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Abstract. For every positive integers n, m and every even positive integer δ, we de-
rive inequalities satisfied by the Walsh transforms of all vectorial (n,m)-functions and
prove that the case of equality characterizes differential δ-uniformity. This provides a
generalization to all differentially δ-uniform functions of the characterization of APN
(n, n)-functions due to Chabaud and Vaudenay, by means of the fourth moment of the
Walsh transform. Such generalization has been missing since the introduction of the
notion of differential uniformity by Nyberg in 1994 and since Chabaud-Vaudenay’s
result the same year.
For each even δ ≥ 2, we find several such characterizations. In particular, when δ = 2
and δ = 4, we have that, for any (n, n)-function (resp. any (n, n − 1)-function), the
arithmetic mean of W 2

F (u1, v1)W 2
F (u2, v2)W 2

F (u1 + u2, v1 + v2) when u1, u2 range in-
dependently over Fn

2 and v1, v2 are nonzero and distinct and range independently
over Fm

2 , is at least 23n, and that F is APN (resp. is differentially 4-uniform) if and
only if this arithmetic mean equals 23n (which is the value we would get with a bent
function if such function could exist).
These inequalities give more knowledge on the Walsh spectrum of (n,m)-functions.
We deduce in particular a property of the Walsh support of highly nonlinear functions.
We also consider the completely open question of knowing if the nonlinearity of APN
functions is necessarily non-weak (as it is the case for known APN functions); we
prove new lower bounds which cover all power APN functions (and hence a large
part of known APN functions), which explain why their nonlinearities are rather
good, and we discuss the question of the nonlinearity of APN quadratic functions
(since almost all other known APN functions are quadratic).

Keywords: Boolean function, vectorial function, Walsh–Hadamard transform, APN
function, differential uniformity, nonlinearity.

1 Introduction

The notions of APN function and more general differentially uniform functions have
been introduced by Nyberg [14]. These functions play a major role for the design of
substitution boxes (S-boxes) in block ciphers. The differential uniformity of a vecto-
rial function quantifies the contribution of the function to the resistance against dif-
ferential cryptanalysis, when it is used as an S-box in a block cipher. APN functions,
that is, differentially 2-uniform functions, have best possible differential uniformity
? This work has been submitted to the IEEE for possible publication. Copyright may be transferred
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in characteristic two, but very few classes of APN functions are known. Most known
APN functions have potential drawbacks, and a differentially 4-uniform function
has then been used as S-box in the AES (and is used in many more recent block
ciphers). APN functions are nicely characterized by their Walsh transform but no
such characterization is known for differentially δ-uniform functions when δ ≥ 4.
This contributes to the fact that the structure of the set of differentially δ-uniform
(n,m)-functions is still less well understood than that of the subset of APN (n, n)-
functions, even in the subcase of differentially 4-uniform (n, n− 1)-functions (while
these functions are optimal, as are APN (n, n)-functions, which means that their
structure is probably simpler than that of general differentially 4-uniform functions).
In this paper, for all (n,m)-functions and every even δ, we prove in Theorem 3.1
an inequality involving the values at (0, 0) of the convolutional products of orders
at most δ

2 + 1 of their squared Walsh transforms, and we characterize differentially
δ-uniform (n,m)-functions as those for which this is an equality. For δ = 2, this
characterization is not new: it is the characterization mentioned above. For δ ≥ 4, it
is a new characterization, which in the case of δ = 4 is rather simple (as explicited
in Corollary 5.1), and becomes more and more complex as δ increases. We observe
(Proposition 3.6) that several similar characterizations can be obtained, some of
which can have a simpler expression than others. For δ = 2 and m = n, we have
in particular a new characterization of APN functions (Theorem 5.2) which is the
same (except for the number of output bits) as a characterization (Theorem 5.11)
for the case δ = 4 and m = n − 1. This gives more insight on the Walsh trans-
form of APN (n, n)-functions and differentially 4-uniform (n, n − 1)-functions and
it shows a similarity between them, which illustrates the fact that they are, in both
cases, optimal functions from the viewpoint of the resistance to the differential at-
tacks against those block ciphers in which they are used as substitution boxes. We
deduce from our inequalities a new property of the Walsh support of highly non-
linear vectorial functions and we consider the open question of determining if the
nonlinearity of APN functions could be low in some cases to be found. We prove
new lower bounds (Theorem 5.8) on the nonlinearity of power APN functions and
we study the nonlinearity of quadratic APN functions. This partly shows that the
rather good nonlinearity of known APN functions may be related to the singularity
of these functions (which are almost all either power functions or quadratic). We go
into slightly more technical details on differentially 4-uniform functions, and in the
last section, we explicit the characterization of Theorem 3.1 for δ = 6.

2 Preliminaries

Given two positive integers n,m, any vectorial function F : Fn2 7→ Fm2 (i.e. any (n,m)-
function) has a unique algebraic normal form F (x1, . . . , xn) =

∑
I⊆{1,...,n} aI

∏
i∈I xi,

where aI ∈ Fm2 , and whose global degree is called the algebraic degree of F . We say
that F is quadratic if its algebraic degree is at most 2 (and F is affine if and only if
its algebraic degree is at most 1). If Fn2 is identified with the field F2n (thanks to the
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fact that this field is an n-dimensional F2-vector space) and if m divides n, then F
has also a unique univariate polynomial representation F (x) =

∑2n−1
i=0 aix

i, where
ai ∈ F2n . The algebraic degree equals then the maximum Hamming weight of the
binary expansion of those exponents i with nonzero coefficients ai.
Given a third positive integer δ, function F is called differentially δ-uniform, see [14],
if for every nonzero a ∈ Fn2 and every z ∈ Fm2 , there exist at most δ solutions to the
equation DaF (x) = z, where DaF (x) = F (x)+F (x+a) is a so-called derivative of F .
This notion is invariant under some equivalences that we present in increasing order
of generality. Two functions are called linearly equivalent (resp. affine equivalent)
if one is equal to the other, composed on the left and on the right by linear (resp.
affine) permutations. They are called extended affine equivalent (EA-equivalent) if
one is affine equivalent to the other, added with an affine function. They are called
CCZ-equivalent (see [2, 9]) if their graphs {(x, y) ∈ Fn2 ×Fn2 | y = F (x)} and {(x, y) ∈
Fn2 × Fn2 | y = G(x)} are affine equivalent.
Differentially δ-uniform functions exist only if δ ≥ 2n−m when n > m and if δ ≥ 2
when n ≤ m. Differentially 2n−m-uniform (n,m)-functions, which are optimal with
respect to differential uniformity and are called perfect nonlinear (PN), happen to
be the same functions as the so-called bent (vectorial) functions, whose nonlinearity
equals the optimal value 2n−1−2

n
2
−1 (n even). The nonlinearity of an (n,m)-function

F is the minimum Hamming distance between all its component functions v·F , where
“·” is some inner product in Fm2 and v 6= 0, and all affine Boolean functions over Fn2
(that is, all affine (n, 1)-functions). It is related to the Walsh transform (also called
Walsh-Hadamard transform) of F :

WF (u, v) =
∑
x∈Fn

2

(−1)v·F (x)+u·x

related to the choices of some inner products in Fn2 and Fm2 , both denoted by “ · ”,
by the relation:

nl(F ) = 2n−1 − 1
2

max
u∈Fn

2 ,v∈Fm
2 ,v 6=0

|WF (u, v)|. (1)

The nonlinearity is invariant under all equivalences described above. PN functions
exist if and only if n is even and m ≤ n/2 (see [13]). For m = n, differentially 2-
uniform functions are the optimal functions with respect to differential uniformity,
and are called almost perfect nonlinear (APN). All known APN functions are given
by expressions in the field F2n . The inner product in this field can be taken equal
to u · x = trn1 (ux), where trn1 is the absolute trace function trn1 (x) = x+ x2 + x22

+
· · ·+ x2n−1

. Most known APN functions are power functions, listed in Table 1.
We know from [10] that, given any (n, n)-function, the Walsh transform satisfies∑

u∈Fn
2 ;v∈Fm

2

W 4
F (u, v) ≥ 3 · 24n − 23n+1, (2)

and that it is APN if and only if Relation (2) is an equality. This allows for instance
proving for n odd that any plateaued (in particular, quadratic) APN (n, n)-function
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Table 1. Known APN power functions xd on F2n .

Functions Exponents d Conditions

Gold 2i + 1 gcd(i, n) = 1

Kasami 22i − 2i + 1 gcd(i, n) = 1

Welch 2t + 3 n = 2t+ 1

Niho 2t + 2
t
2 − 1, t even n = 2t+ 1

2t + 2
3t+1

2 − 1, t odd

Inverse 22t − 1 n = 2t+ 1

Dobbertin 24t + 23t + 22t + 2t − 1 n = 5t

is AB [3]. An (n,m)-function is called plateaued if, for every nonzero v ∈ Fm2 , its
Walsh transform WF (u, v) takes its values in {0,±λv} when u ranges over Fn2 , where
λv (called the amplitude of the component function v ·F ) is some integer depending
only on v (λv is then necessarily a power of 2 whose exponent is larger than or equal
to n

2 ). An (n, n)-function is called almost bent (AB) if it is plateaued with the single
amplitude λv = 2

n+1
2 , ∀v 6= 0 (n odd). It has then optimal nonlinearity. Surveys

on APN and AB functions can be found in [1, 6]. Characterizations of plateaued
functions are given in [7, 12].

Relation (2) and the inequality maxu∈Fn
2 ;v∈Fm

2 ,v 6=0W
2
F (u, v) ≥

P
u∈Fn

2 ;v∈Fm
2
W 4

F (u,v)−24nP
u∈Fn

2 ;v∈Fm
2
W 2

F (u,v)−22n

allow showing the Sidelnikov-Chabaud-Vaudenay (SCV) bound [10] (the name of
this bound is explained in [6]), stating in the case m = n that the nonlinearity of
an (n, n)-function is at most 2n−1 − 2

n−1
2 . This bound is tight for n odd; equality

is achieved by AB functions. Relation (2) does not seem to allow to deduce a lower
bound on the nonlinearity of APN functions. Every AB function is APN since In-
equality (2) is then an equality (indeed, the Parseval relation

∑
u∈Fn

2
W 2
F (u, v) = 22n,

valid for every v, shows that for each v 6= 0, there are 2n−1 elements u such that
W 2
F (u, v) = 2n+1). The converse is not true in general, but it is true when all the

Walsh transform values of F are divisible by 2n+1, with n odd, in particular for
plateaued functions, for instance for quadratic functions.

There exists an inequality similar to (2) for m 6= n (we shall obtain it again as
a particular case below) but the case of equality is impossible. We know that no
differentially 2-uniform (n,m)-function exists for m < n (except for m = n− 1 and
n = 2), according to the results by Nyberg recalled above.

In the next section, we shall use the inverse Fourier transform formula: let ϕ
be a function from Fn2 to Z (or R or C) and ϕ̂(a) =

∑
x∈Fn

2
ϕ(x)(−1)a·x its Fourier

transform, we have, for every b ∈ Fn2 that
∑

a∈Fn
2
ϕ̂(a)(−1)a·b = 2nϕ(b).

3 A characterization of differentially δ-uniform functions

Let δ be any positive even integer. It is well-known that, for every (n,m)-function
F , every nonzero a ∈ Fn2 and every z ∈ Fm2 , the size |{x ∈ Fn2 ;DaF (x) = z}| is even,
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since if x belongs to this set then x+ a does too. Hence, a function F : Fn2 7→ Fm2 is
differentially δ-uniform if and only if, for every a 6= 0 in Fn2 and every z ∈ Fm2 , we
have |{x ∈ Fn2 ;DaF (x) = z}| ∈ {0, 2, 4, . . . , δ}. If z is not the image of an element
of Fn2 by DaF , then we have |{x ∈ Fn2 ;DaF (x) = z}| = 0. We can then restrict the
condition above to those z of the form DaF (b), b ∈ Fn2 . Any (n,m)-function F is then
differentially δ-uniform if and only if, for every a 6= 0 in Fn2 and every b ∈ Fn2 , we have
|{x ∈ Fn2 ;DaF (x) = DaF (b)}| ∈ {2, 4, . . . , δ}. Since we have

∏δ/2
i=1(X − 2i) = 0 for

X = 2, 4, . . . , δ and
∏δ/2
i=1(X−2i) > 0 for every even X > δ, writing

∏δ/2
i=1(X−2i) =∑δ/2

j=0AjX
j , we have for every (n,m)-function F and every nonzero a ∈ Fn2 and

every b ∈ Fn2 that

δ/2∑
j=0

Aj |{x ∈ Fn2 ;DaF (x) = DaF (b)}|j ≥ 0,

and F is differentially δ-uniform if and only if this inequality is an equality for every
nonzero a ∈ Fn2 and every b ∈ Fn2 . Hence, any (n,m)-function F satisfies:

δ/2∑
j=0

Aj
∑

a,b∈Fn
2 ,a6=0

|{x ∈ Fn2 ;DaF (x) = DaF (b)}|j ≥ 0,

with equality if and only if F is differentially δ-uniform. We shall now characterize
this condition by means of the Walsh transform. We have:

|{x ∈ Fn2 ;DaF (x) = DaF (b)}| = 2−m
∑

x∈Fn
2 ,v∈Fm

2

(−1)v·(DaF (x)+DaF (b)),

and therefore, for j ≥ 1:∑
a,b∈Fn

2 ,a6=0

|{x ∈ Fn2 ;DaF (x) = DaF (b)}|j =

∑
a,b∈Fn

2

|{x ∈ Fn2 ;DaF (x) = DaF (b)}|j − 2n(j+1) =

2−jm
∑
a,b∈Fn

2

∑
x1,...,xj∈Fn

2
v1,...,vj∈Fm

2

(−1)
Pj

i=1 vi·(DaF (xi)+DaF (b)) − 2n(j+1) =

2−jm
∑

x1,...,xj∈Fn
2

v1,...,vj∈Fm
2

∑
a,b∈Fn

2

(−1)
Pj

i=1 vi·(F (xi)+F (xi+a)+F (b)+F (b+a)) − 2n(j+1).

To make the connection with the Walsh transform, we use that
∑

ui∈Fn
2
(−1)ui·(xi+yi+a)

(respectively
∑

u0∈Fn
2
(−1)u0·(a+b+c)) is nonzero for yi = xi + a only (respectively
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c = a+ b) and takes then value 2n, and we deduce:

2jm+(j+1)n

 ∑
a,b∈Fn

2 ,a6=0

|{x ∈ Fn2 ;DaF (x) = DaF (b)}|j + 2n(j+1)

 =

∑
a,b,c∈Fn

2

∑
x1,...,xj ,y1,...,yj∈Fn

2
u0,u1,...,uj∈Fn

2 ,v1,...,vj∈Fm
2

(−1)
Pj

i=1[vi·(F (b)+F (c)+F (xi)+F (yi))+ui·(xi+yi+a)]+u0·(a+b+c).

Then since
∑

b∈Fn
2
(−1)v·F (b)+u·b = WF (u, v), this latter expression equals:

∑
u0,u1,...,uj∈Fn

2
v1,...,vj∈Fm

2

W 2
F

(
u0,

j∑
i=1

vi

)
j∏
i=1

W 2
F (ui, vi)

∑
a∈Fn

2

(−1)(
Pj

i=0 ui)·a =

2n
∑

u1,...,uj∈Fn
2

v1,...,vj∈Fm
2

W 2
F

(
j∑
i=1

ui,

j∑
i=1

vi

)
j∏
i=1

W 2
F (ui, vi),

since
∑

a∈Fn
2
(−1)u·a = 0 if u 6= 0.

Note that
∑

u1,...,uj∈Fn
2

v1,...,vj∈Fm
2

W 2
F

(
j∑
i=1

ui,

j∑
i=1

vi

)
j∏
i=1

W 2
F (ui, vi) equalsW 2

F⊗· · ·⊗W 2
F (0, 0)

where ⊗ denotes the convolutional product and where the number of terms W 2
F

equals j + 1. We shall denote such multiple convolutional product by: (W 2
F )⊗(j+1).

For j = 0, we have
∑

a,b∈Fn
2 ,a 6=0 |{x ∈ Fn2 ;DaF (x) = DaF (b)}|j = 2n(2n− 1). We

deduce:

Theorem 3.1 Let n, m and δ be positive integers, with δ even, and let F be any
(n,m)-function. Let A0, . . . , Aδ/2 be defined by the polynomial equality:

δ/2∏
i=1

(X − 2i) =
δ/2∑
j=0

AjX
j .

Then we have:

2n(2n − 1)A0 +
δ/2∑
j=1

2−j(n+m)Aj

(
(W 2

F )⊗(j+1)(0, 0)− 2(2j+1)n+jm
)
≥ 0, (3)

where ⊗(j+1) denotes the convolutional product iterated j + 1 times, that is:

(W 2
F )⊗(j+1)(0, 0) =

∑
u1,...,uj∈Fn

2
v1,...,vj∈Fm

2

W 2
F

(
j∑
i=1

ui,

j∑
i=1

vi

)
j∏
i=1

W 2
F (ui, vi).

Moreover, this inequality is an equality if and only if F is differentially δ-uniform.
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Remark 3.2 If, instead of writing
∏δ/2
i=1(X − 2i) =

∑δ/2
j=0AjX

j as above, we write∏δ/2
i=0(X − 2i) =

∑δ/2
j=0AjX

j+1, then with the same method, we have the inequality∑δ/2
j=0Aj

∑
a∈Fn

2 ,z∈Fm
2 ,a6=0 |{x ∈ Fn2 ;DaF (x) = z}|j+1 ≥ 0, which is an equality if and

only if F is differentially δ-uniform. We have
∑

a∈Fn
2 ,z∈Fm

2 ,a6=0

|{x ∈ Fn2 ;DaF (x) = z}|j =

2−jm
∑

x1,...,xj∈Fn
2

v1,...,vj∈Fm
2

∑
a∈Fn

2 ,z∈Fm
2

(−1)
Pj

i=1 vi·(F (xi)+F (xi+a)+z) − 2nj, for j ≥ 1. We deduce

2jm+jn

 ∑
a∈Fn

2 ,z∈Fm
2 ,a 6=0

|{x ∈ Fn2 ;DaF (x) = z}|j + 2nj

 =

∑
u1,...,uj∈Fn

2
v1,...,vj∈Fm

2

j∏
i=1

W 2
F (ui, vi)

∑
a∈Fn

2

(−1)(
Pj

i=1 ui)·a
∑
z∈Fn

2

(−1)(
Pj

i=1 vi)·z =

2n+m
∑

u1,...,uj−1∈Fn
2

v1,...,vj−1∈Fm
2

W 2
F

(
j−1∑
i=1

ui,

j−1∑
i=1

vi

)
j−1∏
i=1

W 2
F (ui, vi),

and this gives the same result as in Theorem 3.1.

Remark 3.3 As recalled in Section 2, we know that an (n,m)-function F is PN,
that is, |{x ∈ Fn2 ;DaF (x) = DaF (b)}| = 2n−m for every nonzero a ∈ Fn2 and every
b ∈ Fn2 , if and only if F is bent, that is, W 2

F (u, v) = 2n for every u and every v 6= 0.
This equivalence is valid independently of the existence of such functions, which
happens only for n even and m ≤ n/2. Hence, since for every even δ ≥ 2n−m, with
n > m (so that 2n−m is also even), every PN function is differentially δ-uniform, if
we replace in (3) W 2

F (u, v) by 2n for every u and every v 6= 0, by 22n for v = 0 and
u = 0 and by 0 for v = 0 and every u 6= 0, we obtain an equality.

Remark 3.4 It is well-known that the convolutional product of the Fourier trans-
forms of a sequence of functions equals the Fourier transform of the product of the
functions. Here, W 2

F (u, v) equals 2−(n+m) times the Fourier transform of the func-
tion (a, b) 7→

∑
u∈Fn

2 ,v∈Fm
2
W 2
F (u, v)(−1)a·u+b·v. This allows transforming the terms

(W 2
F )⊗(j+1)(0, 0) into powers in Relation (3). In fact, this can be done in an ele-

mentary way:

(W 2
F )⊗(j+1)(0, 0) =

∑
u1,...,uj∈Fn

2
v1,...,vj∈Fm

2

W 2
F

(
j∑
i=1

ui,

j∑
i=1

vi

)
j∏
i=1

W 2
F (ui, vi) =
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2−(n+m)
∑

a,u1,...,uj ,uj+1∈Fn
2

b,v1,...,vj ,vj+1∈Fm
2

(−1)a·
Pj+1

i=1 ui+b·
Pj+1

i=1 vi

(
j+1∏
i=1

W 2
F (ui, vi)

)
=

2−(n+m)
∑

a∈Fn
2 ,b∈Fm

2

 ∑
u∈Fn

2 ,v∈Fm
2

W 2
F (u, v)(−1)a·u+b·v

j+1

.

Note that:∑
u∈Fn

2
v∈Fm

2

W 2
F (u, v)(−1)a·u+b·v = 2n+m

∣∣{(x, y) ∈ (Fn2 )2; x+ y = a and F (x) + F (y) = b
}∣∣ .

Then, Theorem 3.1 could have been also proved by starting from the definition of
differentially δ-uniform functions.

Remark 3.5 Since by definition, every differentially δ-uniform function is differ-
entially δ′-uniform for every δ′ larger than δ, it satisfies a series of equalities (those
corresponding to δ, δ+2, δ+4, . . . ), which provide the values of (W 2

F )⊗(j+1)(0, 0) for
every j ≥ δ/2, by means of the values of these same expressions for 1 ≤ j < δ/2.

3.1 More formulae for characterizing differentially δ-uniform functions

According to the proof introducing Theorem 3.1, the left hand side of Inequality (3)
equals:

2n−1∑
k=δ/2+1

∣∣∣{(a, b) ∈ (Fn2 )2; |{x ∈ Fn2 ; DaF (x) = DaF (b)}| = 2k
}∣∣∣ δ/2∏

i=1

(2k − 2i),

that is, the sum of the numbers:
∣∣∣{(a, b) ∈ (Fn2 )2; |{x ∈ Fn2 ; DaF (x) = DaF (b)}| =

2k
}∣∣∣, weighted by the coefficients Bk =

∏δ/2
i=1(2k − 2i), for k = δ/2 + 1, . . . , 2n−1.

Any other strictly positive coefficients B′k instead of Bk would fit as well for a
characterization of differentially δ-uniform functions, but they do not all allow a
characterization by means of the Walsh transform. Indeed, we do not see how ex-
pressing the quantity

∣∣∣{(a, b) ∈ (Fn2 )2; |{x ∈ Fn2 ; DaF (x) = DaF (b)}| = 2k
}∣∣∣ by

means of the Walsh transform. However, if the coefficients B′k equal φδ(2k) for some
polynomial expression φδ vanishing at 2, 4, . . . , δ (i.e. multiple of

∏δ/2
i=1(X−2i)) and

strictly positive at δ+2, . . . , 2n, then we can deduce a characterization by the Walsh
transform since, in the place of the left hand side of Inequality (3), we then get:∑

(a,b)∈(Fn
2 )2

φδ (|{x ∈ Fn2 ; DaF (x) = DaF (b)}|) ,

and such expression can be expressed by means of the Walsh transform, similarly
as above, thanks to the fact that φδ is polynomial. We deduce a generalization of
Theorem 3.1:
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Proposition 3.6 Let n, m and δ be positive integers, with δ even, and let F be any
(n,m)-function. Let A′0, . . . , A

′
δ/2, A

′
δ/2+1, . . . be defined by the polynomial equality:

δ/2∏
i=1

(X − 2i)P (X) =
∑
j≥0

A′jX
j ,

where P (X) is a polynomial taking strictly positive values at δ+ 2, . . . , 2n. Then we
have:

2n(2n − 1)A′0 +
∑
j≥1

2−j(n+m)A′j

(
(W 2

F )⊗(j+1)(0, 0)− 2(2j+1)n+jm
)
≥ 0,

where (W 2
F )⊗(j+1)(0, 0) is defined in Theorem 3.1, with equality if and only if F is

differentially δ-uniform.

This generalization gives simpler characterizations than (3) in some cases (but the
simpler characterizations we shall deduce below from it will be also obtainable by
the combination of (3) for two values of δ).

4 Characterizations in the case of δ = 2 (APN functions)

Let us first check that in the case of δ = 2, Theorem 3.1 gives the known charac-
terization of APN functions. For this value of δ, we have A0 = −2 and A1 = 1.
Inequality (3) becomes:

−2n+1(2n − 1) + 2−(n+m)

 ∑
u∈Fn

2 ,v∈Fm
2

W 4
F (u, v)− 23n+m

 ≥ 0,

that is: ∑
u∈Fn

2 ,v∈Fm
2

W 4
F (u, v) ≥ 3 · 23n+m − 22n+m+1, (4)

or equivalently ∑
u∈Fn

2 ,v∈Fm
2

v 6=0

W 4
F (u, v) ≥ 3 · 23n+m − 22n+m+1 − 24n. (5)

It is well-known that Inequality (5) is an equality if and only if F is APN (with
m = n if n > 2, since for m = n− 1, we know that it is impossible since F would be
bent). Note that Inequality (5) gives information only for m ≥ n− 1; otherwise, the
term at the right hand side is negative. For m ≤ n− 2, the only inequality we know
can be derived from the Parseval relation and the Cauchy-Schwartz inequality:

∑
u∈Fn

2 ,v∈Fm
2

v 6=0

W 4
F (u, v) ≥

∑
v∈Fm

2
v 6=0

(∑
u∈Fn

2 ,
W 2
F (u, v)

)2

2n
= 23n(2m − 1).

9



Remark 4.1 An (n, n)-function is then APN if and only if the arithmetic mean
of W 4

F (u, v) when u ranges over Fn2 and v ranges over Fn2 \ {0} equals 23n+1. This
proves the non-existence of bent (n, n)-functions. But Inequality (5) does not prove
the non-existence of bent (n,m)-functions for n/2 < m < n since for such function
we have

∑
u∈Fn

2 ,v∈Fm
2
W 4
F (u, v) = 24n + (2m − 1)23n ≥ 3 · 23n+m − 22n+m+1.

Remark 4.2 Note that
∑

u∈Fn
2 ,v∈Fm

2
v 6=0

W 4
F (u, v) is a nonlinearity parameter, quantify-

ing the “difference” between the function and affine functions, since it is minimal for
APN functions and maximal for affine functions. Indeed, since W 2

F (u, v) ≤ 22n for
every u, v, we have

∑
u∈Fn

2 ,v∈Fm
2

v 6=0

W 4
F (u, v) ≤ 22n

∑
u∈Fn

2 ,v∈Fm
2

v 6=0

W 2
F (u, v) = 24n(2m − 1)

(according to the Parseval relation) and this inequality is an equality if and only
if F is affine. Being connected with the variance of the random variable W 2

F , this
nonlinearity parameter is related not only to the differential attack but also to the
linear attack (in a looser way than the parameter called the nonlinearity, though).

Note that Remark 3.3 applies for m = n− 1.

Let us now apply Proposition 3.6 in the particular case where P (X) = X −
4 + α, with α > 0 (so that P (X) takes strictly positive values at 4, 6, . . . and the
hypothesis of Proposition 3.6 is satisfied). We have A′0 = 8 − 2α, A′1 = −6 + α
and A′2 = 1; Proposition 3.6 gives: 2−2(n+m)

(
(W 2

F )⊗3(0, 0)− 25n+2m
)
−2−(n+m)(6−

α)
(
(W 2

F )⊗2(0, 0)− 23n+m
)
≥ 2n(2n − 1)(2α− 8), that is:

Corollary 4.3 Let F be any (n,m)-function and α > 0. Then

(W 2
F )⊗3(0, 0)− 2n+m(6− α)(W 2

F )⊗2(0, 0) ≥ (6)

25n+2m + 24n+2m(α− 6) + 23n+2m(2n − 1)(2α− 8),

where

(W 2
F )⊗3(0, 0) =

∑
u1,u2∈Fn

2 ;v1,v2∈Fm
2

W 2
F (u1, v1)W 2

F (u2, v2)W 2
F (u1 + u2, v1 + v2)

and
(W 2

F )⊗2(0, 0) =
∑

u∈Fn
2 ;v∈Fm

2

W 4
F (u, v).

Moreover, F is APN if and only if this inequality is an equality.

Corollary 4.3 is particularly interesting for α = 6: taking m = n (since APN func-
tions exist for m = n), Relation (6) becomes:

(W 2
F )⊗3(0, 0) ≥ 27n + 25n+2(2n − 1), (7)

with equality if and only if F is APN.
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We know that WF (u, 0) equals 2n if u = 0 and is null otherwise. Let us denote:

W ′2F (u, v) =
{
W 2
F (u, v) if v 6= 0

0 otherwise.

We have then:
(W ′2F )⊗2(0, 0) =

∑
u∈Fn

2 ;v∈Fm
2

v 6=0

W 4
F (u, v)

and

(W ′2F )⊗3(0, 0) =
∑

u1,u2∈Fn
2 ;v1,v2∈Fm

2
v1 6=0,v2 6=0,v1 6=v2

W 2
F (u1, v1)W 2

F (u2, v2)W 2
F (u1 + u2, v1 + v2).

Then, (7) is equivalent to:

(W ′2F )⊗3(0, 0) ≥ 27n + 25n+2(2n − 1)− 3 · 22n(W ′2F )⊗2(0, 0)− 26n

and since we know that for any APN function we have (W ′2F )⊗2(0, 0) = 23n+1(2n−1),
we deduce that for any such function: (W ′2F )⊗3(0, 0) = 27n − 3 · 26n + 25n+1, that is:∑

u1,u2∈Fn
2 ;v1,v2∈Fm

2
v1 6=0,v2 6=0,v1 6=v2

W 2
F (u1, v1)W 2

F (u2, v2)W 2
F (u1+u2, v1+v2) = 25n(2n−1)(2n−2). (8)

Hence, the arithmetic mean of W 2
F (u1, v1)W 2

F (u2, v2)W 2
F (u1+u2, v1+v2) when u1, u2

range independently over Fn2 and v1, v2 are nonzero and distinct and range indepen-
dently over Fn2 equals what we would get with a bent function if such function could
exist: 23n. This is a new information on APN functions, to be compared with the
fact already mentioned in Remark 5.3 that the arithmetic mean taken by W 4

F (u, v)
when u ranges over Fn2 and v is nonzero and ranges over Fn2 , equals 22n+1 in the case
of an APN function, that is twice what we get with a bent function.

We have here only an equality valid for APN functions, but we do not have an
inequality valid for all functions and whose case of equality would be characteristic
of APN functions. We shall derive such inequality in Subsection 5.1 (see Theorem
5.2). Note also that we have here m = n and Remark 3.3 does not apply (we can
check that replacing W ′2F by 2n in (8) indeed does not work).

Remark 4.4 The case of α = 6 in Corollary 4.3 corresponds to P (X) = X+2. We
can also take more generally P (X) = Xk−1 + 2Xk−2 + · · ·+ 2k−2X + 2k−1 for some
k ≥ 2 which gives (X − 2)P (X) = Xk − 2k and then we have for every function F :

(W 2
F )⊗(k+1)(0, 0) ≥ 2(3k+1)n + (2n − 1)2(2k+1)n+k,

with equality if and only if F is APN.
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5 Characterizations in the case of δ = 4 (differentially 4-uniform
functions) and more knowledge in the case δ = 2

In the case of δ = 4 in Theorem 3.1, we have A0 = 8, A1 = −6 and A2 = 1, which
gives:

Corollary 5.1 Let F be any (n,m)-function. Then

(W 2
F )⊗3(0, 0)− 3 · 2n+m+1(W 2

F )⊗2(0, 0) ≥ 25n+2m − 7 · 24n+2m+1 + 23n+2m+3, (9)

where (W 2
F )⊗3(0, 0) and (W 2

F )⊗2(0, 0) are defined in Corollary 4.3. Moreover, F is
differentially 4-uniform if and only if this inequality is an equality.

Of course, Inequality (9) is Inequality (6) when α = 0, but equality in (6) charac-
terizes APN functions only for α > 0.

Using the notation W ′2F (u, v) =
{
W 2
F (u, v) if v 6= 0

0 otherwise.
already introduced in Sec-

tion 4, Corollary 5.1 writes:

(W ′2F )⊗3(0, 0)− 3 · (2n+m+1 − 22n)(W ′2F )⊗2(0, 0) ≥ (10)

25n+2m + 3 · 25n+m+1 − 7 · 24n+2m+1 + 23n+2m+3 − 26n,

with equality if and only if F is differentially 4-uniform.
Note that Remark 3.3 applies for m ∈ {n− 1, n− 2}. By replacing W ′2F (u, v) by

2n in the left hand side term of (10) for v 6= 0, we obtain in each case an expression
equal to the right hand side term.

In Section 6, we investigate a little further the inequalities (9) and (10). This
gives more insight, but is also a little more technical.

5.1 The case m = n

In that case, Corollary 5.1 gives:

(W 2
F )⊗3(0, 0)− 3 · 22n+1(W 2

F )⊗2(0, 0) ≥ 27n − 7 · 26n+1 + 25n+3, (11)

and Relation (10) becomes:

(W ′2F )⊗3(0, 0)− 3 · 22n(W ′2F )⊗2(0, 0) ≥ 27n − 9 · 26n + 25n+3, (12)

with in each case equality if and only if f is differentially 4-uniform.
Using Relation (2) and the related relation (W ′2F )⊗2(0, 0) ≥ 23n+1(2n − 1), we

deduce from (11) and (12):

Theorem 5.2 For every (n, n)-function, we have:

(W 2
F )⊗3(0, 0) ≥ 27n + 26n+2 − 25n+2

12



Equivalently, we have (W ′2F )⊗3(0, 0) ≥ 27n − 3 · 26n + 25n+1, that is:∑
u1,u2∈Fn

2 ;v1,v2∈Fm
2

v1 6=0,v2 6=0,v1 6=v2

W 2
F (u1, v1)W 2

F (u2, v2)W 2
F (u1+u2, v1+v2) ≥ 25n(2n−1)(2n−2) (13)

(whose case of equality is (8)), with, in each case, equality if and only if F is APN.

Remark 5.3 Theorem 5.2 illustrates the observation of Remark 3.3: the arithmetic
mean of W 2

F (u1, v1)W 2
F (u2, v2)W 2

F (u1 +u2, v1 + v2) when u1, u2 range independently
over Fn2 and v1, v2 are nonzero and distinct and range independently over Fn2 equals,
in the case of an APN function, what we would get with a bent function if such
function could exist: 23n.

Remark 5.4 Theorem 5.2 says what is the minimal value of (W ′2F )⊗3(0, 0) but it
does not say what is the maximal value.
Clearly we have that

∑
u1,u2∈Fn

2 ;v1,v2∈Fm
2

v1 6=0,v2 6=0,v1 6=v2

W 2
F (u1, v1)W 2

F (u2, v2)W 2
F (u1 +u2, v1 + v2) is

lower than or equal to 22n
∑

u1,u2∈Fn
2 ;v1,v2∈Fm

2
v1 6=0,v2 6=0,v1 6=v2

W 2
F (u1, v1)W 2

F (u2, v2) = 22n[24n(2n −

1)(2n−2)] = 26n(2n−1)(2n−2), according to the Parseval relation. This maximum
is achieved, with affine functions. Indeed, without loss of generality, we can take F
linear. For each u, v we have then WF (u, v) = 2n if the two linear functions v ·F (x)
and u · x are equal and WF (u, v) = 0 otherwise. Moreover, if WF (u1, v1) = 2n

and WF (u2, v2) = 2n then WF (u1 + u2, v1 + v2) = 2n. This implies, using again
the Parseval relation, that (W ′2F )⊗3(0, 0) = 26n(2n − 1)(2n − 2). It is easily seen
that only affine functions achieve such value. This shows that (W ′2F )⊗3(0, 0) is a
numerical parameter also quantifying the “nonlinearity” of F , but here also, it is
more related to the differential attacks than to the linear attacks.

Consequence on highly nonlinear (n, n)-functions All known APN functions
have a rather good nonlinearity (probably at least 2n−1 − 2

3n
5
−1 − 2

2n
5
−1, but this

has to be confirmed since the nonlinearity of the Dobbertin function is unknown
except for small values of n). AB functions have optimal nonlinearity 2n−1 − 2

n−1
2

and for n even, many APN functions like Gold and Kasami functions or the inverse
function have nonlinearity 2n−1 − 2

n
2 (see [6]). Theorem 5.2 gives information on

the structure of the support of the Walsh transform of any (n, n)-function whose
nonlinearity is high:

Corollary 5.5 Let F be any (n, n)-function and let λ ≥ 0 be such that nl(F ) =
2n−1 − 1

2

√
2n+1 + λ (with λ = 0 if and only if F is AB, according to the case of

equality of the SCV bound). Then we have:∣∣∣∣{(u1, u2, v1, v2) ∈ (Fn2 )4;
{v1 6= 0, v2 6= 0, v1 6= v2,WF (u1, v1) 6= 0,
WF (u2, v2) 6= 0,WF (u1 + u2, v1 + v2) 6= 0

}∣∣∣∣ ≥
25n(2n − 1)(2n − 2)

(2n+1 + λ)3
.
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Proof. By definition of λ we have maxu,v∈Fn
2 ,v 6=0W

2
F (u, v) = 2n+1 + λ. Theorem 5.2

and the inequality W 2
F (u, v) ≤ 2n+1 + λ, ∀u, v ∈ Fn2 , v 6= 0 prove the result. 2

This gives more insight on the structure of the so-called Walsh support {(u, v) ∈
(Fn2 )2;WF (u, v) 6= 0} of highly nonlinear (n, n)-functions.

Generalization of Theorem 5.2 Note that we have:∑
u1,u2,v1,v2∈Fn

2

W 2
F (u1, v1)W 2

F (u2, v2)W 2
F (u1 + u2, v1 + v2) =

∑
u1,u2,v1,v2∈Fn

2

∑
(x1,y1,x2,y2,x3,y3)∈(Fn

2 )6

(−1)(F (x1)+F (y1))·v1+(x1+y1)·u1+(F (x2)+F (y2))·v2+(x2+y2)·u2

(−1)(F (x3)+F (y3))·(v1+v2)+(x3+y3)·(u1+u2) =∑
(x1,y1,x2,y2,x3,y3)∈(Fn

2 )6

∑
v1,v2∈Fn

2

(−1)(F (x1)+F (y1)+F (x3)+F (y3))·v1+(F (x2)+F (y2)+F (x3)+F (y3))·v2

∑
u1,u2∈Fn

2

(−1)(x1+y1+x3+y3)·u1+(x2+y2+x3+y3)·u2 =

24n

∣∣∣∣{ (x1, y1, x2,
y2, x3, y3) ∈ (Fn2 )6

;
x1 + y1 = x2 + y2 = x3 + y3,
F (x1) + F (y1) = F (x2) + F (y2) = F (x3) + F (y3)

}∣∣∣∣ =

24n
∑
a,b∈Fn

2

|(DaF )−1(b)|3,

while
∑

u,v∈Fn
2
W 4
F (u, v) = 22n

∑
a,b∈Fn

2
|(DaF )−1(b)|2. This gives a direct proof of

Theorem 5.2. It gives also more insight on why it characterizes APN functions:∑
a,b∈Fn

2
|(DaF )−1(b)|3 is minimized when |(DaF )−1(b)| ∈ {0, 2} for all a, b ∈ Fn2

with a 6= 0 (since |(DaF )−1(b)| is always even and is the same for all functions when
a = 0 – it equals 2n for a = b = 0 and 0 for a = 0, b 6= 0).
For the same reason, for every k ≥ 2, we have

∑
a,b∈Fn

2
|(DaF )−1(b)|k ≥ 2kn+2k(2n−

1)2n−1 = 2kn + 22n+k−1 − 2n+k−1 and F is APN if and only if this inequality is an
equality. We have: ∑

a,b∈Fn
2

|(DaF )−1(b)|k =

2−2(k−1)n
∑

u1,...,uk−1,

v1,...,vk−1∈Fn
2

(
k−1∏
i=1

W 2
F (ui, vi)

)
W 2
F (u1 + · · ·+ uk−1, v1 + · · ·+ vk−1).

Hence, we have:

Proposition 5.6 Let F be any (n, n)-function and k any integer such that k ≥ 2.
We have: ∑

u1,...,uk−1,

v1,...,vk−1∈Fn
2

(
k−1∏
i=1

W 2
F (ui, vi)

)
W 2
F (u1 + · · ·+ uk−1, v1 + · · ·+ vk−1) ≥
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22(k−1)n
(

2kn + 22n+k−1 − 2n+k−1
)

and F is APN if and only if this inequality is an equality.

In the case of k = 3, this gives again Theorem 5.2.
We can have another similar but different characterization: for every (a, b) such that
|(DaF )−1(b)| 6= 0, we have |(DaF )−1(b)| ≥ 2; we deduce then:∑

a,b∈Fn
2

a6=0

|(DaF )−1(b)|k+1 ≥ 2
∑

a,b∈Fn
2

a6=0

|(DaF )−1(b)|k,

with equality if and only if F is APN. Hence, we have also:

Proposition 5.7 Let F be any (n, n)-function and k any integer such that k ≥ 2.
We have:

∑
u1,...,uk,

v1,...,vk∈Fn
2

(
k∏
i=1

W 2
F (ui, vi)

)
W 2
F (u1 + · · ·+ uk, v1 + · · ·+ vk)− 2(3k+1)n ≥

22n+1

 ∑
u1,...,uk−1,

v1,...,vk−1∈Fn
2

(
k−1∏
i=1

W 2
F (ui, vi)

)
W 2
F (u1 + · · ·+ uk−1, v1 + · · ·+ vk−1)− 2(3k−2)n

 ,

with equality if and only if F is APN.

In particular, for k = 2, we have:∑
u1,u2,

v1,v2∈Fn
2

W 2
F (u1, v1)W 2

F (u2, v2)W 2
F (u1 + u2, v1 + v2)− 27n ≥

22n+1

 ∑
u,v∈Fn

2

W 4
F (u, v)− 24n

 ,

with equality if and only if F is APN. Hence, Proposition 5.7, which for k = 2 does
not give exactly Theorem 5.2, is slightly different from Proposition 5.6.

5.2 On the nonlinearity of APN functions

As recalled above, all known APN functions have a rather good nonlinearity. But
no proof exists that the nonlinearity of APN functions cannot be weak. The only
result, proved in [6], is that, for n > 2, any APN function has nonzero nonlinearity.
The proof of this result uses APNness in the form of its definition, that is, the fact
that each equation DaF (x) = z, a 6= 0, has at most 2 solutions. It seems that using,
instead, the characterization of APN functions by the fourth moment of the Walsh
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transform does not allow to derive a better lower bound on the nonlinearity of APN
functions. The same seems to happen with the characterization from Theorem 5.2.
It is then still a completely open question to know whether APN functions can have
low nonlinearity.
It is interesting to investigate reasons why the known APN functions have non-weak
nonlinearity. Most known APN functions are either power functions F (x) = xd over
F2n (n odd or n even) or quadratic functions. In the former case, as proved by
Dobbertin and reported in [6], we have gcd(d, 2n − 1) = 1 if n is odd (and F is
then a permutation and all the component functions trn1 (vF ), v 6= 0, are linearly
equivalent, since all the elements v ∈ F∗2n are cubes and are then d-th powers) and
gcd(d, 2n − 1) = 3 if n is even (and two component functions trn1 (vF ) and trn1 (v′F )
are linearly equivalent when v′ equals v times a nonzero cube).

Theorem 5.8 Let F be any APN power function. Then, if n is odd, we have
nl(F ) ≥ 2n−1 − 2

3n−3
4 and if n is even, we have nl(F ) ≥ 2n−1 − 2

3n−2
4 .

Proof. If n is odd then, for every v, the sum
∑

u∈F2n
W 4
F (u, v) is independent of the

choice of v 6= 0 and, according to the characterization of APN functions by the fourth
moment of Walsh transform, equals then 23n+1. Hence, we have W 4

F (u, v) ≤ 23n+1

for every u and the result follows from (1). If n is even, then, since
∑

u∈F2n
W 4
F (u, v)

does not change when v is multiplied by a nonzero cube, it takes, when v ranges over
F∗2n , 2n−1

3 times the value
∑

u∈F2n
W 4
F (u, 1), 2n−1

3 times the value
∑

u∈F2n
W 4
F (u, α)

and 2n−1
3 times the value

∑
u∈F2n

W 4
F (u, α2), where α is a primitive element of

F2n . Hence we have
∑

u∈F2n
W 4
F (u, 1) +

∑
u∈F2n

W 4
F (u, α) +

∑
u∈F2n

W 4
F (u, α2) =

3 · 23n+1. We have, by the Cauchy-Schwartz inequality, that
∑

u∈Fn
2
W 4
F (u, v) ≥“P

u∈Fn
2
W 2

F (u,v)
”2

2n = 23n, for every v 6= 0. Hence, we have by complementation
that each of the sums

∑
u∈F2n

W 4
F (u, 1),

∑
u∈F2n

W 4
F (u, α) and

∑
u∈F2n

W 4
F (u, α2)

is bounded above by 3 · 23n+1 − 2 · 23n = 23n+2. We have then W 4
F (u, v) ≤ 23n+2 for

every u, v such that v 6= 0 and Relation (1) completes the proof. 2

Remark 5.9 There are other possible approaches but it seems that they are less
efficient. For instance, up to linear equivalence, we can assume that every coordinate
function fi of F has nonlinearity nl(F ). This is clearly true if n is odd and if
n is even, all component functions trn1 (vxd), v 6= 0, of F belonging to the three
linear equivalence classes of trn1 (xd), trn1 (αxd) and trn1 (α2xd), where α is a primitive
element of F2n, one of these three functions has nonlinearity nl(F ); it is then easily
seen that, up to a change of basis, it is possible to have all coordinate functions of F
in the corresponding equivalence class. Then, adding to F a proper affine function,
we may assume that every fi has Hamming weight nl(F ) and F (F2n) \ {0} being
included in the union of the supports of the fi’s, its size is then at most n·nl(F ). For
every a 6= 0, the size of DaF (F2n) is then at most (n·nl(F )+1)2, and since F is APN,

the size of DaF (F2n) equals 2n−1. We have then nl(F ) ≥ 2
n
2 −
√

2
n
√

2
. But this lower

bound is much worse than that of Theorem 5.8 (it is true however for all functions
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such that there exist linearly independent v1, . . . , vn such that nl(vi · F ) = nl(F ) for
every i).

In the case where F is quadratic, if n is odd and F is APN, then F is AB and
its nonlinearity is optimal. For n even, the question is more difficult. Since we know
that nl(F ) 6= 0 and according to the knowledge on quadratic functions (see e.g. [5]),
we have nl(F ) ≥ 2n−1 − 2n−3 = 3 · 2n−3. This bound is not strong.

Remark 5.10 The next issue is to determine whether quadratic APN (n, n)-functions
can have nonlinearity 2n−1 − 2n−3. Suppose that such function F exists. Then one
of its component functions is EA-equivalent to xn−1xn and, without loss of gener-
ality, we may assume that the last coordinate function fn of F equals xn−1xn. We
have then F (x) = (F ′(x), xn−1xn) where F ′ is an (n, n − 1)-function. The restric-
tion of a differentially 2-uniform function being differentially 2-uniform, the restric-
tions of F to the hyperplanes of equations xn = 0 and xn = 1 are differentially
2-uniform and have last coordinate function linear. We deduce that the restrictions
of F ′ to these hyperplanes are differentially 2-uniform and since these restrictions
are quadratic (n − 1, n − 1)-functions with n − 1 odd, these restrictions are AB.
This means that for every u ∈ Fn2 , every nonzero v ∈ Fn−1

2 and every ε ∈ F2, we
have

∑
x∈∈Fn

2 ;xn=ε(−1)v·F (x)+u·x ∈ {0,±2
n
2 }, which implies

∑
x∈∈Fn

2
(−1)v·F (x)+u·x ∈

{0,±2
n
2 ,±2

n+2
2 }. Hence, the matrix of the symplectic form associated to the quadratic

Boolean function v ·F has rank at least n− 2 (see e.g. [11]). Since the matrix asso-
ciated to fn has rank 2, that of function v · F + fn has rank at least n − 4. Hence∑

x∈∈Fn
2
(−1)v·F (x)+fn(x)+u·x ∈ {0,±2

n
2 ,±2

n+2
2 ,±2

n+4
2 }, while

∑
x∈∈Fn

2
(−1)fn(x)+u·x ∈

{0,±2n−1}.
We deduce

∑
u,v∈∈Fn

2 ;v 6=0W
4
F (u, v) = λ023n + λ123n+2 + λ223n+4 + 24n−2, where

λi is the number of v’s in Fn2 such that WF (u, v) ∈ {0,±2
n
2
+i}, since for each

such v we have
∑

u∈∈Fn
2
W 4
F (u, v) = 2n+2i

∑
u∈∈Fn

2
W 2
F (u, v) = 23n+2i. And since

λ0 + λ1 + λ2 = 2n − 2, F is APN if and only if λ1 + 5λ2 = 2n−2. We do not
see a reason why such function F could not exist for n large enough (but we leave
the difficult search of such functions for future work). This would mean that APN
functions with very low nonlinearity could exist (if such functions were found, they
would be of course new up to CCZ-equivalence).

5.3 The case m = n− 1

According to Corollary 5.1 and to Relation (10), we have:

Theorem 5.11 Let F be any (n, n− 1)-function. Then, we have:

(W 2
F )⊗3(0, 0)− 3 · 22n(W 2

F )⊗2(0, 0) ≥ 27n−2 − 7 · 26n−1 + 25n+1,

where (W 2
F )⊗3(0, 0) and (W 2

F )⊗2(0, 0) are defined in Corollary 4.3, and

(W ′2F )⊗3(0, 0) ≥ 27n−2 − 3 · 26n−1 + 25n+1 = 25n(2n−1 − 1)(2n−1 − 2), (14)
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where W ′2F (u, v) and (W ′2F )⊗3(0, 0) are defined after Corollary 4.3, that is:∑
u1,u2∈Fn

2 ;v1,v2∈Fm
2

v1 6=0,v2 6=0,v1 6=v2

W 2
F (u1, v1)W 2

F (u2, v2)W 2
F (u1 +u2, v1 +v2) ≥ 25n(2n−1−1)(2n−1−2),

and F is differentially 4-uniform if and only if one of these inequalities is an equality.

The expression on the left hand side is the same in Theorems 5.2 and 5.11. This is
particularly interesting to see that the same (or a very similar) characterization is
valid for APN (n, n)-functions and differentially 4-uniform (n, n− 1)-functions.

Remark 5.12 We have the same observation as at the end of Subsection 5.1 (gen-
eralization of Theorem 5.2): we have

∑
u1,u2,v1,v2∈Fn

2
W 2
F (u1, v1)W 2

F (u2, v2)W 2
F (u1 +

u2, v1 + v2) = 24n−2
∑

a∈Fn
2 ,b∈Fn−1

2
|(DaF )−1(b)|3, and this value can be minimized

only when we have |(DaF )−1(b)| as small as possible, that is when F is differen-
tially 4-uniform (unless F can be bent, that is, when n = 2). However Theorem
5.11 is more precise than this observation. We could also generalize Theorem 5.11
similarly as in Subsection 5.1.

6 Further observations on differential uniformity

In this section, we investigate more on the properties viewed in Section 5. Our results
give more insight but are also a little more technical.
Inequality (10) is equivalent to:∑

u1,u2∈Fn
2 ;v1,v2∈Fm

2
v1 6=0,v2 6=0,v1 6=v2

(W 2
F (u1, v1)− 2n)(W 2

F (u2, v2)− 2n)(W 2
F (u1 + u2, v1 + v2)− 2n)

−3 · (2n+m+1 − 22n)
∑

u∈Fn
2 ;v∈Fm

2
v 6=0

W 4
F (u, v) ≥

25n+2m + 3 · 25n+m+1 − 7 · 24n+2m+1 + 23n+2m+3 − 26n−

3 · 2n
∑

u1,u2∈Fn
2 ;v1,v2∈Fm

2
v1 6=0,v2 6=0,v1 6=v2

W 2
F (u1, v1)W 2

F (u2, v2) + 3 · 23n(2m − 2)
∑

u∈Fn
2 ;v∈Fm

2
v 6=0

W 2
F (u, v)

−25n(2m − 1)(2m − 2) =

25n+2m + 3 · 25n+m+1 − 7 · 24n+2m+1 + 23n+2m+3 − 26n + 2 · 25n(2m − 1)(2m − 2)

−3 · 2n


 ∑

u∈Fn
2 ;v∈Fm

2
v 6=0

W 2
F (u, v)


2

−
∑
v∈Fm

2
v 6=0

∑
u∈Fn

2

W 2
F (u, v)

2
 =

3·25n+2m−7·24n+2m+1+23n+2m+3−26n+4·25n−3·2n
((

22n(2m − 1)
)2 − 24n(2m − 1)

)
=
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−7 · 24n+2m+1 + 23n+2m+3 − 26n + 9 · 25n+m − 2 · 25n.

We deduce:

Corollary 6.1 Let F be any (n,m)-function. Then∑
u1,u2∈Fn

2 ;v1,v2∈Fm
2

v1 6=0,v2 6=0,v1 6=v2

(W 2
F (u1, v1)− 2n)(W 2

F (u2, v2)− 2n)(W 2
F (u1 + u2, v1 + v2)− 2n)

−3 · (2n+m+1 − 22n)
∑

u∈Fn
2 ;v∈Fm

2
v 6=0

W 4
F (u, v) ≥

−7 · 24n+2m+1 + 23n+2m+3 − 26n + 9 · 25n+m − 25n+1,

and F is differentially 4-uniform if and only if this inequality is an equality.

Then for every λ, we have∑
u1,u2∈Fn

2 ;v1,v2∈Fm
2

v1 6=0,v2 6=0,v1 6=v2

(W 2
F (u1, v1)−2n−λ)(W 2

F (u2, v2)−2n+λ)(W 2
F (u1 +u2, v1 +v2)−2n)

−3 · (2n+m+1 − 22n)
∑

u∈Fn
2 ;v∈Fm

2
v 6=0

W 4
F (u, v) ≥

−7 · 24n+2m+1 + 23n+2m+3 − 26n + 9 · 25n+m − 25n+1.

Indeed,
∑

u1,u2∈Fn
2 ;v1,v2∈Fm

2
v1 6=0,v2 6=0,v1 6=v2

(W 2
F (u1, v1) − 2n)(W 2

F (u1 + u2, v1 + v2) − 2n) is equal

to
∑

u1,u2∈Fn
2 ;v1,v2∈Fm

2
v1 6=0,v2 6=0,v1 6=v2

(W 2
F (u2, v2) − 2n)(W 2

F (u1 + u2, v1 + v2) − 2n) and we have∑
u1,u2∈Fn

2 ;v1,v2∈Fm
2

v1 6=0,v2 6=0,v1 6=v2

(W 2
F (u1 + u2, v1 + v2)− 2n) = 0.

F is differentially 4-uniform if and only if this inequality is an equality.

6.1 In the case m = n

Corollary 6.1 gives:∑
u1,u2,v1,v2∈Fn

2
v1 6=0,v2 6=0,v1 6=v2

(W 2
F (u1, v1)− 2n)(W 2

F (u2, v2)− 2n)(W 2
F (u1 + u2, v1 + v2)− 2n)

−3 · 22n
∑

u∈Fn
2 ;v∈Fm

2
v 6=0

W 4
F (u, v) ≥ −6 · 25n(2n − 1),

and the observation which follows it gives, for every λ:∑
u1,u2,v1,v2∈Fn

2
v1 6=0,v2 6=0,v1 6=v2

(W 2
F (u1, v1)− 2n−λ)(W 2

F (u2, v2)− 2n +λ)(W 2
F (u1 + u2, v1 + v2)− 2n)
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−3 · 22n
∑

u∈Fn
2 ;v∈Fm

2
v 6=0

W 4
F (u, v) ≥ −6 · 25n(2n − 1),

with, in both cases, equality if and only if F is differentially 4-uniform, and using
Relation (2):∑

u1,u2,v1,v2∈Fn
2

v1 6=0,v2 6=0,v1 6=v2

(W 2
F (u1, v1)−2n−λ)(W 2

F (u2, v2)−2n+λ)(W 2
F (u1+u2, v1+v2)−2n) ≥ 0,

with equality if and only if F is APN.

6.2 In the case m = n− 1

Corollary 6.1 gives:∑
u1,u2∈Fn

2 ;v1,v2∈Fn−1
2

v1 6=0,v2 6=0,v1 6=v2

(W 2
F (u1, v1)− 2n)(W 2

F (u2, v2)− 2n)(W 2
F (u1 +u2, v1 + v2)− 2n) ≥ 0,

and the observation which follows it gives:∑
u1,u2∈Fn

2 ;v1,v2∈Fn−1
2

v1 6=0,v2 6=0,v1 6=v2

(W 2
F (u1, v1)−2n−λ)(W 2

F (u2, v2)−2n+λ)(W 2
F (u1+u2, v1+v2)−2n) ≥ 0,

with, in both cases, equality if and only if F is differentially 4-uniform.

Remark 6.2 Applying the Cauchy-Schwarz inequality to the case of equality in
(14), and denoting by EF the set:

{u1, u2 ∈ Fn2 ; v1, v2 ∈ Fn−1
2 \{0}; v1 6= v2; WF (u1, v1)WF (u2, v2)WF (u1+u2, v1+v2) 6= 0},

we have: ∑
u1,u2∈Fn

2 ;v1,v2∈Fn−1
2

v1 6=0,v2 6=0,v1 6=v2

WF (u1, v1)WF (u2, v2)WF (u1 + u2, v1 + v2)


2

≤

25n(2n−1 − 1)(2n−1 − 2)|EF |.

And since: ∑
u1,u2∈Fn

2 ;v1,v2∈Fn−1
2

WF (u1, v1)WF (u2, v2)WF (u1 + u2, v1 + v2) =

∑
u1,u2,x,y,z∈Fn

2 ;v1,v2∈Fn−1
2

(−1)v1·(F (x)+F (z))+v2·(F (y)+F (z))+u1·(x+z)+u2·(y+z) = 25n−2,
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and ∑
u1,u2∈Fn

2 ;v1∈Fn−1
2

WF (u1, v1)WF (u2, v1)WF (u1 + u2, 0) =

2n
∑

u1∈Fn
2 ;v1∈Fn−1

2

W 2
F (u1, v1) = 24n−1,

and ∑
u1,u2∈Fn

2

WF (u1, 0)WF (u2, 0)WF (u1 + u2, 0) = 23n,

we deduce:

|EF | ≥
(25n−2 − 3 · 24n−1 + 2 · 23n)2

25n(2n−1 − 1)(2n−1 − 2))
= 2n(2n−1 − 1)(2n−1 − 2).

Remark 6.3 Schur’s inequality (see e.g. [15, page 15]) for positive numbers:

M∑
j=1

N∑
k=1

cj,kxjyk ≤
√
RC

 M∑
j=1

x2
j

1/2(
N∑
k=1

y2
k

)1/2

,

where R = maxj
∑N

k=1 cj,k and C = maxk
∑M

j=1 cj,k, gives, with N = M = 22n−1,
with the two sequences xj and yk both equal to W 2

F (u, v) if v 6= 0 and to 0 if v = 0
and with the coefficient cj,k equal to W 2

F (u1+u2, v1+v2) if v1 6= 0, v2 6= 0, v1+v2 6= 0
and to 0 otherwise, that∑

u1,u2∈Fn
2 ;v1,v2∈Fn−1

2
v1 6=0,v2 6=0,v1 6=v2

W 2
F (u1, v1)W 2

F (u2, v2)W 2
F (u1 + u2, v1 + v2) ≤

(2n−1 − 2)22n
∑

u∈Fn
2 ;v∈Fn−1

2
v 6=0

W 4
F (u, v).

Rel. (14) gives then
∑

u∈Fn
2 ;v∈Fn−1

2
v 6=0

W 4
F (u, v) ≥ 25n(2n−1 − 1)(2n−1 − 2)

(2n−1 − 2)22n
= 23n(2n−1−1),

for every (n, n − 1)-function. This is Inequality (5) with m = n − 1. In a way,
Inequality (5) can then be viewed as weaker than Inequality (14) in the case m =
n− 1. The difference between the left hand side and the right hand side of (14) may
give more precise information on F with (14) than with (5).
Note that Loomis-Whitney’s inequality (see [15, page 17]):

∑N
i,j,k=1 a

1/2
i,j b

1/2
j,k c

1/2
k,i ≤(∑N

i,j=1 ai,j

)1/2 (∑N
j,k=1 bj,k

)1/2 (∑N
k,i=1 ck,i

)1/2
, valid for every non-negative num-

bers, gives the same information. The Arithmetic-Mean-Geometric-Mean (AMGM)
inequality [15] gives little information.
Note that, in the case m = n, the same claculations can be made but they give weaker
results than Relation (2).
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Remark 6.4 A case of differentially 4-uniform (n, n − 1)-function is F = L ◦ G,
where G is any APN (n, n)-function and L any affine surjective (n, n−1)- function1;
without loss of generality, we can assume that L is linear. The kernel of L has
dimension 1; it equals then {0, e} for some e 6= 0. Function L being surjective, its
adjoint operator L∗ : Fn−1

2 7→ Fn2 (defined by x · L(y) = L∗(x) · y) is injective and is
then a bijection from Fn−1

2 to Im(L∗) = {0, e}⊥, and for every b = L∗(v) ∈ Im(L∗),
we have WF (a, v) =

∑
x∈Fn

2
(−1)v·L(G(x))+a·x =

∑
x∈Fn

2
(−1)L

∗(v)·G(x)+a·x = WG(a, b).
We have then: ∑

u1,u2∈Fn
2 ;v1,v2∈Fn−1

2
v1 6=0,v2 6=0,v1 6=v2

W 2
F (u1, v1)W 2

F (u2, v2)W 2
F (u1 + u2, v1 + v2) =

∑
u1,u2∈Fn

2 ;b1,b2∈{0,e}⊥
b1 6=0,b2 6=0,b1 6=b2

W 2
G(u1, b1)W 2

G(u2, b2)W 2
G(u1 + u2, b1 + b2) =

25n(2n−1 − 1)(2n−1 − 2). (15)

Hence, for every APN (n, n)-function G and every linear hyperplane of Fn2 , the
arithmetic mean of W 2

G(u1, v1)W 2
G(u2, v2)W 2

G(u1 + u2, v1 + v2) when u1, u2 range
independently over Fn2 and v1, v2 are nonzero and distinct and range independently
over this hyperplane equals 23n (i.e. what we would get with a bent function if such
function could exist).
Equivalently to (15), we have:∑

u1,u2∈Fn
2 ;b1,b2∈{0,e}⊥

W 2
G(u1, b1)W 2

G(u2, b2)W 2
G(u1 + u2, b1 + b2) =

−3 · 22n
∑

u∈Fn
2 ;b∈{0,e}⊥

W 4
G(u, v) = 27n−2 − 7 · 26n−1 + 25n+1.

Note that ∑
u1,u2∈Fn

2 ;b1,b2∈{0,e}⊥
W 2
G(u1, b1)W 2

G(u2, b2)W 2
G(u1 + u2, b1 + b2)

equals 24n−2 times:∣∣∣∣{ (x1, y1, x2, y2,
x3, y3) ∈ (Fn2 )6

;
x1 + y1 = x2 + y2 = x3 + y3,
G(x1) +G(y1) ≡ G(x2) +G(y2) ≡ G(x3) +G(y3) [mod e]

}∣∣∣∣
and ∑

u∈Fn
2 ;b∈{0,e}⊥

W 4
G(u, v)

equals

22n−1

∣∣∣∣{x1, y1, x2, y2 ∈ Fn2 ;
x1 + y1 = x2 + y2,
G(x1) +G(y1) ≡ G(x2) +G(y2) [mod e]

}∣∣∣∣ .
1 There exist other examples of differentially 4-uniform (n, n− 1)-functions; see [8].
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7 Characterizations in the case of δ = 6

For δ = 6, we have in Theorem 3.1: A0 = −48, A1 = 44, A2 = −12 and A3 = 1. We
deduce:

Corollary 7.1 Let F be any (n,m)-function. Then

(W 2
F )⊗4(0, 0)− 12 · 2n+m(W 2

F )⊗3(0, 0) + 44 · 22(n+m)(W 2
F )⊗2(0, 0) ≥

27n+3m − 12 · 26n+3m + 92 · 25n+3m − 48 · 24n+3m,

where

(W 2
F )⊗4(0, 0) =

∑
u1,u2,u3∈Fn

2
v1,v2,v3∈Fm

2

W 2
F (u1, v1)W 2

F (u2, v2)W 2
F (u3, v3)W 2

F (u1 + u2 + u3, v1 + v2 + v3)

and (W 2
F )⊗3(0, 0) and (W 2

F )⊗2(0, 0) are defined in Corollary 4.3. Moreover, F is
differentially 6-uniform if and only if this inequality is an equality.

Case m = n− 2 Note that Remark 3.3 applies. Corollary 7.1 gives:∑
u1,u2,u3∈Fn

2

v1,v2,v3∈Fn−2
2

W 2
F (u1 + u2 + u3, v1 + v2 + v3)W 2

F (u1, v1)W 2
F (u2, v2)W 2

F (u3, v3)

−12 · 22n−2
∑

u1,u2∈Fn
2

v1,v2∈Fn−2
2

W 2
F (u1 + u2, v1 + v2)W 2

F (u1, v1)W 2
F (u2, v2) +

44 · 24n−4
∑
u∈Fn

2

v∈Fn−2
2

W 4
F (u, v) ≥ 210n−6 − 12 · 29n−6 + 92 · 28n−6 − 48 · 27n−6,

with equality if and only if F is differentially 6-uniform.

Note that the existence of differentially 6-uniform (n, n− 2)-functions for n ≥ 6
is an open question (a few differentially 6-uniform (5, 3)-functions are known, as
mentioned in [8]).
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