
Committed MPC
Maliciously Secure Multiparty Computation from Homomorphic Commitments

Tore K. Frederiksen1, Benny Pinkas2, and Avishay Yanai2

1 Security Lab, Alexandra Institute, Denmark?
2 Department of Computer Science, Bar-Ilan University, Israel??

tore.frederiksen@alexandra.dk, benny@pinkas.net, ay.yanay@gmail.com

Abstract. We present a new multiparty computation protocol secure against a static and malicious dishonest ma-
jority. Unlike most previous protocols that were based on working on MAC-ed secret shares, our approach is based
on computations on homomorphic commitments to secret shares. Specifically we show how to realize MPC using
any additively-homomorphic commitment scheme, even if such a scheme is an interactive two-party protocol.
Our new approach enables us to do arithmetic computation over arbitrary finite fields. In addition, since our protocol
computes over committed values, it can be readily composed within larger protocols, and can also be used for
efficiently implementing committing OT or committed OT. This is done in two steps, each of independent interest:

1. Black-box extension of any (possibly interactive) two-party additively homomorphic commitment scheme to
an additively homomorphic multiparty commitment scheme, only using coin-tossing and a “weak” equality
evaluation functionality.

2. Realizing multiplication of multiparty commitments based on a lightweight preprocessing approach.
Finally we show how to use the fully homomorphic commitments to compute any functionality securely in the
presence of a malicious adversary corrupting any number of parties.

1 Introduction

Secure computation (MPC) is the area of cryptography concerned with mutually distrusting parties who wish to com-
pute some function f on private input from each of the parties, yielding some private output to each of the parties.
If we consider p parties, P1, . . . , Pp where party Pi has input xi the parties then wish to learn their respective output
yi. We can thus describe the function to compute as f (x1, x2, . . . , xp) = (y1, y2, . . . , yp). It was shown in the 80’s how
to realize this, even against a malicious adversary taking control over a majority of the parties [23]. With feasibility
in place, much research has been carried out trying to make MPC as efficient as possible. One specific approach to
efficient MPC, which has gained a lot of traction is based on secret sharing [23,5,3]: Each party secretly shares his
or her input with the other parties. The parties then parse f as an arithmetic circuit, consisting of multiplication and
addition gates. In a collaborative manner, based on the shares, they then compute the circuit, to achieve shares of the
output which they can then open.

1.1 Our Contributions

Using the secret sharing approach opens up the possibility of malicious parties using “inconsistent” shares in the
collaborative computation. To combat this, most protocols add a MAC on the true value shared between the parties. If
someone cheats it is then possible to detect this when verifying the MAC [14,16,32].

In this paper we take a different approach to ensure correctness: We have each party commit to its shares towards
the other parties using an additively homomorphic commitment. We then have the collaborative computation take
place on the commitments instead of the pure shares. Thus, if some party tries to change its share during the protocol
then the other parties will notice when the commitments are opened in the end (as the opening will be invalid).

By taking this path, we can present the following contributions:
? Majority of work done while at Bar-Ilan University, Israel.

?? All authors were supported by the BIU Center for Research in Applied Cryptography and Cyber Security in conjunction with the
Israel National Cyber Bureau in the Prime Minsters Office. Tore has also received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 731583.

1. An efficient and black-box reduction from random multiparty homomorphic commitments, to two-party additively
homomorphic commitments.

2. Using these multiparty commitments we present a new secret-sharing based MPC protocol with security against
a majority of malicious adversaries. Leveraging the commitments, our approach does not use any MAC scheme
and does not rely on a random oracle or any specific number theoretic assumptions.

3. The new protocol has several advantages over previous protocols in the same model. In particular our protocol
works over fields of arbitrary characteristic, independent of the security parameter. Furthermore, since our protocol
computes over committed values it can easily be composed inside larger protocols. For example, it can be used
for computing committed OT in a very natural and efficient way.

4. We suggest an efficient realization of our protocol, which only relies on a PRG, coin-tossing and OT3. We give
a detailed comparison of our scheme with other dishonest majority, secret-sharing based MPC schemes, showing
that the efficiency of our scheme is comparable, and in several cases preferable, over state-of-the-art.

1.2 High Level Idea

We depart from any (possibly interactive) two-party additively homomorphic commitment scheme. To achieve the
most efficient result, without relying on a random oracle or specific number theoretic assumptions, we consider the
scheme of [18], since has been shown to be highly efficient in practice [34,35]. This scheme, along with others [11,10,9]
works on commitments to vectors of m elements over some field F. For this reason we also present our results in this
setting. Thus any of these schemes could be used.

The first part of our protocol constructs a large batch of commitments to random values. The actual value in such
a commitment is unknown to any party, instead, each party holds an additive share of it. This is done by having each
party pick a random message and commit to it towards every other party, using the two-party additively homomorphic
commitment scheme. The resulted multiparty commitment is the sum of all the messages the parties committed to,
which is uniformly random if there is at least one honest party. We must ensure that a party commits to the same
message towards all other parties, to this end the parties agree on a few (random) linear combinations over the com-
mitments, which are then opened and being checked.

Based on these random additively shared commitments, the parties execute a preprocessing stage to construct ran-
dom multiplication triples. This is done in a manner similar to MASCOT [28], yet a bit different, since our scheme
supports computation over arbitrary small fields and MASCOT requires a field of size exponential in the security pa-
rameter. More specifically the Gilboa protocol [22] for multiplication of additively shared values is used to compute
the product of two shares of the commitments between each pair of parties. However, this is not maliciously secure
as the result might be incorrect and a few bits of information on the honest parties’ shares might be leaked. To ensure
correctness cut-and-choose and sacrificing steps are executed. First, a few triples are opened and checked for correct-
ness. This ensures that not all triples are incorrectly constructed. Next, the remaining triples are mapped into buckets,
where some triples are sacrificed to check correctness of another triple. At this point all the triples are correct except
with negligible probability. Finally, since the above process grants the adversary the ability to leak some bits from the
honest parties shares, the parties engage in a combining step, where triples are randomly “added” together to ensure
that the result will contain at least one fully random triple.

As the underlying two-party commitments are for vectors of messages, our protocol immediately features single-
instruction multiple-data (SIMD), which allows multiple simultaneously executions of the same computation (over
different inputs). However, when performing only a single execution we would like to use only one element out of the
vector and save the rest of the elements for a later use. We do so by preprocessing reorganization pairs, following the
same approach presented in MiniMAC [16,12,15], which allows to perform a linear transformation over a committed
vector.

With the preprocessing done, the online phase of our protocol proceeds like previous secret-sharing based MPC
schemes such as [14,28,16]. That is, the parties use their share of the random commitments to give input to the protocol.
Addition is then carried out locally and the random multiplication triples are used to interactively realize multiplication
gates.

3 OT can be efficiently realized using an OT extension, without the usage of a random oracle, but rather a type of correlation
robustness, as described in [2].

2

Efficiency. In table Table 1 we count the amount of OTs, two-party commitments and coin tossing operations required
in the different commands of our protocol (specifically, in the Rand, Input, ReOrg, Add and Mult commands).

The complexities describe what is needed to construct a vector of m elements in the underlying field in the amor-
tized sense. When using the commitment scheme of [18] it must hold that m ≥ s/dlog2(|F|)e where s is the statistical
security parameter.

Rand, Input ReOrg Add Mult

OTs 0 0 0 27m log(|F|)p(p − 1)
Two-party Commitments p(p − 1) 3p(p − 1) 0 81p(p − 1)
Random coins log(|F|) 4 log(|F|) 0 108 log(|F|)

Table 1. Amortized complexity of each instruction of our protocol (Rand,Input,ReOrg,Add and Mult), when constructing a batch
of 220 multiplication triples, each with m independent components among p parties. The quadratic complexity of the number of
two-party commitments reflects the fact that our protocol is constructed from any two-party commitment scheme in a black-box
manner, and so each party independently commits to all other party for every share it posses.

1.3 Related Work

Comparison to SPDZ and TinyOT. In general having the parties commit to their shares allows us to construct a secret-
sharing based MPC protocol ala SPDZ [14,28], but without the need of shared amd specific information theoretic
MACs. This gives us several advantages over the SPDZ approach:

– We get a light preprocessing stage of multiplication triples as we can base this on commitments to random values,
which are later adjusted to reflect a multiplication. Since the random values are additively homomorphic and
committed, this limits the adversary’s possible attack vector. In particular we do not need an authentication step.

– Using the commitment scheme of [18] we get the possibility of committing to messages in any field F among p
parties, using communication of only O(log(|F|) · p2) bits, amortized. This is also the case when F is the binary
field4 or of different characteristic than 2. In comparison, SPDZ requires the underlying field to be of size Ω(2s)
where s is a statistical security parameter.

– The TinyOT protocol [32,29,7] on the other hand only works over GF(2) and requires a MAC of Õ(s) bits on each
secret bit. Giving larger overhead than in SPDZ, MiniMAC and our protocol and limiting its use-case to evaluation
of boolean circuits.

Comparison to MiniMAC. The MiniMAC protocol [16] uses an error correcting code over a vector of data elements.
It can be used for secure computation over small fields without adding long MACs to each data element. However,
unfortunately the authors of [16] did not describe how to realize the preprocessing needed. Neither did the follow up
works [12,15]. The only efficient5 preprocessing protocol for MiniMAC that we know of is the one presented in [19]
based on OT extension. However this protocols has it quirks:

– It only works over fields of characteristic 2.
– The ideal functionality described is different from the ones in [16,12,15]. Furthermore, it is non-standard in the

sense that the corruption that an adversary can apply to the shares of honest parties can be based on the inputs of
the honest parties.

– There is no proof that this ideal functionality works in the online phase of MiniMAC.
– There seems to be a bug in one of the steps of the preprocessing of multiplication triples. We discuss this in further

detail in Appendix H.

4 This requires a commitment to be to a vector of messages in F.
5 I.e. one that does not use a generic MPC protocol to do the preprocessing.

3

OT Extensions. All the recent realizations of the preprocessing phase on secret shared protocols such as SPDZ,
MiniMAC and TinyOT are implemented using OT. The same goes for our protocol. Not too long ago this would have
not been a practically efficient choice since OT generally requires public key operations. However, the seminal work of
Beaver [4] showed that it was possible to extend a few OTs, using only symmetric cryptography, to achieve a practically
unbounded amount of OTs. Unfortunately Beaver’s protocol was not practically efficient, but much research has been
carried out since then [24,32,1,2,27], culminating with a maliciously secure OT extension where a one-out-of-two OT
of 128 bit messages with s = 64 can be done, in the amortized sense, in 0.3µs [27].

Commitment Extensions. Using additive homomorphic commitments for practical MPC is a path which would also
not have been possible even just a few years ago. However, much study has undergone in the area of “commitment
extension” in the recent years. All such constructions that we know of require a few OTs in a preprocessing phase and
then construction and opening of commitments can be done using cheap symmetric or information theoretic primitives.
The work on such extensions started in [21] and independently in [11]. A series of follow-up work [10,18,34,9,6]
presented several improvements, both asymptotically and practically. Of these works [34] is of particular interest
since it presents an implementation (based on the scheme of [18]) and showed that committing and opening 128 bit
messages with s = 40 can be done in less than 0.5µs and 0.2µs respectively, in the amortized sense for a batch of
500,000 commitments. 6

It should be noted that Damgård et al. [11] also achieved both additively and multiplicative homomorphic com-
mitments. They use this to get an MPC protocol cast in the client/server setting. We take some inspiration from their
work, but note that their setting and protocols are quite different from ours in that they use verifiable secret sharing
to achieve the multiplicative property and so their scheme is based on threshold security, meaning they get security
against a constant fraction of servers in a client/server protocol.

Relation to [13]. The protocol by Damgård and Orlandi also considers a maliciously secure secret-sharing based MPC
in the dishonest majority setting. Like us, their protocol is based on additively homomorphic commitments where each
party is committed to its share to thwart malicious behavior. However, unlike ours, their protocol only works over
large arithmetic fields and uses a very different approach. Specifically they use the cut-and-choose paradigm along
with packed secret sharing in order to construct multiplication triples. Furthermore, to get random commitments in the
multiparty setting, they require usage of public-key encryption for each commitment. Thus, the amount of public-key
operations they require is linear in the amount of multiplication gates in the circuit to compute. In our protocol it is
possible to limit the amount of public-key operations to be asymptotic in the security parameter, as we only require
public-key primitives to bootstrap the OT extension.

Other Approaches to MPC. Other approaches to maliciously secure MPC in the dishonest majority setting exist.
For example Yao’s garbled circuit [36,30,31], where the parties first construct an encrypted Boolean circuit and then
evaluate it locally. Another approach is “MPC-in-the-head” [25,26] which efficiently combines any protocol in the
malicious honest majority settings and any protocol in the semi-honest dishonest majority settings into a protocol
secure in the malicious dishonest majority settings.

1.4 Paper Outline

We start with some preliminaries in Section 2 where we define our notation, variables names and ideal functionalities.
We continue in Section 3 with a description of how to achieve a multiparty additively homomorphic commitment
scheme from any (possibly interactive) two-party homomorphic commitment scheme. In Section 4 we describe how to
use the multiparty commitment scheme to preprocess multiplication triples and in general realize an offline phase for
a secret sharing based MPC protocol. Afterwards, in Section 5 we describe how to realize such an MPC scheme. We
compare the efficiency of our protocol to previous constructions in Section Section 6 and finally we consider possible
applications based on our protocol in Section 7.

6 Note that this specific implementation unfortunately uses a code which does not have the properties our scheme require. Specif-
ically its product-code has too low minimum distance.

4

2 Preliminaries

2.1 Parameters and Notation

Throughout the paper we use “negligible probability in s” to refer to a probability o(1/poly(s)) where poly(s) indicates
some polynomial in s ∈ N. Similarly we use “overwhelming probability in s” to denote a probability 1− o(1/poly(s)),
where s is the statistical security parameter.

There are p ∈ N parties P1, . . . , Pp participating in the protocol. The notation [k] refers to the set {1, . . . , k}. We
let vector variables be expressed with bold face. We use square brackets to select a specific element of a vector, that
is, x[`] ∈ F is the `’th element of the vector x ∈ Fm for some m ≥ `. We assume that vectors are column vectors
and use ‖ to denote concatenation of rows, that is, x‖y with x, y ∈ Fm is a m × 2 matrix. We use ∗ : Fm × Fm → Fm

to denote component-wise multiplication and · : F × Fm → Fm to denote a scalar multiplication. We will sometimes
abuse notation slightly and consider F as a set of elements and thus use F\{0} to denote the elements of F, excluding
the additive neutral element 0.

If S is a set we assume that there exists an arbitrary, but globally known deterministic ordering in such a set and
let S [i] = S i denote the ith element under such an ordering. In general we always assume that sets are stored as a list
under such an ordering. When needed we use (a, b, ...) to denote a list of elements in a specific order. Letting A and B
be two sets s.t. |A| = |B| we then abuse notation by letting {(a, b)} ∈ (A, B) denote {(A[i], B[i])}i∈[|A|]. I.e. a and b denote
the i’th element in A, respectively B.

All proof and descriptions of protocols are done using the Universally Composable framework [8].

2.2 Ideal Functionalities

We list the ideal UC-functionalities we need for our protocol. Note that we use the standard functionalities for Coin
Tossing, Secure Equality Check, Oblivious Transfer and Multiparty Computation.

We need a coin-tossing functionality that allows all parties to agree on uniformly random elements in a field. For
this purpose we describe a general, maliciously secure coin-tossing functionality in Fig. 1.

Functionality FCT: Interacts with P1, . . . , Pp and an adversaryA.

– Upon receiving (toss, n,F) from all parties, where F is a description of some field F and n an integer, leak (toss, n,F) to
A. Then sample n uniformly random elements x1, . . . , xn ∈R F and send (random, x1, . . . , xn) toA.

– IfA returns the message (deliver) then send the message delivered toA to all parties, otherwise ifA returns the message
(abort) then output abort to all parties.

Fig. 1. Ideal Functionality FCT

Furthermore we need to be able to securely evaluate equality of values. This functionality is described in Fig. 2.
Notice that this functionality allows the adversary to learn the honest parties’ inputs after it supplies its own. Fur-
thermore, we allow the adversary to learn the result of the equality check before any honest parties, which gives him
the chance to abort the protocol. Thus this function should only be used on data that is not private. The functionality
can for example be implemented using a commitment scheme where each party commits to its input towards every
other party. Once all parties have committed, the parties open the commitments and each party locally evaluates if
everything is equal.

We also require a standard 1-out-of-2 functionality denoted by FOT as described in Fig. 3.
Finally, a fully fledged MPC functionality, very similar to the one described in previous works such as SPDZ and

MiniMAC, is described in Fig. 4. Note that the functionality maintains the dictionary id that maps indices to values
stored by the functionality. The expression id[k] = ⊥ means that no value is stored by the functionality at index k
in that dictionary. Also note that the functionality is described as operating over vectors from Fm rather than over
elements from F. This is because our protocol allows up to m simultaneous secure computations of the same function
(on different inputs) at the price of a single computation, thus, every operation (such as input, random, add, multiply)

5

Functionality FEQ: Interacts with P1, . . . , Pp and an adversaryA. It proceeds as follows:

Equality: Upon receiving
(
equal, i, xi

)
from party Pi for all i ∈ [p] where xi ∈ Fm (if Pi is corrupted then xi is selected byA),

proceed as follows: If x1 = x2 = . . . = xp then send (equal, accept) toA, otherwise send (equal, x1, x2, . . . , xp, reject)
toA. Proceed as follows:

– Upon receiving
(
equal, i, xi

)
from party Pi for all i ∈ p (if Pi is corrupted then xi is selected byA) if x1 = x2 = . . . = xp

then send (equal, accept) toA, otherwise send (equal, x1, x2, . . . , xp, reject) toA.
– If A returns (deliver) and x1 = x2 = . . . = xp then send the message (equal, accept) to all parties. If instead

xi , x j for some i, j ∈ [p], then send (equal, x1, x2, . . . , xp, reject) to all parties.
– IfA instead returns (abort) then output abort to all parties.

Fig. 2. Ideal Functionality FEQ

Functionality FOT: Interacts with a sender Pi, a receiver P j and an adversaryA and proceeds as follows:

Sender Input: Upon receiving (transfer, x0, x1) from Pi where x0, x1 ∈ {0, 1}∗ leak (transfer) toA.
Receiver Input: Upon receiving (receive, b) from P j where b ∈ {0, 1} leak (receive) to A. If a message of the form

(transfer, x0, x1) has been received from Pi then output (deliver, xb) to P j and (deliver,⊥) to Pi.

Fig. 3. Ideal Functionality FOT

are done in a component wise manner to a vector from Fm. As we describe later, it is indeed possible to perform a
single secure computation when needed.

Functionality FMPC-Fm : Interacts with P1, . . . , Pp and an adversaryA.

Init: Upon receiving (init) from all parties forward this message toA. Initialize an empty dictionary id.
Input: Upon receiving (Input, i, k, x) from Pi where x ∈ Fm and (Input, i, k) from all other parties, set id[k] = x and output

(Input, i, k) to all parties andA.
Rand: Upon receiving (random, k) from all parties, pick a random x ∈ Fm and set id[k] = x. Output (random, k) to all parties

andA.
Add: Upon receiving (add, x, y, z) from all parties where id[x], id[y] , ⊥, set id[z] = id[x] + id[y] and output (add, x, y, z) to all

parties andA.
Public Add: Upon receiving (add, x, y, z) from all parties where x ∈ Fm and id[y] , ⊥, set id[z] = x + id[y] and output

(add, x, y, z).
Multiply: Upon receiving (mult, x, y, z) from all parties where id[x], id[y] , ⊥, set id[z] = id[x]∗ id[y] and output (mult, x, y, z)

to all parties andA.
Public Multiply: Upon receiving (mult, x, y, z) from all parties where x ∈ Fm and id[y] , ⊥, set id[z] = x ∗ id[y] and output

(mult, x, y, z) to all parties andA.
Output: Upon receiving (Output, k) from all parties where id[k] , ⊥ then output (k, id[k]) toA. IfA returns (deliver) then

output (k, id[k]) to all parties, otherwise, ifA returns (abort) then output abort to all parties.

Fig. 4. Ideal Functionality FMPC-Fm

Dependencies between functionalities and protocols. We illustrate the dependencies between the ideal functionalities
just presented and our protocols in Fig. 5. We see that FCT and FEQ, along with a two-party commitments scheme,
F2HCOM-Fm (presented in the next section) are used to realize our multiparty commitment scheme in protocol ΠHCOM-Fm .
FunctionalitiesFCT andFEQ are again used, along withFHCOM-Fm andFOT to realize the augmented homomorphic com-
mitment scheme ΠAHCOM-Fm . ΠAHCOM-Fm constructs all the preprocessed material, in particular multiplication triples,
needed in order to realize the fully fledged MPC protocol ΠMPC-Fm .
2.3 Arithmetic Oblivious Transfer

6

F2HCOM−Fm FCT FEQ FOT

ΠHCOM−Fm

ΠAHCOM−Fm

ΠMPC−Fm

FEQ

ΠMPC−Fm

Fig. 5. Outline of functionalities and proto-
cols.

Generally speaking, arithmetic oblivious transfer allows two parties Pi and
P j to obtain an additive shares of the multiplication of two elements x, y ∈
F, where Pi privately holds x and P j privately holds y.

A protocol for achieving this in the semi-honest settings is presented
in [22] and used in MASCOT [28]. Let ` = dlogFe be the number of
bits required to represent elements from the field F, then the protocol goes
by having the parties run in ` (possibly parallel) rounds, each of which
invokes an instance of the general oblivious transfer functionality (FOT).
This is described by procedure ArithmeticOT in Fig. 6.

Procedure ArithmeticOT(x, y):

For q = 1 to ` = dlogFe, the parties Pi and P j do as follows:

1. Party P j (the sender) chooses a uniformly random rq ∈ F and set the two `-bit strings s0
q, s

1
q where s0

q = rq and s1
q = y + rq.

2. Party P j invokes FOT with the message (transfer, s0
q, s

1
q).

3. Party Pi (as the receiver) invokes FOT with the bit xq ∈ {0, 1} with the message (receive, xq) (note that xq corresponds to
the bit decomposition of x).

4. FOT returns (deliver, sxq
q) to Pi and (deliver,⊥) to P j.

Finally, party Pi outputs zi =
∑

q∈[`] sxq
q · 2q−1 and P j outputs z j =

∑
q∈[`] −rq · 2q−1.

Fig. 6. Procedure ArithmeticOT

Correctness. Note that Pi outputs

zi =
∑
q∈[`]

sxq
q · 2q−1 =

∑
q∈[`]

(xq · y + rq) · 2q−1 =
∑
q∈[`]

xq · y · 2q−1 +
∑
q∈[`]

rq · 2q−1

= x · y +
∑
q∈[`]

rq · 2q−1 = x · y − z j

and thus we have zi + z j = x · y. The second equality holds because sxq
q equals y + rq if xq = 1 and equals rq if xq = 0.

The use of arithmetic OT to construct multiplication triples. In our protocol we use the above procedure to multiply
two elements x, y ∈ Fm such that one party privately holds x and the other party privately holds y. Specifically, we
can do this using m invocations of the ArithmeticOT procedure, thus, to multiply elements from Fm we make a total of
m log(d|F|e) calls to the transfer command of the FCT functionality.

Malicious behavior. In the above procedure party the sending party, P j, may guess bits of x in the following manner:
To guess that the q’th bit is 1 (i.e. xq = 1) P j calls (transfer, s0

q, s
1
q) with s0

q = 0 (rather than s0
q = rq) and s1

q = y + rq

(as required). Then, if xq = 0 then Pi adds s0
q · 2

q−1 = 0 when computing zi, while P j decreases rq · 2q−1 as required.
On the other hand, if xq = 1 then Pi adds s1 · 2q−1 = (y + rq) · 2q−1 when computing zi and P j decreases rq · 2q−1 as
required. Now, notice that if xq = 0 then the results of the procedure are zi and z j such that zi + z j , xy while if xq = 1
then zi + z j = xy. Thus, if zi and z j are used later on in the protocol then P j may learn xq by inspecting if the protocol
aborts or not. If it aborts before the parties decided their inputs then nothing is learned by P j, however, if the protocol
aborts afterwards then this reveals xq to P j. Furthermore, it is also possible for the sender P j to input “incorrect” value
for both s0

q and s1
q such that the receiver Pi ends up with specific and incorrect result.

Note that the receiving party, Pi, may mount a similar attack as well trying to learn y: The sender sets s0
q = rq and

s1
q = rq + y j and let the receiver’s q-th bit be xi

q. Now, if the receiver inputs 1 − xi
q (instead of xi

q) to the q-th OT then
the output of the arithmetic OT would be correct iff y j = 0. That is, the sender may guess whether y j = 0 or not and
can also know that its guess was correct if the protocol does not abort when the values are used later on.

7

Notice that the sender’s and receiver’s attacks are quite different: The sender may guess the value of each bit of the
receiver and guesses correctly with probability 1/2 for every guess while the sender may guess that the sender’s value
is zero and may succeed with probability 1/|F| (since the shares are uniformly random).

We treat these malicious behaviors in the protocol, specifically, in the combining step in Section 4.2.

3 Homomorphic Commitments

In this section we present the functionalities for two-party and multiparty homomorphic commitment schemes, how-
ever, we present a realization only to the multiparty case since it uses a two-party homomorphic commitment scheme
in a black-box manner and so it is not bound to any specific realization.

For completeness and concreteness of the efficiency analysis we do present a realization to the two-party homo-
morphic commitment scheme in Appendix A.

3.1 Two-Party Homomorphic Commitments
Functionality F2HCOM-Fm is held between two parties Pi and P j, in which Pi commits to some value x ∈ Fm toward
party P j, who eventually holds the commitment information, denoted [x]i, j. In addition, by committing to some value
x party Pi holds the opening information, denoted 〈x〉i, j, such that having Pi send 〈x〉i, j to P j is equivalent to issuing
the command Open on x by which P j learns x.

The functionality works in a batch manner, that is, Pi commits to γ (random) values at once using the Commit
command. These γ random values are considered as “raw-commitments” since they have not been processes yet.
The sender turns the commitment from “raw” to “actual” by issuing either Input or Rand commands on it: The
Input command modifies the committed value to the sender’s choice and the Rand command keeps the same value
of the commitment (which is random). In both cases the commitment is considered as a “actual” and is not “raw”
anymore. Actual commitments can then be combined using the Linear Combination command to construct a new
actual-commitment.

To keep track of the commitments the functionality uses two dictionaries: raw and actual. Both map from iden-
tifiers to committed values such that the mapping returns ⊥ if no mapping exists for the identifier. We stress that a
commitment is either raw or actual, but not both. That means that either raw or actual, or both return ⊥ for every
identifier. To issue the Commit command, the committer is instructed to choose a set I of γ freshly new identifiers,
this is simply a set of identifiers I such that for every k ∈ I raw and actual return ⊥. The functionality is formally
described in Fig. 7.

Functionality F2HCOM-Fm : Interacts with two parties Pi and P j and the adversaryA.

Init: Upon receiving (init) from both parties set raw = actual = ∅ and forward the message toA.
Commit: Upon receiving (commit, I) from Pi where I is a set of γ freshly new identifiers, send the message (commit, I)

to A. If A sends back (no-corrupt) proceed as follows: For each k ∈ I sample xk ∈R F
m and store raw[k] = xk.

Finally send (committed, {(k, xk)}k∈I) to Pi and (committed, I) to P j and A. If Pi is corrupted and A instead sends back
(corrupt, {(k, x̄k)}k∈I) proceed as above, but instead of sampling the values at random, use the values {(k, x̄k)}k∈I .

Input: Upon receiving a message (Input, k, y) from Pi if raw[k] , ⊥ then store raw[k] = ⊥ and actual[k] = y. Then send
(Input, k) to P j andA.

Rand: Upon receiving a message (random, k) from Pi if raw[k] = xk , ⊥ then store raw[k] = ⊥ and actual[k] = xk. Then send
(random, k) to P j andA.

Linear Combination: Upon receiving
(
linear, ({(k,αk)}k∈K ,β, k′

)
for αk,β ∈ F

m from Pi if actual[k] = xk , ⊥ for every
k ∈ K and raw[k′] = actual[k′] = ⊥ then store actual[k′] = β +

∑
k∈K αk ∗ xk, and forward the message to P j andA.

Open: Upon receiving a message (open, k) from Pi, if actual[k] = xk , ⊥ then send (opened, xk) to P j andA.

Fig. 7. Ideal Functionality F2HCOM-Fm

To simplify readability of our protocol we may use shorthands to the functionality’s commands invocations as
follows: Let [xk]i, j and [xk′]i, j be two actual-commitments issued by party Pi toward party P j (i.e. the committed

8

values are stored in actual[k] and actual[k′] respectively). The Linear Combination command of Fig. 7 allows to
compute the following operations which will be used in our protocol. The operations are defined over [xk]i, j and [xk′]i, j

and result with the actual-commitment [xk′′]i, j:

– Addition. (Equivalent to the command (linear, {(k, 1), (k′, 1)}, 0, k′′).)

[xk]i, j + [xk′]i, j = [xk + xk′]i, j = [xk′′]i, j and 〈xk〉
i, j + 〈xk′〉

i, j = 〈xk + xk′〉
i, j = 〈xk′′〉

i, j

– Constant Addition. (Equivalent to the command (linear, {(k, 1)},β, k′′).)

β + [xk]i, j = [β + xk]i, j = [xk′′]i, j and β + 〈xk〉
i, j = 〈β + xk〉

i, j = 〈xk′′〉
i, j

– Constant Multiplication. (Equivalent to the command (linear, {(k,α)}, 0, k′′).)

α ∗ [xk]i, j = [α ∗ xk]i, j = [xk′′]i, j and α ∗ 〈xk〉
i, j = 〈α ∗ xk〉

i, j = 〈xk′′〉
i, j

Realization of these operations depends on the underlying two-party commitment scheme. In Appendix A we
describe how addition of commitments and scalar multiplication are supported with the scheme of [18], where we also
show how to extend this to enable a componentwise multiplication of an actual-commitment with a public vector from
Fm as well (this is delayed to the appendix as it follows the same approach used in MiniMAC [16]). In the following
we assume that public vector componentwise multiplication is supported in the two-party scheme.

3.2 Multiparty Homomorphic Commitments

Functionality FHCOM-Fm , presented in Fig. 8, is a generalization of F2HCOM-Fm to the multiparty setting where the com-
mands Init, Commit, Input, Rand, Open and Linear Combination have the same purpose as before. The additional
command Partial Open allows the parties to open a commitment to a single party only (in contrast to Open that opens
a commitment to all parties). As before, the functionality maintains the dictionaries raw and actual to keep track on
the raw and actual commitments. The major change in the multiparty setting is that all parties take the role of both
the committer and receiver (i.e. Pi and P j from the two-party setting). For every commitment stored by the function-
ality (either raw or actual), both the commitment information and the opening information are secret shared between
P1, . . . , Pp using a full-threshold secret sharing scheme.

Functionality FHCOM-Fm : Interacts with parties P1, . . . , Pp and an adversaryA, who may cause the functionality to abort at any
time:

Init: Upon receiving (init) from all parties, forward the message toA and initialize empty dictionaries raw and actual.
Commit: Upon receiving (commit, I) where I is a set of γ freshly new identifiers, for every k ∈ I store raw[k] = > and send

(commit, I) to all parties andA.
Input: Upon receiving a message (Input, i, k, y) from Pi and (Input, i, k) from all other parties, if raw[k] , ⊥ then assign

raw[k] = ⊥, assign actual[k] = y and send (Input, i, k) to all parties andA.
Rand: Upon receiving a message (random, k) from all parties, if raw[k] , ⊥ then pick a random xk ∈R F

m, assign raw[k] = xk

and send (random, k) to all parties andA.
Linear Combination: Upon receiving a message

(
linear, {(k,αk)}k∈K ,β, k′

)
for αk,β ∈ F

m from all parties, if actual[k] =

xk , ⊥ for all k ∈ K and raw[k′] = actual[k′] = ⊥ then store actual[k′] = β +
∑

k∈K αk ∗ xk and send
(linear, {(k,αk)}k∈K ,β, k′) to all parties andA.

Open: Upon receiving a message (open, k) from all parties, if actual[k] = xk , ⊥ then send (opened, k, xk) toA.A may then
abort the protocol, otherwise send (opened, k, xk) to the honest parties.

Partial Open: Upon receiving a message (open, i, k) from all parties, if actual[k] = xk , ⊥ then send (opened, i, k, xk) to
party Pi and (opened, i, k) to all other parties andA.

Fig. 8. Ideal Functionality FHCOM-Fm

9

3.3 Realizing FHCOM-Fm in the (FEQ,FCT,F2HCOM-Fm)-hybrid Model

Let us first fix the notation for the multiparty homomorphic commitments: We use ~x� to denote a (multiparty) com-
mitment to the message x. As mentioned above, both the message x and the commitment to it ~x� are secret shared
between the parties, that is, party Pi holds xi and ~x�i such that x =

∑
i∈[p] xi and ~x�i is composed of the information

described in the following. By issuing the Commit command, party Pi sends [xi]i, j for every j , i (by invoking the
Commit command from F2HCOM-Fm). Thus, party Pi holds the opening information for all instances of the commit-
ments to xi toward all other parties, that is, it holds

{
〈xi〉i, j

}
j∈[p]r{i}

. In addition, Pi holds the commitment information

received from all other parties, x j (for j , i), that is, it holds
{
[x j] j,i

}
j∈[p]r{i}

. All that information that Pi holds with

regard to the value x is denoted by ~x�i, which can be seen as a share to the multiparty commitment ~x�.
In protocol ΠHCOM-Fm (from Fig. 9) each party has a local copy of the raw and actual dictionaries described

above, that is, party Pi maintains rawi and actuali. In the protocol, Pi may be required to store ~x�i (i.e. its share
of ~x�) in a dictionary (either rawi or actuali) under some identifier k, in such case Pi actually assigns rawi[k] ={
[x j] j,i, 〈xi〉i, j

}
j∈[p]r{i}

which may also be written as rawi[k] = ~x�i.

In the following we explain the main techniques used to implement the instructions of functionality FHCOM-Fm (we
skip the instructions that are straightforward):

Linear operations. From the linearity of the underlying two-party homomorphic commitment functionality it follows
that performing linear combinations over a multiparty commitments can be done locally by every party. We describe
the notation in the natural way as follows: Given multiparty commitments ~x� and

�
y
�

and a constant public vector
c ∈ Fm:

– Addition. For every party Pi:

~x�i +
�
y
�i

=
{
[x j] j,i, 〈xi〉i, j

}
j∈[p]ri

+
{
[y j] j,i, 〈yi〉i, j

}
j∈[p]ri

=
{
[x j] j,i + [y j] j,i, 〈xi〉i, j + 〈yi〉i, j

}
j∈[p]ri

=
{
[x j + y j] j,i, 〈xi + yi〉i, j

}
j∈[p]ri

=
�
x + y

�i

– Constant addition. The parties obtain ~β + x� by having P1 perform xi = xi + β, then, party P1 computes:

β + ~x�i = β +
{
[x j] j,i, 〈xi〉i, j

}
j∈[2,p]

=
{
[x j] j,i,β + 〈xi〉i, j

}
j∈[2,p]

= ~β + x�i

and all other parties P j compute:

β + ~x� j = β +
{
[xi]i, j, 〈x j〉 j,i

}
j∈[p]r j

=
{
[xi]i, j, 〈x j〉 j,i

}
j∈[2,p]r j

∪
{
[β + x1]1, j, 〈x j〉 j,1

}
= ~β + x� j

– Constant multiplication. For every party Pi:

α ∗ ~x�i = α ∗
{
[x j] j,i, 〈xi〉i, j

}
j∈[p]ri

=
{
α ∗ [x j] j,i,α ∗ 〈xi〉i, j

}
j∈[p]ri

= ~α ∗ x�i

Notice that public addition is carried out by only adding the constant β to one commitment (we arbitrarily chose
P1’s commitment). This is so, since the true value committed to in a multiparty commitment is additively shared
between p parties. Thus, if β was added to each share, then what would actually be committed to would be p · β! On
the other hand, for public multiplication we need to multiply the constant α with each commitment, so that the sum
of the shares will all be multiplied with α.

10

Commit. As the parties produce a batch of commitments rather than a single one at a time, assume the parties wish
to produce γ commitments, each party picks γ + s uniformly random messages from Fm. Each party commit to each
of these γ + s messages towards each other party using different instances of the Commit command from F2HCOM-Fm ,
and thus different randomness.

Note that a malicious party might use the two-party commitment scheme to commit to different messages toward
different parties, which leads to an incorrect multiparty commitment. To thwart this, we have the parties execute
random linear combination checks as done for batch-opening of commitments in [18]: The parties invoke the coin-
tossing protocol to agree on a s×γ matrix, R with elements in F. In the following we denote the element in the qth row
of the kth column of R by Rq,k. Every party computes s random linear combinations of the opening information that
it holds toward every other party. Similarly, every party computes s combinations of the commitments that it obtained
from every other party. The coefficients of the qth combination are determined by the q’th row R and the qth vector
from the s “extra” committed messages added to the combination. That is, let the γ + s messages committed by party
Pi toward P j be xi, j

1 , . . . , x
i, j
γ+s and see that the qth combination computed by P j is

(∑
k∈γ Rq,k · [xi, j

k]
)

+ [xi, j
γ+q] and the

combination computed by Pi is
(∑

k∈γ Rq,k · 〈xi, j
k 〉

)
+ 〈xi, j

γ+q〉. Then Pi open the result to P j, who checks that it is correct.

If Pi was honest it committed to the same values towards all parties and so xi
k = xi, j

k = xi, j′

k for all k ∈ [γ + s] and
j , j′ ∈ [p] r {i}. Likewise for the other parties, so if everyone is honest they all obtain the same result from the
opening of the combination. Thus, a secure equality check would be correct in this case. However, if Pi cheated, and
committed to different values toward different parties than this is detected with overwhelming probability, since the
parties perform s such combinations.

Input. Each party does a partial opening (see below) of a raw, unused commitment towards the party that is supposed
to give input. Based on the opened message the inputting party computes a correction value. That is, if the raw
commitment, before issuing the input command, is a shared commitment to the value x and the inputting party wish
to input y, then it computes the value ε = y − x and sends this value to all parties. All parties then add ~x� + ε to the
dictionary actual and remove it from the dictionary raw. Since the party giving input is the only one who knows the
value x, and it is random, this does not leak.

We prove the following theorem in Appendix B.

Theorem 3.1. Protocol ΠHCOM-Fm (of Fig. 9) UC-securely realizes functionality FHCOM-Fm (of Fig. 8) in the F2HCOM-Fm ,
FCT, and FEQ-hybrid model, against a static and malicious adversary corrupting any majority of the parties.

4 Committed Multiparty Computation

4.1 Augmented Commitments

In the malicious, dishonest majority setting, our protocol, as other protocols, works in the offline-online model. The
offline phase consists of constructing sufficiently many multiplication triples which are later used in the online phase
to carry out a secure multiplications over committed, secret shared values7. To this end, we augment functionality
FHCOM-Fm with the instruction Mult that uses the multiparty raw-commitments that were created by the Commit
instruction of Fig. 8 and produces multiplication triples of the form (~x� ,

�
y
�
, ~z�) such that x ∗ y = z. Note that a

single multiplication triple is actually three multiparty commitments to values from Fm such that z is the result of a
componentwise multiplication of x and y. That actually means that zq = xq · yq for every q ∈ [m]. Hence, this features
the ability to securely evaluate up to m instances of the circuit at the same cost of evaluation of a single instance (i.e.
in case the parties want to evaluate some circuit m times but with different inputs each time) where all m instances are
being evaluated simultaneously. If the parties wish to evaluate only m′ < m instances of the circuit, say m′ = 1, they
do so by using only the values stored in the first component of the vectors, while ignoring the rest of the components.
However, using a multiplication triple wastes all components of x, y and z even if the parties wish to use only their
first component. To avoid such a loss we augment FHCOM-Fm with the instruction ReOrg. The ReOrg instruction
preprocesses reorganization pairs which are used to compute a linear operator over a multiparty commitment. For
example this enable the parties to “copy” the first component to another, new, multiparty commitment, such that all

7 Typically a secure addition can be carried out locally by each party.

11

Protocol ΠHCOM-Fm . Interacts between p parties.

Init: On input (init) from all parties each pair of parties Pi and P j invoke the command (init) of functionality F2HCOM-Fm to
initialize an instances denoted by F i, j

2HCOM-Fm .
Commit: To obtain a multiparty commitment to γ random values from Fm:

1. The parties agree on a set I′ of γ + s freshly new identifiers.
2. Every party Pi engages in F i, j

2HCOM-Fm for all j , i by sending the message (commit, I′) and receiving the message(
committed,

{(
k, xi, j

k

)}
k∈I′

)
. As a result, P j receives the message (committed, I′) from F j,i

2HCOM-Fm for all j , i.
3. Every party Pi chooses xi

k ∈R F
m for every k ∈ I′. This is the value that is going to be committed from Pi toward all

other parties.
4. Every party Pi engages in F i, j

2HCOM-Fm for all j , i by sending the message
(
Input, k, xi

k

)
and receives back ~x�i ={

[x j
k] j,i, 〈xi

k〉
i, j
}

j∈[p]r{i}
for every k ∈ I′.

5. The parties agree on sets I and S such that |I| = γ, |S | = s, I ∩ S = ∅ and I ∪ S = I′.
6. The parties issue the command (toss,Fs×γ) to functionality FCT, by which they receive (random,R) where R ∈ Fs×γ.

We denote the element of the qth row of the kth column by Rq,k.
7. For every q ∈ S every party Pi computes 〈si

q〉
i, j = 〈xi

q〉
i, j +

∑
k∈I Rq,k · 〈xi

k〉
i, j = 〈xi

q +
∑

k∈I Rq,k · xi
k〉

i, j and sends 〈si
q〉

i, j to
P j. P j then computes [si

q]i, j = [xi
q]i, j +

∑
k∈I Rq,k · [xi

k]i, j = [xi
q +

∑
k∈I Rq,k · xi

k]i, j and reveals si
q.

8. For every q ∈ I every party Pi computes ci
q =

∑
j∈[p] s j

q and inputs (equal, i, ci
q) to FEQ. If FEQ responds with abort

or (equal, s1
q, . . . , s

p
q , reject) in any of these calls then abort, otherwise output (committed, I). For every k ∈ I store

rawi[k] = ~xk�
i.

Input: Upon input (Input, i, k, y) from party i and (Input, i, k) from all other parties:
1. Party P j (for j , i) aborts if raw j[k] = ⊥. Otherwise P j sends 〈x j

k〉
j,i to Pi (using (open, k)), who learns x j

k.
2. Party Pi computes xk =

∑
j∈[p] x j

k and broadcasts εk = y − xk to all other parties.
3. Party Pi updates ~xk�

i by setting the opening values to 〈xi + εk〉
i, j = 〈xi

k〉
i, j + εk for all j ∈ [p]. Similarly, party P j (for

j , i) updates ~xk�
j by setting the ith commitment information to be [xi

k + εk]i, j = [xi
k]i, j + εk.

4. Party P j (for all j ∈ [p]) assigns raw j[k] = ⊥ and actual j = ~xk�
j.

Rand: The parties agree on an arbitrary k such that rawi[k] = ~xk�
i , ⊥ for all i ∈ [p], set rawi[k] = ⊥ and actuali[k] = ~xk�

i.
Linear Combination: The parties agree on a set of indices K and the public vectors {αk}k∈K such that actual[k] , ⊥ and

αk ∈ F
m for every k ∈ K. In addition, the parties agree on a public vector β ∈ Fm and an index k′ such that raw[k′] =

actual[k′] = ⊥. Finally, every party Pi stores actual[k′] = β +
∑

k∈K αk ∗ ~xk�
i.

Open: To open ~xk�, every party Pi sends 〈xi
k〉

i, j to P j for all j , i. Then, party Pi obtains x j
k from the commitment and the

opening information [x j
k] j,i and 〈x j

k〉
j,i respectively. Finally Pi computes xk =

∑
j∈[p] x j

k.
Partial Open: To open ~xk� to party Pi, every party P j (for j , i) sends 〈x j

k〉
j,i to Pi. Then, party Pi obtains x j

k from the
commitment and the opening information [x j

k] j,i and 〈x j
k〉

j,i respectively. Finally Pi computes xk =
∑

j∈[p] x j
k.

Fig. 9. Protocol ΠHCOM-Fm

components of the new multiparty commitment are equal to the first component of the old one. For instance, the
linear operator φ ∈ Fm×m such that its first column is all 1 and all other columns are all 0, transforms the vector x
to x′ = x1, . . . , x1 (m times). Applying φ to y and z as well results in a new multiplication triple (x′, y′, z′) where
only the first component of (x, y, z) got used (rather than all their m components). We note that the construction
of reorganization pairs are done in a batch for each function φ resulting in the additive destruction of s extra raw
commitments (i.e. an additive overhead). In the ReOrg command, described in Fig. 10, the linear operator φ is applied
to L raw commitments in a batch manner. The inputs to φ are the messages stored by the functionality under identifiers
from the set X and the outputs override the messages stored by the functionality under identifiers from the set Y .
The messages stored under identifiers from the set R are being destroyed (this reflects the additive overhead of that
command).

Adding instructions Mult and ReOrg to the FHCOM-Fm functionality, we get the augmented functionality FAHCOM-Fm

formally presented in Fig. 10.

Realizing FAHCOM-Fm The protocol ΠAHCOM-Fm is formally presented in Fig. 12 and Fig. 13. In the following we
describe the techniques used in ΠAHCOM-Fm and show the analysis that implies the number of multiplication triples

12

Functionality FAHCOM-Fm . Interacts with p parties and an adversaryA:

Init: As in Fig. 8, in addition, initialize two additional empty dictionaries ReOrg and mult.
Commit, Input, Rand, Linear Combination, Open, Partial Open: As in Fig. 8.
Mult: Upon receiving a message (mult,K) from all parties where raw[k] , ⊥ for every k ∈ K, partition K into four sets

X,Y,Z,R where |X| = |Y | = |Z| = T for some T and |R| = 3(τ1 + τ1((τ2)2 − 1) · T). (The values of τ1 and τ2 are explained
below). For every q = 1, . . . ,T :

1. Set mult[q] = (Xq,Yq,Zq).
2. Sample x, y ∈R F

m and set actual[Xq] = x, actual[Yq] = y and actual[Zq] = x ∗ y.
Finally, for every k ∈ K set raw[k] = ⊥. Output

(
mult, (Xq,Yq,Zq)q∈[T]

)
to all parties andA.

ReOrg: Upon receiving a message (reOrg, φ,K) from all parties where φ ∈ Fm×m is a linear operator and raw[k] , ⊥ for every
k ∈ K, do as follow: Partition K into three sets X,Y,R where |X| = |Y | = T for some T and |R| = s. For every q ∈ [T]
set ReOrg[q] = (Xq,Yq), actual[Xq] = xXq and actual[Yq] = φ(xXq). Finally, for every k ∈ K set raw[k] = ⊥. Output(
reOrg, {(Xq,Yq)}q∈[T]

)
to all parties andA.

Fig. 10. Ideal Functionality FAHCOM-Fm

that should be constructed in one batch for the protocol to be secure. Specifically, in Section 4.2 we describe how to
implement the Mult command and in Section 4.3 we describe how to implement the ReOrg command.

4.2 Generating Multiplication Triples

Secure multiplication in our online phase, similar to previous works in the field, is performed using multiplication
triples (AKA Beaver triples). In our work a multiplication triple is of the form (~x� ,

�
y
�
, ~z�) where ~x� ,

�
y
�

and
~z� are multiparty commitments of messages x, y and z respectively as defined in Section 3.3 and z = x ∗ y. The
construction of triples is done in a batch and consists of four parts briefly described below (and further explained and
analyzed soon afterward):

1. Construction. Using the arithmetic OT procedure formalized in Section 2.3 the parties first construct multiplica-
tion triples that may be “malformed” and “leaky” in case of a malicious adversary. Here malformed means that
they are incorrect, i.e. x ∗ y , z and “leaky” means that the adversary has tried to guess the value of the share of
an honest party (the term is further explained below).

2. Cut-and-Choose The parties select τ1 triples at random which they check for correctness. If any of these triples
are malformed then they abort. Otherwise, when mapping the remaining triples into buckets, with overwhelming
probability all buckets will contain at least one correct triple.

3. Sacrificing. The remaining triples (from the cut-and-choose) are mapped to buckets, τ1 triples in each bucket such
that at least one of the triples is correct. Each bucket is then tested to check its correctness where by this check
only a single multiplication is being output while the other τ1 − 1 are being discarded. This step guarantees that
either the output triple is correct or a malformed triple is detected, in which case the protocol aborts.

4. Combining. As some of the triples may be “leaky” this allows the adversary to carry a selective attack, that is, to
probe whether its guess was correct or not. If the guess is affected by the input of an honest party then it means that
the adversary learns that input. Thus, as the name suggests, the goal of this step is to produce a non-leaky triple
by combining τ2 triples, which are the result of the sacrificing step (and thus are guaranteed to be correct), where
at least one of the τ2 is non-leaky. As we will see later, this condition is satisfied with overwhelming probability.

Construction. The triples are generated in a batch, that is, sufficiently many triples are generated at once. However,
the construction of each triple is independent of the others. Thus, we proceed by describing how to generate a single
triple. The parties select three raw-commitments, denoted ~x� ,

�
y
�
, ~z′�, that were generated by FHCOM-Fm . The goal

of this step is to change ~z′� to ~z� such that ~z� =
�
x ∗ y
�
.

Recall that for a message x that is committed to by all parties, we have that each party Pi knows xi such that
x =

∑
i∈[p] xi. Thus, the product x ∗ y equals

(∑
i∈[p] xi

)
∗
(∑

i∈[p] y j
)

=
∑

i∈[p] xi ∗ (
∑

j∈[p] y j). In order to have each

13

party Pi hold the value zi such that
∑

i∈[p] zi = x ∗ y we let party Pi use the arithmetic OT procedure (as describe in
Section 2.3) to have a share of the multiplication xi ∗ y j for every j ∈ [p] where Pi inputs xi and P j inputs y j. After
Pi multiplied its share xi with all other parties’ shares y j the sum of all the shares is xi ∗ (

∑
j∈[p] y j) (assuming honest

behavior). If all parties do the same, then every party ends up holding a share of x ∗ y as required. Remember that we
want Pi to hold a share to

�
x ∗ y
�

and not just a share to x ∗ y (i.e. we want all shares to be committed). To this end,
every party broadcasts the difference t between the new share and the old share, that is, Pi broadcasts ti = zi− z′i, then,
the parties perform a constant addition to the old commitments, that is, they compute ~z� = ~z′� + (

∑
i∈[p] ti).

Discussion. As described above, party Pi (for i ∈ [p]) participates in p−1 instantiations of the arithmetic OT function-
ality with every other party P j (for j , i). The arithmetic OT functionality is of the form (xi, (y j, r j)) 7→ (xi ∗y j +r j,⊥),
that is, Pi inputs its share xi of x, party P j inputs its share y j of y and a random value r j. The functionality outputs
xi ∗y j + r j to Pi and nothing to P j. Then, to get a sharing of xi ∗y j we instruct Pi to store xi ∗y j + r j and P j to store −r j

(see Section 2.3). Even if this arithmetic OT subprotocol is maliciously secure, it will only give semi-honest security
in our setting when composed with the rest of the scheme. Specifically, there are two possible attacks that might be
carried out by a malicious adversary:

1. Party P j may input ỹ j , y j such that e = ỹ j − y j, in the instantiation of the arithmetic OT with every other Pi,
where y j is the value it is committed to. This results with the parties obtaining a committed share of the triple
(~x� ,

�
y
�
,
�
x ∗ (y + e)

�
). We call such a triple a “malformed” triple.

2. In the arithmetic OT procedure party P j may impact the output of Pi such that Pi obtains xi ∗ y j + r j only if the
k’th value of xi is equal to some value “guessed” by P j, otherwise Pi obtains some garbage xi ∗ ỹi ∈ Fm. A similar
attack can be carried out by Pi on y j when computing over a “small” field (see the description of the malicious
behavior in Section 2.3). In both cases, the parties obtain committed shares of the triple (~x� ,

�
y
�
,
�
x ∗ y
�
) only if

the malicious party made a correct guess on an honest party’s share, and an incorrect triple otherwise. Thus, when
using this triple later on, the malicious party learns if it guessed correctly depending on whether the honest parties
abort, thus, it is vulnerable to a “selective attack“. We call such a triple “leaky”, since it might leak privates bits
from the input of an honest party.

We take three countermeasures (described in the next items) to produce correct and non-leaky triples:

1. In the Cut-and-Choose step we verify that a few (τ1) randomly selected triples have been constructed correctly.
This is done, by having each party open his committed shares associated with these triples and all parties verifying
that the triples has been constructed according to the protocol. This step is required to ensure that not all triples
were malformed as a preliminary for the sacrificing step (below) in which the triples are mapped to buckets. When
working over F = GF(2), this step is strictly needed to eliminate the case that all triples are malformed. For other
fields, this step improves the amount of triples to be constructed in the batch.

2. In the Sacrificing step we make sure that a triple is correct (i.e. not malformed) by “sacrificing” τ1 − 1 other
triples which are being used as a “one-time-pads” of the correct triple. As we treat a bunch of triples at once, the
probability of an incorrect triple to pass this step without being detected is negligible in s (analysis is presented
below). Having the parties committed (in the construction step) to τ1 · T triples, by the end of this step there will
be T correct triples.

3. In the Combining step we partition the constructed (correct but possibly leaky) triples into buckets of τ2 triples
each, and show that for a sufficiently big number of triples that are the outcome of the sacrificing step, the prob-
ability that there exist a bucket in which all triples are leaky in a specific component is negligible in s. We show
how to combine the τ2 triples in a bucket and produce a new triple which is non-leaky. This is done twice, first to
remove leakage on the x component and second to remove leakage on the y component.

Cut-and-Choose. The parties use FCT to randomly pick τ1 triples to check. Note that τ1 is the bucket-size used in
Sacrificing below and in practice could be as low as 3 or 4. It was shown in [20] that when partitioning the triples
into buckets of size τ1 (where many of them may be malformed) then by sampling and checking only τ1 triples, the
probability that there exist a bucket full of malformed triples is negligible. Formally:

14

Corollary 4.1 (Corollary 6.4 in [20]). Let N = τ1 + τ1(τ2)2 · T be the number of constructed triples where s ≤
log2

(
(N·τ1+τ1)!

N·τ1!·(N·τ1)!

)
, then, by opening τ1 triples it holds that every bucket contains at least one correct triple with over-

whelming probability.

Hence, it is sufficient to open (and discard) τ1 triples out of the triples from the Construction step and hand the
remaining to the Sacrificing step below.

Sacrificing. In the following we describe how to produce (τ2)2 ·T correct triples out of τ1 · (τ2)2 ·T that were remained
from the cut-and-choose step, and analyze what should T and τ1 be in order to have all produced (τ2)2 · T triples
correct with overwhelming probability. We have the (τ2)2 · T triples be uniformly assigned to buckets where each
bucket contains τ1 triples, denoted {tk}k∈[τ1]. For simplicity, in the following we assume that τ1 = 3. For every bucket,
the parties apply the procedure CorrectnessTest (see Fig. 11) to triples t1 and t2. If the procedure returns successfully
(i.e. the parties do not abort) they run the procedure again, this time with triples t1 and t3. Finally, if the procedure
returns successfully from the second invocation as well then the withs consider t1 as a correct triple, otherwise they
abort the protocol. We note that this procedure is similar to the one used in [14] and other works.

Procedure CorrectnessTest(t1, t2).
Given the two triples t1 = (~a� , ~b� , ~c�) and t2 = (~x� ,

�
y
�
, ~z�) the parties do as follows:

1. Invoke FCT with the command (toss, 1,F r {0}) to produce a uniformly random scalar r ∈R F r {0}.
2. Locally compute ~ε� = r · ~x� − ~a� and ~ρ� =

�
y
�
− ~b� and publicly open ε and ρ, both in Fm.

3. Locally compute ~e� = r · ~z� − ~c� − ε ∗ ~b� − ρ ∗ ~a� − ρ ∗ ε and publicly open e ∈ Fm.
4. If e , 0 then abort. Otherwise output t1.

Fig. 11. Procedure CorrectnessTest(t1, t2)

Security. The correctness and security is explained in [14]. However, for completeness we prove the following lemma
in Appendix C, which states that after the sacrificing step all produced triples are correct with overwhelming proba-
bility:

Lemma 4.2. When 2−s ≤
(|F|−1)1−τ1 ·(τ2)2·T ·(τ1·(τ2)2·T)!·τ1!

(τ1·(τ2)2·T+τ1)! all the (τ2)2 · T triples that are produced by the sacrificing step
are correct except with probability at most 2−s.

Combining. The goal of this step is to produce T non-leaky triples out of the (τ2)2 · T triples remained from the
sacrificing step above. We do this in two sub-steps: First to remove the leakage (with regard to the arithmetic OT) of
the sender and then to remove the leakage from the receiver. In each of the sub-steps we map the triples to buckets of
size τ2 and produce a single non-leaky triple out of it. In the following we first show how to produce one triple from
each bucket with the apriori knowledge that at least one of the triples in the bucket is non-leaky (but we do not know
which one is it) and later we show how to obtain such buckets. Denote the set of τ2 triples by {(~xk� ,

�
yk
�
, ~zk�)}k∈[τ2].

We produce the triple (~(x′)� ,
�
y′
�
, (~z)′�) out of that set in the following way: The parties compute�

x′
�

=
�∑

k∈[τ2] xk

�
and

�
y′
�

=
�
y1
�

and
�
z′
�

=
�(∑

k∈[τ2] xk

)
∗ y1

�
which constitute the triple (~x′� ,

�
y′
�
, ~z′�). It is easy to see that ~x′� can be computed locally since it requires

additions and constant multiplications only. Furthermore, x′ is completely hidden since at least one of x1, . . . , xk was
not leaked (and it is guaranteed from the construction step that it is chosen uniformly at random from Fm). However,
notice that ~z′� cannot be computed locally, since it is required to multiply two multiparty commitments

�(∑
k∈[τ2] xk

)�
and
�
y1
�
. Thus, to obtain ~z′� the parties first compute ~εk� =

�
y1 − yk

�
and open εk for every k = 2, . . . , τ2. Then

compute ~z′� =
�
z1 +

∑τ2
k=2 εk ∗ xk + zk

�
by a local computation only.

We prove the following lemma in Appendix D:

15

Lemma 4.3. Having a batch of at least τ2−1
√

(s·e)τ2 ·2s

τ2
triples as input to a combining step, every bucket of τ2 triples

contains at least one non-leaky triple with overwhelming probability in s in the component that has been combined
on.

For instance, when F = GF(2) having s = 40, τ1 = 3 τ2 = 4 it is required to construct T ≈ 8.4 · 105 correct and
non-leaky triples in a batch. Instead, having τ2 = 3 means that ≈ 2.29 · 108 triples are required.

Working Over Non-binary Fields. When F is a field with odd characteristic then there is a gap between the maximal
field element and the maximal value that is possible to choose which can fit in the same number of bits. For instance,
when working over F11 then the maximal element possible is 1010 = 01012 while the maximal value possible to fit in
4 bits is 1510 = 11112, i.e. there is a gap of 5 elements. That means that an adversary could input a value that is not in
the field and might harm the security.

We observe that the only place where this type of attack matters is in the ArithmeticOT procedure, since in all
other steps the values that the adversary inputs percolate to the underlying homomorphic commitment scheme. In the
following we analyze this case: To multiply xi and y j with xi, y j ∈ FP and P prime the parties Pi and P j participate in a
protocol of dlogPe steps. In the q-th step, where q ∈ [dlogPe], party Pi inputs xi

q and P2 inputs s0
q = rq and s1

q = rq + y j

to the FOT functionality. The functionality outputs sxi
q to P1 which updates the sum of the result. In the end of this

process the parties hold shares to the multiplication z = xi · y j.
We first examine the cases in which either s0

q or s1
q are not in the prime field, i.e. they belong to the gap gap =

[2dlogPe] r FP. We first note that if both of them are in gap then this is certainly detected by P1 (since P1 receives one
of them as the FOT’s output). If only one of s0

q, s
1
q is in gap then one of two cases occurs:

1. If the value that P1 received from FOT is in gap then it is detected immediately as before (since P1 clearly sees that
the value is not in FP) and can abort. Since this is the preprocessing phase it is independent of any secret input.

2. If the value that P1 received from FOT is in FP but the other value is not, then it is guaranteed that the value P1
obtains is a correct share. That the dishonest P2 obtains a share in the gap is actually the same case as if P2 adds
an incorrect value to the sum s.t. it lands in the gap. This leads to two cases
(a) If the incorrect value is s0

q , rq then this is equivalent to add s0
q mod P, which leads to an incorrect share of

z. This case is detected in the sacrificing step.
(b) If the incorrect value is s1

q , rq + y j then this is equivalent to add s1
q mod P. As above, this leads to an

incorrect share of z which is being detected in the sacrificing step.

The last case is when either rq or y j (or both) are not in FP but the sum s1
q does. Then this is equivalent to choosing

y j ∈ FP and r′q = s1
q − y j mod P such that the value that P2 adds to its sum is incorrect (since it is different than r′q),

and thus, this is being detected in the sacrificing step as before.
Similarly, consider a corrupted receiver who organizes its bits of x j to represent an element in gap. We observe

that this is equivalent to a receiver who inputs an incorrect value (value that is not committed before) for the following
reason: The adversary knows nothing about the sender’s (honest party) share y j, let the value that Pi inputs be x̃i, thus
the ArithmeticOT procedure outputs shares to x̃iy j mod P = (x̃i mod P)(y j mod P). Now, if x̃i mod P = 0 (i.e.
x̃i = P) then this is detected by the sacrificing procedure (since 0 ∈ FP is not in the field). Otherwise, if x̃i mod P , 0
then the result x̃iy j mod P is a random element in the field FP and the same analysis from the proof of Lemma 4.2
follows.

Finally we make the observation that the math still work out in case we use an extension field and not a plain
prime-field. Basically using the ArithmeticOT procedure we can still multiply with one bit at a time. The parties simply
multiply with the appropriate constants in the extension field (and thus do any necessary polynomial reduction), instead
of simply a two-power.

We prove the following theorem in Appendix E.

Theorem 4.4. The method Mult in ΠAHCOM-Fm (Fig. 13) UC-securely implements the method Mult in functionality
FAHCOM-Fm (Fig. 10) in the FOT-, FEQ- and FCT-hybrid model against a static and malicious adversary corrupting a
majority of the parties.

16

Protocol ΠAHCOM-Fm . Describes the implementation of FAHCOM-Fm in the FOT, FEQ- FCT-hybrid model. The protocol is an
interaction between p parties, if FOT, FEQ or FCT outputs abort at any point, so does this protocol. The parties begin the

protocol with an empty dictionary ReOrg.

Init, Commit, Input, Rand, Linear Combination, Open, Partial Open:
Do exactly as in protocol ΠHCOM-Fm in Fig. 9.

ReOrg: The parties wish to construct reorganization pairs based on the linear function φ using the raw commitments with
identifiers set K where |K| = 2ν + 2s for some ν. If rawi[k] , ⊥ for each k ∈ K and i ∈ [p] then partition K into the sets
X,Y, A, B where |X| = |Y | = ν and |A| = |B| = s and proceed as follows:

1. For each of the ν pairs {(x, y)} ∈ (X,Y) each party i broadcasts the value εi
x,y = φ(xi

x) − xi
y.

2. For each of the s pairs {(a, b)} ∈ (A, B) each party i broadcasts the value εi
a,b = φ(xi

a) − xi
b.

3. For every pair (x, y) ∈ (X,Y) and every pair (a, b) ∈ (A, B) the parties pick freshly new indexes y′ and b′ and compute�
xy′
�

=
�
xy

�
+

∑
j∈[P] ε

j
x,y and ~xb′� = ~xb� +

∑
j∈[P] ε

j
a,b. Meaning that

�
xy′
�

=
�
φ(xx)

�
and ~xb′� =

�
φ(xa)

�
. Let Y ′ be

the set of y′ and likewise let B′ be the set of b′.
4. All parties input (toss, s · ν,F) to FCT and thus learn (random,R) (when viewing the output as a matrix R ∈ Fs×ν).
5. The parties now compute and open the linear combination for each q ∈ [s], letting Rq,k denote the element in the q’th

row of the k’th column of R:�
sq

�
=
�
xAq

�
+

∑
k∈[ν]

Rq,k ·
�
xXk

�
and

�
s̄q

�
=
�
xB′q

�
+

∑
k∈[ν]

Rq,k ·
�
xY′k

�
6. Each party now verifies that φ(sq) = s̄q. If not, they abort.

7. The parties set ReOrgi[q] = (Xq,Y ′q), actuali[Xq] =
�
xXq

�i
, actuali[Y ′q] =

�
φ(xXq)

�i
for every q ∈ [ν] and rawi[k] = ⊥

for every k ∈ K. Output (reOrg, (X,Y ′)) to all parties.

Fig. 12. Protocol ΠAHCOM-Fm - Part 1

4.3 Reorganization of Components of a Commitment

The parties might want to move elements of F around or duplicate elements of F within a message. In general we
might want to apply a linear function φ to a vector in Fm resulting in another vector in Fm. To do so, they need to pre-
process pairs of the form (~x� ,

�
φ(x)
�
) where x is random. This is done by first having a pair of random commitments

(~x� ,
�
y
�
) (as the output of the Commit instruction of FHCOM-Fm), then, party Pi broadcasts εi = φ(xi) − yi (i.e. by

first applying φ on its own share). Note that from linearity of φ it follows that
∑

i∈[p] φ(xi) = φ(
∑

i∈[p] xi) = φ(x), thus∑
i∈[p] ε

i =
∑

i∈[p] φ(xi) − yi = φ(x) − y. Then, the parties compute
�
y′
�

=
�
y
�

+
∑

i∈[p] ε
i =
�
y
�

+ φ(x) − y = φ(x).
For security reasons this is done simultaneously for a batch of ν + s pairs. Finally, the parties complete s random
linear combination tests over the batch by producing a uniformly random matrix R ∈ Fs×ν (using FCT). Let Rq,k be the
element in the qth row and kth column of R. To perform the test, divide the ν + s pairs into two sets A, B of ν and s
pairs respectively. For each pair

(�
zq

�
,
�
zq′
�)

in B for q ∈ s compute and open�
sq

�
=
�
zq

�
+

∑
k∈[ν]

Rq,k · ~xk� and
�
s̄q

�
=
�
zq′
�

+
∑
k∈[ν]

Rq,k ·
�
yk
�

Each party now verifies that φ
(
sq

)
= s̄q. If this is so, they accept. Otherwise they abort.

Based on this we state the following theorem, which we prove in Appendix F.

Theorem 4.5. The method ReOrg in ΠAHCOM-Fm of Fig. 12 UC-securely implements the method ReOrg in function-
ality FAHCOM-Fm of figure Fig. 10 in the FOT-, FEQ- and FCT-hybrid model against a static and malicious adversary
corrupting a majority of the parties.

5 Protocol for Multiparty Computation

In Fig. 14 we show how to realize a fully fledged arithmetic MPC protocol secure against a static and malicious
adversary, with the possibility of corrupting a majority of the parties. This protocol is very similar to the one used in
MiniMAC [16] and thus we will not dwell on its details.

17

Protocol ΠAHCOM-Fm . Describes the implementation of FAHCOM-Fm in the FOT, FEQ- FCT-hybrid model. The protocol is an
interaction between p parties, if FOT, FEQ or FCT output abort at any point, so does this protocol. The parties begin the

protocol with an empty dictionary mult.

Mult: Upon receiving a message (mult,K) from all parties where raw[k] , ⊥ for every k ∈ K, let |K| = 3(τ1 + τ1 · (τ2)2 · T),
assign the commitments into τ1 + τ1 · (τ2)2 · T triples denoted by ~x� ,

�
y
�
, ~z�.

1. Construction. For each of the τ1 + τ1 · (τ2)2 · T triples denoted by ~x� ,
�
y
�
, ~z� do as follows:

(a) Party Pi (for every i ∈ [p]) executes the arithmetic OT procedure ArithmeticOT(xi, y j) of Fig. 6 together with
every party P j , Pi where Pi inputs xi and P j inputs y j. Let si

i← j be the output for Pi and s j
i← j be the output for

P j.
(b) Every party Pi computes si = xi ∗ yi +

∑
j,i si

i← j +
∑

j,i si
j←i and broadcasts ti = si − zi.

(c) All parties compute and store ~z� = ~z� +
∑

i∈[p] ti =
�
x ∗ y
�

2. Cut-and-Choose. Assign τ1 randomly picked triples, out of the τ1 + (τ2)2 · T triples constructed above, into a bucket
using FCT. For each triple in this bucket, (~x� ,

�
y
�
, ~z�), proceed as follows:

(a) The parties publicly open ~x� ,
�
y
�

and ~z�.
(b) Every party locally verifies if x ∗ y =? z. If this is the case they discard the triple (~x� ,

�
y
�
, ~z�), otherwise they

abort.
3. Sacrificing. Let τ1 · (τ2)2T be the number of triples remaining, where each triple is of the form (~x� ,

�
y
�
, ~z�). The

parties do as follows:
(a) Assign the triples uniformly into τ1 buckets where each bucket contains exactly τ1 triples, denoted t1, . . . , tτ1 (the

uniform assignment done via the use of the coin tossing functionality FCT).
(b) Run CorrectnessTest(t1, tk) for k ∈ {2, . . . , τ1} (see Fig. 11) where k is the raw-commitment ID of ~x�. Note that

according to the procedure, if a malformed triple is detected then the parties abort.
(c) Consider t1 as a correct triple.

4. Combining. Let (τ2)2 · T be the number of correct triples produced by the above step.
(a) Combine on x: The parties assign the triples uniformly into τ2T buckets of τ2 triples each (as before, this is done

using FCT). For every bucket, denote the triples it contain by {(~xk� ,
�
yk
�
, ~zk�)}k∈[τ2] the parties do as follows:

i. Compute ~x′� =
�∑

k∈[τ2] xk

�
and
�
y′
�

=
�
y1
�

ii. Compute ~εk� =
�
y1 − yk

�
and open εk for every k = {2, . . . , τ2}.

iii. Compute ~z′� =
�
z1 +

∑τ2
k=2 εk ∗ xk + zk

�
= ~x′� ∗

�
y′
�
.

(b) Combine on y: The parties assign the triples uniformly into T buckets of τ2 triples each (as before, this is done
using FCT). For every bucket, denote the triples it contain by {(~xk� ,

�
yk
�
, ~zk�)}k∈[τ2] the parties do as follows:

i. Compute
�
y′
�

=
�∑

k∈[τ2] yk

�
and ~x′� = ~x1�

ii. Compute ~εk� = ~x1 − xk� and open εk for every k = {2, . . . , τ2}.
iii. Compute ~z′� =

�
z1 +

∑τ2
k=2 εk ∗ yk + zk

�
= ~x′� ∗

�
y′
�
.

Fig. 13. Protocol ΠAHCOM-Fm - Part 2

We prove the following theorem in Appendix G:

Theorem 5.1. The protocol in Fig. 14 UC-securely implements the functionality FMPC-Fm of figure Fig. 10 in the
FAHCOM-Fm -hybrid model against a static and malicious adversary corrupting a majority of the parties.

6 Efficiency

6.1 Practical Optimizations

Several significant optimizations can be applied to our protocol. We chose to describe the optimizations here rather
than earlier for the ease of presentation. In the following we present each of the optimizations and sketch out its
security.

Using less storage. As we mentioned before, the two-party homomorphic commitment scheme of [18] (described
in Appendix A) can be used as an implementation of functionality F2HCOM-Fm . Briefly, in this two party commitment

18

Init: The parties invoke (init) followed by (commit, I) onFAHCOM-Fm to get a sufficient amount of raw commitments. Next the
parties call (mult, ·) and (reOrg, φ, ·) to get a sufficient amount of multiplication triples, (~x� ,

�
y
�
, ~z�) and reorganization

pairs (~x� ,
�
φ(x)
�
).

Input: To share Pi’s input y ∈ Fm, party Pi calls (Input, i, k, y) on FAHCOM-Fm with k being the identifier of a raw commitment.
All other parties P j call (Input, j, k). The parties obtain commitment

�
yk
�
.

Rand: All parties call (random, k) on FAHCOM-Fm with k being an identifier of a raw commitment. The parties obtain commit-
ment ~xk�.

Public Add: To add together a public value y and a commitment, ~x�, the parties simply compute y + ~x� =
�
y + x

�
using

the Linear command on FAHCOM-Fm .
Add: To add two commitments together, ~x� and

�
y
�

the parties simply compute ~x� +
�
y
�

=
�
x + y

�
using the Linear

command on FAHCOM-Fm .
Public Multiply: To multiply together a public value y and a commitment, ~x�, the parties simply compute y ∗ ~x� =

�
y ∗ x
�

using the Linear command on FAHCOM-Fm .
Multiply: To multiply together two commitments, ~x� and

�
y
�
, the parties select a preprocessed multiplication triple

(~a� , ~b� , ~c�) and proceed as follows:
1. The parties open ε = ~x� − ~a� and ρ =

�
y
�
− ~b� using the commands Linear and Open on FAHCOM-Fm .

2. The parties compute ~z� =
�
x ∗ y
�

= ~c� + ε ∗ ~b� + ρ ∗ ~a� + ε ∗ ρ using the command Linear on FAHCOM-Fm .
Reorganize: To apply a linear operator φ to commitment ~x� the parties select a preprocessed reorganization pair (~a� ,

�
φa
�
).

They then proceed as follows:
1. The parties open ε = ~x� − ~a� using the commands Linear and Open on FAHCOM-Fm .
2. The parties then compute

�
φ(x)
�

=
�
φ(a)
�

+ φ(ε) using the commands Linear on FAHCOM-Fm .
Output: The parties open the value ~x� that should be output of the computation using the command Open on FAHCOM-Fm .

Fig. 14. Protocol UC-realizing FMPC-Fm in the FAHCOM-Fm model.

scheme the committer holds a set of 2m vectors from Fγ, namely the vectors s̄0
1, s̄

1
1, . . . , s̄

0
m, s̄1

m whereas the receiver
choose a set of m bits b1, . . . , bm, denoted as “its choice of watch bits” and obtains the m vectors s̄b1

1 , . . . , s̄
bm
m , denoted

as “the watchbits”.
Recall that in our multiparty homomorphic commitment scheme party Pi participates as a receiver in p − 1 in-

stances of two-party commitment scheme with all other parties. This means that Pi needs to remember its choice
of watchbits for every other party and this accordingly for every linear operation that is performed over the com-
mitments. For instance, let ~x� ,

�
y
�

be two multiparty commitments between three parties, then party P1 stores
~x�1 =

{{
[x2]2,1, [x2]3,1

}
,
{
〈x1〉1,2, 〈x1〉1,3

}}
. To perform the operation ~x� +

�
y
�

then P1 end up with

�
x + y

�1
=

{{
[x2]2,1 + [y2]2,1, [x2]3,1 + [y2]3,1

}
,

{
〈x1〉1,2 + 〈y1〉1,2, 〈x1〉1,3 + 〈y1〉1,3

}}
To make it more efficient, Pi can choose the bits b1, . . . , bm only once and use them in all instances of two-party
commitments. This makes the process of linear operations over commitments simpler and does not requires from P1
to store the commitments for p − 1 parties. Applying the optimization to the above example, we have that P1 stores
only a single value for the commitment part, that is, now P1 needs to store�

x + y
�1

=
{
[x2]2,1 + [y2]2,1 + [x2]3,1 + [y2]3,1 ,

{
〈x1〉1,2 + 〈y1〉1,2, 〈x1〉1,3 + 〈y1〉1,3

}}
Security follows from the underlying commitment scheme, since what we now do is simply equivalent to storing

a sum of commitments in a single instance of the two-party scheme.
In a bit more detail, we see that since F2HCOM-Fm is UC-secure, it is secure under composition. Furthermore,

considering the worst case where only a single party is honest and all other parties are malicious and colluding we
then notice that the above optimization is equivalent to executing p− 1 instances of the F2HCOM-Fm , but where the same
watchbits are chosen by the honest party. We see that this is almost the same as calling Commit p times. The only
exception is that the seeds of the committing party, Pi, of the calls to FOT are different in our optimized protocol. Thus
it is equivalent to the adversary being able to select p potentially different seeds to the calls to Commit. However,
the output of the PRG calls are indistinguishable from random in both cases and so the distributions in both cases are
indistinguishable assuming p is polynomial in the security parameter.

19

Optimized CorrecnessTest. Recall that in the sacrificing step of protocol ΠAHCOM-Fm (see Fig. 13) the parties perform
two openings of commitments for every bucket (the opening is described as part of the CorrecnessTest in Fig. 11).
That is, beginning the step with τ1 · (τ2)2 · T triples (which are assigned to (τ2)2 · T buckets) leads to the opening of
(τ1 − 1) · (τ2)2 · T triples.

Since we require that the results of all of these openings be 0, then any linear combination over these opening
would be 0 as well if they are correct. On the other hand, if one or more of the openings are not zero the result of a
linear combination over the openings might be 0 with probability 1

|F|
. Thus, agreeing on a s random linear combinations

over the openings would detect an incorrect triple with overwhelming probability.

Optimized opening. In the online phase of our protocol, for every multiplication gate the parties need to open some
random commitments using the Open command. The implementation of the Open command requires interaction be-
tween every pair of parties, thus, the communication complexity is Ω(T · p2) where T is the number of multiplication
gates in the circuit. Following the same idea as used in SPDZ and MiniMAC, we note that we can reduce the com-
munication complexity for every gate to O(p) in the following way, to perform a “partial opening” of a commitment
~x�:

1. Every party Pi sends its share xi to P1

2. P1 computes x =
∑

j∈[p] x j and sends back x to everyone.

This incurs a communication complexity of O(p) rather than O(p2). In the end of the evaluation of the circuit, the
parties perform s random linear combinations over the commitment values that were “partially opened” earlier. Then,
they open the results of the linear combinations using the Open command. If one of the opened results with a wrong
value (i.e. that does not conform with the result of the linear combination of the values sent from P1 in the partial
opening) then the parties abort.

Using this optimization leads to a communication complexity of Ω(T · p + s · p2). Security follows by the same
arguments as used in SPDZ and MiniMAC. Particularly before opening the output nothing gets leaked during the
execution of the gates in the protocol and since the adversary does not know the random linear combinations he cannot
send manipulated values that pass this check.

Optimizing for large fields. If the field we compute in contains at least 2s elements, then the construction of multipli-
cation triples becomes much lighter. First see that in this case it is sufficient to only have two triples per bucket for sac-
rificing. This is because the adversary’s success probability of getting an incorrect triple through the CorrectnessTest
in Fig. 11 is less than |F|−1 ≤ 2−s. Next we see that it is possible to eliminate the combining step on the y components
of the triples. This follows since the party inputting x into the ArithmeticOT procedure in Fig. 6 can now only succeed
in a selective failure attack on the honest party’s input y if he manages to guess y. To see this notice that if the adversary
changes the q’th bit of his input x then the result of the computation will be different from the correct result with a
factor y · 2q−1. But since y is in a field of at least 2s elements then y · 2i−1 = 0 with probability at most 2−s and thus its
cheating attempt will be caught in the CorrectnessTest with overwhelming probability. Furthermore the combining
on x is now also overly conservative in the bucket size τ2. To see this notice that the adversary only gets to learn at
most s − 1 bits in total over all triples. This means that it cannot fully learn the value of a component of x for all
triples in the bucket (since it is at least s bits long), which is what our proof, bounding his success probability assumes.
Instead we can now bound its success probability by considering a different attack vectors and using the Leftover Hash
Lemma to compute the maximum amount of leakage it can learn when combining less than τ2 triples in a bucket as
done in [28]. However, we leave the details of this as future work. To conclude, even when using the very conservative
bound on bucket size, we get that it now takes only 6m log(|F|) OTs, amortized, when constructing 221 triples instead
of 27m log(|F|) when s = 40.

6.2 Efficiency Comparison

The computationally heavy parts in our protocol are the usage of oblivious transfers and the use of the underlying
homomorphic two-party commitments. Both of these are rather efficient in practice having the state-of-the-art con-
structions of Keller et al. ([27] for OT) and of Frederiksen et al. ([18], for two-party homomorphic commitments). It

20

Scheme Finite Field Rand, Input Schur, ReOrg Mult
COTe COTe COTe OT

[19] F2c for c ≥ 1 m log(|F|) m log(|F|) 24m log(|F|) 12m log(|F|) + 6s

[28] F2c for c ≥ 2s m log(|F|) - 5m log(|F|) 3m log(|F|)

[7] F2 m log(|F|) - 12m log(|F|) 3m log(|F|)

This work Any 0 0 0 27m log(|F|)

This work* F2c for c ≥ s 0 0 0 6m log(|F|)

Table 2. Comparison of the overhead of OTs needed, in the amortized sense. All values should be multiplied with p(p−1) to get the
true number of needed OTs. We differentiate between regular OTs and the more efficient correlated random OT with error (COTe)
[28]. We assume that the computational security parameter κ ≥ m log(|F|) some complexities increase. F =GF(2). For [7,28] m = 1
is possible. We assume at least 221 triples are generated which gives the smallest numbers to the protocols. *) Using optimization
4. in 6.1, requiring |F| ≥ 2s.

should be noted that if one wish to use a binary field, or another small field, then it is necessary to use a code based
on algebraic geometry internally if using the commitment scheme of Frederiksen et al. [18]. These are however not as
efficient to compute as, for example, the BCH code used in the implementation of [18] done in [34].

Notice that the amount of OTs our protocol require is a factor of O(m log(|F|)) greater than the amount of com-
mitments it require. Therefore, in Table 2 we try to compare our protocol with [19], [28] and [7] purely based on
the amount of OTs needed. This gives a fair estimation on the efficiency of our protocol compared to the current
state-of-the-art protocols for the same settings (static, malicious majority in the secret sharing approach).

Furthermore, we note that both [28] and [19] (which is used as the underlying preprocessing phase for MiniMAC)
require a factor of between O(m) and O(m2) more coin tosses than our protocol. The reason for this is that in our
protocol it is sufficient to perform the random linear combinations using a random scalar from F (i.e. scalar multipli-
cation) whereas [28] and [19] requires a componentwise multiplication using a random vector from Fm. Note that in
the comparison in Table 2 we adjusted the complexity of [19] to fit what is needed to securely fix the issue regarding
the sacrificing, which we present in Appendix H.

7 Applications

Practically all maliciously secure MPC protocols require some form of commitments. Some, e.g. the LEGO family
of protocols [33,17,18,34], also require these commitments to be additively homomorphic. Our MPC protocol works
directly on such commitments, we believe it makes it possible to use our protocol as a component in a greater scheme
with small overhead, as all private values are already committed to. Below we consider one such specific case; when
constructing committed OT from a general MPC protocol.

7.1 Bit Committed OT
The bit-OT two-party functionality (b, x0, x1) 7→ (xb,⊥) can be realized using a secure evaluation of a circuit containing
a single AND gate and two XOR gates: Let b denote the choice bit and x0, x1 the bit messages, then xb = b ∧ (x0 ⊕

x1) ⊕ x0.
We notice that all shares in our protocol are based on two-party commitments. This means that constructing a

circuit similar to the description above will compute OT, based on shares which are committed to. Thus we can
efficiently realize an OT functionality working on commitments. Basically we use F =GF(2) and compute a circuit
with one layer of AND gates computing the functionality above. In the end we only open towards the receiver. At any
later point in time it is possible for the sender to open the commitments to x0 and x1, no matter what the receiver chose.
The sender can also open b towards the receiver. However we notice that we generally need to open m committed OTs
at a time (since we have m components in a message). However, if this is not possible in the given application we
can use reorganization pairs to open only specific OTs, by simply branching each output message (consisting of m
components) into m output messages each of which only opening a single component, and thus only a single actual
OT.

Furthermore, since we are in the two-party setting, and because of the specific topology of the circuit we do
not need to have each multiparty commitment be the sum of commitments between each pair of parties. Instead the
receiving party simply commits to b towards the sending party using a two-party commitment. Similarly the sending

21

party commits to x0 and x1 towards the receiving party using a two-party commitment. Now, when they construct a
multiplication triple they only need to do one OT per committed OT they construct; the receiver inputting his b and the
receiver inputting x0 ⊕ x1. Since the sender should not learn anything computed by the circuit the parties do no need
to complete the arithmetic OT in other direction.

In this setting we have F =GF(2) (hence m ≥ s), p = 2 and 1 multiplication gate when constructing a batch of m
committed OTs. Plugging these into the equations in Table 1 we see that the amortized cost for a single committed-OT
is 36 regular string OTs of κ bits and 108/m ≤ 108/s ≤ 3 (for s = 40) commitments for batches of m committed-OTs.

It is also possible to achieve committed OT using other MPC protocols, in particular the TinyOT protocols [32,7]
have a notion of committed OT as part of its internal construction. However our construction is quite different.

Acknowledgment The authors would like to thank Carsten Baum and Yehuda Lindell for useful discussions along
Peter Scholl and Marcel Keller for valuable feedback and discussions in relation to their SPDZ and MiniMAC prepro-
cessing papers.

References

1. G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious transfer and extensions for faster secure compu-
tation. In ACM CCS, pages 535–548, 2013.

2. G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious transfer extensions with security for malicious
adversaries. In EUROCRYPT, pages 673–701, 2015.

3. D. Beaver. Efficient multiparty protocols using circuit randomization. In CRYPTO, pages 420–432, 1991.
4. D. Beaver. Correlated pseudorandomness and the complexity of private computations. In STOC, pages 479–488, 1996.
5. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-tolerant distributed com-

putation (extended abstract). In STOC, pages 1–10, 1988.
6. L. T. A. N. Brandão. Very-efficient simulatable flipping of many coins into a well - (and a new universally-composable

commitment scheme). In C. Cheng, K. Chung, G. Persiano, and B. Yang, editors, PKC, volume 9615 of Lecture Notes in
Computer Science, pages 297–326. Springer, 2016.

7. S. S. Burra, E. Larraia, J. B. Nielsen, P. S. Nordholt, C. Orlandi, E. Orsini, P. Scholl, and N. P. Smart. High performance
multi-party computation for binary circuits based on oblivious transfer. IACR Cryptology ePrint Archive, 2015:472, 2015.

8. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS, pages 136–145, 2001.
9. I. Cascudo, I. Damgård, B. David, N. Döttling, and J. B. Nielsen. Rate-1, linear time and additively homomorphic UC com-

mitments. In CRYPTO, pages 179–207, 2016.
10. I. Cascudo, I. Damgård, B. M. David, I. Giacomelli, J. B. Nielsen, and R. Trifiletti. Additively homomorphic UC commitments

with optimal amortized overhead. In PKC, pages 495–515, 2015.
11. I. Damgård, B. M. David, I. Giacomelli, and J. B. Nielsen. Compact VSS and efficient homomorphic UC commitments. In

ASIACRYPT, pages 213–232, 2014.
12. I. Damgård, R. Lauritsen, and T. Toft. An empirical study and some improvements of the minimac protocol for secure compu-

tation. In SCN, pages 398–415, 2014.
13. I. Damgård and C. Orlandi. Multiparty computation for dishonest majority: From passive to active security at low cost. In

CRYPTO, pages 558–576, 2010.
14. I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from somewhat homomorphic encryption. In

CRYPTO, pages 643–662, 2012.
15. I. Damgård and R. W. Zakarias. Fast oblivious AES A dedicated application of the minimac protocol. In AFRICACRYPT,

pages 245–264, 2016.
16. I. Damgård and S. Zakarias. Constant-overhead secure computation of boolean circuits using preprocessing. In TCC, pages

621–641, 2013.
17. T. K. Frederiksen, T. P. Jakobsen, J. B. Nielsen, P. S. Nordholt, and C. Orlandi. Minilego: Efficient secure two-party computa-

tion from general assumptions. In EUROCRYPT, pages 537–556, 2013.
18. T. K. Frederiksen, T. P. Jakobsen, J. B. Nielsen, and R. Trifiletti. On the complexity of additively homomorphic UC commit-

ments. In TCC, pages 542–565, 2016.
19. T. K. Frederiksen, M. Keller, E. Orsini, and P. Scholl. A unified approach to MPC with preprocessing using OT. In ASIACRYPT,

pages 711–735, 2015.
20. J. Furukawa, Y. Lindell, A. Nof, and O. Weinstein. High-throughput secure three-party computation for malicious adversaries

and an honest majority. In EUROCRYPT, pages 225–255, 2017.

22

21. J. A. Garay, Y. Ishai, R. Kumaresan, and H. Wee. On the complexity of UC commitments. In EUROCRYPT, pages 677–694,
2014.

22. N. Gilboa. Two party RSA key generation. In CRYPTO, pages 116–129, 1999.
23. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A completeness theorem for protocols with

honest majority. In STOC, pages 218–229, 1987.
24. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently. In CRYPTO, pages 145–161, 2003.
25. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge from secure multiparty computation. In STOC, pages

21–30, 2007.
26. Y. Ishai, M. Prabhakaran, and A. Sahai. Secure arithmetic computation with no honest majority. In TCC, pages 294–314, 2009.
27. M. Keller, E. Orsini, and P. Scholl. Actively secure OT extension with optimal overhead. In CRYPTO, pages 724–741, 2015.
28. M. Keller, E. Orsini, and P. Scholl. MASCOT: faster malicious arithmetic secure computation with oblivious transfer. In ACM

CCS, pages 830–842, 2016.
29. E. Larraia, E. Orsini, and N. P. Smart. Dishonest majority multi-party computation for binary circuits. In CRYPTO, pages

495–512, 2014.
30. Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in the presence of malicious adversaries. In

EUROCRYPT, pages 52–78, 2007.
31. Y. Lindell, B. Pinkas, N. P. Smart, and A. Yanai. Efficient constant round multi-party computation combining BMR and SPDZ.

In CRYPTO, pages 319–338, 2015.
32. J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A new approach to practical active-secure two-party computation. In

CRYPTO, pages 681–700, 2012.
33. J. B. Nielsen and C. Orlandi. LEGO for two-party secure computation. In TCC, pages 368–386, 2009.
34. J. B. Nielsen, T. Schneider, and R. Trifiletti. Constant round maliciously secure 2PC with function-independent preprocessing

using LEGO. In NDSS, 2017.
35. P. Rindal and R. Trifiletti. Splitcommit: Implementing and analyzing homomorphic UC commitments. IACR Cryptology ePrint

Archive, 2017:407, 2017.
36. A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In FOCS, pages 162–167, 1986.

23

A Two-Party Additively Homomorphic Commitments of [18]

For completeness we overview the two-party additively homomorphic commitment scheme of [18]. Furthermore, we
show how to extend it to allow multiplication of public vectors rather than just public scalar values. The protocol is
formally presented in Fig. 15, Fig. 16 and Fig. 17.

We point out that the ideal functionality F2HCOM-Fm we described in Fig. 7 is slightly different from the functionality
described in [18] and implemented by the protocol in Fig. 15, Fig. 16 and Fig. 17. Disregarding the methods Pair and
Public Multiplication the difference is purely based on meta-data and is there solely to make the usage of F2HCOM-Fm

simpler and the presentation of our main results easier. Specifically the difference is that the functionality implemented
by ΠHCOM-Fm and described in [18] allows openings of linear combinations instead of constructing linear combinations
internally, which can then be opened later. We denote the actual functionality implemented in Fig. 15, Fig. 16 and
Fig. 17 by F ′2HCOM-Fm . This functionality is like F2HCOM-Fm when removing Rand and linear Linear Combination and
using the following Open and Input commands:

Open: Upon receiving a message (open, ({(k, αk)}k∈K)) from Pi if raw[k] , ⊥ and αk ∈ F for every k ∈ K then send
opened, ({(k, αk)}k∈K) ,

∑
k∈K αk · xk to P j and S

Input: Upon receiving a message (Input, k, y) from Pi, if raw[k] , ⊥ then set raw[k] = y and output (Input, k) to
P j and S.

We see that F2HCOM-Fm can (almost) be implemented in the F ′2HCOM-Fm hybrid model by simply storing all Linear
Combination, Input and Rand and then internally construct the actual dictionary and simply open the correct linear
combinations when receiving an open command, potentially adding a public constant β. This works without issues
since only public info, such as indexes and confirmation of the command is sent to parties when issuing Rand and
Linear Combination. Regarding Input the only difference is that F ′2HCOM-Fm only keeps track of a single structure, raw
instead of both raw and actual. This can clearly be perfectly simulated by simply keeping track of actual internally.

The only remaining discrepancy between the functionalities is public multiplication of a constant vector α ∈
Fm, rather than a scalar. We discuss how to handle this in the following by the additional methods Pair and Public
Multiplication. To do so we us first fix some notations regarding linear codes.

Codes. In our construction we use a systematic linear error correction code C = [n,m, d] over F, that is, a code with
dimension m, length n and minimum distance d, where messages are from Fm. We assume that C cyclic is a MDS
code8, that is, it holds that m + d = n + 1. We require that m · blog2(|F|)c ≥ s.

Let C(x) denote the encoding of a vector x as a codeword in a linear code C. The Schur transform of C (as described
in [16]), denoted C∗, is a linear [n,m∗, d∗] code, defined as the span of the set of vectors {x ∗ y | x, y ∈ C}. It holds that
m∗ ≥ m and d∗ ≤ d, but we require that d∗ ≥ (s + log(ν))/ log2(|F|). It should be noted that for small fields such as
the binary field, an algebraic geometry code is needed in order to ensure the required distance in the Schur transform.
We use the operator πm,n : Fl → Fn−m to denote the projection of components from position m to n in some vector
of l elements, to a new vector of n − m elements. When we just wish to retrieve the first elements of a vector we use
πm : Fl → Fm to denote the projection of the first m elements into a new vector.

Linear Operations. Following the notation introduced in Section 3.1 we show how the linear operations are reflected
when using the base commitment scheme in Fig. 15 and Fig. 16. The computation of these linear operations in
FHCOM-Fm is thus done for each pair of parties, using the underlying two-party commitment scheme.

Addition
[xk] + [xk′] = [xk + xk′]

is equivalent to P j computing
wk := wk + wk′

and
〈x〉k + 〈x〉k′ = 〈x〉k + xk′

is equivalent to Pi computing:
(t0

k , t
1
k , c

0
k) := (t0

k + t0
k′ , t

1
k + t1

k′ , c
0
k + c0

k′)
8 For concreteness one might just assume that C is a Reed-Solomon code.

24

Constant addition
y + 〈x〉 = 〈y + x〉

is equivalent to Pi computing
(t0, t1, c0) := (t0, t1, c0, y)

and
y + [x] = [y + x]

is equivalent to P j storing
w := (w, y)

The public vector y is added to the message after it has been opened verified.
Scalar multiplication

α · 〈x〉 = 〈α · x〉

is equivalent to Pi computing
(t0, t1, c0) := (α · t0, α · t1, α · c0)

and
α · [x] = [α · x]

is equivalent to P j computing
w := α · w

We notice that for constant addition we do not modify the commitment or verification bits, but simply say that the
public message y should be added after opening [x]. This may seem insecure since we open something else than the
actual message. However, since y is already known to the receiver then it learns x + y in any case and can isolate x on
its own. However, there is an issue if we wish to use x + y as input to another operation; if it is addition, we simply
keep y “in the head” as part of the commitment resulting from the multiplication. In case of public multiplication of a
scalar we simply must also multiply y with the public scalar and keep this in the head. The problems occur in case of
multiplication with a message vector (encoded as a codeword) or another commitment, which we show how to handle
below.

A.1 Schur Pairs

Multiplying two codewords together results in a codeword in the Schur transform which has low minimum distance.
Notice that this also happens even when we multiply a commitment with public message. We need to convert such a
commitment to a commitment in the code C to be able to multiply again. To do so we need to processes commitments
to a Schur Pair of a random message. Basically a Schur pair is a pair of commitments to the same random message
where one is encoded using C and one is encoded using C∗, i.e. (C(x),C∗(x)) for a random message x ∈ Fm. Remember
that we assume that C is a Maximum Distance Separable (MDS) and cyclic code. This means that the message space of
C∗ is at least of size 2m−1. Thus we must fill the m−1 remaining message components when computing C∗(x). In order
to avoid leakage in the online phase these m− 1 extra elements must also be random such that they can act as one-time
padding for the product of two codewords in C in the online phase. Thus, to construct a commitment to x using C∗ we
require constructing a new instance of the commitment scheme using the [n,m∗, d∗] code C∗ instead of C. This is done
by calling the Commit procedure, using the same seed OTs as we did when constructing the commitments in C. This
is done to ensure that P j gets the same choice of watchbits, b. Because of this overhead we require the construction of
Schur Pairs to be done in a batch. The idea is that we then have Pi adjust the value of the commitments in C∗, basically
using the Input procedure, to ensure that these commit to the same values as the commitments done using C. Then to
ensure correctness a linear combination procedure is executed that both C and C∗ in the pair encodes the same message
in the first m components. To ensure that not too much info is leaked we construct s extra commitments, both in C and
C∗ which will be used as padding in the linear combination check and discarded afterwards.

Notice that we unfortunately cannot just use C to encode the same message twice even though C ⊆ C∗. The reason
being that in the online phase the elements in position m to m∗ might leak info on the message if we do this.

25

Protocol between a sender Pi and a receiver P j. We let FPRG : {0, 1}κ → Fpoly(κ) be a pseudorandom generator with arbitrary
polynomial stretch.

Init:
1. On common input (init,m) we assume the parties agree on a linear code C in systematic form over F with parameters

[n,m, d] along with its Schur code, C∗ with parameters [n,m∗, d∗]. The parties also initialize an internal set of unique
identifiers ID = ∅ and another initially empty set U.

2. For l ∈ [n], Pi picks r0
l , r

1
l ∈R {0, 1}κ and inputs (transfer, r0

l , r
1
l) to FOT and P j picks bl ∈R {0, 1} and inputs

(receive, bl) to FOT. The functionality replies with (deliver, rbl
l) to P j and (deliver,⊥) to Pi.

Commit:
1. On common input (commit, γ), for l ∈ [n], both parties use FPRG to extend the first n of their received seeds for FOT

into vectors of length γ + 2s. These are denoted s̄0
l , s̄

1
l ∈ F

γ+2s where Pi knows both and P j knows s̄0
bl

. Next define the
matrices S0,S1 ∈ Fn×(γ+2s) such that for l ∈ [n] the l’th row of Sb is s̄b

l for b ∈ {0, 1}.
2. Pick a set J s.t. J ∩ ID = ∅ and |J| = γ + 2s. We assume w.l.o.g. that the elements of J are [γ + 2s]. For k ∈ J let

the column vector of S0,S1 be s0
k , respectively s1

k . For b ∈ {0, 1}, Pi lets tb
k = πm(sb

k) and lets tk = t0
k + t1

k . Also P j lets
wk = (w1

k ,w
2
k , . . . ,w

n
k) and b = (b1, b2, . . . , bn) where wl

k = sbl
k [l] for l ∈ [n].

3. For J , Pi lets c0
k = πm,n(s0

k) and c1
k = πm,n(C(tk)) − c0

k . It then computes the correction value c̄k = c1
k − πm,n(s1

k).
4. Finally Pi sends the set {c̄k} j∈J to P j. For l ∈ [n − m] if bm+l = 1, P j updates wm+l

k := c̄k[l] + wm+l
k .

Consistency Check:
5. For each q ∈ [2s] P j samples rq

1 , . . . , r
q
γ ∈R F and sends these to Pi.

6. Pi then computes

t̃0
q = t0

γ+q +

γ∑
k=1

rk · t0
k t̃1

q = t1
γ+q +

γ∑
k=1

rk · t1
k c̃0

q = c0
γ+q +

γ∑
k=1

rk · c0
k

and sends (t̃0
q, t̃1

q, c̃0
q) to P j for each q ∈ [2s].

7. For each q ∈ [2s] P j computes w̃q = wγ+q +
∑γ

k=1 rk · wk. It lets c̃q = πm,n(C(t̃0
q + t̃1

q)) and c̃1
g = c̃g − c̃0

g. Finally for
u ∈ [m] and v ∈ [n − m], P j verifies that t̃bu

q [u] = w̃q[u] and c̃bm+v
q [v] = w̃q[m + v] .

If the above check fails P j outputs abort and halts.
Output:

8. Both parties let ID = ID∪J\{γ+g}q∈[2s] and U = U∪J\{γ+q}q∈[2s]. Pi now holds opening information {(t0
k , t

1
k , c

0
k)}k∈J

and P j holds the verifying information {wk}k∈J\{γ+q}q∈[2s] . Pi outputs (random,J\{γ + q}q∈[2s], {tk}k∈J\{γ+q}q∈[2s]) and P j

outputs (random,J\{γ + q}q∈[2s]).9

Fig. 15. Protocol UC-realizing F ′2HCOM-Fm in the FOT-hybrid model – part 1.

Online Usage. To use the Schur pairs to facilitate multiplication of a public message vector some interaction is
required. We describe the protocol for achieving this in Fig. 17. Basically if we wish to multiply the public constant
vector α ∈ Fm with a commitment to x, using a Schur Pair (C(x),C∗(x‖x′)), we use the linearity of the code and the
fact that the commitment consists of an additive secret sharing and let Pi compute C(α) ∗ C(y) by doing component
wise multiplication of C(α) onto the shares committing to y, resulting in an element in C∗. We then hide the result of
this by subtracting C∗(x‖x′), using the fact that C∗ has message length m∗ and thus that x′ will be used to hide any info
on α ∗ y which might otherwise be leaked by the last m∗ −m message components of C∗(α ∗ y). Thus Pi will open the
message ε = α ∗ y − x. P j verifies that the opening is correct and then adjusts the commitment C(x) by adding ε s.t.
the values x from C and C∗ cancel out and what remains is a commitment α ∗ y using C.

Security. As we have augmented the protocol with the procedure Pair we need to prove that this augmentation is
secure. To do so we first define the ideal functionality of the extra commands Pair command and then Public Multi-
plication:

Pair: On input (pair,K) from all parties where K is a set of size ν + s for some ν partition K into two sets X and R
where |X| = ν and |R| = s. Store the tuple (pair, k) for each k ∈ X and output (pair, X) to Pi and P j.

Public Multiplication: On input (mult, k,α) from Pi where actual[k] = xk , ⊥, some message (pair, k′) is stored
and α ∈ Fm then send (mult, k,α) to P j and set actual[k′] = α ∗ xk, actual[k] = ⊥ and delete (pair, k′).

26

Input:
1. On input (Input, k, y) from Pi let Pi compute ỹk = y − tk and send (chosen, k, ỹk) to P j. Else ignore the message.
2. P j stores (chosen, k, ỹk) and both parties set U = U\{k}.

Open:
1. On input (open, {(k, αk)}k∈K) where each αk ∈ F and for all k ∈ K, Pi holds (t0

k , t
1
k , c

0
k) then it computes

t̄0 =
∑
k∈K

αk · t0
k , t̄1 =

∑
k∈K

αk · t1
k , c̄0 =

∑
k∈K

αk · c0
k

and sends (opening, {(k, αk)}k∈K , (t0, t1, c0)) to P j. Else it ignores the input message.
2. Upon receiving the message (opening, {(k, αk)}k∈K , (t0, t1, c0)) from Pi, if for all k ∈ K, P j holds wk it lets t = t0 + t1

and computes w =
∑

k∈K αk · wk. It lets c = πm,n(C(t)) and computes c1 = c − c0.
Finally for u ∈ [m] and v ∈ [n − m], P j verifies that

tbu [u] = w[u] , cbm+v = w[m + v] .

3. If all checks are valid set U = U\C and output (opened, {(k, αk)}k∈K , t +
∑

k∈K αk · ỹk) where K ⊆ ID\U s.t. for each
k ∈ K P j has stored a message (chosen, k, ỹk). Else it aborts and halts.

Public Multiplication:
1. On input (mult,α, k) where α ∈ Fm, Pi holds (t0

k , t
1
k , c

0
k), P j holds wk and has stored (chosen, k, ỹk). Further, both

parties has a messages (pair, l) stored and thus Pi holds ((t0
l , t

1
l , c

0
l), (t∗0l , t

∗1
l , c

∗0
l), t̄l) and P j holds (wl,w∗l , t̄l). Pi com-

putes

t̂∗0l = −t∗0l + πm∗ (C(α)) ∗ (t0
k‖πm∗−m(c0

k)),

t̂∗1l = −t∗1l + πm∗ (C(α)) ∗ (t1
k‖πm∗−m(c1

k)),

ĉ∗0l = −c∗0l + πm∗ ,n(C(α)) ∗ πm∗ ,n(c0
k)

and sends (t̂∗0l , t̂
∗1
l , ĉ

∗0
l) to P j.

2. Upon receiving (t̂∗0l , t̂
∗1
l , ĉ

∗0
l) from Pi, P j then defines t̂∗l = t̂∗0l + t̂∗1l and lets ĉ∗ = πm∗ ,n(C∗(t̂∗l)) and ĉ∗1 = ĉ∗ − ĉ∗0.

3. P j then verifies for u ∈ [m∗] and v ∈ [n − m∗] that t̂∗bu
l [u] = −w∗k[u]l + C(α)[u] · wk[u] and ĉ∗bv [v] = −w∗[m∗ + v] +

C(α)[m∗ + v] · wk[m∗ + v].
4. P j computes ỹl = α ∗ ỹk + πm(t̂∗l) − t̄l and stores the message (chosen, l, ỹl) and both parties delete (pair, l).

Fig. 16. Protocol UC-realizing F ′2HCOM-Fm in the FOT-hybrid model – part 2.

Theorem A.1. The methods Pair and Public Multiplication in Fig. 16 and Fig. 17 UC-securely realizes the Pair and
Public Multiplication functionalities described above against a static and malicious adversary.

Proof. Since the two methods are simply extensions to the functionality F ′2HCOM-Fm , and F ′2HCOM-Fm is realized exactly
as in [18] we will piggyback a lot the security proof in this paper and assume the reader is very familiar with that
proof.

We start by showing correctness. This is straight forward, but we write it out for completeness: Pair: We show
that after steps 1-7 have been completed, if both parties were honest, then the three checks in step 8 should pass and
it should also hold (in order to make the whole protocol work) that t0

k + t1
k = πm(t∗0k + t∗1k) + t̄∗k for k ∈ [ν + s]. For the

first two parts of 8 we see that these follow directly from correctness of opening of linear commitments, since this is

27

Pair: Upon receiving a message (pair,K) from all parties where K ⊆ U of size ν + s for some ν. Then partition this into the
sets X,R where |X| = ν and |R| = s. Proceed as follows:

1. The parties execute (commit, ν + s) but using the code C∗, and all the m∗ seed OTs from Init, instead of just the first
m.

2. Based on the result of the Commit phase with C∗, denote the tuple of opening information held by Pi as
{(t∗0k , t

∗1
k , c

∗0
k)}k∈[ν+s]. Similarly denote the verification info held by P j as {w∗k}k∈[ν+s]. Partition [ν + s] into two sets

X′ and R′ where |X′| = ν and |R′| = s.
3. For each of the k ∈ [ν] party Pi computes t̄X[k] = tX[k] − πm(t∗X[k]) using the opening information for the commitments

based on both C∗ and C. Pi then sends {t̄X[k]}k∈[ν] to P j.
4. For each q ∈ [s] party Pi computes t̄R[q] = tR[q] − πm(t∗R′[q]) using the opening information for the commitments based

on both C∗ and C and sends {t̄R[q]}q∈[s] to P j.
5. Pi and P j input (toss, ν,F) to FCT for each q ∈ [s] and thus learn (random, rq) (when viewing the output as a vector

rq ∈ F
ν).

6. Pi now opens the linear combination for each q ∈ [s] by sending the following values to P j:

t̃0
q = t0

R[q] +
∑
k∈[ν]

rq[k] · (t0
X[k]), t̃1

q = t1
R[q] +

∑
k∈[ν]

rq[k] · (t1
X[k]),

c̃0
q = c0

R[q] +
∑
k∈[ν]

rq[k] · (c0
X[k]), t̃∗0q = t∗0R′[q] +

∑
k∈[ν]

rq[k] · (t∗0X′[k])

t̃∗1q = t∗1R′[q] +
∑
k∈[ν]

rq[k] · (t∗1X′[k]), c̃∗0q = c∗0R′[q] +
∑
k∈[ν]

rq[k] · (c∗0X′[k])

7. For each q ∈ [s] P j now computes w̃q = wR[q] +
∑

k∈[ν] rq[k] · wX[k] and w̃∗q = w∗R′[q] +
∑

k∈[ν] rq[k] · w∗X′[k]. It lets
c̃q = πm,n(C(t̃0

q + t̃1
q)) and c̃∗q = πm,n(C(t̃∗0q + t̃∗1q)). It then computes t̃q = t̃0

q + t̃1
q, c̃q = c̃0

q + c̃1
q, t̃∗q = t̃∗0q + t̃∗1q and

c̃∗q = c̃∗0q + c̃∗1q .
8. P j verifies the following:

– That for each u ∈ [m] and v ∈ [n − m] it is the case t̃bu
q [u] = w̃q[u] and c̃bm+v

q [v] = w̃q[m + v].
– That for each u ∈ [m∗] and v ∈ [n − m∗] it is the case t̃∗bu

q [u] = w̃∗q[u] and c̃∗bm∗+v
q [v] = w̃∗q[m∗ + v].

– That t̃q − πm

(
t̃∗q
)

+ t̄R[q] +
∑

k∈[ν] rq[k] · t̄X[k] = 0m.
If any check fails then P j aborts.

9. Both parties store and output the messages {(pair, X[k])}k∈[ν] and set U = U\K. Thus Pi holds
{((t0

X[k], t
1
X[k], c

0
X[k]), (t

∗0
X′[k], t

∗1
X′[k], c

∗0
X′[k]), t̄X[k])}k∈[ν] and P j holds {(wX[k],w∗X′[k], t̄X[k])}k∈[ν].

Fig. 17. Protocol UC-realizing F ′2HCOM-Fm in the FOT-hybrid model – part 3.

basically what is done and thus proved in [18]. For the third part we see the following:

t̃q − π
(
t̃∗q
)
− t̄R[q] −

∑
k∈[ν]

rq[k] · t̄X[k] = t̃0
q + t̃1

q − π
(
t̃∗0q + t̃∗1q

)
− t̄R[q] −

∑
k∈[ν]

rq[k] · t̄X[k]

= t̃0
q + t̃1

q − π

t∗0R′[q] + t∗1R′[q] +

∑
k∈[ν]

rq[k] · (t∗0X′[k] + t∗1X′[k])


 − t̄R[q] −

∑
k∈[ν]

rq[k] · t̄X[k]

= t0
R[q] + t1

R[q] +

∑
k∈[ν]

rq[k] · (t0
X[k] + t1

X[k])

−
π

t∗R′[q] +

∑
k∈[ν]

rq[k] · t∗X′[k]


 − t̄R[q] −

∑
k∈[ν]

rq[k] · t̄X[k]

= tR[q] +

∑
k∈[ν]

rq[k] · tX[k]

−
π

t∗R′[q] +

∑
k∈[ν]

rq[k] · t∗X′[k]


 − tR[q] − πm(t∗R′[q]) +

∑
k∈[ν]

rq[k] ·
(
−tX[k] + πm(t∗X′[k])

)
= 0m

28

To verify that t0
X[k] + t1

X[k] = πm(t∗0X′[k] + t∗1X′[k]) + t̄k for k ∈ [ν], (and identically for the sets R, R′ with k ∈ [s]) observe
the following:

πm

(
t∗0X′[k] + t∗1X′[k]

)
+ t̄X[k] = πm

(
t∗X′[k]

)
+ tX[k] − πm(t∗X′[k])

= tX[k]

Finally we observe that by definition tX[k] = t0
X[k] + t1

X[k] and correctness follows.

Public Multiplication: The values verified in step 3 are trivially true by correctness of opening of commitments.
For easier readability we recast the index of the C∗ encoded part of the prepocessed pair being used to be the same
as for the elements in C an thus distinguish between the two only through the superscript ∗. We see that it suffices to
show that tl + ỹl = α ∗ y as this is the value that will be opened and learned by P j. We do this as follows:

tl + ỹl = tl + πm(t̂∗l) − t̄l = tl + α ∗ ỹk + πm(t̂∗0l + t̂∗1l) − t̄∗l
= tl + α ∗ ỹk + πm

(
−t∗0l − t∗1l + πm∗ (C(α)) ∗

(
t0
k‖πm∗−m(c0

k) + t1
k‖πm∗−m(c1

k)
))
− t̄l

= tl + α ∗ ỹ + α ∗ (t0
k + t1

k) + πm

(
−t∗0l − t∗1l

)
− t̄l

= tl + α ∗ (ỹk + tk) + πm(−t∗l) − t̄l

= tl + α ∗ (ỹk + tk) + πm(−t∗l) − tl + πm(t∗l)
= α ∗ (ỹk + tk) = α ∗ (y − tk + tk) = α ∗ y

Which verifies that the protocol is correct.

Security: First notice that the elements preprocessed in the Pair method can only used in Public Multiplication,
and thus not be opened individually or reused. Keeping this in mind, we now prove security in two steps, first assuming
a corrupt receiver, P j and next assuming a corrupt sender, Pi. If both parties are corrupt there is nothing to show.

Before continuing with the proof we first describe the security intuition: Basically the security of the Init, Commit
and Open commands follows directly from [18]. The security of the remaining commands rely on the following main
observation (from [18]): In the hybrid world it is sufficient to argue that as there is always one, free random variable
in the partial sum of some value sent to the receiver from the simulator then the simulation and true execution are
indistinguishable (assuming all other correlations are obeyed). Specifically they means that as long as one watch
component in t is freely chosen at random the simulation is sound.

Now we consider the actual proof. We useA to denote the corrupted receiver. For Init, Commit we do simulation
as in [18]. In this simulation we have that the simulator, S, simulated the FOT functionality in Init and so it learnsA’s
choicebits bl for l ∈ [m∗] along with its watchbits wk. With this in mind, the simulation proceeds as follows:

Input:

1. Pick a random value ỹk ∈ F
m and sends the message (chosen, k, ỹk) toA and internally store (chosen, k, ỹk).

Pair:

1-2. Pass on the input (pair,K) to F ′2HCOM-Fm and receives back (pair, X′). Emulate Commit for C∗ as in [18].

3. For each k ∈ [ν] pick a uniformly random value t̄X[k] ∈ F
m and send these toA.

4. For each q ∈ [s] pick a uniformly random value t̄R[q] ∈ F
m and send these toA.

5. Emulate FCT by picking random values rq ∈ F
ν for q ∈ [s].

29

6. For q ∈ [s] pick t̃q ∈ F
m and t̃∗q ∈ Fm∗ uniformly at random. Then compute the following values:

For l ∈ [m] : t̃bl
q [l] = wR[q][l] +

∑
k∈[ν]

rq[k] · (wX[k][l]),

t̃1−bl
q [l] = t̃q[l] − t̃bl

q [l],

for l ∈ [n − m] : c̃bm+l
q [m + l] = wR[q][m + l] +

∑
k∈[ν]

rq[k] · c0
X[k],

c̃1−bm+l
q [m + l] = C(t̃q)[m + l] − c̃bm+l

q [m + l],

for l ∈ [m∗] : t̃∗bl
q [l] = w∗R′[q][l] +

∑
k∈[ν]

rq[k] · (w∗X′[k][l]),

t̃∗1−bl
q [l] = t̃∗q[l] − t̃∗bl

q [l],

for l ∈ [n − m∗] : c̃∗bm∗+l
q [m∗ + l] = w∗R′[q][m

∗ + l] +
∑
k∈[ν]

rq[k] · w∗X′[q][m
∗ + l],

c̃1−bm∗+l
q [m∗ + l] = C(t̃q)[m∗ + l] − c̃∗bm∗+l

q [m∗ + l]

Send t̃0
q, t̃1

q, c̃0
q and t̃∗0q , t̃∗1q , c̃∗0q toA.

7-9. IfA did not abort output {pair, X[k]}k∈[ν].

Public Multiplication:

1. On input (mult,α, k) with α ∈ Fm and messages (pair, l) and (chosen, k, ỹk) stored, retrieve values ((t0
l , t

1
l , c

0
l), (t∗0l , t

∗1
l , c

∗0
l), t̄l)

computed in the simulation of Pair for (pair, l). Then use these messages to compute and send t̂∗0l , t̂
∗1
l and ĉ∗0l as

the true sender would.
2-4. Delete (pair, l) and compute ỹl = α ∗ ỹk + πm(t̂∗0l + t̂∗1l) − t̄l and store (chosen, l, ỹl).

We now argue indistinguishability of these simulations and the real execution. We start with the method Input.
See the value ỹk of (chosen, k, ỹk) is indistinguishable with what is sent in the real protocol. To see this first notice
that real protocol this value is indistinguishable from random since for each l ∈ [m] the value t1−bl

k [l] will be unknown
to S because the FOT used is ideal and thus he will have no knowledge of the seed used in the PRG to compute t1−bk

k [l].
Meaning t1−bk

k [l] is indistinguishable from a random element in F. Thus the value sent in the real protocol from Pi to
P j is indistinguishable from a random element in Fm. So the real and ideal world are clearly indistinguishable.

Next consider the Pair method and see that by the security of [18] the simulation in step 1 and 2 is sound. Next we
see, piggy backing on the proof of [18] that either t0

X[k] or t1
X[k] depending on choice of watchbit. (The same for either

t∗0X′[k] or t∗1X′[k]). This means that in the real execution t̄X[k] and t̄R[k] will both be indistinguishable from random. Thus
values sent in step 3 and 4 are indistinguishable between the simulation and a real execution. The same goes for the
emulation of FCT. Finally, see that all values sent toA in step 6 are either uniformly random or completely determined,
both in its view in the real execution and the simulation. In the real execution we see this since values indexed by R[q]
for q ∈ [s] acts as one-time paddings that will never be used again. Thus when considering a component that was
not chosen by A to be watched, the will be completely unknown to it. However, when it has been chosen it must be
consistent with its choices of watchbit in order to be indistinguishable. We notice that for exactly the watch components
A will learn exactly the value he would expect in the real execution. For the non-watch components these are instead
uniformly random. One exception being the value c̃0

R[q] which is computed to be the correct parity bits in accordance
with the random codewords. But since c̃0

R[q] is picked uniformly at random, and A will, for the l’th component learn
either a uniformly random value, or a specific value one-time padded with a uniformly random value, i.e. c̃0

R[q][l] or
c̃1

R[q][l] = C(t̃q)[m + l] − c̃0
R[q][l]. Further see, that this also means that we can switch the semantic meaning of c̃0

R[q][l]
or c̃1

R[q][l], as each of them, on it own, is indistinguishable from a random value.
For the Public Multiplication we see that each component of t̂∗0l or t̂∗1l is indistinguishable from random in the

view of A in the real execution following the construction and proof of Pair. The same argument follows for the
components of ĉ∗0l

30

For the case of Open we do almost the same as in the proof in [18]. However, since we now might have a message
(chosen, k, ỹk) to add to the opening we need to make some slight changes in the simulation:

When receiving (opened, {(k, αk)}k∈K , x) from the ideal functionality we must simulate the triple (t̄0, t̄1, c̄0) sent
to A. We use the fact that in the real protocol P j can recompute all the values received from Pi given just the value
x and the values {(k, αk, ỹk,wk)}k∈K , which it already knows. Specifically we compute w =

∑
k∈K αk · wk and t =

C(x−
∑

k∈K αk ·ỹk) and c = πm,n(t) where the values ỹk are retrieved from the messages (chosen, k, ỹk). Then for u ∈ [m]
and v ∈ [n − m] we define t̄bu [u] = w[u], c̄bm+v [v] = w[m + v], t̄1−bu [u] = t̄[u] − t̄bu [u] and c̄1−bm+v [v] = c[v] − c̄bm+v [v].
Which follows from the fact t = t0 + t1 and c = c0 + c1. We then sent the triple (t̄0, t̄1, c̄0) just computed toA.

The argument of indistinguishably is the same as in [18]; basically because A will be oblivious of one value in
each component, and this value is indistinguishable from random in the real world (because we use an ideal OT and
a PRG and thus he will learn nothing of the choice he does not make). This is also the case in our simulation since
the value x will be a linear combination of at least one uniformly random value, which is also uniformly random. Or
it will be a linear combination of a chosen value, in this case what we send to A will be in correspondence with the
actual chosen value so that ifA is honest, it will learn the same value as in the real world. Furthermore, following the
arguments above the other values sent toA will be indistinguishable from what is sent in the real world.

Now we consider a malicious Pi and denote this by A and thus S will simulate an honest P j. For the methods
Init, Commit and Open we basically piggyback on the proof of [18]. For Input we notice that we can simulate this
perfectly since we can extract the random commitmentsA is uniquely defined to be able to open (by the proof in [18])
and then simply compute the true commitment by adding to this the correction value it sends.

Next we see that for the methods Pair and Public Multiplication P j never sends anything, thus we can trivially
simulate this. Since P j does not have any input to the protocol, what is left to show is that the ideal output is equal to
the real output in the case of public multiplication. For random commitments this is done by extracting the “actual”
values committed to byA and use them as input to the ideal functionality. In case of public multiplication this means
that we must ensure that the value opened in the ideal functionality is the same as the one opened in the real execution.
Specifically, we show that A can only succeed in opening a wrong public multiplication commitment if it can guess
at least s uniformly random bits.

First see that we can extract all the random messages Pi commits to using the proof in [18]. This is the case for
both the messages using C and C∗. Based on these messages we can compute which values an honest Pi should send.
So far we don’t abort if A sends something wrong and we compute everything like an honest P j would. Now, when
we reach step 8 we must argue that ifA send something different than it was supposed to, an honest P j will catch him.
If it sent all the right things, then by the correctness of the protocol and the element we extracted (and passed on to the
ideal functionality) the openings in the real and ideal worlds will be consistent.

We notice that step 6, 7, and the first two parts of 8 is exactly the same as opening linear combinations of com-
mitments, which by the proof of security of the underlying commitment scheme means that whatever is the simulator
accepts as opening will be the same as in the ideal functionality, had we issued opening commands. Thus what is left
to show is the third part of step 8 which verifies that the commitments in C and C∗ commits to the same value. To show
this proceed as follows:

Denote the values A is supposed to send as in the protocol and denote those he actual sent in the same way but
concatenated with a ′. After the first two checks in 8 we know that

t̃0′
q = t̃0

q, t̃1′
q = t̃1

q, c̃0′
q = c̃0

q, t̃∗0
′

q = t̃∗0q , t̃∗1
′

q = t̃∗1q , c̃∗0
′

q = c̃∗0q

Since the code has minimum distance s, if the above was not true, at least s positions must have been changed.
However, if that was the case thenA would know at least s choicebits of P j. It cannot do that with probability greater
than 2−s because these are only used in the ideal FOT. From the last check in 8 we have that

t̃0
q + t̃1

q − πm(t̃∗0q + t̃∗1q) = t∗
′

R[q] +
∑
k∈[ν]

rq[k] · t̄∗
′

X[k]

Remember that if A acts honestly it is the case that t̄∗k = tk − πm(t∗k). This means that for the adversary to succeed it
must come up with values t̄∗′k) , tk − πm(t∗k) for at least one k ∈ X s.t. the last check in 8 still holds, before he learns the
values rq for q ∈ [s]. We can describe this such that t̄∗′k = εk + tk − πm(t∗k). Again, since we have by assumption that the

31

check in step 8 pass we have that the following must be true:

tR[q]+

∑
k∈[ν]

rq[k] · tX[k]

 − πm

t∗R′[q] +

∑
k∈[ν]

rq[k] · t∗X[k]


 = t̄∗

′

R[q] +
∑
k∈[ν]

rq[k] · t̄∗
′

X[k]

tR[q]+

∑
k∈[ν]

rq[k] · tX[k]

 − πm

t∗R′[q] +

∑
k∈[ν]

rq[k] · t∗X[k]




= πm

εR′[q] + tR[q] − πm(t∗R′[k]) +
∑
k∈[ν]

rq[k] · (εk + tX[k] − πm(t∗X′[k]))


0 = εR′[q] +

∑
k∈[ν]

rq[k] · εX′[k]

So there must be at least one εX′[k] , 0, otherwise Pi is acting honestly (or no incorrect pair will be constructed) and
there is nothing to show.10 It is easy to see the best strategy for the adversary is to pick one value εX′[k] and then values
εR′[q] for q ∈ [s] s.t. εR′[q] + rq[k] · εX′[k] = 0. Since rq[k] is unknown to Pi when he makes his choice, and it is uniformly
random and εX′[k] , 0, we see that each value in F is equally likely to be hit. Thus he has |F|−1 probability of guessing
εR′[q] for each q ∈ [s]. So his advantage is clearly at most 2−s.

We notice that for Public Multiplication, we are basically just performing an Open and and Input of the com-
mitments based on C∗ and thus security follows from the base proof of [18].

B Proof of Theorem 3.1

We prove security in the presence of an adversary A who corrupts A ⊂ {P1, . . . , Pp}. We denote the honest parties
by Ā = {P1, . . . , Pp} r A. The simulator S participates in the ideal execution, corrupts the same set of parties A and
simulates the messages from the honest parties when the adversary is in the ideal world. The simulator S does as
follows:

Init. For every i ∈ A return the message (init) and pass on the call to FHCOM-Fm .
Commit. The following simulation steps (and step numbers) are equivalent to the steps in the protocol.

1. Let I′ be the agreed set of γ + s new identifiers.
2. To simulate step 2 the simulator S (who acts as in functionality F2HCOM-Fm) chooses p(p−1) sets of |I′| random

messages from Fm. That is, S uniformly picks xi, j
k for every k ∈ I′, every i ∈ [p] and every j ∈ [p] r {i}. For

every i ∈ A in the instance F i, j
2HCOM-Fm , S returns the messages (commit, I′) and

(
committed,

{(
k, xi, j

k

)}
k∈I′

)
for

every j , i to the adversary. In addition, for every i ∈ A in the instance F j,i
2HCOM-Fm , S returns the message

(committed, I′) for every j , i to the adversary.
3. At this point every party Pi chooses a message xi

k for every k ∈ I′ to be committed to toward all other parties.
However, we need to consider an adversary who chooses different values to input toward different parties.
That is, we denote by xi, j

k
′

the value that party Pi chooses to input (in the next step) toward party j.
4. To complete the simulation up to Step 4, for every k ∈ I′, every j ∈ Ā and every i ∈ A send the message

(Input, k) to Pi. That is, return these messages to the adversary. In addition, as the corrupted parties sends the
message

(
Input, k, xi, j

k
′)

to the instances F i, j
2HCOM-Fm for every k ∈ I′ and every j ∈ Ā, the simulator (who acts

as the trusted party) extracts those messages xi, j
k
′

(which might be non-equal for every j ∈ Ā).
5. Let I and S be the agreed partitioning of I′ as in Step 5 of the protocol.
6. To simulate Step 6 the simulator S chooses a random matrix R ∈ Fs×γ, sends the message (random,R) (as the

output of FCT) to the adversary.
7. For every q ∈ S , every j ∈ Ā and every i ∈ A the simulator returns the message (linear, ({(k,Rq,k)}k∈I ∪

{(q, 1)},β, k′) (for a freshly new identifier k′) to the adversary, by emulating the Linear Combination instruc-
tion in F j,i

2HCOM-Fm .

10 It is not sufficient to pick one εR′[q] since these will not be used in an online pair and thus will have not effect on the openings.

32

The results of the random linear combinations are then opened to the adversary: For every q ∈ S , every i ∈ A
and every j ∈ Ā choose a uniformly random value s j

q and returns to the adversary the message
(
opened, s j

q

)
.

It remains to check consistency on the adversary’s inputs: For every q ∈ S , every j ∈ Ā and every i ∈ A
compute si, j

q = xi, j
q
′
+

∑
k∈I Rq,k · xi, j

k
′
.

8. For every q ∈ S and every j ∈ Ā compute c j
q =

∑
i∈A si, j

q . In addition, receive the input of the corrupted
parties to functionality FEQ, that is, for every q ∈ S and every i ∈ A receive {c j

q} j∈[p]. If all c j
q are equal for

all j ∈ [p] then output the message (equal, accept) as the output of FEQ. Otherwise output the message
(equal, c1

q
′
, . . . , c1

p
′
, reject) where c j

q
′

= c j
q for j ∈ A and c j

q
′

is uniformly random sampled from Fm for
j ∈ Ā. If the reject message was given as output then make FHCOM-Fm abort. Otherwise pass on the message
(commit, I) to FHCOM-Fm .

Input. If an honest party gives input, then the simulator simply pass on the message (Input, i, k) to FHCOM-Fm on
behalf of the corrupted parties. It then returns the messages it received from the ideal functionality back to the
adversary. If a corrupted party gives input, S receives (Input, i, k, y) from A and picks x j

k
′

uniformly at random
and sends

(
opened, x j

k
′)

to Pi on behalf of each honest party j. It then receives εk from the corrupt party and sets

y′ = εk +
(∑

i∈A xi
k

)
+

(∑
j∈Ā x j

k
′)

and inputs (Input, i, k, y′) to FHCOM-Fm .

Rand Extract the messages from Pi ∈ A and pass on the call from Pi toFHCOM-Fm . Furthermore define xA
k
′

=
∑

Pi∈A xi, j
k
′
.

Linear Combination Extract the messages from Pi ∈ A and pass on the call from Pi to FHCOM-Fm .
Open When opening commitment k S inputs (open, k) to the ideal functionality on behalf of each corrupted party and

receives back (opened, k, xk). Then S computes the honest parties’ share of the kth commitment xĀ
k
′

= xk − xA
k
′,

chooses |Ā| uniformly random elements that sum up to xĀ
k
′
, i.e. the elements {x j

k
′
} j∈Ā such that xĀ

k
′

=
∑

j∈Ā x j
k
′
.

If any honest shares of commitment xk have already been sent to a corrupt party previously (through the Input,
Open or Partial Open commands) then use the same values. Finally S sends the messages {(opened, k, x j

k
′
)} j∈Ā

on every instance F i, j
2HCOM-Fm with i ∈ A to the adversary. If A aborts or don’t opens its shares towards the honest

party then input abort to the ideal functionality so the honest parties don’t receive the opened value.
Partial Open When partially opening commitment k towards a malicious party Pi, S inputs (open, i, k) to the ideal

functionality on behalf of each corrupted parties and receives back (opened, i, k, xk). Proceed like the simulation
of the Open command.

To argue indistinguishability between the real and ideal world we show the following:

1. The simulation aborts during Commit with the same probability as it aborts in the real execution, which is negli-
gible in s.

2. All values sent to A in the simulation are indistinguishable from the values sent by the honest parties in the real
execution.

In the following we go through the two items.

1. We see that the simulation aborts in Step 8 with exactly the same probability and cases as in the real execution.
The protocol aborts in one of two cases:

– If the corrupted parties input different values toward different honest parties notice that the simulation aborts
with exactly the same probability as it aborts in the real execution since the simulator executes exactly the
same check (on behalf of the honest parties) using random coins that were chosen from exactly the same
distribution, thus, the simulation and real execution abort in this case in the same probability.

– Even though the simulation aborts with the same probability as the real protocol we must still argue that
this happens if the adversary is inconsistent in any input between two honest parties. If not then the multi-
party commitment is not well-defined as it can be opened to different values towards the two different honest
parties. To succeed the adversary must pass the linear combination check. However, since a random linear
combination is a universal hash function and it is sampled after he commits towards the parties, then the
probability of a collision in a single linear combination is at most |F|−1, since the linear combination is based
on component-wise multiplication of a single element in F. However, since we do s independent random linear
combinations we get that the adversary succeeds in finding a collision with probability at most |F|−s.

33

– In regards to the equality test functionality FEQ, we notice that the simulator sees the inputs of the corrupted
parties to this functionality. Regarding the honest parties we see that since s j

q of j ∈ Ā is uniformly random
and completely unknown to the adversary (because x j

q is a random one time pad constructed by F2HCOM-Fm and
only used here) the values c j

q
′

for j ∈ Ā are indistinguishable from uniformly random values which is exactly
the same in the real protocol. This means that the simulation outputs reject in the same cases as in the real
protocol along with inputs of the parties which are indistinguishable from the real protocol.

2. We go over the protocol instructions one-by-one:
– Commit. The first step where non-trivial information is sent to A is in Step 7 of Commit. Specifically, the

openings {s j
q
′
} j∈Ā toA. We notice that in the real protocol these values will be uniformly random for all honest

parties because the value xi
q is used to hide

∑
k∈I Rq,k · xi

k since this is the only place xi
q is used. Thus simply

picking a random value as S does is indistinguishable from the real world.
– Input. We notice that in the real execution a corrupt party giving an input with index k receives an opening

to each honest party’s share of commitment k. Observe that in both the real execution and the simulation
the share is uniformly random. However, in the real execution it depends on the values sent in Step 7 of
Commit, whereas in the simulation it is independent. Even though, as we have discussed, the values sent in
Step 7 are one-time padded with another uniformly random value and thus the real and simulated worlds are
indistinguishable. To ensure that the input of the corrupt party gets correctly used in the rest of the protocol
the simulator computes the value y′, which is the value that would be opened to in the real protocol and inputs
this on behalf of the corrupted party to the ideal functionality. To see that this is in fact that value that would
be opened in the real execution, notice that the corrupt party is free to pick εk in any way, but that once it is
broadcast to the honest parties it defines exactly what the sum of the underlying F2HCOM-Fm commitments will
open to.

– Rand, Linear Combination. No information is sent in these steps, so the simulation is perfect.
– Open, Partial Open. The simulator receive the message (opened, k, xk) from the ideal functionality. First see

that by the computation of xĀ
k
′

we ensure that that the opened shares A receives, summed with the shares
he committed to, will always be the same in the real and simulated world. To see that the opened values by
each honest party are distributed similarly in the real and simulated world. Consider the case where there
is only a single honest party. In this case its share is completely defined from the shares A is committed to
along with the value opened to by the ideal functionality. Thus it is clearly distributed similarly in the real
and simulated world. Next see that if there are more honest parties the simulator picks their shares randomly
under the constraint that they sum to the well-defined value xĀ

k
′
. This is also the way the shares are picked

in the real world and thus they are indistinguishable. In particular we notice that since the simulator uses any
randomly picked shares x j

k for a random party j ∈ Ā it has already sent to the adversary, there will be no
inconsistency. Finally, see that the values will always be well defined since consistency between the opened
values will be ensured by FHCOM-Fm and that since S has extracted the shares of the corrupted parties (which
cannot be changed because of the consistency check except with probability at most |F|−s ≤ 2−s as explained
previously) and the honest parties shares are defined from these, once and for all.

�

C Proof of Lemma 4.2

First consider the correctness of CorrectnessTest in Fig. 11, i.e. that if both triples are correct then the procedure will
never abort. Let t1 = (~a� , ~b� , ~c�) and t2 = (~x� ,

�
y
�
, ~z�) be two correct triples, then the following holds:

~e� = r · ~z� − ~c� − ε ∗ ~b� − ρ ∗ ~a� − ρ ∗ ε (1)
= r · ~z� − ~c� − (r · ~x� − ~a�) ∗ ~b� − (

�
y
�
− ~b�) ∗ ~a�

−(
�
y
�
− ~b�) ∗ (r · ~x� − ~a�)

= r · ~z� − ~c� − r · ~x� ∗ ~b� + ~a� ∗ ~b� −
�
y
�
∗ ~a� + ~b� ∗ ~a�

−r ·
�
y
�
∗ ~x� + r · ~b� ∗ ~x� +

�
y
�
∗ ~a� − ~b� ∗ ~a�

= r · ~z� − ~c� + ~a� ∗ ~b� − r ·
�
y
�
∗ ~x�

34

which is opened to 0 since z = x ∗ y and c = a ∗ b.
Next see that nothing is leaked on the elements of triple t1. This follows because the r picked is never 0. Thus

the values opened, ε and ρ, will not leak anything on a, respectively b, as these values will be one-time padded by
x, respective y. Furthermore, if e , 0, then the protocol will abort. This is in the preprocessing phase, thus before
any private data is in play, and thus any leakage is acceptable. If instead e = 0, then clearly nothing is leaked as 0 is
constant.

Let us examine the possible outcomes of procedure CorrectnessTest when the assumption that they are both
correct does not hold. That is, if t2 is malformed then we have z = x ∗ y +∆2 for some ∆2 ∈ F

m, thus the result of Eq.
1 is e = r ·∆2. If t1 is malformed then we have c = a ∗ b + ∆1 for some ∆1 ∈ F

m and the result of Eq. 1 is e = −∆1.
Finally if both are incorrect than we have e = r ·∆2 −∆1. Thus, after applying procedure CorrectnessTest to two
triples we end up in one of the following cases:

1. Both triples are correct. From the correctness shown above the result of the procedure is a correct triple.
2. Exactly one triple is malformed. Note that either ∆1 = 0 or ∆2 = 0 (but not both). If ∆2 = 0 then the result is

e = −∆1 , 0 and the parties abort. If ∆1 = 0 then e = r∆2 , 0 (since r , 0) and the parties also abort. Thus,
either we will abort or we accept a correct triple t1.

3. Both are malformed. In this case we have ∆1,∆2 , 0. Notice that we have e = r ·∆2 −∆1 = 0 if and only if
r ·∆2 = ∆1 which means that r = ∆1 ∗ (∆2)−1 (i.e. ∆1 multiplied with the multiplicative inverse of ∆2). Since r
is chosen uniformly at random from F\{0} we have that the parties will not abort with probability of at most 1

|F|−1 .

From the above analysis it follows that an incorrect triple from the τ1 · (τ2)2T triples will end up being considered
as one of the (τ2)2 · T correct triples if and only if it was assigned to a bucket with τ1 − 1 triples and pass the
CorrectnessTests applied to it. Notice that an incorrect triple can only pass an instance of CorrectnessTest if it gets
paired with another incorrect triple and r = ∆1 ∗ (∆2)−1. Thus we wish to bound the probability that there exists a
bucket consisting entirely of incorrect triples and all the τ1−1 checks done in this bucket pass. We have from Corollary
4.1 that the first event only happens with probability at most N

(
Nτ1+τ1
τ1

)−1
and the probability of the second event is at

most (|F| − 1)−1 for each CorrectnessTest. Since CorrectnessTest will be carried out τ1 − 1 independent times (using
a new triple each time), we get the probability of the second event is at most (|F| − 1)−τ1+1. Thus the probability that a
specific incorrect triple gets accepted is at most N

(
Nτ1+τ1
τ1

)−1
· (|F| − 1)−τ1+1.

Furthermore, let 0 < t < (τ2)2 · T be the amount of buckets the adversary choose to corrupt. Then we have

from [20] that the probability of t bad buckets remaining after Cut-and-Choose is at most
(

(τ2)2·T
t

)(
(τ2)2·Tτ1+τ1

tτ1

)−1
. Thus

for the adversary to succeed in the sacrificing without abort, it must be the case that the checks in all t buckets pass.
Thus this happens with probability (|F| − 1)−τ1+1t. Thus the overall success probability of the adversary is at most:(

(τ2)2 · T
t

)(
τ1 · (τ2)2 · T + τ1

tτ1

)−1

· (|F| − 1)−tτ1+t .

It was already shown in [20] that the first term is maximized for t = 1. Now see that this is also true for the second
term ((|F| − 1)−tτ1+t) as τ1 ≥ 2 and so −tτ1 + t is maximized for as small t as possible, which in our case is t = 1. Thus
we wish to have

2−s ≥ (τ2)2 · T
(
τ1 · (τ2)2 · T + τ1

τ1

)−1

· (|F| − 1)−τ1+1

= (τ2)2 · T
(

(τ1 · (τ2)2 · T + τ1)!
(τ1 · (τ2)2 · T)!τ1!

)−1

· (|F| − 1)−τ1+1

=
(|F| − 1)−τ1+1 · (τ2)2 · T · (τ1 · (τ2)2 · T)! · τ1!

(τ1 · (τ2)2 · T + τ1)!

and the lemma follows directly.
�

35

D Proof of Lemma 4.3

Before proving Lemma 4.3, we present the following helper lemma:

Lemma D.1. Given a bucket of τ2 triples where at least one is non-leaky on x (resp. on y) then the combining produces
a triple that is non-leaky on x (resp. on y).

Proof. We first argue correctness of the combining approach by showing that for the triple (~x′� ,
�
y′
�
, ~z′�), resulting

from the execution of step 1-4 in Mult in Fig. 13 it holds that z′ = x′ ∗ y′ (given that zk = xk ∗ yk for k ∈ [τ2]) by the
following:

z′ = x1 ∗ y1 +
∑τ2

k=2 εk ∗ xk + zk

= x1 ∗ y1 +
∑τ2

k=2 (y1 − yk) ∗ xk + zk

= x1 ∗ y1 +
∑τ2

k=2 y1 ∗ xk − yk ∗ xk + zk

= x1 ∗ y1 +
∑τ2

k=2 y1 ∗ xk − yk ∗ xk + xk ∗ yk

= x1 ∗ y1 +
∑τ2

k=2 y1 ∗ xk =
∑τ2

k=1 y1 ∗ xk = x′ ∗ y1

We now show that combining τ2 triples where at least one of them is non-leaky is enough for generating a new
non-leaky triple. Thus, by combining s + 1 triples it is guaranteed that the result triple is non-leaky. However, this
would incur a multiplicative overhead of O(s) on the number of multiplication triples that the parties are required to
generate. Instead, in the batch model, it is possible to generate sufficiently many multiplication triples, then divide
them into buckets, where each buckets contains τ2 triples, where τ2 is significantly less than s. If we combine the
τ2 triples contained in some bucket, we get that the new triple is non-leaky if at least one of the τ2 is non-leaky as
well. For a given statistical security parameter s and number of triples to be contained in each bucket τ2, we want to
know the amount of triples, denoted T ′, the parties need to generate in order to have all combined triples (i.e. from all
buckets) to be non-leaky with overwhelming probability (in s). �

We now proceed with the proof of Lemma 4.3: By generating T ′ triples and uniformly dividing them into buckets
of size τ2 we note that the probability of having some bucket full of leaky triples equals the number of buckets times
the probability of choosing τ2 leaky triples out of the T ′ generated such that s of them are leaky. That is, let bad-bucket
be the event of choosing τ2 leaky triples out of T ′ triples, where s of them are leaky. Then the probability that at least
one of the combined triples is leaky is Pr[bad-bucket] · T ′

τ2
(by the union bound), and we want this to be less than 2−s.

The probability of choosing τ2 leaky triples out of the T ′ is
(s
τ2

)
(T ′
τ2

) by a counting argument as there are
(

s
τ2

)
possible ways

of choosing a combined triple and there are
(

s
τ2

)
possible ways of choosing this consisting entirely of leaky triples.

Using the bounds on the binomial coefficient,i.e.
(

n
k

)k
≤

(
n
k

)
≤

(
n·e
k

)k
where e is the base of the natural logarithm, we

get: (
s
τ2

)(
T ′
τ2

) ≤ (
s·e
τ2

)τ2(
T ′
τ2

)τ2
=

(s · e
T ′

)τ2

and we want
T ′

τ2
·

(s · e
T ′

)τ2

=
(s · e)τ2

τ2 · T ′τ2−1 <
1
2s

thus, it follows that the number of triples required is

T ′ > τ2−1

√
(s · e)τ2 · 2s

τ2

�

E Proof of Theorem 4.4

Let A be the adversary and A ⊂ {P1, . . . , Pp} the corrupted parties. Also denote by Ā = {P1, . . . , Pp}\A the honest
parties. In the following we describe the simulator S who interacts in the ideal execution of the protocol and produces

36

a view statistically close to the adversary’s view in the real execution. We assume that before issuing the command
Mult the parties have raw multiparty commitments of 3(τ1 +τ1 · (τ2)2 ·T) uniformly random values in Fm, those values
are defined (from Appendix B) and for every ~x� the simulator S already extracted the adversaries’ shares denoted by
xA

k
′

=
∑

Pi∈A xi, j
k
′

for any j ∈ Ā. The simulation goes as follows:

1. Upon receiving a message (mult,C) from all parties where c ∈ C is a an index of a raw commitment, invoke
FAHCOM-Fm with the command (mult,C).

2. Construction:
(a) Choose random values as the honest parties’ shares of x, that is, for every raw commitment ~x� choose xi for

every i ∈ Ā.
(b) For every 3 raw multiparty commitments ~x� ,

�
y
�
, ~z� with indexes x, y, z ∈ C, for every execution of

ArithmeticOT(xi, y j)) between Pi (who inputs xi) and P j (who inputs y j) simulate the procedure as follows:
i. If party Pi is corrupted then S extracts its input xq, picks a random value rq ∈ F and returns this to A on

behalf of P j as the output of FOT. S then defines zi =
∑

q∈[`] rq · 2q−1 ∈ F.
ii. If party P j is corrupted then S extracts s0

q, s
1
q from P j’s input to FOT. It defines z j = −

∑
q∈[`] s0

1 · 2
q−1 ∈ F.

(c) Receive the values ti from each i ∈ A. The simulator check if it holds that

∑
i∈A

ti =
∑
i∈A

xi ∗ yi +
∑
j,i

si
i← j +

∑
j,i

si
j←i

 − zi ,

where zi corresponds to Pi’s share of commitment z defined in the Commit phase by S (the value which in
the simulation of Commit is denoted by xi, j′) and si

i← j is the simulated output of ArithmeticOT when Pi is the
receiver and si

j←i when Pi is the sender. If it does not hold then S marks the triple (~x� ,
�
y
�
, ~z�) as bad and

stores the difference
δ =

∑
i∈A ti −

(
xi ∗ yi +

∑
j,i si

i← j +
∑

j,i si
j←i

)
+ zi.

3. Cut-and-Choose: S emulates FCT to sample a random grouping of τ1 triples. For each of these it proceeds as
follows:
(a) Simulate the opening of commitments ~x� ,

�
y
�

and ~z� by picking the honest parties’ shares uniformly at
random and using these to emulate the opening of the underlying F2HCOM-Fm functionality under the constraint
that z = x ∗ y. However, if z is marked as bad, then the simulator instead picks the honest parties shares under
the constraint that z = x ∗ y + δ. Furthermore, abort and make FAHCOM-Fm abort as well if any of the triples
opened are marked as bad.

4. Sacrificing:
S emulates FCT to sample a random grouping of the constructed multiplication triples into buckets of τ1 triples
each. S simulates τ1 − 1 executions of CorrectnessTest (Fig. 11) using the extracted values of the corrupt
parties as follows:

(a) S emulates FCT to select a random r ∈ F\{0}.
(b) S picks the honest parties’ shares of ~ε� and ~ρ� uniformly at random and emulate the opening of these

values based on the underlying F2HCOM-Fm functionality.
(c) Based on ε and ρ it uses FAHCOM-Fm to compute and open e. Note that this will be based on the original random

commitments to z and c and not the adjusted values from the Construction phase. If ~z� is marked as bad
then let δz be the difference associated with z, otherwise let δz = 0. Similarly if ~c� is marked as bad then
let δc be the difference associated with c, otherwise let δc = 0. S then checks if r · δz − δc = 0. If this is so it
emulates the opening of ~e� to 0, otherwise it emulates the opening to the value r · δz − δc.

5. Combining: Continue the simulation with the values that the corrupted parties are committed to:
(a) Combine over x: S emulates FCT to sample a random grouping of the constructed multiplication triples into

buckets of τ2 triples each.
– Emulate the opening to εk for k ∈ {2, . . . , τ2} by picking the honest parties’ shares uniformly at random.

(b) Combine over y is done similarly to the combining over x.

37

The above simulation produces a view with the same distribution as the view of the environment in the real
execution. To see this, first notice that in the real execution the honest parties’ shares of the multiparty commitments
are uniformly random sampled and for everything opened in the simulation above this is also the case (under the
constraint that things add up correctly). Next see that in the simulation above, whenever something is opened, there
always remain at least one random additive share of at least one honest party, which means that everything done in
the simulation can be explained during Open, no matter what the true shares of the honest parties were in the ideal
functionality. In addition, note that the opened triples in cut-and-choose along with the sacrificed triples and triples
that were used in the combining step are never used again in the protocol after those steps and thus could not be used
by the environment in an attempt to distinguish between the views.

More specifically, first see that in Construction if the sending party in ArithmeticOT is corrupt then it learns
nothing, but the simulator can extracts its input to FOT and thus compute which value ti it should broadcast in step
(b). On the other hand, if the receiving party is corrupt, see that what the corrupt party receives is a uniformly random
value in F no matter if it is executing in the real world or with the simulator. More specifically if it requests message 0
then it gets s0

q = rq ∈R F. If instead it requests message 1 it get s1
q = rq ∈R F in the simulation and s1

q = y + rq in the
real execution, which is also uniformly random since rq is uniformly distributed and thus acts as a one-time pad. In
particular this holds since the only other place where rq is only used, is to compute ti, but the malicious party should
accordingly compute t j such that it gets canceled out. If it does not do that then the protocol will abort according to
Lemma 4.2. However, the adversary could try to learn something of the honest parties’ input by a selective attack, and
thus be able to distinguish between the real execution and the simulation. However, Lemma 4.3 shows that such an
attempt is futile, since triple that is not leaky on ~x� will act as a one-time pad and thus remove the leakage. Similarly
for
�
y
�
.

For the opening of z in Cut-and-Choose see that if a corrupt party did any sort of cheating in Construction
s.t. ~z� ,

�
x ∗ y
�

then the simulator will know exactly how big the difference is, since it knows what each corrupt
party should send if they followed the protocol. In particular notice that this is the case, even when the simulator does
not know the honest parties shares of ~z� as the error will be additive as can be seen from step Construction (c).
Thus picking any random share for each honest party obeying this constraint will yield the same distribution for an
incorrectly constructed triple.

The same argument goes for Sacrificing. In particular notice that when one or two incorrect triples are paired in a
bucket the simulator will ensure that it picks the honest parties shares s.t. the difference between the true value e from
the ideal functionality and the simulated output will be the same.

For the combining we simply simulate the honest parties’ shares using random values, since ε will always be one-
time padded with a random commitment only used once. Furthermore, from Lemma 4.3 we see that even a selective
attack on an honest party’s input will not yield any further information.

F Proof of Theorem 4.5

We see that the methods Init, Commit, Rand, Linear Combination, Open and Partial Open are implemented like
in ΠHCOM-Fm and that the ideal functionality of these methods, from FHCOM-Fm , are the same. Thus we piggyback on
the proof of security of FHCOM-Fm of 3.1. Specifically this means that after Commit has been executed without abort
the simulator has uniquely defined values of each of Pi ∈ A shares of commitments (with overwhelming probability),
denoted by xA

k
′

=
∑

Pi∈A xi, j
k
′

for any j ∈ Ā and commitment k where the adversary A corrupts A ⊂ {P1, . . . , Pp}

and Ā = {P1, . . . , Pp}\A. We start by defining a simulator S simulating the honest parties Ā = {P1, . . . , Pp} r A.
As before, the simulator knows the values that the adversary is committed to and as proved above, the same values
are committed toward all honest parties with overwhelming probability. That is, the simulator knows xi

x, xi
y, xi

a, xi
b for

i ∈ A, x ∈ X, y ∈ Y, a ∈ A, b ∈ B and proceeds as follows:
ReOrg.

1. Simulate the honest parties by picking values ε j
x,y ∈ F

m uniformly at random for P j ∈ Ā and broadcast these toA
like in the protocol. Receive εi

x,y from the adversary for every i ∈ A.
2. Simulate the honest parties by picking values ε j

a,b ∈ F
m uniformly at random for P j ∈ Ā and broadcast these toA

like in the protocol.

38

3. Do nothing.
4. Sample R ∈ Fν×s uniformly at random. Pick sĀ

q ∈ F
m uniformly at random and let sq

′ = sĀ
q
′
+

∑
k∈[ν] Rq,k ·

∑
i∈A xi

Xk

′.

Then pick s j
q
′

for each j ∈ Ā uniformly random shares under the constraint that sĀ
q =

∑
j∈Ā s j

q
′
. Use these values to

simulate an opening to sA
q + sĀ

q and φ(sA
q + sĀ

q) for each q ∈ [s].
5. Perform the same random linear combination test on εi

x,y for i ∈ A exactly as done in Step 5 of the protocol (but
only on the shares of the adversary). If the test fails then abort.

6. Input (reOrg,C) into the ideal functionality on behalf of the malicious parties.

Since there is no private output from ReOrg it is sufficient to prove that the values sent toA are indistinguishable
in the real world and the simulation and that the simulation aborts with the same probability as the real protocol. First
note that the simulation aborts with exactly the same probability as the real execution aborts since the randomness
(used as coefficients) is taken from the same distribution in both cases and the same linear combination test is done. It
follows that the adversary pass the linear combination test with a negligible probability in s (as we abuse terminology,
that means less than 2−s) because this basically reduces to guessing a collision of a randomly sampled universal hash
function, as discussed in the proof of Theorem 3.1. Next, we show indistinguishability between the simulation and the
real execution using a hybrid argument, on every incoming message to the adversary:

Let H1 be as the real execution. Define hybrid H2 where everything is the same as in H1 (but using the simulator
for ΠHCOM-Fm for Init, Commit, Rand, Input, Linear Combination) except that in step 4 the value s j

q for P j ∈ Ā is
uniformly random sampled on-the-fly and setting s̄q = φ(s j

q). Furthermore opening of these values is handled without
calling the Open method, but by H2. Specifically it ensures the adversary is giving correct openings in accordance
with the adversarial shares extracted by the simulator in Commit. It also computes the openings of the honest parties
to send to A. It does so by randomly selecting s j

q for each j ∈ Ā under the constraint that
∑

j∈Ā s j
q. Note that we do

not need to ensure that the values sq and s̄q opened towards the honest parties in the real world and the hybrid are
indistinguishable since these are not opened in the ideal functionality and are thus only internal parts of the ReOrg
method. This means that the ideal functionality does not perform any Open commands as part of ReOrg. This is
purely part of the real world implementation of ReOrg and simulated in the hybrid.

Now to see that H1 is computationally indistinguishable from H2 we see that in the real protocol si
q has one term,

xi
rq

which is also uniformly random sampled. Furthermore we see that xi
rq

is never used again (since it is removed
from the set of raw commitments). Thus si

q is actually a random and independently sampled valued. Furthermore A
has at most negligible knowledge of it because of the security of the security of the Commit method as proved in
Theorem 3.1. This means that the opened commitments A learns in step 4 are indistinguishable between H1 and H2.
Furthermore we see that the methods Init, Commit, Rand, Input, Linear Combination are indistinguishable from
H1 and H2 because of the proof of Theorem 3.1. Finally we see that the method Open and Partial Open are perfectly
indistinguishable between H1 and H2 by definition.

Next define the hybrid H3 to be the same as H2 except that in step 1 the value εi
x,y for Pi ∈ Ā is uniformly random

sampled on-the-fly. Now to see that H3 is computationally indistinguishable from H2 we see that in H2 the value
εi

x,y has one term, xi
y which is also uniformly random sampled. First see that when executing ReOrg the adversary is

oblivious to xi
y for each i ∈ Ā because of the security of the Commit method as proved in Theorem 3.1. Next we see

that after step 1, xi
y is only used again to construct a new commitment:�

xy′
�

=
�
xy

�
+

∑
j∈[P] ε

i
x,y =

�(∑
i∈A xi

y + εi
x,y

)
+

(∑
i∈Ā xi

y + εi
x,y

)�
=
�(∑

i∈A xi
y + εi

x,y

)
+

(∑
i∈Ā φ(xi

x)
)�

This means that the new commitment is unrelated to xi
y for i ∈ Ā (since the xi

y terms are canceled out for i ∈ Ā). Thus
the adversary will not be able to tell the difference of whether we use the correct εi

x,y as in the H2, or the random one
in H3. A crucial part of this argument is that H3 does not actually construct the commitment

�
xy′
�

but rely on the ideal

functionality to make this, thus when opening
�
xy′
�

or a linear combination of this, H3 ensures that the honest parties

term is exactly
(∑

i∈Ā φ(xi
x)
)

by definition.
Finally we argue that H3 is indistinguishable from the simulation we see that the only difference between the two

is that Open, Partial Open opens to the values xx and φ(xx) in H3 and we must argue that this is the same in the

39

simulation. First see that xx is by definition random and is picked directly from a raw commitment, thus this is the
same as calling Rand. So we only need to show that Open will open the other value correctly, i.e. to φ(xx). So what
we need to show is that

∑
Pi∈A xi

y′ =
∑

Pi∈A φ(xi
x). We only need to show this for the malicious shares since the honest

parties do everything correctly and the simulation ensure that the values used for the honest parties are consistent with
the actual values opened (by storing exactly the expected value to be opened when one value of the reorganization pair
is opened). We see that if

∑
Pi∈A xi

y′ ,
∑

Pi∈A φ(xi
x) then we abort step 5 as this step uses uniquely defined shares of the

adversary using the same argument of step 3 of Theorem 3.1. �

G Proof of Theorem 5.1

Consider the following simulator S:

Init, Input, Rand, Add, Public Add, Public Multiply: Simulate the protocol trivially by simply passing on mes-
sages from A to the ideal functionality and vice versa, while internally simulating FAHCOM-Fm in accordance with
its ideal functionality.

Multiply: Pick ε, ρ ∈ Fm uniformly at random and open towards these toA by trivially simulating FAHCOM-Fm .
Reorganize: Pick ε ∈ Fm uniformly at random and open towards these toA by trivially simulating FAHCOM-Fm .
Output: Receive x from the ideal functionality and send this toA. If it does not abort then allow the ideal function-

ality to output this to the honest parties.

The outputs of the real world and simulation is the same by correctness of FAHCOM-Fm and multiplication using Beaver
triples. Furthermore, we see that ε and ρ are indistinguishable from random in the protocol since they are one-time
padded with the values a, respectively b from a multiplication triple. These are random by the FAHCOM-Fm functionality
and are never used again. Thus the real world and simulation are indistinguishable. �

H Issues With [19] When Used as the Preprocessing Phase of MiniMAC [16]

In the following we point out an attack on the sacrificing step in the construction of MiniMAC multiplication triples in
[19]. The attack seems to be easily fixable with multiplicative overhead of 3 or 4, in the amount of unchecked triples
that must be sacrificed to construct a correct triple. However, more efficient fixes might exist.

The preprocessing of the multiplication triples [19] used in MiniMAC consists of a sacrificing step in which,
possibly malformed, triples are paired up and checked. One of the triples in the pair is multiplied with a random
value, thus ensuring that a potential error gets randomized. The triples are subtracted from each other and a 0-check is
performed (similar to the CorrectnessTest described in Fig. 11).

In the following we first describe their sacrificing method and then describe the issue and a possible fix. Let the
values contained in the two triples be denoted by (x, y, z) and (a,b, c) where x, y, z, a,b, c ∈ Fm and z = x ∗ y + ∆1
and c = a ∗ b +∆2 for some errors ∆1,∆2 ∈ F

m. A correct triple is one with a zero error. The parties sample a public
random value r ∈ Fm and then check that r ∗ (z − x ∗ y) + c − a ∗ b = r ∗∆1 + ∆2 = ζ = 0. If this is the case, the
parties conclude that (x, y, z) is a correct triple and discard (a,b, c). Otherwise the parties abort the protocol.

In the following we assume that an adversary can freely determine ∆1 and ∆2 (we show later that it can in fact
do so with high probability, even though the ideal functionalities in [19] does not exactly allow this). We now describe
how an adversary could affect these errors such that the parties end up with an incorrect triple with high probability.

First notice that if the adversary determines ∆1 = (c, 0, . . . , 0) with c , 0 (i.e. the first component of ∆1 is some
non zero value c and the rest m − 1 components are zero) and ∆2 = (0, . . . , 0), then the check goes through whenever
r = 0, which happens with probability 1

|F|
. Thus, the parties use an incorrect triple.

Changing the sacrificing step in a way that the triple (a,b, c) will be considered as correct (rather than concluding
that (x, y, z) is correct) and discard (x, y, z) does not solve the problem since now the adversary can set ∆2 = −∆1.
That is ∆1 = (c, 0, . . . , 0) and ∆2 = (−c, 0, . . . , 0). Thus, whenever r = 1 the check r ∗∆1 + ∆2 will be 0, and r = 1
with high probability of 1

|F|
for small fields (i.e. if |F| < 2s).

One might be tempted to fix this issue by picking r , 0 or r , 1. However, for F =GF(2) this actually means that r
is fixed and known to the adversary a priori, which makes the sacrificing step useless. Furthermore, even for a general

40

field F (which is not GF(2)), the adversary may pick ∆1 and ∆2 arbitrarily and hope that r ∗∆1 + ∆2 = 0 which
actually means that r = (−∆2)(∆1)−1, as before, this happen with high probability of 1

|F|
.

This problem in [19] seems to be fixable using the same approach as in our sacrificing step, by constructing triples
in a batch and pair them randomly two or three times. This incurs an overhead of a factor 3 or 4 in the construction of
a single correct triple.

Determining the errors ∆1 and ∆2. It is required to argue that the adversary may indeed add two distinctive errors in
a single component to z and c for the above issue to occur.

The ideal functionality in [19] constructs multiplication triples and allows the adversary to add a random error to
them. However, that means that a random error is added to all components of z and c, in contrast to the above attack
which requires the adversary to add an error to the first component only.

In the following let xi, yi, ai,bi be the additive shares of party Pi for x, y, a,b respectively. We now notice that if
there are at least 2 honest parties, the functionality allows the adversary to set ∆1 = xi∗si

x+yi∗si
y and ∆2 = ai∗si

a+bi∗si
b

where si
x, si

y, si
a, si

b ∈ F
m are the adversary’s choice. Since xi, yi, ai,bi are random, the probability of the first component

of ai be 0 is 1
|F|

. The adversary picks si
x = si

a = (1, 0, . . . , 0) and si
y = si

b = 0. This means that ∆1 = (xi, 0, . . . , 0) and
∆2 = (ai, 0, . . . , 0). Let r be the first component of r. This means that r ∗∆1 + ∆2 = 0 whenever rxi + ai = 0, which
happens if r , 0 and rxi = −ai or if r = xi = ai = 0. The first case happens with probability |F|−1

|F|
· 1
|F|

and the second

case happens with probability
(

1
|F|

)3
which adds up to

(
1
|F|

)2
. Thus the adversary succeeds in the attack with probability

which is clearly not negligible for small F. For example, for F =GF(28) his success probability is 2−16 and for the
binary field it is 2−4.

The attentive reader might observe that the description above is oversimplified since all checks are based on
encodings of message vectors. In particular this means the potential error vectors ∆1 and ∆2 will be encoded in the
C, but by the construction of the unchecked triples we have that the encoding of c and z will be in the Schur transform.
Specifically when all parties are honest we have C∗(c) = C(a) ∗ C(b), C∗(z) = C(x) ∗ C(y). In case of the adversary
adding an error we have C∗(c) + C∗(∆1) = C(a) ∗C(b) + C(ai) ∗C(si

a), C∗(z) + C∗(∆2) = C(x) ∗C(y) + C(xi) ∗C(si
x).

Thus the error is moved into the Schur space. This means that at least d∗ > s positions of C∗(∆1) and C∗(∆2)
will be non-zero (if ∆1 , 0, respectively ∆2 , 0. In particular since the message space of the Schur transform,
m∗, is greater than the message space m of the C encoding we get that, even if the errors cancel out in the message
components of C chosen by the adversary, some remnants of the error might persist in the components]m; m∗]. That
is, just because r ∗ ∆1 + ∆2 = 0 it might be the case that C(r) ∗ C∗(∆1) + C∗(∆2) , 0. This is so since there
are 2m∗−m valid encodings of the error vectors in C∗ and the encoding which will be used depends on the shares of
the honest party. However, this is unfortunately not clearly detectable by an honest party. The reason being that the
honest parties only get a share of the result of the sacrificing, C∗(ζ) thus they do not know whether the values in
components]m; m∗] are part of the parity components coming from multiplying correct codewords, or if they are part
of remnants of an error in the components [m]. Specifically when they open C∗(ζ) by each party sending his/her share
and check that it is 0 in the first m components, they cannot simply extend this check to the first m∗ components,
since the components]m; m∗] are not expected to be 0. This is because the value checked, C∗(ζ) is the result of the
computation C(r) ∗ C(z) + C∗(c) − C(x) ∗ C(ρ) − C(b) ∗ C(σ), where all terms are independently computed products
in the Schur transform. Thus it is not possible to know what each of the terms contribute to the components]m; m∗].
Furthermore, the parties cannot send their shares to each of the terms without leaking too much info on the triple that
would otherwise be kept after the sacrificing.

Ideal functionality. We find it appropriate to note that [19] implements ideal preprocessing functionalities which are
different from the standard ones required by the MiniMAC online phase in [16] or SPDZ [14]. Specifically the ideal
functionalities in [19] give the adversary the power to manipulate an honest party’s private share based on the private
shares of other honest parties. It is discussed in [19] that the ideal preprocessing functionalities can be used directly
with the “standard” MiniMAC [16] and SPDZ [14] protocols. However, no proof is provided for that. Furthermore, in
[28] it was insinuated that this is not the case for the input phase of SPDZ. In any case, it does not seem trivial to prove
that the preprocessing of [19] can work with the functionalities required by the online phases in the literature. Thus
we think that our protocol has an advantage over the MiniMAC protocol of [19] as we both prove our protocol secure

41

with a light and uncomplicated online phase and our ideal preprocessing functionalities fit well with those required in
the literature.

42

	Committed MPC

