
Strong Authenticated Key Exchange with Auxiliary Inputs?

Rongmao Chen†, Yi Mu‡, Guomin Yang‡, Willy Susilo‡, and Fuchun Guo‡

†College of Computer
National University of Defense Technology, China

chromao@nudt.edu.cn
‡Institute of Cybersecurity and Cryptology

School of Computing and Information Technology
University of Wollongong, Australia

{ymu,gyang,wsusilo,fuchun}@uow.edu.au

Abstract. Leakage attacks, including various kinds of side-channel attacks, allow an attacker to learn partial
information about the internal secrets such as the secret key and the randomness of a cryptographic system.
Designing a strong, meaningful, yet achievable security notion to capture practical leakage attacks is one of
the primary goals of leakage-resilient cryptography. In this work, we revisit the modelling and design of au-
thenticated key exchange (AKE) protocols with leakage resilience. We show that the prior works on this topic
are inadequate in capturing realistic leakage attacks. To close this research gap, we propose a new security
notion named leakage-resilient eCK model w.r.t. auxiliary inputs (AI-LR-eCK) for AKE protocols, which ad-
dresses the limitations of the previous models. Our model allows computationally hard-to-invert leakage of both
the long-term secret key and the randomness, and also addresses a limitation existing in most of the previous
models where the adversary is disallowed to make leakage queries during the challenge session. As another
major contribution of this work, we present a generic framework for the construction of AKE protocols that are
secure under the proposed AI-LR-eCK model. An instantiation based on the Decision Diffie-Hellman (DDH)
assumption in the standard model is also given to demonstrate the feasibility of our proposed framework.

1 Introduction

Authenticated Key Exchange (AKE) protocols, which are among the most widely used cryp-
tographic primitives, form a central component in many network standards, such as IPSec,
SSL/TLS, SSH. An AKE protocol enables a secure channel to be established among a set of
communicating parties by allowing them to agree on a common secret key. Practical AKE pro-
tocols such as the ISO protocol (a.k.a. SIG-DH) [1, 13], the Internet Key Exchange protocol
(a.k.a. SIGMA) [31] and their variants have been proposed and deployed in the aforementioned
network standards.

In order to formally define the security of an AKE protocol, Bellare and Rogaway (BR)
[8] proposed the first formal complexity theoretic security notion for AKE. The BR model and
its variants are nowadays the de facto standard for AKE security analysis. In particular, the
Canetti-Krawczyk (CK) model [13], which can be considered as the extension and combination
of the BR model and the Bellare-Canetti-Krawczyk (BCK) model [7], has been used to prove
the security of many widely used AKE protocols such as SIG-DH and SIGMA. Noting that the
CK model does not capture several attacks such as the Key Compromise Impersonation (KCI)
and Ephemeral Key Compromise attacks, LaMacchia et al. [33] introduced an extension of the
CK model, named eCK model, to consider stronger adversaries (in some aspects). We should
note that the CK model and the eCK model are incomparable, and refer the readers to Choo et
al. [14] for a detailed summary of the differences among the aforementioned AKE models.
? A previous version of this paper is published in the Designs, Codes and Cryptography (available at

http://link.springer.com/article/10.1007/s10623-016-0295-3). This is the full version by fixing a subtle flaw in the
security proof.

2 R.Chen et al.

Leakage Attacks In Reality. Although the security notion of AKE has been extensively stud-
ied by the research community in the last two decades, all the aforementioned AKE security
models belong to the traditional “black-box” setting, where honest parties are viewed as inter-
active Turing machines, and each party has its own private memory and randomness source.
In the real world, however, attackers do not always obey such a somewhat idealized setting.
Specifically, the physical implementation of a cryptographic system can leak sensitive infor-
mation through physical channels, such as the computation-time, power-consumption, radia-
tion/noise/heat emission etc. Through these “side channels”, an attacker is able to learn some
imperfect information of the user secret [10, 24, 39]. Moreover, potential weakness of the ran-
domness can be caused due to different reasons, such as the side-channel leakages mentioned
above and the poor implementation of pseudo-random number generators (PRNGs). Security
vulnerabilities involving either flawed or weakened PRNGs have already been reported in the
literature [34, 40, 45]. In consequence, an AKE protocol proven secure in the traditional model
could be completely insecure in the presence of leakage attacks.
Modelling Leakage Attacks. The seminal research of defending against leakage attacks by
treating them in an abstract way was first proposed by Micali and Reyzin [35]. Since then sig-
nificant progress has been done within the cryptographic community to incorporate leakage
attacks into the traditional black-box security definitions. Informally, in the leakage setting the
adversary is allowed to learn the partial information of a user secret via an abstract leakage
function f in addition to the normal black-box interaction with an honest party. More precisely,
the adversary is provided with access to a leakage oracle: the adversary can query the oracle
with a polynomial-time computable function f , and then receive f(sk), where sk is the user
secret key. It is obvious that if we allow the adversary to choose any leakage function f , then it
will lead to the leakage of the key in its entirety and the security of the system is surely com-
promised. Hence certain restrictions on the class of admissible leakage functions are necessary.
For example, in the work by Micali and Reyzin [35], they put the restrictions on the leakage
function so that only computation leaks information and the amount of leakage per occurrence
is bounded by a leakage parameter. The challenge is to model the necessary restrictions in a
meaningful and reasonable manner so that we can capture real leakage attacks and also make
the security notion achievable.

To address the above problem, several leakage models have been proposed in the literature.
Inspired by the cold boot attack presented by Halderman et al. [26], Akavia et al. [3] formalized
a general framework, named bounded leakage model, which explicitly assumes that a leakage
attack only reveals a fraction of the secret key to the adversary. Specifically, the output-length
of the (adversarial chosen) leakage function is bounded to be strictly less than the length of the
secret key. In a subsequent work, Naor and Segev [37] relaxed the restriction on the leakage
function and only required that the secret key still has a “sufficient” amount of min-entropy left
after the leakage. Such a leakage model, named noisy leakage model, can capture a wider class
of real-world leakage attacks since now the leakage size can be arbitrarily long.
The Auxiliary Input Model. Instead of imposing a min-entropy requirement on the secret key
under leakage, a more general model was put forward by Dodis et al. [19]. Their notion, named
auxiliary input model, requires that it is computationally hard for the adversary to recover the
secret key given the leakage. In other words, this model allows any one-way leakage function f .
One can note that such hard-to-invert leakage is a generalization of the bounded/noisy leakage
model, and hence can capture a larger class of leakage functions. For example, a one-way per-

Strong Authenticated Key Exchange with Auxiliary Inputs 3

mutation is allowed to be a leakage function in the auxiliary input model, while disallowed in
the bounded/noisy leakage model since it information-theoretically reveals the entire secret key.
Moreover, as shown by Dodis et al. [19], the auxiliary input model offers additional advantages
in terms of capturing leakage attacks in the real-world. For some cryptographic systems where
the secret key (e.g., biometric keys) is used for multiple tasks, the attacker may eventually ob-
tain leakage larger than the upper bound permitted in the bounded/noisy leakage model after a
sufficiently long time. However, if the system is secure w.r.t. auxiliary inputs, one can safely use
the secret key as long as the total leakage does not (computationally) reveal the entire secret key.
Readers are please referred to the work by by Dodis et al. [19] for more detailed discussions.

1.1 Gaps Between Existing Works and The Reality for Leakage-Resilient AKE

Leakage-resilient cryptography, particularly leakage-resilient cryptographic primitives such as
pseudorandom generators [43], signature schemes [12], and encryption schemes [3, 37, 15, 19],
have been extensively studied under different leakage models outlined above. However, only
very few works have been done on the modelling and construction of leakage-resilient AKE
protocols. This seems surprising given the importance of AKE, but on the other hand is also
“understandable” since it is believed that leakage-resilient PKE or signature can be straightfor-
wardly adopted for the construction of AKE protocols resilient to leakage attacks, which has
been demonstrated in some existing leakage-resilient AKE constructions. In particular, Alwen
et al. [6] showed that a leakage-resilient AKE protocol, namely eSIG-DH, can be constructed
from an entropically-unforgeable digital signature scheme secure under chosen-message at-
tacks. Dodis et al. [18] proposed two new constructions of AKE protocols that are leakage-
resilient in the CK security model. Their first construction follows the result of work by Alwen
et al. [6], i.e., authenticating Diffie-Hellman (DH) key exchange using a leakage-resilient sig-
nature scheme. The second construction, named Enc-DH, is based on a leakage-resilient CCA-
secure PKE scheme and follows the idea that both parties authenticate each other by requiring
the peer entity to correctly decrypt the DH ephemeral public key encrypted under the long-term
public key.

However, we notice that the above straightforward approach for constructing leakage-resilient
AKE protocols has some limitations and fails to fully capture general leakage attacks in reality
due to the following reasons.

– Limitation on The Assumption. Although the AKE models in the work [6, 18] consider leakage
attacks, they have an assumption that the leakage would not happen during the challenge AKE
session. More precisely, to guarantee the security of the session key for the challenge (or target)
session, the adversary is disallowed to access the leakage oracle during the session. The reason
behind such an assumption is that for PKE- and signature-based Diffie-Hellman AKE protocols,
the adversary can use the leakage function to break the authentication mechanism based on the
PKE or signature in order to launch an active impersonation attack and obtain the session key.
The assumption can bypass such a trivial attack, but on the other hand greatly limits the strength
of the adversary since in reality leakage attack may happen at any time. Such a definitional diffi-
culty was also recognized by Naor et al. [37] and later resolved in the work on leakage-resilient
encryption schemes [28, 44]. However, few formal treatments have been proposed for AKE
to address this problem. It is worth noting that Alawatugoda et al. [5, 4] addressed this prob-
lem in the sense by constructing AKE protocols that are resilient to the after-the-fact leakage

4 R.Chen et al.

which unfortunately suffers from the split-state assumption [28]. Moreover, Alwen et al. [6] sug-
gested a solution to remove this somewhat unnatural assumption by instantiating eSIG-DH with
a leakage-resilient and existentially-unforgeable (instead of entropically-unforgeable) signature
scheme. Nevertheless, their option introduces a new assumption that the amount of leakage
must be smaller than the length of a signature.

– Limitation on The Modelling of Randomness Leakage. Another limitation of the previous work
on leakage-resilient AKE is that they didn’t fully capture general leakage attacks, which may
involve the randomness (a.k.a. ephemeral secret) used by an AKE protocol. As mentioned be-
fore, in reality randomness leakage may occur, e.g., due to the poor implementation of PRNGs
[34, 40, 45]. Also, leakage attacks in practice (e.g., timing or power consumption analysis) can
be closely related to the randomness. Since randomness determines the value of a session key
and hence plays a crucial role in an AKE protocol, it is necessary to capture randomness leakage
in the design and analysis of leakage-resilient AKE. It is worth noting that although the eCK
model [33] captures the compromising of randomness, it is different from the leakage attack.
Specifically, in the eCK model, either long-term secret or ephemeral secret (but not both) of a
party can be completely revealed while partial leakage of both secrets is not allowed. In partic-
ular, the attacker may reveal the long-term secret and obtain partial leakage of the ephemeral
secret. This adversarial capability of the attacker has not ever been captured by any existing
model.

– Limitation on The Leakage Setting. The leakage model for AKE introduced in the work [6,
18] is an extension of the CK model [13] in the bounded leakage setting [3]. To be specific, the
adversary is given access to a leakage oracle Olsk(·), which can be invoked adaptively subject-
ing to the constraint that the adversary can only learn at most l bits of sk. As outlined above,
such a leakage setting is relatively weaker than the auxiliary input setting [19]. To obtain AKE
protocols secure under the auxiliary input model, it is likely that we can build such a protocol
either from a digital signature scheme that is random message unforgeable with auxiliary in-
put attacks, e.g., in the work by Faust et al. [21], or from an auxiliary input secure encryption
scheme, e.g., in the work by Dodis et al. [17]. In fact, it has been shown by Yang et al. [42]
that an AKE protocol secure under CK model with auxiliary input attacks can be built based
on a digital signature scheme that is random message unforgeable under random message and
auxiliary input attacks. However, as illustrated above, such a straightforward solution cannot
overcome the limitations of unnatural assumption and deficient leakage-capturing (i.e., ran-
domness leakage). Moreover, it is still unknown how to design an eCK-based model under the
auxiliary input setting and actually no existing work has considered this issue.

Other Related Works. To remove the unnatural assumption, the notion of after-the-fact leak-
age proposed by Halevi and Lin [28] appears to be a potential solution, which, actually has
been adopted in the work [5, 4] by Alawatugoda et al. Their proposed model allows the adver-
sary to access the leakage oracle during the challenge session execution but implicitly requires
the long-term secret has split-state since otherwise their definition is unachievable in the eCK-
model. Moreover, the central idea of their AKE construction is to utilize a split-state encryption
scheme with a special property (i.e., PG-IND), which is a strong assumption. We also note that
it seems not natural to use the split-state approach for dealing with randomness leakage, which
is not captured by their model but our goal in this work.

Strong Authenticated Key Exchange with Auxiliary Inputs 5

Another potential solution is the second approach proposed by Faust et al. [21], which de-
fined an auxiliary input model that only allows exponentially hard-to-invert functions instead of
computationally hard-to-invert functions, of the signing key. Since the signing algorithm can be
viewed as a polynomially hard-to-invert function, it is excluded from the allowed set of leakage
function and hence the adversary can issue the leakage query during the session. However, the
exponentially hard-to-invert restriction would greatly reduce the allowed leakage functions and
cannot fully capture general leakage attacks.

Noting that some previous work on encryption and signature schemes [11, 29] has consid-
ered leakage from the randomness, one may try to incorporate these techniques for AKE con-
structions to capture leakage of the randomness. Unfortunately, randomness (ephemeral secret)
used in AKE protocols is usually separated from that used in the authentication mechanism,
i.e., encryption or signature schemes, and the ephemeral key plays a crucial role in determin-
ing the session key. As mentioned before, there has been no work addressing the leakage of
ephemeral secret key in AKE protocols. In particular, we must ensure that the session key is
pseudo-random even if the randomness (i.e., the secret keying material) is leaked, which is a
difficult task under the strong leakage setting (e.g., auxiliary input).

We should also note that there are some other research works on leakage-resilient AKE.
Whereas these works didn’t follow the approach of [6, 18], they still suffer from the same
limitations mentioned above. Moriyama and Okamoto [36] introduced an eCK-based leakage-
resilient model for AKE protocols. However, it only considers the bounded leakage resilience
[3] of the long-term secret key but not the ephemeral secret key. Moreover, their construction
requires the notion of πPRFs (Pseudo-Random Functions), of which the construction under
standard model still remains unknown.

Goal of This Work. Based on the aforementioned observations, we can conclude that designing
a strong, meaningful, yet achievable leakage model for AKE is of practical and theoretical
importance. In this paper, we give a formal study on AKE protocols in the auxiliary input model
under the goal of closing the research gaps outlined above.

Table 1. Comparison with Existing Leakage-Resilient AKE Security Models

AKE Models Partial Leakage Setting1

Basic Models
Reasonable Assumption2 Randomness Leakage Leakage Setting

[6] No × Bounded CK
[18] No × Bounded CK
[42] No × Auxiliary Input CK
[36] No × Bounded eCK
[5] No × Bounded eCK

This Work Yes
√

Auxiliary Input eCK
1 The partial leakage setting studied in this work is independent from reveal queries in eCK-based AKE

models. Here “
√

” means partial information of the randomness (a.k.a ephemeral secret) can be leaked
through leakage queries.

2 The works [6, 18, 42, 36] suffer from the unnatural assumption that leakage would not happen during the
challenge session. The work [5] suffer from the split-state assumption.

6 R.Chen et al.

1.2 Our Contributions

In this work, we investigate both the modelling and construction of AKE in the auxiliary input
model, under the goal of developing a strong, meaningful, yet achievable framework that can
overcome the limitations of the previous solutions. Particularly, we:

– formulate a new security model named leakage-resilient eCK model w.r.t. auxiliary inputs
(AI-LR-eCK) for AKE protocols, which is the first eCK-based AKE security notion that
captures computationally hard-to-invert leakage attacks on both the long-term secret and the
randomness (i.e., the ephemeral secret) under some reasonable and necessary restrictions;

– propose a general framework for the construction of 2-round AI-LR-eCK-secure AKE pro-
tocols to illustrate the feasibility of the AI-LR-eCK model; We also provide a formal security
analysis of the generic construction through a rigorous reduction proof;

– show an instantiation of the proposed general framework by instantiating all the building
blocks under the standard model.

1.3 Overview of Our Techniques

In this section we present an overview of our techniques for modelling and constructing AKE
with auxiliary input. The overview consists of three parts, i.e., the AI-LR-eCK model, the generic
construction and the instantiations. We start with describing more clearly the notion of AI-LR-eCK.
Leakage-Resilient eCK model w.r.t. Auxiliary Inputs. As shown in Table 1, our proposed
AI-LR-eCK model resolves the limitations in the previous leakage models for AKE.
– Modelling General Leakage Attacks. We incorporate the auxiliary input model into the eCK
security notion in order to capture the computationally hard-to-invert leakage of both the long-
term secret and ephemeral secret.

We define the set of admissible leakage functions H by following the work of Dodis et al.
[17], i.e., we require a secret key is hard to compute when given the public key in additional
to the leakage. The reason for considering such kind of auxiliary input function class is that
AKE protocols (in some sense) belong to the public key setting (especially the long-term key)
in terms of the authentication part. Since the public key (e.g., lpk) itself leaks some information
about the secret key (lsk), as pointed out by Dodis et al. [17], it would be impossible to prove that
the scheme remains secure w.r.t the class of admissible function that is hard-to-invert without
given the public key. More precisely, for the modelling of long-term secret key (denoted by lsk)
leakage, we define Hlpk-ow(εlsk) as the class of all the polynomial-time computable functions
h : {0, 1}|lsk|+|lpk| → {0, 1}∗, such that given (lpk, h(lsk, lpk)) (lpk is the long-term public
key), no probabilistic polynomial-time (PPT) adversary can find lsk with probability greater
than εlsk. Similarly, to model the leakage of randomness (the ephemeral secret, denoted by
esk), we define Hepk-ow(εesk) as the class of all the polynomial-time computable functions h :
{0, 1}|esk|+|epk| → {0, 1}∗, such that given (epk, h(esk, epk)) (epk denotes the ephemeral public
key), no PPT adversary can find esk with probability greater than εesk.

Our proposed AI-LR-eCK model deserves more interpretation. To model the leakage query
from the adversary, we define the leakage query LongTermKeyLeakage(flsk, pid) for the adver-
sary to query the leakage oracle and learn flsk(lsk, lpk) where flsk ∈ Hlpk-ow(εlsk) and (lsk, lpk)
denotes the long-term key pair of party pid. As for the ephemeral secret leakage, we also define
the query EphemeralKeyLeakage(fesk, sid) for the adversary to access the leakage oracle and

Strong Authenticated Key Exchange with Auxiliary Inputs 7

learn fesk(esk, epk) where fesk ∈ Hepk-ow(εesk) and (esk, epk) denotes the ephemeral key pair
used by the owner of the session sid. One should note that separating the leakage queries for the
long-term key and the ephemeral key could be reasonable in practice, as these keys are usually
not stored in the same place (e.g., the long-term key can be stored in ROM, while ephemeral
keys are stored in RAM). To be more precise, in AI-LR-eCK model, the adversary is allowed to
reveal the long-term secret of both parties and obtain partial information of all the ephemeral
secrets generated in the AKE protocol through the leakage query. More details are referred to
the Table 1. Therefore, compared to existing models, our proposed AI-LR-eCK model is the
strongest security model for AKE with auxiliary inputs.

– A Reasonable Assumption. A somewhat unnatural assumption, namely disallowing leakage
queries to be made during the challenge session, has been introduced in the previous models. We
should note that it is impossible to remove the assumption without any additional treatment(s)
(e.g., split-state assumption by Alawatugoda et al. [4]). The reason is that different from PKE
or signature, in AKE the adversary can actively participate in the challenge session. As a result,
it can utilize the leakage function to break the authentication mechanism or directly learn the
session key.

In this paper, we address this definitional difficulty using a different but more reasonable ap-
proach. We observe that in reality, most of the leakage attacks are constrained by the hardware
device and measurement methods in their physical implementations. Therefore, as pointed out
in the work [22, 43], a fully adaptive choice of the leakage function may be an overly powerful
model to capture leakage attacks. Inspired by this observation, we modify the fully adaptive
definition used in the previous models by asking the adversary to submit two leakage function
sets Flsk ⊆ Hlpk-ow(εlsk), and Fesk ⊆ Hepk-ow(εesk) prior to the game setup. During the security
game, the adversary is only allowed to adaptively query any leakage functions belonging to
the committed sets. As the submitted leakage function sets are chosen by the adversary inde-
pendently of the system parameters, the adversary can no longer trivially break the challenge
session and hence the aforementioned unnatural assumption can be abolished.

One may object that artificially requiring the adversary to fix the leakage function sets is
somewhat counter-intuitive, as it seems that we bypass the definitional difficulty by just re-
ducing the leakage capturing. This is actually no the case. As illustrated above, most of the
practical leakage attacks in reality depend on the physical implementation rather than the re-
alistic cryptosystem. In fact, one can note that a similar treatment has also been adopted for
other cryptographic schemes with leakage resilience [20, 41, 22, 43]. Therefore, compared to
the unnatural assumption which disallows the adversary to access the leakage query during the
challenge session, our assumption is meaningful in capturing most of the leakages that occur
in practice and hence is more reasonable. Moreover, unlike the notion of after-the-fact leakage
which implicitly requires the split-state assumption, our approach is more general and also more
natural to tackle with the randomness leakage.

Our Generic Construction. We present a generic framework for constructing AI-LR-eCK-
secure AKE protocols to illustrate the feasibility of our proposed security model. Our generic
construction utilizes several building blocks, including a strong extractor with hard-to-invert
auxiliary inputs (denoted as AI-SE in the rest of paper), a twisted pseudo-random function
(tPRF), a smooth projective hash function (SPHF) and a signature scheme that is existentially
unforgeable under chosen message and auxiliary input attacks (EU-CMAA).

8 R.Chen et al.

– Underlying Primitives. The notion of AI-SE was introduced by Yuen et al. [44]. A randomness
extractor Ext is said to be a strong extractor with hard-to-invert auxiliary inputs if no PPT
adversary can distinguish (r, f(x),Ext(x, r)) from (r, f(x), u), where r, u are chosen uniformly
at random and f is any computationally hard-to-invert function. It has been shown in Yuen et
al. [44] that such a strong extractor can be constructed based on the modified Goldreich-Levin
theorem of Dodis et al. [17].

The notion of twisted pseudo-random function (tPRF) was introduced and used in the work
[23, 32] for constructing AKE protocols in the traditional setting. A tPRF F̃ is pseudo-random
in terms of two different forms. Firstly, for any polynomial q, no PPT adversary can distinguish
(x1, · · · , xq, F̃ (K, x1), · · · , F̃ (K, xq)) from (x1, · · · , xq, R1, · · · , Rq) where K, {xi, Ri}qi=1,
are randomly chosen. Secondly, no PPT adversary can distinguish (K, F̃ (K, x)) from (K,R)
for any randomly chosen K, x,R. An instantiation of tPRF from normal pseudo-random func-
tion was given in [32], which shows that pseudo-random functions do imply tPRFs.

The definition of a smooth projective hash function (SPHF) [16] requires the existence of
a domain X and an underlying NP language L, where elements of L form a subset of X ,
i.e., L ⊂ X . The key property of SPHF is that the hash value of any word W ∈ L can be
computed by using either a secret hashing key, or a public projection key with the witness to
the fact that W ∈ L. However, the projection key gives almost no information about the hash
value of any point in X \ L. In our paper, we adopt an extension of the SPHF by introducing
a new algorithm WordG for the word generation and require the SPHF to be based on a hard-
on-the-average NP-language and hence is pseudo-random [25]. That is, given a word W ∈ L,
without the corresponding witness or the secret hashing key, the distribution of its hash value is
computationally indistinguishable from an uniform distribution.

– Roadmap of Our Framework. Our framework is based on the eCK-secure AKE protocols
proposed in the work [32, 23], which are in the traditional (i.e., non-leakage) setting. Our 2-
round AI-LR-eCK-secure AKE protocol works as follows. First, for both the initiator and the
responder, we apply the AI-SE on the long-term secret key lsk and ephemeral secret key esk
to extract two new secrets, i.e., l̃sk, ẽsk. According to the definition of AI-SE, we know that
l̃sk, ẽsk are indistinguishable from random values from the view of the adversary even in the
presence of computationally hard-to-invert leakages on lsk and esk.

We then use l̃sk and ẽsk to generate a session-unique secret hashing key and a witness
for the WordG algorithm for the SPHF. However, since in the AI-LR-eCK model the adversary
can reveal either the long-term secret key or the ephemeral secret key, if we directly apply
the SPHF, e.g., by setting one of l̃sk and ẽsk as the secret hashing key, then the adversary can
reveal lsk or esk to obtain the secret hashing key (as AI-SE guarantees nothing in this situation!).
Due to a similar reason, we cannot directly use l̃sk or ẽsk as the witness in word generation.
To tackle this problem, our construction generates a session-specific secret hashing key and a
witness for the WordG algorithm by applying a tPRF F̃ (l̃sk, ẽsk). More precisely, the initiator
derives the two random values (r1, r2) from the tPRF. It first applies r1 to generate the hashing
key and the projection key hp. It then signs hp using r2 and sends hp with the corresponding
signature to the responder. Upon receiving the message from the initiator, the responder verifies
the signature and then executes the same procedure to generate two random values (w, r3) by
applying the tPRF. It then use w as the witness to generate the word W and signs W with other
communicated messages using r3. Finally, it returns W and the corresponding signature to the

Strong Authenticated Key Exchange with Auxiliary Inputs 9

initiator. The initiator and the responder can then compute the hash value of W , which is the
shared session key, since the initiator knows the secret hashing key while the responder has the
projection key and the witness.

It is worth noting that in our framework, we require the underlying signature scheme to
be existentially unforgeability under chosen message and auxiliary input attacks (EU-CMAA)
[21]. However, as illustrated by Faust et al. [21], no EU-CMAA-seucre signature scheme w.r.t.
polynomially hard-to-invert leakage exists. The reason is that the signing algorithm can be re-
garded as a polynomially hard-to-invert leakage function. To address this problem, the work by
Faust et al. [21] considered a restricted class of leakage functions that are exponentially hard-
to-invert. Fortunately, we do not need to enforce such a restriction on the leakage functions in
this work. It is due to the fact that in our general framework of AKE construction, for authen-
tication, the initiator (A) generates the signature on the transcript (hp, Â, lpkB, B̂) where lpkB
is the long-term public key of the responder (B) and likewise the responder signs the transcript
(WB, B̂, hp, Â) that contains the ephemeral public key hp of the initiator. Therefore, the adver-
sary cannot forge a signature on the challenge session through leakage query, as it is asked to
specify the allowed leakage function sets prior to the game setup in the AI-LR-eCK model and
hence neither lpkB nor hp can be embedded into the leakage function by the adversary.

An Instantiation of Our Framework. We show that the building blocks in our framework can
be instantiated in the standard model. To be precise, we first describe a construction of AI-SE
introduced in [44] using inner product from the Goldreich-Levin theorem [17] over any field
GF (q) for a prime q. A simple instantiation of tPRF from PRFs is then presented. We introduce
the Diffie-Hellman language LDH = {(u1, u2)|∃r ∈ Zp, s.t., u1 = gr1, u2 = gr2} where G is a
group of primer order p and g1, g2 ∈ G are generators. An SPHF, denoted by SPHFDH, is then
constructed based on LDH. We show that the EU-CMAA-secure signature scheme of Faust et al.
[21] (henceforth called the FHNNZ signature scheme) can be used as the underlying signature
scheme for instantiating our framework.

2 Preliminaries

In this section, we introduce some notations and definitions used in our construction.

2.1 Notations

In this paper, for a finite set Ω, ω $← Ω denotes that ω is selected uniformly at random from Ω.

Computational Indistinguishability. Let V1 and V2 be two probability distributions over a
finite set Ω where |Ω| ≥ 2k and k is a security parameter. We then define a distinguisher D̃
as follows. In the game, D̃ takes as input V1 and V2, the challenger flips a coin γ $← {0, 1}.
D̃ is then given an element v1

$← V1 if γ = 1, otherwise an element v2
$← V2. Finally, D̃

outputs a bit γ′ ∈ {0, 1} as its guess on γ. We define the advantage of D̃ in this game as
AdvV1,V2

D̃
(k) = Pr[γ′ = γ]− 1/2. We say that V1 and V2 are computationally indistinguishable

if for any probabilistic polynomial-time (PPT) distinguisher D̃, AdvV1,V2
D̃

(k) is negligible, and

we denote it by V1
c≡ V2.

10 R.Chen et al.

2.2 Strong Extractor with Hard-to-Invert Auxiliary Inputs

A central component of our construction is a new variant of strong randomness extractor which
is proposed in [44]. The new notion, named strong extractor with ε-hard-to-invert auxiliary
inputs, is defined as follows.
Definition 1 (Strong Extractor with ε-Hard-to-Invert Auxiliary Inputs [44]). Let Ext :
{0, 1}l1 × {0, 1}l2 → {0, 1}m′ , where l1, l2 and m′ are polynomial in the security parame-
ter k. Ext is said to be a strong extractor with ε-hard-to-invert auxiliary inputs, if for all pairs
(x, f) such that x ∈ {0, 1}l2 and f ∈ How(ε), we have:

{(r, f(x),Ext(x, r))} c≡ {(r, f(x), u)}

where r ∈ {0, 1}l1 , u ∈ {0, 1}m′ are chosen uniformly at random.
It is worth noting that the above leakage function f ∈ How(ε) can be viewed as a compo-

sition of q functions f1, f2, · · · , fq, where q ∈ N+ and fi ∈ How(ε). Details are provided in
Section 3.1. The following Lemma is obtained in [44].
Lemma 1 [44]. Let r ∈ {0, 1}l1 be chosen uniformly at random. For any pair (x, f) where
x ∈ {0, 1}l2 and f ∈ How(ε), no PPT adversary can recover x with probability ≥ ε given
(r, f,Ext(x, r)), provided that Ext(x, r) is a strong extractor with ε-hard-to-invert auxiliary
inputs.

2.3 Pseudo-Random Function

In this paper, we adopt two specific types of pseudo-random function called πPRF and twisted
pseudo-random function (tPRF) in our construction. πPRF was firstly defined in [38] .Twisted
PRF was introduced in [23] and later improved in [32]. Here we briefly recall the notion of
πPRF and introduce an enhanced version of the improved twisted PRF for our work.

Let k ∈ N be a security parameter. A function family F is associated with {Seedk}k∈N,
{Domk}k∈N and {Rngk}k∈N. Formally, for any

∑ $← Seedk, σ $←
∑

, D $← Domk and R $←
Rngk, F

k,
∑
,D,R

σ defines a function which maps an element of D to an element of R. That is,
F
k,
∑
,D,R

σ (ρ) ∈ R for any ρ ∈ D.
Definition 2 (PRF). We say that F is a pseudo-random function (PRF) family if

{Fk,
∑
,D,R

σ (ρi)}
c≡ {RF(ρi)}

for any ρi ∈ D adaptively chosen by any polynomial time distinguisher, where RF is a truly
random function. That is, for any ρ ∈ D,RF(ρ)

$← R.
πPRF. Roughly speaking, πPRF refers to a pseudo-random function family that if a specific
key σ is pairwise-independent from other keys, then the output of function with key σ is com-
putationally indistinguishable from a random element.

Formally, let Z∑ be a set of random variables over
∑

, and I∑ be a set of indices regarding∑
such that there exits a deterministic polynomial-time algorithm, f∑ : I∑ → Z∑, which

on input the index i ∈ I∑, output σi ∈ Z∑. Consider the random variables {σij}j=0,...,q(k) =
{f∑(ij)}j=0,...,q(k) where ij ∈ I∑ and q(k) a polynomial function of k. We say that σi0 is pair-
wisely independent from other variables σi1 , ..., σiq(k) if for any pair of (σi0 , σij)(j = 1, ..., q(k)),
for any (x, y) ∈

∑2, we have Pr[σi0 → x ∧ σij → y] = 1/|
∑
|2.

Strong Authenticated Key Exchange with Auxiliary Inputs 11

Definition 3 (πPRF). Define F̃(ρj) = F
k,
∑
,D,R

σij
(ρj) for ij ∈ I∑, ρj ∈ D. We say that F is a

πPRF family if
{F̃(ρj)}

c≡ {R̃F(ρj)}
for any {ij ∈ I∑, ρj ∈ D} (j = 0, 1, ..., q(k)) adaptively chosen by any polynomial time
distinguisher such that σi0 is pairwisely independent from σij(j > 0), where R̃F is the same as
F̃ except that R̃F(ρ0) is replace by a truly random value inR.

Definition 4 (Twisted PRF). We say that a function F̃ : {0, 1}t1 × {0, 1}t2 → {0, 1}t2 is a
twisted pseudo-random function (tPRF) if

– For any polynomial q(k),

{(x1, · · · , xq(k), F̃ (K, x1), · · · , F̃ (K, xq(k)))}
c≡ {(x1, · · · , xq(k), R1, · · · , Rq(k))}

whereK ∈ {0, 1}t1 , xi ∈ {0, 1}t2 , Ri ∈ {0, 1}t2 are randomly chosen for any i = 1, ..., q(k),
and

– For any randomly chosen K, x,R,

{(K, F̃ (K, x))} c≡ {(K,R)}

An Enhanced Variant of Twisted PRF. In this work, we consider an enhanced variant of
tPRF. That is, similar to the distinguisher defined in the security game of PRF, we allow the
distinguisher to adaptively choose the input in the security game of tPRF. Precisely, the two
properties of tPRF defined above still hold when (x1, · · · , xq(k)) and K are chosen by any
polynomial time distinguisher respectively.
An Instantiation of (Enhanced) tPRF from PRF. In [32], the authors showed that a twisted
pseudo-random function F̃ : {0, 1}t1 × {0, 1}t2 → {0, 1}t2 can be instantiated from a pseudo-
random function F : {0, 1}t′1 × {0, 1}t′1 → {0, 1}t2 as follows,

F̃ ((k, k′), (a, a′)) = Fk(a)⊕ Fa′(k′)

where t1 = t2 = 2t′1 and k, k′, a, a′ are randomly chosen from {0, 1}t′1 . A formal proof was
given in [32] to show that F̃ is a tPRF if F is a PRF. Therefore, we can see that PRFs do imply
tPRFs. One can easily note that such an instantiation is also an enhanced tPRF.

2.4 Smooth Projective Hash Function

Smooth projective hash function(SPHF) is originally introduced by Cramer and Shoup [16] and
extended for constructions of many cryptographic primitives [25, 27, 30, 2, 9]. We start with the
original definition.

Syntax. Roughly speaking, the definition of an SPHF requires the existence of a domain X
and an underlying NP language L, where elements of L form a subset X , i.e., L ⊂ X . A key
property of SPHF is that, for any point W in the language L (W ∈ L), the hash value of W
can be computed by using either a secret hashing key which also works for the computation of
any point in the set X \ L, or a public projection key which only works for any point W ∈ L
and requires the knowledge of the witness w for the fact that W ∈ L. Formally, an SPHF over
a language L ⊂ X , onto a set Y , is defined by the following algorithms

12 R.Chen et al.

– SPHFSetup(1k): generates the global parameters param and the description of an NP lan-
guage L from the security parameter k;

– HashKG(L, param): generates a hashing key hk for the language L;
– ProjKG(hk, (L, param)): derives the projection key hp from the hashing key hk;
– Hash(hk, (L, param),W): outputs the hash value hv ∈ Y on the word W from the hashing

key hk;
– ProjHash(hp, (L, param),W,w): outputs the hash value hv′ ∈ Y , on the word W from the

projection key hp, and the witness w for the fact that W ∈ L.

Extension. In order to make the SPHF notion well applied for our work, similar to [16], we also
need an extension of the SPHF in this paper. Precisely, we introduce the WordG algorithm and
slightly modify the Hash,ProjHash algorithms for SPHF as follows.1

– WordG(L, param, w): generates a word W ∈ L with w the witness ;
– Hash(hk, (L, param),W, aux): outputs the hash value hv ∈ Y on the word W from the

hashing key hk and the auxiliary input aux;
– ProjHash(hp, (L, param),W,w, aux): outputs the hash value hv′ ∈ Y , on the word W from

the projection key hp, the witness w for the fact that W ∈ L and the auxiliary input aux.

Property. A smooth projective hash function SPHF=(SPHFSetup,HashKG,ProjKG,WordG,
Hash,ProjHash) should satisfy the following properties,

– Correctness. Let W = WordG(L, param, w), then for all hashing key hk and projection key
hp , we have

Hash(hk, (L, param),W, aux) = ProjHash(hp, (L, param),W,w, aux)

– Smoothness. For any W ∈ X\L. Then the following two distributions are perfectly indis-
tinguishable:

V1 = {(L, param,W, hp, aux, hv)|hv = Hash(hk, (L, param),W, aux)},

V2 = {(L, param,W, hp, aux, hv)|hv
$← Y}.

To summary, a smooth projective hash function has the property that the projection key
uniquely determines the hash value of any word in the language L but gives almost no informa-
tion about the hash value of any point in X \ L.

Definition 5 (2-smooth SPHF). For any W1,W2 ∈ X\L, let aux1, aux2 be the auxiliary in-
puts such that (W1, aux1) 6= (W2, aux2), we say an SPHF is 2-smooth if the following two
distributions are statistically indistinguishable :

V1 = {(L, param,W1,W2, hp, aux1, aux2, hv1, hv2)|hv2 = Hash(hk, (L, param),W2, aux2)},

V2 = {(L, param,W1,W2, hp, aux1, aux2, hv1, hv2)|hv2
$← Y}.

where hv1 = Hash(hk, (L, param),W1, aux1).
1 In the rest of paper, all the SPHFs are referred to as the extended SPHF and defined by algorithms

(SPHFSetup,HashKG,ProjKG,WordG,Hash,ProjHash).

Strong Authenticated Key Exchange with Auxiliary Inputs 13

Definition 6 (Hard Subset Membership Problem). For a finite set X and an NP language
L ⊂ X , we say the subset membership problem is hard if for any word W $← L, W is com-
putationally indistinguishable from any random element chosen from X\L. Formally, we have
that

AdvSMP
A (k) = Pr

b′ = b :

(L, param)
$← SPHFSetup(1k);

b
$← {0, 1}; (W0, w)

$← SampYes(L, param);

W1
$← SampNo(L, param);

b′ ← A(L, param,Wb)

− 1

2
≤ negl(k).

Here SampYes(L, param) is a polynomial time algorithm for sampling an element (W,w) from
L where w is the witness to the membership W ∈ L and SampNo(L, param) is for sampling an
element W from X\L.

2.5 Signature Schemes Secure Against Hard-To-Invert Leakage

A signature scheme consists of a tuple of PPT algorithm (KeyGen, Sign,Verify) defined as fol-
lows.

– KeyGen(1k): generates the signing and verification key (sk, vk);
– Sign(sk,m): outputs the signature σ of a message m;
– Verify(vk,m, σ): outputs 1 if the signature is accepted and 0 otherwise.

A signature scheme should satisfy the following correctness property: for any message m
and keys (sk, vk) ← KeyGen(1k), Pr[Verify(vk,m, Sign(sk,m)) = 1] = 1. The standard secu-
rity notion for a signature scheme is existentially unforgeability under chosen message attacks
(EU-CMA). In this paper, we are interested in the following notion for signature schemes pro-
posed in [21], namely existentially unforgeability under chosen message and auxiliary input
attacks (EU-CMAA).
Definition 7 (EU-CMAA) [21]. A signature scheme SIG = (KeyGen, Sign,Verify) is secure
against EU-CMAA w.r.t. H which is a class of admissible leakage functions, if for any PPT
adversaryM and any function h ∈ H,

AdvEU-CMAA
SIG,H,M(k) = Pr

 (sk, vk)← KeyGen(1k);
(m∗, σ∗)←MO(sk,·)(vk, h(vk, sk)) :

Verify(vk,m∗, σ∗) = 1.


is negligible in k, where oracle O(sk, ·) outputs Sign(sk,m) for any input message m.

2.6 The Extended Canetti-Krawczyk (eCK) Model for AKE

In this subsection, we review the eCK security model for AKE protocols.
AKE Protocols. An AKE protocol is run among parties (A,B, C, ...) which are modelled as
probabilistic polynomial-time Turing Machines. Each party has a long-term secret key (lsk)
together with a certificate that binds the corresponding long-term public key (lpk) to the party.
Here we denote Â(B̂) as the long-term public key of party A (B) with the certificate issued by
the certificate authority CA.

14 R.Chen et al.

Any two parties, say A,B, can be activated to run an instance of the AKE protocol, namely
session to obtain a shared session key. During the session execution, the party that first sends a
message is called an initiator and the party that first receives a message is called a responder.
Suppose thatA is the session initiator. When the session is activated,A generates the ephemeral
public/secret key pair (epkA, eskA) and sends (B̂, Â, epkA) to session responder B. B then cre-
ates the ephemeral public/secret key pair (epkB, eskB) and sends (Â, B̂, epkA, epkB) to A. At
the end of the session execution, each party derives the shared session key by taking as input
his/her own long-term secret key and ephemeral secret key, along with the long-term public key
and ephemeral public key received from the other party.

The session of initiator A with responder B is identified by the session identifier (Â, B̂,
epkA, epkB), where A is the owner of the session and B the peer of the session. The session of
responder B with initiator A is identified as (B̂, Â, epkB, epkA), where B is the owner of the
session and A the peer of the session. Session (B̂, Â, epkB, epkA) is said to be the matching
session of (Â, B̂, epkA, epkB). If the party outputs a session key at the end of the session, we
called the session is completed.
eCK Security Model. The extended Canetti-Krawczyk (eCK) model was proposed by LaMac-
chia, Lauter and Mityagin [33] based on the CK model which was formulated by Canetti and
Krawczyk [13] for the AKE protocols. Roughly speaking, in the eCK definition, the adversary
M is modelled as a probabilistic polynomial time Turing machine that controls all commu-
nications between the honest parties. In the eCK model, adversary M is allowed to issue the
following oracle queries.

– Send(A,B,message). Sends message to party A on behalf of party B. Returns A’s re-
sponse to this message. This query allows M to activate A to start a session and present
party B to communicate with A.

– EstablishParty(pid). This query allows the adversary to register a long-term public key on
behalf of party pid, which is said to be dishonest. Note that if a party is not dishonest, we
call the party honest.

– LongTermKeyReveal(pid). This query allows the adversary to learn the long-term secret key
of party pid.

– SessionKeyReveal(sid). This query allows the adversary to obtain the session key of the
completed session sid.

– EphemeralKeyReveal(sid). This query allows the adversary to obtain the ephe-meral secret
key of session sid.

Eventually, adversary M selects a completed session sid∗ as the test session and makes a
query Test(sid∗) as follows.

– Test(sid∗). To answer this query, the challenger pick b $← {0, 1}. If b = 1, the challenger
returns SK∗ ← SessionKeyReveal(sid∗) . Otherwise, the challenger sendsM a random key
R∗

$← {0, 1}|SK∗|.
Note that the Test query can be issued only once and the game terminates as soon as M

outputs its guess b′ on b. Here, we require the test session to be a fresh session which is defined
as follows.
Definition 6 (Fresh Session in eCK Model). Let sid be the completed session owned by an
honest party A with peer B, who is also honest. If there exists the matching session to session

Strong Authenticated Key Exchange with Auxiliary Inputs 15

sid, we denote the matching session as sid. Session sid is said to be fresh if none of the following
conditions hold:

– M issues a SessionKeyReveal(sid) query or a SessionKeyReveal(sid) query (If sid exists).
– sid exists andM issues either
• LongTermKeyReveal(A) ∧ EphemeralKeyReveal(sid), or
• LongTermKeyReveal(B) ∧ EphemeralKeyReveal(sid).

– sid does not exist andM issues either
• LongTermKeyReveal(A) ∧ EphemeralKeyReveal(sid), or
• LongTermKeyReveal(B).

We remark that the freshness of the test session can be identified only after the game is
completed asM can continue the other queries after the Test query. That is,M wins the game
if he correctly guesses the challenge for the test session which remains fresh until the end of the
game. Formally, we have the following notion for eCK security.
Definition 8 (eCK Security). Let the test session sid∗ be fresh where adversary M issues
Test(sid∗) query. We define the advantage ofM in the eCK game by

AdveCKM (k) = Pr[b′ = b]− 1/2,

where k is the security parameter of the AKE protocol. We say the AKE protocol is eCK-secure if
the matching session computes the same session key and for any probabilistic polynomial-time
adversaryM, AdveCKM is negligible.

3 Formal Security Against Auxiliary Inputs for AKE

In this section, we introduce a new security model, namely leakage-resilient eCK model w.r.t.
auxiliary input (AI-LR-eCK), for AKE protocols.

3.1 Admissible Auxiliary Input Functions

To model both the long-term secret key and ephemeral secret key leakage with respect to the
auxiliary input, we firstly specify the set of admissible functions H. Following the work of
Dodis et al. [17], we define two classes of auxiliary input leakage functions.

– LetHow(εlsk) be the class of all the polynomial-time computable functions h : {0, 1}|lsk|+|lpk|
→ {0, 1}∗, such that given h(lsk, lpk) (for a randomly generated long-term key pair (lsk, lpk)),
no PPT adversary can find lsk with probability greater than εlsk. The function h(lsk) can be
viewed as a composition of qlsk ∈ N+ functions, i.e., h(lsk, lpk) = (h1(lsk, lpk), · · · , hqlsk(lsk,
lpk)) where for all i ∈ {1, · · · , qlsk}, hi ∈ How(εlsk).

– Let Hlpk-ow(εlsk) be the class of all the polynomial-time computable functions h : {0,
1}|lsk|+|lpk|→ {0, 1}∗, such that given (lpk, h(lsk, lpk)) (for a randomly generated long-term
key pair (lsk, lpk)), no PPT adversary can find lsk with probability greater than εlsk. The
function h(lsk, lpk) can be viewed as a composition of qlsk ∈ N+ functions, i.e., h(lsk, lpk) =
(h1(lsk, lpk), · · · , hqlsk(lsk, lpk)) where for all i ∈ {1, · · · , qlsk}, hi ∈ Hlpk-ow(εlsk).

For the auxiliary input functions with respect to ephemeral secret key leakage, we also define
two classes.

16 R.Chen et al.

– LetHow(εesk) be the class of all the polynomial-time computable functions h : {0, 1}|esk|+|epk|
→ {0, 1}∗, such that given h(esk, epk) (for a randomly generated ephemeral key pair (esk, epk)),
no PPT adversary can find esk with probability greater than εesk. The function h(esk, epk) can
be viewed as a composition of qesk ∈ N+ functions, i.e., h(esk, epk) = (h1(esk, epk), · · · ,
hqesk(esk, epk)) where for all i ∈ {1, · · · , qesk}, hi ∈ How(εesk).

– LetHepk-ow(εesk) be the class of all the polynomial-time computable functions h : {0, 1}|esk|+|epk|
→ {0, 1}∗, such that given (epk, h(esk, epk)) (for a randomly generated ephemeral key pair
(esk, epk)), no PPT adversary can find esk with probability greater than εesk. The func-
tion h(esk, epk) can be viewed as a composition of qesk ∈ N+ functions, i.e., h(esk) =
(h1(esk, epk), · · · , hqesk(esk, epk)) where for all i ∈ {1, · · · , qesk}, hi ∈ Hepk-ow(εesk).

One can note that if either εlsk ≤ 2−|lsk| or εesk ≤ 2−|esk|, our definitions would be trivialized
since then no leakage if admissible. In the definition ofHow, we require that it is hard to compute
the secret key given only the leakage. In contrast, when defining Hlpk-ow and Hepk-ow, we ask
that the secret key is hard to compute when given the public key in additional to the leakage,
which means the allowed leakage functions depend on the information of the public key while
the leakage classHow is defined independently of the concrete AKE scheme.

In this work, we typically define the auxiliary input model with respect to the classHlpk-ow(εlsk)
andHepk-ow(εesk). This is because that AKE protocols normally belong to the public key setting
in terms of the authentication mechanism. As stated in [17], it would be impossible to prove
that the scheme remains secure w.r.t the class of admissible auxiliary input function How since
the public key (e.g., lpk) itself leaks some information about the secret key (lsk). The stronger
security notion for the class of admissible auxiliary input functionHow, can be then achieved ac-
cording to the following lemma which is firstly proven by Dodis et al.[17] and later formalized
in [21].

Lemma 2. ([17, 21]) For any εlsk and εesk, we have that

1. Hlpk-ow(εlsk) ⊆ How(εlsk),Hepk-ow(εesk) ⊆ How(εesk).
2. How(2−|lpk| · εlsk) ⊆ Hlpk-ow(εlsk),How(2−|epk| · εesk) ⊆ Hlpk-ow(εesk).

It is worth noting that the public-key setting is not always the case for the secrets that are
not involved in the authentication mechanism (e.g., the ephemeral secret). A counterexample is
our generic construction that will be introduced below. Nevertheless, we consider such class of
auxiliary input function to make our model general. Actually, for the ephemeral secret that has
no public key (i.e., |epk| = 0), we have thatHepk-ow(εesk) = How(εesk) according to Lemma 2.

3.2 Auxiliary Input Model for AKE

We are now ready to present the new security model, i.e., leakage-resilient eCK model w.r.t.
auxiliary input (AI-LR-eCK) for AKE protocols. Roughly speaking, we allow the adversary to
access the leakage oracle in addition to the queries specified by the original eCK model. For-
mally, we define the following two leakage queries for the adversary in the AI-LR-eCK model.

– LongTermKeyLeakage(flsk, pid). This allows the adversary to query the leakage oracle and
learn flsk(lsk, lpk) where flsk ∈ Hlpk-ow(εlsk) and (lsk, lpk) denotes the long-term key pair
of party pid.

Strong Authenticated Key Exchange with Auxiliary Inputs 17

– EphemeralKeyLeakage(fesk, sid). This allows the adversary to query the leakage oracle and
learn fesk(esk, epk) where fesk ∈ Hepk-ow(εesk) and (esk, epk) denotes the ephemeral key
pair used by the owner of the session sid.

One should note that separating the leakage queries for the long-term key and the ephemeral
key is reasonable in practice, as these keys are usually not stored in the same place (e.g., the
long-term key can be stored in ROM, while ephemeral keys are stored in RAM).

Note that in our new security model, we aim to remove the restriction in the previous models
(excluding the after-the-fact-leakage AKE model proposed in [5, 4] by Alawatugoda et al.).
That is, the adversary can access to the leakage oracle before, during or after the test session.
However, as shown below, if there is no other restriction with respect to the leakage query, a
trivial attack can be launched by the adversary as follows.
A Trivial Attack. Consider a test session sid∗ which is owned by party A with peer B. Note
that for a 2-pass AKE protocol, the session key of sid∗ is determined by (Â, B̂, lskA, esk

∗
A,

lpkB, epk
∗
B) which contains only two secret keys (i.e., lskA, esk∗A). SinceM is allowed to reveal

esk∗A (lskA) in the eCK model, M can launch a trivial attack by encoding the session key
derivation function into the leakage function of lskA (esk∗A) and hence wins the security game.
Therefore, some special treatments should be adopted otherwise the security cannot be achieved
at all.
Our Treatment. As we have discussed before, in reality, leakage attacks are often determined
by the hardware devices and measurement methods in physical implementations. On the other
hand, the trivial attack above assumes that the adversary can adaptively choose any abstract
leakage function, which is overly strong for capturing leakage attacks in reality [22, 43]. There-
fore, it is reasonable to change the full adaptive definition which would give a more mean-
ingful way to address the trivial attack. Inspired by this observation, in our proposed model,
we ask the adversary to submit two leakage function sets Flsk ⊆ Hlpk-ow(εlsk) and Fesk ⊆
Hepk-ow(εesk), where both |Flsk| and |Fesk| are polynomial in the security parameter, prior to
the game setup. During the security game, the adversary is only allowed to adaptively ask
for any leakage functions belonging to the committed sets. More precisely, for all the queries
LongTermKeyLeakage(flsk, pid) and EphemeralKeyLeakage(fesk, sid) that are issued by the ad-
versary, we require that flsk ∈ Flsk, fesk ∈ Fesk. It is worth noting that the above natural re-
laxation of leakage resilience has also been considered in e.g., [20, 41, 22, 43] and is generally
known as non-adaptive leakage resilience where the adversary has to fix the leakage functions
in advance before seeing the system parameters.

Readers may consider a slightly stronger model where the adversary is only required to
submit Flsk,Fesk before the challenge phase (i.e., the test session). However, if we adopt this
approach, then we cannot avoid the following trivial attack. Consider a test session sid∗ where
the session key is determined by (Â, B̂, lskA, esk

∗
A, lpkB, epk

∗
B). Suppose that the matching

session sid∗ does not exist, i.e., adversary M controls the generation of epk∗B. To specify the
function set Fesk, M can first obtain lskA via LongTermKeyReveal(A) and then encode the
session key computation function and (Â, B̂, lskA, lpkB, epk

∗
B) into a leakage function fesk that

outputs the session key. Note that this can be done before the activation of test session since
adversaryM can choose epk∗B by itself. The reason behind this trival attack is that the adversary
can be actively involved in the challenge session in AKE.

We define the notion of a fresh session in the AI-LR-eCK model as follows.

18 R.Chen et al.

Definition 9 ((ε1, ε2)-Leakage Fresh Session in AI-LR-eCK Model). Let sid be a completed
session owned by an honest partyA with peer B, who is also honest. Let sid denote the matching
session of sid, if it exists. Session sid is said to be fresh in the AI-LR-eCK model if the following
conditions hold:

– sid is a fresh session in the sense of eCK model.
– M only issues the following leakage queries
• LongTermKeyLeakage(flsk,A),
• LongTermKeyLeakage(flsk,B),
• EphemeralKeyLeakage(fesk, sid),
• EphemeralKeyLeakage(fesk, sid) (if sid exists),

such that flsk ∈ Flsk ⊆ Hlpk-ow(ε1), fesk ∈ Fesk ⊆ Hepk-ow(ε2) where both Flsk and Fesk are
submitted byM at the very beginning of the security game.

It remains to formally define the notion of AI-LR-eCK security.
Definition 10 (AI-LR-eCK Security). Let the test session sid∗ be (ε1, ε2)-leakage fresh where
adversaryM issues Test(sid∗) query. We define the advantage ofM in the AI-LR-eCK game
by

AdvAI-LR-eCK
M (k) = Pr[b′ = b]− 1/2,

where k is the security parameter of the AKE protocol. We say the AKE protocol is (ε1, ε2)-
leakage-resilient eCK w.r.t. auxiliary inputs-secure ((ε1, ε2)-AI-LR-eCK-secure) if the matching
session computes the same session key and for any probabilistic polynomial-time adversaryM,
AdvAI-LR-eCK

M (k) is negligible.

Table 2. Classification of Valid Attacks by AdversaryM

Events Owner of sid∗ Existence of sid∗ lskA esk∗A lskB esk∗B

E1 A/B Yes R L R L
E2 A/B Yes L R L R
E3 A/B Yes R L L R
E4 A/B Yes L R R L
E5 A No R L L ⊗
E6 A No L R L ⊗
E7 B No L ⊗ R L
E8 B No L ⊗ L R

1. “R” means the long-term or ephemeral secret key is revealed and “L” means the long-term
or ephemeral secret key is accessed through leakage query by the adversary. “⊗” means that
the ephemeral secret key is under the control of the adversary.

Classification of Valid Attacks in AI-LR-eCK. Here we discuss the relationship between the
reveal oracle, e.g., LongTermKeyReveal and the leakage oracle, e.g., LongTermKeyLeakage.
We can see that it is meaningless for M to issue the leakage query on the long-term secret
key (ephemeral secret key) if it has already obtained the whole key through querying the reveal
oracle. Indeed, adversaryM can compute itself the leakage function flsk(lskA) if lskA is known
to him. Therefore, the valid attack on the test session can be classified according to Table 2.

Strong Authenticated Key Exchange with Auxiliary Inputs 19

A (Initiator) B (Responder)

lskA = skA, lpkA = (vkA, rA). lskB = skB, lpkB = (vkB, rB).

Session Execution

eskA
$← {0, 1}l2(k),

l̃skA = Ext1(skA, eskA),

ẽskA = Ext2(eskA, rA),

(r1, r2) = F̃ (l̃skA, ẽskA),

hk← HashKG(param,L, r1),

hp← ProjKG(param,L, hk),

σA ← Sign(skA, (hp, Â, lpkB, B̂); r2),

Erase all state except (hp, eskA).

(Â, hp, σA)

If Verify(vkA, σA, (hp, Â, lpkB, B̂)) = 1,

eskB
$← {0, 1}l2(k)

l̃skB = Ext1(skB, eskB),

ẽskB = Ext2(eskB, rB),

(wB, r3) = F̃ (l̃skB, ẽskB),

WB ←WordG(param,L, wB),

σB ← Sign(skB, (WB, B̂, hp, Â); r3),

(B̂,WB, Â, hp, σB)

Session Key Derivation

If Verify(vkB, σB, (WB, B̂, hp, Â)) = 1,
reconstruct hk,

Set sid = (Â, B̂, hp, σA,WB, σB), aux = H(sid) Set sid = (Â, B̂, hp, σA,WB, σB), aux = H(sid)

SA ← Hash(hk, (param,L),WB, aux) SB ← ProjHash(hp, (param,L),WB, wB, aux)

SKA = F̄sA (sid). SKB = F̄sB (sid).

Fig. 1. Framework for AI-LR-eCK-Secure AKE.

Without loss of generality, we assume that the test session sid∗ is a completed session owned
by an honest party A with peer B. Let sid

∗
denote the matching session of sid∗, if it exists. We

denote esk∗A, esk
∗
B as the ephemeral secret keys used by A and B in sid∗ and sid

∗
(if it exists),

respectively.

4 A General Framework for AI-LR-eCK-Secure AKE

In this section, we propose a general framework for constructing AI-LR-eCK-secure AKE pro-
tocols.

4.1 Our Generic Construction

Fig. 1 describes the generic construction for the secure AKE protocol with auxiliary inputs. We
describe the framework as follows.
System Setup. Suppose that k is the system security parameter. Let SPHF = (SPHFSetup,
HashKG,ProjKG,WordG,Hash,ProjHash) denote an SPHF over L ⊂ X and onto the set Y .
The assoicated auxiliary input space is denoted byAUX . Let SIG = (KeyGen, Sign,Verify) be

20 R.Chen et al.

an EU-CMAA-secure signature scheme with the signing key space denoted as SK. Let Ext1 :
SK × {0, 1}l2(k) → {0, 1}t1(k),Ext2 : {0, 1}l2(k) × {0, 1}l′2(k) → {0, 1}t2(k) be two strong
extractors with hard-to-invert auxiliary inputs. Let F̃ : {0, 1}t1(k) × {0, 1}t2(k) → {0, 1}t3(k) be
an enhanced tPRF and F̄ : Y × {0, 1}∗ → {0, 1}l3(k) be a πPRF. Pick the collision-resistant
hash function H : {0, 1}∗ → AUX . The system parameter is (param,Ext1,Ext2, F̃ , H) where
param← SPHFSetup(1k).

Key Generation. At the long-term key generation stage, A picks rA
$← {0, 1}l′2(k) and runs the

algorithm KeyGen to obtain a signing/verification key pair (skA, vkA),A then sets its long-term
key pair as lskA = skA, lpkA = (vkA, rA). Similarly, B picks rB

$← {0, 1}l′2(k) and runs the
algorithm KeyGen to obtain signing/verification key pair (skB, vkB), B then sets its long-term
key pair as lskB = skB, lpkB = (vkB, rB).

Session Execution (A
 B). The key exchange protocol betweenA and B executes as follows.

– (A⇀ B). A performs the following steps.

1. Selects the ephemeral secret key eskA
$← {0, 1}l2(k).

2. Sets l̃skA = Ext1(skA, eskA), ẽskA = Ext2(eskA, rA).
3. Computes (r1, r2) = F̃ (l̃skA, ẽskA).
4. Runs HashKG(param,L, r1) to obtain the hashing key hk.
5. Runs ProjKG(param,L, hk) to obtain the projection key hp.
6. Signs hp by running Sign(skA, hp, Â, lpkB, B̂); r2) to obtain σA.
7. Erase all state except (hp, eskA) and sends (Â, hp, σA) to B.

– (B ⇀ A). Upon receiving the message from A, B executes the following steps.
1. Verifies σA and aborts if the verification fails, otherwise,
2. Selects the ephemeral secret key eskB

$← {0, 1}l2(k).
3. Sets l̃skB = Ext1(skB, eskB), ẽskB = Ext2(eskB, rB).
4. Computes (wB, r3) = F̃ (l̃skB, ẽskB).
5. Runs the algorithm WordG(param,L, wB) to obtain a word WB.
6. Signs WB by running Sign(skB, (WB, B̂, hp, Â), r3) to obtain σB.
7. Sends (B̂,WB, Â, hp, σB) to A.

Session Key Derivation. When A receives (B̂,WB, Â, hp, σB), A firstly verifies the signature
σB by running Verify(vkB, σB, (B̂,WB, hp, Â)). If the verification fails, A aborts the protocol,
otherwise,A reconstructs hk using (skA, eskA, rA). Finally,A sets sid = (Â, B̂, hp, σA,WB, σB),
computes aux = H(sid) and computes the session key asKA ← Hash(hk, (param,L),WB, aux)
and SKA = F̄sA(sid) . Similarly, partyB computes the session key asKB ← ProjHash(hp, (param,
L),WB, wB, aux) and SKB = F̄sB(sid).

Correctness. Due to the projective hash function, we can easily obtain that,

Hash(hk, (param,L),WB, aux) = ProjHash(hp, (param,L),WB, wB, aux)

which guarantees that SA = SB and thus SKA = SKB.

Strong Authenticated Key Exchange with Auxiliary Inputs 21

4.2 Security Analysis

Theorem 1. The above construction is (ε1, ε2)-AI-LR-eCK-secure if the underlying SPHF is
2-smooth and the associated subset membership problem is hard, SIG is secure against EU-
CMAA w.r.t. Hlpk-ow(ε1), Ext1 is a strong extractor with ε1-hard-to-invert auxiliary inputs, and
Ext2 is a strong extractor with ε2-hard-to-invert auxiliary inputs, where both ε1 and ε2 are
negligible.

Proof. Denote the advantage of adversaryM against our construction in the security model as
AdvM(k).

Let the test session sid∗ be as follows.

sid∗ = ((Â, hp∗, σ∗A), (B̂,W ∗
B, Â, hp∗, σ∗B)) or ((B̂,W ∗

B, Â, hp∗, σ∗B), (Â, hp∗, σ∗A)).

We adopt the game-hopping technique for the security proof of our construction. We define a
sequence of modified attack games, Game0,Game1, · · · between the simulator S and adversary
M. In each game, a random bit b is chosen by the simulator S for the test session andM outputs
a bit b′ at the end of game. We denote Succi as the event that b = b′ in Gamei. Therefore, the
advantage ofM in Gamei is AdvM,i = Pr[Succi]− 1/2.

It remains to show the details of each game.
Game 0. Game0 is the original attack game. Suppose that adversaryM activates at most n(k)
honest parties {P1, · · · , Pn(k)} and activates party A ∈ {P1, · · · , Pn(k)} as an initiator at most

N(k) times. In the i-th activation, S chooses eskA,i
$← {0, 1}l2(k), computes l̃skA,i = Ext1(skA,

eskA,i), ẽskAi
= Ext2 (eskA,i, rA), and (r1,i, r2,i) = F̃ (l̃skA,i, ẽskA,i). Suppose M activates

party B ∈ {P1, · · · , Pn(k)} as a responder at most N(k) times. In the j-th activation, S chooses

eskB,j
$← {0, 1}l2(k), computes l̃skB,j = Ext1(sB, eskB,j), ẽskB,j = Ext2(eskB,j, rB), and

(wB,j, r3,j) = F̃ (l̃skB,j, ẽskB,j). Similarly, for any activation of the other n(k) − 2 parties,
S simulates the session correctly. One can easily that,

AdvAI-LR-eCK
M (k) = AdvM,0 (1)

Game 1. Game1 is the same game as Game0, except that at the beginning, S chooses two parties
randomly from [P1, · · · , Pn(k)] and aborts the game if they are not A and B respectively. We
then have that,

AdvM,1 = (1/n(k)2) · AdvM,0 (2)

Game 2. Game2 is the same as Game1 except that S aborts the game ifM generates σ∗A or σ∗B.
Now we analyze the probability thatM generates σ∗A or σ∗B. On one hand, if adversaryM ob-
tains lskA (lskB) through the reveal query, the case thatM generates σ∗A (σ∗B) would not happen
as this implies thatM has corrupted A (B). This is not allowed due to the freshness require-
ment of sid∗. On the other hand, the probability that M forges either of the above signatures
without obtaining the corresponding long-term secret key is bounded by the unforgeability of
the underlying signature scheme SIG. One may note that in our construciton, the random r2 of
signing in the test and other sessions is derived from the revealed key and leaked key while the
one used by the singing oracle in the EU-CMAA model is uniformaly random. We insist that
they are indistinguishable from the view of the adversary. This is due to the security property
of the underlying randomness extractor and tPRF. Therefore, during the simulation, when the

22 R.Chen et al.

random r2 is replaced by a uniformly random number by the signing oracle defined in the EU-
CMAA model, the returned signature is indistinguishable from the one in the real AI-LR-eCK
game from the view of a computational adversary. Suppose that the advantage of any adversary
against SIG in the EU-CMAA model is at most AdvEU-CMAA

SIG,Hlpk-ow(k), then we have that,

AdvM,2 = (1− AdvEU-CMAA
SIG,Hlpk-ow(k)) · AdvM,1 (3)

Therefore, we say that (Â, hp∗, σ∗A) must be correctly computed by S in the i∗-th activation
for some i∗ ∈ {1, · · · , N(k)} and (B̂,W ∗

B, σ
∗
B) must be correctly computed by S in the j∗-th

activation for some j∗ ∈ {1, · · · , N(k)}.
Game 3. Game3 is the same as Game2 except for the following. S chooses i, j ∈ {1, · · · , N(k)}
randomly and aborts the game it does not hold that i = i∗, j = j∗. It is easily to obtain that,

AdvM,3 = (1/N(k)2) · AdvM,2 (4)

Game 4. Game4 is the same as Game3 except for the following. Suppose that the behaviour of
M on the test session (and the matching session, if exits) belongs to the event E∗ ∈ {E1, · · · ,E8}
(Table 1). S then chooses an event E′

$← {E1, · · · ,E8} and aborts the game if E′ 6= E∗. There-
fore, we can see that,

AdvM,4 = 1/8 · AdvM,3 (5)

Game 5. Game5 is the same as Game4 except for the following. For any activation of A as an
initiator, S simulates it as follows.
CASE A.5.1. E∗ ∈ {E1,E3,E5}.

Instead of computing ẽskA,i∗ = Ext2(eskA,i∗ , rA), S chooses ẽskA,i∗
$← {0, 1}t2(k). In this

sub-case, we have the following claim.
CLAIM 1. For any adversaryM, we have that

|AdvM,5 − AdvM,4| ≤ 2AdvExt2(k),

where AdvExt2(k) is the most advantage of any adversary against Ext2 : {0, 1}l2(k) ×{0, 1}l′2(k)

→ {0, 1}t2(k) which is a strong extractor with ε2-hard-to-invert auxiliary inputs.
Proof. We use simulator S as the adversary against the strong extractor with ε-hard-to-invert
auxiliary inputs. More precisely, we assume a security test environment for Ext2, where S is
given (rA, f1(eskA,i∗), · · · , fqe(eskA,i∗), T ∗), of which T ∗ is either T0 = Ext2(eskA,i∗ , rA) or

T1 = r
$← {0, 1}t2(k). During the simulation, S returns (f1(eskA,i∗), · · · , fqe(eskA,i∗)) 2 as the

leakage query outputs forM. As for the test session, i.e., i∗-th session, S sets ẽskA,i∗ as T ∗. One
can note that when T ∗ = T0, the simulation is equivalent to Game4. Otherwise the simulation is
equivalent to Game5.

Finally, when M outputs its guess b′, S outputs 1 if b′ = b, otherwise outputs 0. Let
AdvExt2(k) be the advantage of S against Ext2, then we have that,

AdvExt2(k) = Pr[S outputs 1|T ∗ = T0]− Pr[S outputs 1|T ∗ = T1]

= Pr[b′ = b|T ∗ = T0]− Pr[b′ = b|T ∗ = T1]

=
1

2
(AdvM,5 − AdvM,4).

2 Since the ephemeral secret key eskA,i∗ has no corresponding public key, we have that fj ∈ Hepk-ow(εesk) = How(εesk) for
all 1 < j < qe according to Lemma 2.

Strong Authenticated Key Exchange with Auxiliary Inputs 23

and |AdvM,5 − AdvM,4| ≤ 2AdvExt2(k). This completes the proof of CLAIM 1.

CASE A.5.2. E∗ ∈ {E2,E4,E6}3.

Instead of computing l̃skA,i = Ext1(skA, eskA,i), S chooses l̃skA,i
$← {0, 1}t1(k) for all

i ∈ {1, · · · , N(k)}. In this sub-case, we have the following claim.
CLAIM 2. For any adversaryM, we have that

|AdvM,5 − AdvM,4| ≤ 2 ·N(k) · AdvExt1(k),

where AdvExt1(k) is the most advantage of any adversary against Ext1 : SK ×{0, 1}l2(k) →
{0, 1}t1(k) which is a strong extractor with ε1-hard-to-invert auxiliary inputs.

Proof. We use simulator S as the adversary against the strong extractor with ε-hard-to-invert
auxiliary inputs. More precisely, we assume N(k) security games for Ext1, where for each
i ∈ {1, · · · , N(k)}, S is given (eskA,i, f1(skA), · · · , fql(skA), T ∗i), of which T ∗i is either T0,i =

Ext1(skA, eskA,i) or T1,i = ri
$← {0, 1}t1(k). During the simulation, S returns (f1(skA), · · · ,

fql(skA))4 as the leakage query outputs for M. As for the i-th session, S sets l̃skA,i as T ∗i .
One can note that if T ∗i = T0,i for all i ∈ {1, N(k)}, the simulation is equivalent to Game4.
Otherwise the simulation is equivalent to Game5. Therefore, applying the hybrid argument and
according to the analysis in CLAIM 1 we then have that,

|AdvM,5 − AdvM,4| ≤ 2 ·N(k) · AdvExt1(k).

This completes the proof of CLAIM 2.

For any activation of B as a responder, similarly, S simulates as follows.
CASE B.5.1. E∗ ∈ {E1,E4,E7}.
S chooses ẽskB,j∗

$← {0, 1}t2(k), instead of from Ext2(eskB,j∗ , rB).
CASE B.5.2. E∗ ∈ {E2,E3,E8}.

Instead of computing l̃skB,j = Ext1(sB, eskB,j), S chooses l̃skB,j
$← {0, 1}t1(k) for all

j ∈ {1, · · · , N(k)}.
One can note that CASE B.5.1 and CASE B.5.2 are similar to CASE A.5.1 and CASE A.5.2

respectively.
Therefore, for Game5, we always have that,

|AdvM,5 − AdvM,4| ≤ 2 ·max{N(k) · AdvExt1(k),AdvExt2(k)} (6)

Game 6. Game6 is the same as Game5 except for the following.
For any activation of A as an initiator, S simulates as follows.

CASE A.6.1. E∗ ∈ {E1,E3,E5}.
3 One may notice that here S does not simulate the session of A when E∗ ∈ {E7,E8}. This is because that when E7 or E8

happens, the session ofA is under the control of the adversary and thus it does not exist. It is also the case for the events E5

and E6 where S does not need to simulate the session of B.
4 Noting that skA here has the verification key vkA, one may wonder if the leakage query made byM can be answered by
S. It is actually the case, as for each leakage function hj ∈ Hlpk-ow(εlsk) (1 < j < ql) by M, we can set fj(skA) =
(hj(skA, vkA), vkA) ∈ How(εlsk).

24 R.Chen et al.

Instead of computing (r1,i∗ , r2,i∗) = F̃ (l̃skA,i∗ , ẽskA,i∗), S chooses (r1,i∗ , r2,i∗)
$← {0, 1}t3(k).

In this sub-case, we have the following claim.
CLAIM 3. For any adversaryM, we have that

|AdvM,6 − AdvM,5| ≤ 2AdvtPRF(k),

where AdvtPRF(k) is the most advantage of any adversary against the enhanced twisted PRF

F̃ .

Proof. We use simulator S as the adversary against the second property of the enhanced twisted
pseudo-random function. Precisely, we assume a security test environment for F̃ , where S
specifies the input l̃skA,i∗ and is given T ∗. Here T ∗ is either T0 = F̃ (l̃skA,i∗ , ẽskA,i∗) or

T1 = r
$← {0, 1}t2(k). During the simulation, as for the test session, i.e., i∗-th session, S sets

(r1,i∗ , r2,i∗) as T ∗. One can note that when T ∗ = T0 = F̃ (l̃skA,i∗ , ẽskA,i∗), although ẽskA,i∗
here is unknown to S and may be different from the one picked randomly by S in Game5, they
are statistically indistinguishable from the view of adversaryM. Therefore, when T ∗ = T0, the
simulation is equivalent to Game5. Otherwise the simulation is equivalent to Game6.

Finally, when M outputs its guess b′, S outputs 1 if b′ = b, otherwise outputs 0. Let
AdvtPRF(k) be the advantage of S against F̃ , then we have that,

AdvtPRF(k) = Pr[S outputs 1|T ∗ = T0]− Pr[S outputs 1|T ∗ = T1]

= Pr[b′ = b|T ∗ = T0]− Pr[b′ = b|T ∗ = T1]

=
1

2
(AdvM,6 − AdvM,5).

and |AdvM,6 − AdvM,5| ≤ 2AdvtPRF(k). This completes the proof of CLAIM 3.

CASE A.6.2. E∗ ∈ {E2,E4,E6}.
Instead of computing (r1,i, r2,i) = F̃ (l̃skA,i, ẽskA,i), S chooses (r1,i, r2,i)

$← {0, 1}t3(k) for
all i ∈ {1, · · · , N(k)}. In this sub-case, we have the following claim.
CLAIM 4. For any adversaryM, we have that

|AdvM,6 − AdvM,5| ≤ 2AdvtPRF(k),

where AdvtPRF(k) is the most advantage of any adversary against the enhanced twisted PRF

F̃ .

Proof. We use simulator S as the adversary against the first property of the enhanced twisted
pseudo-random function. Precisely, we assume a security test environment for F̃ , where S spec-
ifies the input (ẽskA,1, · · · , ẽskA,N(k)) and is given (T ∗1 , · · · , T ∗N(k)). For all i ∈ {1, · · · , N(k)},

T ∗i is either T0,i = F̃ (l̃skA,i, ẽskA,i) or T1,i = r
$← {0, 1}t2(k). During the simulation, as for

the i-th session, S sets (r1,i, r2,i) as T ∗i . One can note that when T ∗i = T0,i = F̃ (l̃skA,i, ẽskA,i)

for all i ∈ {1, · · · , N(k)}, although l̃skA,i here is unknown to S and may be different from the
one picked randomly by S in Game5, they are statistically indistinguishable from the view of
adversaryM. Therefore, when T ∗i = T0,i, the simulation is equivalent to Game5. Otherwise the
simulation is equivalent to Game6.

Strong Authenticated Key Exchange with Auxiliary Inputs 25

Finally, when M outputs its guess b′, S outputs 1 if b′ = b, otherwise outputs 0. Let
AdvtPRF(k) be the advantage of S against F̃ , then we have that,

AdvtPRF(k) = Pr[S outputs 1|T ∗ = T0]− Pr[S outputs 1|T ∗ = T1]

= Pr[b′ = b|T ∗ = T0]− Pr[b′ = b|T ∗ = T1]

=
1

2
(AdvM,6 − AdvM,5).

and |AdvM,6 − AdvM,5| ≤ 2AdvtPRF(k). This completes the proof of CLAIM 4.

For any activation of B as a responder, similarly, S simulates as follows.
CASE B.6.1. E∗ ∈ {E1,E4,E7}.

Instead of computing (wB,j∗ , r3,j∗) = F̃ (l̃skB,j∗ , ẽskB,j∗), S chooses (wB,j∗ , r3,j∗)
$← {0, 1}t3(k).

CASE B.6.2. E∗ ∈ {E2,E3,E8}.
Instead of computing (wB,j, r3,j) = F̃ (l̃skB,j, ẽskB,j), S chooses (wB,j∗ , r3,j∗)

$← {0, 1}t3(k)

for all j ∈ {1, · · · , N(k)}.
One can note that CASE B.6.1 and CASE B.6.2 are similar to CASE A.6.1 and CASE A.6.2

respectively.
Therefore, for Game6, we always have that,

|AdvM,6 − AdvM,5| ≤ 2 · AdvtPRF(k) (7)

Game 7. Game7 is the same as Game6 except for the test session sid∗, S computes SK∗B as
SK∗B ← Hash(hk∗, (param,L),W ∗

B, aux
∗) instead of SK∗B ← ProjHash(hp∗, (param,L),W ∗

B,
w∗B,aux∗) . We can see that Game 7 is identical to the Game 6 from the view of adversaryM due
to the fact that SK∗B ← Hash(hk∗, param,L,W ∗

B, aux
∗) = ProjHash(hp∗, param,L,W ∗

B, w
∗
B, aux

∗).
Therefore, we have

AdvM,7 = AdvM,6. (8)

Game 8. Game8 is the same as Game7 except that S choose W ∗
B ∈ X \ L instead of deriving it

from L through the algorithm WordG. We then have the following result.
CLAIM 5. For any adversaryM, we have that

|AdvM,8 − AdvM,7| ≤ 2AdvSPHFSMP(k),

where AdvSPHFSMP(k) is the most advantage of any adversary against the hard subset mem-
bership probelm of SPHF .

Proof. We use simulator S as the adversary against the hard subset membership problem of
the underlying SPHF, i.e., SPHF . More precisely, we assume a security test environment for
SPHF , where S is given (param,L,W ∗), of whichW ∗ either belongs toL or belongs toX \L.
During the simulation, as for the test session, i.e., i∗-th session, S sets W ∗

B in the test session
as W ∗. Therefore, when W ∗ belongs to L, the simulation is equivalent to Game7 as we can
implicitly assume that W ∗ = WordG(param,L, wB,j∗). Although wB,j∗ here may be different
from that one picked by S in Game7, they are statistically indistinguishable from the view of
adversaryM. Otherwise ifW ∗ belongs to X \L, the simulation is equivalent to Game8. Finally,
whenM outputs its guess b′, S outputs 0 if b′ = b, otherwise outputs 1. Let AdvSPHFSMP(k)

26 R.Chen et al.

be the advantage of S against the hard subset membership problem of SPHF , then we have
that,

|AdvM,8 − AdvM,7| ≤ 2AdvSPHFSMP(k) (9)

This completes the proof of CLAIM 5.

It is worth noting that adversary M may actives a session sid, which is not matching to
session sid∗, withA. Precisely,M can chooseW ∈ X \L (e.g., by replayingW ∗

B or its variant),
sends W toA and issues SessionKeyReveal(sid) query to learn the shared key. According to the
property of 2-smoothness of SPHF , we have that S∗A is pairwisely independent from any other
such key and all public information. Therefore, the derived session key SK∗A is computationally
indistinguishable from a truly random element fromM’s view due to the application of πPRF.
That is, we have that Pr[Succ8] = 1

2
and thus AdvM,8 = 0.

According to (1),(2),(3),(4),(5),(6),(7),(8), (9), we have the conclusion that AdvAI-LR-eCK
M (k)

is negligible, which proves Theorem 1.

5 Instantiating the Building Blocks

In this section, we show an instantiation of our framework based on the strong extractor with
hard-to-invert auxiliary inputs [44], a tPRF from PRFs, the Decision Diffie-Hellman (DDH)
assumption and the FHNNZ signature scheme [21].

5.1 Strong Extractor with Hard-To-Invert Auxiliary Inputs

The work in [44] showed that a strong extractor with ε-hard-to-invert auxiliary inputs can be
constructed from the modified Goldreich-Levin theorem [17]. We first describe the following
Goldreich-Levin theorem [17] over any fieldGF (q) for a prime q. Denote< x, r >=

∑l
i=1 rixi

as the inner product of x = (x1, · · · , xl) and r = (r1, · · · , rl).

Theorem 2. Let q be a prime, and letH be an arbitrary subset ofGF (q). Let f : Hn → {0, 1}∗
be any (possibly randomized) function. If there is a distinguisher D that runs in time t such that
|Pr[D(r, y, < s, r >) = 1] − Pr[D(r, y, u) = 1]| = δ where s $← Hn, y ← f(s), r

$←
GF (q)n, u

$← GF (q), then there is an inverter I that runs in time t′ = t ·poly(n, |H|, 1/δ) such
that Pr[I(y) = s] ≥ δ3

512·n·q2 .

Below we show the instantiation described in [44]. Let Ext(x, r) =< x, r >, we have the
following theorem.

Theorem 3. Let k be the security parameter. Let x be chosen uniformly random from {0, 1}l(k)

where l(k) = poly(k). Then given f ∈ How(ε), no PPT distinguisher D can distinguish

(r, f(x),Ext(x, r)) from (r, f(x), u) with probability ε′ ≥ (512·l(k)q2ε)1/3, where r $← GF (q)l(k),

u
$← GF (q).

The proof of above theorem is referred to [44].

Strong Authenticated Key Exchange with Auxiliary Inputs 27

5.2 A Simple Instantiation of tPRF

Following the work in [32], we show that the enhanced tPRF, i.e., F̃ : {0, 1}t1(k) × {0, 1}t2(k)

→ {0, 1}t3(k) can be simply instantiated as follows. Without loss of generality, we take the
construction of F̃ (l̃skA, ẽskA) as an example.

Let l̃skA = l̃sk
′
A||l̃sk

′′
A, ẽskA = ẽsk

′
A||ẽsk

′′
A, where |l̃sk

′
A| = k1, |l̃sk

′′
A| = k2, |ẽsk

′
A| =

k3, |ẽsk
′′
A| = k4 such that k1 + k2 = t1(k), k3 + k4 = t2(k). Pick two PRFs F ′ : {0, 1}k1 ×

{0, 1}k3 → {0, 1}t3(k), F ′′ : {0, 1}k4 × {0, 1}k2 → {0, 1}t3(k). Then we construct F̃ as follows.

F̃ (l̃skA, ẽskA) = F ′
l̃sk
′
A

(ẽsk
′
A)⊕ F ′′

ẽsk
′′
A

(l̃sk
′′
A).

According to the Theorem 1 in [32], we then have the following theorem.

Theorem 4. The above F̃ is an enhanced tPRF as long as both F ′ and F ′′ are PRFs.

5.3 DDH-based SPHF

We introduce the Diffie Hellman language LDH and show how to construct a 2-smooth SPHF
on LDH.

Diffie-Hellman Language. Let G be a group of primer order p and g1, g2 ∈ G. The Diffie-
Hellman Language is as follows.

LDH = {(u1, u2)|∃r ∈ Zp, s.t., u1 = gr1, u2 = gr2}

One can see that the witness space of LDH is W = Zp and LDH ⊂ X = G2. We have the
following theorems.

Theorem 5. The subset membership problem over X = G2 and LDH is hard.

Proof. One can easily obtain the theorem above from the DDH assumption and hence we omit
the proof here. Actually, if an adversary can distinguish a word randomly picked from LDH from
a random element chosen from X\LDH, we can build a distinguisher for the DDH problem by
using the adversary as a subroutine.

SPHF on LDH. Here we show how to construct a 2-smooth SPHF (denoted by SPHFDH)
over the language LDH ⊂ X = G2 onto the group Y = G. Let H1 : {0, 1}∗ → Zp denote a
collision-resistant hash function. The concrete construction is as follows.

– SPHFSetup(1λ): param = (G, p, g1, g2);

– HashKG(LDH, param): hk = (α1, α2, β1, β2)
$← Z4

p;
– ProjKG(hk, (LDH, param)): hp = (hp1, hp2) = (gα1

1 gα2
2 , gβ11 g

β2
2) ∈ G2

p;
– WordG(hk, (LDH, param), w = r): W = (gr1, g

r
2);

– Hash(hk, (LDH, param),W = (u1, u2) = (gr1, g
r
2), aux = d = H1(W,aux′)): hv = uα1+dβ1

1 ·
uα2+dβ2

2 ;
– ProjHash(hp, (LDH, param),W = (u1, u2) = (gr1, g

r
2), w = r, aux = d = H1(W,aux′)):

hv′ = hpr1hpdr2 .

28 R.Chen et al.

Note that Y = G,HK = Z4
p,HP = G2

p,AUX = Zp,W = Zp. Then we have the following
theorem.

Theorem 6. SPHFDH is a 2-smooth SPHF.

Proof. We show that SPHFDH is projective and smooth (2-smooth).

– Correctness. With the above notations, for a word W = (u1, u2) = (gr1, g
r
2) we have

Hash(hk, (LDH, param),W, d) = uα1+dβ1
1 uα2+dβ2

2

= hpr1hpdr2

= ProjHash(hp, (LDH, param),W, r, d).

– Smoothness (2-smooth). Suppose g2 = gθ1. Note that hp1 = gα1
1 gα2 , hp2 = gβ11 g

β2
2 which

constraints (α1, α2, β1, β2) to satisfy

logg1 hp1 = α1 + θα2. (10)

logg1 hp2 = β1 + θβ2. (11)

Let W1 = (gr11 , g
r2
2),W2 = (g

r′1
1 , g

r′2
2) ∈ X\LDH where r1 6= r2, r

′
1 6= r′2, suppose aux1 =

d1 = H1(W1, aux
′
1), aux2 = d2 = H1(W2, aux

′
2), then the hash value hv1 of W1, hv2 of W2

are as follows,

hv1 = Hash(hk, (LDH, param),W1, aux1) = g
r1(α1+d1β1)
1 g

r2(α2+d1β2)
2 ,

hv2 = Hash(hk, (LDH, param),W2, aux2) = g
r′1(α1+d2β1)
1 g

r′2(α2+d2β2)
2 ,

which also constraint (α1, α2, β1, β2) to satisfy

logg1 hv1 = r1α1 + r2θα2 + r1d1β1 + r2d1θβ2. (12)

logg1 hv2 = r′1α1 + r′2θα2 + r′1d2β1 + r′2d2θβ2. (13)

From the above equations, we have

(α1, α2, β1, β2) ·A = (logg1 hp1, logg1 hp2, logg1 hv1, logg1 hv2),

where A is a matrix defined as

A =


1 θ 0 0
0 0 1 θ
r1 θr2 r1d1 θr2d1

r′1 θr′2 r′1d2 θr′2d2

 .
Since (W1, aux1) 6= (W2, aux2) where aux1 = d1 = H1(W1, aux

′
1), aux2 = d2 =

H1(W2, aux
′
2), we have that d1 6= d2. Furthermore, as θ 6= 0, r1 6= r2 and r′1 6= r′2, we

can obtain that the determinant of A is θ2 · (r2− r1) · (r′2− r′1) · (d2− d1) 6= 0 and hence the
equation (13) is independent of the equation (12). Therefore, we have that hv2 is perfectly
indistinguishable from any element randomly chosen from G.

Strong Authenticated Key Exchange with Auxiliary Inputs 29

5.4 The FHNNZ Signature Scheme [21]

The FHNNZ signature scheme is introduced by Faust et al. and shown to be existential unforge-
ability under chosen message and auxiliary input attacks (EU-CMAA)-secure with respect to
exponentially hard-to-invert leakage. Below we give a quick review of the scheme.
The Scheme Construction. Let H denote a family of second preimage resistant hash functions
with key sampling algorithm GenH and input domain {0, 1}lin where lin = poly(k). Let Γ =
(KeyGenE,Enc,Dec) be an IND-WLCCA secure labelled public-key encryption scheme, and
Π = (CRSGen,P,V) a reusable-CRS NIZK system. Readers are referred to [21] for the details
of these underlying tools.

– KeyGen(1k): Sample s ← GenH(1k) and (ek, dk) ← KeyGenE(1k). Furthermore, sample
(crs, tds) ← S1(1k) and x ← {0, 1}lin , where S = (S1, S2) is the simulator for Π. Compute
y = Hs(x). Set (sk, vk) = (x, (y, s, ek, crs)).

– Sign(m, sk): Compute C = Encm(ek, x). Using crs and Π, generate a NIZK proof π proving
that ∃x such that (C = Encm(ek, x) ∧ y = Hs(x)). Output σ = (C, π)

– Verify(vk,m, σ): Parse σ as C, π. Use crs and V to verify the NIZK proof π. Output 1 if the
proof verifies correctly and 0 otherwise.

On the Leakage Functions. As shown in [21], the above construction is EU-CMAA-secure
with respect to only exponentially hard-to-invert leakage. The central idea of their construction
is to add an encryption C = Encm(ek, x) of the signing key x to each signature. The encryption
key ek is part of the verification key of the signature scheme but the corresponding decryption
key dk is not part of the signing key. They then set up the signature scheme that dk can be
guessed with probability p such that negl(k) ≥ p � 2−k

c for some negligible function negl(·)
and a constant 1 > c > 0. Since any PPT algorithm taking as input a signature and the public
key (excluding dk) can output the signing key x with probability p, the signing algorithm is then
excluded from the admissible leakage function set H which is with hardness at least 2−k

c (i.e.,
exponentially hard-to-invert).
Our Adoption of the FHNNZ Signature. At first glance, it seems that our construction cannot
achieve the security under the AI-LR-eCK model if we just directly adopt the FHNNZ signature,
as the admissible leakage function sets defined in AI-LR-eCK are computationally hard-to-invert
and hence do not exclude the signing algorithm. However, this is actually not the case. That is,
our construction is AI-LR-eCK-secure even we do not put such a restriction on the leakage
functions when applying the FHNNZ signature in our AKE protocol. It is due to the fact that
in our general framework of AKE construction, for authentication, the initiator (A) generates
the signature on the transcript including the long-term public key (i.e., lpkB) of the responder
and likewise the responder (B) signs on the transcript containing the ephemeral public key (i.e.,
hp) of the initiator. Therefore, the adversary cannot forge a signature on the challenge session
through the leakage query, as it is asked to specify the allowed leakage function sets prior to
the game setup in the AI-LR-eCK model and hence neither the aforementioned long-term public
key nor the ephemeral public key can be embedded into the leakage function by the adversary.

6 Conclusion

In this work, we filled the research gap between the existing works and the reality for AKE with
leakage resilience. Our proposed model, AI-LR-eCK, is a strong yet meaningful AKE security

30 R.Chen et al.

notion that captures computationally hard-to-invert leakage attacks on both the long-term secret
and the randomness (i.e., the ephemeral secret) under some reasonable restrictions. We also
presented a general framework of AI-LR-eCK-secure AKE protocols with an instantiation to
show that our new model is indeed achievable.

Acknowledgements. We would like to thank Dr. Zheng Yang for pointing out the subtle flaw
in the security proof of the previous version and also his valuable comments on our fixing
solution. We also want to thank Professor Colin Boyd for helpful discussions which improve
this full version.

References

1. Entity authentication mechanisms-part3: Entity authentication using asymmetric techniques. ISO/IEC IS 9789-3, 1993.
2. Abdalla, M., Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D.: Sphf-friendly non-interactive commitments. In:

ASIACRYPT. pp. 214–234 (2013)
3. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography against memory attacks. In:

TCC. pp. 474–495 (2009)
4. Alawatugoda, J., Boyd, C., Stebila, D.: Continuous after-the-fact leakage-resilient key exchange. In: ACISP. pp. 258–273

(2014)
5. Alawatugoda, J., Stebila, D., Boyd, C.: Modelling after-the-fact leakage for key exchange. In: ASIACCS. pp. 207–216

(2014)
6. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the bounded-retrieval model. In: CRYPTO.

pp. 36–54 (2009)
7. Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and analysis of authentication and key exchange

protocols (extended abstract). In: ACM STOC. pp. 419–428 (1998)
8. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: CRYPTO. pp. 232–249 (1993)
9. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New techniques for sphfs and efficient one-round

PAKE protocols. In: CRYPTO. pp. 449–475 (2013)
10. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: CRYPTO. pp. 513–525 (1997)
11. Bitansky, N., Canetti, R., Halevi, S.: Leakage-tolerant interactive protocols. In: TCC. pp. 266–284 (2012)
12. Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. J. Cryptology 26(3), 513–558 (2013)
13. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In: EURO-

CRYPT. pp. 453–474 (2001)
14. Choo, K.R., Boyd, C., Hitchcock, Y.: Examining indistinguishability-based proof models for key establishment protocols.

In: ASIACRYPT. pp. 585–604 (2005)
15. Chow, S.S.M., Dodis, Y., Rouselakis, Y., Waters, B.: Practical leakage-resilient identity-based encryption from simple

assumptions. In: ACM CCS. pp. 152–161 (2010)
16. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption.

In: EUROCRYPT. pp. 45–64 (2002)
17. Dodis, Y., Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Public-key encryption schemes with auxiliary

inputs. In: TCC. pp. 361–381 (2010)
18. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptography in the presence of key leakage.

In: ASIACRYPT. pp. 613–631 (2010)
19. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: ACM STOC. pp. 621–630 (2009)
20. Dodis, Y., Pietrzak, K.: Leakage-resilient pseudorandom functions and side-channel attacks on feistel networks. In:

CRYPTO. pp. 21–40 (2010)
21. Faust, S., Hazay, C., Nielsen, J.B., Nordholt, P.S., Zottarel, A.: Signature schemes secure against hard-to-invert leakage.

In: ASIACRYPT. pp. 98–115 (2012)
22. Faust, S., Pietrzak, K., Schipper, J.: Practical leakage-resilient symmetric cryptography. In: CHES. pp. 213–232 (2012)
23. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated key exchange from factoring, codes,

and lattices. In: PKC. pp. 467–484 (2012)
24. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results. In: CHES. pp. 251–261. No. Generators

(2001)
25. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key exchange. In: EUROCRYPT. pp. 524–543

(2003)

Strong Authenticated Key Exchange with Auxiliary Inputs 31

26. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino, J.A., Feldman, A.J., Appelbaum, J.,
Felten, E.W.: Lest we remember: Cold boot attacks on encryption keys. In: USENIX Security Symposium. pp. 45–60
(2008)

27. Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious transfer. J. Cryptology 25(1), 158–193
(2012)

28. Halevi, S., Lin, H.: After-the-fact leakage in public-key encryption. In: TCC. pp. 107–124 (2011)
29. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience. In: ASIACRYPT. pp. 703–720 (2009)
30. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key exchange. In: TCC. pp. 293–310 (2011)
31. Krawczyk, H.: SIGMA: the ’sign-and-mac’ approach to authenticated diffie-hellman and its use in the ike-protocols. In:

CRYPTO. pp. 400–425 (2003)
32. Kurosawa, K., Furukawa, J.: 2-pass key exchange protocols from cpa-secure KEM. In: CT-RSA. pp. 385–401 (2014)
33. LaMacchia, B.A., Lauter, K.E., Mityagin, A.: Stronger security of authenticated key exchange. In: ProvSec. pp. 1–16

(2007)
34. Marvin, R.: Google admits an android crypto prng flaw led to bitcoin heist (august 2013). http://sdt.bz/64008.
35. Micali, S., Reyzin, L.: Physically observable cryptography (extended abstract). In: TCC. pp. 278–296 (2004)
36. Moriyama, D., Okamoto, T.: Leakage resilient eck-secure key exchange protocol without random oracles. In: ASIACCS.

pp. 441–447 (2011)
37. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: CRYPTO. pp. 18–35 (2009)
38. Okamoto, T.: Authenticated key exchange and key encapsulation in the standard model. In: ASIACRYPT. pp. 474–484

(2007)
39. Quisquater, J., Samyde, D.: Electromagnetic attack. In: Encyclopedia of Cryptography and Security, 2nd Ed., pp. 382–385

(2011)
40. Shumow, D., Ferguson, N.: On the possibility of a back door in the nist sp800-90 dual ec prng. http://rump2007.

cr.yp.to/15-shumow.pdf.
41. Standaert, F., Pereira, O., Yu, Y., Quisquater, J., Yung, M., Oswald, E.: Leakage resilient cryptography in practice. In:

Towards Hardware-Intrinsic Security - Foundations and Practice, pp. 99–134 (2010)
42. Yang, G., Mu, Y., Susilo, W., Wong, D.S.: Leakage resilient authenticated key exchange secure in the auxiliary input

model. In: ISPEC. pp. 204–217 (2013)
43. Yu, Y., Standaert, F., Pereira, O., Yung, M.: Practical leakage-resilient pseudorandom generators. In: ACM CCS. pp. 141–

151 (2010)
44. Yuen, T.H., Zhang, Y., Yiu, S., Liu, J.K.: Identity-based encryption with post-challenge auxiliary inputs for secure cloud

applications and sensor networks. In: ESORICS. pp. 130–147 (2014)
45. Zetter, K.: How a crypto ’backdoor’ pitted the tech world against the nsa. http://www.wired.com/threatlevel/

2013/09/nsa-backdoor/all/.

