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Abstract. Parallel versions of collision search algorithms require a sig-
nificant amount of memory to store a proportion of the points computed
by the pseudo-random walks. Implementations available in the literature
use a hash table to store these points and allow fast memory access.
We provide theoretical evidence that memory is an important factor in
determining the runtime of this method. We propose to replace the tra-
ditional hash table by a simple structure, inspired by radix trees, which
saves space and provides fast look-up and insertion. In the case of many-
collision search algorithms, our variant has a constant-factor improved
runtime. We give benchmarks that show the linear parallel performance
of the attack on elliptic curves discrete logarithms and improved running
times for meet-in-the-middle applications.
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1 Introduction

Given a function f : S — S on a finite set S, we call collision any pair a,b
of elements in S such that f(a) = f(b). Collision search has a broad range of
applications in the cryptanalysis of both symmetric and asymmetric ciphers:
computing discrete logarithms, finding collisions on hash functions and meet-in-
the-middle attacks. The Pollard’s rho method [Pol78], initially proposed for solv-
ing factoring and discrete logs, can be adapted to find collisions for any random
mapping f. The parallel collision search algorithm, proposed by van Oorschot
and Wiener [vW99], builds on Pollard’s rho method, and is expected to have
a linear speedup compared to its sequential version. This algorithm computes
several walks in parallel and stores some of these points, called distinguished
points.

In this paper, we revisit the memory complexity of the parallel collision search
algorithm, both for applications that need a small number of collisions (i.e. dis-
crete logs) and those needing a large number of collisions, such as meet-in-middle
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attacks. In the case of discrete logarithms, collision search methods are the fastest
known attacks in a generic group. In elliptic curve cryptography, subexponential
attacks are known for solving the discrete log on curves defined over exten-
sion fields, but only generic attacks are known to work in the prime field case.
Evaluating the performance of collision search algorithms is thus essential for un-
derstanding the security of curve-based cryptosystems. Several record-breaking
implementations of this algorithm are available in the literature: over a prime
field the current record reaches a discrete log in a 112-bit group on a curve of the
form y? = 2® — 3z + b [BKKT12JBKM09]. This computation was performed on
a Playstation 3. More recently, Bernstein, Lange and Schwabe [BLS11| reported
on an implementation on the same platform and for the same curve, in which
the use of the negation map gives a speed-up by a factor v/2. Over binary fields,
the current record is an FPGA implementation breaking a discrete logarithm in
a 117-bit group |[BEL™]. As for the meet-in-the-middle attack, this generic tech-
nique is widely used in cryptanalysis to break block ciphers (double and triple
DES, GOST [Isol1]), hash functions [KNWO9IMRST09], lattice-based cryptosys-
tems (NTRU [HGSWO03vV16]) and isogeny-based cryptosystems |[ACCT18].

Two models of computation can be considered for this algorithm. The first
one follows the shared memory paradigm, in which each thread will compute
distinguished points and store it in the common memory. The second one is a
message-passing model, where the threads computing points, called the clients,
send the distinguished points to a separate process, running on a different ma-
chine called the server, who will handle the memory and check for collisions.

First, our contribution is to extend the analysis of the parallel collision search
algorithm and present a formula for the expected runtime to find any given
number of collisions, with and without a memory constraint. We show how to
compute optimal values of # - the proportion of distinguished points, allowing to
minimize the running time of collision search, both in the case of discrete loga-
rithms and meet-in-the-middle attacks. In the case where the available memory
is limited, we determine the optimal value of 6, proving that the value conjec-
tured by van Oorschot and Wiener was asymptotically correct. Going further in
the analysis, our formulae show that the actual running time of finding-many-
collisions algorithm is critically reduced if the number of words w that can be
stored in memory is larger.

Secondly, we focus on the data structure used for the algorithm. To the best of
our knowledge, all existing implementations of parallel collision search algorithms
use hash tables to organize memory and allow fast lookup operations. In this
paper, we introduce a new structure, called Packed Radix-Tree-List (PRTL),
which is inspired by radix trees. We show that the use of this structure leads
to better use of memory in implementations and thus yields improved running
times for many-collision applications.

Using the PRTL structure, we have implemented the parallel collision search
algorithm for discrete logarithms on elliptic curves defined over prime fields and
experimented using a Shared-Memory Parallelism (SMP) system. Our bench-
marks demonstrate the performance and scalability of this method. While in the



case of a single discrete log, the PRTL variant implementation yields running
times similar to those of a hash table approach, our experiments demonstrate
that the new data structure gives faster limited-memory multi-collision attacks.

Organisation. Section 2] reviews algorithms for solving the discrete logarithm
problem and for meet-in-the-middle attacks. In Section [3] we revisit the proof
for the time complexity of the collision finding algorithm for a small and a large
number of collisions. We furthermore show how to minimize the runtime, as a
function of the proportion of distinguished points. Section [4] describes our choice
for the data structure, complexity estimates and comparison with hash tables.
Finally, Section [f] presents our experimental results.

2 Parallel collision search

In this section, we briefly review Pollard’s rho method and the parallel algorithm
for searching collisions. Let S be a finite set of cardinality n. In order to look
for collisions for a function f : S — S with Pollard’s rho method, the idea
is to compute a sequence of elements x; = f (xi,l) starting at some random
element x(. Since S is finite, eventually this sequence begins to cycle and we
therefore obtain the desired collision f(xg) = f(xg4t), where xy is the point
in the sequence before the cycle begins and xj, is the last point on the cycle
before getting to 41 (hence f(zx) = f(2g+t) = k41). One may show that
the expected number of steps taken until the collision is found is /%", and
therefore that the memory complexity is also O(y/%). This algorithm can be
further optimized to constant memory complexity by using Floyd’s cycle-finding
algorithm [Jou09/Bre80]. We do not further detail memory optimizations here
since they are inherently of sequential nature and there is currently no known
way to exploit these ideas in a parallel algorithm.

The parallel algorithm for collision search proposed by van Oorschot and
Wiener [vIW99] assigns to each thread the computation of a trail given by points
x; = f(wi—1) starting at some point xg. Only points that belong to a certain
subset, called the set of distinguished points, are stored. This set is defined
by points having an easily testable property. Whenever a thread computes a
distinguished point x4, it stores it in a common list of tuples (zg,z4). If two
walks collide, this is identified when they both reached a common distinguished
point. We may then re-compute the paths and the points preceding the common
point are distinct points that map to the same value.

Solving discrete logarithms. In this subsection, .S denotes a cyclic group of order
n. We focus on the elliptic curve discrete logarithm problem (ECDLP) in a
cyclic group S = (P), but the methods described in this paper apply to any
finite cyclic group. We will assume that the curve E is defined over a finite field
F,, where p is a prime number. Let () € S and say we want to solve the discrete
logarithm problem @ = zP, where x € Z. To apply the ideas explained above,
we define a map F' : S — S which behaves randomly and such that each time



we compute R; 11 = f(R;) we can easily keep track of integers a; and b; such
that f(R;) = a; P + b;Q. Pollard’s initial proposal for such a function was

R+P ifReS;
f(R)=1< 2R if Re Sy (1)
R+Q@Q if ReSs,

where the sets S;, i € {1,2,3} are pairwise disjoint and give a partition of the
group S. As a consequence, whenever a collision f(R;) = f(Ry) occurs, we
obtain an equality

ajP + bJQ = akP + ka (2)

This allows us to recover & = (a; — ax)/(bx — bj), provided that by — b; is not a
multiple of n. Starting from Ry, a multiple of P, Pollard’s rho [Pol78| method
computes a sequence of points R; where R;11 = f(R;). Since the group S is
finite, this sequence will produce a collision after \/? iterations on average. In
the parallel version, each thread computes a walk, and only certain points on
this walk are stored in memory. These points are called distinguished points and
defined by an easily testable property, such as a certain number of trailing bits
of their z-coordinate being zero. Whenever a thread computes such a point, this
is stored in a common list, together with the corresponding a and b. When two
walks collide, this cannot be identified until the common distinguished point is
computed. Then the discrete logarithm can be recovered from an equation of

type .

Many collision applications. A first type of application of the van Oorschot and
Wiener algorithm computing many collisions is the multi-user setting of both
public and secret key schemes. In such a setting, it has demonstrated that it is
more efficient to recover individual keys one by one, by using a growing common
database of distinguished points, instead of running the algorithm for each key
separately (see [KSO1/FJMI4]). A second type of applications concerns meet-in-
the-middle attacks, which require finding a collision of the type fi(a) = f2(b),
where f1 : D1 — R and f5 : Do — R are two functions with the same co-domain.
As explained in [vW99], solving this equation may be formulated as a collision
search problem on a single function f : Sx{1,2} — Sx{1,2}, where the solution
we need is of the type:

f(a'v 1) = f(b7 2)7 (3)

and S is a set bijective to D;. This collision is called the golden collision. The
number of unordered pairs in S are approximately %2 and the probability that
the two points in a pair map to the same value of f is }L There are 5 expected
collisions for f and there may be several solutions to Equation . Hence one
typically assumes that all collisions are equally likely to occur and that in the
worst case, all possible 4 collisions for f are generated before finding the golden

one. Because so many collisions are generated, memory complexity can be the



bottleneck in meet-in-the-middle attacks and the memory constraint becomes an
important factor in determining the running time of the algorithm. We further
explain this idea in Section [3]

Computational model and data structure. We consider a CPU implementation
of the shared memory variant of the algorithm, where each thread involved in
the process performs the same task of finding and storing distinguished points.
In this case, the choice of a data structure for allowing efficient lookup and
insertion is significant. The most common structure used in the literature is a
hash table. In order to make parallel access to memory possible, van Oorschot
and Wiener [vW99| propose the use of the most significant bits of distinguished
points. Their idea is to divide the memory into segments, each corresponding to
a pattern on the first few bits. Threads read off these first bits and are directed
towards the right segment. Each segment is organized as a memory structure on
its own.

In recent years, with the development of GPUs and programmable circuits,
the client-server model has been widely used for implementing parallel collision
search. In this setting, a large number of client chips are communicating with
a central memory server over the Internet. For computing discrete logarithms,
IBBB™09] gives a comparison between implementations on different architectures
in this model. Current record-breaking implementations of ECDLP also rely on
this model [BKK™12/BKMO9IBEL™|.

Except for the need for a structure that allows efficient simultaneous access
to memory, all results in this paper apply to both the client-server and the
SMP versions of the PCS algorithm, even though our experimental results are
obtained using a CPU implementation following the SMP paradigm.

Notation. In the remainder of this paper, we denote by 6 the proportion of
distinguished points in a set S. We denote by n the number of elements of S. We
denote by E an elliptic curve defined over a prime finite field F,, and by E(F,)
the group of points on E defined over IF,,. Whenever the set S is the group E(F,),
n is the cardinality of this group. For simplicity, in this case, we assume that n
is prime (which is the optimal case in implementations).

3 Time complexity

Van Oorschot and Wiener [vW99|] gave formulae for the expected running time
of parallel collision search algorithms. In this section, we revisit the steps of
their proof and show a careful analysis of the running time both for computing
a single collision or multiple collision applications. Our refined formulae indicate
that the actual running time of the algorithm depends on the proportion of
distinguished points and allow us to determine the optimal choice of € for actual
implementations.



3.1 Finding one collision: elliptic curve discrete logarithm

Van Oorschot and Wiener [vW99] proved that the runtime for finding one colli-

sion is
1 /mn
o(2y73)

with L the number of threads we use. This is obtained by finding the expected
number of computed points before a collision occurs and then intuitively dividing
the clock time by L when L processors are involved. The proof of the following
theorem, given in Appendix [A] provides a more rigorous argument for the linear
scalability of the algorithm.

Theorem 1. Let S be a set with n elements and f : S — S be a random
map. In the parallel collision search algorithm, denote by 0 is the proportion of
distinguished points and t. and ts denote the time for computing and storing a
point respectively.

1. The expected running time to find one collision for f is

T(9) = (iﬁ+ %)te + (% s (4)

2. The worst case running time s

10)= (1 Je- Pt 1T+ et e e T 6

Remark 1. In the client-server model, clients do not have access to memory,
but they send distinguished points to the server and thus t; stands for cost
of communication on the client-side. We suppose that all the client processors
are dedicated to computing points. On the server-side however, the analysis is
different. Theorem [T and the means of finding the optimal value for 6 apply both
to the shared memory implementation adopted in this paper, and to the more
common distributed client-server model.

As we can see in Equation and , the proportion of distinguished points
we choose will influence our time complexity. The optimal value for 6 is the
one that gives the minimal run complexity. Most importantly, our analysis puts
forward the idea that the optimal choice for 6 depends essentially on the choices
made for the implementation and memory management. From this formula, we
easily deduce that if the proportion of distinguished points is too small or too
large, the running time of the algorithm increases significantly.

By estimating the ratio ¢ /t. for a given implementation, one can extrapolate
the optimal value of # by computing the zeros of the derivative of the function

in Equation :

1 1
T'0) = — ) "¢,

o\ 2 b gl



Figure [1] gives timings for our implementation of the attack, using a hash
table to store distinguished points. Timings shown in the figure are averaged
over 100 runs on a 65-bit curve and support our theoretical findings.
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Fig.1: Timings of solving ECDLP for different values of 6, 65-bits curve, 28
threads

Note that most recent implementations available in the literature choose the
number of trailing bits giving the distinguished point property in a range between
0.1781logn and 0.256logn (see |BELTIBLSTIIBKMO09]). This value was deter-
mined by experimenting on curves defined over small size fields. Our theoretical
findings confirm that these values were close to optimal, but we suggest that for
future record-breaking implementations, the value of 6 should be determined as
explained above.

3.2 Finding many collisions

Using a simplified complexity analysis, van Oorschot and Wiener [vW99| put
forward the following heuristic.

Heuristic (J[vW99)]). Let f : S — S a random map and assume that the mem-
ory can hold w distinguished points. Then in the meet-in-the-middle attack the
(congectured) optimum proportion of distinguished points is 6 ~ 2.25\/%. Under
this assumption, the expected number of iterations required to complete the attack
using these parameters is 2.5%\/%.



This heuristic suggests that in the case of many collisions attacks, a memory
data structure allowing to store more distinguished points will yield a better
time complexity. To prove the conjectured runtime, we first give a more refined
analysis for the running time of a parallel collision search for finding m collisions.

Theorem 2. Let S be a set with n elements and f : S — S a random map. We
denote by 0 the proportion of distinguished points in S. The expected running
time to find m collisions for f with a memory constraint of w words is:

w w? On  2m
L<9+(m262n)w+ 7 ) (6)

Proof. Let X be the expected number of distinguished points calculated per
thread before duplication. Let T7 be the expected number of distinguished points
computed until the first collision was found, and 75, for any ¢ > 1, the expected
number of points stored in the memory after the (i — 1)th collision was found
and before the ith collision is found.

As shown in Theorem [1], the expected number of points stored before finding
the first collision is 17 = 9\/7“2j . The probability of not having found the second
collision after each thread has found and stored T distinguished points is

L+Ty

L 2L+1T, L TL+T
)9.(1_L)9. fh+h
nb no

L
0.
no )

P(X >T)=(1 1-

As in the proof of Theorem [T} we approximate this expression by

—1212 2Ly T

P(X > T) =e 2n02

Hence the expected number of distinguished points computed by one thread
before the second collision is:

X 71202 _snmy T O 2212 241y
E(X) = E e 2n62 =~ (& 2n62 dx =
0

T=0
2 [ _(er4T)? 0v2n T2 [ e
— e2n62 e~ 2ne2  dr = e2n62 e v dt
0 L Ty
0v2n

T2
0vV2n 2 [0 one” 36%n /°° et
= ——e2n6 =
L 2T,

where the last equality is obtained by integration by parts. We denote by

U, =T, + T+ ... Tk



By applying repeatedly the formula above (and neglecting the last integral),
we have that T} = °n_  Therefore we have Up = U1 + 6°n By letting

LUy 1 LUk 1
Vi, = GLUfL , we obtain a sequence given by the recurrence formula
1
Vi =V + .
Vi1

We will use the Cesaro-Stolz criterion to prove the convergence of this limit.
First, we note that this sequence is increasing and tends to co. Moreover we

VEi-v¢
have that V2 = V2, + 2 + p3—. Hence -t
-1

we have Vi, ~ v2k. We conclude that

Uy ~ 9\/12?. (7)
Since Uy is the number of distinguished points computed per thread, the total
number of stored points is 6v/2kn. Hence the memory will fill when 6v/2kn = w.
This will occur after computing the first k,, = % collisions and the expected
total time for one thread is ;7. When the memory is full, the time to find a
collision is %” (see [vW99] for detailed explanation). Finally, to actually locate
the collision, we need to restart the two colliding trails from their start, which
requires 2/6 steps on average.

To sum up, the total time to find m collisions is:

l E‘F( _w2)97n+27m
L\o """ e T e )

Remark 2. According to the formula obtained in Equation [7], we see that if the
memory is not filled when running the algorithm for finding % collisions, as in
meet-in-the-middle applications, then we store 6n distinguished points, i.e. all
distinguished points in S.

— 2 and as per Cesaro-Stolz

Note that the proof of Theorem [2]relies strongly on our formula for the expected
total number of computed distinguished points for finding m collisions, when m
is sufficiently large and the memory is not limited:

Sm = 0v2mn. (8)

We confirmed this asymptotic formula experimentally by running a multi-collision
algorithm for a curve over a 55-bit prime field. The comparison of our formula
with the experimental results is in Table|l| Each value in this Table is an average
of 100 runs where we set § = 1/2!3. Furthermore, our formula coincides with
the estimated workload for computing & discrete logarithms in [KS01], which is
obtained using a different analysis valid when k < n'/4.

Finally, recall that in the meet-in-the-middle attack, one needs to compute
5 collisions. By minimizing the complexity function obtained in Theorem , we
obtain an estimate for the optimal value of 6 to take, in order to minimize the
running time of the algorithm.



Collisions |Experimental |Sk Collisions |Experimental |Sk

Avg. Avg.
100 238289 231704 500 530493 518107
1000 750572 732714 2000 1062581 1036215
5000 1681831 1638399 7000 1990671 1938581

Table 1: Comparing the asymptotic value of S, to an experimental average.

Corollary 1. The optimum proportion of distinguished points minimizing the
time complexity bound in Theorem |9 is 6 = 7””2:2"“’ Furthermore, by choosing

this value for 0, the running time of the parallel collision search algorithm for

finding 5 collisions is bounded by:

n 2n
o(24eT) y

Proof. From Theorem [2| the runtime complexity is given by:

1 fw n w? On n
0 =1 (5+G 7% )

By computing the zeros of the derivative:

n20? — w? — 2nw
2Lwh? ’

T'(0) =

we obtain that by taking 6 = 7M:§2m“, the time complexity is O (%\ /14 %")

This confirms and proves the heuristic findings in [vW99]. Most importantly,
Corollary [1| suggests that in the case of applications that fill the memory avail-
able, the number of distinguished points we can store is an important factor in
the running time complexity. More storage space yields a faster algorithm by a
constant factor. We propose such an optimization in Section [

4 Our approach for the data structure

In this section, we evaluate the memory complexity of parallel collision search al-
gorithms. As explained in Section van Oorschot and Wiener’s [vyW99] proposed
to divide the memory into segments to allow simultaneous access by threads.
We revisit this construction, with the goal in mind to minimize the memory
consumption as well. Since in Section [3] we showed that the time complexity of
collision search depends strongly on the available amount of memory, we propose
an alternative structure called a Packed Radix-Tree-List, which will be referred
to as PRTL in this paper. We explain how to choose the densest implementation
of this structure for collision search data storing in Section

10



Since the PRTL is inspired by radix trees, we first describe the classic radix
tree structure and then we give complexity analysis on why its straightforward
implementation is not memory efficient. The PRTL structure has the memory
gain of radix tree common prefixes but avoids the memory loss of manipulating
pointers.

4.1 Radix tree structure

Each distinguished point from the collision search is represented as a number in
a base of our choice, denoted by b. For example, in the case of attacks on the
discrete logs on the elliptic curve, we may represent a point by its z-coordinate.
The first numerical digit of this number in base b gives the root node in the tree,
the next digit is a child and so on. This leads to the construction of an acyclic
graph which counsists of b connected components (i.e. a forest).

In regard to memory consumption, we take advantage of common prefixes to
have a more compact structure. Let ¢ be the length of numbers written in base
b that we store in the tree and K the number of distinguished points computed
by our algorithm. To estimate the memory complexity of this approach, we give
upper and lower bounds for the number of nodes that will be allocated in the
radix tree before a collision is found.

Proposition 1. The expected number of nodes in the radix tree verifies the fol-
lowing inequalities:

b b
ﬁK—c—logbK—lgN(K)g(c—logbK—i—ﬁ)K. (10)
The proof of these inequalities is detailed in Appendix [B]

Traditionally, nodes in a tree are implemented as arrays of pointers to child
nodes. This representation will lead to excessive memory consumption when the
data to be stored follows a uniform random distribution, leading to sparsely
populated branches and to the average distribution of nodes in the tree being
closer to the worst case than to the best case.

The difference between the worst-case value and the best-case value can be
approximated as A ~ K (c — log, K). Depending on the application, this value
may be large. Let us consider the case where a single collision is required for
solving the ECDLP. By a theorem of Hasse [Sil86], we know that the number of
points on the curve is given by n = p 4+ 1 — ¢, with [t| < 2,/p. Since we assume
that n is prime, we approximate logn ~ logp. Hence an approximation of A is:

1 T
A 9\/ 7(510&"—10& \/;)a

which implies that the tree is sparse. In the case of many collisions algorithms,
¢ ~ log, K and this standard deviation becomes negligible, resulting into a
space-reduced data structure. We show how to handle sparse trees efficiently
in Section

11



4.2 Packed Radix-Tree-List

Starting from the analysis in Section we look to construct a more efficient
memory structure by avoiding the properties of the classic radix tree that make
it memory costly for our purposes. Intuitively, we see that the radix tree is dense
at the upper levels and sparse at the lower ones. Hence it would be more efficient
to construct a radix tree up to a certain level and then add the points to linked
lists, each list starting from a leaf on the tree. We denote by [ be the level up to
which we build the radix tree. We call this a Packed Radix—Tree—Listﬂ Figure
illustrates an example of an abstract Radix-Tree-List in base 4.

Fig. 2: Radix-Tree-List structure with b =4 and [ = 2

This idea was considered by Knuth [Knu98, Chapter 6.3] for improving on
a table structure called trie, introduced by Fredkin [Fre60]. Knuth considers a
forest of radix trees that stop branching at a certain level, whose choice is a
trade-off between space and fast access. Indeed, the more we branch, the faster
the lookup is, but the more memory we require. He suggests that the mixed
strategy yields a faster lookup when we build a tree up to a level where only a
few keys are possible. Starting from this level a sequential search through a list
of the remaining keys is fast.

In our use case, we favor memory optimization to fast lookup, thus we use
a different technique to decide on the tree level. First, we look to estimate up
to which level the tree is complete for our use case. The number of leaves in a
complete radix tree of depth [ is b'. As per the coupon collector’s problem, all
the linked lists associated with a leaf will contain at least one point when the
following inequality is verified:

K > b'(Inb" +0.577). (11)

We consider the highest value of [ which satisfies this inequality to be the optimal
level, as it allows us to obtain the shortest linked lists while having 100% rate
of use of the memory structure. We verified this experimentally by inserting a
given number of randomly obtained points of length 65, with b = 2, in the PRTL

! The ’packed’ property is addressed in Section |[5| where we give implementation de-
tails.

12



structure. The results are in Table 2] We performed 100 runs for each value of K
and counted the number of empty lists at the end of each run. None of the 300
runs finished with an empty list in the PRTL structure, which supports the claim
that the obtained [ is small enough to have at least one point per list. Then,
to confirm that [ is the highest possible value that achieves this, we reproduced
the experiments by taking [ + 1, which is the lowest value that does not satisfy
Equation . The results show that [ 4+ 1 is not small enough to produce a
100% rate of use of the memory, therefore [ is in fact the optimal level to choose.

Average nb. of empty lists per run

K ! Level [ Level [ 4+ 1
5 million 18 0 37
7 million 18 0 0.84
10 million 19 0 75

Table 2: Verifying experimentally the optimal level.

The attribution of a point to a leaf is determined by its prefix and we know
in advance that all the leaves will be allocated. Therefore, in practice we do not
actually have to construct the whole tree, but only the leaves. Hence, we allocate
an array indexed by prefixes beforehand and then we insert each point in the
list for the corresponding prefix. The operation used to map a point to an index
is faster than a hash table function. More precisely, we perform a bitwise AND
operation between the z-coordinate of the point and a precomputed mask to
extract the prefix. Furthermore, the lists are sorted. Since we are doing a search-
and-add operation, sorting the lists does not take additional time and proves to
be more efficient than simply adding at the end of the list. Figure [3] illustrates
the implementation of this structure.

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33
\11\21|12|01|01|21|01|00|12|02|02|3i1|12|00|32\02\

[(81[22] [G3[1i[22] [d3[22] [A1[33[20[33] [03]
h
33

Fig. 3: PRTL implementation. Same points stored as in Figure

Remark 3. When implementing the attack for curves defined over sparse primes,
we advise taking an [-bit suffix instead of an [-bit prefix. Prefixes of numbers
in sparse prime fields are not uniformly distributed and one might end up only
with prefixes starting with the 0-bit, and therefore a half-empty array.

13



Remark 4. To experiment with this structure, we chose the example of ECDLP.
In this case, we store the starting point of the Pollard walk kP and the first
distinguished point we find, represented by the coefficient k& and the z-coordinate
correspondingly. Consequently, we store a pair (z-coordinate, k). However, the
analysis and choices we made for constructing the PRTL are valid for every
collision search application which needs to store pairs (key,data) and requires
pairs to be efficiently looked up by keys. For the ECDLP, Bailey et al. [BBBT09|
propose, for example, to store a 64-bit seed on the server instead of the initial
point, which makes the pair (z-coordinate, seed).

Remark 5. In our implementation, we always use b = 2, and thus, the parameter
b will no longer be specified.

PRTL vs. hash table. We experimented with the ElfHash function, which is used
in the UNIX ELF format for object files. It is a very fast hash function, and
thus comparable to the mask operation in our implementation. Small differences
in efficiency are negligible since the insertion is the less significant part of the
algorithm. Indeed, recall that insertion is performed every % iterations of the
random map f.

As is the practice with the parallel collision search, we allocate K indexes
for the hash table, since we expect to have K stored points. Recall that this
guarantees an average search time of O(1), but it does not avoid multi-collisions.
Indeed, according to [Jou09l Section 6.3.2], in order to avoid 3-multi-collisions,
one should choose a hash table with K2 buckets. Consequently, we insert points
in the linked lists corresponding to their hash keys, as we did with the PRTL.
Every element in the list holds a pair (key, data) and a link to the next element.
The PRTL is more efficient in this regard as we only need to store the suffix of
the key.

With this approach, we can not be sure that a 100% of the hash table indexes
will have at least one element. We test this by inserting a given number of random
points on a 65-bit curve and counting the number of empty lists at the end of
each run, like we did to test the rate of use for the PRTL. We try out two
different table sizes: the recommended hash table size and for comparison, a size
that matches the number of leaves in the PRTL. All results are an average of
100 runs.

Nb. of points Average nb. of empty lists | Average nb. of empty lists
for size = K for size = 2!
5 million 2592960 (51.85%) 98308 (37.50%)
7 million 3632679 (51.89%) 98304 (37.50%)
10 million 5138792 (51.38%) 196615 (37.50%)

Table 3: Test the rate of memory use of a hash table structure.
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Results in Table [ show that when we choose a smaller table size, we have
fewer empty lists, but the hash table is still not 100% full. Due to these results,
when implementing a hash table we choose to allocate a table of pointers to
slots, instead of allocating a table of actual slots that will not be filled. This is
the optimal choice because we only waste 8 bytes for each empty slot, instead of
24 (the size of one slot).

Since results in Table 2show that the array in PRTL will be filled completely,
when using this structure, we allocate an array of slots directly. This makes PRTL
save a constant of 8 K bytes compared to a hash table.

To sum up, the PRTL structure is less space-consuming and has a memory
rate of use of 1. Note however that by Equation , the average number of
elements in a chained list corresponding to a prefix is b—]f ~ llogb+ 0.577. This
shows that the search time in our structure is negligible, and our benchmarks
shown in Section [f] confirm that memory access has no impact on the total
running time for the algorithm.

It is clear that when one implements the PRTL, this structure takes the form
of a hash table where the hash function is in fact the modulo a specific value
calculated using Equation . It might seem counter-intuitive that the optimal
solution for a hash function is the modulo function. However, collision search
algorithms do not require a memory structure that has hash table properties,
such as each key to be assigned to a unique index.

Indeed, a well-distributed hash function is useful when we look to avoid multi-
collisions. With collision search algorithms, the number of stored elements is so
vast that we can not possibly allocate a hash table of the appropriate size and
thus we are sure to have longer than usual linked lists. Fortunately, this is not a
problem since the insertion time is, in this case, not significant compared to the %
random walk computations needed before each insertion. For example, % would
be of order 232 for a 129-bit curve. On the other hand, as shown in Section 3, the
available storage space is a significant factor in the time complexity, which makes
the use of this alternative structure more appropriate for collision searches.

5 Implementation and benchmarks

To support our findings, we implemented the parallel collision search using both
PRTLs and hash tables for discrete logarithms on elliptic curves defined over
prime fields. Our C implementation relies on the GNU Multiple Precision Arith-
metic Library [MM11] for large numbers arithmetic, and on the OpenMP (Open
Multi-Processing) interface [OPE] for shared memory multiprocessing program-
ming. Our experiments were performed on a 28-core Intel Xeon E5-2640 proces-
sor using 128 GB of RAM and we experimented using between 1 and 28 threads.
In this section, first we explain in detail the implementation of the PRTL struc-
ture and then we show experimental results.

Packed RTL. An entry in the lists in the PRTL stores one (key,data) pair.
In order to have the best packed structure, we look to avoid wasting space
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on addressing, structure memory alignment and unintended padding. Hence we
propose to store all relevant data in one byte-vector. Our compact slot has the
following structure:

struct {
byte vector|[vector size];

pointer to next;
} link;

The key-suffix and data are bound in one single vector. In this way, we have
at most 7 bits wasted due to alignment. We designed functions that allow us
to extract and set values in the vector. Our implementation of a PRTL yields a
better memory occupation, but most importantly, manipulating this structure
does not slow down the overall runtime of the attack. We show experimental
results that verify this in Table [d] where we insert a given number of random
points on a 65-bit curve, using both a hash table and the PRTL. To have a
measurement of the runtime that does not depend on point computation time,
we take § = 1, meaning every point is a distinguished one. The key length is
thus ¢ = 65. All results are an average of 100 runs.

K Memory Runtime
PRTL Hash table PRTL Hash table
5 million 106MB 324MB 5.05 s 5.20s
7 million 148MB 454MB 6.74 s 7.01s
10 million 213MB 649MB 9.84 s 10.2s

Table 4: Comparing the insertion runtime and memory occupation of a PRTL
vs. a hash table.

We show similar experiments in Table [5] This time, we performed actual
attacks on the discrete log over elliptic curves, instead of inserting random points.
Since the number of stored points is now random and can be different between
two sets of runs, the runtime per stored point and memory per stored point are
more relevant results.

Field Memory Memory per point Runtime Runtime per point
"¢ "PRTL Hash | PRIL Hash |PRIL Hash | PRTL Hash
table table table table

55-bit| 402KB 1172KB| 19B 59B 35.16s 36.42s | 1.69ms 1.81ms
60-bit| 618KB 1801KB| 20B 59B 210.33s 212.83s| 6.88ms 6.91ms
65-bit| 1856KB 5212KB| 21B 60B 1292s  1291s |14.90ms 14.95ms
Table 5: Runtime and the memory cost for attacking ECDLP using PRTLs and
hash tables.
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The results are an average of 100 runs and they show that by using a PRTL
for the storage of distinguished points we optimize the memory complexity by a
factor of 3.

Calculating the exact memory occupation. Let f be the size of the field in bits
and t be the number of trailing bits set to zero in a distinguished point. We
keep the notation of K for the expected number of stored points and of [ for the
level of the PRTL structure. To calculate the expected memory occupation of
the entire PRTL structure, we first calculate the size of a compact slot. Recall
that a compact slot holds one byte-vector and a pointer to the next slot. Thus,
one compact slot takes [(f —1 —t 4+ f)/8] 4+ 8 bytes (f — 1 — ¢ bits for the
key-suffix and f bits for the data). The size of the slot is to be multiplied by
K. To make sure that the access to the shared memory is asynchronous, we use
locks on the shared data structure. However, for efficiency, the time that threads
spend waiting on a lock needs to be minimized as much as possible. Thus, when
we store a point we do not lock the entire structure. In the PRTL structure,
there is a lock for every entry in the array, which makes a total of 2! locks. This
adds 8- 2! bytes to the total memory occupation. Recall from Section |4/ that the
entries in our classic implementation of a hash table are linked lists of points.
Every element (point) in the list holds a pair (key, data) and a link to the next
element. The size of one point is 24 bytes for the three pointers (pointer to the
key, pointer to the data and pointer to the next element), plus [(f —t)/8] bytes
for storing the key and [ f/8] bytes for storing the data. Similarly to the PRTL
structure, the hash table has a lock for every entry in the table, which makes a
total of K locks, taking 8 K bytes. Then, we have the size of the hash table, 8K
bytes, plus the size of all points. Hence, the total memory occupation of the hash
table is expected to be (40 + [(f —t)/8] + [f/8]) K. Table[6] shows examples of
memory requirements of large ECDLP computations calculated in this way. The
computation in [BEL™| on the elliptic curve target117 over Foi27 is performed
using the 30 leading zero bits distinguishing property. For this curve, we have
n = 211735 and thus, the estimation of K is 379821956. However, the actual
computation finished after 968531433 distinguished points were collected. We
calculate the memory requirements both for the estimated and for the resulting
value of K. In both cases, the [ is calculated with respect to the estimation
of K, as [ always needs to be set beforehand. We also calculate the memory
requirements for a discrete log computation on a 160-bit curve, with an estimated
number of stored distinguished points.

ECDLP implementation details and scalability. Teske [Tes01] showed experi-
mentally that the walk proposed by Pollard described in Equation originally
performs on average slightly worse than a random walk. She proposes alterna-
tive mappings that lead to the same performance as expected in the random
case: additive walks and mixed walks. In our implementation, we adopted the
approach of using additive walks and we chose r = 20 as the number of sets 5;
that give a partition of the group S. Teske showed experimentally that if r > 20
then additive walks are close to random walks.
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Field 0 K ! PRTL Hash

table

[BEIlﬁl']Tjsi_itr)rllgtion 1/2%0 | ~ 379821956 | 24 9.6GB | 23.1GB
117.35-bit 30

(BEL] computation 1/2 968531433 | 24 24GB 59GB

estig;zlizn 1/2%0 |~ 20 35 | 43155GB | 82463GB

Table 6: Memory requirements of large ECDLP computations using PRTLs and
hash tables.

In the theoretical model [vW99|, the Parallel Collision Search is considered
to have linear scalability and our time complexity in Theorem [I] confirms this.
To assess the parallel performance of our implementation, we experimented with
L e {1,2,7,14,28} threads, solving the discrete log over a 60-bit curve. Table
shows the Wall clock runtime and the parallel performance of the attack when
we double the number of threads. The parallel performance is an indication of
how the runtime of a program changes when the number of parallel processing
elements increases. It is computed as

thl
Loty

where t; is the Wall clock runtime with L; threads and L; > Ls. A program
is considered to scale linearly if the speedup is equal to the number of threads
used i.e. if the parallel performance is equal to 1 (or very close to 1, in practice).
From our results, we conclude that the parallel performance is not as good as
expected for a small number of threads, but gets closer to linear as the number
of threads grows.

Runtime Runtime |Parallel performance
L1 L2
t1 t2
1 2459s 2 1699s 0.72
7 776s 14 411s 0.94
14 411s 28 210s 0.97

Table 7: Runtime and Parallel performance of the attack on ECDLP. Results
are based on 100 runs per L; € L.

Multi-collision search computation. To prove our claims from Section [3| that
more storage space yields a faster algorithm, we ran a multi-collision search
while limiting the available memory. When the memory is filled, each thread
continues to search for collisions without adding new points. As a practical ap-
plication of this computation, we chose the discrete logarithm in the multi-user
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setting [KSO1/EJMI4]. Hence, the data that we store for each distinguished point
is the coefficient a, plus an integer representing the user. Results in Table [§show
that the PRTL yields a better runtime compared to a classic hash table due to
the more efficient memory use.

.. - Runtime Stored points
Collisions | Memory lmit|—p = G P PRTL,  Hash
table
4000000 1GB 3464h  53.80h | 46820082 12012177
16000000 2GB 88.18h  137.46h | 93640161 25824345
50000000 AGB 203.24h  276.80h |168325978 51648716

Table 8: Runtime for multi-collision search for a 55-bit curve using PRTLs and
hash tables. Values for 1GB memory limit are an average of 100 runs and values
for 2GB and 4GB memory limits are an average of 10 runs.

6 Conclusion

We revisited the time complexity of the parallel collision search and explained
how to choose the optimal value for the proportion of distinguished points
when implementing this algorithm. We proposed an alternative memory struc-
ture for the parallel collision search algorithm proposed by van Oorschot and
Wiener [vIW99]. We show that this structure yields a better memory complexity
than the hash table variant of the algorithm. Moreover, using the new memory
structure, we obtained a better bound for the time complexity of the parallel col-
lision search, in the case where a large number of collisions is needed. Finally, we
implemented the radix tree parallel collision search algorithm for solving discrete
logarithms and showed its scalability.
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A Appendix : Proof of Theorem

Proof. 1. We call short path the chain of points computed by a thread between
two consecutive distinguished points. The expected number of distinguished
points produced after a certain clock time T is T'LO. The probability of not
having a collision at T" = 1, for one thread is

Lo
1-——.
nf
Note that any of the L threads can cause a collision. Thus, the probability for
all threads of not finding a collision on any point on the short walk is:

(1 - %)La

at the moment 7' = 1.
Let X be the number of points calculated per thread before duplication.
Hence:

P>y = (- Dy e o Ty

To do this multiplication we are going to take a shortcut. When x is close to
0, a coarse first-order Taylor approximation for e” as:

e ~1+uw.
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Now we can rewrite our expression as:

P(X>T)=(e % e 3. o5 = (7= 2
= e—T(;‘jl)L L = (e 7;:L)L = eigi[? . (12)

This gives us the probability

—1212

PX>T)=e 2n ,

thus the expected number of distinguished points found before duplication, is

B(X) = f: T-P(X=T)= i T-(P(X >T-1)-P(X > T)) = i P(X >T).
T=1 T=1 T=0

We approximate

o0
—7212 —22L2 1 ™
E(X)= E e z/ e 7 drr —/—

Since the expected length of a short walk is %, the number of distinguished points

before a collision occurs is
9 [t
LY 2°

However, a collision might occur on any point on the walk and it will not be
detected until the walk reaches a distinguished one. We add % to the number
of calculations for the discovery of a collision. Finally, the expected number of

calculated points per thread is:

1 /mn n 1

Ly 2 0
The two main operations in our algorithm are computing the next point on the
random walk and storing a distinguished point. Thus, the time complexity of
our algorithm is:

10) = (72 4 )t + (7T (13)

2. To compute the worst time complexity, we compute the variance of the random
variable X as o(X) = E(X?) — E(X)2. Using a similar approximation as in

—wL?
Equation (12) we obtain that E(X?) ~ [~ e S da ~ 211 Hence the worst case
runtime is

10) = (3@~ Pt 1[5+ e+ 2/ Pty [

Remark 6. Note that the analysis above shows that the number of points com-
puted by the algorithm is O (9,/%). This was proven by van Oorschot and
Wiener in the first place.
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B Appendix : Proof of Proposition

The lower and upper bound in Equation are given by the worst-case and
best-case scenario for the number of nodes.

Worst-case scenario. In the worst case scenario, for each new word added in
this structure we will create as much nodes as possible. This means that the
x-coordinates of the added points have the shortest possible common prefix, as
shown in Figure [4l For the first b points, we will use bc nodes. After that, the
first distinguished point that we find will take ¢ — 1 nodes, since all possibilities
for the first letter in the string were created. This case is repeated (b—1)b times,
provided that K > b+ (b — 1)b.

Fig. 4: Worst-case scenario example with parameters K =5 and b =4

More generally, let k = |log, K| — 1. We build the tree by allocating nodes
as follows:

— bc nodes for the first b points

— (b—=1)b(c — 1) for the next (b — 1)b points

— (b—1)b*(c — 2) for the next (b — 1)b* points etc.
— (b—1)bk(c — k) for (b— 1)b* points.

For each of the remaining K — (b+ Zle(b —1)b%) points we will need ¢ — k — 1
nodes. To sum up, the total number of nodes that will bound our worst-case
scenario is given by:

k k—1
N(K)=bc+ Y (b=1b'(c—i)+ (K =b—bb—1)> b)(c—k—1).
=1 =0

We simplify the sums and we approximate by:
b
N(K) ~ ﬁbk“ + K(c—k—1).
Since k = |log,q K| — 1, we have that

b
N(K) ~ mongb Kl 4 K(c— |log, K ). (14)
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Best-case scenario. Let K be the number of distinguished points that we need to
store and let k = |log, K |. In the best-case scenario, we may assume without loss
of generality that each time a new point is added in the structure, the minimal
number of nodes is used, i.e. the x-coordinate of the added point has the longest
possible common prefix with some other point that was previously stored. For
example, for the first point ¢ nodes are allocated, for the next (b— 1) nodes, one
extra node is allocated and so on, until all subtrees of depth 1, 2 etc. are filled
one by one. Figure [5| gives an example of how 215 points are stored. If K > b1,
we fill the first tree and start a new one. Let z;, for i € {0,1...,k}, denote the

Fig. 5: Best-case scenario example with parameters K = 16 and b =4

i-th digit of K, from right to the left. In full generality, since ¢ > k, we use:

— 1z, complete subtrees of depth k and a (z+1)-th incomplete tree of depth
k;

— the (z+1)-th tree of depth k has z;_; complete subtrees of depth k —1 and
a (rk—1+1)-th incomplete tree of depth k — 1;

— ¢ — k — 1 extra nodes.

Summing up all nodes, we get the following formula:

k % k
=0

i=0  j=0

b+ 1 1
= TK‘C‘ﬁ;O%
We conclude that:
b
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