROM
In this section, we will revisit our transformations in the quantum random oracle model. In Section 4.1, we
give a short primer on quantum computation and define the quantum random oracle model (QROM). In
Section 4.2, we will prove that transformation T from Figure 5 (Section 3.1) is also secure in the quantum
random oracle model. Next, in Section 4.3 we will introduce QU⊥m (QU 6⊥m), a variant of U⊥m (U6⊥m), which
has provable security in the quantum random oracle model. Combining the two above transformations,
in Section 4.4 we provide concrete bounds for the IND-CCA security of QKEM⊥m = QFO⊥m[PKE,G,H,H′]
and QKEM6⊥m = QFO 6⊥m[PKE,G,H,H′] in the QROM.

4.1 Quantum Computation

Qubits. For simplicity, we will treat a qubit as a vector |b〉 ∈ C2, i.e., a linear combination |b〉 =
α · |0〉 + β · |1〉 of the two basis states (vectors) |0〉 and |1〉 with the additional requirement to the
probability amplitudes α, β ∈ C that |α|2 + |β|2 = 1. The basis {|0〉, |1〉} is called standard orthonormal
computational basis. The qubit |b〉 is said to be in superposition. Classical bits can be interpreted as
quantum bits via the mapping (b 7→ 1 · |b〉+ 0 · |1− b〉).
Quantum Registers. We will treat a quantum register as a collection of multiple qubits, i.e.
a linear combination

∑
(b1,··· ,bn)∈{0,1}n αb1···bn · |b1 · · · bn〉, where αb1,··· ,bn ∈ Cn, with the additional

restriction that
∑

(b1,··· ,bn)∈{0,1}n |αb1···bn |2 = 1. As in the one-dimensional case, we call the basis
{|b1 · · · bn〉}(b1,··· ,bn)∈{0,1}n the standard orthonormal computational basis.
Measurements. Qubits can be measured with respect to a basis. In this paper, we will only consider
measurements in the standard orthonormal computational basis, and denote this measurement by
Measure(·), where the outcome of Measure(|b〉) is a single qubit |b〉 = α · |0〉 + β · |1〉 will be |0〉
with probability |α|2 and |1〉 with probability |β|2, and the outcome of measuring a qubit register∑
b1,··· ,bn∈{0,1}

αb1···bn · |b1 · · · bn〉 will be |b1 · · · bn〉 with probability |αb1···bn |2. Note that the amplitudes

collapse during a measurement, this means that by measuring α · |0〉+ β · |1〉, α and β are switched to one
of the combinations in {±(1, 0), ±(0, 1)}. Likewise, in the n-dimensional case, all amplitudes are switched
to 0 except for the one that belongs to the measurement outcome and which will be switched to 1.
Quantum oracles and quantum Adversaries. Following [BDF+11, BBC+98], we view a quantum
oracle as a mapping

|x〉|y〉 7→ |x〉|y ⊕O(x)〉 ,
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where O : {0, 1}n → {0, 1}m, x ∈ {0, 1}n and y ∈ {0, 1}m, and model quantum adversaries A with access
to O by the sequence U ◦O, where U is a unitary operation. We write A|O〉 to indicate that the oracles
are quantum-accessible (contrary to oracles which can only process classical bits).
Quantum random oracle model. We consider security games in the quantum random oracle model
(QROM) as their counterparts in the classical random oracle model, with the difference that we consider
quantum adversaries that are given quantum access to the random oracles involved, and classical access
to all other oracles (e.g., plaintext checking or decapsulation oracles). Zhandry [Zha12b] proved that no
quantum algorithm A|f 〉, issuing at most q quantum queries to |f 〉, can distinguish between a random
function f : {0, 1}m → {0, 1}n and a 2q-wise independent function. It allows us to view quantum random
oracles as polynomials of sufficient large degree. That is, we define a quantum random oracle |H〉 as an
oracle evaluating a random polynomial of degree 2q over the finite field F2n .
Correctness of PKE in the QROM. Similar to the classical random oracle model, we need to define
correctness of encryption in the quantum random oracle model. If PKE = PKEG is defined relative to a
random oracle |G〉, then again the correctness bound might depend on the number of queries to |G〉. We
call a public-key encryption scheme PKE in the quantum random oracle model δ(qG)-correct if for all
(possibly unbounded, quantum) adversaries A making at most qG queries to quantum random oracle |G〉,
Pr[COR-QROA

PKE ⇒ 1] ≤ δ(qG), where the correctness game COR-QRO is defined as in Figure 22.

GAME COR-QRO:
23 (pk, sk)← Gen
24 m ← A|G〉(sk, pk)
25 c ← Enc(pk,m)
26 return JDec(sk, c) 6= mK

Figure 22: Correctness game COR-QRO for PKE in the quantum random oracle model.

Algorithmic Oneway to Hiding. To a quantum oracle |H〉 and an algorithm A (possibly with access
to other oracles) we associate the following extractor algorithm EXT[A, |H〉] that returns a measurement
x ′ of a randomly chosen query to |H〉.

EXT[A, |H〉](inp)
01 i $← [qH]
02 Run A|H〉(inp) until the ith query |x̂〉 to |H〉
03 if i > number of queries to |H〉
04 return ⊥
05 else
06 x ′ ←Measure(|x̂〉)
07 return x ′

Figure 23: Extractor algorithm EXT[A, |H〉](inp) for OW2H.

The following statement is a an algorithmic adaption of OW2H from [Unr14] and will be used heavily
during our security proofs.

Lemma 4.1 (Algorithmic Oneway to hiding (AOW2H)) Let |H〉 : {0, 1}n → {0, 1}m be a quantum
random oracle, and let A be a quantum algorithm issuing at most qH queries to |H〉 that, on input
x ∈ {0, 1}n, y ∈ {0, 1}m outputs either 0 or 1. Then, for all (probabilistic) algorithms F that input
bit-stings in {0, 1}n+m (and do not make any hash queries to |H〉),∣∣∣Pr

[
1← A|H〉(inp) | x $← {0, 1}n; inp ← F(x,H(x))

]
− Pr

[
1← A|H〉(inp) | (x, y) $← {0, 1}n+m; inp ← F(x, y)

]∣∣∣
≤ 2qH ·

√
Pr[x ← EXT[A, |H〉](inp) | (x, y) $← {0, 1}n+m; inp ← F(x, y)] .

Note that the original OWTH lemma can be obtained by applying Lemma 4.1 to F(x, y) := (x, y).
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Generic Quantum Search. For λ ∈ [0, 1] let Bλ be the Bernoulli distribution, i.e., Pr[b = 1] = λ for
the bit b ← Bλ. Let X be some finite set. The generic quantum search problem GSP [HRS16, Thrm. 1],
[Zha12a], is to find an x ∈ X satisfying F(x) = 1 given quantum access to an oracle F : X → {0, 1}, such
that for each x ∈ X , F(x) is distributed according to Bλ. We will need the following slight variation of
GSP that is given in [KLS17]. The Generic quantum Search Problem with Bounded probabilities GSPB
is like the quantum search problem with the difference that the Bernoulli parameter λ(x) may depend on
x but it is upper bounded by a global λ.

Lemma 4.2 (Generic Search Problem with Bounded Probabilities) Let λ ∈ {0, 1}. For any (unbounded,
quantum) algorithm A issuing at most q quantum queries to |F〉, Pr[GSPBA

λ ⇒ 1] ≤ 8 · λ · (q + 1)2, where
Game GSPBλ is defined in Figure 24.

GAME GSPBλ
01 (λ(x))x∈X ← A1
02 if ∃x ∈ X s.t. λ(x) > λ return 0
03 For all x ∈ X
04 F(x)← Bλ(x)

05 x ← A|F(·)〉
2

06 return F(x)

Figure 24: The generic search game GSPBλ with bounded maximal Bernoulli parameter λ ∈ [0, 1].

4.2 Transformation T: from OW-CPA to OW-PCA in the QROM
Recall transformation T from Figure 5 of Section 3.1.

Lemma 4.3 Assume PKE to be δ-correct. Then PKE1 = T[PKE,G] is δ1-correct in the quantum random
oracle model, where δ1 = δ1(qG) ≤ 8 · (qG + 1)2 · δ.

Proof. Consider an (unbounded, quantum) adversary A in the quantum random oracle correctness game
COR-QRO. For fixed (pk, sk) and message m ∈M, let

Rbad(pk, sk,m) := {r ∈ R | Dec(sk,Enc(pk,m; r)) 6= m}

denote the set of “bad” randomness. Further, define

δ(pk, sk,m) := |Rbad(pk, sk,m)|/|R| (10)

as the fraction of bad randomness and δ(pk, sk) := maxm∈M δ(pk, sk,m). Note that with this notation
δ = E[δ(pk, sk)], where the expectation is taken over (pk, sk) $← Gen.

To upper bound Pr[COR-QROA ⇒ 1], we construct an (unbounded, quantum) adversary B in
Figure 25 against the generic search problem with bounded probabilities GSPBλ defined in Figure 24.
B runs (pk, sk) $← Gen and computes the Bernoulli parameters λ(m) of the generic search problem as
λ(m) := δ(pk, sk,m) which are bounded by λ := δ(pk, sk) := maxm∈M Pr[Dec(sk,Enc(pk,m)) 6= m].

To analyze B, we first fix (pk, sk). For each m ∈M, by the definition of game GSPBλ, the random
variable F(m) is distributed according to Bλ(m) = Bδ(pk,sk,m). By construction, the random variable
G(m) defined in line 09 if F(m) = 0 and in line 11 if F(m) = 1 is uniformly distributed in R meaning G
is a (quantum) random oracle.

A wins its game COR-QRO iff it returns a message m such that G(m) ∈ Rbad(pk, sk,m) or, equivalently,
F(m) = 1 in which case B wins game GSPλ. To summarize, conditioned on a fixed (pk, sk) we obtain by
Lemma 4.2

Pr[COR-QROA ⇒ 1 | (pk, sk)] ≤ Pr[GSPB
δ(pk,sk) ⇒ 1] ≤ 8 · δ(pk, sk) · (qG + 1)2 .

By averaging over (pk, sk) $← Gen we finally obtain

δ1(qG) = Pr[COR-QROA ⇒ 1] ≤ 8 · δ · (qG + 1)2.

This completes the proof.
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B1
01 (pk, sk)← Gen
02 for m ∈M
03 λ(m) := δ(pk, sk,m)
04 return (λ(m))m∈M

B|F(·)〉
2

05 Pick 2qH-wise hash f
06 m ← A|G(·)〉(pk, sk)
07 return m

G(m)
08 if F(m) = 0
09 G(m) := Sample(R \Rbad(pk, sk,m); f (m))
10 else
11 G(m) := Sample(Rbad(pk, sk,m); f (m))
12 return G(m)

Figure 25: Adversary B executed in game GSPBδ(pk,sk) with access to |F(·)〉 for the proof of Theorem 4.4.
δ(pk, sk,m) is defined in Equation (10). f (lines 09 and 11) is an internal 2qG-wise independent hash
function that cannot be accessed by A. Sample(Y ) is a probabilistic algorithm that returns a uniformly
distributed y ←$ Y . Sample(Y ; f (m)) denotes the deterministic execution of Sample(Y ) using explicitly
given randomness f (m).

The following theorem (whose proof is loosely based on [TU16]) establishes that IND-PCA security of
PKE1 reduces to the OW-CPA security of PKE, in the quantum random oracle model.

Theorem 4.4 (PKE OW-CPA QROM⇒ PKE1 OW-PCA). Assume PKE to be δ-correct. For any OW-PCA
quantum adversary B that issues at most qG queries to the quantum random oracle |G〉 and qP (classical)
queries to the plaintext checking oracle Pco, there exists an OW-CPA quantum adversary A such that

AdvOW-PCA
PKE1

(B) ≤ 8 · (qG + qP + 1)2 · δ + (1 + 2qG) ·
√

AdvOW-CPA
PKE (A) ,

and the running time of A is about that of B.

Similar to the proof of Theorem 3.1, in game G1 the proof first implements the PCA oracle via
“re-encryption”. Next, we apply AOW2H to decouple the challenge ciphertext c∗ := Enc(pk,m∗; G(m∗))
from the random oracle G. The decoupling allows for a reduction from OW-CPA security.

Proof. Let B be an adversary against the OW-PCA security of PKE1, issuing at most qG queries to |G〉
and at most qP queries to Pco. Consider the games given in Figure 26, where G is modeled as a random
2qG-wise independent hash function.

GAME G0-G2, H
01 (pk, sk)← Gen
02 m∗ $←M
03 r∗ := G(m∗) �G0-G1
04 r∗ $←R �G2, H
05 c∗ := Enc(pk,m∗; r∗)
06 m′ ← B|G(·)〉,Pco(·,·)(pk, c∗) �G1-G2
07 m′ ← EXT[BPco(·,·), |G(·)〉](pk, c∗) �H
08 return Jm′ = m∗K

Pco(m ∈M, c)
09 m′ := Dec(sk, c) �G0
10 return Jm′ = mK and JEnc(pk,m′; G(m′)) = cK �G0
11 return JEnc(pk,m; G(m)) = cK �G1,G2,H

Figure 26: Games G0,G1,G2,H for the proof of Theorem 4.4.

Game G0. Since game G0 is the original OW-PCA game,

Pr[GB
0 ⇒ 1] = AdvOW-PCA

PKE1
(B) .

Game G1. In game G1 the plaintext checking oracle Pco(·, ·) is replaced with a simulation that doesn’t
make use of the secret key anymore. We claim

|Pr[GB
1 ⇒ 1]− Pr[GB

0 ⇒ 1]| ≤ 8 · (qG + qP + 1)2 · δ . (11)

To show Equation (11), first note that both Game G0 and Game G1 proceed identically until the event
that B submits a Pco query (m, c) such that c = Enc(pk,m; G(m)) and Dec(sk, c) 6= m. We call this
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event BADR. Since both Game G0 and Game G1 proceed identically conditioned on the event that
BADR does not happen,

|Pr[GB
1 ⇒ 1]− Pr[GB

0 ⇒ 1]| ≤ Pr[BADR] .

Similar to the proof of Theorem 3.1 one can again show that there exists an adversary F against COR-QRO
that perfectly simulates games G0 and G1 and wins iff BADR happens. Applying Lemma 4.3, we see
that

Pr[BADR] ≤ Pr[COR-QROF] ≤ 8 · (qG + qP + 1)2 · δ .

Game G2. In game G2, we replace r∗ := G(m∗) with uniform randomness r∗ in line 03. We apply
Lemma 4.1 (AOW2H) to x := m∗, y := r∗, and algorithm F given in Figure 27. We obtain

|Pr[GB
2 ⇒ 1]− Pr[GB

1 ⇒ 1]| ≤ 2 · qG ·
√

Pr[HB ⇒ 1] ,

where the extractor algorithm EXT of game H is defined in Figure 23.

Algorithm F(m∗, r∗)
01 (pk, sk)← Gen
02 c∗ := Enc(pk,m∗; r∗)
03 inp = (pk, c∗)
04 return inp

Figure 27: Algorithm F for the application of AOW2H in the proof of Theorem 4.4.

Now that r∗ is uniformly random we trivially construct an adversary C in Figure 28 against the
OW-CPA security of the original encryption scheme PKE simulating game G2 for B that outputs m′ = m∗
if B wins in game G2.

Pr[GB
2 ⇒ 1] = AdvOW-CPA

PKE (C) ≤
√

AdvOW-CPA
PKE (C) .

Finally, we construct another trivial adversary D in Figure 28 against the OW-CPA security of the
original encryption scheme PKE simulating game H for B with Advantage

Pr[HB ⇒ 1] = AdvOW-CPA
PKE (D) .

Collecting the probabilities and combining adversaries C and D into one single adversary A proves the
theorem.

4.3 Transformations QU⊥
m, QU 6⊥

m

4.3.1 Transformation QU⊥m: from OW-PCA to IND-CCA in the QROM

QU⊥m transforms an OW-PCA secure public-key encryption scheme into an IND-CCA secure key encapsu-
lation mechanism with explicit rejection.
The Construction. To a deterministic public-key encryption scheme PKE1 = (Gen1,Enc1,Dec1) with
message spaceM = {0, 1}n , and hash functions H : {0, 1}∗ → {0, 1}n and H′ : {0, 1}n → {0, 1}n , we asso-
ciate QKEM⊥m = QU⊥m[PKE1,H,H′]. The algorithms of QKEM⊥m = (QGen := Gen1,QEncapsm,QDecaps⊥m)
are defined in Figure 29. We stress that hash function H′ has matching domain and range.

C(pk, c∗)
01 m′ ← B|G(·)〉,Pco(·,·)(pk, c∗)
02 return m′

D(pk, c∗)
03 m′ ← EXT[BPco(·,·), |G(·)〉](pk, c∗)
04 return m′

Figure 28: Adversaries C (left) and D (right) for the proof of Theorem 4.4. Oracle Pco is defined as in
game G2 of Figure 26.
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QEncapsm(pk)
01 m $←M
02 c := Enc1(pk,m)
03 d := H′(m)
04 K := H(m)
05 return (K , c, d)

QDecaps⊥m(sk, c, d)
06 m′ := Dec1(sk, c)
07 if m′ = ⊥ or H′(m′) 6= d
08 return ⊥
09 else return K := H(m′)

Figure 29: IND-CCA-secure key encapsulation mechanism QKEM⊥m = QU⊥m[PKE1,H,H′].

Security. The following theorem (whose proof is again loosely based on [TU16]) establishes that
IND-CCA security of QKEM⊥m reduces to the OW-PCA security of PKE1, in the quantum random oracle
model, given that PKE1 is rigid.

Theorem 4.5 (PKE1 OW-PCA QROM⇒ QKEM⊥m IND-CCA). If PKE1 is δ1-correct, so is QKEM⊥m. Further-
more, assume PKE1 to be rigid. For any IND-CCA quantum adversary B issuing at most qD (classical)
queries to the decapsulation oracle QDecaps⊥m, at most qH queries to the quantum random oracle |H〉
and at most qH′ queries to the quantum random oracle |H′〉, there exists an OW-PCA quantum adversary
A issuing 2qDqH′ queries to oracle Pco such that

AdvIND-CCA
QKEM⊥m

(B) ≤ (2qH′ + qH + 2qD) ·
√

AdvOW-PCA
PKE1

(A) + δ1 ,

and the running time of A is about that of B.

Proof. Let B be an adversary against the IND-CCA security of QKEM⊥m, issuing at most qD queries to
QDecaps⊥m, at most qH queries to |H〉 and at most qH′ queries to |H′〉. Consider the games G0-G3 given
in Figure 30.

GAMES G0 - G3
01 b $← {0, 1} �G0-G2
02 (pk, sk)← Gen1
03 m∗ $← {0, 1}n ; c∗ := Enc1(pk,m∗)
04 K∗0 := H(m∗); K∗1 $← {0, 1}n

05 d∗ := H′(m∗); K∗ := K∗b �G0-G2
06 d∗ $← {0, 1}n ; K∗ $← {0, 1}n �G3

07 b′ ← BQDecaps⊥m ,|H〉,|H
′〉(pk, (c∗, d∗),K∗)

08 return Jb′ = bK �G0-G2
09 return b′ �G3

QDecaps⊥m((c, d) 6= (c∗, d∗))
10 if c = c∗
11 return ⊥ �G1-G3
12 m′ := Dec1(sk, c)
13 if m′ = m∗
14 ABORT �G2-G3
15 if m′ 6= ⊥ and H′(m′) = d
16 return K := H(m′)
17 else return ⊥

Figure 30: Games G0 - G3 for the proof of Theorem 4.5.

Game G0. Since G0 = IND-CCA,

AdvIND-CCA
QKEM⊥m

(B) = |Pr[GB
0 ⇒ 1]− 1/2| .

The next two steps are preparation steps to ensure that no query to QDecaps⊥m can trigger a query
to H′ on m∗.
Game G1. In game G1, we change QDecaps⊥m in line 11 such that it always returns ⊥ if queried on a
ciphertext of the form (c∗, d). We argue that this change is only conceptual unless m∗ triggers a correctness
error: Since query (c∗, d) is explicitly forbidden in both games G0 and G1, we only have to consider the
case that d 6= d∗. Let m′ := Dec1(sk, c∗). If m′ = m∗, d 6= d∗ implies that H′(m′) = H′(m∗) = d∗ 6= d,
hence G0 also returns ⊥. Therefore, game G1 only differs from game G0 if m′ 6= m∗ and

|Pr[GB
1 ⇒ 1]− Pr[GB

0 ⇒ 1]| ≤ δ1 .

Game G2. In game G2, we let QDecaps⊥m abort in line 14 if queried on a ciphertext (c, d) such that
c 6= c∗, but Dec1(sk, c) = m∗. We claim that no such query is possible due to PKE1’s rigidity: Take
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any ciphertext c such that Dec1(sk, c) = m∗. Since PKE1 is rigid and Dec1(sk, c) 6= ⊥, it holds that
c = Enc1(pk,Dec1(sk, c)) = Enc1(pk,m∗) = c∗.

We just have shown that Pr[ABORT] = 0, hence

Pr[GB
2 ⇒ 1] = Pr[GB

1 ⇒ 1] .

Note that from game G2 on, no query to QDecaps⊥m can possibly trigger a query on m∗ to either of
the random oracles H and H′.
Game G3. In game G3, we replace (d∗ := H′(m∗),K∗ := K∗b ) with uniform random (d∗,K∗) in line 06,
and instead of returning whether B’s bit was the right guess, game G3 just returns B’s bit, see line 09.
Since

Pr[GB
2 ⇒ 1] = 1

2
(
Pr[GB

2 ⇒ 1 | b = 1] + Pr[GB
2 ⇒ 1 | b = 0]

)
= 1

2
(
Pr[GB

2 ⇒ 1 | b = 1]− Pr[GB
2 ⇒ 0 | b = 0]

)
+ 1

2 ,

|Pr[GB
2 ⇒ 1]− 1

2 | =
1
2
∣∣Pr[GB

2 ⇒ 1 | b = 1]− Pr[GB
2 ⇒ 0 | b = 0]

∣∣
≤ 1

2
(∣∣Pr[GB

2 ⇒ 1 | b = 1]− Pr[GB
3 ⇒ 1]

∣∣+
∣∣Pr[GB

2 ⇒ 0 | b = 0]− Pr[GB
3 ⇒ 1]

∣∣) .

To upper bound |Pr[GB
2 ⇒ 1 | b = 1]− Pr[GB

3 ⇒ 1]| and |Pr[GB
2 ⇒ 0 | b = 0]− Pr[GB

3 ⇒ 1]|, we will
make use of Lemma 4.1 (OWTH), where we let F(m∗, d∗) = (m∗, d∗) for b = 1, and F(m∗, d∗,K∗) =
(m∗, d∗,K∗) for b = 0. Consider the adversaries Db and games Hb given in Figure 31. D1 issues at most
qH′ + qD queries to H′, and perfectly simulates game G2 for bit b = 1 if run on input (m∗, d∗ = H′(m∗)),
and game G3 if run on uniformly random input (m∗, d∗) $← {0, 1}n+m, hence

|Pr[GB
2 ⇒ 1 | b = 1]− Pr[GB

3 ⇒ 1]| = |Pr[m∗ $← {0, 1}n, d∗ = H′(m∗), b ← D1(m∗, d∗) : b = 1]
− Pr[(m∗, d∗) $← {0, 1}n+m, b ← D1(m∗, d∗) : b = 1|

≤ 2(qH′ + qD) ·
√

Pr[HD1
1 ⇒ 1] .

Likewise, D0 issues at most qH′ + qH + qD queries to H′ × H, and perfectly simulates game G2 for
bit b = 0 if run on input (m∗, (d∗,K∗) = H′ × H(m∗)), and game G3 if run on uniformly random input
(m∗, d∗,K∗) $← {0, 1}2n+m, hence

|Pr[GB
2 ⇒ 0 | b = 0]− Pr[GB

3 ⇒ 1]| ≤ 2(qH′ + qH + qD) ·
√

Pr[HD0
0 ⇒ 1] .

So far, we established

|Pr[GB
2 ⇒ 1]− 1/2| ≤ (qH′ + qD) ·

√
Pr[HD1

1 ⇒ 1] + (qH′ + qH + qD) ·
√

Pr[HD0
0 ⇒ 1] .

To upper bound Pr[HDb
b ⇒ 1], consider the sequence of games given in Figure 32.

Games G4,b. Games G4,b are reformulations of games Hb that do not use the helper adversaries Db
anymore. Game G4,b differs from Hb only in the following way: Game Hb randomly picks one of the
queries to H′ (or, respectively, H′ × H) that Db issued, including all implicit queries, i.e., the classical
queries that were triggered by B’s queries to QDecaps⊥m . Game G4,b excludes those implicit queries and
picks only amongst the explicit queries to H′ (H′ × H) that B issued.

Note, however, that Db loses in game Hb if the game randomly picks one of the queries that were
triggered by B’s queries to QDecaps⊥m: Db rejects queries to QDecaps⊥m on ciphertexts of the form
(c∗, d), and aborts if QDecaps⊥m is queried on a ciphertext (c, d) 6= (c∗, d∗) such that Dec1(sk, c) = m∗,
hence no query to QDecaps⊥m could possibly trigger a query to H′ (H′ × H) on m∗, and

Pr[HDb
b ⇒ 1] ≤ Pr[GB

4,b ⇒ 1] .

31



D|H〉,|H
′〉

1 (m∗, d∗)
01 (pk, sk)← Gen1
02 c∗ := Enc1(pk,m∗)
03 K∗ $← {0, 1}n

04 b′ ← BQDecaps⊥m ,|H〉,|H
′〉(pk, (c∗, d∗),K∗)

05 return b′

GAME H1
06 (m∗, d∗) $← {0, 1}n+m

07 i $← [qH′ + qD]
08 Run D|H〉,|H

′〉
1 (m∗, d∗) until the ith query |m̂〉 to |H′〉

09 if i > number of queries to |H′〉
10 return 0
11 else
12 m′ ←Measure(|m̂〉)
13 return Jm′ = m∗K

D|H〉,|H
′〉

0 (m∗, d∗,K∗)
14 (pk, sk)← Gen1
15 c∗ := Enc1(pk,m∗)
16 b′ ← BQDecaps⊥m ,|H〉,|H

′〉(pk, (c∗, d∗),K∗)
17 return b′

GAME H0
18 (m∗, d∗,K∗) $← {0, 1}2n+m

19 i $← [qH′ + qH′ + qD]
20 Run D|H×H′〉

0 (m∗, d∗,K∗) until the ith query |m̂〉 to |H×H′〉
21 if i > number of queries to |H× H′〉
22 return 0
23 else
24 m′ ←Measure(|m̂〉)
25 return Jm′ = m∗K

Figure 31: Adversaries Db and games Hb (b ∈ {0, 1}) for the proof of Theorem 4.5. QDecaps⊥m is
defined as in game G2, see Figure 30.

GAMES G4,1, G5,1
01 (m∗, d∗,K∗) $← {0, 1}2n+m

02 i $← [qH′ ]
03 (pk, sk)← Gen1
04 c∗ := Enc1(pk,m∗)
05 Run BQDecaps⊥m ,|H〉,|H

′〉(pk, (c∗, d∗),K∗)
until the ith query |m̂〉 to |H′〉

06 if i > number of queries to |H′〉
07 return 0
08 else
09 m′ ←Measure(|m̂〉)
10 return Jm′ = m∗K

GAMES G4,0, G5,0
11 (m∗, d∗,K∗) $← {0, 1}2n+m

12 i $← [qH′ + qH′ ]
13 (pk, sk)← Gen1
14 c∗ := Enc1(pk,m∗)
15 Run BQDecaps⊥m ,|H〉,|H

′〉(pk, (c∗, d∗),K∗)
until the ith query |m̂〉 to |H× H′〉

16 if i > number of queries to |H× H′〉
17 return 0
18 else
19 m′ ←Measure(|m̂〉)
20 return Jm′ = m∗K

QDecaps⊥m((c, d) 6= (c∗, d∗)) �G4,b
21 if c = c∗
22 return ⊥
23 m′ := Dec1(sk, c)
24 if m′ = m∗
25 ABORT
26 if m′ 6= ⊥ and H′(m′) = d
27 return K := H(m′)
28 else return ⊥

QDecaps⊥m((c, d) 6= (c∗, d∗)) �G5,b
29 if c = c∗
30 return ⊥
31 m′ := Dec1(sk, c)
32 if m′ = m∗
33 ABORT
34 if ∃m ∈ Roots(H′(X)−d) s.t. Dec1(sk, c) = m
35 return K := H(m).
36 else return ⊥

Figure 32: Games G4,b and G5,b (b ∈ {0, 1}) for the proof of Theorem 4.5.

Game G5,b. In games G5,b, the oracle QDecaps⊥m is changed such that it does not make use of the
secret key any longer (except for line 34 by testing if Dec1(sk, c) = m for given c and messages m).
Recall that H′ = H(X) is a random polynomial of degree 2qH′ over F2n . Therefore, given that (c, d) is
a valid encapsulation (i.e., m′ ∈ M and d = H′(m′), for m′ := Dec1(sk, c)), m′ lies within the roots of
H′(X)− d. In order to show that QDecaps⊥m returns the same output in games G4,b and G5,b for every
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query (c, d) 6= (c∗, d∗), we only need to consider the cases where c 6= c∗ and m′ := Dec1(sk, c) 6= m∗.

• Case 1: QDecaps⊥m(c, d) returns ⊥ in Game G5,b, meaning that m′ 6∈ Roots(H′(X) − d). That
latter happens iff H′(m′) 6= d or m′ = ⊥, which is exactly the condition that QDecaps⊥m(c, d)
returns ⊥ in Game G4,b.

• Case 2: QDecaps⊥m(c, d) does not return ⊥ in Game G5,b, meaning that m′ ∈ Roots(H′(X)− d)
and Dec1(sk, c) = m′. Consequently, H′(m′) = d and QDecaps⊥m(c, d) returns K = H(m′) in
Games G5,b. The latter is again exactly the condition that QDecaps⊥m(c, d) returns K = H(m′) in
Game G4,b.

It is easy to verify that the equivalence of QDecaps⊥m in the two games follows by negation and combining
both cases. We have just shown

Pr[GB
5,b ⇒ 1] = Pr[GB

4,b ⇒ 1] .

For b ∈ {0, 1}, we give adversaries Ab against the OW-PCA security of PKE1 in Figure 33, simulating
games G5,b for B.

We stress that while both adversaries do not check whether Dec1(sk, c) = m∗ during their simulation
of QDecaps⊥m(c, d), this does not change B’s view since GB

5,b ⇒ 1 implies that no such query exists.
Hence,

Pr[GB
5,b ⇒ 1] = AdvOW-PCA

PKE1
(Ab) .

Note that both adversaries issue at most 2qDqH′ Pco-queries: For each query of B to QDecaps⊥m on
(c 6= c∗, d), both A0 and A1 compute the set Roots(H′(X) − d) of complex roots, which has 2qH′ − 1
elements since H′(X)− d is a polynomial of degree 2qH′ − 1. In the worst case, they need to check for
every element m′ of Roots(H′(X)− d) whether Pco(m′, c) = 1.

APco
1 (pk, c∗)

01 (d∗,K∗) $← {0, 1}n+m

02 i $← [qH′ ]
03 Run BQDecaps⊥m ,|H〉,|H

′〉(pk, (c∗, d∗),K∗)
until the ith query |m̂〉 to |H′〉

04 if i > number of queries to |H′〉
05 return ⊥
06 else
07 m′ ←Measure(|m̂〉)
08 return m′

APco
0 (pk, c∗)

09 (d∗,K∗) $← {0, 1}n+m

10 i $← [qH′ + qH′ ]
11 Run BQDecaps⊥m ,|H〉,|H

′〉(pk, (c∗, d∗),K∗)
until the ith query |m̂〉 to |H× H′〉

12 if i > number of queries to |H× H′〉
13 return 0
14 else
15 m′ ←Measure(|m̂〉)
16 return m′

QDecaps⊥m((c, d) 6= (c∗, d∗))
17 if c = c∗
18 return ⊥
19 if ∃m ∈ Roots(H′(X)− d) s.t. Pco(m, c) = 1
20 return K := H(m).
21 else return ⊥

Figure 33: Adversaries Ab (b ∈ {0, 1}) against OW-PCA for the proof of Theorem 4.5.

Collecting the probabilities and folding adversaries A0 and A1 into one single adversary A proves the
theorem.

4.3.2 Transformation QU 6⊥m: from OW-PCA to IND-CCA in the QROM

QU 6⊥m transforms an OW-PCA secure public-key encryption scheme into an IND-CCA secure key encapsu-
lation mechanism with implicit rejection.
The Construction. To a public-key encryption scheme PKE1 = (Gen1,Enc1,Dec1) with message
space M = {0, 1}n, and hash functions H : {0, 1}∗ → {0, 1}n and H′ : {0, 1}n → {0, 1}n, we associate
QKEM6⊥m = QU 6⊥m[PKE1,H,H′] = (QGen := Gen6⊥,QEncapsm,QDecaps 6⊥m). Algorithm Gen6⊥ is given in
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Figure 12 and the remaining algorithms of QKEM6⊥m are defined in Figure 34. We stress again that hash
function H′ has matching domain and range.

QEncapsm(pk)
01 m $←M
02 c ← Enc1(pk,m)
03 d := H′(m)
04 K := H(m)
05 return (K , c, d)

QDecaps 6⊥m(sk′ = (sk, s), c, d)
06 m′ := Dec1(sk, c)
07 if m′ = ⊥ or H′(m′) 6= d
08 return K := H(s, c, d)
09 else return K := H(m′)

Figure 34: IND-CCA-secure key encapsulation mechanism QKEM6⊥m = QU 6⊥m[PKE1,H,H′].

Security. The following theorem establishes that IND-CCA security of QKEM6⊥m reduces to the OW-PCA
security of PKE1, in the quantum random oracle model.

Theorem 4.6 (PKE1 OW-PCA QROM⇒ QKEM6⊥m IND-CCA). If PKE1 is δ1-correct, so is QKEM6⊥m. Further-
more, assume PKE1 to be rigid. For any IND-CCA quantum adversary B issuing at most qD (classical)
queries to the decapsulation oracle QDecaps6⊥m, at most qH queries to the quantum random oracle |H〉
and at most qH′ queries to the quantum random oracle |H′〉, there exists an OW-PCA quantum adversary
A issuing 2qDqH′ queries to oracle Pco such that

AdvIND-CCA
QKEM6⊥m

(B) ≤ (2qH′ + qH + 2qD) ·
√

AdvOW-PCA
PKE1

(A) + δ1 ,

and the running time of A is about that of B.

The proof is almost the same as the one of Theorem 4.5. The crucial observation is that in all games
of the proof of Theorem 4.5, the simulation of QDecaps⊥m always knows if a given ciphertext (c, d) is
valid or not. If it is not valid, it returns ⊥. So for the proof of Theorem 4.6 one can simply replace ⊥ by
H(s, c, d). (The difference to the proof of Theorem 3.3 is the value d in the ciphertext that throughout
the proof helps with the recognition of invalid ciphertexts.)

4.4 The resulting KEMs
For concreteness, we combine transformations T and {QU⊥m,QU6⊥m} from the previous sections to obtain
QFO⊥m = T ◦ QU⊥m and QFO 6⊥m = T ◦ QU6⊥m. To a public-key encryption scheme PKE = (Gen,Enc,Dec)
with message spaceM = {0, 1}n and randomness space R, and hash functions G :M→R, H : {0, 1}∗ →
{0, 1}n and H′ : {0, 1}n → {0, 1}n, we associate

QKEM⊥m = QFO⊥m[PKE,G,H,H′] := QU⊥m[T[PKE,G],H,H′] = (Gen,QEncapsm,QDecaps⊥m)
QKEM6⊥m = QFO 6⊥m[PKE,G,H,H′] := QU 6⊥m[T[PKE,G],H,H′] = (Gen6⊥,QEncapsm,QDecaps 6⊥m).

Algorithm Gen6⊥ is given in Figure 12 and the remaining algorithms are given in Figure 35.
The following table provides (simplified) concrete bounds of the IND-CCA security of KEM ∈

{QKEM6⊥m,QKEM⊥m} in the quantum random oracle model, directly obtained by combining Theorems
4.4–4.6. Here qRO := qG + qH + q′H counts the total number of (implicit and explicit) queries to the
quantum random oracles G, H and H′.

KEM Concrete bound on AdvIND-CCA
KEM (B) ≤

QKEM6⊥m , QKEM⊥m 8qRO

(√
q2

RO · δ + qRO ·
√

AdvOW-CPA
PKE (A) + qRO · δ

)
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QEncapsm(pk)
01 m $←M
02 c := Enc(pk,m; G(m))
03 K := H(m)
04 d := H′(m)
05 return (K , c, d)

QDecaps⊥m(sk, c, d)
06 m′ := Dec(sk, c)
07 if c = Enc(pk,m′; G(m′)) and H′(m′) = d
08 return K := H(m′)
09 else return ⊥

QDecaps 6⊥m(sk′ = (sk, s), c, d)
10 m′ := Dec(sk, c)
11 if c = Enc(pk,m′; G(m′)) and H′(m′) = d
12 return K := H(m′)
13 else return K := H(s, c, d)

Figure 35: IND-CCA secure QKEM⊥m and QKEM6⊥m obtained from PKE.
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