
1

Implementation and Evaluation of a Lattice-Based
Key-Policy ABE Scheme

Wei Dai∗, Yarkın Doröz∗, Yuriy Polyakov†, Kurt Rohloff†, Hadi Sajjadpour†,
Erkay Savaş†‡ and Berk Sunar∗

∗ Worcester Polytechnic Institute, Worcester, MA, USA 01609
Email: {wdai, ydoroz, sunar}@wpi.edu
† NJIT Cybersecurity Research Center

New Jersey Institute of Technology, Newark, NJ, USA 07102
Email: {polyakov, rohloff, ss2959, savas}@njit.edu
‡ Sabancı University, Tuzla, Istanbul, Turkey 34956

Email: erkays@sabanciuniv.edu

Abstract

In this paper, we report on our implementation of a lattice-based Key-Policy Attribute-Based Encryption (KP-
ABE) scheme, which uses short secret keys. The particular KP-ABE scheme can be used directly for Attribute-Based
Access Control (ABAC) applications, as well as a building block in more involved applications and cryptographic
schemes such as audit log encryption, targeted broadcast encryption, functional encryption, and program obfuscation.
We adapt a recently proposed KP-ABE scheme [1] based on the Learning With Errors (LWE) problem to a more
efficient scheme based on the Ring Learning With Errors (RLWE) problem, and demonstrate an implementation
that can be used in practical applications. Our state-of-the-art implementation on graphics processing units (GPUs)
shows that the homomorphic public key and ciphertext evaluation operations, which dominate the execution time
of the KP-ABE scheme, can be performed in a reasonably short amount of time. Our practicality results also hold
when scaled to a relatively large number of attributes. To the best of our knowledge, this is the first KP-ABE
implementation that supports both ciphertext and public key homomorphism and the only experimental practicality
results reported in the literature.

Index Terms

lattice-based cryptography, attribute-based encryption, GPU computing, RLWE

I. INTRODUCTION

Attribute-Based Encryption (ABE) is a public key cryptographic scheme that enables the decryption of a ciphertext
by a user only if a certain access policy defined over attributes is satisfied. ABE is introduced in [2] as a
generalization of identity-based encryption (IBE) [3]. The concept of ABE is improved to incorporate fine-grain
access control in [4], [5]. By enforcing more general access policies, ABE schemes are becoming a source of
interest in academia and industry as ABE restricts access to sensitive data without relying on a central access
control system. Besides supporting access control applications, ABE can be used to implement other interesting
applications such as audit log encryption and targeted/broadcast encryption [4].

ABE has two main flavors of constructions: Ciphertext-Policy ABE (CP-ABE) and Key-Policy ABE (KP-ABE).
CP-ABE has been more widely studied and implemented in the literature [5]–[9]. In CP-ABE, an access policy is
incorporated into a ciphertext, and a secret decryption key is generated for a subset of attributes held by a user. If
a user holds attributes that satisfy the access policy, she can decrypt ciphertext encrypted under that policy. In this
model, access policy needs to be known before the encryption and secret keys are bound to a subset of attributes.
On the other hand, KP-ABE [2], [4], [10], allows a message to be encrypted using the attribute values as public
keys. And a secret key is generated for a particular access policy defined over the set of attributes. (See Fig. 1 for
a representation of this workflow.) Importantly, the access policy may not be known at the time of encryption and
can be defined later.

Two classes of cryptographic primitives are generally used in the construction of ABE schemes: bilinear pairings
and lattices. The majority of ABE schemes are based on bilinear pairings [3], including [4], [7], [11]–[13]. Software

2

Message Encryption

Attributes Acces Policy

Evaluation

Key Generator Policy Keys

Decryption Message

f

fx
µ C Cf

αf

µ

SENDER PROXY/
RECEIVER

RECEIVER

PKG

Fig. 1: Block diagram of KP-ABE Scheme

implementations of pairing-based ABE constructions are reported in [5], [9], [14]. Most prior bilinear pairing
implementations support CP-ABE schemes. Other ABE schemes are based on lattices with hardness assumptions
of Learning With Errors (LWE), Short Integer Solution (SIS) or inhomogeneous SIS [15]–[18]. Several lattice-based
ABE schemes are known, including a CP-ABE scheme in [19] and a KP-ABE scheme in [1].

In this work, we develop and implement a Ring Learning With Errors (RLWE) based variant of the LWE-
based KP-ABE scheme proposed in [1]. Several novel properties of the original LWE variant, which remain in
our construction, constitute our main motivation of its selection for implementation. First, the key homomorphism
property allows public keys and ciphertexts to be evaluated over an access policy. Second, the scheme’s complexity
and sizes of keys depend only on the depth of the policy circuit rather than the size [1], which is beneficial to
its efficient implementation and ultimately its usability in real-world applications. Third, the scheme can be used
as a building block in different applications, including garbled circuits as suggested in [1], functional encryption
[20] and token-based program obfuscation [21]. Last, the construction is considered post-quantum as it is based on
lattice problems that are believed to be secure against quantum computer attacks.

A key concept in the scheme in [1] is a key homomorphism property that supports homomorphic computations
over public keys associated with attributes. By leveraging this property, ciphertexts and public keys can be homo-
morphically evaluated over a circuit which is determined by an access policy (represented as a policy circuit), to
compute a new (and compressed) public key and new ciphertexts that can only be decrypted under that policy. In
Fig. 1, a ciphertext C, for message µ encrypted under a set of attributes x, is homomorphically evaluated over
the policy circuit f to obtain a new ciphertext under f (Cf) that can be decrypted only by using the policy secret
key αf . Typically, ABE schemes require a trusted third party known as private key generator (PKG in Fig. 1)
that generates decryption keys. The homomorphic ciphertext evaluation is a public operation (requiring no secret
information) and can be performed by either the receiver or a proxy. In a typical application scenario where an access
policy is shared by multiple users (e.g., publish-subscribe networks), a proxy can be deployed to homomorphically
evaluate ciphertexts under that policy. This avoids the repetition of the same operation by multiple users and helps
resource-constrained receivers that cannot perform expensive homomorphic evaluations themselves.

An efficient implementation of such a scheme is technically challenging due to the difficulty in implementing
the powerful key and ciphertext homomorphism properties. Given the computation and bandwidth complexity
of KP-ABE schemes, an alternative platform, such as FPGAs, application-specific integrated circuits (ASIC) or
GPUs, needs to be employed. With continuous architectural improvements in recent years, GPUs have evolved
to highly parallel, multi-threaded, many-core processor systems with tremendous computing power that serve a
vast of computational problems outside of the graphics domain. Compared to FPGAs and ASICs, GPUs are better
supported on existing computing platforms, e.g. Amazon AWS cloud computing service; and yield higher efficiency
when normalized by price, e.g. in [22] each number theoretic transform (NTT) costs 0.05 microseconds on a $5,000
FPGA, whereas takes only 0.15 microseconds on a $200 GPU. Besides, the computation in our construction can
be parallelized, which encourages us to choose a GPU implementation.
Our Contribution. The primary goal of this paper is to demonstrate that a KP-ABE system can be made practical
by leveraging acceleration techniques and hardware at both algorithmic and implementation levels. To the best of
our knowledge, we provide the first implementation of the KP-ABE system proposed in [1] (or its variants).

First, we propose an RLWE-based construction of KP-ABE, which is a more efficient variant of the LWE-based
construction in [1].

Second, we design and implement parallel algorithms tailored to take full advantage of GPUs. We particularly

3

focus on using GPU algorithms and techniques to accelerate the ABE encryption and homomorphic evaluation
operations because these operations are computational bottlenecks. The other ABE operations are either already fast
(i.e., decryption) or performed occasionally (i.e., private key generation or setup). We compare our experimental
GPU results for bottleneck ring operations with prior results in the literature. The comparison shows that our
GPU implementation of ring multiplication, which dominates all ABE operations, outperforms all other GPU
implementations. Our timing results clearly confirm our claim that a sophisticated KP-ABE scheme such as the
one in [1] can, indeed, be made practical.

Third, we also quantify the noise growth in the ciphertext, which can be a factor that limits the feasibility of the
scheme. We observe that the noise grows faster than the estimates based on the Central Limit Theorem because the
main exponential term in the correctness constraint is not zero-centered. To reduce the noise growth, we propose a
new technique based on the balanced non-adjacent form (NAF) of integers to transform the main exponential term
to a zero-centered representation.

Last, the efficient implementation in this work has valuable impact on other research works. As a recent CP-
ABE scheme based on the LWE problem [19] uses a similar construction to [1], we can extend our construction
to implement a CP-ABE scheme. Also as shown in [23], the secret key of the access policy (function) in KP-ABE
corresponds to the garbled circuit of this function; and the ciphertext encrypting attribute vector corresponds to
the garbled input in the reusable garbled circuit scheme. In conjunction with obfuscation schemes such as the
one in [21], KP-ABE can be used as a building block to implement token-based obfuscation. Considered as a
generalization of ABE, predicate-based encryption (PBE) schemes [24], [25] benefit from efficient implementation
of KP-ABE. Also, our GPU implementation of polynomial ring multiplication offers great acceleration to other
lattice-based cryptosystems, e.g. homomorphic encryption schemes.
Organization. The rest of the paper is organized as follows: Section II gives an overview of related works in the
literature. Preliminaries and necessary background are provided in Section III. The basics of KP-ABE schemes are
presented in Section IV. Our RLWE-based KP-ABE construction is explained in Section V. Section VI provides
the formulas and algorithms for homomorphic evaluation of public keys and ciphertext over simple gates as well
as a benchmark circuit that represents access policy circuits of various depths. Section VII discusses the parameter
selection for our experiments. Implementation details are given in Section VIII. Execution time results are provided
and analyzed in Section IX. The paper is concluded in Section X.

II. RELATED WORK

Our implementation is based on the KP-ABE construction in [1], which in its original form is hardly practical.
To improve the efficiency of the original scheme, we introduce the following major design changes:
• Our implementation uses the RLWE-based (polynomial ring) construction rather than the LWE-based (matrix)

construction in [1]. The use of polynomial rings significantly reduces the space and runtime requirements, as
illustrated in [26]. The size of keys is reduced by more than 3 orders of magnitude and runtimes are improved
by up to a factor of 10.

• We use a binary non-adjacent form (NAF) of integers to represent the bit decomposition matrix, the norm of
which is used as the base of exponential function to bound the noise growth of the KP-ABE scheme. The NAF
form leads to a zero-centered representation of bit decomposition matrix. In the original construction [1], the
conventional representation with the mean of 0.5 is used. The NAF form allows us to reduce the bit-length
requirement for ciphertext modulus by close to 50% using the Central Limit Theorem.

The motivation behind selecting the RLWE-based construction in our work in contrast to the LWE-based approach
in [1] is to improve the efficiency while maintaining essentially the same level of security [27]. The cryptographic
primitives based on the LWE problem, which has been shown to be as hard as worst-case lattice problems such
as the shortest vector problem (SVP) and the shortest independent vector problem (SIVP) [28], generally have key
sizes and computation times that are at least quadratic in the main security parameter n. The RLWE problem deals
with public key sizes that are smaller by n, which in this case corresponds to the ring dimension, and polynomial
multiplications that can be performed using Fast Fourier Transform in O (n log n). The RLWE problem is proved
to be hard using a quantum reduction from worst-case approximate SVP on ideal lattices to the search version of
RLWE [27], [29]. It is also proved that the RLWE distribution is pseudorandom if the RLWE search problem is
hard [27].

4

TABLE I: QUALITATIVE COMPARISON OF ABE SCHEMES

Scheme Primitive Post-Quantum Access Secret key Multiple Key & Ciphertext
Policy Access Policies Homomorphism

CP-ABE [5] Pairing NO Tied to Based on One per NO
ciphertext user attributes ciphertext

KP-ABE [4] Pairing NO Can be determined Per policy Many NO
after encryption Supported

KP-ABE this work Lattice YES Can be determined Per policy Many YES
after encryption Supported

Table I compares the ABE scheme implemented in our work with existing bilinear pairing ABE schemes [4],
[5]. As a particular access policy is used to construct a public key in a CP-ABE scheme [5] to encrypt a message,
the policy must be known before the encryption and cannot be changed later. Thus, for every access policy a new
ciphertext must be generated by the user since the access policy is an integral part of the ciphertext and neither
ciphertext nor key homomorphism is supported in CP-ABE. In KP-ABE [4], on the other hand, a set of attribute
values is used as the public key in encryption. The ciphertext, therefore, incorporates these attributes values, over
which any access policy can be defined later. In [4], in which KP-ABE is first introduced, a user holding a policy
key can decrypt a ciphertext only if the attribute values in the ciphertext satisfy his policy. Decryption consists
of expensive operations that must be repeated by users even if they share the same access policy key as the
bilinear pairing-based KPE-ABE construction in [4] does not support homomorphic operations over public key and
ciphertext. Thanks to these homomorphism properties, which can only be supported in lattice-based constructions (as
shown in [1] and efficiently implemented in this work), the original ciphertext can be homomorphically processed
under an access policy to generate a shorter ciphertext that can be efficiently decrypted by all users holding the
policy key. Therefore, our KP-ABE scheme is flexible and suitable for a much more diverse set of applications.

An important advantage of our construction based on the original scheme [1] is that the secret key is much
smaller than those of similar constructions, in which the secret key size is proportional to the size of the policy
circuit [30], [31]. Also, constructions based on multi-linear maps [32], such as [31] and the second scheme in [1],
are beyond the scope of our paper.

To the best of our knowledge, all implementations reported in the literature [5], [9], [14], [33] are CP-ABE
constructions based on bilinear pairings [3]. Since we implement a KP-ABE construction based on lattice primitives,
a direct and fair comparison of performance metrics is not possible.

Like many other ABE schemes in the literature, our construction utilizes the concept of lattice trapdoors introduced
in [15]. In trapdoor-based ABE schemes, a secret key corresponding to an access policy (KP-ABE) or a subset
of attributes (CP-ABE) is generated by a trusted third party known as a private key generator (PKG) that is in
possession of trapdoor information. Some works in the literature are devoted to improving the efficiency of trapdoor
generation [34], [35]. Applications of lattice trapdoors such as signature schemes are proved to be practical [26]
as the timing results of actual software implementations are highly promising. In our implementation, we utilize
the lattice trapdoor sampling optimizations recently proposed in [36], [37].

III. PRELIMINARIES

In this section, we provide mathematical background and preliminaries that are necessary to follow the discussions
in the paper. We also present lattice algorithms and techniques behind our implementation.

A. Mathematical Notations And Definitions

Let R = Z[x]/(xn + 1) be a cyclotomic ring, where the ring elements are polynomials of degree at most n− 1
with integer coefficients. Here, the ring dimension n is a power of 2 for efficient ring arithmetic. Let Rq = R/qR
be a ring where the arithmetic operations on polynomial coefficients are performed modulo q and coefficients are
represented as integers in the interval (−bq/2c, bq/2c]. R2 is the ring of binary polynomials; R3 is the ring of
ternary polynomials with coefficients in {−1, 0, 1}. Let Zq = Z/qZ be a ring of integers in the interval [0, q − 1]

5

and Fq denote a special case of Zq where q forms a finite field. R1×m
q , Rmq , and Rm×mq stand for row vector,

column vector and matrix of ring elements in Rq, respectively, for an integer m > 1.
Throughout the paper, we use boldface symbols to denote vectors and matrices, e.g. a = (a0, a1, . . . , an−1),

where ai ∈ Zq or ai ∈ Rq, while regular small-case letters usually denote single elements. We use the same letter
when indexing an element but change its type. For example, ai,j ∈ R are the elements of a ∈ Rm×m for i, j ∈ Zm.

Let [·]q be modulo q reduction on an integer or on coefficients of a vector, that is, [a]q = a mod q ∈ Zq or
[a]q = a mod q ∈ Znq . A polynomial in Rq can be represented as a vector in Znq with its coefficients lifted to the
interval [0, q − 1]: if a < 0, q is added to a.

Finally, k = dlog2 qe stands for the number of bits in q.
We also denote the infinity norm of a polynomial or a vector as || · ||∞ (only || · || for simplicity, i.e., the largest

absolute value of coefficients). A polynomial whose norm is below a relatively small upper bound is called a short
polynomial. Also a vector of short polynomials is called a short vector.
DΛ,c,σ denotes n-th dimensional discrete Gaussian distribution over a lattice Λ ⊂ Rn, where c ∈ Rn is the

center and σ ∈ R is the distribution parameter. Lattice sampling operation x ← DΛ,c,σ assigns the probability
ρ(x)/

∑
z∈Λ ρc,σ(z) for x ∈ Λ, where ρ = exp(−π||x− c||/σ2). When omitted, c = 0 and σ = 1.0. The discrete

Gaussian distribution DZ,c,σ is defined over integers and used as the primitive in all discrete Gaussian sampling
operations. The Gaussian distribution DR,c,σ = DZn,c,σ denotes the discrete Gaussian sampling operation applied
to cyclotomic rings.

The notation a ←U Zq, (or a ←U Znq , a ←U Rq) is used for sampling from a discrete uniformly random
distribution.

B. Ring Learning with Errors

Let r be an arbitrary (and unknown) polynomial in Rq. We consider a number of pairs of the form (ai, air+ei) ∈
R2
q , where ai ←U Rq and ei ← DR,σ with a relatively small σ > 1.0. We then define the RLWE hardness

assumptions used in the security proofs of the construction in this paper.
Definition 3.1: The search RLWE assumption is that it is hard to find r given a list of pairs (ai, air + ei) for

i = 0, . . . , t.
Definition 3.2: The decision RLWE assumption is that it is hard to distinguish polynomials (air + ei) and bi for

i = 0, . . . , t, where each bi is uniformly randomly chosen in Rq.
Informally speaking, in both definitions, t stands for the number of samples a polynomial-time adversary or

distinguisher can obtain. Related to Def 3.2, air+ ei is sometimes said to be from a pseudorandom distribution as
it is difficult to distinguish it from a uniformly randomly chosen bi.

The hardness of the RLWE assumptions depends on the choice of ring dimension n, modulus q, and norm of
ei, which is determined by the distribution parameter σ of DR,σ.

C. Gaussian Sampling for Lattice Trapdoors

A trapdoor is an extra piece of information that enables the computation of a solution to an otherwise hard
problem. In this paper, we rely on the lattice trapdoors introduced in [34]. Let A ∈ R1×m

q be a row vector of ring
elements generated using a uniformly random distribution, where m is a parameter specific to the chosen trapdoor
construction. Informally speaking, for an arbitrarily chosen β ∈ Rq, it is computationally hard to find a vector of
short polynomials α ∈ Rm×1

q that satisfies Aα = β. Furthermore, the vectors in the solution must be spherically
distributed with a Gaussian function and a distribution parameter s; namely, α← DΛ,s.

Finding such short vectors is usually referred to as a preimage (Gaussian) sampling operation for an arbitrary
syndrome β. The hardness assumption can be based on the hardness of the approximate shortest independent vector
problem, namely SIVPγ . On the other hand, a trapdoor TA for A can be used to compute such short vectors
efficiently.

We use a ring-based trapdoor construction proposed in [26] (depicted in Algorithm 1). Based on a security
parameter λ, we select parameters σ, q, k, and n; sample the secret trapdoor TA; and compute the public key A.
In this case, the trapdoor-construction parameter m = 2 + k. The vector gT = (20, 21, . . . , 2k−1) is introduced in
[34] and is referred to as the primitive vector. Using a primitive vector g we can generate a G-lattice for which

6

Algorithm 1 Trapdoor generation using RLWE [26]

function TRAPGEN(λ)
Determine σ, q, k and n
a←U Rq
ρ← [ρ1, . . . , ρk] where ρi ← DR,σ for i = 1, . . . , k
υ ← [υ1, . . . , υk] where υi ← DR,σ for i = 1, . . . , k
A← [a, 1, g1 − (aρ1 + υ1), . . . , gk − (aρk + υk)] where gi ← 2i−1 for i = 1, . . . , k
return (A,TA = (ρ,υ))

end function

Algorithm 2 Gaussian preimage sampling [34]

function GAUSSSAMP(A, (ρ,υ), β, σ, s)
p← PERTURB(n, q, s, 2σ, (ρ,υ)) ∈ Rm
z← SAMPLEG(σ, β −Ap, q) ∈ Rk
α← [p1 + ρz, p2 + υz, p3 + z1, . . . , pk+2 + zk]
return α

end function

preimage sampling can be efficiently computed. Since a prime modulus is more common in many cryptographic
schemes such as IBE and ABE, we use the preimage sampling algorithm for G-lattices with arbitrary modulus
proposed in [36], rather than the algorithm for a power-of-two modulus in [34].

To summarize, we have Aα = β, where α follows a zero-centered Gaussian distribution with distribution
parameter s. The parameter s in PERTURB operation is referred to as the spectral norm, which is defined in Section
VII.

For more insight into the trapdoor construction used in this paper, one can profitably refer to [36] for theoretical
explanation and to [37] for specific construction details.

D. Efficient Polynomial Multiplications

As our construction necessitates thousands of multiplications in Rq, where q can be a multiple-precision in-
teger, we take advantage of number-theoretic transform (NTT) and the Chinese Remainder Theorem (CRT) to
accelerate polynomial multiplications in our implementation. This method has been commonly adopted to compute
multiplications of polynomials with large coefficients, for example in [38] and [39].

NTT is obtained by performing the discrete Fourier transform over a finite field FP , where P is a prime number.
Let wN ∈ FP be a primitive N -th root of unity, which exists under the condition that N divides P −1. The N -point
NTT/INTT conversions with wN are defined as: â = NTTNwN

(a), where âi =
∑N−1

j=0 ajw
ij
N and a = INTTNwN

(â),
where ai = 1

N

∑N−1
j=0 âjw

−ij
N .

A polynomial multiplication c(x) = a(x)b(x) in R that requires modulo reduction with xn + 1, can be achieved
by the negative wrapped convolution [40] that directly computes ci =

∑i
j=0 ajbi−j−

∑n−1
j=i+1 ajbn+i−j . The method

utilizes a primitive 2n-th root of unity w2n that exists if 2n divides P − 1. Then wn = w2
2n is a primitive n-th root

of unity. Let v = (1, w2n, . . . w
n−1
2n) and v−1 = (1, w−1

2n , . . . w
−(n−1)
2n). We use NTT(a) for NTTnwn

(a � v) and
INTT(â) for INTTnwn

(â)� v−1 for simplicity, where � denotes the coefficient-wise dot product. A multiplication
in R is computed by c = INTT(NTT(a) � NTT(b)). The negative wrapped convolution still supports additions
in NTT domain.

The CRT is adopted to handle large integers. Given t pairwise coprime numbers q0, q1, . . . qt−1 and their product
Q =

∏t−1
i=0 qi, there exists an isomorphism CRT(): ZQ → Zq0 × Zq1 × · · · × Zqt−1

. For an integer a, the CRT
conversion is defined as (ã(0), ã(1), . . . ã(t−1)) = CRT(a) where ã(j) = [a]pj , and its inverse (ICRT) is a =

ICRTj∈Zt
(ã(j)) =

[∑t−1
j=0

[
ã(j) qj

Q

]
qj

Q
qj

]
Q

.

When a ring element a ∈ Rq (in polynomial representation) is transformed into ã using NTT (in the evaluation
representation), the polynomial multiplication is extremely efficient as it is performed component-wise. The trans-

7

formation operations themselves (NTT and INTT) are usually the computational bottlenecks. Therefore, provided
that the cryptographic computations permit, it is better to keep operands in the evaluation representation as long as
possible. We use this approach to accelerate cryptographic computations in this work.

IV. KP-ABE BASICS

In a KP-ABE scheme, a plaintext is encrypted under a set of attribute values, which serves as the public key of the
system whereas a private key corresponds to a specific access policy. While the original KP-ABE scheme uses integer
attributes, for the sake of simplicity, we work with binary attributes, thus a set of attributes is x = {x1, x2, . . . , x`}
where xi ∈ {0, 1}. Our construction and implementation work with integer attributes as well. For this we only
need to increase modulus size as the noise growth depends on the precision of integer attributes (see Section VI
for noise discussions). We can also support more generic attributes provided that their values are discretized (see
Example 4.1 for categorical attributes).

An access policy, usually expressed as a circuit over a set of attributes, defines the rules as to who can decrypt
the ciphertexts in the ABE scheme. Examples 4.1 and 4.2 illustrate specific use cases of access policies and the
corresponding circuits.

Example 4.1: An employee in a software company can decrypt source files in a software development project if
she meets the following requirements: If she is a developer and working on the project; or if she is an employee of
the company and has power user capabilities. Here we can obtain four binary attributes from these requirements,
namely
• x1: Is the user a developer? (YES/NO)
• x2: Is the user working on the project? (YES/NO)
• x3: Is the user an employee of the company? (YES/NO)
• x4: Is the user a power user? (YES/NO)

Then, the Boolean expression for the corresponding policy circuit is f(x1, x2, x3, x4) = (x1 ∧ x2) ∨ (x3 ∧ x4).
In our KP-ABE construction, however, we search for a circuit that outputs logical-0 when these attributes take

the required values; namely, only when x1 = x2 = 1 or x3 = x4 = 1. The Boolean expression for such a circuit is
then f(x1, x2, x3, x4) = (1− x1x2)(1− x3x4). For simplicity and generality, we adopt an arithmetic notation for
Boolean expressions.

Example 4.2: Suppose a user in a publish-subscribe system is interested in two topics (e.g., x1 and x2) and
desires a secure access to messages with these topics. A message, before published, is encrypted using its topics
as the public key. Its access policy then can be defined as the Boolean expression f(x1, x2) = x1 ∨ x2. The user
is given a secret policy key that can be used to decrypt any message that matches the topics x1 and x2. Note that
this application cannot be implemented using CP-ABE as the publisher normally does not know the subscribers’
interests.

Note that an access policy can always be expressed as a Boolean expression (or circuit) over a set of attributes
as demonstrated in Examples 4.1 and 4.2. Circuits (arithmetic or Boolean) are used as the computational model
in the original scheme as well as in all homomorphic cryptosystems. We adopt it for the access policy since the
public key and ciphertext are homomorphically evaluated over the policy circuit.

A KP-ABE scheme requires a trusted third party, PKG, that generates private keys corresponding to access
policies. For this, PKG knows some master secret, or more technically a trapdoor, to generate a private key for any
access policy.

A KP-ABE scheme is a family of functions, namely Setup, Encrypt, KeyGen, and Decrypt whose
definitions are:
• SETUP(1λ, `) → {MPK, MSK}: Given a security parameter λ and the number of attributes `, PKG generates

a master public key MPK and a master secret key MSK. MPK contains the ABE public parameters while MSK
consists of the trapdoor that is used by PKG to generate secret keys for access policies.

• ENCRYPT(µ,x,MPK) → C: Using MPK and attribute values x ∈ {0, 1}`, sender encrypts the message µ,
outputs the ciphertext C.

• KEYGEN(MSK, MPK, f) → αf : Given MSK and a policy (implemented by a Boolean circuit f : {0, 1}` →
{0, 1}), PKG generates the secret key αf corresponding to f . PKG sends αf to the receiver that is authorized
to decrypt ciphertexts encrypted under f .

8

Algorithm 3 KP-ABE Setup Operation

function SETUP(λ, `)
(A,TA)← TRAPGEN(λ)
Bi ←U R1×m

q for i = 0, 1, . . . , l
β ←U Rq
MPK ← {A, (Bi)

`
i=0, β}

MSK ← {TA}
return MPK, MSK

end function

• DECRYPT(C,αf , x̃) → µ̄: The decryption process consists of two phases: i) the homomorphic evaluation
process that transforms ciphertext C to Cf so that the latter can be decrypted by αf and ii) the actual
decryption operation that results in µ̄, which is equal to the original message µ if receiver has αf .

Naturally, decryption succeeds only if the same attribute values are used in ENCRYPT and DECRYPT (namely,
x = x̃).

A distinctive and powerful property of KP-ABE is that the policy can be determined after the encryption.
This requires, on the other hand, two technically challenging operations: homomorphic evaluation of the public
keys and ciphertexts. Our work demonstrates that they can be efficiently performed via our state-of-the-art GPU
implementation.

V. OUR CONSTRUCTION

In this section we present our construction of KP-ABE and explain KP-ABE operations in detail. We omit some
public parameters such as standard deviation σ, the modulus q, its bit length k etc. from the algorithms for the
sake of simplicity.

A. Setup

In the setup phase, PKG generates a master public key (MPK) and the corresponding master secret key MSK using
Algorithm 3. The master public key contains the vectors Bi of ring elements, which correspond to the attributes.
As previously explained, TA is a trapdoor associated with the vector A used to find a short solution α to Aα = β
for an arbitrary β ∈ Rq, where α is short in the sense that it follows a zero-centered Gaussian distribution with a
relatively small distribution parameter. Consequently, TA enables PKG to generate a secret key for a given access
policy (Section V-D).

Here, the public key A is pseudorandom and enjoys the hardness of RLWE as demonstrated in [26]. This basically
means that it is computationally infeasible to obtain TA given A and therefore only PKG can generate private
keys.

B. Encryption

In our KP-ABE construction, the encryption operation, as described in Algorithm 4, takes as input MPK, the
attribute values x ∈ {0, 1}`, and the plaintext message µ ∈ R2 and outputs the ciphertext pair Cin ∈ R

(`+2)m
q and

c1 ∈ Rq. The encryption algorithm is a variation of the dual Regev encryption algorithm, which was originally
proposed for IBE schemes in [15] and adapted to ring setting in [27]. In the dual Regev algorithm, the security is
based on RLWE hardness assumptions given in Definitions 3.1 and 3.2. The search RLWE hardness assumption
prevents an adversary from computing r ∈ Rq in the encryption whereas ciphertext components are pseudorandom
due to the decision RLWE assumption.

In Algorithm 4, G = (1, 2, 22, . . . , 2k−1, 0, 0) is the primitive row vector of constant polynomials extended by
two 0s to match the dimension of other vectors of polynomials since m = k+2. The ring element e1 and the vector
of polynomials eA are both sampled from the same discrete Gaussian distribution and they are often referred to as
error or noise components in the ciphertext, making the decryption impossible when exceeding a certain threshold.

For easy reference, we adopt the notation CA = AT s+ e0,A and Ci = (xiG + Bi)
T s+ e0,i for i = 0, 1, . . . , `,

where the latter encrypts the attribute vector x. Here, x0 = 1 is not an attribute itself but a necessary component
to implement logical gates in the policy circuit.

9

Algorithm 4 ABE Encryption Algorithm
function ENCRYPT(µ,x, MPK)
r ←U Rq; e1 ← DR,σ; eA ← DR1×m,σ

Si ←U {±1}m×m for i = 0, . . . , `
e0 ← (eTA|eTAS0|eTAS1| . . . |eTAS`)

T

Cin ← (A|(G + B0)|(x1G + B1)| . . . |(x`G + B`))
T s+ e0

c1 ← βr + e1 + µd q2e
return (Cin, c1)

end function

Algorithm 5 ABE Key Generation Algorithm [1]

function KEYGEN(A,Bf , β, MSK)
αB ← DRm,s

t← β −BfαB

αA ← GAUSSSAMP(A,TA, t)
αT
f ← (αA

T |αB
T)

return αf

end function

C. Evaluation of Public Keys and Ciphertext

Both public keys (Bi) and the ciphertexts (Ci) corresponding to attributes are homomorphically evaluated over
an access policy circuit f . This way, we can obtain a public key Bf and a ciphertext Cf that correspond to f for
x ∈ {0, 1}`:
• Public Key Evaluation: EVALPK(x,Bi, f)→ Bf ,
• Ciphertext Evaluation: EVALCT(x,Ci, f)→ Cf ,

where Bi,Bf ∈ R1×m
q ; Ci,Cf ∈ Rmq for i ∈ Z`+1.

Considering Example 4.1, we can visualize the policy f as a Boolean circuit with two NAND gates whose
outputs are connected to an AND gate. Evaluation of ciphertext leads to noise increase in the error vectors (i.e.,
e0,i), and the noise level should not exceed the threshold for the chosen ciphertext modulus q to ensure correct
decryption. All the details of homomorphic evaluation for our benchmark circuit are explained in Section VI.

D. Key Generation

The vector Cf obtained after homomorphic evaluation in the previous section can be considered as a ciphertext
encrypted under the public key Bf . Since both Cf and Bf correspond to the access policy f , we can write
Cf = BT

f s+ ef , where ||ef || > ||e0,i||.
PKG uses Algorithm 5 to generate a secret key αf corresponding to (A|Bf). Note that (A|Bf)αf = β, where

αf ∈ R2m is a vector of short ring elements. Algorithm 5 is the ring version of the algorithm in [1].

E. ABE Decryption

Decryption is defined as µ̄ = ROUND
(
c1 −αT

f (CA|Cf)
)

, where µ̄ ∈ {0, 1}n and ROUND denotes rounding
with respect to dq/2e. We can prove the correctness as follows:

c1−αT
f (CA|Cf)

=c1 − (αA
T (AT s+ e0,A) + αB

T (BT
f s+ ef))

=c1 − ((AαA + BfαB)T s+ αA
Te0,A + αB

Tef)

=βs+ e1 + µdq/2e − (βs+ αA
Te0,A + αB

Tef)

=µdq/2e+ e1 −αA
Te0,A −αB

Tef . (1)

10

If the noise term ē = e1 − αA
Te0,A − αB

Tef has an infinity norm less than q/4, the rounding operation yields
the correct plaintext µ. Therefore, correctness of the decryption operation is determined by the norm of the secret
key generated by GAUSSSAMP and the norm of the error term ef in Cf . The latter error term ef is the result of
EVALCT process.

F. Security

The proposed KP-ABE scheme is selectively secure, where the definition of selective security is introduced in [4].
The selective security requirement comes from the original LWE-based KP-ABE scheme [1]. Informally speaking,
in selective security a polynomial-time adversary first commits to a challenge attribute vector x∗, then receives
KP-ABE public key MPK and has access to a key generation oracle that returns a secret key αf corresponding to
any access policy f provided that f(x∗) 6= 0. The selective security requires that the adversary cannot distinguish,
with a non-negligible advantage, between the ciphertexts of two different messages encrypted under the challenge
attribute vector x∗. For selective security proof, an essential hardness assumption is the decisional RLWE problem.
The formal security proof, which is based on the same security games as in [1] (adapted from LWE to RLWE), is
provided in Sections XI-C, XI-D and XI-E in Appendix.

VI. EVALUATION OF PUBLIC KEYS AND CIPHERTEXT ON GATES

In this section, we explain homomorphic evaluation of public keys and ciphertext over Boolean circuits and show
how it increases the noise of ciphertexts. Noise analysis is important to determine system parameters such as ring
dimension and modulus size to ensure correctness and targeted security level.

When a (arithmetic or logic) gate is evaluated for an access policy f , we obtain a new public key Bf and a
new ciphertext Cf for the output of the gate. As a result, the noise level in the output ciphertext becomes larger
than the noise level in the input ciphertext. We need to keep the noise growth under control for correct decryption,
whereby the noise level in the resulting ciphertext must remain under the threshold q/4, as shown in the preceding
section.

For the sake of simplicity, we deal with only the first part of the ciphertext Cin as the other part c1 is not affected
by the evaluation process.

A. Arithmetic Addition/Subtraction

Suppose we have two attributes x1 and x2, then the KP-ABE encryption of message µ ∈ R2 is computed as
Cin = (A|(G + B0)|(x1G + B1)|(x2G + B2))T s + e0, where e0 = (e0,A|e0,0|e0,1|e0,2) ∈ R4m

q . We can also
partition the ciphertext as CA = AT s + e0,A and Ci = (xiG + Bi)

T s + e0,i for i = 0, 1, 2 and x0 = 1. If the
access policy is a single addition or subtraction operation, the circuit evaluation is straightforward C± = C1±C2,
B± = B1 ± B2. We can also formulate the increase in noise level in error vectors as e0,± = e0,1 ± e0,2. As
observed, the evaluation is inexpensive and the increase in noise level is additive (very limited).

B. Multiplication or Logical AND Operation

As we work with binary attributes, the multiplication and logical AND operations are identical. Using the
ciphertext inputs in Section VI-A, the multiplication operation is performed homomorphically (using the procedure
described in [1]) to yield C× = x2C1 +ΨTC2 and B× = B2Ψ, where Ψ = BITDECOMP(−B1) and BITDECOMP

stands for the bit decomposition operation over the polynomials of −B1 such that −B1 = GΨ.
Suppose that bi = bi,0 + bi,1x+ . . .+ bi,n−1x

n−1 with bi,j ∈ Zq is the i-th polynomial in −B1 and bi,j,h is h-th
bit of the j-th coefficient of bi. Then the binary polynomial ψh,i in the i-th column and h-th row of Ψ can be
computed as ψh,i = bi,0,h + bi,1,hx + . . . + bi,n−1,hx

n−1, where 0 ≤ i, h ≤ m − 1. Ψ is a matrix of dimension
m×m, whose elements are binary polynomials of degree n− 1 or less, namely Ψ ∈ Rm×m2 . We denote the j-th
coefficient of ψh,i as ψh,i,j .

The noise in the output ciphertext C× has the following form e0,× = x2e0,1 + ΨTe0,2. The dominant factor
in noise growth is due to the term ΨTe0,2, which is a matrix-vector product of ring elements. The statistical
properties of the binary decomposition matrix result in fast increase in the noise. As Ψ consists of vectors in R2

and recalling B1 is a uniformly randomly generated vector of polynomials, the coefficients of the polynomials in

11

Algorithm 6 NAF Bit Decomposition Operation
function NAFDECOMP(−B)

for i = 0 to m− 1 and j = 0 to n− 1 do
y ← bi,j
for h = 0 to m− 1 do

if y is odd then
z ← 2− (y mod 4); y ← y − z

else
z ← 0

end if
ψh,i,j ← z; y ← y/2

end for
end for
return Ψ

end function

Algorithm 7 Evaluation of Binary NAND Trees

function EVALBENCHMARK(CA,Ci,Bi, x̄, `)
for i = 1 to `− 1 do

x̄`+i ← (1− x̄2i−1x̄2i)
Ψi ← NAFDECOMP(−B2i−1)
B`+i ← B0 −B2iΨi

C`+i ← C0 − x̄2iC2i−1 −ΨT
i C2i

end for
return Bf = B2`−1, Cf = C2`−1

end function

Ψ are distributed with the mean of 0.5 and standard deviation of 0.5. Therefore, a small non-zero mean in e0,2

will contribute to a considerable increase in the mean and standard deviation of e0,×.
To limit the noise growth, we use a binary non-adjacent form (NAF) of integers in the construction of bit

decomposition matrix as explained in Algorithm 6. Binary NAF, which uses -1 in addition to 0 and 1 to represent
integers, produces a Ψ in which coefficients of the polynomials are distributed with zero mean, since binary NAF
is a balanced representation. For a better understanding of how binary NAF reduces noise growth, please refer to
Section XI-C in Appendix.

NAND gates are universal in the sense that any Boolean function can be realized using only NAND gates.
A NAND gate can be obtained using one subtraction and multiplication operation: ¬(x1 ∧ x2) = 1 − x1x2.
Then, the homomorphic evaluation of a NAND gate can be performed as CNAND = C0 − x2C1 − ΨTC2 and
BNAND = B0−B2Ψ. More information regarding the homomorphic evaluation of gates is included in Sections XI-A
and XI-B in Appendix.

We are interested in a benchmark circuit consisting of only NAND gates. More specifically, our benchmark circuit
has a topology of a binary tree. A generic algorithm of public key and ciphertext evaluation of binary NAND tree
circuits is illustrated in Algorithm 7. See also Table VII for our estimates of modulus sizes and ring dimensions
for several specific numbers of attributes.

Our NAND gate circuit provides an ultimate benchmark as only the depth of the policy circuit determines the
complexity of the KP-ABE scheme implemented here. To assess the performance of the KP-ABE scheme for any
other policy circuit, all one needs to do is to consider its depth and check the implementation results provided in
this paper for the benchmark circuit of the same depth.

12

VII. SETTING THE PARAMETERS

A. Distribution Parameter σ

The smoothing (distribution) parameter σ used in DR,σ can be estimated as σ ≈
√

ln(2nm/ε)/π, where nm is
the maximum ring dimension and ε is the bound on the statistical error introduced by each randomized-rounding
operation [34]. For nm ≤ 214 and ε ≥ 2−80, the value of σ ≈ 4.578.

B. Spectral Norm s

The spectral norm s satisfies: s > C · σ2 · (
√
nk +

√
2n + 4.7), where C is a constant that can be found

empirically [37]. In our experiments we used C = 1.80.

C. Ciphertext Modulus q

The correctness constraint for the NAND gate-only circuit in Section VI-B, which is used as a benchmark for
our experiments, can be written as:

q > 4
(√
mn∆α {∆f + ∆σ}+ ∆σ

)
, (2)

where ∆α and ∆f represent upper bounds for the norm of the secret key for the policy (αf) and the norm of
the noise in the ciphertext at the output of the policy circuit (Cf), respectively. This constraint can be derived
from expression (1) by applying the Central Limit Theorem (assuming that mn zero-centered independent random
variables are added). Here, ∆σ =

√
εσσ denotes the bound for DRm,σ and ∆α =

√
εαs (both εσ and εα have the

same meaning as εf introduced in the next paragraph).
The noise norm in the ciphertext can be given as ∆f = ωf + σf ·

√
εf , where ωf and σf are the mean and

standard deviation, respectively, of the distribution ef , which determines the error term in the ciphertext (1). The
probability of ef being larger than ∆f is 2−εf , which is negligible for εf = 128.

For a single NAND gate, the output error eNAND is determined essentially by the matrix-vector product ΨTe,
where e represents the noise in its input. Assuming we deal with independent random variables, the matrix-vector
product leads to a distribution with the mean and standard deviation of

(ωNAND, σNAND) =
(
mnωeωψ,

√
mn(σ2

eσ
2
ψ + σ2

eω
2
ψ + ω2

eσ
2
ψ)
)
,

where (ωψ, σψ) represents the distribution of the decomposition matrix Ψ.
In the original bit decomposition algorithm, (ωψ, σψ) = (0.5, 0.5), whereas (ωψ, σψ) = (0, 0.58) in the proposed

NAF representation of Ψ. Having ωψ = 0 in the NAF representation results in significant reduction in the output
noise. Indeed, we have σNAND � ωNAND and σ2

eσ
2
ψ � σ2

eω
2
ψ + ω2

eσ
2
ψ as Ψ and e are both zero-centered, and hence

σNAND ≈
√
mnσeσψ. This implies that for a single NAND gate, ∆f ≈

√
εfmnσe.

We can iteratively apply the same logic to derive σe for each level, and obtain the following upper bound estimate
for a benchmark circuit of depth d (i.e., 2d attributes):

∆f ≈
√
εfσ
(√
mn
)d
. (3)

After substituting (3) into (2) and incorporating √εα · εf into an empirical parameter C1 (with some “slack”
added for neglected terms), we have:

q > 4C1sσ
(√
mn
)d+1

. (4)

We used ∆f � ∆σ to simplify the expression (2). For our parameter analysis, we set C1 = 128 as the main
value.

Note that expressions (3) and (4) can be applied because we rely on the NAF representation for Ψ. If we were to
use the original binary representation for a benchmark circuit of depth d, the distribution parameters of the output
ciphertext Cf would be given as (ωf , σf) = ((ω(d), σ(d)), where

(ω(i), σ(i)) =
(
mnω(i−1)ωψ,

√
mn(σ2

(i−1)σ
2
ψ + σ2

(i−1)ω
2
ψ + ω2

(i−1)σ
2
ψ)
)

for i = 1, 2, . . . , d, where (ω(0), σ(0)) stand for the error distribution of the input ciphertext. It is easy to see that
∆f would be O

(
(mn)d

)
, which would almost double the bitwidth requirement for q as compared to (3).

13

TABLE II: EXECUTION TIMES (IN ms) OF KP-ABE OPERATIONS ON A COMPUTER WITH AN INTEL CORE(TM)
i7-4720HQ CPU @2.6 GHz RUNNING UBUNTU 16.04 TLS USING THE PALISADE LIBRARY IN [37], [44],
[45]

` KEYGEN ENCRYPT EVALCT + EVALPK DECRYPT

2 94 69 311 3.6
4 156 123 1,081 5.48
8 166 259 3,365 6.19

D. Ring Dimension n

For the RLWE hardness assumptions to hold, the values of n and q can be selected using the inequality derived
in Section XI-C in Appendix, namely, n ≥ log2(q/σ)

4 log2(δ) . Here, δ is the root Hermite factor: a measure of lattice security
that can be mapped to the number of bits of security. In a seminal work by Chen and Nguyen [41], it is claimed that
the lattice security is largely determined by the root Hermite factor. In another work by Lindner and Peikert [42],
a formulation is given for the lattice security based on δ as tBKZ = 1.8/ log2(δ)− 110, where tBKZ is the estimated
running time of the BKZ algorithm [43]. For instance, the value of δ = 1.006 corresponds to about 100 bits of
security.

VIII. IMPLEMENTATION DETAILS

In this section we explain our GPU implementation of the RLWE KP-ABE scheme. Table II shows the CPU
execution times of KP-ABE operations obtained using the PALISADE library [37], [44], [45]. The timing figures
suggest that the homomorphic ciphertext and public key evaluation (Algorithm 7) and encryption (Algorithm 4)
operations do not scale well on a CPU. Decryption operation is already fast. Key generation can be made faster
using a GPU, but as it is only performed occasionally per policy, it is not a performance bottleneck in the KP-ABE
implementation. Therefore, we focus on implementing only homomorphic evaluation and encryption operations on
a GPU.

Before delving into technical details, we start with a high-level outline. ABE encryption and evaluation operations
both perform many multiplication operations in Rq. A GPU is the ideal platform since ABE requires thousands of
multiplications which are amenable to parallelization. We decide to follow the approach in [46], [39] and [47] that
relies on integer arithmetic and is faster than nearly all floating-point-based GPU implementations, such as [48],
[49], [38]. Although the performance reported in [46] seems to be slower than [38], our implementation is faster
than [46] and outperforms any other implementations reported in the literature including [38]. A more detailed
comparison of this work to cuFFT-based algorithms and [38] is provided in Section IX.

We implemented an NTT-based fast negative wrapped convolution algorithm for multiplication in Rq that is
customized for our scheme, based on the code in the cuHE library [39]. However, as the method has a general
limitation on coefficient size, we adopted the CRT to break any high-norm polynomial into t parallel low-norm
polynomials. Any arithmetic computation in Rq is now mapped to corresponding operations over integer vectors
in Znp0 ,Z

n
p1 , . . .Z

n
pt−1

. The result is later converted to a single vector by ICRT and then reduced to Rq.
For a polynomial addition/subtraction, rather than performing it in CRT or NTT domain, it is more efficient to use

polynomial representation in Rq if the arithmetic circuit does not involve multiplications. An addition/subtraction
can be embedded as a simple step in other functions. NAF bit decomposition yields polynomials in R3. We skip
the CRT conversions by mapping −1 coefficients to P − 1 and feeding them directly to NTT.

We instantiate the Box-Muller method for GPUs to sample e0 in Algorithm 4 from a discrete Gaussian distribution
much more efficiently than on CPUs. All these modules are assembled to implement ABE encryption and evaluation
operations.

A. CUDA GPU Background

CUDA abstracts the hardware architecture for developers. A CUDA-enabled GPU partitions thousands of cores
into an array of streaming multiprocessors (SMMs). Each SMM is built with function units, registers, private

14

TABLE III: AN EXAMPLE OF MODULO P REDUCTION

Powers of 2 224-bit x x = x′<<147 Pseudo Code
20 ≡ +1
232 ≡ +232

264 ≡ +232 −1
296 ≡ −1
2128 ≡ −232

2160 ≡ −232 +1
2192 ≡ +1

+x0
+x1
+x2 −x2

−x3
−x4
−x5 +x5

+x6

+x2 −x2
−x3

−x4

add.cc x3, x3, x2;
addc x4, x4, 0;
sub.cc r0, 0, x3;
subc r1, x2, x4;
r -= (uint32_t)(-((r>>32)>x2));
r += (uint32_t)(-(r>=P));

memory, data cache and instruction buffers. An SMM executes threads in groups of 32 parallel CUDA threads
(warps) in an SIMT (Single-Instruction, Multiple-Thread) style.

CUDA programs offload intensive computation to the device (i.e., a GPU), while the rest of the application
remains on the host (i.e., a CPU). The host launches a kernel which is a C function executed n times in parallel
by n threads on the device. A kernel is executed by a grid of thread blocks: threads are grouped into blocks;
blocks are organized into a grid. Threads within a block can cooperate through shared memory and synchronize
their execution. The dimension of a block is preferred to be a multiple of 32 (warp size). Grid configuration is
set at kernel launches and is important for the better utilization of computing resources. Both the host and the
device maintain their own separate memory spaces in DRAM, referred to as host memory and device memory,
respectively. Hence, a program transfers data between host and device memory for computation on the device.

Three types of device memory are listed from fast to slow:
• Constant memory is read-only to all grids, cached and broadcast to all involved threads when requested.

However, its size cannot exceed 64 KB.
• Shared Memory is shared by threads in the same block. It may have bank conflicts that cause accesses to be

serialized. Bank conflicts should be minimized. Shared memory size cannot exceed 48 KB per block.
• Global Memory is slow and visible to all threads. It favors a coalesced access pattern that avoids or minimizes

overfetch. As it is adequate in size (several gigabytes), the global memory is where data are stored in general.

B. Fast NTT for Negative Wrapped Convolution

For arithmetic in ring Rq, we use an NTT-based approach and represent polynomials as vectors of integers,
namely in Zn. NTT conversions are performed in FP , where we choose P = 264 − 232 + 1 for fast modulo
arithmetic as in [50]. As 8 is a primitive 64-th root of unity modulo P , any NTT with size N ≤ 64 uses wN = 8

64

N

as a primitive root of unity. This way, the multiplications of the input coefficients with the powers of root of unity
(twiddle factors) are replaced with much cheaper bit-wise left shifts, e.g. a · w3

16 = a<<12. The reduction of the
result (a large integer) modulo P can be achieved with 32-bit additions and subtractions. An example is given in
Table X.
Eliminating Conditional Branches. Suppose that we perform modulo P reduction on a (less than) 224-bit integer
e.g. x = x′× 849 = x′<<147 where xi denotes the i-th least significant 32-bit word of x, and x′ ∈ FP . We observe
that x0 = x1 = 0 and compute r ≡ (−x2 − x3) + (x2 − x4) · 232 mod P . Carry-out or borrow-in occurring at
the 65-th bit will corrupt the result. Handling them with conditional branches causes threads in a single warp to
branch to different instructions and to execute in sequence, which is inefficient.

We predict the conditions where carry-out or borrow-in occurs, for every possible left shift offset, and handle them
without branches. Since we know x4 ∈ [0, 255], we may compute the formula as r = x2 · 232− (x2 +x3 +x4 · 232)
without any carry-out. And the integer value of the Boolean type element r > x2 ·232 is used to handle the borrow-in
case. Then we apply a similar trick with the Boolean type element to obtain x mod P = r−P when r ≥ P . This
effort eliminates conditional branches. Pseudo code for this technique is provided in Table X.
Parallelizing NTT/INTT on Multiple Threads. The main idea in our particular method for NTT operation is
to (recursively) apply the four-step Cooley-Tukey algorithm [51] until NTT size drops below 64. Similar to [50]
in the first level of recursion, we arrange an integer vector of n = 2048 (or n = 4096) as a two-dimensional
vector of 64× 32 (or 64× 64). In NTT(), we multiply each vector element with a power of w2n for the negative

15

wrapped convolution. Then we perform NTT64
8 () on each column, transpose the 2D-vector, multiply them with

twiddle factors (powers of wn) and eventually perform NTT32
82 () (or NTT64

8 ()) on each row. In INTT(), we perform
NTT32

8−2() (or NTT64
8−1()) on each row first, multiply them with twiddle factors (powers of w−1

n), transpose the
2D-vector and then perform NTT64

8−1() on each column. Finally, we multiply each vector element with a power
of w−1

2n and 1
n . We exclude transposes in both forward and backward conversions. The column-wise and row-wise

conversions are computed separately with two kernels. Each kernel uses n
8 threads which are divided into at most

n
512 blocks, whereby each thread reads/writes 8 vector elements.
Minimized Thread Communication Overhead. 64-point or 32-point conversions are handled by 8 or 4 threads
and require only a single synchronization of threads. Each thread is assigned 8 column elements to perform NTT8

88()
recursively and multiplies them with powers of 8 as twiddle factors (implemented as simple left shifts). Then it
transposes the vector elements of 8×8, reads column elements and performs NTT8

88() again. Note that the transpose
operation benefits from the shared memory as mapping functions are optimized to minimize bank conflicts. A single
synchronization of all threads is required only after writing to the shared memory.
Further Optimizations. We precompute (wn)i, (w−1

n)i, (w2n)i and (w−1
2n)i for i = 0, . . . , n − 1 and store them

as four separate vectors in the global memory. Although the same vector is stored twice in different order since
w−in = wn−in ∀i ∈ Zn, it ensures coalesced global memory access. Also, we store 1

nw
−1
2n instead of w−1

2n to save 8
integer multiplications per thread in every INTT conversion.

C. CRT Configurations

The NTT method defined above only works on polynomials whose norm is smaller than P . We utilize CRT to
break down an integer in Zq into a vector of smaller integers. We generate t CRT primes, namely {p0, p1, . . . , pt−1},
to convert a vector f ∈ Znq into its CRT domain value

(
f̃ (0), f̃ (1), . . . , f̃ (t−1)

)
where f̃ (j) = [f]pj ∈ Znpj . Suppose

we compute h(x) =
∑τ−1

i=0 fi(x)gi(x) in Rq for any τ . We lift polynomials to their vector forms h, fi,gi ∈ Znq . h
is reduced modulo q from ICRT result h′, where h′ is computed as:

ICRTj∈Zt

(
INTT

(
τ−1∑
i=0

NTT
(
f̃

(j)
i

)
� NTT

(
g̃

(j)
i

)))
. (5)

Constraints on the Size and Number of CRT Primes. Since the method utilizes different mathematical objects,
namely Zq, Fpj ’s and FP , it works correctly only if the following two constraints are satisfied:

P >

∥∥∥∥∥
τ−1∑
i=0

f̃
(j)
i g̃

(j)
i

∥∥∥∥∥ , ∀j ∈ Zt; (6)

t−1∏
j=0

pj >

∥∥∥∥∥
τ−1∑
i=0

fi(x)gi(x)

∥∥∥∥∥ . (7)

ABE encryption and evaluation operations impose different constraints on CRT parameter selection. A summary
is presented in Table IV. The constant factor 2 exists in all inequalities due to the negative wrapped convolution.
For example in ENCRYPT (Algorithm 4), the coefficients of a product of two CRT domain polynomials fall within
the interval [−n(pj − 1)2, n(pj − 1)2], or that of a product of two Rq polynomials fall within the interval [−n(q−
1)2, n(q − 1)2] when a prime modulus is in use. EVALBENCHMARK (Algorithm 7), on the other hand, consists of
vector-matrix multiplication in the form Rmq ← Rmq ×Rm×m3 (e.g., B2iΨi), where R3 is due to NAF decomposition
in Algorithm 6. Consequently, EVALCT or EVALPK (EVALXX) provides a smaller upper-bound for CRT prime
sizes (see Table IV) and decreases the number of CRT primes (see Table VII), compared to ENCRYPT.
Impact of Using Fewer CRT Primes. We assume that pj’s have similar sizes: dlog2 pje. For each set of ABE
parameters, (6) can be used to determine an upper bound on dlog2 pje. Then after choosing pj’s as large as
possible, we determine a minimum t with (7). Compared to the value of t, dlog2 pje has a very limited influence on
performance as it affects the speed of NTT() (modulo pj is performed at the end of NTT()) only to a certain extent.
However, as a multiplication requires 2t NTT()’s and t INTT()’s, increasing t from 3 to 4 reduces performance
by 33%. Therefore, we first pick as small value as possible for t, then set dlog2 pje ≈ m

t .

16

TABLE IV: CONSTRAINTS ON THE SIZE AND THE NUMBER OF CRT PRIMES ARE DETERMINED BY pj AND∏t−1
j=0 pj

Prime q Composite q

pj
∏t−1
j=0 pj pj

∏t−1
j=0 pj

ENCRYPT ≤
√

P
2n > 2n(q − 1)2

��
��HHHH

≤
√

P
2n = q

EVALXX ≤
√

P
2mn > 2mn(q − 1) ≤

√
P

2mn

To further take advantage of this, when a prime modulus is chosen and fixed, we generate different sets of CRT
primes for encryption and evaluation, since evaluation obviously requires fewer number of primes. On the contrary,
when generating a composite modulus as the product of CRT primes, we have to pick the prime size under the
tighter bound given in the evaluation stage.
Using a Composite Modulus. We can alternatively select q =

∏t−1
j=0 pj to eliminate (7). As shown in Table IV,

for a composite q, we have fewer number of CRT primes1. As a result, using fewer CRT primes (see Table VII)
simplifies the computation. Besides, in our benchmark circuit for ABE evaluation operation, we are able to avoid
unnecessary CRT and ICRT operations, since we apply CRT only on circuit inputs and apply ICRT only to recover
the final result. For both cases where q is either prime or composite, we compute the values of t and take timing
results, which are listed in Table VII. The timing results confirm our expectation.
Further Optimizations. We use the NTL library2 to perform precomputation needed for CRT conversions for
both ABE encryption and evaluation, including pj’s, M =

∏t−1
j=0 pj , Mj = M

pj
and [M−1

j]pj for all j ∈ Zt. The
precomputed values are, then, transferred to GPU and stored in its constant memory. Employing n threads, CRT()
converts each vector in Znq to t vectors by reducing them modulo pj’s. An ICRT kernel obtains vectors in ZnM
and then reduces them to ZNq (if M > q) using Barrett reduction. All accesses to vectors in global memory are
coalesced. Large integer arithmetic operations are specifically optimized for our parameters to provide the best
performance.

The outputs of NAFDECOMP() skip the CRT conversions. We could perform CRT on each of the m polynomials
in R3 by mapping −1 coefficients to pj − 1 for all j ∈ Zt as (5) which would require space and NTT conversions
for m× t polynomials. Instead, we map −1 to P −1 once for all j ∈ Zt and perform NTT directly, which requires
only space and NTT conversions for m polynomials (gi ∈ R3):

ICRTj∈Zt

(
INTT

(
τ−1∑
i=0

NTT
(
f̃

(j)
i

)
� NTT (g̃i)

))
. (8)

D. Minimizing Memory Consumption

Although we allocate linear memory on the host and the device to store polynomials, we create a data structure
Array3D_t to access coefficients virtually as a 3D array. It contains a pointer uint64_t *ptr to the starting
address and keeps its dimensions in a 3-tuple uint3 dim. Mathematically speaking, an Array3D_t element
is in Zdim.z×dim.y×dim.x. Coefficients are addressed consecutively in memory by first x, then y, and at last z
dimension, i.e. ptr[idx.z][idx.y][idx.x]. As dim.x is fixed to the ring dimension n, idx.x gives the
index of a coefficient within the vector. Also, for dim.z vectors are packed, idx.z-th is the index of a vector in
the pack. The data domains are described in Table V.

The particular design of data structures in our implementation ensures coalesced access to global memory,
enables the launch of a huge kernel to keep all CUDA cores busy and is then able to overlap global memory
accesses with GPU computation. For example, to perform bit-decomposition and NTT conversions, i.e. Ψ̂ ←
NAFDECOMP NTT(−B2i−1) in Algorithm 7, we launch a grid of dimension (m, m, n

512) with 64 threads per

1The size of CRT primes is determined by the Evaluate step rather than the Encrypt step, although the latter can use larger and fewer
CRT primes, because q remains the same in both steps.

2http://www.shoup.net/ntl/

17

TABLE V: USAGE OF Array3D_t FOR dim.z (τ) FULL VECTORS OF LENGTH dim.x (n) IN VARIOUS

DOMAINS; INTEGERS ARE STORED IN uint64_t WORDS; THE WORD-LENGTH OF q IS s =
⌈
k
64

⌉
WITH WORD-

BASE b = 264

Domain dim.y Form ptr[z][y][x]

Plain s Zτ×s×nb The y-th 64-bit word of the x-th coefficient of the z-th full vector.

CRT t Zτ×t×n The x-th coefficient of the y-th CRT conversion of the z-th full vector (reduced
modulo py).

CRT
NTT

t Fτ×t×nP
The x-th coefficient of the NTT conversion of the y-th CRT vector from the z-th
full vector.

NAF
NTT

m Fτ×m×nP
The x-th coefficient of the NTT conversion of the y-th NAF-decomposed vector of
the z-th full vector.

TABLE VI: EXPERIMENTAL ENVIRONMENT

Titan X Titan Xp
CUDA cores 3072 3840
Base Clock 1.22 GHz 1.58 GHz
Memory Bandwidth 336.5 GB/s 547.7 GB/s
Memory Size 12 GB 12 GB

block (m
2n

512 threads in total) to perform m2 NTT conversions. Since the ring dimension is 1024, 2048 or 4096, the
data structure naturally aligns global memory addresses.

For each element, we allocate memory for the size of CRT+NTT domain, which is large enough to also host
Plain or CRT domains. Our data structure and function design ensure that NTT and CRT conversions may operate
on the same memory space without read/write conflicts. All three domains now share the same memory space.
Compared to the cuHE library [39] where for each domain a unique memory space is required, we reduce memory
consumption by at least half.

IX. PERFORMANCE

In this section we provide performance measurements. As no other similar ABE implementation is found in the
literature, we compare only the throughputs of our ring multiplication with previous state-of-the-art implementations.

We experimented with our implementation using an Nvidia GeForce Titan X graphics card with the Maxwell
architecture (“Titan X” in short) as well as an Nvidia GeForce Titan Xp that is built with the Pascal architecture
(“Titan Xp” in short). Titan X was priced for about $1000 in early 2016 and Titan Xp has a similar price in 2017.
The host computer also has an Intel Core i7-3770k processor with 4 cores running at 3.50 GHz and system memory
(host memory) of 32 GB. The host runs Ubuntu 16.04 LTS and the programs are compiled with g++ 5.4.0 and
CUDA compilation tools v8.0.44 (See Table VI).

A. A Comparison of Polynomial Multiplication Speed

We approximate the latency of a full polynomial multiplication to the latency of two NTTs and one INTT to
provide a fair comparison. We developed programs for both our method and the cuFFT-based method in [48],
and measure the average latency of 256× 128× 4 multiplications, with respect to [48]. We fix ring dimension as
2048 and assume coefficients are less than 24-bit. Our multiplication takes 0.34× 2 + 0.26 = 0.94 µs on Titan X.
A cuFFT-based method requires 4096-point FFTs for such a ring dimension. The work in [48] compared several
methods and concluded that a cuFFT-based multiplication is more efficient for n ≥ 2048. Our sample cuFFT-based
code shows that each multiplication takes 7.62 µs on Titan X. It turns out that a cuFFT-based method is 68 times
slower than our integer-based method.

18

TABLE VII: PERFORMANCE OF SELECTED PARAMETERS ON TITAN X / TITAN XP

Parameters Prime q Composite q

l k n
ENCRYPT EVALCT + EVALPK ENCRYPT EVALCT + EVALPK

t Time (ms) t Changing (ms) Fixed (ms) t Time (ms) t Changing (ms) Fixed (ms)
2 36 1024 4 1.10 / 0.76 3 0.62 / 0.41 0.34 / 0.23 2 0.77 / 0.57 2 0.53 / 0.36 0.26 / 0.19
4 51 2048 5 4.28 / 2.85 3 6.48 / 3.76 2.76 / 1.70 3 2.60 / 1.71 3 6.33 / 3.94 2.62 / 1.62
8 60 2048 6 9.31 / 6.28 4 22.3 / 13.6 10.5 / 6.55 3 4.98 / 3.51 3 19.5 / 12.0 7.90 / 4.91

16 69 2048 6 20.1 / 13.3 4 61.9 / 38.2 25.8 / 17.6 3 11.2 / 7.79 3 55.5 / 35.1 21.3 / 13.6
32 82 4096 7 106 / 67.5 5 419 / 264 188 / 112 4 60.6 / 39.7 4 386 / 245 152 / 91.8
64 92 4096 8 232 / 137 6 1,113 / 642 461 / 271 4 119 / 72.0 4 957 / 594 377 / 224

128 102 4096 9 614 / 354 6 2,681 / 1,668 1,253 / 749 5 339 / 196 5 2,521 / 1,555 1,078 / 643
256 112 4096 10 1,459 / 834 6 6,477 / 3,860 2,961 / 1,697 5 745 / 424 5 6,015 / 3,579 2,495 / 1,437
512 122 4096 11 3,627 / 2.027 7 16,762 / 10,183 8,472 / 4,928 6 2,014 / 1,084 6 15,177 / 9,149 6,879 / 3,971
1024 132 4096 11 8,387 / 4,705 7 40,570 / 24,503 19,948 / 11,455 6 4,749 / 2,565 6 36,671 / 22,396 16,301 / 9,411

The method in [38] does not involve negative wrapped convolution. For ring dimension 2048, it requires 4096-
point FFTs whose performance was not reported. Based on its complexity n log2 n, we estimate that 4096-point
FFTs are 2.18 slower than 2048-point FFTs. Using the fourth bar of the third subplot of Fig. VII in [38], we
can conclude that each multiplication would take 2.18 × 40 ms ÷ (256 × 128) ÷ 4 ≈ 0.665 µs. They adopt
an Nvidia GeForce GTX 280 graphics card which has a peak performance of 933 GFlops/s. According to their
calculation, they reach 444 GFlops/s. If their code ran on our device and (not likely) reached the peak 192 GFlops/s
performance, it would take 444

192 ≈ 2.31 times longer, that is, 0.665 × 2.31 ≈ 1.54 µs, which is 64% slower than
ours. If we consider their GPU to be 933

192 ≈ 4.86 times more powerful than ours in terms of peak GFlops/s, their
code would take 0.665× 4.86 ≈ 3.23 µs, which is 3.44 times slower than ours. Based on these comparisons, our
GPU implementation for multiplication in Rq compares favorably with all other implementations reported in the
literature.

B. Performance of ABE Encryption and Evaluation

We enumerate timing results with parameter selections in Table VII. We provide two sets of measurements based
on the configuration whereby either a prime or a composite q is used. The number of CRT primes generated is
listed under column “t” for each scenario. “Time”, “Fixed” and “Changing” show timing results in milliseconds.
“Fixed” assumes that the circuit has a fixed policy (EVALCT only) while “Changing” assumes a changing policy
(EVALCT+EVALPK). From these two tables, Titan Xp yields roughly 1.6 times speedup over Titan X, since Titan
Xp has 1.6 times faster memory bandwidth.

The measurements of ABE encryption (“ENCRYPT”) include all steps but the sampling of r ←U Rq in Algo-
rithm 4. Discrete Gaussian noise is sampled on the device while r is sampled on the host and transfered to the
device. The output Cin is transfered from the device to the host.

The measurements of ABE evaluation (“Fixed”) assume that Bi’s for all i ∈ [l + 1, 2l − 1] are precomputed.
In other words, we skip the step, where B`+i ← B0 − B2iΨi is computed in Algorithm 7. This is a reasonable
assumption when the policy circuit is fixed. Memory consumption on the device or on the host is similar, since we
either store {B0,B1, . . .Bl} or precompute and store {B1,B3, . . . ,B2l−1}. Computing Bi’s has the same cost as
computing Ci’s. To include the computation of Bi’s for a changing policy circuit, we present the time cost under
column “Changing”. In each gate of ABE evaluation, we transfer Bi’s and Ci’s required by this gate from the
host, perform arithmetic operations in the device and send back a single vector Ci to the host.

Although memory transfers between host memory and device memory occur at run time, their latency is hidden
behind computation. This is achieved by creating CUDA streams to pipeline data transfers and computation tasks.
Timing results in Table VII have no overhead caused by data transfer.

We also consider the implementation scenario where not only Bi’s are precomputed for each gate, but also their
bit-decomposed forms Ψi’s are converted to NTT domain as Ψ̂i’s. By doing this, we exclude m2 forward NTT
conversions in each gate. However, memory consumption increases by roughly 64 times since each bit in Bi is
now a 64-bit integer in FP . As storing Ψ̂i in host memory requires transferring them to the device memory, which

19

in fact is slower than m2 NTT conversions, they are therefore stored in device memory. As we run out of device
memory for a small number of attributes (i.e. 32), we exclude the timing results in this scenario. But its performance
can be accurately estimated as 2×TFixed−TChanging from the timings listed under those two columns. For example,
potentially the evaluation for 16 or 32 attributes would take only 13.6 ms or 91.8 ms, respectively.

To sketch the magnitude and complexity of computations, consider that an ABE evaluation operation requires
about (l − 1)m2 polynomial multiplications and additions in Rq. Our GPU implementation achieves a very high
throughput. For instance, for 1024 attributes (ring dimension is 4096) with a prime q, we achieve less than 2.21 µs
(Titan X) or 1.33 µs (Titan Xp) per multiplication and accumulation in Rq; for 16 attributes (ring dimension is
2048) with a prime q, it takes less than 0.82 µs (on Titan X) or 0.51 µs (on Titan Xp).

The impact of choosing a composite q can be captured by comparing the measurements under “Prime q” and
“Composite q” sections of Table VII. CRT and ICRT do not weigh much in the computation of ABE evaluation.
Although we eliminate (l2 − 1) CRTs and (l − 2) ICRTs by choosing a composite q, for most parameter sets we
gain little benefits. However, a composite q requires a smaller t compared to a prime q (i.e. performance of all
ABE evaluations and all ABE encryptions), which provides some improvement.

A scheme with up to 1024 attributes is supported by our implementation. This number will be larger with more
system memory. The performance results are promising considering that our GPU now costs around or below
$1000. A more advanced GPU will yield better performance.

A quick comparison of the execution times in Table II (CPU) and Table VII (GPU) shows that our GPU
implementation of KP-ABE encryption operation is at least 259/9.31 = 27.8 times faster for 8 attributes than CPU
implementation whereas the acceleration ratio can be as high as 73.8. For homomorphic evaluation operations with
8 attributes, the acceleration ratios will be at least 151 and as high as 685.

X. CONCLUSION

We present a construction and implementation of the first RLWE KP-ABE scheme and experimentally demonstrate
that it can be efficiently implemented by leveraging commercial-off-the-shelf compute resources, notably a moder-
ately priced GPU. Since the key ABE operations require numerous polynomial multiplications amenable to parallel
computations, we focus on improving their throughput. To this end, we develop special-purpose algorithms and
data structures to optimize memory access. A comparison with previous works shows our polynomial multiplication
with ring dimension n = 2048 is at least 64% faster than the fastest reported in the literature.

Our KP-ABE scheme requires highly expensive homomorphic operations over public keys and ciphertext. How-
ever, despite these perceived challenges, our implementation yields highly favorable timing results. We show that
the most time-consuming ABE evaluation operation can be performed in as low as 13.6 ms and 91.8 ms, for 16 and
32 attributes, respectively. These runtime results would be even smaller, and scale to a larger number of attributes,
with newer, increasingly more capable GPUs. The fact that our implementation supports up to 1024 attributes is
very promising for the efficient implementation of more advanced cryptographic algorithms, which require ABE
as a building block, such as functional encryption and token-based program obfuscation.

ACKNOWLEDGMENT

We would like to gratefully acknowledge the input and feedback from Vinod Vaikuntanathan. The Titan X
Pascal used for this research was donated by the NVIDIA Corporation. Dai, Doröz and Sunar’s work was in
part provided by the US National Science Foundation CNS Award #1561536. Polyakov, Rohloff, Sajjadpour and
Savaş’s sponsorships are as follows: Sponsored by the Defense Advanced Research Projects Agency (DARPA)
and the Army Research Laboratory (ARL) under Contract Numbers W911NF-15-C-0226 and W911NF-15-C-0233.
The views expressed are those of the authors and do not necessarily reflect the official policy or position of the
Department of Defense or the U.S. Government. The U.S. Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright annotation therein.

20

REFERENCES

[1] D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikuntanathan, and D. Vinayagamurthy, “Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits,” in EUROCRYPT 2014, Denmark, May 11-15, 2014.
Proceedings, 2014, pp. 533–556.

[2] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Advances in Cryptology - EUROCRYPT 2005, Aarhus, Denmark, May
22-26, 2005, Proceedings, 2005, pp. 457–473.

[3] D. Boneh and M. K. Franklin, “Identity-based encryption from the weil pairing,” SIAM J. Comput., vol. 32, no. 3, pp. 586–615, 2003.
[4] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-grained access control of encrypted data,” in

Proceedings of CCS’06. New York, NY, USA: ACM, 2006, pp. 89–98.
[5] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based encryption,” in 2007 IEEE Symposium on Security and

Privacy (SP ’07), May 2007, pp. 321–334.
[6] J. Zhang, Z. Zhang, and A. Ge, “Ciphertext policy attribute-based encryption from lattices,” in ASIACCS ’12, Seoul, Korea, May 2-4,

2012, 2012, pp. 16–17.
[7] B. Waters, “Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure realization,” in PKC 2011 -

Taormina, Italy, March 6-9, 2011. Proceedings, 2011, pp. 53–70.
[8] H. Deng, Q. Wu, B. Qin, J. Domingo-Ferrer, L. Zhang, J. Liu, and W. Shi, “Ciphertext-policy hierarchical attribute-based encryption

with short ciphertexts,” Inf. Sci., vol. 275, pp. 370–384, 2014.
[9] E. Zavattoni, L. J. D. Perez, S. Mitsunari, A. H. Sánchez-Ramı́rez, T. Teruya, and F. Rodrı́guez-Henrı́quez, “Software implementation

of an attribute-based encryption scheme,” IEEE Trans. Computers, vol. 64, no. 5, pp. 1429–1441, 2015.
[10] R. Ostrovsky, A. Sahai, and B. Waters, “Attribute-based encryption with non-monotonic access structures,” in Proceedings of CCS

2007, Alexandria, Virginia, USA, October 28-31, 2007, 2007, pp. 195–203.
[11] V. Goyal, A. Jain, O. Pandey, and A. Sahai, “Bounded ciphertext policy attribute based encryption,” in ICALP 2008, Reykjavik, Iceland,

July 7-11, 2008, Proceedings,, 2008, pp. 579–591.
[12] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters, “Fully secure functional encryption: Attribute-based encryption and

(hierarchical) inner product encryption,” in EUROCRYPT 2010, French Riviera, May 30 - June 3, 2010. Proceedings, 2010, pp. 62–91.
[13] A. B. Lewko and B. Waters, “Decentralizing attribute-based encryption,” in EUROCRYPT 2011, Tallinn, Estonia, May 15-19, 2011.

Proceedings, 2011, pp. 568–588.
[14] A. H. Sánchez and F. Rodrı́guez-Henrı́quez, “NEON implementation of an attribute-based encryption scheme,” in ACNS 2013, Banff,

AB, Canada, June 25-28, 2013. Proceedings, 2013, pp. 322–338.
[15] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for hard lattices and new cryptographic constructions,” in STOC, 2008, pp.

197–206.
[16] M. Ajtai, “Generating hard instances of lattice problems,” Quaderni di Matematica, vol. 13, pp. 1–32, 2004, preliminary version in

STOC 1996.
[17] ——, “Generating hard instances of the short basis problem,” in ICALP, 1999, pp. 1–9.
[18] O. Goldreich, S. Goldwasser, and S. Halevi, “Public-key cryptosystems from lattice reduction problems,” in Advances in Cryptology–

CRYPTO’97. Springer, 1997, pp. 112–131.
[19] J. Zhang and Z. Zhang, “A ciphertext policy attribute-based encryption scheme without pairings,” in Inscrypt 2011, Beijing, China,

November 30 - December 3, 2011, 2011, pp. 324–340.
[20] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich, “Reusable garbled circuits and succinct functional

encryption,” in STOC’13, Palo Alto, CA, USA, June 1-4, 2013, 2013, pp. 555–564.
[21] N. Bitansky and V. Vaikuntanathan, “Indistinguishability obfuscation from functional encryption,” in IEEE FOCS 2015, Berkeley, CA,

USA, 17-20 October, 2015. IEEE Computer Society, 2015, pp. 171–190.
[22] Y. Doröz, E. Öztürk, E. Savaş, and B. Sunar, Accelerating LTV Based Homomorphic Encryption in Reconfigurable Hardware. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2015, pp. 185–204.
[23] S. Gorbunov, V. Vaikuntanathan, and H. Wee, “Attribute-based encryption for circuits,” J. ACM, vol. 62, no. 6, pp. 45:1–45:33, 2015.
[24] ——, “Predicate encryption for circuits from LWE,” in CRYPTO 2015, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,

ser. LNCS, vol. 9216. Springer, 2015, pp. 503–523.
[25] R. Goyal, V. Koppula, and B. Waters, “Lockable obfuscation,” Cryptology ePrint Archive, Report 2017/274, 2017, http://eprint.iacr.

org/2017/274.
[26] R. E. Bansarkhani and J. A. Buchmann, “Improvement and efficient implementation of a lattice-based signature scheme,” in - SAC

2013, Burnaby, BC, Canada, August 14-16, 2013, 2013, pp. 48–67.
[27] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learning with errors over rings,” in EUROCRYPT, 2010, pp. 1–23.
[28] O. Regev, “On lattices, learning with errors, random linear codes, and cryptography,” J. ACM, vol. 56, no. 6, pp. 1–40, 2009, preliminary

version in STOC 2005.
[29] V. Lyubashevsky, C. Peikert, and O. Regev, “A toolkit for ring-lwe cryptography.” in EUROCRYPT.
[30] S. Gorbunov, V. Vaikuntanathan, and H. Wee, “Attribute-based encryption for circuits,” in STOC’13, Palo Alto, CA, USA, June 1-4,

2013, 2013, pp. 545–554.
[31] S. Garg, C. Gentry, S. Halevi, A. Sahai, and B. Waters, “Attribute-based encryption for circuits from multilinear maps,” in CRYPTO

2013, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, ser. LNCS, vol. 8043. Springer, 2013, pp. 479–499.
[32] D. Boneh and A. Silverberg, “Applications of multilinear forms to cryptography,” IACR Cryptology ePrint Archive, vol. 2002, p. 80,

2002.
[33] M. Scott, “On the efficient implementation of pairing-based protocols,” in IMACC 2011, Oxford, UK, December 12-15, 2011.

Proceedings, ser. LNCS, vol. 7089. Springer, 2011, pp. 296–308.
[34] D. Micciancio and C. Peikert, “Trapdoors for lattices: Simpler, tighter, faster, smaller,” in EUROCRYPT, 2012, pp. 700–718.

21

[35] L. Ducas and P. Q. Nguyen, “Faster Gaussian lattice sampling using lazy floating-point arithmetic,” in ASIACRYPT 2012, Beijing,
China, December 2-6, 2012. Proceedings, ser. LNCS, vol. 7658. Springer, 2012, pp. 415–432.

[36] N. Genise and D. Micciancio, “Faster gaussian sampling for trapdoor lattices with arbitrary modulus,” Cryptology ePrint Archive,
Report 2017/308, 2017, http://eprint.iacr.org/2017/308.

[37] K. D. Gür, Y. Polyakov, K. Rohloff, G. W. Ryan, and E. Savaş, “Implementation and evaluation of improved gaussian sampling for
lattice trapdoors,” Cryptology ePrint Archive, Report 2017/285, 2017, http://eprint.iacr.org/2017/285.

[38] P. Emeliyanenko, “Efficient multiplication of polynomials on graphics hardware,” in Proceedings of the 8th International Symposium
on Advanced Parallel Processing Technologies, ser. APPT ’09, 2009, pp. 134–149.

[39] W. Dai and B. Sunar, “cuHE: A homomorphic encryption accelerator library,” in Cryptography and Information Security in the Balkans
- Second International Conference, BalkanCryptSec 2015, Koper, Slovenia, September 3-4, 2015, Revised Selected Papers, 2015, pp.
169–186.

[40] D. D. Chen, N. Mentens, F. Vercauteren, S. S. Roy, R. C. C. Cheung, D. Pao, and I. Verbauwhede, “High-speed polynomial multiplication
architecture for Ring-LWE and SHE cryptosystems,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 1, pp.
157–166, Jan 2015.

[41] Y. Chen and P. Q. Nguyen, “BKZ 2.0: Better lattice security estimates,” in ASIACRYPT, 2011, pp. 1–20.
[42] R. Lindner and C. Peikert, “Better key sizes (and attacks) for LWE-based encryption,” in CT-RSA, 2011, pp. 319–339.
[43] G. Hanrot and D. Stehlé, “Worst-case hermite-korkine-zolotarev reduced lattice bases,” CoRR, vol. abs/0801.3331, 2008. [Online].

Available: http://arxiv.org/abs/0801.3331
[44] Y. Polyakov, K. Rohloff, G. Sahu, and V. Vaikuntanathan, “Fast proxy re-encryption for publish/subscribe systems,” ACM Trans. Priv.

Secur., vol. 20, no. 4, pp. 14:1–14:31, Sep. 2017.
[45] C. Borcea, A. D. Gupta, Y. Polyakov, K. Rohloff, and G. W. Ryan, “PICADOR: end-to-end encrypted publish-subscribe information

distribution with proxy re-encryption,” Future Generation Comp. Syst., vol. 71, pp. 177–191, 2017.
[46] G. S. Çetin, W. Dai, Y. Doröz, W. J. Martin, and B. Sunar, “Blind web search: How far are we from a privacy preserving search

engine?” Cryptology ePrint Archive, Report 2016/801, 2016, http://eprint.iacr.org/2016/801.
[47] W. Dai, Y. Doröz, and B. Sunar, “Accelerating NTRU based homomorphic encryption using GPUs,” in High Performance Extreme

Computing Conference (HPEC), 2014 IEEE, Sept 2014, pp. 1–6.
[48] S. Akleylek, Ö. Dağdelen, and Z. Yüce Tok, On the Efficiency of Polynomial Multiplication for Lattice-Based Cryptography on GPUs

Using CUDA. Cham: Springer International Publishing, 2016, pp. 155–168.
[49] M. S. Lee, Y. Lee, J. H. Cheon, and Y. Paek, “Accelerating bootstrapping in FHEW using GPUs,” in 2015 IEEE 26th International

Conference on Application-specific Systems, Architectures and Processors (ASAP), July 2015, pp. 128–135.
[50] N. Emmart and C. C. Weems, “High precision integer multiplication with a GPU using Strassen’s algorithm with multiple FFT sizes,”

Parallel Processing Letters, vol. 21, no. 03, pp. 359–375, 2011.
[51] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex fourier series,” Mathematics of computation,

vol. 19, no. 90, pp. 297–301, 1965.
[52] M. R. Albrecht, “On dual lattice attacks against small-secret LWE and parameter choices in helib and SEAL,” in Advances

in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part II, ser. LNCS, vol. 10211, 2017, pp. 103–129. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-56614-6 4

[53] D. Micciancio, “Generalized compact knapsacks, cyclic lattices, and efficient one-way functions,” Computational Complexity, vol. 16,
no. 4, pp. 365–411, 2007, preliminary version in FOCS 2002.

[54] D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa, “Efficient public key encryption based on ideal lattices,” in ASIACRYPT, 2009, pp.
617–635.

22

XI. APPENDIX

A. Evaluating NAND Gate

Logical NAND gate is a universal gate in the sense that any logic circuit can be realized using only NAND
gates. Analyzing NAND gates, therefore, is extremely important for our benchmarks as we use NAND gates-only
circuits with a tree structure.

NAND gate can be obtained using one AND gate and an arithmetic subtraction operation, namely (xy)′ = 1−xy.
Consequently, the circuit evaluation is only slightly different than that of an AND gate

CNAND = C0 − x2C1 −ΨT
1 C2

BNAND = B0 −B2Ψ1, (9)

where C0 is the encryption of logical-1, i.e., C0 = (G + B0)T s+ e0,0. The operations on the noise term is similar
e0,NAND = e0,0 − x2e0,1 − ΨT

1 e0,2. Any other logical gate can be obtained in a similar manner. For instance,
x⊕ y = x+ y − 2xy and x ∨ y = x+ y − xy for binary variables x and y.

B. Evaluating a Simple Benchmark Circuit of NAND Gates

Suppose a tree-like circuit of NAND gates in Fig. 2 with four attributes, xi for i = 1, 2, 3, 4. Then the ciphertext
for a message µ ∈ R2 is as follows

Cin = (A|(G + B0)|(x1G + B1)| . . . |(x4G + B4))T s+ e0,

where c1 is the same as before (henceforth we will omit it from our discussion for it is not affected by the evaluation
process). We now explain how the evaluation is performed using a simple circuit illustrated in Fig. 2.

1
2

5

3
4

6

7

G1

G2

G3

Fig. 2: A tree like NAND circuit with four attributes

The ciphertexts and public keys to be evaluated are Ci = (xiG + Bi)
T s + e0,i and Bi for i = 1, 2, 3, 4,

respectively, where the corresponding inputs in the circuit (Fig. 2) are labeled with the index number i. The
following are the steps of the evaluation process:

1) Evaluation of gate G1

Ψ1 = NAFDECOMP(−B1)

C5 = C0 − y2C1 −ΨT
1 C2

B5 = B0 −B2Ψ1

y5 = 1− y1y2

2) Evaluation of gate G2

Ψ2 = NAFDECOMP(−B3)

C6 = C0 − y4C3 −ΨT
2 C4

B6 = B0 −B4Ψ2

y6 = 1− y3y4

23

3) Evaluation of gate G3

Ψ3 = NAFDECOMP(−B5)

C7 = C0 − y6C5 −ΨT
3 C6

B7 = B0 −B6Ψ3

y7 = 1− y5y6,

where Ψi = NAFDECOMP(−B2i−1) for i = 1, 2, 3. We can also write Bf = B7. Note that yis are binary values
used during the evaluations and y7 = 0 following the construction of the circuit for a given access policy. We
change the notation for the attributes used during the evaluation phase from xi to yi for they may not be always
identical. However, the decryption works only if xi = yi for i = 1, . . . , `. For the noise terms we can obtain the
following expressions:

e0,5 = e0,0 − x2e0,1 −ΨT
1 e0,2

e0,6 = e0,0 − x4e0,3 −ΨT
2 e0,4

e0,7 = e0,0 − x6e0,5 −ΨT
3 e0,6

C. Correctness and Security Constraints of a Policy Circuit

The depth of a policy circuit can be defined as the number of AND gates (or NAND gates in our benchmark
circuit) in cascade on its longest path from input to output. Therefore, as already discussed in Section VI-B the
dominating contributor to the noise growth is the multiplication of noise vector e with bit decomposition matrix
Ψ = BITDECOMP(−B), namely ΨTe, in every level of the circuit. The norm of the error vector at the output
of the circuit must be less than q

4 for correct decryption. Before analyzing the effect of this multiplication on the
noise growth, basic properties of arithmetic on random variables are recalled.

Suppose the mean and standard deviation of two independent random variables x and y are (ωx, σx) and (ωy, σy),
respectively. We can write the following expressions for the mean and standard deviation of z = x+ y and v = xy

(ωz, σz) =
(
ωx + ωy,

√
σ2
x + σ2

y

)
(ωv, σv) =

(
ωxωy,

√
σ2
xσ

2
y + σ2

xω
2
y + ω2

xσ
2
y

)
. (10)

Let (ωe, σe) represent a Gaussian distribution, from which the polynomial coefficients in the error vectors are
sampled in the encryption operation. Ideally, ωe = 0 as the random number generator (RNG) used in encryption
implements a zero-centered Gaussian distribution. Notwithstanding, in an actual implementation of the Gaussian
RNG this may not be the case, resulting in a relatively small, but nonzero, average value for a limited number of
samples. As will be shown below, the noise growth in the error vector can be highly sensitive to this initial small
non-zero mean. As the public vector Bi is sampled from a uniform distribution in ABE setup, we can easily assume
that the polynomial coefficients in bit decomposition matrix Ψ are sampled from a binary uniform distribution with
(ωψ, σψ) = (0.5, 0.5).

The operation enew = ΨTe consists of polynomial multiplications followed by polynomial additions. For instance,
enew,i =

∑m−1
j=0 ejψj,i contains arithmetic operations on random variables in three levels. In the first level, the

coefficients of the error and bit decomposition polynomials are multiplied. Consequently, the mean and standard
deviation of the resulting integers, (ω1, σ1), can be computed using (10). As mentioned previously, since ωe is
non-zero in practical implementations, ω1 is also non-zero, whose value will be amplified significantly by the
subsequent addition operations.

In the second level, integers with (ω1, σ1) are summed to compute the coefficients of each polynomial, ejψj,i
for i, j = 0, . . . ,m − 1. One coefficient of the resulting polynomial is the addition of n random integers with
(ω1, σ1). Then the coefficients are distributed with (ω2, σ2) = (nω1,

√
nσ1) by (10). Finally in the third level, we

sum m polynomials (recall
∑m−1

j=0 ejψj,i). Consequently, the coefficients in the resulting vector of polynomials are
distributed with

(ω3, σ3) =
(
mnωeωψ,

√
mn(σ2

eσ
2
ψ + σ2

eω
2
ψ + ω2

eσ
2
ψ)
)

(11)

24

TABLE VIII: Estimates for the noise growth in a policy circuit of depth 4 using regular bit and NAF decomposition
algorithm.

Level dlog2 ωee dlog2 σee
0 -8 / -8 2.19 / 2.19
1 9.51 / 2.51 10.95 / 10.66
2 27.02 / 13.02 19.75 / 19.13
3 44.52 / 23.52 35.27 / 27.60
4 62.03 / 34.03 52.78 / 36.07

Although ωe can be very small, (11) clearly indicates that the mean can grow faster than the standard deviation
of the error vector as demonstrated with the following example.

Example 11.1: Suppose our Gaussian random number generator has a small mean value ωe = 2−8 with σe =
4.57825. Suppose also that n = 4096, k = dlog2 qe = 89 and the depth of the policy circuit is 4. Table VIII lists
the estimated values of mean and standard deviation for each level of the circuit.

Example 11.1 clearly shows that the error vectors at the output of the circuit can have very large mean values
that dominate the noise growth. Having a better Gaussian RNG would not greatly be useful for alleviating the mean
growth problem. For instance, with a really small mean value such as ωe = 2−20, the mean and standard deviation
of the noise at the output of the circuit in Example 11.1 will be 50.03 and 40.78, respectively. Therefore, we need
to accept a small nonzero mean in our Gaussian RNG as natural and perform our noise analysis accordingly.

There is, however, one method that can suppress the growth in noise significantly. Non-adjacent form (NAF)
representation of integers proves to be extremely useful in reducing the increase in noise and consequently in
improving the performance of all ABE operations by allowing to work with smaller moduli. In NAF representation
of an integer, which includes −1 in addition to 0 and 1, only one third of the digits are non-zero, on average.
Furthermore, the expected numbers of 1 and -1 are equal to each other (hence, NAF is balanced). As a result, if the
bit decomposition operation is performed using NAF (i.e., using NAFDECOMP), the bit decomposition matrix Ψ
will consist of polynomials whose coefficients are uniformly random in the set {−1, 0, 1} with ωψ = 0, σψ ≈ 0.58.
Naturally, by the same argument ωψ is expected to be non-zero, in practice. The following example shows that
using NAF decomposition helps limit the noise growth.

Example 11.2: Suppose our Gaussian random number generator has a small mean value ωe = 2−8 with σe =
4.57825. Suppose also that n = 4096, k = dlog2 qe = 89 and the depth of the policy circuit is 4. Assuming a
small nonzero mean in our uniform RNG ωψ = 2−8, Table VIII lists the estimated values of mean and standard
deviation for each level of the circuit (to the right of symbol “/”). As can be observed from the table, the mean is
no longer the dominant factor in the noise growth.

Since the noise growth in the ciphertext is now understood, we can find a practical upper bound for the coefficients
in the error vectors. Assuming a Gaussian RNG with standard deviation σ, the probability of sampling a value larger
than σ

√
ε is 2−ε. In practice, this probability is considered to be negligible for ε = 128. Consequently, assuming

the error vector at the output of the policy circuit, ef , is distributed with (ωf , σf), a practical upper bound for the
norm of the output noise can be estimated as ∆f = ωf + σf ·

√
ε

The above analysis accounts for only the noise growth in the ciphertext after the ciphertext is evaluated over
the policy circuit. However, the ABE decryption operation (where dual Regev scheme is used) also increases the
noise in the ciphertext. For the dual Regev scheme to decrypt correctly, absolute values of the coefficients of the
polynomial µ̄ should be smaller than the modulus q

4 , i.e. ||µ̄|| < q
4 .

By the dual Regev encryption scheme, we can write for the decrypted message

µ̄ = µdq
2
e+ e1 −αT

f ef , (12)

where e1 is the error introduced in ABE encryption while ef represents the error term in the ciphertext after the
homomorphic evaluation over the policy circuit, whose norm is bounded by ∆f as shown in the previous section.
The term αT

f ef stands for ring multiplications followed by polynomial additions.
The secret key, αf , a vector of ring elements, is generated as a result of the Gaussian sampling operation in

Algorithm 2. Therefore, its norm is also determined by the same process, which yields a small norm solution to

25

TABLE IX: ABE parameters for various number of attributes with σ = 4.57825, δ = 1.0059, ε = 128, ωe = ωψ =
2−8.

` = 2d d Binary NAF Experimental
k n k n k n

2 1 36 1024 36 1024 36 1024
4 2 48 2048 45 2048 51 2048
8 3 65 2048 53 2048 60 2048
16 4 88 4096 61 2048 69 2048
32 5 108 4096 74 4096 82 4096
64 6 127 4096 83 4096 92 4096

128 7 155 8192 95 4096 102 4096
256 8 176 8192 107 4096 111 4096
512 9 197 8192 119 4096 122 4096

1024 10 218 8192 131 4096 132 4096

(A|Bf)αf = βf . An upper bound (spectral bound henceforth) for the small norm solution αf can be formulated
as

∆α = c · χ, (13)

where χ = σ2(
√
nk +

√
2n + 4.7) and c stands for the empirically obtained constant (e.g., c = 1.8). For more

information on trapdoor generation and Gaussian sampling operations, the interested reader is referred to [37].
Then, the final formula of a practical upper bound for the error term in the decrypted message can be given as

∆µ =
√
mn ·∆f ·∆α. (14)

Naturally as we must have ∆µ <
q
4 for correct decryption q > 4∆µ.

For security we adopt the following formula for the ring dimension n,

n >
log2

q

σ
4 · log2 δ

, (15)

where δ is the root Hermite factor. For δ < 1.006 we assume the underlying RLWE problem is hard providing
sufficient level of security. As we do not use low norm or sparse secret keys, a case whose security is analyzed
in [52], we use the security argument provided in [41], [42] that the root Hermite factor is the major factor to
determine the security. The formula given in [42] for the running time of the BKZ algorithm [43]

tBKZ =
1.8

log2(δ)
− 110 (16)

suggests that δ ≈ 1.006 provides about 100-bit security.
ABE parameters for various number of attributes satisfying both the correctness and security constraints are

tabulated in Table IX. In Table IX, the columns under “Binary” and “NAF” list our estimates by (14) for modulus
bit size and ring dimension when conventional bit decomposition and NAF decomposition are used, respectively.
That the NAF decomposition method allows using much smaller modulus and ring dimension not only improves
the execution timings but also the memory requirements. The rightmost two columns under “Experimental values”
list the actual values used in our implementation. We tested our implementation with these values and found out
that maximum error norm in the decrypted message is at least 8 bit smaller than the selected modulus, which is
more than sufficient for correct decryption.

Fig. 3 illustrates the sensitivity of noise growth to different mean values of the discrete Gaussian generator. In
conclusion, a high quality Gaussian RNG proves to be still important for the overall performance of the ABE
scheme.

26

2 4 6 8 10

50

100

150

200

` - Depth of the policy circuit

k
-

M
od

ul
us

bi
t

si
ze

ωe = 2−8

ωe = 2−7

ωe = 2−6

ωe = 2−5

ωe = 2−4

Fig. 3: Sensitivity of noise growth to non-zero mean value of Gaussian RNG.

TABLE X: An example of modulo P reduction.

Powers of 2 224-bit x x = x′<<147 Pseudo Code
21 ≡ +1
232 ≡ +232

264 ≡ +232 −1
296 ≡ −1
2128 ≡ −232

2160 ≡ −232 +1
2192 ≡ +1

+x0
+x1
+x2 −x2

−x3
−x4
−x5 +x5

+x6

+x2 −x2
−x3

−x4

add.cc x3, x3, x2;
addc x4, x4, 0;
sub.cc r0, 0, x3;
subc r1, x2, x4;
r -= (uint32_t)(-((r>>32)>x2));
r += (uint32_t)(-(r>=P));

D. Security of the KP-ABE Scheme

The proposed scheme mainly relies on RLWE hardness assumptions as informally explained in Definitons 3.1 and 3.2,
namely search and decision RLWE assumptions [27]. For the security of the trapdoor construction the reader is
referred to [26] for the ring version of the trapdoor and to [36] for the specific instantiation of the trapdoor
construction used in this paper. The reader is also referred to the seminal works [27], [29], [34] for deeper
understanding of the ideal lattices and lattice trapdoors.

We now demonstrate that the security proofs in [1] (i.e., selective security as defined in [4]) remain valid for our
RLWE-based construction of the KP-ABE scheme. The security proofs are provided in a series of games played by
a LWE solver B and an adversary A, who has access to a key generation oracle. After A commits to a particular
set of attribute values x∗ = (x∗1, . . . , x

∗
`) (henceforth the challenge attribute) it can send queries for secret keys to

the key generation oracle which can respond only for functions f(x∗) = 1.
The basic idea is that if A has a significant advantage in distinguishing between the ciphertexts of two different

messages encrypted under the challenge attribute x∗, then we can show that B can break the decision RLWE
hardness assumption in Definition 3.2. In the next section, we show how the oracle responds to queries for functions
f(x∗) = 1 using SAMPLELEFT algorithm .

1) SAMPLELEFT Algorithm: This algorithm is fundamental to the ABE construction used in our work. In a
nutshell, having G as a primitive vector one can obtain a small-norm solution, y ∈ R2m×1

q , for (A|AS−G)y = u,
where u←U Rq, A←U Rmq , and S← DRm×m,σ is a matrix of small norm polynomials (e.g., following a Gaussian
distribution). We can formulate the algorithm as follows:

SAMPLELEFT(A,G,S, u)→ y.

Algorithm SAMPLELEFT relies on Construction 2 described in [26] based on the findings in [53], [54]. In what
follows, we provide a brief explanation for our version of the construction in [26].

27

The primitive vector G = (g1, g2, . . . , gk, 0, 0), where gi = 2i−1 and as m = k + 2, G ∈ R1×m
q . The vector

A = (a1, a2, . . . , am), where ai ←U← Rq. Also si ∈ Rm×1 represents i-th column of S. Consequently, Asj =∑m
i=1 aisji is an element of Rq.
Let F = (A|AS − G) = (a1, . . . , am,As1 − g1, . . . ,Ask − gk,Ask+1,Ask+2), where the terms Asj for

j = 1, . . . ,m are uniformly distributed [53], [54]. It follows that F is uniformly distributed and the vectors
sj ∈ Rm×1

q form a trapdoor TF for F.
To generate a preimage of a uniformly randomly selected u←U Rq, we first sample a vector x ∈ Λ⊥u (G) using

the trapdoor TG, where x is a vector of low norm polynomials and hence
∑m

i=1 gixi = u. Then, one can easily
verify that y = (y1, . . . , ym, ym+1, . . . y2m) is a preimage of the syndrome u for F, where yi =

∑m
j=1 xjsji for

i = 1, . . . ,m and yi = −xi for i = m + 1, . . . , 2m. Note that yi are also polynomials with small norms. The
following shows that Fy = u.

Fy = a1

m∑
j=1

xjsj1 + . . .+ am

m∑
j=1

xjsjm+ (17)

. . .+ x1(g1 −As1) + . . .+ xm(−Asm)

=

m∑
i=1

ai

m∑
j=1

xjsji +

m−2∑
i=1

gixi −
m∑
j=1

xjAsj

=

m∑
j=1

xj

m∑
i=1

aisji + u−
m∑
j=1

xjAsj

=

m∑
j=1

xjAsj + u−
m∑
j=1

xjAsj

= u.

However, since the distribution of y is ellipsoidal, not spherical as required in [15], and leaks information about
the trapdoor, we need a spherically distributed preimage sample for u, which can be obtained using the techniques
in [26].

In the next section, we demonstrate that how the key generation oracle responds to a secret key request for a
circuit f(x∗) = 1 for the challenge attribute x∗. The oracle only needs to provide a small norm solution to a vector
of the form (A|f(x∗)G−ASf), where Sf is a matrix of relatively small norm polynomials, which is possible to
obtain using the method described in this section provided that f(x∗) 6= 0 (f(x∗) = 1 for binary attributes); with
the only exception for f(x∗) = 0, which defines our access policy and results in a vector of the form (A|ASf).

2) Simulated Circuit Evaluation: In some of the security games in [1], the public vector A ←U R1×m
q is

chosen uniformly randomly, instead of using TRAPGEN function, which produces a pseudorandom public vector.
Conversely, instead of selecting them uniformly randomly we use Bi = ASi − x∗iG produced pseudorandomly,
where x∗ is the challenge attribute. And also Si ∈ {±1}m×m is chosen uniformly randomly for i = 1, . . . , `.
Without loss of generality, we assume that the policy circuit consists of only multiplication and addition/subtraction
gates; and thus we do not use B0 henceforth.

The idea is to evaluate Si matrices over the given circuit f(x∗) 6= 0, where x∗ is committed to by adversary A
before the security games start. Evaluation of the matrices Si is indeed very similar to the evaluation of the public
vectors Bi for i = 1, . . . , `. The only difference is the fact that Si is a matrix consisting of either +1 or −1. We
can even consider that Si is a matrix of constant polynomials in Rm×mq . Then, we can write evaluation algorithms
of addition/subtraction and AND gates for two such matrices Si1 and Si2

S± = Si1 + Si2

SAND = x∗i2Si2 + Si2BITDECOMP(−Bi1), (18)

respectively. Here, the results are also matrices of the same type, i.e., S±,SAND ∈ Rm×mq , possibly with larger
norms, for which one can provide upper bounds. To compute the evaluation of Sis over the circuit, we first
call, Bf = EVALPK(f, (ASi − x∗iG)`i=1)), whereby we also store the B vectors calculated for each gate. After
using either one of the formula in Eq. 18 for each gate in the circuit to perform evaluations, we obtain a matrix

28

Sf ∈ Rm×mq for the output of the circuit. As Sf is obtained as a result of the evaluation operation, we can write for
the norm of Sf , ||Sf || < ∆f , where ∆f measures the increase in the noise magnitude in a ciphertext Cf compared
to the input ciphertexts Ci. As we have f(x∗) = 1, we need to generate a low norm solution to (A|ASf −G)αf ,
which is possible using the technique described in Section XI-D1. Then the simulated circuit evaluation algorithm
is described as

EVALSIM(f, (x∗i ,Si)
`
i=1,A)→ Sf .

E. Security Games

In this section, we briefly explain Game 2 and Game 3 from [1], where the goal is to show that they are
indistinguishable for a probabilistic polynomial time (PPT) adversary A. Game 2 proceeds as follows:

1) Adversary A commits to a set of attribute values x∗.
2) β ←U Rq, A←U R1×m

q , (i.e., uniformly randomly chosen)
3) B performs the following:

a) Si ←U {±1}m×m for i = 1, . . . , ` (i.e., uniformly randomly chosen)
b) Bi = x∗iG−ASi for i = 1, . . . , `
c) Public key MPK = (A,Bi, . . . ,B`, β) is sent to A

4) A cannot distinguish Bi’s in MPK and uniformly randomly chosen Bi’s in normal execution of the ABE
algorithm.

5) A picks a plaintext pair (µ0, µ1) and sends it to B.
6) B encrypts one of them µb at random (b ∈ (0, 1)) and sends the challenge ciphertext to A.
7) A can query the oracle for any function f provided that f(x∗) = 1.
8) For any Boolean function f(x∗) = 1, the key generation oracle does

• compute Bf = EVALPK((ASi, x
∗
iG)`i=1, f)

• compute Sf = EVALSIM(f, (x∗i ,Si)
`
i=1, A)

• return αf = SAMPLELEFT(A,G,S, β), where (A|ASf −G)αf = β

9) However, it cannot answer any query for (A|ASf)αf = β, which corresponds to the case f(x∗) = 0.
10) Thus, A has no significant advantage to tell whether b = 0 or b = 1.

In Step 6, the ciphertext will be

Cin = (A|(x∗1G + B1)| . . . |(x∗`G + B`))
T s+ e0

= (A|(x∗1G+AS1−x∗1G)| . . . |(x∗`G+AS`−x∗`G))T s+e0

= (A|AS1| . . . |AS`)
T s+ e0

c1 = βs+ e1 + µbd
q

2
e

In Cin, (A, (AS1| . . . |AS`), e0) is statistically close to (A, (A′1| . . . |A′`), e0) for a uniformly randomly selected
A′i. Therefore, A views all vectors ASi statistically close to uniform.

Game 3 is identical to Game 2 except that the challenge to A contains uniformly randomly selected pair and
A cannot distinguish it from the valid ciphertext generated as in Game 2. More specifically, B is given the pair
(CA, c1) which are either random, i.e., CA ←U R

1×m
q and c1 ←U Rq or

CA = AT s+ e0

c1 = βs+ e1,

where s ←U Rq, e0 ← DRm,σ, and e1 ← DR,σ. The game proceeds identically to Game 2 until Step 6, which
is performed by B in a slightly different manner. B picks one of the plaintext at random µb and performs the
following:

C∗in = (CA|ST1 CA| . . . |ST` CA)

c = c1 + µdq
2
e

29

A cannot distinguish whether it is Game 2 or Game 3 since we would have

C∗in = ((AT s+eA)|((AS1)T s+ST1 eA)| . . . |((AS`)
T s+ST` eA)

= (A|AS1| . . . |(AS`)
T s+ e0

c∗1 = βs+ e1 + µbd
q

2
e,

which were a valid ciphertext generated in Game 2 if it were being played.
Conversely, suppose adversary A can guess b with ε advantage if it is given a valid ciphertext. This means A

can win Game 2 with ε advantage whereas its guess for b in Game 3 can only be correct with 1/2 probability
(indicating it has zero advantage in Game 3). In turn, B can distinguish between Game 2 and Game 3, which
indicates that B can solve the decision RLWE problem.

As we only demonstrate that the same security arguments are valid for our RLWE construction of KP-ABE,
we deliberately refrain from explaining all security games here and refer the interested reader to [1] for a deeper
insight.

