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Abstract. Hedged PKE schemes are designed to provide useful security when the per-
message randomness fails to be uniform, say, due to faulty implementations or adversarial
actions. A simple and elegant theoretical approach to building such schemes works like this:
Synthesize fresh random bits by hashing all of the encryption inputs, and use the resulting
hash output as randomness for an underlying PKE scheme.

In practice, implementing this simple construction is surprisingly difficult, as the high- and
mid-level APIs presented by the most commonly used crypto libraries (e.g. OpenSSL and
forks thereof) do not permit one to specify the per-encryption randomness. Thus application
developers are forced to piece together low-level functionalities and attend to any associ-
ated, security-critical algorithmic choices. Other approaches to hedged PKE present similar
problems in practice.

We reconsider the matter of building hedged PKE schemes, and the security notions they aim
to achieve. We lift the current best-possible security notion for hedged PKE (IND-CDA) from
the CPA setting to the CCA setting, and then show how to achieve it using primitives that
are readily available from high-level APIs. We also propose a new security notion, MM-CCA,
which generalizes traditional IND-CCA to admit imperfect randomness. Like IND-CCA, and
unlike IND-CDA, our notion gives the adversary the public key. We show that MM-CCA is
achieved by RSA-OAEP in the random-oracle model; this is significant in practice because
RSA-OAEP is directly available from high-level APIs across all libraries we surveyed. We sort
out relationships among the various notions, and also develop new results for existing hedged
PKE constructions.
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1 Introduction

The security of many cryptographic primitives relies on access to reliable, high-quality randomness.
However, generating good randomness is a complex process that often fails, due to use of ill-designed
random number generators (RNGs), software bugs, or malicious subversion [GM05,Mue08,DGP09,
DPR+13, MMS13, CMG+16]. Such failures have led to serious breaches of security in deployed
cryptographic schemes [RY10,HDWH12,BCC+13,CMG+16]. Recent high-profile examples include
security vulnerabilities in a significant fraction of TLS and SSH servers caused by problems with
RNGs as exposed by Heninger et al. [HDWH12] and the vulnerabilities with Juniper NetScreen-
branded firewalls that use Dual EC RNG designed by NSA to have a backdoor, as studied by
Checkoway et al. in [CMG+16].

Theorists have begun to address the practical issue of weak randomness. Of particular interest
has been the case of public-key encryption (PKE), since there are no shared secrets upon which to
bootstrap security. In their seminal work [BBN+09], Bellare et al. introduce the notion of hedged
public-key encryption. Informally, hedged encryption guarantees traditional semantic security when
the per-message randomness is perfect, and retains best-possible security guarantees when not,
assuming there is sufficient min-entropy in the joint distribution over the plaintext messages and
the per-message randomness. Such security is called hedged security.

A particularly simple and elegant approach to building hedged PKE is what Bellare et al. refer
to as Encrypt-with-Hash (EwH)3. Loosely, to encrypt a message M (and potentially some auxiliary
input I) using public key pk and randomness r, one computes a string r̃ by hashing (pk,M, I, r),
and then returns a ciphertext E(pk,M ; r̃). In the random oracle model (ROM) [BR93], any entropy
contained among the hash inputs is harvested to synthesize new randomness r̃ that can be treated
as uniform. Intuitively, unless the attacker manages to guess (pk,M, I, r), or r̃ directly, this EwH
scheme remains hedged-secure if the underlying scheme E is IND-CPA.

Other works on hedged PKE and related efforts to deal with imperfect per-message random-
ness have followed this approach [Yil10, RSV13, PSS14, BT16]. It has also been used to construct
deterministic encryption [BBO07, BFO08, RSV13]. In fact, this trick of synthesizing randomness
for encryption dates back (at least) to Fujisaki and Okamoto [FO99], who used this as part of a
transform to turn CPA-secure encryption into CCA-secure encryption.

EwH in practice. Say that a developer is aware of the security breaches caused by bad random-
ness, and wants to implement EwH using the best-known and most widely-deployed cryptographic
library, OpenSSL. To protect application developers from having to understand and properly han-
dle lower-level algorithmic details, OpenSSL encourages the use of high-level “envelope” API calls.
For public-key encryption, the interface is

int EVP_PKEY_encrypt(EVP_PKEY_CTX *ctx, unsigned char *out,

size_t *outlen, const unsigned char *in, size_t inlen)

where ctx points to the so-called encryption context, which acts as state across calls. Among other
things, it contains the public key and a descriptor of the particular PKE scheme to be used: Textbook
RSA, PKCS #1 v1.5 RSA encryption (RFC 2313), and a variant of RSA-OAEP [BR95] specified
in PKCS #1 v2.2 (RFC 8017). The plaintext input is pointed to by in, and out points to where
the ciphertext output should be written. Notice: Nowhere is one able to specify the randomness to
be used. The mid-level function calls that are wrapped by EVP_PKEY_encrypt also do not expose the

3 To be precise, [BBN+09] refers to their constructions as REwH, and those are extensions of the EwH
scheme from [BBO07]. We use the name EwH for simplicity.
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randomness to the caller. One could try to manipulate the source of randomness, RAND_bytes, used
by the higher-level calls. Indeed, OpenSSL provides an interface for adding entropy into the state of
the underlying (P)RNG; doing so, however, presents several technical challenges, which we discuss
at length in Section 2. Hence, to implement EwH in OpenSSL, the developer is forced to cobble
together low-level functionalities, which implies needing to attend to security-critical details, such
as parameters, padding schemes, or how the randomness is generated. The same is true for the two
most popular forks of OpenSSL (BoringSSL and LibreSSL) and several other common libraries. We
give a survey of crypto libraries in Section 2.

Encrypt-with-Hash is not the only approach to building hedged PKE (or deterministic PKE,
etc.), and we will discuss some others shortly. But the punchline there will be the same: Developers
face similar hurdles when they attempt to instantiate those constructions with modern crypto
libraries.

To summarize, while hedged PKE has received significant theoretical study, the gap between
theory and practice remains large. Existing theoretical constructions offer little to developers who
respect the guidance of widely deployed crypto libraries to use high-level APIs.

Reconsidering hedged PKE. We reconsider the matter of constructing PKE schemes that main-
tain useful security guarantees when forced to use imperfect randomness. There are two important
questions that guide us:

– What simple and efficient schemes can we implement via high-level APIs exported by standard
crypto libraries?

– What security notions can we hope to achieve with these schemes?

To the latter question, we take as our starting point the IND-CDA notion of [BBN+09], which
we rename as MMR-CPA. In the MMR-CPA experiment, the adversary may query an encryption
oracle with sourcesM, each of these outputting a triple (M0,M1, r), consisting of a pair of vectors
of messages and a vector of randomness to be used for encryption (hence MMR). The oracle, which
contains the public key pk and a secret challenge bit b, returns a vector of component-wise encryption
of M b, each under the corresponding component randomness from r. The adversary’s goal is to
guess the value of b. Crucially, the adversary is not provided with the public key pk until after all
encryption queries are made; otherwise, pk-dependent M can be crafted that would make MMR-
CPA unachievable, even whenM is a high min-entropy source [BBN+09]. Also implicit is that the
public key was generated using uniform coins, and that only the per-message randomness is under
suspicion.

Achieving MMR-CCA. As a small definitional contribution, we extend MMR to the CCA setting,
and both the CPA and CCA notions are formalized for PKE with associated data (AD). Associated
data was originally called “labels” in the PKE literature [Sho04, DK05, CCS09, ABP16]. But AD
seems to be more often used among practitioners, so we adopt it. (This also aligns better with the
language of symmetric encryption.)

The MMR attack effectively assumes the adversary can arbitrarily and adaptively re-corrupt
the randomness source used by the libraries when producing ciphertexts. In many settings, where
the per-message randomness source is provided by the operating system (or even hardware), this
equates to re-corrupting the OS (or hardware) at will with each encryption. The strength of this
attack model makes RSA-OAEP, for example, unable to achieve MMR-CPA (let alone -CCA)
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Construction Assumptions Achieves

F -EME-OAEP F is POWF MM+IND-CCA

HE[F, AEAD] F is OWF, AEAD is IND-CPA+AUTH MMR+IND-CCA

PtD[F -DOAEP] F is OWF MM+IND-CCA

RtD[Πr, F -DOAEP] Πr is IND-CPA, F is OWF MM+IND-CPA

Fig. 1. A summary of our constructions and the security they achieve.

security.4 This is unfortunate, as RSA-OAEP is the only provably-secure scheme implemented by
EVP_PKEY_encrypt, and it is available across virtually all libraries. In fact, there are currently no
positive results for RSA-OAEP in the presence of imperfect randomness.

That said, we give the first MMR-CCA secure PKE scheme. It is a hybrid-encryption construc-
tion that uses a trapdoor function, a hash function (modeled as a random oracle), and a symmetric-
key authenticated encryption scheme. Each of these components can be called with most crypto
libraries, including OpenSSL, via high-level APIs. We prove that the scheme is MMR-CCA in the
ROM assuming the standard assumptions on security of the base schemes. Despite the simplicity
of the scheme, the security proof is quite involved. See Section 6.2 for details.

The MM notions. The MMR notions define security in the hedged PKE setting with imperfect
randomness, yet no common crypto library explicitly exposes a single primitive that achieves it.
We define a new pair of notions, MM-{CPA,CCA}, which are identical to their MMR counterparts
but with two important exceptions. First, the adversary is provided the public key as initial input.
Second, the per-message randomness source R may be corrupted once, prior to any encryptions.
This models scenarios in which the OS code base, a standards document, or a hardware RNG may
have been modified (maliciously or otherwise) to produce faulty randomness prior to widespread
distribution. And, while it is good practice to be cautious, we are unaware of any practical scenarios
or documented attacks in which the randomness source may be continuously re-corrupted to depend
on previously observed ciphertexts and the messages about to be encrypted, as is allowed in the
MMR attack setting.

We show that RSA-OAEP is MM-CCA secure (in the ROM) whenever R has min-entropy
sufficient to stop attacks that would break any PKE scheme in the MM setting. Not only does this
give the first positive result for RSA-OAEP in the presence of imperfect randomness, but it also
gives developers an immediate option across virtually all libraries.

Because MM adversaries are given the public key, MM security against adaptive attackers follows
“for free” (via a standard hybrid argument) from MM security against non-adaptive attackers. On
the other hand, in general one converts non-adaptive MMR security into adaptive MMR security
only with the addition of an extra key-anonymity property (ANON); Bellare et al. [BBN+09] show
this in the CPA setting, and we give an analogous result in the CCA setting.

Relating the notions. We view MM-{CPA,CCA} as a direct generalization of IND-{CPA,CCA}.
In the latter, the randomness source is perfect, and the adversary queries (effectively) a source whose
support contains exactly one pair (M0,M1), i.e., a source with zero min-entropy. We work out re-
lationships among the MM, MMR and IND notions. Among them, we show that IND-CCA 6=⇒
MM-CCA in general, which makes our positive result for RSA-OAEP non-trivial.

4 Consider the plaintext-recovery attack by Brown [Bro05] on RSA-OAEP with public exponent e = 3.
The attack exploits low entropy coins and is effective even if messages have high min-entropy.
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Perhaps unintuitively, we show that the MMR notions are not stronger security notions than the
MM notions. They are incomparable: in the MMR setting, the adversary is allowed to re-corrupt
the randomness source but does not have the public key; in the MM setting, the adversary has the
public key, but may only use it to produce message sources, and may not re-corrupt the randomness
source.

Hedging beyond EwH. Not all previous proposals for hedged encryption require direct manipula-
tion of the randomness used by some underlying PKE scheme. For example, Bellare et al. [BBN+09]
propose doing Ed(pkd, Er(pkr,M ; r)), which first encrypts the message M using a randomized PKE
scheme Er, and then re-encrypts the resulting ciphertext using a deterministic scheme. They call
this the Randomized-then-Deterministic (RtD) composition. (Note that this means two public-keys
are needed, potentially requiring the issuing of new certificates, among other deployment issues.)
They also propose a construction called Pad-then-Deterministic (PtD), where E(pkd,M) is defined
by sampling randomness r and then returning Ed(pkd,M ‖ r). In both cases, to provide security
against weak randomness, it is necessary (although not sufficient) that the deterministic scheme is
PRIV-secure in the sense of [BBO07].

Here, too, we run into problems in practice. Standard crypto libraries do not offer function calls
that directly implement any PRIV-secure deterministic PKE schemes. Several such schemes are
known in the literature [BBO07, BBN+09, BFO08, RSV13], but implementing these would require
piecing together calls to low-level functionalities, precisely what modern APIs attempt to avoid.

One potential exception is RSA-DOAEP [BBO07], a three-round Feistel construction followed
by a single call to RSA. This is the most amenable scheme to being implemented from high-level
calls — OpenSSL exposes EVP calls for hashing, and the EVP_PKEY_encrypt function admits raw RSA
as one of its options.

We show that RtD, where the deterministic scheme is DOAEP, is both MM-CPA and IND-
CPA secure. Better yet, we are able to show, under appropriate conditions, that PtD with DOAEP
is MM+IND-CCA secure.

Open questions. Our work leaves open some interesting questions. For one, is MM-CCA achiev-
able in the standard model? In particular, from reasonable assumptions and via primitives that are
available in crypto libraries (without making very low-level calls)? Asking a bit less, is MM-CPA
achievable with the same restrictions? By composing two of the theorems we give, any scheme that
is (non-adaptive) MMR-CCA and ANON-CCA in the standard model would be MM-CCA, too. But
this only shifts the focus to the question of how to build schemes that achieve these two properties,
and within the constraints we mentioned.

In an analogous result, we show that a scheme that is (non-adaptive) MMR-CPA and ANON-
CPA in the standard model is MM-CPA. Prior work does give schemes that are non-adaptive
MMR-CPA and ANON-CPA (e.g., the RtD and PtD schemes from [BBN+09]), but none that
can be realized from typical high-level APIs. So from our perspective, achieving MM-CPA in the
standard model remains open in practice.

A call to action. A theoretician’s viewpoint on this work might be to suggest that libraries
should be modified to keep up with the nice primitives that our community provides. In practice, this
viewpoint is unhelpful. The design of good APIs, like the design of good cryptography, is hard work.
A recent study by Acar et al. [ABF+17] reveals that modern APIs make even simple tasks difficult
to implement, which has been shown time and time again to result in security vulnerabilities in real
systems. Yet, the question of what is the “right” level of exposure to the user is a complex trade-
off between usability and flexibility. APIs have very long lifetimes because, once adopted, changing
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them potentially implies altering all of the applications upon which they are built. Our thesis is that
raising awareness of real APIs in our research community will better serve cryptographic practice,
and will uncover interesting new theory challenges (like those we explore) as well.

Related work. Raghunathan et al. [RSV13] extend the security notion for deterministic encryp-
tion to the setting where the adversary is given the public key. They also consider chosen-ciphertext
attacks and argue that their extension can be applied to hedged encryption. So that their notion
is achievable, the adversary is restricted to choosing sources for its queries from a finite set (whose
size is bounded by a parameter of the experiment) of sources that do not depend on the public key.
We note a similar restriction in the MM-CCA setting; the randomness source may not depend on
the public key, since otherwise the source could be crafted to leak information about the plaintext.
Their definition is incomparable to our MM-CCA notion, and it is not clear what practical threat
model it captures. Moreover, their definition deems RSA-OAEP insecure, while our MM-CCA def-
inition permits for useful security analysis of the most deployed PKE scheme, in case of imperfect
randomness.

Paterson et al. [PSS14] give notions of security under related-randomness attacks (RRA). Here,
too, the adversary is provided with the public key. The RRA notions generalize the reset attack
(RA) notions due to Yilek [Yil10] by allowing the adversary to specify certain functions to be applied
to fresh uniform randomness, or to previously sampled uniform randomness, and have the result
used to encrypt chosen plaintexts. These functions must be output-unpredictable, loosely meaning
that they cannot allow the attacker to guess the randomness that will be used for encryption,
and collision-resistant, meaning that the queried functions, if applied to the same uniform random
string, should not produce the same output. If either of these conditions is violated, there is an
attack that makes RRA security impossible for any scheme. This is similar to our requirement in
the MM notions that the encryption randomness have min-entropy that is ω(log k), where k is the
security parameter. Again, their definition is incomparable to our MM-CCA notion, and unlike
our definition, does not allow to consider randomness sources with arbitrary high-min-entropy
distributions. We note that again, RRA security is not achievable by randomness-recovering PKE
schemes, such as RSA-OAEP.

Bellare and Tackmann [BT16] give notions of hedged security in the presence of nonces. They
consider a setting where a sender uses a uniform seed and a nonce, and security is guaranteed
if either the seed is secret and the nonces are non-repeating, or the seed is compromised and the
nonces are unpredictable. Brzuska et al. and Bellare and Hoang [BFM15,BH15] show that assuming
the existence of indistinguishability obfuscation (iO), the random oracle in the EwH construction
is uninstantiable. Finally, Hoang et al. [HKOZ16] study public-key encryption security against
selective-opening attacks in the presence of randomness failures.

2 Crypto libraries

In this section we provide a brief survey of real-world libraries: In particular, the extent to which
their APIs for PKE expose the per-message encryption randomness. A table with Web links for
each library is found in Appendix B.

We begin with OpenSSL, the most widely-used library for encryption on the Web. As discussed
in the introduction, OpenSSL encourages the use of “envelopes”, which are designed to abstract
the details of the algorithm used. We have noted that the high-level call EVP_PKEY_encrypt does
not allow the programmer to specify the source of entropy. This call is a wrapper for RSA-based
encryption, internally invoked by calling RSA_public_encrypt. This function has the interface
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int RSA_public_encrypt(int flen, unsigned char *from,

unsigned char *to, RSA *pk, int padding)

It allows one to specify one of three padding schemes (via padding), which is passed down from
the ctx input of EVP_PKEY_encrypt. So we see that here, too, there is no explicit place to insert
external randomness. Similarly, the functions EVP_SealInit, EVP_SealUpdate, and EVP_SealFinal,
which provide a high-level abstraction for hybrid encryption, do not surface the coins.

This design pattern is maintained by BoringSSL and LibreSSL, the two most popular forks of
the OpenSSL codebase. It is also adopted by a number of other libraries, including the popular
open source libraries libgcrypt and PyCrypto, as well as the commercial library cryptlib.

The *SSL API style reflects the opinion that APIs should not allow application developers to
touch the coins, as doing so invites errors that can fatally impact security. Indeed, at Real World
Cryptography 2017, Google security-team developers said interfaces should “Never ask users to
provide critical input (e.g., randomness, etc.).” [DKN].

The commercial library cryptlib exposes three levels of abstraction, each intended for a different
audience. The highest level provides envelopes and secure sessions that expose no cryptography at
all; the middle level exposes the notion of keys and signatures, offering more flexibility for protocol
designers, but does not expose algorithms; and finally, the lowest level exposes actual algorithms,
but even this API does not allow the programmer to specify the coins.

Hedging via providing the coins source. Of course, there are APIs that surface access to
the coins directly. For example, in Go’s native crypto library the function call for RSA-OAEP has
the signature

func EncryptOAEP(hash hash.Hash, random io.Reader,

pub *PublicKey, msg []byte, label []byte)

The randomness source is the second parameter of this routine. One can hedge RSA-OAEP by
implementing the io.Reader interface. Other examples of APIs that expose the coins are Botan,
Crypto++, wolfSSL, and SCAPI.

Falling (somewhat confusingly) in the middle is the popular Java library known as Bouncy
Castle. Java provides a built-in interface for various security-related functionalities. The programmer
can control which library implements these functionalities by specifying a security provider, e.g.,
Bouncy Castle. Bouncy Castle’s own API does not surface coins. On the other hand, the native
Java API does. For instance, one initializes a structure for ElGamal encryption [Elg85] as follows.
Let pubKey be an ElGamal public key:

Cipher cipher = Cipher.getInstance("ElGamal/None/NoPadding", "BC");

cipher.init(Cipher.ENCRYPT_MODE, pubKey, new SecureRandom());

The string "BC" means the security provider is Bouncy Castle. So one could instantiate EwH (over
ElGamal) here by providing their own implementation of SecureRandom.

Hedging via reseeding the coins source. Although OpenSSL does not explicitly surface the
coins, it exposes an interface for manipulating the coins used to provide randomness for higher-level
calls. Coins are sampled in OpenSSL via the interface RAND_bytes(unsigned char *buf, int num),
which writes the next num bytes output by the source to buf. By default, the output is a stream of
bytes generated by a PRNG seeded with entropy gathered by the system, e.g., by reading from /dev/

urandom. When the PRNG is called, it generates the requested bytes and updates its internal state by
applying a cryptographic hash function. (The hash function may be specified by the programmer.)
Alternatively, a hardware-based RNG can be used. For our purposes, there are two relevant ways
to manipulate the state:
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– RAND_seed(const void *buf, int num): Resets the state using the first num bytes of buf as a seed.
– RAND_add(const void *buf, int num, double entropy): “Mixes” the first num bytes of buf into

the state. entropy is an estimate of the number of full bytes of entropy of the input.

A search of the source code5 reveals that the implementation of the padding scheme calls RAND_bytes.
To hedge RSA-OAEP using this interface, one might do as follows:

RAND_add((const void *)in, in_len, in_entropy);

ctxt_len = RSA_public_encrypt(msg_len, msg, ctxt, pk,

RSA_PKCS1_OAEP_PADDING);

where in_entropy is an estimate of the bytes of entropy of the string in, which encodes pk, and msg.
There are a number of technical details to attend to here. First, estimating the entropy of in is non-
trivial. (The OpenSSL documentation refers the reader to RFC 1750 for estimation methodologies.6)
Second, the documentation does not specify how the state is updated, except that if entropy is equal
to num, then this call is equivalent to resetting the state via RAND_seed, effectively evicting the initial
entropy provided by the system. Third, if a hardware RNG is used to instantiate RAND_bytes, then
calling RAND_add fails silently, meaning the call has no effect on the randomness. Alternatively, one
might first call RAND_bytes(rand, rand_len), then reset the state via RAND_seed on input of a buffer
containing pk, msg, and rand. Again, if a hardware RNG is used, then calling RAND_seed has no effect.

Apart from these practical considerations, we note a subtle theoretical issue with hedging
OpenSSL in this manner. At first glance, it would appear that if one is careful with the tech-
nical details, then these interfaces could be used to implement EwH. However, since the PRNG
is stateful, the coins used to encrypt a message necessarily depend on the inputs of all prior en-
cryptions. It is not clear that the proof security for EwH holds for this instantiation, since the
message-coins source is assumed to be stateless [BBN+09, Theorem 6.1].

To summarize, if a developer chooses to (or must) use a library whose APIs do not expose the
encryption randomness, e.g., any of the widely-deployed *SSL libraries, they are forced to work
with low-level functionalities and attend to security-critical details about parameters, padding, the
implementation of the (P)RNG, etc. If they are free to work with, say, the Go native library, then
they can implement EwH by extending the functionality of the exposed randomness source.

3 Preliminaries

Notation. If n is an integer we write [n] for the set {1, 2, . . . , n}. If i and j are integers such
that i ≤ j, we let [i..j] denote the set {i, i + 1, . . . , j}. (If i > j, then let [i..j] = ∅.) The implicit,
unambiguous encoding of one or more objects as a bit string is written as 〈X,Y, . . .〉. We write
vectors in boldface, e.g., X. We let Xi and X[i] denote the i-th element of X. We say that
X,Y are length-equivalent if |X| = |Y | = m and, for all i ∈ [m], |Xi| = |Y i|. We let Λ denote the
empty vector. All algorithms, unless noted otherwise, are randomized. An adversary is a randomized
algorithm. The runtime of adversary A (at security parameter k) is denoted timeA(k). All functions,
unless noted otherwise, are time-constructible.

Games. We adopt the game-playing framework of Bellare and Rogaway [BR06]. The notation
Exp(A, k) denotes the execution of game Exp with adversary A at security parameter k. Let

5 See https://github.com/openssl/openssl/blob/OpenSSL_1_0_2-stable/crypto.
6 See https://wiki.openssl.org/index.php/Manual:RAND_add(3).
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Exp(A, k)⇒ x be the random variable denoting the event that game Exp outputs x when played
by A at security parameter k. If the outcome of the game is either true or false, then we write
Exp(A, k) as short hand for Exp(A, k)⇒ true.

3.1 Public-key encryption with associated data

A public-key encryption scheme with associated data PKEAD is a triple of algorithms (Kgen,Enc,Dec)
with associated data space AD ⊆ {0, 1}∗ and randomness length ρ(·). The key-generation algorithm
Kgen takes 1k as input, and outputs a pair of strings (pk, sk), the public key and secret key respec-
tively. The encryption algorithm takes as input the public key pk, associated data H ∈ AD, message
M ∈ {0, 1}∗, and coins r ∈ {0, 1}ρ(k) and outputs a ciphertext C ∈ {0, 1}∗ or the distinguished
symbol ⊥, indicating that encryption failed. When the value of the coins used is not important, we
write Enc(pk, H,M) or EncHpk(M) as short hand for r←$ {0, 1}ρ(k);Enc(pk, H,M ; r). Otherwise, we

write Enc(pk, H,M ; r) or EncHpk(M ; r). The decryption algorithm takes the secret key sk, associated
data H ∈ AD, and a ciphertext C ∈ {0, 1}∗ and outputs a message M ∈ {0, 1}∗ or ⊥, indicating
failure to decrypt. Just as for encryption, we write M ← Dec(sk, H,C) or M ← DecHsk(C).

It will be convenient to define vector-valued encryption. To that end, let v ∈ N, M ∈ ({0, 1}∗)v,
and H ∈ ADv. Then the notation C←$ Enc(pk,H,M) means to compute Ci←$ Enc(pk,Hi,M i)
for every i ∈ [v], and to assemble C = (C1, . . . ,Cv) as the return value.

In this work, we consider schemes for which the following holds: If for every k ∈ N, (pk, sk) ∈
[Kgen(1k)], H ∈ AD, and M ∈ {0, 1}∗, there exists an r′ ∈ {0, 1}ρ(k) such that EncHpk(M ; r′) 6= ⊥,

then for every r ∈ {0, 1}ρ(k), it holds that EncHpk(M ; r) 6= ⊥. Such a scheme is correct if for every k ∈
N, (pk, sk) ∈ [Kgen(1k)], H ∈ AD, M ∈ {0, 1}∗ and r ∈ {0, 1}ρ(k), we have C 6= ⊥ =⇒ DecHsk(C) =
M , where C = EncHpk(M ; r). As this condition makes clear, proper operation is demanded when both
encryption and decryption are in possession of H. We note H may be the empty string, recovering
more traditional public-key encryption.

Note that our formulation of public-key encryption deviates from tradition in that it allows
for associated data. Associated data has already been considered in formalizations of asymmetric
encryption, e.g., [Sho04, DK05, CCS09, ABP16], where it was called a “label”. We prefer to call it
associated data to better align with the symmetric setting, where associated data has become a
commonplace term. There are settings in which it is desirable to consider associated data in the
public-key setting, for example, to enforce policies on the use of the resulting plaintext. Moreover,
one of the constructions we propose is from an AEAD scheme, so it is natural to surface the
associated data as the input of the PKEAD scheme.

3.2 Sources

In our security definitions, we will rely on the notion of a source, so we start with generalizing this
notion as described in [BBN+09]. Let β and γ be non-negative integers, k be a positive integer, and
µ, v, ρ0, . . . , ργ−1 : N → N be functions. We define a (µ, v, ρ0, ρ1, . . . , ργ−1)-mβrγ-source M as an
algorithm that on input 1k returns a tuple (M0,M1, . . . ,Mβ−1, r) with the following properties:
one, for every b ∈ [0..β − 1], vector M b is over strings; two, vector r is over γ-tuples of strings;
three, each of the vectors has v(k) elements; four, for every i ∈ [v(k)] and c ∈ [0..γ − 1], string rc
has length ρc(k) where (r0, . . . , rγ−1) = r[i]; five, for every b, b′ ∈ [0..β − 1], vectors M b and M b′

are length-equivalent; and six, for every k ∈ N, b ∈ [0..β− 1], i ∈ [v(k)], and (M, r) ∈ {0, 1}|Mb[i]|×

10



({0, 1}ρ0(k) × · · · × {0, 1}ργ−1(k)) it holds that

Pr
[

(M0, . . . ,Mβ−1, r)←$M(1k) : (M b[i], r[i]) = (M, r)
]
≤ 2−µ(k).

We say that such a source has output length v(·) and min-entropy µ(·). When stating the parameters
is not important, we refer to the source as an mβrγ-source. In this paper we will consider mr-, mmr-,
mm-, and r-sources.

We define the equality pattern of v(k)-vectors M and r as the bit-valued matrix EM ,r defined by
EM ,r[i, j] = 1 ⇐⇒ (M [i], r[i]) = (M [j], r[j]) for every i, j ∈ [v(k)]. A (µ, v, ρ0, . . . , ργ−1)-mβrγ-
source is distinct if for every k ∈ N and b ∈ [0..β−1], it holds that Pr[(M0, . . . ,Mβ−1, r)←$M(1k) :
EMb,r = Iv(k)] = 1, where Iv(k) denotes the v(k) × v(k) identity matrix. Security against chosen
distribution attacks will be defined with respect to adversaries that specify distinct sources. We
remark that it is possible to relax this requirement somewhat [BBN+09, section 4.3], but we will
not belabor this point.

4 Security notions

Let PKEAD = (Kgen,Enc,Dec) be a PKEAD scheme with associated data space AD and randomness
length ρ(·). (We will refer to PKEAD throughout this section.) In this section we define three notions
of privacy. The first, IND-CCA, is standard (IND-CCA2 in the taxonomy of [BDPR98]), except that
it considers associated data. In this notion, the source of coins for encryption is fixed and uniform.
The second, MMR-CCA is a lifting of the MMR-CPA notion from [BBN+09] (where it is called IND-
CDA) to the CCA setting with associated data. In this notion, the adversary is free to re-corrupt
the source of coins on each encryption. The third, MM-CCA, is entirely new. In this notion, the
coins source is corrupted once prior to the keys being chosen and any encryption are made. We now
discuss the notions (presented in Figure 2) in more detail. For each attack and setting (ATK,STG) ∈
{IND,MMR,MM} × {CPA,CCA} we define Advatk-stg

PKEAD (A, k) = 2 · Pr
[
Expatk-stg

PKEAD (A, k)
]
− 1.

4.1 IND security

The standard notion of indistinguishibility under chosen-ciphertext attacks is generalized to in-
corporate associated data in Figure 2. We say that PKEAD is IND-CCA secure if for every PT
(“polynomial-time”) adversary A, the function Advind-cca

PKEAD (A, ·) is negligible. The corresponding
notion in the chosen-plaintext attack setting is obtained by denying the adversary access to the de-
cryption oracle. Let Expind-cpa

PKEAD (A, k) denote this experiment. We say that PKEAD is IND-CPA secure
if for every PT adversary A, the function Advind-cpa

PKEAD (A, ·) is negligible.

4.2 MMR security

We adapt the definition of security against chosen-distribution attacks (IND-CDA) from [BBN+09]
to deal with associated data and chosen-ciphertext attacks.

Consider the MMR-CCA experiment defined in Figure 2 associated to PKEAD, adversary A,
and security parameter k. The output of the LR oracle is well-defined if for every k ∈ N and some
µ, v : N→ N, it holds thatM is a (µ, v, ρ)-mmr-source, and H ∈ ADv(k). Fix functions µ, v : N→ N
where µ(k) ∈ ω(log k). We call A a (µ, v, ρ)-mmr-adversary if its queries are well-defined and its
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Expind-cca
PKEAD (A, k):

Q← ∅
(pk, sk)←$ Kgen(1k)
b←$ {0, 1}
b′←$ALR,Dec(1k, pk)
return b = b′

Oracle LR(H,M0,M1):

if |M0| 6= |M1| then
return  

C←$ Enc
H
pk(Mb)

Q← Q ∪ {(H,C)}
return C

Oracle Dec(H,C):

if (H,C) ∈ Q then
return  

return Dec
H
sk(C)

Expmmr-cca
PKEAD (A, k):

Q← ∅; pkout← false

(pk, sk)←$ Kgen(1k)
b←$ {0, 1}
b′←$ALR,Dec,PKout(1k)
return b = b′

Oracle LR(H,M):

if pkout = true then return  
(M0,M1, r)←$M(1k)
C ← Enc

H
pk(M b ; r)

for i← 1 to |H| do
Q← Q ∪ {(Hi,Ci)}

return C

Oracle Dec(H,C):

if (H,C) ∈ Q then
return  

return Dec
H
sk(C)

Oracle PKout():

pkout← true; return pk

Expmm-cca
PKEAD,R(A, k):

Q← ∅
(pk, sk)←$ Kgen(1k)
b←$ {0, 1}
b′←$ALR,Dec(1k, pk)
return b = b′

Oracle LR(H,M):

r←$R(1k)
(M0,M1)←$M(1k)
C ← Enc

H
pk(M b ; r)

for i← 1 to |H| do
Q← Q ∪ {(Hi,Ci)}

return C

Oracle Dec(H,C):

if (H,C) ∈ Q then
return  

return Dec
H
sk(C)

Fig. 2. Security notions for public-key encryption with associated data.

LR queries consist of distinct (µ, v, ρ)-mmr-sources. We say that PKEAD is MMR-CCA secure with
respect to distinct (µ, v, ρ)-mmr-sources if for every polynomial-time (µ, v, ρ)-mmr-adversary A, the
function Advmmr-cca

PKEAD (A, ·) is negligible.
The corresponding notion in the chosen-plaintext attack setting is obtained by denying A ac-

cess to Dec. Let Expmmr-cpa
PKEAD (A, k) denote this experiment and let MMR-CPA security be defined

analogously to MMR-CCA.

Remarks about MMR. Notice that the adversary is not given the public key until after it
is done seeing the challenge ciphertexts. It has previously been observed (in [BBN+09], building
on [BBO07]) that otherwise, the adversary may craft an mmr-source, which depends on the public
key, and completely leaks the challenge bit with one query. Therefore, giving the adversary the
public key would render the notion unachievable.

We recall that PRIV security for deterministic encryption formalized by Bellare et al. [BBO07]
is equivalent to a non-adaptive version of MMR-CPA (this was observed in [BBN+09]), although
they do not consider PKE with AD. Bellare et al. [BBO07] also define PRIV-CCA, but it is not
equivalent to a non-adaptive version of MMR-CCA. This is because we allow the adversary to access
the decryption oracle before it learns the public key, while this is prohibited in PRIV-CCA.

Min-entropy requirements. Just as in prior work [BBO07,BBN+09], we require that the joint
message-coins distribution have high min-entropy. In the MMR setting, this means the sources
queried by the adversary have min-entropy µ = µ(k) ∈ ω(log k). This is sufficient to thwart trial-
encryption attacks by which the adversary, given the public key, exhaustively encrypts message-coins
pairs until a ciphertext matches the output of its LR oracle.
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Expanon-cca
PKEAD (D, k)

Q← ∅
d←$ {0, 1}
(pk0, sk0)←$ Kgen(1k)
(pk1, sk1)←$ Kgen(1k)
d′←$DLR,Enc,Dec(1k)
return d = d′

Oracle LR(H,M):

if pkout = true then return  
pkout← true

if (H,M) = (⊥,⊥) then
return (pk0, pk1,Λ)

(M , r)←$M(1k)
C ← Enc(pkd,H,M ; r)
for i← 1 to |H| do
Q← Q ∪ {(Hi,Ci)}

return (pk0, pk1,C)

Oracle Enc(H,M):

if pkout = true then return  
(M , r)←$M(1k)
C ← Enc(pk0,H,M ; r)
return C

Oracle Decb(H,C):

if (H,C) ∈ Q then return  
return Dec(skb, H,C)

Fig. 3. Key anonymity of public-key encryption as formalized by [BBN+09], lifted to the CCA setting.

4.3 ANON security

Bellare et al. [BBN+09] studied how key anonymity is important for achieving adaptivity against
MMR attacks. Unlike with the standard IND-CPA or -CCA notions, non-adaptive MMR (MMR1)
security does not imply adaptive security. This is due to the fact that the adversary is not given the
public key when it makes the queries to see the challenge ciphertexts. They observed that in the
CPA setting, a property called key anonymity suffices to gain adaptivity. We extend their notion
to the CCA setting; refer to the game defined in Figure 3.

The game begins by choosing two key pairs (pk0, sk0) and (pk1, sk1) and a challenge bit d. The
adversary is executed with the security parameter as input and with access to three oracles as
defined in the figure. The outcome of the game is true if and only if the adversary’s output is equal
to d. The output of the LR and Enc oracles is well-defined when H ∈ ADv(k) andM is an (µ, v, ρ)-
mr-source for some µ, v : N → N. Following the lead of [BBDP01], we provide a decryption oracle
for both the primary and alternate secret key. On input (b,H,C) where b ∈ {0, 1}, H ∈ AD, and
C ∈ {0, 1}∗, oracle Dec decrypts (H,C) under skb and returns the result as long as (H,C) was
never output by LR.

Fix functions µ, v : N → N such that µ(k) ∈ ω(log k). We define a (µ, v, ρ)-mr-adversary
as one whose oracle queries consist of well-defined inputs and distinct (µ, v, ρ)-mr-sources. We
say that PKEAD is ANON-CCA secure with respect to distinct (µ, v, ρ)-mr-sources if the func-
tion Advanon-cca

PKEAD (A, ·) is negligible for every PT (µ, v, ρ)-mr-adversary A. As usual, we capture
ANON-CPA security by denying the adversary access to the Dec oracle. This is equivalent to the
ANON notion of [BBN+09], which in turn lifts [BBDP01] to the hedged setting.

Non-adaptive to adaptive MMR via ANON. Intuitively, key anonymity captures the adver-
sary’s ability to discern information about the public key given adaptively-chosen encryptions under
the public key and, in our setting, decryptions under the corresponding secret key. This property
suffices for the following result, lifting [BBN+09, Theorem 5.2] to the CCA setting.

Theorem 1 (MMR1+ANON-CCA =⇒ MMR-CCA). Let µ, v, ρ : N → N be functions
where µ(k) ∈ ω(log k). Let A be a (µ, v, ρ)-mmr-adversary who makes q queries to its LR oracle.
There exists a (µ, v, ρ)-mmr-adversary B, who makes one query to its LR oracle, and a (µ, v, ρ)-
mr-adversary D such that

Advmmr-cca
PKEAD (A, k) ≤ q ·Advmmr-cca

PKEAD (B, k) + 2q ·Advanon-cca
PKEAD (D, k) .
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where D and B have the same runtime as A. Moreover, adversary D makes as many decryption
queries as A, q − 1 encryption queries, and one query to LR, and adversary B makes as many
decryption queries as A and one query to LR.

The proof is a simple extension of [BBN+09, Theorem 5.2] that takes the decryption oracle into
account; see Appendix C.1 for details. The intuition is that leakage of the public key in the
ciphertext is tolerable in the non-adaptive setting since the adversary may obtain the public key
after making its LR query. In the adaptive setting, this leakage could lead to attacks based on
key-dependent message-coins distributions in subsequent LR queries.

Remark. We note that the converse is not true: MMR-CPA does not imply ANON-CPA. Suppose
we modify an MMR-CPA secure PKEAD scheme by appending the hash of the public key to the
end of the ciphertext. Modeling the hash function as a random oracle, this construction remains
MMR-CPA secure. However, it is clearly not ANON-CPA. Since the adversary is given the primary
and alternate key in response to its LR query, it can easily check (with one random oracle query)
which key was used to encrypt.

4.4 MM security

Next, we consider the practical setting in which the coins are non-adaptively corrupted. Con-
sider the MM-CCA experiment defined in Figure 2 associated to PKEAD, adversary A, randomness
source R, and security parameter k. The output of the LR oracle is well-defined if for every k ∈ N
and some µ1, µ2, v : N → N, it holds that M is a (µ1, v)-mm-source, H ∈ ADv(k), and R is a
(µ2, v, ρ)-r-source. Fix functions µ1, µ2, v : N→ N where µ2(k) ∈ ω(log k). We call A a (µ1, v)-mm-
adversary if its queries are well-defined and its LR queries consist of distinct (µ1, v)-mm-sources.
We say that PKEAD is MM-CCA secure with respect to distinct (µ1, v)-mm-sources and (µ2, v, ρ)-
r-sources if for every PT (µ1, v)-mm-adversary A and for every PT (µ2, v, ρ)-r-source R, the func-
tion Advmm-cca

PKEAD,R(A, ·) is negligible. Again, we let Expmm-cpa
PKEAD,R (A, k) be the experiment associated

to PKEAD, A, k, and randomness sourceR, which is identical to Expmm-cca
PKEAD,R(A, k), but the adversary

has no Dec oracle. MM-CPA security is defined analogously to MM-CCA security.

Non-adaptive to Adaptive MM “for free”. Unlike in the MMR attack setting, in the MM-
CCA game, the adversary is given the public key. This is achievable because the coin source may
not be adaptively corrupted to depend upon it. It follows that one does get adaptivity “for free” in
this setting, via a standard hybrid argument.

Theorem 2 (MM1-CCA =⇒ MM-CCA). Let µ1, µ2, v : N → N be functions where µ2(k) ∈
ω(log k). Let R be a (µ2, v, ρ)-r-source and A be a (µ1, v)-mm-adversary who makes q queries to
its LR oracle. There exists a (µ1, v)-mm-adversary B who makes one query to its LR oracle such
that

Advmm-cca
PKEAD,R(A, k) ≤ q ·Advmm-cca

PKEAD,R(B, k) ,

and B has the same runtime as A, making as many decryption queries.

Min-entropy requirements. As in the MMR setting, achieving MM security demands restric-
tions upon the sources. Minimally, we will need to require that µ1(k)+µ2(k) ∈ ω(log k), where µ1(·)
is the min-entropy of the mm-sources specified by the adversary and µ2(·) is the min-entropy of the
r-source parameterizing the experiment. In fact, we need a bit more. As an illustration, suppose that
µ1(k) ∈ ω(log k) and µ2(k) = 0. This means that the randomness source always outputs the same
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Result Shown By

MMR-CPA (resp. MM-CPA) 6=⇒ ANON-CPA: CE1

ANON-CPA 6=⇒ MMR-CPA (resp. MM-CPA): CE2

MM-CPA 6=⇒ MMR-CPA: CE3

IND-CPA 6=⇒ MM-CPA (resp. MMR-CPA): CE4

MMR1+ANON-CCA =⇒ MMR-CCA Theorem 1

MM1-CCA =⇒ MM-CCA Theorem 2

MMR1+ANON-CCA =⇒ MM1-CCA Theorem 3

MM-CCA =⇒ IND-CCA where µ1(k) ∈ O(log k) Theorem 4

Fig. 4. Summary of relations. Top: separations using CE1: Enc
H
pk(M ; r) = EHpk(M ; r) ‖H(pk), where E is

{MM,MMR}-CPA and H a random oracle; CE2: Enc
H
pk(M ; r) = M ; CE3: EME-OAEP (see Section 6.1);

CE4: Enc
H
pk(M ; r ‖ b) = EHpk(M ; r) ‖ (b ⊕ M [1]), where E is IND-CPA. We note that the corresponding

CCA separations are implied by the CPA separations. Bottom: implications, where we note that the
corresponding CPA implications are implied by the CCA implications.

sequence of coins. This allows the adversary to mount the key-dependent distribution attack identi-
fied by [BBN+09] when the adversary is given the public key. (Indeed, this kind of attack is effective
whenever the randomness source has low min-entropy. See Appendix A for details.) Therefore, it is
crucial in the MM setting that the entropy of the randomness source µ2 be of order ω(log k).

5 Relations among the notions

We summarize the min-entropy requirements of each notion as follows: IND requires uniform random
coins, MMR requires that the joint distribution on messages and coins have high min-entropy, and
MM requires that the coins have high min-entropy. MMR tolerates bad randomness, but only if the
message has high entropy. On the other hand, MM fails if the randomness is low min-entropy. Thus,
the MM setting captures systems that are pretty good at gathering entropy, but not perfect. This is
a realistic scenario, as evidenced by the analysis of the entropy-gathering mechanisms in the Linux
kernel in [HDWH12]. Catastrophic failures, on the other hand, such as the infamous OpenSSL bug
in the Debian distribution, which resulted in the PRNG seed having only 15 bits of entropy on
many systems [Mue08], or the “boot-time entropy hole” described in [HDWH12], are out of scope.
With these distinctions in mind, we study the relationships between IND, MMR, and MM attack
settings. Our results are summarized in Figure 4.

Relationship between MMR and MM attacks. Intuitively, the MMR attack captures a
stronger setting, since the adversary can adaptively corrupt the coins. The notions are incomparable,
however, since the adversary has the public key in the MM attack setting. Nevertheless, we are able
to show that a scheme that is both MMR- and ANON-CCA secure is MM-CCA secure.

Theorem 3 (MMR1+ANON-CCA =⇒ MM1-CCA). Let PKEAD be an encryption scheme
with randomness length ρ(·). Let µ1, µ2, v : N→ N be functions, where µ2(k) ∈ ω(log k). Let R be a
(µ2, v, ρ)-r-source and A be a (µ1, v)-mm-adversary who makes one query to its LR oracle. There
exist a (µ1+µ2, v, ρ)-mmr-adversary B who makes one query to its LR oracle and a (µ1+µ2, v, ρ)-mr
adversary D such that

Advmm-cca
PKEAD,R(A, k) ≤ Advmmr-cca

PKEAD (B, k) + 4 ·Advanon-cca
PKEAD (D, k),
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where and B and D have the same runtime as A. Each makes as many decryption queries as A and
one query to its LR oracle.

We prove this claim in Appendix C.2. Roughly speaking, our argument is that if the scheme
is key anonymous, then the public key provides the adversary with negligible advantage in the
MM-CCA setting. Therefore, we can give the adversary a public key different from the one used to
answer its queries with it being none the wiser.

Finally, we exhibit a scheme that is MM-CPA, but not MMR-CPA in Section 6.1, thus concluding
that MMR+ANON-CCA is a properly stronger notion than MM-CCA.

Relationship between MM and IND attacks. Let Π = (K, E ,D) be an encryption scheme.
Define PKEAD as (K,Enc,Dec) where EncHpk(M ; r ‖ b) = EHpk(M ; r) ‖ (b ⊕M [1]) and DecHsk(C ‖ z) =

DHsk(C). (Note that if Π has randomness length ρ(·), then PKEAD has randomness length ρ(k) + 1
for all k.) Then PKEAD is IND-CPA secure as long as Π is. But PKEAD is not MM-CPA secure,
since bit b might be fixed by the randomness source. It follows that IND-CPA security does not
imply MM-CPA security in general. (A similar argument holds for MMR-CPA.) But what about
the converse?

Recall that our notions are parameterized by the min-entropy and output length of the source(s).
We may also consider finer-grained notions of security. Let Πmmr-cca

µ,v denote the set of PKE schemes
MMR-CCA secure with respect to distinct (µ, v, ρ)-mmr-sources, where ρ(·) is the randomness
length of the scheme. Similarly, let Πmm-cca

µ1,µ2,v denote the set of PKE schemes MM-CCA secure with

respect to distinct (µ1, v)-mm-sources and (µ2, v, ρ)-r-sources. Finally, let Πind-cca denote the set of
IND-CCA secure schemes. First, we observe that if ϕ,ψ, v : N→ N are functions and ϕ(k) ∈ o(ψ(k)),
then Πmmr-cca

ϕ,v ⊆ Πmmr-cca
ψ,v . This means that if a scheme is secure with respect to the lowest min-

entropy requirement (of order ω(log k)), then it is also secure with respect to sources with more
entropy. Analogously, we have that Πmm-cca

ϕ1,ϕ2,v ⊆ Πmm-cca
ψ1,ψ2,v

where ϕ1, ϕ2, ψ1, ψ2, v : N→ N are functions
such that ϕ1(k) ∈ o(ψ1(k)) and ϕ2(k) ∈ o(ψ2(k)).

As a special case, we have that Πmm-cca
0,ϕ,1 ⊆ Πind-cca for every ϕ(k) ∈ ω(log k). More generally, we

can show that for certain classes of functions µ1, µ2, v : N → N, it holds that Πmm-cca
µ1,µ2,v ⊆ Πind-cca.

First, we observe the following:

Lemma 1. Let PKEAD be an encryption scheme with randomness length ρ(·). Let µ1, v : N → N
be functions. Let A be an adversary who makes one query to its LR oracle, and U be the (ρ, v, ρ)-
r-source defined by: r←$ ({0, 1}ρ(k))v(k); return r. There exists a (µ1, v)-mm-adversary B who
makes one query to its LR oracle such that Advind-cca

PKEAD (A, k) ≤ v(k)2µ1(k) ·Advmm-cca
PKEAD,U (B, k), where

timeB(k) = timeA(k) +O(v(k)2µ1(k)).

Proof. Fix k ∈ N and let µ1 = µ1(k), ρ = ρ(k), and v = v(k). Assume that A’s query to its LR
oracle is (H,M0,M1) where H ∈ AD and M0 and M1 are distinct, equal-length strings. This is
without loss of generality, since otherwise LR would reject. We construct adversary B from A.
On input (1k, pk) and with oracles LR and Dec, adversary B executes b′←$ALR′,Dec(1k, pk) and
returns b′, where LR′ is defined below.

Let n be an integer such that 2n ≥ v2µ1 . Let M be the following mm-source: on input 1k,
first construct a set S′ ⊆ ({0, 1}n)2 such that |S′| = v2µ1 − 1, (M0,M1) 6∈ S′, and for every
(X,Y ) ∈ S′, it holds that X = Y . Then let S = {(M0,M1)} ∪ S′. Next, for each i ∈ [v], sample a
pair (X,Y ) uniformly and without replacement from S, and let M0[i] = X and M1[i] = Y . Finally,
output (M0,M1). Sampling each (M0[i],M1[i]) without replacement means M is distinct. Since
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|S| = v2µ1 , for each X ∈ {0, 1}n, b ∈ {0, 1}, and i ∈ [v], it holds that

Pr
[

(M0,M1)←$M(1k) : M b[i] = X
]
≤ 1− v2µ1 − 1

v2µ1
· v2µ1 − 2

v2µ1 − 1
· · ·

=
v

v2µ1
=

1

2µ1
.

It follows thatM is a distinct (µ1, v)-mm-source. Returning now to answeringA’s LR queries: on in-
put (H,M0,M1), oracle LR′ first lets H[i] = H for each i ∈ [v]. It then executes C←$ LR(H,M),
samples j←$ [v], and returns C[j] to A.

Adversary B’s simulation of A’s LR query (and subsequent Dec queries) is perfect as long as
M0[j] = M0 and M1[j] = M1. Let good denote this event. This occurs with probability 1/v2µ1 .
Observe that if good holds, then advantage of A is 0, since its view is independent of the challenge
bit. Thus,

Pr
[
Expmm-cca

PKEAD,U (B, k)
]

= Pr
[
Expmm-cca

PKEAD,U (B, k) | good
]
Pr[ good ] +

+ Pr
[
Expmm-cca

PKEAD,U (B, k) | good
]
Pr
[
good

]
=

1

v2µ1
· Pr

[
Expind-cca

PKEAD (A, k)
]

+
1

2

(
1− 1

v2µ1

)
,

which yields the bound. To complete the proof, we need only to comment on the runtime of B.
Constructing the set S requires time O(v2µ1). Since this dominates the time to simulate A’s LR
query, it follows that the runtime B is timeA(k) +O(v2µ1). ut

This yields, almost immediately, the following corollary:

Theorem 4. Let µ1, µ2, v : N→ N be functions such that µ1(k) ∈ O(log k), µ2(k) ∈ ω(log k), and
v(k) is polynomial in k. Then Πmm-cca

µ1,µ2,v ⊆ Πind-cca.

Proof. Let PKEAD ∈ Πmm-cca
µ1,µ2,v have randomness length ρ(·). By definition, we have that PKEAD ∈

Πmm-cca
µ1,ρ,v . By Lemma 1, for every PT adversary A, there is a PT (µ1, v)-mm-adversary B such that

Advind-cca
PKEAD (A, k) ≤ v(k)2µ1(k) ·Advmm-cca

PKEAD,U (B, k).

Hence, PKEAD ∈ Πind-cca. ut

6 Constructions

In this section we present several constructions of hedged PKEAD schemes. To begin, we give a
result showing that EME-OAEP (the version of RSA-OAEP that is implemented in OpenSSL) is
not MMR-CPA, but is provably MM-CCA in the ROM, under a standard assumption on RSA.
This gives the first positive result for RSA-OAEP in the presence of imperfect randomness, and is
callable via the high-level APIs exposed by all major libraries.

To achieve MMR+IND-CCA, we give a hybrid-encryption PKEAD scheme. This, too, can be
realized by high-level API calls in modern libraries, using RSA as the trapdoor function, and
available hash function and symmetric authenticated encryption functionalities.

We then revisit the generic compositions RtD and PtD from Bellare et al. [BBN+09]. We show
that if the deterministic scheme is instantiated specifically by RSA-DOAEP [BBO07], which can
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Kgen(1k)

(f, f−1)←$ F (1k)
return (〈f〉, 〈f−1〉)

Enc
H
pk(M)

〈f〉 ← pk; PM← pad(M)
if PM = ⊥ then return ⊥
X0 ← PM ‖H1(H)
Y0←$ {0, 1}ρ
X1 ← X0 ⊕ G(Y0)
Y1 ← Y0 ⊕ H2(X1)
P ← X1 ‖Y1 ‖ [0 ]
return f(P )

Dec
H
sk(C)

〈f−1〉 ← sk; P ← f−1(C)
if |P | 6= n then return ⊥
X1 ‖Y1 ‖ [z]← P # |Y1| = ρ
Y0 ← Y1 ⊕ H2(X1)
X0 ← X1 ⊕ G(Y0)
PM ‖T ← X0 # |T | = τ
if H1(H) 6= T then return ⊥
return unpad(PM)

Fig. 5. Specification of F -EME-OAEP encryption (RFC 8017) where F is a trapdoor permutation generator
with input length n(·). Let τ(·) and ρ(·) be functions where for every k ∈ N, it holds that ρ(k)+τ(k)+16 ≤
n(k). Fix k ∈ N and let n = n(k), τ = τ(k), ρ = ρ(k), and m = n − ρ − 8. The syntax [i] denotes
integer i, where 0 ≤ i ≤ 255, encoded as a byte. Let H1 : {0, 1}∗ → {0, 1}τ , G : {0, 1}∗ → {0, 1}m, and
H2 : {0, 1}∗ → {0, 1}ρ be functions. Define pad : {0, 1}∗ → {0, 1}m−τ ∪ {⊥} by pad(M) = M ‖ [1 ] ‖ [0 ] · · · [0 ]
if |M | is less than or equal to m− τ − 8 and is a multiple of 8, and pad(M) = ⊥ otherwise. Define its inverse
unpad : {0, 1}m−τ → {0, 1}∗ ∪ {⊥} in the natural way.

be done via high-level API calls to hash functions and RSA, then PtD achieves MM+IND-CCA,
and RtD achieves MM+IND-CPA. We also suggest specific conditions under which RtD would be
MMR+IND-CCA, extending prior work [BBN+09].

Trapdoor permutations. Some of our constructions make use of trapdoor permutations, so
we recall this primitive and its security here. Let k ∈ N. A trapdoor permutation generator is a
probabilistic algorithm F with associated input length7 n(·) that on input 1k outputs the encoding
of a pair of functions f, f−1 : {0, 1}∗ → {0, 1}∗ such that for every x ∈ {0, 1}n(k), it holds that
f−1(f(x)) = x. We say that F is OWF secure if for every PT adversary A, the quantity

Advowf
F (A, k) = Pr

[
(f, f−1)←$ F (1k);x←$ {0, 1}n(k) : A(1k, f, f(x))⇒ x

]
is a negligible function of k.

We will also use the stronger security notion of partial-domain one-wayness formalized by Fu-
jisaki et al. [FOPS04], which asserts that it is difficult to partially invert a value in the range of the
trapdoor permutation. Let F be a trapdoor permutation generator with input length n(·) and let
m(·) be a function such that m(k) ≤ n(k) for every k ∈ N. We say that F is m-POWF secure if for
every PT adversary A, the following function is negligible in k:

Advpowf
F,m (A, k) = Pr

[
(f, f−1)←$ F (1k);x←$ {0, 1}n(k) :

A(1k, f, f(x))⇒ x[1..m(k)]
]
.

6.1 EME-OAEP

We first look at RSA-OAEP [BR95], the only provably-secure PKE scheme available in OpenSSL,
and indeed most libraries.8 It is known to be IND-CCA secure assuming that the underlying trap-
door permutation is POWF secure, or under the RSA assumption [Sho02,FOPS04].

7 For example, the input length might be the number of modulus bits in RSA.
8 Some implement ElGamal or hybrid encryption schemes as well.
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We specify the EME-OAEP variant standardized in PKCS #1 version 2.2 (RFC 8017). Let F
be a trapdoor permutation generator. Refer to the encryption scheme F -EME-OAEP specified in
Figure 5. This scheme resembles standard OAEP except that a hash of the associated data (called
a label in RFC 8017) is appended to the message.9 Instead of checking for a string of zero-bytes,
the decrypting party checks that the hash of the associated data matches. In addition, a zero-byte
is appended to the pad before applying the trapdoor.10

F -EME-OAEP is not MMR-CPA. This scheme is not MMR-CPA secure, due to an attack by
Brown [Bro05] on RSA-OAEP with exponent e = 3. The attack exploits low entropy coins. An
adversary who knows (or is able to guess) the coins can recover the entire plaintext, meaning the
attack is effective even if the message has high min-entropy. Since this attack does not exploit the
tag used to check if the ciphertext is valid during decryption, it is equally effective in breaking
RSA-EME-OAEP.

F -EME-OAEP is MM-CCA. We prove the scheme does achieve our new notion. The standard cites
the result of [FOPS04] to establish the IND-CCA security of this scheme, but this result makes no
formal claim for the security of the associated data. Moreover, no security guarantee is known in case
randomness is not perfect. We extend their analysis to account for associated data and imperfect
randomness and prove, in the random oracle model, that F -EME-OAEP is MM-CCA secure with
respect to high min-entropy coins sources, assuming that F is POWF secure. By [FOPS04, Lemma
4.2], instantiating the trapdoor with RSA is secure assuming only that RSA is OWF secure.

Theorem 5 (F -EME-OAEP is MM-CCA). Let F be a length n(·) trapdoor permutation generator.
Let µ1, µ2, v, τ, ρ : N→ N be functions where µ2(k) ∈ ω(log k) and ρ(k)+τ(k)+16 ≤ n(k) for every
k ∈ N. Let m(k) = n(k) − ρ(k) − 8. Let PKEAD = F -EME-OAEP as defined in Figure 5, where H1,
H2, and G are modeled as random oracles. Let A be a (µ1, v)-mm-adversary who makes qe queries
to LR, qd queries to Dec, and q1, q2, and qG queries to H1, H2, and G respectively. Let R be a
(µ2, v, ρ)-r-source. There exists an adversary B such that

Advmm-cca
PKEAD,R(A, k) ≤ 512qeq2v(k) ·Advpowf

F,m (B, k)+

qe(q1 + qd)
2

2τ(k)−1
+
qe(qG + qd)

2

2ρ(k)−1
+
qev(k)(qG + qd)

2µ2(k)−1
,

where timeB(k) = timeA(k) +O(qdq1qGq2).

Refer to Appendix C.3 for the full proof. Note that the security bound does not depend on the
min-entropy of the message source, but only on the min-entropy of the randomness source. This is
undesirable from a concrete security standpoint, since any entropy in the messages is thrown away.
In Section 6.3, we show that adding an additional Feistel round is sufficient to establish a concrete
security bound that depends on the message entropy. Note that the loss of 28 in the bound is the
result of fixing the most significant byte as [0].

In real-world terms, this result suggests that it is safe to use RSA-EME-OAEP barring catas-
trophic failure of the (P)RNG. If the adversary is able to guess the coins used, then there is an
attack [Bro05], and so the Dual EC DRBG attack [CMG+16], for example, completely breaks the
security of RSA-EME-OAEP. Even cases where the coins still have some entropy [Mue08] we con-
sider insecure in an asymptotic sense, since an adversary can guess the coins with non-negligible
probability.

9 Interestingly, no API we surveyed exposes AD as a parameter, although the standard supports AD.
10 The zero-byte is intended to ensure that the message is in Z∗N in the case of RSA.
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MMR does not imply MM security. Since F -EME-OAEP is not MMR-CPA, we conclude that
MMR-CPA does not imply MM-CPA in general.

6.2 Hybrid encryption construction

Next, we present a novel scheme that is MMR-CCA in the random oracle model, and at the
same time can be implemented using most high-level APIs, including OpenSSL. The scheme is a
hybrid construction combining a trapdoor permutation, an authenticated encryption scheme with
authenticated data (AEAD, now a standard notion in crypto libraries), and hash functions modeled
as random oracles. We recall the notion of AEAD and then proceed to define the PKEAD scheme.

Authenticated Encryption with Associated Data (AEAD). An AEAD scheme consists of
three algorithms AEAD = (Kgen,Enc,Dec). The randomized key generation algorithm Kgen samples
a key K from a finite, non-empty set K called the key space. The deterministic encryption algorithm
Enc : K×N ×AD×{0, 1}∗ → {0, 1}∗∪{⊥} takes as input a key K, a nonce N ∈ N , associated data
H ∈ AD, and a message M ∈ {0, 1}∗, and it returns a ciphertext C ∈ {0, 1}∗ or the distinguished

symbol ⊥. We sometimes write C ← Enc
H,N
K (M) as a shorthand for C ← Enc(K,N,H,M). The

deterministic decryption algorithm Dec : K×N ×AD×{0, 1}∗ → {0, 1}∗ ∪{⊥} takes as input a key
K, a nonce N ∈ N , associated data H ∈ AD, and ciphertext C ∈ {0, 1}∗, and outputs either the

plaintext M or ⊥. We sometimes write M ← Dec
H,N
K (C) as shorthand for M ← Dec(K,N,H,C).

For correctness, it is required that for all K ∈ K, H ∈ AD, N ∈ N and M ∈ {0, 1}∗, we have

Enc
H,N
K (M) 6= ⊥ =⇒ Dec

H,N
K (EncH,NK (M)) = M.

Message privacy. To define message privacy, let A be an adversary and consider the experiment
Expind-cpa

AEAD (A). The experiment first generates the key K←$ Kgen and samples a bit b←$ {0, 1}.
The adversary has access to the encryption oracle Enc(K, ·, ·,LR(·, ·, b)), where LR(·, ·, b) on inputs
M0,M1 ∈ {0, 1}∗ with |M0| = |M1| returns Mb. We say that A is nonce-respecting if it never
repeats N in its oracle queries. (Hereafter, we assume the IND-CPA attacker is nonce-respecting.)
Finally, adversary A outputs a bit b′. The outcome of the game is the predicate (b = b′). We define
A’s advantage as Advind-cpa

AEAD (A) = 2 · Pr[Expind-cpa
AEAD (A)]− 1.

Authenticity. To define message authenticity, let A be an adversary and consider the experiment
Expauth

AEAD (A). It first generates a key K←$ Kgen, then provides A access to oracle Enc(K, ·, ·, ·).
(Note that the AUTH adversary need not be nonce-respecting.) The adversary can also query a

special decryption oracle on triples (N,H,C). This oracle returns 1 if Dec
H,IV
K (C) 6= ⊥, and 0

otherwise. The game outputs true if and only if the special decryption oracle returns 1 on some
query (N,H,C) and A never queried (N,H,M) for some M ∈ {0, 1}∗ and got C in response. Let
Advauth

AEAD (A) = Pr[Expauth
AEAD (A)].

Hybrid PKEAD from a TDP and AEAD. We propose a PKEAD scheme that uses a trapdoor
permutation and an AEAD symmetric encryption scheme. Its algorithms can be implemented using
the library calls to RSA function with no padding and to any AEAD scheme such as AES-GCM.
The scheme is defined in Figure 6. The functions H1 and H2 are realized using cryptographic hash
functions, but are modeled as random oracles in the analysis. We assume that there is an efficient
function extract that on input associated data H̃ returns the n-bit nonce for AEAD scheme. The
goal of extract is to make sure that the outputs do not repeat. If H contains a counter, or some
other non-repeating string, then that could be used as an extracted nonce. Alternatively, C1 or its
part could be used as a nonce. (In the analysis we take into account that the asymmetric parts of
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Kgen(1k):

(f, f−1)←$ F (1k)
R←$ {0, 1}r
return (f ‖R, f−1)

Encpk(M,H)

X←$ {0, 1}ρ(k)
KP ← H1(〈f ‖R,H,M,X〉)
C1 ← f(KP )
K ← H2(〈f ‖R,H,KP 〉)
H̃ ← 〈H,C1〉
N ← extract(H̃)
C2 ← AEAD.Enc(K,N, H̃,M)
return C1 ‖C2

Decsk(H,C1 ‖C2)

KP ← f−1(C1)
K ← H2(〈f ‖R,H,KP 〉)
H̃ ← 〈H,C1〉
N ← extract(H̃)
M ← AEAD.Dec(K,N, H̃, C2)
return M

Fig. 6. Hybrid encryption construction HE[F, AEAD] with randomness length ρ(·) and additional parameters
n, λ, kP ∈ N. Let F be a length n(·) trapdoor permutation generator, such that n(k) ≥ kP for sufficiently
large k, and let AEAD be an AEAD scheme with key space {0, 1}λ, nonce space {0, 1}n, and associated-data
space {0, 1}∗. Let H1 : {0, 1}∗ → {0, 1}kP and H2 : {0, 1}∗ → {0, 1}λ be functions. Let extract : {0, 1}∗ →
{0, 1}n be a function that on input H̃ returns the n-bit nonce.

ciphertexts do not repeat with overwhelming probability.) We leave the particular instantiation of
extract to the applications.

HE[F,AEAD] is MMR+IND-CCA. The following theorem establishes MMR- and IND-CCA se-
curity of our hybrid construction.

Theorem 6. Let F be a trapdoor permutation generator, AEAD be an AEAD scheme, and PKEAD =
HE[F,AEAD] as defined in Figure 6, where H1 and H2 are modeled as random oracles.

– (MMR-CCA) Let µ, v : N→ N be functions such that µ(k) ∈ ω(log k). Let A be a (µ, v, ρ)-mmr-
adversary attacking PKEAD and making q queries to its LR oracle, qd queries to its Dec oracle,
and qH1 and qH2 queries to H1 and H2 respectively. Then there exist adversary B attacking F
and adversaries C and D attacking AEAD, such that

Advmmr-cca
PKEAD (A, k) ≤ qH1

+ qd
2r−1

+
(qH1

+ q2v(k))

2µ(k)−1
+
qd + q2v2(k)

2kP−1

+2v(k)q ·
(
Advowf

F (B, k) + Advind-cpa
AEAD (C, k) + Advauth

AEAD (D, k)
)
.

– (IND-CCA) Let A be an adversary attacking PKEAD and making q queries to its LR oracle, qd
queries to its Dec oracle, and qH1

and qH2
queries to H1 and H2. Then there exist an adversary B

attacking F and adversaries C and D attacking AEAD, such that

Advind-cca
PKEAD (A, k) ≤ qH1

2ρ(k)−1
+

qd
2kP−1

+2v(k)q ·
(
Advowf

F (B, k) + Advind-cpa
AEAD (C, k) + Advauth

AEAD (D, k)
)
.

In both cases, we have that timeB(k), timeC(k), timeD(k) ≈ timeA(k), C makes at most v(k)q queries
to its encryption oracle, and D makes v(k)q queries to its encryption oracle, and qd queries to its
decryption oracle.

The proof is in Appendix C.4. Here we sketch the more challenging proof of MMR-CCA security.
We consider a sequence of games that starts with the MMR-CCA experiment and ends with the one

21



where random messages are encrypted with the AEAD.Enc under random keys, which are indepen-
dent from the asymmetric ciphertexts. The view of the adversary in the last game is independent
of the challenge bit. As we move between games, we consider a series of “bad” events. The first
bad event happens if the H1 oracle is queried on the values colliding with those output by the
mmr-source during encryption computation. We can bound such an event by relying on the entropy
of the mmr-source, if the collision occurs after the public key is revealed, or using the fact that
the adversary does not know the public key and cannot guess its randomizer value if the collision
happens before the public key is revealed. If this “bad” event never happens, then Kp values used to
compute the asymmetric parts of the challenge ciphertexts can be chosen at random. Another bad
event is set when a H2 oracle query is made so it contains the Kp that was used as input to f during
encryption. If this does not happen, we can use random symmetric keys for AEAD.Enc. If this bad
event does happen, we can construct the OWF adversary for trapdoor permutation generator F .
Once we are in a game where random symmetric keys are used, we can use the IND-CPA security
of AEAD. Here we have to make sure that the IND-CPA adversary is nonce-respecting. This follows
from the fact that the asymmetric parts of the challenge ciphertexts, from which nonces are derived,
do not repeat with overwhelming probability.

Care is needed to ensure that the adversary does not get information about the public key
from the decryption queries and that the adversaries we construct can answer the decryption oracle
queries. If the adversary makes a valid decryption oracle query, so that the asymmetric part is the
same as that of some challenge ciphertext, then we can construct an adversary breaking authenticity
of the AEAD scheme. If the asymmetric part of the ciphertext in the decryption oracle query is
new, i.e., it is different from those of all challenge ciphertexts, and no corresponding H2 query was
made, the ciphertext can be rejected, as it can be valid only with negligible probability. Before
the public key is revealed, such a hash query can only be made by the adversary with negligible
probability. If the public key has been revealed, than such a ciphertext can be decrypted without
the knowledge of the secret key.

We remark that it is not necessary to assume that the base symmetric encryption scheme pro-
vides authenticity. Instead we could rely on the random oracle model. We chose to use authenticity
mostly because this makes our (already complicated) proof slightly easier.

6.3 Generic constructions

We describe two black-box constructions of [BBN+09], which compose generic randomized and
deterministic encryption schemes. Appealing to the security properties of their constituents, these
constructions are shown to be MMR+IND-CPA secure in the standard model. We consider lifting
these results to the CCA setting, and consider security against MM attacks. First, we specify
deterministic encryption and briefly describe its associated security notions. It will be convenient
formulate the syntax without associated data.

Deterministic encryption. A deterministic PKE scheme Π is a triple of algorithms (K, E ,D).
On input 1k, algorithm K probabilistically outputs a key pair (pk, sk). Encryption deterministically
maps the public key pk and a string M to an element of {0, 1}∗∪{⊥}. Decryption deterministically
maps the secret key sk and a string C to an element of {0, 1}∗∪{⊥}. The scheme is correct if for every
k ∈ N, (pk, sk) ∈ [K(1k)], and M ∈ {0, 1}∗, it holds that Epk(M) 6= ⊥ implies Dsk(Epk(M)) = M . It
will be helpful to assume that deterministic schemes are defined on all strings of a particular length.
We say Π has input length n(·) if encryption is defined for all strings of length n(k) and all k.
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We consider both MMR-CPA and -CCA security of deterministic schemes against (µ, v, 0)-
mmr adversaries for functions µ, v : N → N, where µ(k) ∈ ω(log k). In order to instantiate a
deterministic scheme in the game, we allow encryption to take coins as input, but these are simply
ignored. Similarly, we allow encryption and decryption to take associated data as input, but this is
ignored. Note that it does not make sense to consider MM-CPA or -CCA security of deterministic
schemes, since we cannot defend against key-dependent distribution attacks in this setting. Security
of deterministic encryption was first formalized by [BBO07]. Their CPA notion, PRIV, is equivalent
to MMR1-CPA security. However, their CCA notion, PRIV-CCA, is not equivalent to MMR1-CCA.
In our notion, the message source specified by the adversary is allowed to depend on prior decryption
queries, whereas in the PRIV-CCA game, the adversary makes decryption queries only after it gets
its challenge.

Block-sources. Recall the notion of an mβrγ-source given in Section 4. In the standard model,
we consider security with respect to mβrγ-block-sources, where the outputs have high conditional
min-entropy. Intuitively, this means that, from the adversary’s perspective, each output of a block-
source has high min-entropy even having seen the prior elements of the vector. (See [BBN+09] for
a precise definition.)

Lossy and all-but-one trapdoor functions. LTDFs were first described by Peikert and
Waters [PW08]. Informally, an LTDF generator F is a probabilistic algorithm with input length n(·)
that on input 1k and b ∈ {0, 1} outputs a pair of strings (s, t) such that s encodes a function
f : {0, 1}n(k) → {0, 1}∗ with the following properties: One, if b = 1, then function f is injective,
and t encodes a function f−1 giving its inverse; two, if b = 0, then the image of f is significantly
smaller than the injective mode, i.e., b = 1; and three, no reasonable adversary, given s, can
distinguish the injective mode from the lossy mode, i.e., b = 0. We call F universal-inducing if the
lossy mode is a universal hash function.

Motivated by the goal of instantiating IND-CCA secure probabilistic encryption, [PW08] intro-
duce ABO (“all-but-one”) TDFs as a richer abstraction. An ABO TDF generator is a probabilistic
algorithm G with an associated input length n(·) and a finite set B, called the branch set. On
input 1k and b∗ ∈ B, called the lossy branch, it outputs (the encodings of) a pair of functions
g : B × {0, 1}n(k) → {0, 1}∗ and g−1 : B times{0, 1}∗ → {0, 1}n(k) such that: One, for every b ∈ B,
if b 6= b∗, then g(b, ·) is injective and g−1(b, ·) is its inverse; two; function g(b∗, ·) is lossy; and three,
for any two branches a, b ∈ B, the (bit string encodings of) functions g(a, ·) and g(b, ·) are com-
putationally indistinguishable. Both primitives have been constructed from a number of hardness
assumptions: For example, the Φ-hiding assumption for RSA [KOS10] and LWE (“learning with
errors”) for lattices [PW08]. A universal LTDF is given by Boldyreva, Fehr, and O’Neill [BFO08]
based on the DDH assumption.

Pad-then-Deterministic. The transformation of a deterministic encryption scheme into a prob-
abilistic one via a randomized padding scheme is defined in the top panel of Figure 7. This is
the same as the construction proposed by [BBN+09], except we account for associated data. the
message space of PtD[Π] is determined by Π. The associated data is restricted to bit strings of the
length k0(·). We first review the results known for PtD in the standard model, then consider its
extension to the MMR- and MM-CCA settings.

Let Π be a deterministic scheme and PtD[Π] be as defined in Figure 7. Bellare et al. [BBN+09,
Theorem 6.3] prove this construction is MMR-CPA if Π is MMR-CPA, and IND-CPA if Π is a
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PtD[Πd].Kgen(1
k)

(pk, sk)←$Kd(1k)
return (pk, sk)

PtD[Πd].Enc
H
pk(M)

if |H| 6= k0 then return ⊥
r←$ {0, 1}ρ
PM← padn−k0(〈M, r〉)
return Ed(pk, H ‖PM)

PtD[Πd].Dec
H
sk(C)

H ′ ‖PM← Dd(sk, C) # |H ′| = k0
if H ′ 6= H then return ⊥
〈M, r〉 ← unpadn−k0(PM)
return M

RtD[Πr,Πd].Kgen(1
k)

(pkr, skr)←$Kr(1k)
(pkd, skd)←$Kd(1k)
return (〈pkr, pkd〉, 〈skr, skd〉)

RtD[Πr,Πd].Enc
H
pk(M)

〈pkr, pkd〉 ← pk
C′←$ Er(pkr, H,M)
return Ed(pkd, padn(C′))

RtD[Πr,Πd].Dec
H
sk(C)

〈skr, skd〉 ← sk
X ← Dd(skd, C)
C′ ← unpadn(X)
return Dr(skr, H,C

′)

F -DOAEP.K(1k)

(f, f−1)←$ F (1k)
return (〈f〉, 〈f−1〉)

F -DOAEP.Epk(X)

if |X| 6= n then return ⊥
〈f〉 ← pk
X` ← X[1..k0]
Xr ← X[k0 + 1..|X|]
S0 ← H1(pk ‖Xr)⊕X`
T0 ← G(pk ‖S0)⊕Xr
S1 ← H2(pk ‖T0)⊕ S0

Y` ‖Yr ← S1 ‖T0 # |Yr| = k1
return Y` ‖ f(Yr)

F -DOAEP.Dsk(Y )

if |Y | < n− k1 then return ⊥
〈f−1〉 ← sk
Y` ← Y [1..a]
Yr ← f−1(Y [a+ 1..|Y |])
S1 ‖T0 ← Y` ‖Yri # |S1| = k0
S0 ← H2(pk ‖T0)⊕ S1

Xr ← G(pk ‖S0)⊕ T0

X` ← H1(pk ‖Xr)⊕ S0

return X` ‖Xr

Fig. 7. Generic constructions. Let k0, k1, n, ρ : N→ N be such that k0(k) + ρ(k) ≤ n(k) for all k. Let Πd =
(Kd, Ed,Dd) be a deterministic scheme with input length n(·) and let Πr = (Kr, Er,Dr) be a randomized
encryption scheme. Let F be a trapdoor permutation generator with input length k1(·). Let pad` : {0, 1}∗ →
{0, 1}`∪{⊥} be an invertible encoding scheme with unpad` : {0, 1}∗ → {0, 1}∗∪{⊥} as its inverse. Fix k ∈ N
and let k0 = k0(k), k1 = k1(k), n = n(k), ρ = ρ(k), and a = max{0, n − k1}. If Y is a string and a ≤ 0,
then let Y [1..a] = ε. Let H1,H2 : {0, 1}∗ → {0, 1}k0 and G : {0, 1}∗ → {0, 1}n−k0 be functions.

u-LTDF. 11 By Theorem 1, any scheme that is both MMR1- and ANON-CPA secure is also MMR-
CPA secure. If Π is a u-LTDF, then it is MMR1-CPA secure for block-sources [BFO08, Theorem
5.1], and ANON-CPA secure for block-sources [BBN+09, Theorem 5.3]. Thus, the scheme PtD[Π]
is MMR-hedged secure (for block-sources) against chosen-distribution attacks as long as Π is a u-
LTDF. Note that universal-inducing property is not essential; see [BBN+09, Section 6.2] for details.

Unfortunately, this property of the base scheme does not suffice for security in the CCA setting.
Nevertheless, a similar construction gets us a step in the right direction. Peikert and Waters [PW08]
suggest the composition of an LTDF generator, an ABO TDF generator, and a strongly unforgeable
one-time signature scheme to achieve IND-CCA. Boldyreva, Fehr, and O’Neill [BFO08] give a similar
construction (with the signature scheme replaced by a target-collision resistant hash function) that
achieves PRIV-CCA for block-sources.

As pointed out above, this result does not lift generically to MMR1-CCA. Of course, it is possible
that one or both of these constructions satisfy our stronger notion, but this requires a fresh proof.12

11 Note that a family of trapdoor permutations is syntactically the same as a deterministic encryption
scheme.

12 In another direction, [RSV13] consider novel notions of LTDFs for their adaptive CCA setting.
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It remains open to instantiate MMR-CCA in the standard model, but prior work suggests that
LTDFs and ABO LTDFs are a promising approach.

PtD[F -DOAEP] is MM+IND-CCA. Security against MM attacks is achievable with a scheme that
is both MMR1- and ANON-CCA via Theorem 3. Here we show that, under certain restrictions,
instantiating the base scheme with F -DOAEP is MM-CCA assuming only that F is OWF secure.

Theorem 7 (PtD[F -DOAEP] is MM+IND-CCA). Let PKEAD be defined by PtD[F -DOAEP] with
parameters n, k0, k1, ρ : N→ N in Figure 7, where functions H1, H2, and G are modeled as random
oracles. Suppose that n(k) ≥ k0(k) + k1(k) for all k. There exists an adversary B such that the
following conditions hold:

– (MM-CCA) Let µ1, µ2, v : N→ N be functions where µ2(k) ∈ ω(log k). Let A be a (µ1, v)-mm-
adversary and R be a (µ2, v, ρ)-r-source. Suppose that A makes exactly qe queries to its LR
oracle, qd queries to its Dec oracle, and q1, q2, and qG to oracles H1, H2, and G respectively.
Then

Advmm-cca
PKEAD,R(A, k) ≤ 2qev(k) ·Advowf

F (B, k) +
5qev(k)(q1 + qd)

2µ1(k)+µ2(k)−1

+
3qev(k)(qG + qd) + v(k)(q2 + qd) + 2qd

2k0(k)−1
+
qe(q1 + qd)

2

2ρ(k)−1
.

– (IND-CCA) Let A be an adversary, which makes qe queries to its LR oracle, qd queries to its
Dec oracle, and q1, q2, and qG to oracles H1, H2, and G respectively. Then

Advind-cca
PKEAD,R(A, k) ≤ 2qe ·Advowf

F (B, k)

+
6qeqd + 3qeqG + qeq2

2k0(k)−1
+

6qe(q1 + qd)
2

2ρ(k)−1
.

In each case, we have timeB(k) = timeA(k) +O(qdq1qGq2).

Let us explain this claim a bit. (The proof can be found in Appendix C.5.) First, we only consider the
case where n ≥ k0 + k1. The designers of F -DOAEP give two bounds for its PRIV security [BBO07,
Theorem 5.2]: one for inputs of length less than k0 +k1 and another for inputs of length greater than
k0 + k1. The distinction arises from the fact that, in the former case, A’s random oracle queries
consist of strings less than k1 bits in length. The problem is that B is looking for the preimage
under f of its input y, which is a k1-bit string. The solution is a lemma that relates the OWF
advantage of B to the advantage of another inverter adversary whose task is to return a substring
of the preimage rather than the whole string [BBO07, Lemma A.1]. (This is closely related to the
POWF notion of [FOPS04].) We focus on the n ≥ k0 + k1 case for simplicity.

Second, restricting the associated data space to strings of length k0 ensures that the entropy
contained in the message and the random padding is encoded by the right side of the input. This
restriction is not strictly necessary to achieve security, but it allows us to appeal directly to the
OWF security of the trapdoor permutation in the analysis. It is worth noting that the associated
data is encrypted along with the message and randomizer, and that this is undesirable if the
associated data is a long string. In practice, the associated data might actually be a hash of the
associated data, but we emphasize that security is achieved only for the hash and not the associated
data itself.
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Remark. In section 6.1, we showed that F -EME-OAEP, a variant of F -OAEP, is secure against MM
attacks, but that its concrete security depends only on the entropy in the coins. Here we see that
adding an additional Feistel round yields improved concrete security against MM attacks, since we
are able to prove a bound for F -DOAEP that does take the message entropy into account. This
would be the case even without restricting the messages and associated data as we have.

Randomized-then-Deterministic. The composition of a randomized and a deterministic en-
cryption scheme suggested by Bellare et al. is defined in Figure 7. The idea is to first encrypt the
message and associated data using a randomized scheme, then encrypt the result using a determin-
istic scheme. Security appeals to the randomized scheme when the coins are uniform and appeals
to the deterministic scheme when the message-coins are only high min-entropy. The RtD[Πr,Πd]
composition has message space determined by both Πr and Πd; the associated data is the same as
for Πr.

RtD[Πr,Πd] is MMR+IND-CCA. Let PKEAD = RtD[Πr,Πd]. It is clearly IND-CPA if Πr is
IND-CPA. Bellare et al. show that PKEAD, under certain conditions, is MMR-CPA if Πd is MMR-
CPA [BBN+09, theorem 6.2]. Their argument easily extends to the CCA setting, as shown below. In
order to prove this composition works, it is necessary that the output of the randomized scheme Πr

has as much entropy as its inputs. The following property, formalized by [BBN+09], suffices for
entropy-preserving encryption.

Injective encryption. A PKEAD scheme PKEAD with associated data space AD and ran-
domness length ρ(·) is said to be injective if for every k ∈ N, (pk, sk) ∈ [PKEAD.Kgen(1k)], H ∈
AD, and (M, r), (M ′, r′) ∈ {0, 1}∗ × {0, 1}ρ(k), if (M, r) 6= (M ′, r′), then PKEAD.EncHpk(M ; r) 6=
PKEAD.EncHpk(M

′ ; r′). This gives us two useful properties: one, if the equality pattern of M and

r is distinct, then so is the equality pattern of EncHpk(M ; r); two, if 〈M, r〉 has min-entropy µ(·),
then C = EncHpk(M ; r) has min-entropy µ(·). Many schemes possess this property, including ElGa-
mal [Elg85] and OAEP [BR95].

Theorem 8 (RtD[Πr,Πd] is MMR+IND-CCA). Let Πr be an injective and randomized PKEAD
scheme with associated data space AD and randomness length ρ(·), let Πd be a deterministic PKE
scheme, and let PKEAD = RtD[Πr,Πd] as defined in Figure 7.

– (MMR-CCA) Let µ, v : N → N be functions where µ(k) ∈ ω(log k). Let A be a (µ, v, ρ)-
mmr adversary. There exists a (µ, v, 0)-mmr adversary B such that for every k, it holds that
Advmmr-cca

PKEAD (A, k) = Advmmr-cca
Πd

(B, k), where B has the same runtime as A.

– (IND-CCA) Let A be an adversary. There exists an adversary B such that for every k, it holds
that Advind-cca

PKEAD (A, k) = Advind-cca
Πr (B, k), where B has the same runtime as A.

The proof is by a simple extension of [BBN+09, Theorem 6.2]; see Appendix C.6 for details. This
result gives us a simple way to securely realize MMR+IND-CCA encryption, but we need to show
how to instantiate the deterministic scheme Πd. The same result we have for PtD applies here; if
Πd is a u-LTDF, then RtD[Πr,Πd,] is MMR-CPA for block-sources. Again, securely instantiating
MMR-CCA in the standard model remains open.

RtD[Πr, F -DOAEP] is MM+IND-CPA. As before, we consider security against MM attacks when
the deterministic scheme is F -DOAEP. MMR-CCA security is out of reach for this particular com-
position, as evidenced by an attack against the PRIV-CCA-security of RSA-DOAEP pointed out
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by [BBO07]. (Their attack can be carried out in the MM-CCA game.) Nonetheless, we show the
following:

Theorem 9 (RtD[Πr, F -DOAEP] is MM+IND-CPA). Let F be a trapdoor permutation generator
with randomness length k1(·). Let F -DOAEP be the deterministic scheme defined in Figure 7 with
parameters k0, k1, n : N→ N. Let Π be an injective PKEAD scheme with associated data space AD

and randomness length ρ(·). Let PKEAD = RtD[Π, F -DOAEP] as defined in Figure 7, where H1, H2,
and G are random oracles.

– (MM-CPA) Let µ1, µ2, v : N→ N be functions where µ2(k) ∈ ω(log k). Let A be a (µ1, v)-mm-
adversary and R be a (µ2, v, ρ)-r-source. Suppose that A makes qe queries to its LR oracle and
q1, q2, and qG to oracles H1, H2, and G respectively. Suppose that n(k) < k0(k)+k1(k) for all k.
Then there exists an adversary B such that

Advmm-cpa
PKEAD,R (A, k) ≤ qev(k)qG ·

√
δ2(k) + Advowf

F (B, k)

+ qeδ1(k) +
4qev(k) · q1qG
2µ1(k)+µ2(k)

+
4qev(k)(qG + q2)

2k0(k)
,

where δc(k) = 2ck1(k)−2c(n(k)−k0(k))+5 and timeB(k) = timeA(k)+O(log v(k)+q2 log q2 +k1(k)3).
Suppose that n(k) ≥ k0(k) + k1(k) for all k. Then there exists an adversary B such that

Advmm-cpa
PKEAD,R (A, k) ≤ qev(k) ·Advowf

F (B, k)

+
4qev(k) · q1qG
2µ1(k)+µ2(k)

+
4qev(k)(qG + q2)

2k0(k)

and timeB(k) = timeA(k) +O(log v(k) + q2 log q2).

– (IND-CPA) Let A be an IND-CPA adversary. There exists an IND-CPA adversary B such that

Advind-cpa
PKEAD (A, k) = Advind-cpa

Π (B, k) and B has the same run time as A.

The first part of the claim follows from an argument built upon the proof that RSA-DOAEP is PRIV
secure [BBO07, Theorem 5.2]. Our results differ from theirs in the following way. In the PRIV
experiment, the adversary is given the public key only after it submits its LR query. This means
that the public key has entropy from the perspective of the adversary at this point in the game.
This fact is used to bound the advantage A gets from its random oracle queries before it queries LR.
This is why the inputs to the RO in the DOAEP construction are prepended with the public key.
(See figure 7.) Because the adversary is given the public key in our setting, we must find another
way to bound this advantage. Once we have done this, however, we can use their argument directly
to obtain the claim. We refer the reader to Appendix C.7 for the full proof.
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A Coins-guessing attacks

Let PKEAD = (Kgen,Enc,Dec) be a PKEAD scheme with associated data space AD and random-
ness length ρ(·). We assume PKEAD is reasonable in the following sense: for any pk, H,M, r, if
EncHpk(M ; r) 6= ⊥, then for every M ′ such that |M ′| = |M |, it holds that EncHpk(M

′ ; r) 6= ⊥. As-

sociate to PKEAD a message length n(·) such that for every k ∈ N, (pk, sk) ∈ [Kgen(1k)], H ∈ AD,
and M ∈ {0, 1}n(k), it holds that Pr[C←$ EncHpk(M) : C 6= ⊥] = 1. Let µ1, µ2 : N → N be
functions. Let R be a (µ2, 1, ρ)-r-source. Consider the following (µ1, 1)-mm-adversary A (defined
formally in Figure 8) playing the MM-CPA game. Fix k ∈ N and let n = n(k) and ρ = ρ(k). Let
f : {0, 1}∗ × {⊥} → {0, 1} × {⊥} be a function and r ∈ {0, 1}ρ. For each b ∈ {0, 1}, the messages

ALR,Dec
f,r (1k, pk)

H ←$ AD
v

C←$ LR(H,M)
return f(C[1])

M(1k)

for each b ∈ {0, 1} do
M b[1]←$ {0, 1}n
until f(Enc(pk,H[1],M b[1]; r)) = b

return (M0,M1)

Fig. 8. Coins-guessing attack on the MM-CPA and -CCA games.

comprising M b in the output of the mm-source specified by A are uniformly sampled from a set

XH
b = {M ∈ {0, 1}n : f(EncHpk(M ; r)) = b}

for some H ∈ AD. The sets XH
0 and XH

1 are disjoint for every such H, and hence the source is
distinct. Moreover, as long as |XH

b | ≥ 2µ1(k) for sufficiently large k, then the source has min-entropy
µ1(·). This establishes that A is a valid adversary.

The adversary’s strategy is to guess the coins selected for encryption by the LR oracle. It
correctly outputs the challenge bit if it manages to guess the coins. Let r∗ be a string in the
range of R(1k) such that Pr[r←$R(1k) : r = r∗] = 2−µ2(k). (This is a sequence of coins with the
most probability mass associated to it.) By guessing these coins and selecting a predicate f which
partitions the message space roughly in half, the adversary gains advantage at least 2−µ2(k). If
µ2(k) ∈ ω(log k) (i.e., has high min-entropy), then Advmm-cpa

PKEAD,R (Af,r∗ , k) is negligible in k. Suppose

30

http://shoup.net/iso


µ2(k) 6∈ ω(log k). Then there exists a constant c such that for sufficiently large k, it holds that
µ2(k) < c · log k. Hence, the adversary’s advantage is at least k−c, which is non-negligible. Moreover,
this attack is effective even if the messages have high min-entropy.

In light of this attack, we require the coin source to have high min-entropy. We remark that one
can extend this attack to the MMR setting by having the adversary guess the public key instead
of the coins. (The adversary specifies the coins in this setting; there is no need to guess them.)
But since the key-generation algorithm is executed with uniform coins, the adversary’s advantage
is necessarily negligible.

Efficacy of coins guessing. The information leaked about the plaintexts by this attack is
non-trivial. In order to carry out the attack, the adversary specifies a predicate f of the ciphertexts
that roughly divides the message space in half: for example, the parity of the string or the least
significant bit. (The latter is a good choice for RSA-based instantiations, since this bit is hardcore
for RSA. ) As pointed out by [BBN+09], the ciphertext is non-trivial information about the message.
While the quantity f(C) is not immediately interesting on its own, the predicate could be crafted
so that it leaks information about the message corresponding to C itself.

One might argue that mounting this attack is not realistic, since it requires knowing the coins
most likely to be output by the source, and this information may notbe forthcoming. Yet the
adversary knows how the coins are generated (in particular, it knows the algorithm R) and can
sample from the source in order to gather statistics about its distribution. In fact, one could modify
the attack in Figure 8 so that adversary executes its source with coins r sampled from R(1k). One
might then consider formalizing the idea that the coins source is unknown to the adversary, and
that it is unable to sample from it. However, it is not clear that this can be done in our uniform
model of computation. Instead, one might consider the frameworks of [Kos01,RSV13].

B Table of common crypto libraries

We include a complete list of the libraries we surveyed in Table 1. This is not meant to be an
exhaustive list of all libraries available; we also did not attempt to assess which of these are the
most popular.

C Proofs

This appendix contains full proofs for theorems stated in the body, but not proven. Corresponding
figures can be found in Appendix D.

C.1 Theorem 1.

We lift the proof of [BBN+09, Theorem 5.2] to the CCA setting. Fix k ∈ N. Without loss of
generality, suppose that A makes its q queries to LR before querying PKout. Refer to the games
defined in the top panel of Figure 9 associated to integer i ∈ [0..q] and adversary A. Let Hi(A)
denote the output of the game given by the code excluding the boxed statements and H′i(A) denote
the output of the game including the boxed statements. In both games, the adversary’s LR query
is answered by first executing the message-coins source to get (M0,M1, r). The first q − i queries
are answered by encrypting vector M1 and the remaining i queries are answered by encrypting
vector M0. The difference between the games is that, in the latter, the i-th query is encrypted
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Name URL

Botan https://botan.randombit.net

BoringSSL https://boringssl.googlesource.com/boringssl

Bouncy Castle https://bouncycastle.org

cryptlib http://cryptlib.com

crypto++ https://www.cryptopp.com

go/crypto https://golang.org/pkg/crypto

Libgcrypt https://www.gnu.org/software/libgcrypt

LibreSSL https://www.libressl.org

NaCl https://nacl.cr.yp.to

OpenSSL https://www.openssl.org

PyCrypto https://www.dlitz.net/software/pycrypto

SCAPI https://scapi.readthedocs.io/en/latest

wolfSSL https://wolfssl.com

Table 1. A list of the crypto libraries surveyed for this paper.

using a different key. Let hi = Pr[Hi(A)⇒ 1 ] and h′i = Pr[H′i(A)⇒ 1 ] for each i ∈ [0..q]. First,
we observe that h0 = Pr[Expmmr-cca

PKEAD (A, k) | b = 1 ] and hq = Pr[¬Expmmr-cca
PKEAD (A, k) | b = 0 ] where

b = 1 (resp. b = 0) denotes the event that the challenge bit in A’s game is 1 (resp. 0). It follows
that

Advmmr-cca
PKEAD (A, k) = 2 · Pr[Expmmr-cca

PKEAD (A, k) ]− 1

= Pr[Expmmr-cca
PKEAD (A, k) | b = 1 ] + Pr[Expmmr-cca

PKEAD (A, k) | b = 0 ]− 1

= Pr[Expmmr-cca
PKEAD (A, k) | b = 1 ]− Pr[¬Expmmr-cca

PKEAD (A, k) | b = 0 ]

= h0 − hq =

q−1∑
i=0

(hi − h′i) +

q−1∑
i=0

(h′i − h′i+1) +

q−1∑
i=0

(h′i+1 − hi+1)

=

q−1∑
i=0

(hi − h′i) +

q∑
i=1

(h′i − hi) +

q−1∑
i=0

(h′i − h′i+1).

(1)

Refer to adversaries Di and Di defined in the bottom-left panel of Figure 9. The former is
defined by the code excluding the boxed statement and the latter is defined by the code including
the boxed statement. The difference is that the former outputs the compliment of A’s output. By
construction, we have that

hi = Pr[Expanon-cca
PKEAD (Di, k) | d = 1 ] and h′i = Pr[¬Expanon-cca

PKEAD (Di, k) | d = 0 ]

for each i ∈ [0..q − 1]. Similarly, for every i ∈ [1..q] it holds that

h′i = Pr
[
Expanon-cca

PKEAD (Di, k) | d = 1
]

and hi = Pr
[
¬Expanon-cca

PKEAD (Di, k) | d = 0
]
.

Let D be the adversary that first samples d←$ {0, 1}, then j←$ [0 +d..(q−1) +d]. If d = 1, then it
executes Dj with its own oracles; otherwise it executes Dj . Finally, when Dj (resp. Dj) outputs g,
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output d⊕ g. Then

q−1∑
i=0

(hi − h′i) +

q∑
i=1

(h′i − hi) =

q−1∑
i=0

(
Pr[Expanon-cca

PKEAD (Di, k) | d = 1 ]− Pr[¬Expanon-cca
PKEAD (Di, k) | d = 0 ]

)
+

q∑
i=1

(
Pr
[
Expanon-cca

PKEAD (Di, k) | d = 1
]
− Pr

[
¬Expanon-cca

PKEAD (Di, k) | d = 0
])

= 2q ·Advanon-cca
PKEAD (D, k).

(2)

Finally, refer to Bi in the bottom-right panel of Figure 9. By construction, we have h′i =
Pr[Expmmr-cca

PKEAD (Bi, k) | b = 1 ] and h′i+1 = Pr[¬Expmmr-cca
PKEAD (Bi, k) | b = 0 ] for each i ∈ [0..q − 1].

Let B be the adversary that first samples j←$ [0..q − 1], then executes Bj . Then

q−1∑
i=0

(h′i − h′i+1) =

q−1∑
i=0

(
Pr[Expmmr-cca

PKEAD (Bi, k) | b = 1 ]

− Pr[¬Expmmr-cca
PKEAD (Bi, k) | b = 0 ]

)
= q ·Advmmr-cca

PKEAD (B, k).

(3)

Putting together equations (1), (2), and (3) yields the claim.

C.2 Theorem 3.

Refer to the games Hb and H′b defined in Figure 10 and parameterized by b ∈ {0, 1}. The latter
is defined by the code including the boxed statements. The difference between them is that in the
latter, the LR query is answered using pk1 instead of pk0. First, there exists an adversary A′ such
that

Advmm-cca
PKEAD,R(A′, k) = Pr[H1(A′)⇒ 1 ]− Pr[H0(A′)⇒ 1 ]. (4)

It simply executes A on its own inputs and with access to its own oracles. Next, let A′ be an
adversary and let hb = Pr[Hb(A′)⇒ 1 ] and h′b = Pr[H′b(A′)⇒ 1 ]. Then (h1 − h0) = (h1 − h′1) +
(h′1 − h′0) + (h′0 − h0). Refer to adversary Db defined in the bottom-left panel of Figure 10 and
parameterized by b ∈ {0, 1}. Suppose without loss of generality that A′ queries PKout′ only after
it queries LR′. Let p(x′, y′, d′) denote the probability that adversary D0 outputs d′ given that
x = x′, y = y′, and d = d′ where d denotes the challenge bit in D0’s game. Then

Advanon-cca
PKEAD (D0, k) = 2 · Pr[Expanon-cca

PKEAD (D0, k) ]− 1

= Pr[Expanon-cca
PKEAD (D0, k) | d = 1 ]

+ Pr[Expanon-cca
PKEAD (D0, k) | d = 0 ]− 1

4 ·Advanon-cca
PKEAD (D0, k) + 4 = p(1, 1, 1) + p(1, 0, 1) + p(0, 1, 1) + p(0, 0, 1)

+ p(1, 1, 0) + p(1, 0, 0) + p(0, 1, 0) + p(0, 0, 0).

(5)

By construction, it holds that h′0 = p(1, 1, 1) = p(1, 0, 0) and (1 − h0) = p(0, 0, 1) = p(0, 1, 0).
Moreover, we have that p(0, 1, 1) = 1− p(0, 0, 0) and p(1, 1, 0) = 1− p(1, 0, 1). Putting this together
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with the previous equation yields

4 ·Advanon-cca
PKEAD (D0, k) + 4 = 2h′0 − 2(1− h0) + 2

2 ·Advanon-cca
PKEAD (D0, k) = h′0 − h0.

(6)

By a similar argument, we have that 2·Advanon-cca
PKEAD (D1, k) = h1−h′1. Next define D as the adversary

which flips a coin b←$ {0, 1}, executes Db, and returns whatever it outputs. It follows that

(h1 − h′1) + (h′0 − h0) = 4 ·Advanon-cca
PKEAD (D, k). (7)

To conclude the proof, we bound the quantity (h′1 − h′0) with adversary B defined in the bottom-
right panel of figure 10. Again, we assume that A′ first queries LR′ before it queries PKout′. By
construction, we have that

h′1 − h′0 = Advmmr-cca
PKEAD (B, k). (8)

Putting together equations (4), (7) and (8) yields the claim.

C.3 Theorem 5

First, by Theorem 2, there exists a (µ1, v)-mm-adversary A1 that makes one LR query such that
Advmm-cca

PKEAD,R(A, k) ≤ qe ·Advmm-cca
PKEAD,R(A1, k). We bound A1’s advantage in the remainder.

We argue by game-rewriting, beginning with Expmm-cca
PKEAD,R(A1, k) and ending with a game simu-

lated by POWF adversary B, which we specify. After each revision, we bound the advantage of A1

in distinguishing between neighboring games.
Fix k ∈ N and let n = n(k), ρ = ρ(k), τ = τ(k), µ2 = µ2(k), v = v(k), and m = m(k). Note

that the encryption algorithm outputs ⊥ only if the pad(M) = ⊥, where M is the input message.
This occurs if the length of M is greater than m − τ − 8 or is not a multiple of 8 (encryption is
defined over byte strings.) In the remainder, we assume the source specified by the adversary’s LR
outputs string in the induced message space. This is without loss of generality, since otherwise the
query would reject.

In the following, let Advi(A1, k) = 2 · Pr[Gi(A1, k) ] − 1 for integer i. Refer to the top panel
of Figure 11. Game G0 is defined by the code including the statements in red, but excluding
the statements in green. This is just the MM-CCA game instantiated with PKEAD, and thus
Advmmr-cca

PKEAD,R (A1, k) = Adv0(A1, k).
Refer to game G1 in the same panel. It is defined by the code including the statements in green,

but excluding the statements in red. In this step, the calls to G by the LR oracle are removed.
Instead, the outputs of G corresponding to each ri are generated in advance of the LR query. If
the adversary manages to guess ri for some i ∈ [v] and asks G(ri), then it is given the correct
output in response. Since this amounts to only a syntactic (and not a semantic) change, we have
that Adv0(A1, k) = Adv1(A1, k).

Now refer to the bottom-left panel of Figure 11. Game G2 is defined by the code excluding the
statements in red. We claim that the outputs of G1(A1, k) and G2(A1, k) are identically distributed
up to the setting of flag bad1. Suppose that G1(A1, k) never sets bad1. Then from the perspective of
the adversary, the value Ai, and hence X1 = X0 ⊕ Ai, is a uniform-random string for each i ∈ [v].
The same is true if G2(A1, k) never sets bad1, except in this case we simply let X1 = Ai. Since
source R has min-entropy µ2(·), it holds that Pr[G1(A1, k) sets bad1 ] ≤ v(qG + qd)/2

µ2 . Applying
the fundamental lemma of game-playing [BR06], we conclude that

Pr[G1(A1, k) ]− Pr[G2(A1, k) ] ≤ v(qG + qd)/2
µ2 . (9)

34



As usual, game G3 (top panel of Figure 12) is defined by the code including the green statements
and excluding the red ones. Similar to the rewriting of G1, we change the code so that the outputs
of H2 corresponding to each Ai are generated in advance of the LR query. We modify the H2 oracle
so that the adversary’s queries are consistent. We have that Adv2(A1, k) = Adv3(A1, k).

Game G4 is defined by the revisions in the bottom-right panel of Figure 11. This game excludes
the statements in red. By an argument similar to the one closing the gap between games G1 and G2,
it follows that games G3 and G4 are identical until the flag bad∗ is set. Thus,

Pr[G3(A1, k) ]− Pr[G4(A1, k) ] ≤ Pr[G3(A1, k) sets bad∗ ] . (10)

Note that Pr[G4(A1, k) ] = 1/2, since its oracle queries are independent of the challenge bit. The
reduction will relate the advantage of our OWF adversary B to the probability that bad∗ gets set.
But first, we need to attend to the decryption oracle.

We rewrite the decryption oracle (similar to the reduction of Fujisaki et al. [FOPS04]) so that
it can be computed without having the trapdoor. This makes it possible for B to simulate A1’s
decryption queries, since it is given f , but not f−1. Game G5 (bottom panel of Figure 12) is
defined by the code including the statements in green, but excluding the statements in red. The
only semantic change is the condition under which the decryption oracle rejects. On input (H,C),
instead of checking if H1(H) = T , it checks if T was ever output by a prior query to H1. More
precisely, if there exists a string H∗ such that T1[H∗] = T , then it accepts; otherwise it rejects. This
subsumes the prior condition, since in the line above, the oracle is queried on H. Since each H1(H∗)
is a uniform-random, τ -bit string for each such H∗, the probability that this condition holds for a
particular query (H,C) is at most (q1 + qd)/2

τ . Summing over all queries to Dec, we have that

Pr[G4(A1, k) ]− Pr[G5(A1, k) ] ≤ qd(q1 + qd)/2
τ . (11)

Refer now to the top-left panel of Figure 13. Game G6, defined by the code including the
statement in green, differs only in the action taken after setting bad5. The flag gets set if for
some query Dec(H,C), the integrity check succeeds, but the corresponding input to oracle G was
undefined. If this occurs, then the revised oracle outputs ⊥. The probability that these conditions
occur is at most the probability that the integrity check succeeds given that the input to G was
undefined. In this case, the string X0 is a uniform-random string, and the probability that H1(H) =
T , where T is the last τ bits of X0, is at most 1/2τ . Summing over all decryption queries, the
probability that bad6 gets set is at most qd/2

τ . Then

Pr[G5(A1, k) ]− Pr[G6(A1, k) ] ≤ qd/2τ . (12)

Next, game G7 (top-right panel of Figure 13) is defined by the code including the statement
in green. Similar to the prior revision, the game is identical to G6 up to the setting of bad6. This
happens if A1 ever asks (H,C) of Dec and the integrity check succeeds, the corresponding input
to G is defined (bad′5 not set), but the input to H2 is undefined (bad′6 set). If these conditions hold,
then the revised oracle returns ⊥. Since the adversary did not guess the input to H2, string Y0 is
uniformly distributed and its preimage is unknown to the adversary. Then probability that TG[Y0]
is defined is bounded by the probability that G was previously invoked on Y0, which is at most
(qd + qG)/2ρ. Summing over all decryption queries, the probability that bad5 gets set is at most
qd(qd + qG)/2ρ ≤ (qG + qd)

2/2ρ, and

Pr[G6(A1, k) ]− Pr[G7(A1, k) ] ≤ (qG + qd)
2/2ρ . (13)
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This concludes our revisions of the decryption oracle.
We now exhibit a POWF adversary, which simulatesA1 playing G7. Refer to adversary B defined

in the bottom panel of Figure 13. Adversary B is given as input (1k, f, y), where presumably y = f(x)
for some x ∈ {0, 1}n. It executes A1 on input (1k, 〈f〉) with simulated oracles LR′ and Dec′, which
we define in a moment. After A1 finishes interacting with its oracles and outputs a bit, adversary B
chooses at random a string x′ from the set of A1’s queries to its H2 oracle. Finally, it outputs x′.
Adversary B flips a coin b before executing A1.

On input (H,M), oracle LR′ computes a sequenc C where each Ci = f(P ‖ [0]) for a randomly
chosen (n − 8)-bit string P . It chooses a random j ∈ [v] and replaces Cj with its own input y.
Finally, it outputs C. The simulation is perfect as long as the last 8 bits of x = f−1(y) are 0.
Since x is a uniform-random string in the POWF experiment, this occurs with probability 2−8.
This will incur a penalty in the concrete security bound. (Note that this loss is observed in the
standard [MKJR16].)

On input (H,C), oracle Dec′ checks to see if the corresponding plaintext is known to A1 by
checking to see if the ciphertext can be reconstructed from its random oracle queries. This similar
to the plaintext extractor described by [FOPS04], but we must also check A1’s prior queries to H1.
Let Q1 denote the set of queries to oracle H1, QG to oracle G, and Q2 to oracle H2. For each
pair (A,B) ∈ QG × Q2, let U = G(A) ⊕ B and V = H2(B) ⊕ A. If f(B ‖V ‖ [0]) = C and there
exists a string H∗ ∈ Q1 such that H1(H∗) = T , where T is the last τ bits of U , then return the
corresponding plaintext; otherwise return ⊥. This perfectly simulates the Dec oracle in game G7

since we rewrote the oracle to output ⊥ if the adversary never queried its oracles the values that
would otherwise be output by the decryption oracle.

Let x = f−1(y), where y denotes B’s input. Adversary B wins only if adversary A1 asks x′ of
its H2 oracle where x′ is the m-bit prefix of x. This occurs only if bad∗ gets set. Since B’s simulation
is perfect with probability 2−8, string x′ was chosen from Q2 uniform-randomly, and j was chosen
uniform-randomly from [v], we have that

Advpowf
F,m (B, k) ≥ 1

256vq2
· Pr[G7(A1) sets bad∗ ] . (14)

Let pi = Pr[Gi(A1, k)], bi = Pr[Gi(A1, k) sets badi], and b∗i = Pr[Gi(A1, k) sets bad∗]. First, observe
that the probabilities that G7(A1, k) and G6(A1, k) set bad∗ are equal if bad5 does not get set.
Hence,

b∗7 ≥ b∗6(1− b6) = b∗6 − b∗6b6
≥ b∗6 − b∗6b6 − (1− b∗6)b6

= b∗6 − b6 ≥ b∗6 − (p6 − p7) .

Similarly for b∗6 and b∗5. Applying equations (11), (12), (13), and (14) yields

256vq2 · Advpowf
F,m (B, k)b∗7 ≥ b∗6 − (p6 − p7)

≥ b∗5 − (p5 − p6)− (p6 − p7)

≥ b∗4 − (p4 − p5)− (p5 − p6)− (p6 − p7)

≥ Pr[G3(A1, k) sets bad∗ ]− (qd + 1)(qd + q1)

2τ
− (qG + qd)

2

2ρ

≥ Pr[G3(A1, k) sets bad∗ ]− (q1 + qd)
2

2τ
− (qG + qd)

2

2ρ
.
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Applying equations (9) and (10) yields the bound:

256vq2 · Advpowf
F,m (B, k) ≥ p3 − p4 −

(q1 + qd)
2

2τ
− (qG + qd)

2

2ρ

≥ p2 −
1

2
− (q1 + qd)

2

2τ
− (qG + qd)

2

2ρ

≥ p1 −
v(qG + qd)

2µ2
− 1

2
− (q1 + qd)

2

2τ
− (qG + qd)

2

2ρ

≥ Pr[G0(A1, k) ]− v(qG + qd)

2µ2
− 1

2
− (q1 + qd)

2

2τ
− (qG + qd)

2

2ρ

=
1

2
Advmm-cca

PKEAD,R(A1, k)− v(qG + qd)

2µ2
− (q1 + qd)

2

2τ
− (qG + qd)

2

2ρ
.

To complete the proof, we need only to comment on the runtime of B. Simulating the LR and ROi

oracles needs only constant overhead whereas iterating over all prior H1, G, and H2 queries requires
O(q1qGq2) time for each Dec query. It follows that timeB(k) = timeA(k) +O(gdq1qGq2).

C.4 Theorem 6

MMR-CCA security. Without a loss of generality we assume that A does not repeat its hash
and decryption queries and also that it does not repeat M in its LR oracle queries. Again, we
consider a sequence of games, which we present in Figures D and D. We will justify the following:

Pr [Expmmr-cca
HE (A, k)⇒ true]

= Pr[G0 ⇒ true] (15)

≤ Pr[G1 ⇒ true] + Pr[G1 sets bad1] (16)

= Pr[G2 ⇒ true] + Pr[G2 sets bad1] (17)

= Pr[G3 ⇒ true] + Pr[G3 sets bad1] (18)

≤ Pr[G4 ⇒ true] + Pr[G4 sets bad1] + Pr[G4 sets bad2] (19)

≤ Pr[G4 ⇒ true] + Pr[G4 sets bad1] +
qd

2kP
(20)

≤ Pr[G5 ⇒ true] + Pr[G5 sets bad1] + Pr[G5 sets bad3] +
qd

2kP
(21)

= Pr[G6 ⇒ true] + Pr[G6 sets bad1] + Pr[G6 sets bad3] + Pr[G6 sets bad4] +
qd

2kP
(22)

≤ Pr[G7 ⇒ true] + Pr[G7 sets bad1] + Pr[G7 sets bad3] + Pr[G7 sets bad4]

+
qd + q2v2(k)

2kP
(23)

≤ Pr[G7 ⇒ true] + Pr[G7 sets bad1] + v(k)q(AdvowfF (B, k) + AdvauthAEAD (D, k))

+
qd + q2v2(k)

2kP
(24)

≤ Pr[G8 ⇒ true] + Pr[G8 sets bad1]

+ 2v(k)q(AdvowfF (B, k) + Advind−cpaAEAD (C, k) + AdvauthAEAD (D, k)) +
qd + q2v2(k)

2kP
(25)
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≤ 1/2 + Pr[G8 sets bad1] + 2v(k)q(AdvowfF (B, k) + Advind−cpaAEAD (C) + AdvauthAEAD (D))

+
qd + q2v2(k)

2kP
(26)

≤ 1/2 + Pr[G9 sets bad1] + Pr[G9 sets bad5]

+ 2v(k)q(AdvowfF (B, k) + Advind−cpaAEAD (C) + AdvauthAEAD (D)) +
qd + q2v2(k)

2kP
(27)

≤ 1/2 + Pr[G9 sets bad1] + 2v(k)q(AdvowfF (B, k) + Advind−cpaAEAD (C, k) + AdvauthAEAD (D))

+
qd + q2v2(k)

2kP
+
qd
2r

(28)

= 1/2 + Pr[G9 sets badb1 ∨G9 sets bada1 ]

+ 2v(k)q(AdvowfF (B, k) + Advind−cpaAEAD (C) + AdvauthAEAD (D)) +
qd + q2v2(k)

2kP
+
qd
2r

(29)

≤ 1/2 + Pr[G10 sets badb1] + Pr[G10 sets bada1 ]

+ 2v(k)q(AdvowfF (B, k) + Advind−cpaAEAD (C) + AdvauthAEAD (D)) +
qd + q2v2(k)

2kP
+
qd
2r

(30)

≤ 1

2
+
qH1

2r
+

(qH1 + q2v(k))

2µ
+
qd + q2v2(k)

2kP
+
qd
2r

+ v(k)q(AdvowfF (B, k) + Advind−cpaAEAD (C) + AdvauthAEAD (D)) . (31)

Game G0 is like experiment Expmmr-cca
PKEAD (A, k). Recall that hashes are modeled as random

oracles, which means that there are extra procedures H1,H2 that need to be called whenever
an algorithm of the scheme or the adversary have to compute a hash value. Also note that in
Expmmr-cca

PKEAD (A, k) the value X is picked at random according to the encryption algorithm. G0,
however gets X by running M. This models that the randomness source may be corrupted, and
does not really change the distribution of the outputs. This justifies Equation (15).

Game G1 is like G0 except it sets the flag bad1 when the answer to a query H1 on some
〈f∗ ‖R∗, H∗, X∗,M∗〉 is already defined (i.e., the same input was queried before) and the queried
public key matches the public key in the experiment, i.e. R∗ = R, f∗ = f . Notice that unless G1

sets bad1, the output distribution of it is the same as that of G0. By the fundamental lemma [BR06],
we have Equation (16).

Game G2 is like G1 except that KP is picked uniformly at random. This does not change the
distribution of the output of the game, because the absence of the “crucial” random oracle query
described in G1 insures that KP is independent from the view of A. This justifies Equation (17).

Game G3 differs from G2 only in how the decryption queries are answered. If C∗1 in the attacker’s
decryption query is new, in that it is different from the asymmetric parts of all challenge ciphertexts,
and random oracle query H1 with result y has been made so that f(y) = C∗1 , then then the queried
ciphertext is decrypted without knowing the secret key f−1, as shown in G3. This change does not
affect the output distribution of the game, since the ciphertexts are still decrypted as they should.
This justifies Equation (18).

Game G4 is like G3 but there is an extra modification to the decryption oracle. If C∗1 in the
attacker’s decryption query is new, in that it is different from the asymmetric parts of all challenge
ciphertexts, and no random oracle query H1 with result y has been made so that f(y) = C∗1 , then
the ciphertext is rejected and the event bad2 is set if the queried ciphertext is valid. Notice that the
changes do affect the distributions of the output of the games G4 and G3, unless a valid ciphertext
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has been rejected. But without the aforementioned hash query, the ciphertext can only be valid if A
guessed the output of the hash, which can happen with probability at most qd/2

kP . This Equations
(19) and (20).

Game G5 is like G4 but it sets the event bad3 if A queries H2 on 〈f∗ ‖R∗, H∗,K∗P 〉, where K∗P
has been used by the encryption algorithm as the input to f , and R∗ = R, f∗ = f . Unless bad3 is
set, the distributions of the outputs of the games are the same. This justifies Equation (21).

Game G6 is like G5 but it sets the event bad4 and rejects if the asymmetric part of the ciphertext
queried to the decryption oracle Dec is the same as the asymmetric part of one of the challenge
ciphertexts returned by the LR oracle, and the whole ciphertext is valid. Note that according to
the decryption algorithm of the scheme, the former condition guarantees that H2 query is repeated.
I.e., the decryption oracle calls H2 on 〈f∗ ‖R∗, H∗,K∗P 〉, where K∗P has been used by the encryption
algorithm as the input to f , and R∗ = R, f∗ = f . We claim that unless bad4 is set, the distributions
of the outputs of the games G6 and G5 are the same. The only difference is that a valid ciphertext
with “old” asymmetric part is rejected. This justifies Equation (22).

Game G7 is like G6 but K is picked uniformly at random for each query. This does not change
the distribution of the output of the game, because the absence of the “crucial” random oracle
and decryption oracle queries described in G6 insures that K is independent from the view of
A. In addition, the game sets bad if, while encrypting any message, the associated data and the
asymmetric part C1 of the ciphertext repeat. Note that this implies the repeating N as it is derived
from the pair using the extract function. Since C1 is computed by applying f to a randomly chosen
Kp we can bound the probability of bad by using the birthday bound q2v2(k)/2kP+1. This justifies
Equation (23).

At this point we bound the probabilities that G7 sets bad3 and bad4. Notice that either bad3 or
bad4 comes first (they cannot happen at the same time). Therefore, we first bound the probability
of bad3 in the absence of bad4 and vice versa.

So assume event bad3 happens (and bad4 did not happen prior to that.) We have that A at
some point queries H2 on 〈f∗ ‖R∗, H∗,K∗P 〉, where K∗P has been used as the input to f during
the challenge ciphertexts calculation, and R∗ = R, f∗ = f . In this case, we can construct the
one-wayness adversary B for F . B is given (f, y) as input. B would simulate G7 for A according
to the game’s description, except that B would provide its own challenge f as part of A’s public
key and the following change. At the beginning, B picks an index j at random from the number
of LR queries A makes, and an index l at random from the number of messages in A queries. To
simulate l’s ciphertext C1 in j’s LR query (with some H ′), B uses its own challenge y. Note that
B cannot decrypt a decryption query y ‖C∗2 , for any C∗2 , by computing y−1(C∗1 ), since it does not
have the corresponding secret key. In this case, B simply rejects. This is fine, since the absence
of bad3 means such a decryption query cannot be valid. Notice that B does not need the secret
key to decrypt decryption queries C∗1 ‖C∗2 , where C∗1 is new in that it does not coincide with the
asymmetric parts of any challenge ciphertext and C∗2 is arbitrary. From G3 and G4 we know that
the random oracle query H1 with result h has been made so that f(h) = C∗1 (verifying this only
needs knowledge of f), so B can use h to decrypt the ciphertext. Moreover, B does not need the
secret key to decrypt decryption queries C∗1 ‖C∗2 , where C∗1 is part of some challenge ciphetext and
C∗1 6= y. This is because B picked Kp such that f(Kp) = C∗1 by itself. Finally, whenever A makes
the crucial H2 query containing K ′P , then B can output K ′P . Since j, l are independent from A’s

view, we have the upper bound on the probability of bad3 as v(k)qAdvowfF (B, k) .
Now we consider the case when event bad4 happens (and bad3 did not happen prior to that.)

This means that A queried the decryption oracle Dec on a ciphertext whose asymmetric part is
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the same as the asymmetric part of one of the challenge ciphertexts returned by the LR oracle,
and the whole ciphertext is valid. The absence of bad3 guarantees that the keys for the symmetric
AEAD scheme are chosen at random during encryption. In this case, we can construct an adver-
sary D breaking authenticity of the AEAD scheme. D can simulate the game according to the
description, except it will use its own encryption oracle to simulate a (random) one of the challenge
ciphertexts (the symmetric part) for A. To answer each decryption query (H∗, C∗1 ‖C∗2 ) made by
A, where (H∗, C∗1 ‖C∗2 ) is new, but C∗1 is old, D will query its own special decryption oracle on
(extract(〈H∗, C∗1 〉), H∗, C∗2 ). If it returns 0, then D rejects. If it returns 1, then D wins, since we
know that either H∗ or C∗2 is new. Note that the rest of the decryption queries can be answered
according to the game description, as D knows all the symmetric decryption keys. Hence Equation
(24) follows.

Game G8 is like G7 but all messages are picked uniformly at random. The difference between
the probabilities of games G8 and G7 returning 1 can be upper-bounded by v(k)qAdvind−cpaAEAD (C, k)
for some C attacking ind-cpa security of the AEAD scheme. The reduction relies on the fact that
the keys for AEAD are picked independently from A’s view. We would actually construct a multi-
user C′ who would be given multiple left-right encryption oracles to simulate all LR queries by A.
The bound follows from the relation between the single-user and multi-user security of encryption.
The decryption queries are answered as they should according to the game description. Note that
the only problem could have been to answer the decryption queries corresponding to the secret
symmetric keys underlying the ciphertexts created by the LR oracle of C′. This could have came
up if A made a decryption oracle query C∗1 ‖C∗2 where C1 equals to one of the asymmetric parts of
A’s challenge ciphertexts simulated by C′. But this situation is excluded by bad4 set by G6. Also
note that C′ is nonce-respecting, since the absence of bad in G7 ensures that pairs (H,C1) do not
repeat, and this implies that IVs do not repeat.

Similarly, the difference between the probabilities of games G8 and G7 setting bad1 can be upper-
bounded by v(k)qAdvind−cpaAEAD (C, k) for some C′ attacking ind-cpa security of the AEAD scheme. C′
is constructed similarly to C′, except it returns 1 if bad1 is set and 0 otherwise. The above justifies
Equation (25). The factor of 2 is coming from from the standard argument, when considering two
adversaries.

The probability that game G8 returns 1 (A has guessed the challenge bit correctly) is at most
1/2, because the view of A is independent from the challenge bit b. Thus we get Equation (26).

Game G9 is like G8 but there is an extra modification to the decryption oracle. G9 sets event bad5

and rejects if A makes a decryption query C∗1 ‖C∗2 , C∗1 is new in that it was not part of any challenge
ciphertext, the public key has not been released, but the hash query H2 on 〈f∗ ‖R∗, H∗,K∗P 〉, where
f(K∗P ) = C∗1 , and R∗ = R, f∗ = f has been made. Notice that the choice of R in the public key
is independent of all hash queries made before the public key is revealed and badb1 is set. Also, in
all cases when the public key is not released and different from those setting bad5, the decryption
oracle rejects, so the answers of the decryption oracle do not leak any information about the public
key. Hence to set bad5 the attacker must have guessed R in the public key, which can happen with
probability at most qd/2

r. This justifies Equations (27) and (28).
It only remains to bound the probability that G9 sets bad1. The event is set when the answer to a

query H1 is already defined. The analysis is similar to that of the proof of Theorem 6.1 of [BBN+09].
There the decryption oracle queries are not considered, but in our case the decryption oracle does
not make H1 queries. We consider the cases when the crucial H1 query is made before and after
the public key is revealed. More precisely, we consider two sub-cases of event bad1. We say that
badb1 is set if a collision occurs before the public key is revealed, and bada1 is set after the public
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key is revealed. Game G10 is like G9, but it specifies these sub-cases. Hence we have Equation (29)
and (30).

Let us first look at badb1, which is set if a collision occurs before the public key is revealed. This
can happen ifM or A makes a query to H1 oracle before the public key is released, and this query
contains the public key f ‖R. We observe that the choice of R is independent of all hash queries
made before the public key is revealed and badb1 is set. Also, all query responses are independent
of the outputs of M. It is important that in G9 the decryption oracle answers do not leak any
information about the public key before the public key is released (as all decryption oracle queries
are rejected). Therefore, to set badb1 the attacker must have guessed R in the public key, which can
happen with probability at most qH1

/2r.
We note that, similarly to [BBN+09], we could also consider anonymity of F to bound the at-

tacker’s ability to guess the public key. But since our instantiation for F , the RSA, is not anonymous,
we omit this option from our analysis.

If the attacker makes the crucial query after it learned the public key, we have to bound the
probability of the event that a query of A to H1 collides with a prior query done byM or two queries
done by M collide. We are mainly interested in colliding M and X parts of the queries. Note that
A does not learn the coins the source is run on and recall our assumptions that A does not repeat
hash queries and sources in its LR queries. Following the proof of Theorem 6.1 of [BBN+09] we
have

Pr[G10 sets bada1 ] ≤
∑

1≤u≤q

qH1
+ (q − 1)v

2µ
≤ (qH1

+ q2v)

2µ
.

This justifies Equation (31).

IND-CCA security. The proof of IND-CCA security is similar to (and simpler than) the above
proof of MMR-CCA security, so we omit some details. Again, we consider a sequence of games
associated with A.

G0 is the “find-then-guess” IND-CCA experiment, where a random bit is flipped, the adversary
is given the public key and the left-right encryption oracle and the decryption oracle. The former
oracle takes inputs an associated data and two messages of equal length, and returns encryption
of the message determined by the challenge bit. The latter oracle takes and associated data and a
ciphertext and returns the decryption, unless the ciphertext was previously returned by the left-
right encryption oracle for the associated data. The game returns 1 iff A correctly guesses the
challenge bit.

G1 is different in that it sets event bad1 if the answer to a random oracle query H1 contains the
public key and is already defined (i.e., the same input was queried before. Recall that we assume
that the adversary does not repeat queries. Observe that to make such random oracle query the
adversary should guess the (perfect) randomness X, and this can happen with probability at most
qH1

/2ρ(k).
G2 sets Kp at random. In the absence of the crucial H1 query this does not change the view of

the adversary and the distribution of the game’s output.
G3 sets bad2 if A queries random oracle H2 on an input containing the public key and Kp, where

K∗P has been used by the LR encryption oracle as the input to f .
G4 sets K at random. If G4 sets bad2, we can construct an adversary B breaking one-wayness

of F . The construction is basically the same as in the proof of MMR-CCA security of the scheme.
B is given (f, y) and simulates G4 for A. In particular, B picks an index at random and plugs in its
challenge y as the asymmetric ciphertext part of the reply to corresponding left-right encryption

41



query by A. To answer a decryption oracle query (H∗, C∗1 ‖C∗2 ) without the knowledge of the secret
key, B does the following. If C∗1 is new in that it was not part of any challenge ciphertext, then B
can decrypt the ciphertext without the secret key, if a query H2(pk,H∗,Kp) has been made and
f(Kp) = C∗1 . In this case B can use the result of this query as the key for AEAD. If no such query
has been made, then B rejects. A valid ciphertext can be rejected this way only with probability at
most qd/2

kP .
If C∗1 6= y and is old in that it was part of some challenge ciphertext, then B can properly

decrypt. If C∗1 = y then B rejects and in case a valid ciphertext is rejected, we can construct an
adversary breaking authentication of the AEAD. Again, this is for simplicity, as B could properly
decrypt the ciphertext even in this case.

In G5 random messages are encrypted. To bound the difference between G5 and G4 we can con-
struct an IND-CPA adversary for AEAD. Similar to the proof for MMR-CCA, bound qv(k)/2kP−1

is needed to ensure that the adversary is nonce-respecting. Clearly, G5 outputs 1 with probability
at most 1/2 as the challenge bit is independent from the view of A.

Following the justifications similar to those of MMR-CCA proof, we can argue that

Advind-cca
HE (A, k) ≤ 2v(k)q(AdvowfF (B, k) + Advind−cpaAEAD (C, k) + AdvauthAEAD (D, k))

+
qH1

2ρ(k)−1
+
qd + qv(k)

2kP−1
.

C.5 Theorem 7

We prove that this scheme is MM-CCA; its IND-CCA security follows from a nearly identical
argument. By Theorem 2, there exists a (µ1, v)-mm-adversary A1 that makes one LR query such
that Advmm-cca

PKEAD,R(A, k) ≤ qe ·Advmm-cca
PKEAD,R(A1, k). We bound A1’s advantage in the remainder.

Fix k ∈ N and let µ1 = µ1(k), µ2 = µ2(k), v = v(k), n = n(k), k0 = k0(k), k1 = k1(k), and
ρ = ρ(k). Note that encryption rejects (outputs ⊥) only if padn−k0(〈M, r〉) = ⊥ or |H| 6= k0. In the
following, we assume that A1’s LR query is a pair (H,M) where for |H[i]| = k0 for each i and
for each M b[i] in the output of M, it holds that padn−k0(〈M b[i], r〉) 6= ⊥, where r is a ρ-bit string
output by R. This is without loss of generality, since otherwise the oracle would reject.

We argue by game rewriting, beginning with the MM-CCA game instantiated with PKEAD, R,
and A1, and ending with a game simulated by the OWF adversary B, which we specify. In the
following, let Advi(A1, k) = 2 · Pr[Gi(A1, k) ]− 1. If badi is a flag, then let badi denote the event
that Gi(A1, k) sets badi.

First, refer to game G0 in the bottom panel of Figure 16. It is defined by the code including the
red statements and excluding the green statements. This is exactly the experiment Expmm-cca

PKEAD,R(A1, k),
and so Advmm-cca

PKEAD,R(A1, k) = Adv0(A1, k). Game G1 (in the same panel) is defined by the code in-
cluding the green statements and excluding the red statements. This game is revised so that the
random oracle queries invoked by the LR oracle are replaced by random strings generated on the
fly. The random oracles are instrumented so that its outputs are consistent with these values. This
is only a syntactic change, and so Adv0(A1, k) = Adv1(A1, k). In the next step, this revision will
allow us to bound the advantage the adversary gets from its random oracle queries before making
its LR query.

Refer to G2 defined in the bottom-left panel of Figure 17. It is identical to G1 until at least
one of bad1,1, bad1,2, or bad1,3 is set. Let bad1,i denote the event that G1(A1, k) sets bad1,i. Then
Pr[G1(A1, k) ] − Pr[G2(A1, k) ] ≤ Pr[ bad1,1 ] + Pr[ bad1,2 ] + Pr[ bad1,3 ]. We upper bound each
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of these probabilities in turn. But first, let us consider the dependencies between each of these
probabilities.

Pr[bad1,2] = Pr[ bad1,2 | bad1,1 ]Pr[ bad1,1 ] + Pr
[
bad1,2 | bad1,1

]
Pr
[
bad1,1

]
= Pr[ bad1,2 | bad1,1 ]Pr[ bad1,1 ]

+ Pr
[
bad1,2 | bad1,1

]
− Pr

[
bad1,2 | bad1,1

]
Pr[ bad1,1 ]

≤ Pr[ bad1,2 | bad1,1 ]Pr[ bad1,1 ] + Pr
[
bad1,2 | bad1,1

]
≤ Pr[ bad1,1 ] + Pr

[
bad1,2 | bad1,1

]
.

Next, notice that Pr[ bad1,3 ] =
∑
A Pr[ bad1,3 |A ]Pr[A ] , where A is one of

{bad1,2 ∩ bad1,1, bad1,2 ∩ bad1,1, bad1,2 ∩ bad1,1, bad1,2 ∩ bad1,1} .

First, Pr[ bad1,2 ∩ bad1,1 ] = Pr[ bad1,2 | bad1,1 ]Pr[ bad1,1 ] ≤ Pr[ bad1,1 ]. Second, Pr
[
bad1,2 ∩ bad1,1

]
=

Pr
[
bad1,2 | bad1,1

]
Pr[ bad1,1 ] ≤ Pr[ bad1,1 ]. Third,

Pr
[
bad1,2 ∩ bad1,1

]
= Pr

[
bad1,2 | bad1,1

]
Pr
[
bad1,1

]
= Pr

[
bad1,2 | bad1,1

]
(1− Pr[ bad1,1 ])

≤ Pr
[
bad1,2 | bad1,1

]
.

Thus, Pr[ bad1,3 ] ≤ 2Pr[ bad1,1 ]+Pr
[
bad1,2 | bad1,1

]
+Pr

[
bad1,3 | bad1,2 ∩ bad1,1

]
. Summing this all

together, we have

Pr[G1(A1, k) ]− Pr[G2(A1, k) ] ≤ 4Pr[ bad1,1 ] + 2Pr
[
bad1,2 | bad1,1

]
+

+ Pr
[
bad1,3 | bad1,2 ∩ bad1,1

]
.

Consider the probability that bad1,1 get set. This occurs if for some i ∈ [v], the adversary manages
to guess the input pk ‖Xr[i] to oracle H1, where Xr[i] is a string corresponding to its future LR
query. Since Xr[i] encodes both the message and coins, and M and R have min entropy µ1(·)
and µ2(·) respectively, this occurs with probability at most v/2µ1+µ2 . Summing over all of A1’s H1

and Dec queries (since Dec invokes H1), we have that Pr[ bad1,1 ] ≤ v(q1 + qd)/2
µ1+µ2 .

Next, we bound the second term. If bad1,1, then for every i ∈ [v], string r1[i] is a uniform-
random, k0-bit string. Thus, the probability that the adversary guesses the input pk ‖S0[i] to
G before making its LR query is at most v(qG + qd)/2

k0 , since S0[i] = r1[i] ⊕ X`[i]. Hence,
Pr
[
bad1,2 | bad1,1

]
≤ v(qG + qd)/2

k0 .

Finally, a similar argument yields Pr
[
bad1,3 | bad1,2 ∩ bad1,1

]
≤ v(q2 + qd)/2

k0 . We conclude
that

Pr[G1(A1, k) ]− Pr[G2(A1, k) ] ≤ 4v(q1 + qd)

2µ1+µ2
+

2v(qG + qd) + v(q2 + qd)

2k0
. (32)

In the next few steps, we revise the game so that A1’s random oracle queries are independent of
its LR query. Game G3 (top-right panel of Figure 17) is identically distributed to G2 as long as bad2

does not get set. This occurs if for some i ∈ [v], the adversary manages to guess the input pk ‖Xr[i]
to H1 where Xr[i] corresponds to its prior LR query. Since this string encodes the message and
coins, we have that

Pr[G2(A1, k) ]− Pr[G3(A1, k) ] ≤ v(q1 + ad)

2µ1+µ2
. (33)
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Next, game G4, defined in the bottom-left panel, is identically distributed to G3 as long as bad4

does not get set. This occurs if the adversary asks G(X) where X = pk ‖S0[i] and S0[i] coincides
with its prior LR query for some i ∈ [v]. Since S0[i] is a uniform-random, k0-bit string for all such i,
it holds that

Pr[G3(A1, k) ]− Pr[G4(A1, k) ] ≤ v(qG + qd)

2k0
. (34)

Finally, game G5, defined in the bottom-right panel, is identically distributed to G3 as long as bad∗

does not get set. Then

Pr[G4(A1, k) ]− Pr[G5(A1, k) ] ≤ Pr[G4(A1, k) sets bad∗ ] . (35)

We will relate the probability of this event to the advantage of adversary B. Note that since the
output of its queries are independent of the challenge bit, adversary A1 has no advantage in G5.
Hence, Pr[G5(A1, k) ] = 1/2.

First, we revise the Dec oracle so that decryption can be simulated without possession of
the trapdoor. (This is similar to the argument for Theorem 5.) Refer to the top-left panel of
Figure 18.Game G6 is semantically the same as G5 so that Adv5(A1, k) = Adv6(A1,K).

Game G7 is defined by the code in the top-right panel. This game is identical to G6 until bad6

gets set. This occurs if for some query to Dec(H,C), the integrity check succeeded (H = H∗), but
the corresponding input to the H2 oracle was undefined before the query was made (bad′6 gets set).
If these conditions hold, then the revised game outputs ⊥. The probability that bad6 gets set is at
most the probability that the integrity check succeeds given that bad′6 gets set, which occurs if for
some query Dec(H,C), it holds that H = S1 ⊕ r1 ⊕ r2 where r1 and r2 denote the outputs of H1

and H2 respectively and S1 is a string incident to C. Since r2 is a uniform-random, k0-bit string
(who’s pre-image under H2 is unknown to A1), this is at most 1/2k0 . Summing over all decryption
queries, we have that

Pr[G6(A1, k) ]− Pr[G7(A1, k) ] ≤ qd/2k0 . (36)

Refer now to the bottom-right panel of Figure 17. Similarly, game G8 is identical to G7 until bad7

gets set. This occurs if the for some decryption query (H,C), the integrity check passes, the input
to H2 was defined (bad′6 not set), but the input to H1 was not defined (bad′7 set). If all these conditions
hold, the revised game outputs ⊥. This happens with probability at most the probability that the
integrity check passes, given that the input to H2 was defined, but the input to H1 was not defined.
This is equal to the probability that H = S1 ⊕ r1 ⊕ r2. Since r1 is a uniform-random, k0-bit string
(who’s pre-image under H1 is unknown to A1), this is at most 1/2k0 . Then

Pr[G7(A1, k) ]− Pr[G8(A1, k) ] ≤ qd/2k0 . (37)

Next, refer to game G9 defined in the bottom-right panel of Figure 17. It is identical to G8 up
to the setting of bad8. This occurs if for some decryption query (H,C), the integrity check succeeds,
the corresponding inputs to H1 and H2 were defined, but the input to G was undefined. As usual,
if all of these conditions hold, then the revised game outputs ⊥. The probability that all of these
conditions hold is at most the probability that the input to H1 was defined given that the integrity
check passed, the input to H2 was defined, and (crucially) the input to G was undefined. Let rG
denote the output of the G query. This is a uniform-random, (n − k0)-bit string, who’s pre-image
under G is unknown to the adversary. The input to H1 is pk ‖ (rG ⊕ T0), and so the probability

44



that H1 was defined at this point is bounded by the number of A1’s times H1 was invoked, which
is q1 + qd. Summing over A1’s decryption queries, and since n− k0 ≥ ρ by construction, we have

Pr[G8(A1, k) ]− Pr[G9(A1, k) ] ≤ qd(q1 + qd)/2
ρ . (38)

We now specify the OWF adversary, which simulates the execution of A1 in the G9 game.
Refer to the top panel of Figure 16. Adversary B is given as input (1k, f, y) where y is presumably
in the range of f . It chooses a random j←$ [v], then executes A1 on input (1k, 〈f〉) and with
access to oracles LR′, Dec′, H1, G, and H2, each of which it defines. On input (H,M), oracle LR′

generates v random, n-bit strings. It then applies f to the last k1 bits of each string. It replaces
the last k1 bits of the j-th string with its input y. On input (H,C), oracle Dec′ checks to see if
the plaintext is known to A1 by checking if it can be reconstructed from its random oracle queries.
If the corresponding associated data is H, then it returns the plaintext. (This is similar to the
plaintext extractor of [FOPS04].) Finally, the random oracles are defined in the usual way, except
that H2 has an extra check; if A1 ever asks H2(X) such that the last k1 bits of X are a string x′

such that f(x′) = y, it lets x = x′. When A1 finishes interacting with its oracles and outputs its
guess, adversary B outputs x. (In case this value never gets set by H2, it simply outputs ⊥.)

Consider the event that G9(A1, k) sets bad∗. Recall that this occurs if A1 ever asks H2(X) where
X = pk ‖T 0[i] where T 0[i] is a string incident to its prior LR query. Since B’s simulation of G9 is
perfect, and since j is chosen uniformly, it follows that

Advowf
F (B, k) ≥ 1

v
· Pr[G9(A1, k) sets bad∗ ] . (39)

Applying equations (35), (36), (37), and (38),

v ·Advowf
F (B, k) ≥ Pr[G4(A1, k) sets bad∗ ]− 2qd

2k0
− qd(q1 + qd)

2ρ

≥ Pr[G4(A1, k) sets bad∗ ]− 2qd
2k0
− (q1 + qd)

2

2ρ

≥ Pr[G4(A1, k) ]− 1

2
− 2qd

2k0
− (q1 + qd)

2

2ρ
.

Finally, applying equations (32), (33), and (34) yields the bound:

v ·Advowf
F (B, k) ≥ Pr[G3(A1, k) ]− v(qG + qd)

2k0
− 1

2
− 2qd

2k0
− (q1 + qd)

2

2ρ

≥ Pr[G2(A1, k) ]− v(q1 + qd)

2µ1+µ2
− v(qG + qd)

2k0
− 1

2
− 2qd

2k0
− (q1 + qd)

2

2ρ

≥ Pr[G1(A1, k) ]− 4v(q1 + qd)

2µ1+µ2
− 2v(qG + qd) + v(q2 + qd)

2k0

− v(q1 + qd)

2µ1+µ2
− v(qG + qd)

2k0
− 1

2
− 2qd

2k0
− (q1 + qd)

2

2ρ

≥ Pr[G0(A1, k) ]− 1

2
− 5v(q1 + qd)

2µ1+µ2

− 3v(qG + qd) + v(q2 + qd) + 2qd
2k0

− (q1 + qd)
2

2ρ

≥ 1

2
·Advmm-cca

PKEAD,R(A1, k)− 5v(q1 + qd)

2µ1+µ2
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− 3v(qG + qd) + v(q2 + qd) + 2qd
2k0

− (q1 + qd)
2

2ρ
.

To complete the proof, we need only attend to the runtime of B. Each of the oracles can be simulated
with constant overhead, except for the decryption oracle. Executing Dec′ requires testing, in the
worst case, every tuple in the set Q1×QG×Q2. It follows that timeB(k) = timeA1(k)+O(qdq1qGq2).

C.6 Theorem 8

Fix k ∈ N. Let Πr = (Kr, Er,Dr) and Πd = (Kd, Ed,Dd) with input length n(·). We start with
the first claim. Adversary B simulates A in its game instantiated with PKEAD as follows. First, let
Q = ∅, pkout = false, and execute (pkr, skr)←$K(1k). Next, execute A on input of 1k. When A asks
LR(H,M), if pkout = true, then B outputs  ; otherwise it asks C←$ LR(H,M′) where M′ is
a (µ, v, 0)-mmr-source defined as follows: execute (M0,M1, r)←$M(1k). For each b ∈ {0, 1} and
i ∈ [v(k)], let Xb[i] = padn(Er(pkr,H[i],M b[i]; r[i])) and y[i] = ε. Return (X0,X1,y). To finish
the query, adversary B adds (H[i],C[i]) to Q for each i ∈ [v(k)] and returns C to A. When A asks
Dec(H,C), if (H,C) ∈ Q, then return  ; otherwise, adversary B asks X ← Dec(H,C) and returns
unpadn(Dr(skr, H,X)) to A. Finally, when A asks PKout(), adversary B asks pkd ← PKout(),
lets pkout = true, and returns 〈pkr, pkd〉 to A.

We now turn to the second claim. Again, adversary B simulates A in its game instantiated
with PKEAD. First, let Q = ∅ and execute (pkd, skd)←$Kd(1k). When A asks LR(H,M0,M1), ad-
versary B asks X ←$ LR(H,M0,M1), computes the ciphertext, C = Ed(pkd, padn(X)), adds (H,C)
to Q, and returns C to A. When A asks Dec(H,C), if (H,C) ∈ Q, then B returns  ; otherwise, it
computes the intermediate value X = unpadn(Dd(skd, C)), asks M ← Dec(H,X), and returns M
to A.

C.7 Theorem 9

First, by Theorem 2, there exists a (µ1, v)-mm-adversary A1 that makes one LR query such that
Advmm-cpa

PKEAD,R (A, k) ≤ qe ·Advmm-cpa
PKEAD,R (A1, k). We bound A1’s advantage in the remainder.

Let n = n(k), µ1 = µ1(k), µ2 = µ2(k), v = v(k), ρ = ρ(k), Π = (Kr, Er,Dr), and F -DOAEP =
(Kd, Ed,Dd). As usual, we assume that adversary A1’s LR query is not rejected. We first prove that
PKEAD is MM-CPA secure. Following the proof of [BBO07, Theorem 5.2], we show the bound in
the case that n < k0 + k1 where n is the length of the messages output by the source specified by
A1 in its LR query. The OWF adversary B is defined in Figure 22. Note that B corresponds to the
algorithm GetQuery specified in the proof of [BBO07, Theorem 5.2]. We bound B’s advantage in the
remainder.

The game G0 defined in Figure 19 by the code including the red statements and excluding
the green statements. It is identical to Expmm-cpa

PKEAD,R (A1, k). The game G1, which includes the green
statements and excludes the red ones, is identical to G0 except for some code changes, which have
no affect on the output of the oracles, but will assist in bounding the advantage A1 gets from its
random oracle queries that precede its LR query.

Now refer to game G2 defined in Figure 20. This game is identical to G1 until bad1 is set, which
ocurrs only if adversary manages to ask both an H1 query and an G query that coincide with its
LR query before the LR query is made. More precisely, the probability that G2(A1, k) sets bad1

is at most the probability that A1 asked a1 = H1(A) and G(B), then asked LR(H,M) where for
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some i ∈ [v], it holds that A = pkd ‖Xr[i] and B = pkd ‖ (a1 ⊕X`[i]) where X = X`[i] ‖Xr[i] =
Er(pkr,H[i],M b[i] ; r[i]). Because Π is injective, source M has min-entropy µ1, and source R has
min entropy µ2, we have that Pr[G2(A1, k) sets bad1] ≤ vq1qG/2

µ1+µ2 . By the fundamental lemma
of game playing [BR06],

Pr[G2(A1, k)]− Pr[G0(A1, k)] ≤ Pr[G2(A1, k) sets bad1] ≤ vq1qG
2µ1+µ2

. (40)

Next, refer to game G3 defined in Figure 20. This game is identical to G2 until bad2 is set, which
occurs only if the adversary manages to make a G query that coincides with its future LR query,
but makes no such H1 query. More precisely, the probability that G3(A1, k) sets bad2 is at most
the probability that A1 asked G(B), then asked LR(H,M) where for some i ∈ [v], it holds that
B = pkd ‖ (r1[i] ⊕X`[i]) where r1[i] is a uniform-random k0-bit string and X = X`[i] ‖Xr[i] =
E(pkr,H[i],M b[i] ; r[i]). Since r1[i] is uniform-random, so is r1[i] ⊕X`[i] for any distribution on
X. Hence,

Pr[G3(A1, k)]− Pr[G2(A1, k)] ≤ Pr[G2(A1, k) sets bad2] ≤ vqG
2k0

. (41)

Next, refer to game G4 defined in Figure 21. This game is identical to G3 until bad3,1 is set or
bad3,2 is set. First, observe that bad3,1 gets set only if bad3,2 gets set. Suppose that bad3,2 = true, but
bad3,1 = false. This means that for every i ∈ [v], both rG[i] and r2[i] are uniform-random strings
from the perspective of the adversary. Since S1[i] = r2[i] ⊕ S0[i] and T 0[i] = rG[i] ⊕Xr[i], the
output of the LR oracle is identically distributed in both games. (Note that this is the step of the
proof that uses the fact that DOAEP uses three Feistel rounds instead of the two used in OAEP.)
It follows that the games are indistinguishable until bad3,1 gets set. Since rG[i] is a uniform-random
(|X| − k0)-bit string, so is T 0[i] = rG[i]⊕Xr[i]. We conclude that

Pr[G4(A1, k)]− Pr[G3(A1, k)] ≤ Pr[G4(A1, k) sets bad3,1] ≤ vq2

2k0
. (42)

Games G5 and G4 defined in Figure 21 are identical until bad4 gets set, which occurs only if
the adversary asks an H2 query that coincides with its future LR query, but it makes no such H1

or G query. Hence,

Pr[G5(A1, k)]− Pr[G4(A1, k)] ≤ Pr[G5(A1, k) sets bad4] ≤ vq2

2k0
. (43)

At this point, we have bounded the advantage the adversary gets from its random oracles queries
before making its LR query. Finally, refer to game G6 defined in Figure 22. Game G5 corresponds
to G1 in the proof of [BBO07, Theorem 5.2] and G6 to corresponds to G8. Applying the same
argument justifying equations (10) through (20) of [BBO07] yields the claim.

We now prove that PKEAD is IND-CPA secure. On input (1k, pk) and oracle LR, adver-
sary B does as follows: run (f, f−1)←$ F (1k). Run A1 on input (1k, 〈pk, 〈f〉〉) and oracle LR′,
defined as follows: when A1 asks LR′(H,M0,M1), ask (H,M0,M1) of LR, getting X in re-
sponse. Compute C = Ed(〈f〉, padn(X)) and return C to A1. Finally, output whatever A1 out-
puts. Since B perfectly simulates the IND-CPA game instantiated with PKEAD, we have that
Advind-cpa

Π (B, k) = Advind-cpa
PKEAD (A1, k).
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D Games for proofs

Hi(A) H′i(A)

Q← ∅; j ← 0
(pk0, sk0)←$ Kgen(1k)
(pk1, sk1)←$ Kgen(1k)
a←$ALR,Dec,PKout(1k)
return a

Oracle LR(H,M)

if pkout = true then return  
j ← j + 1
if j > q − i then b← 0 else b← 1
d← 0; if j = i then d← 1

(M0,M1, r)←$M(1k)
C ← Enc(pkd,H,M b ; r)
for i← 1 to |H| do
Q← Q ∪ {(Hi,Ci)}

return C

Oracle Dec(H,C)

if (H,C) ∈ Q then return  
return Dec(sk0, H,C)

Oracle PKout()

pkout← true; return pk0

DA,LR,Enc,Dec
i (1k) DA,LR,Enc,Dec

i (1k)

Q← ∅; j ← 0
a←$ALR′,Dec′,PKout′(1k)
g ← a⊕ 1; g ← a
return g

Oracle LR′(H,M)

j ← j + 1
if j < i then C←$ Enc(H,M1)
else if j = i then

(pk0, pk1,C)←$ LR(H,M1)
else

(M0,M1, r)←$M(1k)
C ← Enc(pk0,H,M0 ; r)

for i← 1 to |H| do Q← Q ∪ {(Hi,Ci)}
return C

Mb(1
k) #An mr-source

(M0,M1, r)←$M(1k); return (M b, r)

Oracle Dec′(H,C)

if (H,C) ∈ Q then return  
return Dec0(H,C)

Oracle PKout′()

return pk0

BA,LR,Dec,PKout
i (1k)

Q← ∅; j ← 0
(pk0, sk0)←$ Kgen(1k)

a←$ALR′,Dec′,PKout(1k)
return a

Oracle LR′(H,M)

j ← j + 1; (M0,M1, r)←$M(1k)
if j < i then C ← Enc(pk0,H,M1 ; r)
if j = i then C←$ LR(H,M)
else C ← Enc(pk0,H,M0 ; r)
for i← 1 to |H| do Q← Q ∪ {(Hi,Ci)}
return C

Oracle Dec′(H,C)

if (H,C) ∈ Q then return  
return Dec(H,C)

Fig. 9. Game and adversaries for proof of Theorem 1.
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Hb(A′) H′i(A′)
Q← ∅
(pk0, sk0)←$ Kgen(1k)
(pk1, sk1)←$ Kgen(1k)
a←$A′,LR,Dec,PKout(1k, pk0)
return a

Oracle LR(H,M)

r←$R(1k); (M0,M1)←$M(1k)

d← 0; d← 1
C ← Enc(pkd,H,M b ; r)
for i← 1 to |H| do
Q← Q ∪ {(Hi,Ci)}

return C

Oracle Dec(H,C)

if (H,C) ∈ Q then return  
return Dec(sk0, H,C)

Oracle PKout()

pkout← true; return pk1

DA
′,LR,Enc,Dec

b (1k)

x, y←$ {0, 1}; (pk′, sk′)←$ Kgen(1k)

a←$A′,LR′,Dec′,PKout′(1k, pk′)
return (¬a)⊕ y ⊕ b

Oracle LR′(H,M)

if x = 1 then (pk0, pk1,C)←$ LR(H,Mb)
else
r←$R(1k); M b←$Mb(1

k)
C ← Enc(pk′,H,M b; r)

for i← 1 to |H| do Q← Q ∪ {(Hi,Ci)}
return C

Mb(1
k)

(M0,M1)←$M(1k); return M b

Oracle Dec′(H,C)

if (H,C) ∈ Q then return  
if x = 1 then return Decy(H,C)
else return Dec(sk′, H,C)

Oracle PKout′()

if x = 0 then (pk0, pk1,Λ)← LR(⊥,⊥)
return pky

BA
′,LR,Dec,PKout(1k)

(pk′, sk′)←$ Kgen(1k)

a←$A′,LR′,Dec′,PKout′(1k, pk′)
return a

Oracle LR′(H,M)

C←$ LR(H,M′)
for i← 1 to |H| do Q← Q ∪ {(Hi,Ci)}
return C

M′(1k)

r←$R(1k); (M0,M1)←$M(1k)
return (M0,M1, r)

Oracle Dec′(H,C)

if (H,C) ∈ Q then return  
return Dec(H,C)

Oracle PKout′()

return PKout()

Fig. 10. Game and adversaries for proof of Theorem 3.
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G0(A1, k):

Q,Q1, QG, Q2 ← ∅
(pk, sk)←$ Kgen(1k); r←$RH1,G,H2(1k)

for i← 1 to v do Ai←$ {0, 1}n−ρ−8

b←$ {0, 1}; b′←$A1
LR,Dec,H1,G,H2(1k, pk)

return b = b′

Oracle LR(H,M):

r←$RH1,G,H2(1k)

(M0,M1)←$MH1,G,H2(1k)
〈f〉 ← pk
for i← 1 to v do

PM← pad(M b,i)
X0 ← PM ‖H1(Hi); Y0 ← ri

X1 ← X0⊕ Ai G(Y0)

Y1 ← Y0 ⊕ H2(X1)
P ← X1 ‖Y1 ‖ [0 ]; Ci ← f(P )

for i← 1 to v do Q← Q ∪ {(Hi,Ci)}
return C

Oracle H1(X)

if T1[X] = ⊥ then T1[X]←$ {0, 1}τ
Q1 ← Q1 ∪ {X}; return T1[X]

Oracle Dec(H,C): G1(A1, k)

if (H,C) ∈ Q then return  
〈f−1〉 ← sk; P ← f−1(C)
if |P | 6= n then return ⊥
X1 ‖Y1 ‖ [z]← P # |Y1| = ρ
Y0 ← Y1 ⊕ H2(X1)
X0 ← X1 ⊕ G(Y0)
PM ‖T ← X0 #where |T | = τ
T ∗ ← H1(H)
if T ∗ 6= T then return ⊥
return unpad(PM)

Oracle G(X)

for i← 1 to v do

if X = ri then bad1 ← true; return Ai

if TG[X] = ⊥ then TG[X]←$ {0, 1}m
QG ← QG ∪ {X}; return TG[X]

Oracle H2(X)

if T2[X] = ⊥ then T2[X]←$ {0, 1}ρ
Q2 ← Q2 ∪ {X}; return T2[X]

Oracle LR(H,M): G2(A1, k)

(M0,M1)←$MH1,G,H2(1k); 〈f〉 ← pk
for i← 1 to v do

PM← pad(M b,i)
X0 ← PM ‖H1(Hi); Y0 ← ri

X1 ← X0⊕ Ai
Y1 ← Y0 ⊕ H2(X1)
P ← X1 ‖Y1 ‖ [0 ]; Ci ← f(P )

for i← 1 to v do Q← Q ∪ {(Hi,Ci)}
return C

Oracle G(X)

for i← 1 to v do
if X = ri then bad1 ← true; return Ai

if TG[X] = ⊥ then TG[X]←$ {0, 1}m
QG ← QG ∪ {X}; return TG[X]

Oracle LR(H,M): G4(A1, k)

(M0,M1)←$MH1,G,H2(1k); 〈f〉 ← pk
for i← 1 to v do

PM← pad(M b,i)
X0 ← PM ‖H1(Hi); Y0 ← ri
X1 ← Ai
Y1 ← Y0⊕ Bi
P ← X1 ‖Y1 ‖ [0 ]; Ci ← f(P )

for i← 1 to v do Q← Q ∪ {(Hi,Ci)}
return C

Oracle H2(X)

for i← 1 to v do
if X = Ai then bad

∗ ← true; return Bi
if T2[X] = ⊥ then T2[X]←$ {0, 1}ρ
Q2 ← Q2 ∪ {X}; return T2[X]

Fig. 11. Games 0, 1, 2, and 4 for proof of Theorem 5.
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G2(A1, k):

Q,Q1, QG, Q2 ← ∅
(pk, sk)←$ Kgen(1k); r←$RH1,G,H2(1k)
for i← 1 to v do
Ai←$ {0, 1}n−ρ−8; Bi←$ {0, 1}ρ

b←$ {0, 1}; b′←$A1
LR,Dec,H1,G,H2(1k, pk)

return b = b′

Oracle LR(H,M):

(M0,M1)←$MH1,G,H2(1k); 〈f〉 ← pk
for i← 1 to v do

PM← pad(M b,i)
X0 ← PM ‖H1(Hi); Y0 ← ri
X1 ← Ai
Y1 ← Y0⊕ Bi H2(X1)

P ← X1 ‖Y1 ‖ [0 ]; Ci ← f(P )
for i← 1 to v do Q← Q ∪ {(Hi,Ci)}
return C

Oracle H1(X)

if T1[X] = ⊥ then T1[X]←$ {0, 1}τ
Q1 ← Q1 ∪ {X}; return T1[X]

Oracle Dec(H,C): G3(A1, k)

if (H,C) ∈ Q then return  
〈f−1〉 ← sk; P ← f−1(C)
if |P | 6= n then return ⊥
X1 ‖Y1 ‖ [z]← P # |Y1| = ρ
Y0 ← Y1 ⊕ H2(X1)
X0 ← X1 ⊕ G(Y0)
PM ‖T ← X0 #where |T | = τ
T ∗ ← H1(H)
if T ∗ 6= T then return ⊥
return unpad(PM)

Oracle G(X)

for i← 1 to v do
if X = ri then bad1 ← true

if TG[X] = ⊥ then TG[X]←$ {0, 1}m
QG ← QG ∪ {X}; return TG[X]

Oracle H2(X)

for i← 1 to v do

if X = Ai then bad
∗ ← true; return Bi

if T2[X] = ⊥ then T2[X]←$ {0, 1}ρ
Q2 ← Q2 ∪ {X}; return T2[X]

G4(A1, k):

Q,Q1, QG, Q2 ← ∅
(pk, sk)←$ Kgen(1k); r←$RH1,G,H2(1k)

for i← 1 to v do
Ai←$ {0, 1}n−ρ−8; Bi←$ {0, 1}ρ

b←$ {0, 1}; b′←$A1
LR,Dec,H1,G,H2(1k, pk)

return b = b′

Oracle LR(H,M):

(M0,M1)←$MH1,G,H2(1k) ; 〈f〉 ← pk

for i← 1 to v do
PM← pad(M b,i)

X0 ← PM ‖H1(Hi); Y0 ← ri

X1 ← Ai; Y1 ← Bi
P ← X1 ‖Y1 ‖ [0 ]; Ci ← f(P )

for i← 1 to v do Q← Q ∪ {(Hi,Ci)}
return C

Oracle Dec(H,C): G5(A1, k)

if (H,C) ∈ Q then return  
〈f−1〉 ← sk; P ← f−1(C)
if |P | 6= n then return ⊥
X1 ‖Y1 ‖ [z]← P # |Y1| = ρ

if T2[X1] undefined then bad
′
6 ← true

Y0 ← Y1 ⊕ H2(X1)

if TG[Y0] undefined then bad
′
5 ← true

X0 ← X1 ⊕ G(Y0)
PM ‖T ← X0 #where |T | = τ
T ∗ ← H1(H)

if T ∗ 6= T then return ⊥

if (∀H∗ ∈ Q1)T1[H∗] 6= T then return ⊥

else if bad
′
5 then bad5 ← true

else if bad
′
6 then bad6 ← true

return unpad(PM)

Fig. 12. Games 3 and 5 for proof of Theorem 5.
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Oracle Dec(H,C): G6(A1, k)

if (H,C) ∈ Q then return  
〈f−1〉 ← sk; P ← f−1(C)
if |P | 6= n then return ⊥
X1 ‖Y1 ‖ [z]← P # |Y1| = ρ
if T2[X1] undefined then bad

′
6 ← true

Y0 ← Y1 ⊕ H2(X1)
if TG[Y0] undefined then bad

′
5 ← true

X0 ← X1 ⊕ G(Y0)
PM ‖T ← X0 #where |T | = τ
T ∗ ← H1(H)
if (∀H∗ ∈ Q1)T1[H∗] 6= T then return ⊥
else if bad

′
5 then bad5 ← true; return ⊥

else if bad
′
6 then bad6 ← true

return unpad(PM)

Oracle Dec(H,C): G7(A1, k)

if (H,C) ∈ Q then return  
〈f−1〉 ← sk; P ← f−1(C)
if |P | 6= n then return ⊥
X1 ‖Y1 ‖ [z]← P # |Y1| = ρ
if T2[X1] undefined then bad

′
6 ← true

Y0 ← Y1 ⊕ H2(X1)
if TG[Y0] undefined then bad

′
5 ← true

X0 ← X1 ⊕ G(Y0)
PM ‖T ← X0 #where |T | = τ
T ∗ ← H1(H)
if (∀H∗ ∈ Q1)T1[H∗] 6= T then return ⊥
else if bad

′
5 then bad5 ← true; return ⊥

else if bad
′
6 then bad6 ← true; return ⊥

return unpad(PM)

B(1k, f, y):

Q,Q1QG, Q2 ← ∅
pk← 〈f〉; j←$ [v]

b′←$A1
LR′,Dec′,H1,G,H2(1k, pk)

x′←$Q2; return x′

Oracle LR′(H,M):

for i← 1 to v do
if i = j then Ci ← y
else P ←$ {0, 1}n−8 ‖ [0 ]; Ci ← f(P )

for i← 1 to v do Q← Q ∪ {(Hi,Ci)}
return C

Oracle H1(X)

if T1[X] = ⊥ then T1[X]←$ {0, 1}τ
Q1 ← Q1 ∪ {X}; return T1[X]

Oracle Dec′(H,C)

if (H,C) ∈ Q then return  
for each A ∈ QG do

for each B ∈ Q2 do
U ← G(A)⊕B; V ← H2(B)⊕A
PM ‖T ← U #where |T | = τ
if f(B ‖V ‖ [0]) = C then

for each H∗ ∈ Q1 do
if T1[H∗] = T then

return unpad(PM)
return ⊥

Oracle G(X)

if TG[X] = ⊥ then TG[X]←$ {0, 1}m
QG ← QG ∪ {X}; return TG[X]

Oracle H2(X)

if T2[X] = ⊥ then T2[X]←$ {0, 1}ρ
Q2 ← Q2 ∪ {X}; return T2[X]

Fig. 13. Games 6 and 7 and adversary B for proof of Theorem 5.
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Experiment G0(A, k):
Q,AD ← ∅; pkout← false

R←$ {0, 1}r
(f, f−1←$ F (1k))
pk← f ‖R ; sk← f−1

b←$ {0, 1}
b′←$ALR,Dec,PKout,H1,H2(1k)
return b = b′

Oracle LR(H,M):

if pkout = true then return  
(M0,M1, r)←$MH1,H2(1k)
For i = 1 to v(k)

KP ← H1(〈f ‖R,H[i],M b[i], r[i]〉)
C1 ← f(KP )
K ← H2(〈f ‖R,H[i],KP 〉)
H̃ ← 〈H[i], C1〉; AD ← AD ∪ H̃
IV ← extract(H̃)

C2 ← AEAD.Enc(K, IV, H̃,M b[i])
C[i]← C1 ‖C2

for i← 1 to |H| do Q← Q ∪ {(Hi,Ci)}
return C

Oracle Dec(H,C):

if (H,C) ∈ Q then return  
return HE.Decsk(H

∗, C∗1 ‖C∗2 )

Oracle PKout():

pkout← true; return pk

Oracle H1(〈P,H,M,X〉):
Y ←$ {0, 1}kP
If T1[〈P,H,M,X〉] = ⊥
then T1[〈P,H,M,X〉]← Y
return T1[〈P,H,M,X〉]

Oracle H2(〈P,H,KP 〉):
Y ←$ {0, 1}λ
If T2[〈P,H,KP 〉] = ⊥
then T2[〈P,H,KP 〉]← Y
return T2[〈P,H,KP 〉]

Experiment G1(A, k):
Is like G0 except:

Oracle H1(〈P,H,M,X〉):
Y ←$ {0, 1}kP

If P = pk and T1[〈P,H,M,X〉] 6= ⊥
then bad1 ← true

If T1[〈P,H,M,X〉] = ⊥
then T1[〈P,H,M,X〉]← Y
return T1[〈P,H,M,X〉]

Experiment G2(A, k):
Is like G1 except:

Oracle LR(H,M):

if pkout = true then return  
(M0,M1, r)←$MH1,H2(1k)
For i = 1 to v(k)

KP ←$ {0, 1}kP

C1 ← f(KP )
K ← H2(〈f ‖R,H[i],KP 〉)
H̃ ← 〈H[i], C1〉; AD ← AD ∪ H̃
C2 ← AEAD.Enc(K, extract(H̃), H̃,M b[i])
C[i]← C1 ‖C2

for i← 1 to |H| do Q← Q ∪ {(Hi,Ci)}
return C

Experiment G3(A, k):
Is like G2 except:

Oracle Dec(H∗, C∗1 ‖C∗2 ):

if (H∗, C∗1 ‖C∗2 ) ∈ Q then return  
if for every (H,C1 ‖C2) ∈ Q, C1 6= C∗1

if there is Y = T1[pk, H∗,M ′, X ′]

for some M ′, X ′, s.t. f(Y ) = C∗1

then H̃ ← 〈H∗, C1〉, K ← H2(〈pk, H∗, Y 〉)

return M ← AEAD.Dec(K, extract(H̃), H̃, C∗2 )

else return HE.Decsk(H
∗, C∗1 ‖C∗2 )

Fig. 14. Games 0-3 in the Proof of Theorem 6: Colored areas indicate the differences between the games.

53



Experiment G4(A, k):
Is like G3 except:

Oracle Dec(H∗, C∗1 ‖C∗2 ):

if (H∗, C∗1 ‖C∗2 ) ∈ Q then return  
if for every (H,C1 ‖C2) ∈ Q, C1 6= C∗1

if there is Y = T1[pk, H∗,M ′, X ′]
for some M ′, X ′, s.t. f(Y ) = C∗1

then H̃ ← 〈H∗, C1〉, K ← H2(〈pk, H∗, Y 〉)
return M ← AEAD.Dec(K, extract(H̃), H̃, C∗2 )

else bad2 ← true, abort

else return HE.Decsk(H
∗, C∗1 ‖C∗2 )

Experiment G5(A, k):
Is like G4 except:

Oracle H2(〈P,H,KP 〉):
Y ←$ {0, 1}λ

If P = pk and T2[〈P,H,KP 〉] 6= ⊥ and f(KP ) = C1

for some (C1 ‖C2) ∈ Q then bad3 ← true

If T2[〈P,H,KP 〉] = ⊥ then T2[〈P,H,KP 〉]← Y
return T2[〈P,H,KP 〉]

Experiment G6(A, k):
Is like G5 except:

Oracle Dec(H∗, C∗1 ‖C∗2 ):

if (H∗, C∗1 ‖C∗2 ) ∈ Q then return  
if for every (H,C1 ‖C2) ∈ Q, C1 6= C∗1

if there is Y = T1[pk, H∗,M ′, X ′]
for some M ′, X ′, s.t. f(Y ) = C∗1

then H̃ ← 〈H∗, C1〉, K ← H2(〈pk, H∗, Y 〉)
return M ← AEAD.Dec(K, extract(H̃), H̃, C∗2 )

else bad2 ← true, abort

else if C∗1 = C1 for some (H,C1 ‖C2) ∈ Q
and HE.Decsk(H

∗, C∗1 ‖C∗2 ) 6=  

then bad4 ← true, abort

return HE.Decsk(H
∗, C∗1 ‖C∗2 )

Experiment G7(A, k):
Is like G6 except:

Oracle LR(H,M):

if pkout = true then return  
(M0,M1, r)←$MH1,H2(1k)
For i = 1 to v(k)

KP ←$ {0, 1}kP ; C1 ← f(KP ); K←$ {0, 1}λ

H̃ ← 〈H[i], C1〉
if H̃ ∈ AD then bad← true

AD ← AD ∪ H̃
C2 ← AEAD.Enc(K, extract(H̃), H̃,M b[i])
C[i]← C1 ‖C2

for i← 1 to |H| do Q← Q ∪ {(Hi,Ci)}
return C

Experiment G8(A, k):
Is like G7 except:

Oracle LR(H,M):

if pkout = true then return  
(M0,M1, r)←$MH1,H2(1k)
For i = 1 to v(k)

M b[i]←$ {0, 1}n(k)

KP ← {0, 1}kP ; C1 ← f(KP )

K←$ {0, 1}λ

H̃ ← 〈H[i], C1〉; AD ← AD ∪ H̃
C2 ← AEAD.Enc(K, extract(H̃), H̃,M b[i])
C[i]← C1 ‖C2

for i← 1 to |H| do Q← Q ∪ {(Hi,Ci)}
return C

Experiment G9(A, k):
Is like G8 except:

Oracle Dec(H∗, C∗1 ‖C∗2 ):

if (H∗, C∗1 ‖C∗2 ) ∈ Q then return  
if for every (H,C1 ‖C2) ∈ Q, C1 6= C∗1

and T2[〈pk, H∗,KP 〉] 6= ⊥ for f(Kp) = C∗1

and pkout = false then bad5 ← true, abort

else if there is Y = T1[pk, H ′,M ′, X ′]
for some H ′,M ′, X ′, s.t. f(Y ) = C∗1

then H̃ ← 〈H∗, C1〉, K ← H2(〈pk, H8, Y 〉)
return M ← AEAD.Dec(K, extract(H̃), H̃, C∗2 )

else bad2 ← true, abort
else if C∗1 = C1 for some (H,C1 ‖C2) ∈ Q
and HE.Decsk(H

∗, C∗1 ‖C∗2 ) 6=  
then bad4 ← true, abort
return HE.Decsk(H

∗, C∗1 ‖C∗2 )

Experiment G10(A, k):
Is like G9 except:

Oracle H1(〈P,H,M,X〉):
Y ←$ {0, 1}kP

If P = pk and T1[〈P,H,M,X〉] 6= ⊥
if pkout = true then bad

a
1 ← true

if pkout = false then bad
b
1 ← true

If T1[〈P,H,M,X〉] = ⊥ then T1[〈P,H,M,X〉]← Y
return T1[〈P,H,M,X〉]

Fig. 15. Games 4-10 in the Proof of Theorem 6: Colored areas indicate the differences between the games.



B(1k, f, y)

Q,Q1, QG, Q2 ← ∅; x← ⊥
pk← 〈f〉; j←$ [v]

b′←$ALR′,Dec′,H1,G,H2
1 (1k, pk)

return x

Oracle LR′(H,M)

for i← 1 to v do
Y`←$ {0, 1}n−k1 ; Yr←$ {0, 1}k1
if i = j then C[i]← Y` ‖ y
else C[i]← Y` ‖ f(Yr)
Q← Q ∪ {(H[i],C[i])}

return C

Oracle H1(X)

if T1[X] = ⊥ then T1[X]←$ {0, 1}k0
Q1 ← Q1 ∪ {X}; return T1[X]

Oracle Dec′(H,M)

if (H,C) ∈ Q then return  
for each (A1, AG, A2) ∈ Q1 ×QG ×Q2 do
H∗ ← AG ⊕ H1(A1)
Y` ← C[1..a]; Y ∗r ← A2[a+ 1..|A2|]
if Yr ‖ f(Y ∗r ) = C ∧H = H∗ then return A1

return ⊥

Oracle G(X)

if TG[X] = ⊥ then TG[X]←$ {0, 1}n−k0
QG ← QG ∪ {X}; return TG[X]

Oracle H2(X)

if T2[X] = ⊥ then T2[X]←$ {0, 1}k0
if |X| ≥ k1 then
x′ ← X[|X| − k1 + 1..|X| #Last k1 bits
if f(x′) = y then x← x′

Q2 ← Q2 ∪ {X}; return T2[X]

G0(A1, k)

Q← ∅; (pk, sk)←$ Kgen(1k)
〈f〉 ← pk ; 〈f−1〉 ← sk
b←$ {0, 1}; b′←$ALR,Dec,H1,G,H2

1 (1k, pk)
return b = b′

Oracle Dec(H,C):

if (H,C) ∈ Q then return  
if |Y | < n− k1 then return ⊥
Y` ← C[1..a]; Yr ← f−1(C[a+ 1..|Y |])
S1 ‖T0 ← Y` ‖Yr #where |S1| = k0
S0 ← H2(pk ‖T0)⊕ S1

Xr ← G(pk ‖S0)⊕ T0

X` ← H1(pk ‖Xr)⊕ S0

H∗ ‖M ← X` ‖Xr #where |H∗| = k0
if H∗ 6= H then return ⊥
〈M, r〉 ← unpadn−k0(PM); return M

Oracle H1(X)

if T1[X] = ⊥ then T1[X]←$ {0, 1}k0
for i← 1 to v do

if qr ∧X = pk ‖Xr[i] then

bad2 ← true; T1[X]← r1[i]

return T1[X]

Oracle G(X)

if TG[X] = ⊥ then TG[X]←$ {0, 1}n−k0
for i← 1 to v do

if qr ∧X = pk ‖S0[i] then

bad3 ← true; TG[X]← rG[i]

return TG[X]

Oracle LR(H,M): G1(A1, k)

r←$RH1,G,H2(1k)
(M0,M1)←$MH1,G,H2(1k)
for i← 1 to v do
X ←H[i] ‖ padn−k0(〈M b[i], r[i]〉)
X`[i]← X[1..k0]; Xr[i]← X[k0 + 1..|X|]
r1[i], r2[i]←$ {0, 1}k0
rG[i]←$ {0, 1}n−k0

if T1[pk ‖Xr[i]] defined then

bad1,1 ← true; r1[i]← T1[pk ‖Xr[i]]

S0[i]← H1(pk ‖Xr[i]) r1[i] ⊕X`[i]

if TG[pk ‖S0[i]] defined then

bad1,2 ← true; rG[i]← TG[pk ‖S0[i]]

T 0[i]← G(pk ‖S0[i]) rG[i] ⊕Xr[i]

if TG[pk ‖T 0[i]] defined then

bad1,3 ← true; r2[i]← T2[pk ‖T 0[i]]

S1[i]← H2(pk ‖T 0[i]) r2[i] ⊕S0[i]

Y` ‖Yr ← S1[i] ‖T 0[i] #where |Yr| = k1
C[i]← Y` ‖ f(Yr)

for i← 1 to v do Q← Q ∪ {(Hi,Ci)}
qr← true; return C

Oracle H2(X)

if T2[X] = ⊥ then T2[X]←$ {0, 1}k0
for i← 1 to v do

if qr ∧X = pk ‖T 0[i] then

bad
∗ ← true; T2[X]← r2[i]

return T2[X]

Fig. 16. Games 0 and 1 and adversary B for proof of Theorem 7. Let a = max{0, n− k1}.



Oracle LR(H,M): G2(A1, k)

r←$RH1,G,H2(1k)
(M0,M1)←$MH1,G,H2(1k)
for i← 1 to v do
X ←H[i] ‖ padn−k0(〈M b[i], r[i]〉)
X`[i]← X[1..k0]
Xr[i]← X[k0 + 1..|X|]
r1[i], r2[i]←$ {0, 1}k0
rG[i]←$ {0, 1}n−k0
if T1[pk ‖Xr[i]] defined then

bad1,1 ← true; r1[i]← T1[pk ‖Xr[i]]

S0[i]← r1[i] ⊕X`[i]
if TG[pk ‖S0[i]] defined then

bad1,2 ← true; rG[i]← TG[pk ‖S0[i]]

T 0[i]← rG[i] ⊕Xr[i]
if TG[pk ‖T 0[i]] defined then

bad1,3 ← true; r2[i]← T2[pk ‖T 0[i]]

S1[i]← r2[i] ⊕S0[i]
Y` ‖Yr ← S1[i] ‖T 0[i] #where |Yr| = k1
C[i]← Y` ‖ f(Yr)

for i← 1 to v do Q← Q ∪ {(Hi,Ci)}
qr← true; return C

Oracle LR(H,M): G3(A1, k)

r←$RH1,G,H2(1k)
(M0,M1)←$MH1,G,H2(1k)
for i← 1 to v do
X ←H[i] ‖ padn−k0(〈M b[i], r[i]〉)
X`[i]← X[1..k0]

Xr[i]← X[k0 + 1..|X|]
r1[i], r2[i]←$ {0, 1}k0
rG[i]←$ {0, 1}n−k0
if T1[pk ‖Xr[i]] defined then bad1,1 ← true

S0[i]← r1[i] ⊕X`[i]

if TG[pk ‖S0[i]] defined then bad1,2 ← true

T 0[i]← rG[i] ⊕Xr[i]
if TG[pk ‖T 0[i]] defined then bad1,3 ← true

S1[i]← r2[i] ⊕S0[i]
Y` ‖Yr ← S1[i] ‖T 0[i] #where |Yr| = k1
C[i]← Y` ‖ f(Yr)

for i← 1 to v do Q← Q ∪ {(Hi,Ci)}
qr← true; return C

Oracle H1(X)

if T1[X] = ⊥ then T1[X]←$ {0, 1}k0
for i← 1 to v do

if qr ∧X = pk ‖Xr[i] then

bad2 ← true; T1[X]← r1[i]

return T1[X]

Oracle LR(H,M): G4(A1, k)

r←$RH1,G,H2(1k)
(M0,M1)←$MH1,G,H2(1k)
for i← 1 to v do
X ←H[i] ‖ padn−k0(〈M b[i], r[i]〉)

Xr[i]← X[k0 + 1..|X|]
r1[i], r2[i]←$ {0, 1}k0
rG[i]←$ {0, 1}n−k0
S0[i]← r1[i]

T 0[i]← rG[i] ⊕Xr[i]

S1[i]← r2[i] ⊕S0[i]
Y` ‖Yr ← S1[i] ‖T 0[i] #where |Yr| = k1
C[i]← Y` ‖ f(Yr)

for i← 1 to v do Q← Q ∪ {(Hi,Ci)}
qr← true; return C

Oracle G(X)

if TG[X] = ⊥ then TG[X]←$ {0, 1}n−k0
for i← 1 to v do

if qr ∧X = pk ‖S0[i] then

bad3 ← true; TG[X]← rG[i]

return TG[X]

Oracle LR(H,M): G5(A1, k)

r←$RH1,G,H2(1k)

(M0,M1)←$MH1,G,H2(1k)

for i← 1 to v do
r1[i], r2[i]←$ {0, 1}k0
rG[i]←$ {0, 1}n−k0
S0[i]← r1[i]
T 0[i]← rG[i]

S1[i]← r2[i] ⊕S0[i]

Y` ‖Yr ← S1[i] ‖T 0[i] #where |Yr| = k1
C[i]← Y` ‖ f(Yr)

for i← 1 to v do Q← Q ∪ {(Hi,Ci)}
qr← true; return C

Oracle H2(X)

if T2[X] = ⊥ then T2[X]←$ {0, 1}k0
for i← 1 to v do

if qr ∧X = pk ‖T 0[i] then

bad
∗ ← true; T2[X]← r2[i]

return T2[X]

Fig. 17. Games 2-5 for proof of Theorem 7.



Oracle Dec(H,C): G6(A1, k)

if (H,C) ∈ Q then return  
if |Y | < n− k1 then return ⊥
Y` ← C[1..a]; Yr ← f−1(C[a+ 1..|Y |])
S1 ‖T0 ← Y` ‖Yr #where |S1| = k0

if T2[pk ‖T0] is undefined then bad
′
6 ← true

S0 ← H2(pk ‖T0)⊕ S1

if TG[pk ‖S0] is undefined then bad
′
8 ← true

Xr ← G(pk ‖S0)⊕ T0

if T1[pk ‖Xr] is undefined then bad
′
7 ← true

X` ← H1(pk ‖Xr)⊕ S0

H∗ ‖M ← X` ‖Xr #where |H∗| = k0
if H∗ 6= H then return ⊥
else if bad

′
6 then bad6 ← true

else if bad
′
7 then bad7 ← true

else if bad
′
8 then bad8 ← true

〈M, r〉 ← unpadn−k0(PM); return M

Oracle Dec(H,C): G7(A1, k)

if (H,C) ∈ Q then return  
if |Y | < n− k1 then return ⊥
Y` ← C[1..a]; Yr ← f−1(C[a+ 1..|Y |])
S1 ‖T0 ← Y` ‖Yr #where |S1| = k0
if T2[pk ‖T0] is undefined then bad

′
6 ← true

S0 ← H2(pk ‖T0)⊕ S1

if TG[pk ‖S0] is undefined then bad
′
8 ← true

Xr ← G(pk ‖S0)⊕ T0

if T1[pk ‖Xr] is undefined then bad
′
7 ← true

X` ← H1(pk ‖Xr)⊕ S0

H∗ ‖M ← X` ‖Xr #where |H∗| = k0
if H∗ 6= H then return ⊥
else if bad

′
6 then bad6 ← true; return ⊥

else if bad
′
7 then bad7 ← true

else if bad
′
8 then bad8 ← true

〈M, r〉 ← unpadn−k0(PM); return M

Oracle Dec(H,C): G8(A1, k)

if (H,C) ∈ Q then return  
if |Y | < n− k1 then return ⊥
Y` ← C[1..a]; Yr ← f−1(C[a+ 1..|Y |])
S1 ‖T0 ← Y` ‖Yr #where |S1| = k0
if T2[pk ‖T0] is undefined then bad

′
6 ← true

S0 ← H2(pk ‖T0)⊕ S1

if TG[pk ‖S0] is undefined then bad
′
8 ← true

Xr ← G(pk ‖S0)⊕ T0

if T1[pk ‖Xr] is undefined then bad
′
7 ← true

X` ← H1(pk ‖Xr)⊕ S0

H∗ ‖M ← X` ‖Xr #where |H∗| = k0
if H∗ 6= H then return ⊥
else if bad

′
6 then bad6 ← true; return ⊥

else if bad
′
7 then bad7 ← true; return ⊥

else if bad
′
8 then bad8 ← true

〈M, r〉 ← unpadn−k0(PM); return M

Oracle Dec(H,C): G9(A1, k)

if (H,C) ∈ Q then return  
if |Y | < n− k1 then return ⊥
Y` ← C[1..a]; Yr ← f−1(C[a+ 1..|Y |])
S1 ‖T0 ← Y` ‖Yr #where |S1| = k0
if T2[pk ‖T0] is undefined then bad

′
6 ← true

S0 ← H2(pk ‖T0)⊕ S1

if TG[pk ‖S0] is undefined then bad
′
8 ← true

Xr ← G(pk ‖S0)⊕ T0

if T1[pk ‖Xr] is undefined then bad
′
7 ← true

X` ← H1(pk ‖Xr)⊕ S0

H∗ ‖M ← X` ‖Xr #where |H∗| = k0
if H∗ 6= H then return ⊥
else if bad

′
6 then bad6 ← true; return ⊥

else if bad
′
7 then bad7 ← true; return ⊥

else if bad
′
8 then bad8 ← true; return ⊥

〈M, r〉 ← unpadn−k0(PM); return M

Fig. 18. Games 6-9 for proof of Theorem 7. Let a = max{0, n− k1}.
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G0(A1, k)

(f, f−1)←$ F (1k); pkd ← 〈f〉
(pkr, skr)←$Kr(1k)
b←$ {0, 1}
b′←$ALR,H1,G,H2

1 (1k, 〈pkr, pkd〉)
return b = b′

Oracle H1(X)

if T1[X] = ⊥ then T1[X]←$ {0, 1}k0

if qr ∧ (∃ i ∈ [v])X = pkd ‖Xr[i] then

T1[X]← r1[i]

return T1[X]

Oracle G(X)

if TG[X] = ⊥ then TG[X]←$ {0, 1}n−k0

if qr ∧ (∃ i ∈ [v])X = pkd ‖S0[i] then

TG[X]← rG[i]

return TG[X]

Oracle H2(X)

if T2[X] = ⊥ then T2[X]←$ {0, 1}k0

if qr ∧ (∃ i ∈ [v])X = pkd ‖T 0[i] then

T2[X]← r2[i]

return T2[X]

Oracle LR(H,M) G1(A1, k)

(M0,M1)←$MH1,G,H2(1k)
r←$RH1,G,H2(1k)
for i← 1 to v do
X ← padn(Er(pkr,H[i],M b[i] ; r[i]))
X`[i]← X[1..|k0|]
Xr[i]← X[|k0|+ 1..|X|]
r1[i], r2[i]←$ {0, 1}k0

rG[i]←$ {0, 1}n−k0

a1 ← T1[pkd ‖Xr[i]]

if a1 6= ⊥ then aG ← TG[pkd ‖ (a1 ⊕X`[i])]

else aG ← TG[pkd ‖ (r1[i]⊕X`[i])]

if aG 6= ⊥ then a2 ← T2[pkd ‖ (aG ⊕Xr[i])]

else a2 ← T2[pkd ‖ (rG[i]⊕Xr[i])]

if a1 6= ⊥ then

if aG 6= ⊥ then bad1 ← true; r1[i]← a1

else bad3,2 ← true; r1[i]← a1

S0[i]← H1[pkd ‖Xr[i]] r1[i] ⊕X`[i]

if aG 6= ⊥ then

if a1 6= ⊥ then bad1 ← true; rG[i]← aG

else bad2 ← true; rG[i]← aG

T 0[i]← G(pkd ‖S0[i]) rG[i] ⊕Xr[i]

if a2 6= ⊥ then

if a1 6= ⊥ ∧ aG 6= ⊥ then

bad1 ← true; r2[i]← a2

else if a1 = ⊥ ∧ aG 6= ⊥ then

bad2 ← true; r2[i]← a2

else if a1 6= ⊥ ∧ aG = ⊥ then

bad3,1 ← true; r2[i]← a2

else bad4 ← true; r2[i]← a2

S1[i]← H2(pk ‖T 0[i]) r2[i] ⊕S0[i]

Y` ← (S1[i] ‖T 0[i])[1..|X| − k1]
Yr ← (S1[i] ‖T 0[i])[|X| − k1 + 1..|X|]
C[i]← Y` ‖ f(Yr)

qr← true

return C

Fig. 19. Games 0 and 1 for proof of Theorem 9.
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Oracle LR(H,M) G2(A1, k)

(M0,M1)←$MH1,G,H2(1k)
r←$RH1,G,H2(1k)
for i← 1 to v do
X ← padn(Er(pkr,H[i],M b[i] ; r[i]))
X`[i]← X[1..|k0|]
Xr[i]← X[|k0|+ 1..|X|]
r1[i], r2[i]←$ {0, 1}k0
rG[i]←$ {0, 1}n−k0
a1 ← T1[pkd ‖Xr[i]]
if a1 6= ⊥ then aG ← TG[pkd ‖ (a1 ⊕X`[i])]
else aG ← TG[pkd ‖ (r1[i]⊕X`[i])]
if aG 6= ⊥ then a2 ← T2[pkd ‖ (aG ⊕Xr[i])]
else a2 ← T2[pkd ‖ (rG[i]⊕Xr[i])]
if a1 6= ⊥ then

if aG 6= ⊥ then bad1 ← true; r1[i]← a1

else bad3,2 ← true; r1[i]← a1

S0[i]← r1[i]⊕X`[i]
if aG 6= ⊥ then

if a1 6= ⊥ then bad1 ← true; rG[i]← aG

else bad2 ← true; rG[i]← aG
T 0[i]← rG[i]⊕Xr[i]
if a2 6= ⊥ then

if a1 6= ⊥ ∧ aG 6= ⊥ then

bad1 ← true; r2[i]← a2

else if a1 = ⊥ ∧ aG 6= ⊥ then
bad2 ← true; r2[i]← a2

else if a1 6= ⊥ ∧ aG = ⊥ then
bad3,1 ← true; r2[i]← a2

else bad4 ← true; r2[i]← a2

S1[i]← r2[i]⊕ S0[i]
Y` ← (S1[i] ‖T 0[i])[1..|X| − k1]
Yr ← (S1[i] ‖T 0[i])[|X| − k1 + 1..|X|]
C[i]← Y` ‖ f(Yr)

qr← true

return C

Oracle LR(H,M) G3(A1, k)

(M0,M1)←$MH1,G,H2(1k)
r←$RH1,G,H2(1k)
for i← 1 to v do
X ← padn(Er(pkr,H[i],M b[i] ; r[i]))
X`[i]← X[1..|k0|]
Xr[i]← X[|k0|+ 1..|X|]
r1[i], r2[i]←$ {0, 1}k0
rG[i]←$ {0, 1}n−k0
a1 ← T1[pkd ‖Xr[i]]
if a1 6= ⊥ then aG ← TG[pkd ‖ (a1 ⊕X`[i])]
else aG ← TG[pkd ‖ (r1[i]⊕X`[i])]
if aG 6= ⊥ then a2 ← T2[pkd ‖ (aG ⊕Xr[i])]
else a2 ← T2[pkd ‖ (rG[i]⊕Xr[i])]
if a1 6= ⊥ then

if aG 6= ⊥ then bad1 ← true

else bad3,2 ← true; r1[i]← a1

S0[i]← r1[i]⊕X`[i]
if aG 6= ⊥ then

if a1 6= ⊥ then bad1 ← true

else bad2 ← true; rG[i]← aG

T 0[i]← rG[i]⊕Xr[i]
if a2 6= ⊥ then

if a1 6= ⊥ ∧ aG 6= ⊥ then
bad1 ← true

else if a1 = ⊥ ∧ aG 6= ⊥ then

bad2 ← true; r2[i]← a2

else if a1 6= ⊥ ∧ aG = ⊥ then
bad3,1 ← true; r2[i]← a2

else bad4 ← true; r2[i]← a2

S1[i]← r2[i]⊕ S0[i]
Y` ← (S1[i] ‖T 0[i])[1..|X| − k1]
Yr ← (S1[i] ‖T 0[i])[|X| − k1 + 1..|X|]
C[i]← Y` ‖ f(Yr)

qr← true

return C

Fig. 20. Games 2 and 3 for proof of Theorem 9.
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Oracle LR(H,M) G4(A1, k)

(M0,M1)←$MH1,G,H2(1k)
r←$RH1,G,H2(1k)
for i← 1 to v do
X ← padn(Er(pkr,H[i],M b[i] ; r[i]))
X`[i]← X[1..|k0|]
Xr[i]← X[|k0|+ 1..|X|]
r1[i], r2[i]←$ {0, 1}k0
rG[i]←$ {0, 1}n−k0
a1 ← T1[pkd ‖Xr[i]]
if a1 6= ⊥ then aG ← TG[pkd ‖ (a1 ⊕X`[i])]
else aG ← TG[pkd ‖ (r1[i]⊕X`[i])]
if aG 6= ⊥ then a2 ← T2[pkd ‖ (aG ⊕Xr[i])]
else a2 ← T2[pkd ‖ (rG[i]⊕Xr[i])]
if a1 6= ⊥ then

if aG 6= ⊥ then bad1 ← true

else bad3,2 ← true; r1[i]← a1

S0[i]← r1[i]⊕X`[i]
if aG 6= ⊥ then

if a1 6= ⊥ then bad1 ← true

else bad2 ← true

T 0[i]← rG[i]⊕Xr[i]
if a2 6= ⊥ then

if a1 = ⊥ ∧ aG 6= ⊥ then
bad2 ← true

else if a1 6= ⊥ ∧ aG = ⊥ then

bad3,1 ← true; r2[i]← a2

else bad4 ← true; r2[i]← a2

S1[i]← r2[i]⊕ S0[i]
Y` ← (S1[i] ‖T 0[i])[1..|X| − k1]
Yr ← (S1[i] ‖T 0[i])[|X| − k1 + 1..|X|]
C[i]← Y` ‖ f(Yr)

qr← true

return C

Oracle LR(H,M) G5(A1, k)

(M0,M1)←$MH1,G,H2(1k); r←$RH1,G,H2(1k)
for i← 1 to v do
X ← padn(Er(pkr,H[i],M b[i] ; r[i]))
X`[i]← X[1..|k0|]
Xr[i]← X[|k0|+ 1..|X|]
r1[i], r2[i]←$ {0, 1}k0
rG[i]←$ {0, 1}n−k0
a1 ← T1[pkd ‖Xr[i]]
if a1 6= ⊥ then aG ← TG[pkd ‖ (a1 ⊕X`[i])]
else aG ← TG[pkd ‖ (r1[i]⊕X`[i])]
if aG 6= ⊥ then a2 ← T2[pkd ‖ (aG ⊕Xr[i])]
else a2 ← T2[pkd ‖ (rG[i]⊕Xr[i])]
if a1 6= ⊥ then

if aG 6= ⊥ then bad1 ← true

else bad3,2 ← true

S0[i]← r1[i]⊕X`[i]
T 0[i]← rG[i]⊕Xr[i]
if a2 6= ⊥ then

if a1 6= ⊥ ∧ aG = ⊥ then
bad3,1 ← true

else bad4 ← true; r2[i]← a2

S1[i]← r2[i]⊕ S0[i]
Y` ← (S1[i] ‖T 0[i])[1..|X| − k1]
Yr ← (S1[i] ‖T 0[i])[|X| − k1 + 1..|X|]
C[i]← Y` ‖ f(Yr)

qr← true

return C

Fig. 21. Games 4 and 5 for proof of Theorem 9.
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Oracle H1(X)

if T1[X] = ⊥ then T1[X]←$ {0, 1}k0

if qr ∧ (∃ i ∈ [v])X = pkd ‖Xr[i] then

T1[X]← r1[i]

return T1[X]

Oracle G(X)

if TG[X] = ⊥ then TG[X]←$ {0, 1}n−k0

if qr ∧ (∃ i ∈ [v])X = pkd ‖S0[i] then

TG[X]← rG[i]

return TG[X]

Oracle H2(X)

if T2[X] = ⊥ then T2[X]←$ {0, 1}k0

if qr ∧ (∃ i ∈ [v])X = pkd ‖T 0[i] then

bad6 ← true; T2[X]← r2[i]

return T2[X]

Oracle LR(H,M) G6(A1, k)

(M0,M1)←$MH1,G,H2(1k)
r←$RH1,G,H2(1k)
for i← 1 to v do
X ← padn(Er(pkr,H[i],M b[i] ; r[i]))
X`[i]← X[1..|k0|]
Xr[i]← X[|k0|+ 1..|X|]
r1[i], r2[i]←$ {0, 1}k0
rG[i]←$ {0, 1}n−k0

S0[i]← r1[i] ⊕X`[i]

T 0[i]← rG[i] ⊕Xr[i]

if a2 6= ⊥ then
bad4 ← true

S1[i]← r2[i] ⊕S0[i]

Y` ← (S1[i] ‖T 0[i])[1..|X| − k1]
Yr ← (S1[i] ‖T 0[i])[|X| − k1 + 1..|X|]
C[i]← Y` ‖ f(Yr)

qr← true

return C

B(1k, f, y)

ctr← 0; pkd ← 〈f〉
(pkr, skr)←$K(1k); j←$ [q2]; w←$ [v]

b′←$ALR′,H1,G,H2
1 (1k, 〈pkr, pkd〉)

return x

Oracle LR′(H)

for i← 1 to v do
Y`←$ {0, 1}n−k1 ; Yr←$ {0, 1}k1
if i = w then C[i]← Y` ‖ y
else C[i]← Y` ‖ f(Yr)

return C

Oracle H1(X)

if T1[X] = ⊥ then T1[X]←$ {0, 1}k0
return T1[X]

Oracle G(X)

if TG[X] = ⊥ then TG[X]←$ {0, 1}n−k0
return TG[X]

Oracle H2(X)

if T2[X] = ⊥ then T2[X]←$ {0, 1}k0
ctr← ctr + 1
if ctr = j ∧X[1..|pkd|] = pkd then
x← X[|pkd|+ 1..|X|]

return T2[X]

Fig. 22. Game 6 and adversary B for proof of Theorem 9.
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