
OmniLedger: A Secure, Scale-Out, Decentralized Ledger via Sharding
Eleftherios Kokoris-Kogias†, Philipp Jovanovic†, Linus Gasser†, Nicolas Gailly†, Ewa Syta∗, Bryan Ford†

†École Polytechnique Fédérale de Lausanne, Switzerland, ∗Trinity College, USA

Abstract—Designing a secure permissionless distributed ledger
(blockchain) that performs on par with centralized payment
processors, such as Visa, is a challenging task. Most existing
distributed ledgers are unable to scale-out, i.e., to grow their total
processing capacity with the number of validators; and those that
do, compromise security or decentralization. We present Om-
niLedger, a novel scale-out distributed ledger that preserves long-
term security under permissionless operation. It ensures security
and correctness by using a bias-resistant public-randomness
protocol for choosing large, statistically representative shards
that process transactions, and by introducing an efficient cross-
shard commit protocol that atomically handles transactions af-
fecting multiple shards. OmniLedger also optimizes performance
via parallel intra-shard transaction processing, ledger pruning
via collectively-signed state blocks, and low-latency “trust-but-
verify” validation for low-value transactions. An evaluation of
our experimental prototype shows that OmniLedger’s throughput
scales linearly in the number of active validators, supporting
Visa-level workloads and beyond, while confirming typical trans-
actions in under two seconds.

I. INTRODUCTION

The scalability of distributed ledgers (DLs), in both total
transaction volume and the number of independent partici-
pants involved in processing them, is a major challenge to
their mainstream adoption, especially when weighted against
security and decentralization challenges. Many approaches
exhibit different security and performance trade-offs [10],
[11], [21], [32], [40]. Replacing the Nakamoto consensus [36]
with PBFT [13], for example, can increase throughput while
decreasing transaction commit latency [1], [32]. These ap-
proaches still require all validators or consensus group mem-
bers to redundantly validate and process all transactions,
hence the system’s total transaction processing capacity does
not increase with added participants, and, in fact, gradually
decreases due to increased coordination overheads.

The proven and obvious approach to building “scale-out”
databases, whose capacity scales horizontally with the number
of participants, is by sharding [14], or partitioning the state
into multiple shards that are handled in parallel by different
subsets of participating validators. Sharding could benefit
DLs [15] by reducing the transaction processing load on each
validator and by increasing the system’s total processing ca-
pacity proportionally with the number of participants. Existing
proposals for sharded DLs, however, forfeit permissionless
decentralization [16], introduce new security assumptions,
and/or trade performance for security [34], as illustrated in
Figure 1 and explored in detail in Sections II and IX.

We introduce OmniLedger, the first DL architecture that
provides “scale-out” transaction processing capacity compet-
itive with centralized payment-processing systems, such as
Visa, without compromising security or support for permis-

Elas
tic

o [34
]

Scale-Out

ByzCoin [32]

Decentralization

RSCoin [16] Security

OmniLedger

Fig. 1: Trade-offs in current DL systems.

sionless decentralization. To achieve this goal, OmniLedger
faces three key correctness and security challenges. First,
OmniLedger must choose statistically representative groups
of validators periodically via permissionless Sybil-attack-
resistant foundations such as proof-of-work [36], [38], [32]
or proof-of-stake [31], [25]. Second, OmniLedger must en-
sure a negligible probability that any shard is compromised
across the (long-term) system lifetime via periodically (re-
)forming shards (subsets of validators to record state and
process transactions), that are both sufficiently large and bias-
resistant. Third, OmniLedger must correctly and atomically
handle cross-shard transactions, or transactions that affect the
ledger state held by two or more distinct shards.

To choose representative validators via proof-of-work, Om-
niLedger builds on ByzCoin [32] and Hybrid Consensus [38],
using a sliding window of recent proof-of-work block miners
as its validator set. To support the more power-efficient al-
ternative of apportioning consensus group membership based
on directly invested stake rather than work, OmniLedger
builds on Ouroboros [31] and Algorand [25], running a public
randomness or cryptographic sortition protocol within a prior
validator group to pick a subsequent validator group from
the current stakeholder distribution defined in the ledger.
To ensure that this sampling of representative validators is
both scalable and strongly bias-resistant, OmniLedger uses
RandHound [44], a protocol that serves this purpose under
standard t-of-n threshold assumptions.

Appropriate use of RandHound provides the basis by which
OmniLedger addresses the second key security challenge of
securely assigning validators to shards, and of periodically
rotating these assignments as the set of validators evolves.
OmniLedger chooses shards large enough, based on the anal-
ysis in Section VI, to ensure a negligible probability that any
shard is ever compromised, even across years of operation.

Finally, to ensure that transactions either commit or abort
atomically even when they affect state distributed across multi-
ple shards (e.g., several cryptocurrency accounts), OmniLedger
introduces Atomix, a two-phase client-driven “lock/unlock”
protocol that ensures that clients can either fully commit a



transaction across shards, or obtain “rejection proofs” to abort
and unlock state affected by partially completed transactions.

Besides addressing the above key security challenges, Om-
niLedger also introduces several performance and scalability
refinements we found to be instrumental in achieving its
usability goals. OmniLedger’s consensus protocol, ByzCoinX,
enhances the PBFT-based consensus in ByzCoin [32] to pre-
serve performance under Byzantine denial-of-service (DoS)
attacks, by adopting a more robust group communication
pattern. To help new or long-offline miners catch up to the
current ledger state without having to download the entire
history, OmniLedger adapts classic distributed checkpointing
principles [20] to produce consistent, state blocks periodically.

Finally, to minimize transaction latency in common cases
such as low-value payments, OmniLedger supports optional
trust-but-verify validation in which a first small tier of val-
idators processes the transactions quickly and then hands
them over to a second larger, hence slower, tier that re-
verifies the correctness of the first tier transactions and ensures
long-term security. This two-level approach ensures that any
misbehavior within the first tier is detected within minutes,
and can be strongly disincentivized through recourse such as
loss of deposits. Clients can wait for both tiers to process high-
value transactions for maximum security or just wait for the
first tier to process low-value transactions.

To evaluate OmniLedger, we implemented a prototype in
Go on commodity servers (12-core VMs on Deterlab). Our
experimental results show that OmniLedger scales linearly in
the number of validators, yielding a throughput of 6,000 trans-
actions per second with a 10-second consensus latency (for
1800 widely-distributed hosts, of which 12.5% are malicious).
Furthermore, deploying OmniLedger with two-level, trust-but-
verify validation provides a throughput of 2,250 tps with a
four-second first-tier latency under a 25% adversary. Finally,
a Bitcoin validator with a month-long stale view of the state
incurs 40% of the bandwidth, due to state blocks.

In summary, this paper makes the following contributions:
• We introduce the first DL architecture that provides horizon-

tal scaling without compromising either long-term security
or permissionless decentralization.

• We introduce Atomix, a Atomic Commit protocol, to com-
mit transactions atomically across shards.

• We introduce ByzCoinX, a BFT consensus protocol that
increases performance and robustness to DoS attacks.

• We introduce state blocks, that are deployed along Om-
niLedger to minimize storage and update overhead.

• We introduce two-tier trust-but-verify processing to mini-
mize the latency of low-value transactions.

II. BACKGROUND

A. Scalable Byzantine Consensus in ByzCoin

OmniLedger builds on the Byzantine consensus scheme in
ByzCoin [32], because it scales efficiently to thousands of
consensus group members. To make a traditional consensus
algorithm such as PBFT [13] more scalable, ByzCoin uses

collective signing or CoSi [45], a scalable cryptographic primi-
tive that implements multisignatures [42]. ByzCoin distributes
blocks by using multicast trees for performance, but falls back
to a less-scalable star topology for fault tolerance. Although
ByzCoin’s consensus is scalable, its total processing capacity
does not increase with participation i.e., it does not scale-out.

B. Transaction Processing and the UTXO model

Distributed ledgers derive current system state from a
blockchain, or a sequence of totally ordered blocks that con-
tain transactions. OmniLedger adopts the unspent transaction
output (UTXO) model to represent ledger state, due to its
simplicity and parallelizability. In this model, the outputs of
a transaction create new UTXOs (and assign them credits),
and inputs completely “spend” existing UTXOs. During boot-
strapping, new (full) nodes crawl the entire distributed ledger
and build a database of valid UTXOs needed to subsequently
decide whether a new block can be accepted. The UTXO
model was introduced by Bitcoin [36] but has been widely
adopted by other distributed ledger systems.

C. Secure Distributed Randomness Generation

RandHound [44] is a scalable, secure multi-party compu-
tation (MPC) protocol that provides unbiasable, decentralized
randomness in a Byzantine setting. RandHound assumes the
existence of an externally accountable client that wants to
obtain provable randomness from a large group of semi-
trustworthy servers. To produce randomness, RandHound
splits the group of servers into smaller ones and creates a pub-
licly verifiable commit-then-reveal protocol [43] that employs
the pigeonhole principle to prove that the final random number
includes the contribution of at least one honest participant, thus
perfectly randomizing RandHound’s output.

Cryptographic sortition [25] is used to select a subset of
validators, according to some per-validator weight function.
To enable validators to prove that they belong to the selected
subset, they need a public/private key pair, (pki, ski). Sortition
is implemented using a verifiable random function (VRF) [35]
that takes an input x and returns a random hash (ℓ-bit long
string) and a proof π based on ski. The proof π enables anyone
knowing pki to check that the hash corresponds to x.

D. Sybil-Resistant Identities

Unlike permissioned blockchains [16], where the validators
are known, permissionless blockchains need to deal with the
potential of Sybil attacks [19] to remain secure. Bitcoin [36]
suggested the use of Proof-of-Work (PoW), where validators
(aka miners) create a valid block by performing an expensive
computation (iterating through a nonce and trying to brute-
force a hash of a block’s header such that it has a certain
number of leading zeros). Bitcoin-NG [21] uses this PoW
technique to enable a Sybil-resistant generation of identities.
There are certain issues associated with PoW, such as the
waste of electricity [17] and the fact that it causes recentraliza-
tion [29] to mining pools. Other approaches for establishing
Sybil-resistant identities such as Proof-of-Stake (PoS) [31],



[25], Proof-of-Burn (PoB) [46] or Proof-of-Personhood [8]
overcome PoW’s problems and are compatible with ByzCoins
identity (key-block) blockchain, and in turn with OmniLedger

E. Prior Sharded Ledgers: Elastico

OmniLedger builds closely on Elastico [34], that previously
explored sharding in permissionless ledgers. In every round,
Elastico uses the least-significant bits of the PoW hash to
distribute miners to different shards. After this setup, every
shard runs PBFT [13] to reach consensus, and a leader shard
verifies all the signatures and creates a global block.

OmniLedger addresses several challenges that Elastico
leaves unsolved. First, Elastico’s relatively small shards (e.g.,
100 validators per shard in experiments) yield a high failure-
probability of 2.76%1 per shard per block under a 25% adver-
sary, which cannot safely be relaxed in a PoW system [23]. For
16 shards, the failure probability is 97% over only 6 epochs.
Second, Elastico’s shard selection is not strongly bias-resistant,
as miners can selectively discard PoWs to bias results [7].
Third, Elastico does not ensure transaction atomicity across
shards, leaving funds in one shard locked forever if another
shard rejects the transaction. Fourth, the validators constantly
switch shards, forcing themselves to store the global state,
which can hinder performance but provides stronger guar-
antees against adaptive adversaries. Finally, the latency of
transaction commitment is comparable to Bitcoin (≈ 10min.),
which is far from OmniLedger’s usability goals.

III. SYSTEM OVERVIEW

This section presents the system, network and threat models,
the design goals, and a roadmap towards OmniLedger that
begins with a strawman design.

A. System Model

We assume that there are n validators who process trans-
actions and ensure the consistency of the system’s state. Each
validator i has a public / private key pair (pki, ski), and we
often identify i by pki. Validators are evenly distributed across
m shards. We assume that the configuration parameters of
a shard j are summarized in a shard-policy file. We denote
by an epoch e the fixed time (e.g., a day) between global
reconfiguration events where a new assignment of validators
to shards is computed. The time during an epoch is counted in
rounds r that do not have to be consistent between different
shards. During each round, each shard processes transactions
collected from clients. We assume that validators can establish
identities through any Sybil-attack-resistant mechanism and
commit them to the identity blockchain; to participate in epoch
e validators have to register in epoch e−1. These identities are
added into an identity blockchain as described in Section II-D.

B. Network Model

For the underlying network, we make the same assumption
as prior work [31], [34], [36]. Specifically, we assume that (a)
the network graph of honest validators is well connected and
that (b) the communication channels between honest validators
are synchronous, i.e., that if an honest validator broadcasts a

1Cumulative binomial distribution (P = 0.25, N = 100, X ≥ 34)

message, then all honest validators receive the message within
a known maximum delay ∆ [39]. However, as ∆ is in the
scale of minutes, we cannot use it within epochs as we target
latencies of seconds. Thus, all protocols inside one epoch
use the partially synchronous model [13] with optimistic,
exponentially increasing time-outs, whereas ∆ is used for slow
operations such as identity creation and shard assignment.

C. Threat Model

We denote the number of Byzantine validators by f and
assume, that n = 4f , i.e., at most 25% 2 of the validators
can be malicious at any given moment, which is similar to
prior DL’s [21], [32], [34]. These malicious nodes can behave
arbitrarily, e.g., they might refuse to participate or collude to
attack the system. The remaining validators are honest and
faithfully follow the protocol. We further assume that the
adversary is mildly adaptive [31], [34] on the order of epochs,
i.e., he can try to corrupt validators, but it takes some time for
such corruption attempts to actually take effect.

We further assume that the adversary is computationally
bounded, that cryptographic primitives are secure, and that
the computational Diffie-Hellman problem is hard.

D. System Goals

OmniLedger has the following primary goals with respect
to decentralization, security, and scalability.
1) Full decentralization. OmniLedger does not have any

single points of failure (such as trusted third parties).
2) Shard robustness. Each shard correctly and continuously

processes transactions assigned to it.
3) Secure transactions. Transactions are committed atomi-

cally or eventually aborted, both within and across shards.
4) Scale-out. The expected throughput of OmniLedger in-

creases linearly in the number of participating validators.
5) Low storage overhead. Validators do not need to store

the full transaction history but only a periodically computed
reference point that summarizes a shard’s state.

6) Low latency. OmniLedger provides low latency for trans-
action confirmations.

E. Design Roadmap

This section introduces SLedger, a strawman DL system that
we use to outline OmniLedger’s design. Below we describe
one epoch of SLedger and show how it transitions from epoch
e− 1 to epoch e.

We start with the secure validator-assignment to shards.
Permitting the validators to choose the shards they want to
validate is insecure, as the adversary could focus all his
validators in one shard. As a result, we need a source of
randomness to ensure that the validators of one shard will
be a sample of the overall system and w.h.p. will have the
same fraction of malicious nodes. SLedger operates a trusted
randomness beacon that broadcasts a random value rnde to
all participants in each epoch e. Validators, who want to
participate in SLedger starting from epoch e, have to first
register to a global identity blockchain. They create their
identities through a Sybil-attack-resistant mechanism in epoch

2The system can handle up to 33%− ϵ with degraded performance



Fig. 2: OmniLedger architecture overview: At the beginning of an epoch e, all validators (shard membership is visualized through the
different colors) (1) run RandHound to re-assign randomly a certain threshold of validators to new shards and assign new validators who
registered to the identity blockchain in epoch e − 1. Validators ensure (2) consistency of the shards’ ledgers via ByzCoinX while clients
ensure (3) consistency of their cross-shard transactions via Atomix (here the client spends inputs from shards 1 and 2 and outputs to shard 3).

e−1 and broadcast them, together with the respective proofs,
on the gossip network at most ∆ before epoch e− 1 ends.

Epoch e begins with a leader, elected using randomness
rnde−1, who requests from the already registered and active
validators a (BFT) signature on a block with all identities that
have been provably established so far. If at least 2

3 of these
validators endorse the block, it becomes valid, and the leader
appends it to the identity blockchain. Afterwards, all registered
validators take rnde to determine their assignment to one of
the SLedger’s shards and to bootstrap their internal states from
the shards’ distributed ledgers. Then, they are ready to start
processing transactions using ByzCoin. The random shard-
assignment ensures that the ratio between malicious and honest
validators in any given shard closely matches the ratio across
all validators with high probability.

SLedger already provides a similar functionality to Om-
niLedger, but it has several significant security restrictions.
First, the randomness beacon is a trusted third party. Second,
the system stops processing transactions during the global
reconfiguration at the beginning of each epoch until enough
validators have bootstrapped their internal states and third,
there is no support for cross-shard transactions. SLedger’s
design also falls short in performance. First, due to ByzCoin’s
failure handling mechanism, its performance deteriorates when
validators fail. Second, validators face high storage and boot-
strapping overheads. Finally, SLedger cannot provide real-time
confirmation latencies and high throughput.

To address the security challenges, we introduce Om-
niLedger’s security design in Section IV:
1) In Section IV-A, we remove the trusted randomness beacon

and show how validators can autonomously perform a
secure sharding by using a combination of RandHound and
VRF-based leader election via cryptographic sortition.

2) In Section IV-B, we show how to securely handle the
validator assignment to shards between epochs while main-
taining the ability to continuously process transactions.

3) In Section IV-C, we present Atomix, a novel two-step
atomic commit protocol for atomically processing cross-
shard transactions in a Byzantine setting.

To deal with the performance challenges, we introduce
OmniLedger’s performance and usability design in Section V:
4) In Section V-A, we introduce ByzCoinX, a variant of Byz-

Coin, that utilizes more robust communication patterns to
efficiently process transactions within shards, even if some
of the validators fail, and that resolves dependencies on the
transaction level to achieve better block parallelization.

5) In Section V-C, we introduce state blocks that summarize
the shards’ states in an epoch and that enable ledger pruning
to reduce storage and bootstrapping costs for validators.

6) In Section V-D, we show how to enable optimistic real-
time transaction confirmations without sacrificing security
or throughput by utilizing an intra-shard architecture with
trust-but-verify transaction validation.
A high-level overview of the (security) architecture of

OmniLedger is illustrated in Figure 2.

IV. OMNILEDGER: SECURITY DESIGN

A. Sharding via Bias-Resistant Distributed Randomness

To generate a seed for sharding securely without requiring
a trusted randomness beacon [16] or binding the protocol to
PoW [34], we rely on a distributed randomness generation
protocol that is collectively executed by the validators.

We require that the distributed-randomness generation pro-
tocol provide unbiasability, unpredictability, third-party verifi-
ability, and scalability. Multiple proposals exist [7], [28], [44].
The first approach relies on Bitcoin, whereas the other two
share many parts of the design; we focus on RandHound [44]
due to better documentation and open-source implementation.

Because RandHound relies on a leader to orchestrate the
protocol run, we need an appropriate mechanism to select
one of the validators for this role. If we use a deterministic
approach to perform leader election, then an adversary might
be able to enforce up to f out of n failures in the worst case
by refusing to run the protocol, resulting in up to 1

4n failures
given our threat model. Hence, the selection mechanism must
be unpredictable and unbiasable, which leads to a chicken-and-
egg problem as we use RandHound to generate randomness
with these properties in the first place. To overcome this



predicament, we combine RandHound with a VRF-based
leader election algorithm [44], [25].

At the beginning of an epoch e, each validator i computes
a ticket ticketi,e,v = VRFski(“leader” ∥ confige ∥ v) where
confige is the configuration containing all properly registered
validators of epoch e (as stored in the identity blockchain)
and v is a view counter. Validators then gossip these tickets
with each other for a time ∆, after which they lock in the
lowest-value valid ticket they have seen thus far and accept the
corresponding node as the leader of the RandHound protocol
run. If the elected node fails to start RandHound within another
∆, validators consider the current run as failed and ignore
this validator for the rest of the epoch, even if he returns
later on. In this case, the validators increase the view number
to v + 1 and re-run the lottery. Once the validators have
successfully completed a run of RandHound and the leader
has broadcast rnde together with its correctness proof, each of
the n properly registered validators can first verify and then use
rnde to compute a permutation πe of 1, . . . , n and subdivide
the result into m approximately equally-sized buckets, thereby
determining its assignment of nodes to shards.

Security Arguments: we make the following observations
to informally argue the security of the above approach. Each
participant can produce only a single valid ticket per view v
in a given epoch e, because the VRF-based leader election
starts only after the valid identities have been fixed in the
identity blockchain. Furthermore, as the output of a VRF is
unpredictable as long as the private key ski is kept secret,
the tickets of non-colluding nodes, hence the outcome of
the lottery is also unpredictable. The synchrony bound ∆
guarantees that the ticket of an honest leader is seen by all
other honest validators. If the adversary wins the lottery, he can
decide either to comply and run the RandHound protocol or
to fail, which excludes that particular node from participating
for the rest of the epoch.

After a successful run of RandHound, the adversary is the
first to learn the randomness, hence the sharding assignment,
however his benefit is minimal. The adversary can again either
decide to cooperate and publish the random value or withhold
it in the hope of winning the lottery again and obtaining a
sharding assignment that fits his agenda better. However, the
probability that an adversary wins the lottery a times in a
row is upper bounded by the exponentially decreasing term
(f/n)a. Thus, after only a few re-runs of the lottery, an honest
node wins with high probability and coordinates the sharding.
Finally, we remark that an adversary cannot collect random
values from multiple runs and then choose the one he likes
best as validators accept only the latest random value that
matches their view number v.

In Appendix B, we show how OmniLedger can be extended
to probabilistically detect that the expected ∆ does not hold
and how it can still remain secure with a fall-back protocol.

B. Maintaining Operability During Epoch Transitions

Recall that, in each epoch e, SLedger changes the assign-
ments of all n validators to shards, which results in an idle

phase during which the system cannot process transactions
until enough validators have finished bootstrapping.

To maintain operability during transition phases, Om-
niLedger gradually swaps in new validators to each shard
per epoch. This enables the remaining operators to continue
providing service (in the honest scenario) to clients while
the recently joined validators are bootstrapping. In order to
achieve this continued operation we can swap-out at most 1

3
of the shard’s size (≈ n

m ), however the bigger the batch is,
the higher the risk gets that the number of remaining honest
validators is insufficient to reach consensus and the more stress
the bootstrapping of new validators causes to the network.

To balance the chances of a temporary loss of liveness,
the shard assignment of validators in OmniLedger works as
follows. First, we fix a parameter k < 1

3
n
m specifying the

swap-out batch, i.e., the number of validators that are swapped
out at a given time. For OmniLedger, we decided to work in
batches of k = log n

m . Then for each shard j, we derive a
seed H(j ∥ rnde) to compute a permutation πj,e of the shard’s
validators, and we specify the permutation of the batches. We
also compute another seed H(0 ∥ rnde) to permute and scatter
the validators who joined in epoch e and to define the order
in which they will do so (again, in batches of size k). After
defining the random permutations, each batch waits ∆ before
starting to bootstrap in order to spread the load on the network.
Once a validator is ready, he sends an announcement to the
shard’s leader who then swaps the validator in.

Security Arguments: During the transition phase, we
ensure the safety of the BFT consensus in each shard as
there are always at least 2

3
n
m honest validators willing to

participate in the consensus within each shard. And, as we use
the epoch’s randomness rnde to pick the permutation of the
batches, we keep the shards’ configurations a moving target for
an adaptive adversary. Finally, as long as there are 2

3
n
m honest

and up-to-date validators, liveness is guaranteed. Whereas if
this quorum is breached during transition (the new batch of
honest validators has not yet updated), the liveness is lost only
temporarily, until the new validators update.

C. Cross-Shard Transactions

To enable value transfer between different shards thereby
achieving shard interoperability, support for secure cross-shard
transactions is crucial in any sharded-ledger system. We expect
that the majority of transactions to be cross-shard in the
traditional model where UTXOs are randomly assigned to
shards for processing [16], [34], see Appendix C.

A simple but inadequate strawman approach to a cross-shard
transaction, is to concurrently send a transaction to several
shards for processing because some shards might commit
the transaction while others might abort. In such a case, the
UTXOs at the shard who accepted the transactions are lost as
there is no straightforward way to roll back a half-committed
transaction, without adding exploitable race conditions.

To address this issue, we propose a novel Byzantine Shard
Atomic Commit (Atomix) protocol for atomically processing
transactions across shards, such that each transaction is either



committed or eventually aborted. The purpose is to ensure
consistency of transactions between shards, to prevent double
spending and to prevent unspent funds from being locked
forever. In distributed computing, this problem is known as
atomic commit [47] and atomic commit protocols [27], [30]
are deployed on honest but unreliable processors. Deploying
such protocols in OmniLedger is unnecessarily complex, be-
cause the shards are collectively honest, do not crash infinitely,
and run ByzCoin (that provides BFT consensus). Atomix
improves the strawman approach with a lock-then-unlock
process. We intentionally keep the shards’ logic simple and
make any direct shard-to-shard communication unnecessary by
tasking the client with the responsibility of driving the unlock
process while permitting any other party (e.g., validators
or even other clients) to fill in for the client if a specific
transaction stalls after being submitted for processing.

Atomix uses the UTXO state model, see Section II-B for
an overview, which enables the following simple and efficient
three-step protocol, also depicted in Figure 3.

1) Initialize. A client creates a cross-shard transaction (cross-
TX for short) whose inputs spend UTXOs of some input
shards (ISs) and whose outputs create new UTXOs in some
output shards (OSs). The client gossips the cross-TX and it
eventually reaches all ISs.

2) Lock. All input shards associated with a given cross-TX
proceed as follows. First, to decide whether the inputs can
be spent, each IS leader validates the transaction within his
shard. If the transaction is valid, the leader marks within
the state that the input is spent, logs the transaction in the
shard’s ledger and gossips a proof-of-acceptance, a signed
Merkle proof against the block where the transaction is
included. If the transaction is rejected, the leader creates an
analogous proof-of-rejection, where a special bit indicates
an acceptance or rejection. The client can use each IS ledger
to verify his proofs and that the transaction was indeed
locked. After all ISs have processed the lock request, the
client holds enough proofs to either commit the transaction
or abort it and reclaim any locked funds, but not both.

3) Unlock. Depending on the outcome of the lock phase, the
client is able to either commit or abort his transaction.
a) Unlock to Commit. If all IS leaders issued proofs-

of-acceptance, then the respective transaction can be
committed. The client (or any other entity such as an IS
leader after a time-out) creates and gossips an unlock-to-
commit transaction that consists of the lock transaction
and a proof-of-acceptance for each input UTXO. In turn,
each involved OS validates the transaction and includes
it in the next block of its ledger in order to update the
state and enable the expenditure of the new funds.

b) Unlock to Abort. If, however, even one IS issued a
proof-of-rejection, then the transaction cannot be commit-
ted and has to abort. In order to reclaim the funds locked
in the previous phase, the client (or any other entity)
must request the involved ISs to unlock that particular
transaction by gossiping an unlock-to-abort transaction

Fig. 3: Atomix protocol in OmniLedger.

that includes (at least) one proof-of-rejection for one of
the input UTXOs. Upon receiving a request to unlock,
the ISs’ leaders follow a similar procedure and mark the
original UTXOs as spendable again.

We remark that, although the focus of OmniLedger is on
the UTXO model, Atomix can be extended with a locking
mechanism for systems where objects are long-lived and hold
state (e.g., smart contracts [48]), see Appendix D for details.

Security Arguments: We informally argue the previously
stated security properties of Atomix, based on the following
observations. Under our assumptions, shards are honest, do not
fail, eventually receive all messages and reach BFT consensus.
Consequently, (1) all shards always faithfully process valid
transactions; (2) if all input shards issue a proof-of-acceptance,
then every output shard unlocks to commit; (3) if even one
input shard issues a proof-of-rejection, then all input shards
unlocks to abort; and (4) if even one input shard issues a
proof-of-rejection, then no output shard unlocks to commit.

In Atomix, each cross-TX eventually commits or aborts.
Based on (1), each input shard returns exactly one response:
either a proof-of-acceptance or a proof-of-rejection. Conse-
quently, if a client has the required number of proofs (one per
each input UTXO), then the client either only holds proofs-
of-acceptance (allowing the transaction to be committed as (2)
holds) or not (forcing the transaction to abort as (3) and (4)
holds), but not both simultaneously.

In Atomix, no cross-TX can be spent twice. As shown
above, cross-shard transactions are atomic and are assigned
to specific shards who are solely responsible for them. Based
on (1), the assigned shards do not process a transaction twice
and no other shard attempts to unlock to commit.

In Atomix, if a transaction cannot be committed, then the
locked funds can be reclaimed. If a transaction cannot be
committed, then there must exist at least one proof-of-rejection
issued by an input shard, therefore (3) must hold. Once all
input shards unlock to abort, the funds become available again.

We remark that funds are not automatically reclaimed and a
client or other entity must initiate the unlock to abort process.
Although this approach poses the risk that if a client crashes
indefinitely his funds remain locked, it enables a simplified
protocol with minimal logic that requires no direct shard-



to-shard communication. A client who crashes indefinitely is
equivalent to a client who loses his private key, which prevents
him from spending the corresponding UTXOs. Furthermore,
any entity in the system, for example a validator in exchange
for a fee, can fill in for the client to create an unlock
transaction, as all necessary information is gossiped.

To ensure better robustness, we can also assign the shard of
the smallest-valued input UTXO to be a coordinator respon-
sible for driving the process of creating unlock transactions.
Because a shard’s leader might be malicious, f +1 validators
of the shard need to send the unlock transaction to guarantee
that all transactions are eventually unlocked.

Size of Unlock Transactions: In Atomix, the unlock
transactions are larger than regular transactions as appropriate
proofs for input UTXOs need to be included. OmniLedger
relies on ByzCoinX (a novel BFT-consensus described in
Section V-A) for processing transactions within each shard.
When the shard’s validators reach an agreement on a block
that contains committed transactions, they produce a collec-
tive signature whose size is independent of the number of
validators. This important feature enables us to keep Atomix
proofs (and consequently the unlock transactions) short, even
though the validity of each transaction is checked against the
signed blocks of all input UTXOs. If ByzCoinX did not use
collective signatures, the size of unlock transactions would
be impractical. For example, for a shard of 100 validators a
collective signature would only be 77 bytes, whereas a regular
signature would be 9KB, almost two order’s of magnitude
larger than the size of a simple transaction (500 bytes).

V. DESIGN REFINEMENTS FOR PERFORMANCE

In this section, we introduce the performance sub-protocols
of OmniLedger. First, we describe a scalable BFT-consensus
called ByzCoinX that is more robust and more parallelizable
than ByzCoin. Then, we introduce state-blocks that enable fast
bootstrapping and decrease storage-costs. Finally, we propose
an optional trust-but-verify validation step to provide real-time
latency for low-risk transactions

A. Fault Tolerance under Byzantine Faults

The original ByzCoin design offers good scalability, par-
tially due to the usage of a tree communication pattern.
Maintaining such communication trees over long time periods
can be difficult, as they are quite susceptible to faults. In the
event of a failure, ByzCoin falls back on a more robust all-to-
all communication pattern, similarly to PBFT. Consequently,
the consensus’s performance deteriorates significantly, which
the adversary can exploit to hinder the system’s performance.

To achieve better fault tolerance in OmniLedger, without
resorting to a PBFT-like all-to-all communication pattern, we
introduce for ByzCoinX a new communication pattern that
trades-off some of ByzCoin’s high scalability for robustness,
by changing the message propagation mechanism within the
consensus group to resemble a two-level tree. During the
setup of OmniLedger in an epoch, the generated randomness
is not only used to assign validators to shards but also to

assign them evenly to groups within a shard. The number
of groups g, from which the maximum group size can be
derived by taking the shard size into account, is specified
in the shard policy file. At the beginning of a ByzCoinX
roundtrip, the protocol leader randomly selects one of the
validators in each group to be the group leader responsible for
managing communication between the protocol leader and the
respective group members. If a group leader does not reply
before a predefined timeout, the protocol leader randomly
chooses another group member to replace the failed leader.
As soon as the protocol leader receives more than 2

3 of the
validators’ acceptances, he proceeds to the next phase of the
protocol. If the protocol leader fails, all validators initiate a
PBFT-like view-change procedure.

B. Parallelizing Block Commitments

We now show how ByzCoinX parallelizes block commit-
ments in the UTXO model by carefully analyzing and handling
dependencies between transactions.

We observe that transactions that do not conflict with each
other can be committed in different blocks and consequently
can be safely processed in parallel. To identify conflicting
transactions, we need to analyze the dependencies that are
possible between transactions. Let txA and txB denote two
transactions. Then, there are two cases that need to be carefully
handled: (1) both txA and txB try to spend the same UTXO
and (2) an UTXO created at the output of txA is spent at
the input of txB (or vice versa). To address (1) and maintain
consistency, only one of the two tx can be committed. To
address (2), txA has to be committed to the ledger before txB ,
i.e., txB has to be in a block that depends (transitively) on the
block containing txA. All transactions that do not exhibit these
two properties can be processed safely in parallel. In particular
we remark that transactions that credit the same address do not
produce a conflict, because they generate different UTXOs

To capture the concurrent processing of blocks, we adopt a
block-based directed acyclic graph (blockDAG) [33] as a data
structure, where every block can have multiple parents. The
ByzCoinX protocol leader enforces that each pending block
includes only non-conflicting transactions and captures UTXO
dependencies by adding the hashes of former blocks (i.e.,
backpointers) upon which a given block’s transactions depend.
To decrease the number of such hashes, we remark that UTXO
dependencies are transitive, enabling us to relax the require-
ment that blocks have to capture all UTXO dependencies
directly. Instead, a given block can simply add backpointers
to a set of blocks, transitively capturing all dependencies.

C. Shard Ledger Pruning

Now we tackle the issues of an ever-growing ledger and the
resulting costly bootstrapping of new validators; this is partic-
ularly urgent for high-throughput DL systems. For example,
whereas Bitcoin’s blockchain grows by ≈ 144MB per day
and has a total size of about 133GB, next-generation systems
with Visa-level throughput (e.g., 4000 tx/sec and 500B/tx) can
easily produce over 150GB per day.



To reduce the storage and bootstrapping costs for validators
(whose shard assignments might change periodically), we
introduce state blocks that are similar to stable checkpoints
in PBFT [13] and that summarize the entire state of a shard’s
ledger. To create a state block sbj,e for shard j in epoch e, the
shard’s validators execute the following steps: At the end of
e, the shard’s leader stores the UTXOs in an ordered Merkle
tree and puts the Merkle tree’s root hash in the header of sbj,e.
Afterwards, the validators run consensus on the header of
sbj,e (note that each validator can construct the same ordered
Merkle tree for verification) and, if successful, the leader stores
the approved header in the shard’s ledger making sbj,e the
genesis block of epoch e + 1. Finally, the body of sbj,e−1

(UTXOs) can be discarded safely. We keep the regular blocks
of epoch e, however, until after the end of epoch e+1 for the
purpose of creating transaction proofs.

As OmniLedger’s state is split across multiple shards and
as we store only the state blocks’ headers in a shard’s ledger,
a client cannot prove the existence of a past transaction to
another party by presenting an inclusion proof to the block
where the transaction was committed. We work around this
by moving the responsibility of storing transactions’ proofs-
of-existence to the clients of OmniLedger. During epoch
e+1 clients can generate proofs-of-existence for transactions
validated in epoch e using the normal block of epoch e and the
state block. Such a proof for a given transaction tx contains
the Merkle tree inclusion proof to the regular block B that
committed tx in epoch e and a sequence of block headers from
the state block sbj,e at the end of the epoch to block B. To
reduce the size of these proofs, state blocks can include several
multi-hop backpointers to headers of intermediate (regular)
blocks similarly to skipchains [37].

Finally, if we naively implement the creation of state blocks,
it stalls the epoch’s start, hence the transaction processing until
sbj,e has been appended to the ledger. To avoid this downtime,
the consistent validators of the shard in epoch e + 1 include
an empty state-block at the beginning of the epoch as a place-
holder; and once sbj,e is ready they commit it as a regular
block, pointing back to the place-holder and sbj,e−1.

D. Optional Trust-but-Verify Validation

There exists an inherent trade-off between the number of
shards (and consequently the size of a shard), throughput
and latency, as illustrated in Figure 4. A higher number of
smaller shards results in a better performance but provides less
resiliency against a more powerful attacker (25%). Because
the design of OmniLedger favors security over scalability, we
pessimistically assume an adversary who controls 25% of the
validators and, accordingly, choose large shards at the cost
of higher latency but guarantee the finality of transactions.
This assumption, however, might not appropriately reflect
the priorities of clients with frequent, latency-sensitive but
low-value transactions (e.g., checking out at a grocery store,
buying gas or paying for coffee) and who would like to have
transactions processed as quickly as possible.

Fig. 4: Trust-but-Verify Validation Architecture

In response to the clients’ needs, we augment the intra-
shard architecture (see Figure 4) by following a “trust but
verify” model, where optimistic validators process transac-
tions quickly, providing a provisional but unlikely-to-change
commitment and core validators subsequently verify again
the transactions to provide finality and ensure verifiability.
Optimistic validators follow the usual procedures for deciding
which transactions are committed in which order; but they
form much smaller groups, even as small as one validator
per group. Consequently, they produce smaller blocks with
real-time latencies but are potentially less secure as the ad-
versary needs to control a (proportionally) smaller number of
validators to subvert their operation. As a result, some bad
transactions might be committed, but ultimately core validators
verify all provisional commitments, detecting any inconsisten-
cies and their culprits, which makes it possible to punish rogue
validators and to compensate the defrauded customers for the
damages. The trust-but-verify approach strikes a balance for
processing small transactions in real-time, as validators are
unlikely to misbehave for small amounts of money.

At the beginning of an epoch e, all validators assign
themselves to shards by using the per-epoch randomness, and
then bootstrap their states from the respective shard’s last state
block. Then, OmniLedger assigns each validator randomly to
one of multiple optimistic processing groups or a single core
processing group. The shard-policy file specifies the number
of optimistic and core validators, as well as the number of
optimistic groups. Finally, in order to guarantee that any mis-
behavior will be contained inside the shard, it can also define
the maximum amount of optimistic validated transactions to
be equal to the stake or revenue of the validators.

Transactions are first processed by an optimistic group that
produces optimistically validated blocks. These blocks serve
as input for re-validation by core validators who run concur-
rently and combine inputs from multiple optimistic processing
groups, thus maximizing the system’s throughput (Figure 4).
Valid transactions are included in a finalized block that is
added to the shard’s ledger and are finally included in the
state block. However, when core validators detect an inconsis-
tency, then the respective optimistically validated transaction
is excluded and the validators who signed the invalid block
are identified and held accountable, e.g., by withholding any
rewards or by excluding them from the system. We remark that
the exact details of such punishments depend on the incentive



scheme that are out of scope of this paper. Given a minimal
incentive to misbehave and the quantifiable confidence in
the security of optimistic validation (Figure 5), clients can
choose, depending on their needs, to take advantage of real-
time processing with an optimistic assurance of finality or to
wait to have their transaction finalized.

VI. SECURITY ANALYSIS

Our contributions are mainly pragmatic rather than theoreti-
cal and in this section we provide an informal security analysis
supplementing the arguments in Sections IV and V.

A. Randomness Creation

RandHound assumes an honest leader who is responsible
for coordinating the protocol run and for making the produced
randomness available to others. In OmniLedger, however, we
cannot always guarantee that an honest leader will be selected.
Although a dishonest leader cannot affect the unbiasability of
the random output, he can choose to withhold the randomness
if it is not to his liking, thus forcing the protocol to restart.
We economically disincentivize such behavior and bound the
bias by the randomized leader-election process.

The leader-election process is unpredictable as the adversary
is bound by the usual cryptographic hardness assumptions and
is unaware of (a) the private keys of the honest validators and
(b) the input string x to the VRF function. Also, OmniLedger’s
membership is unpredictable at the moment of private key
selection and private keys are bound to identities. As a result,
the adversary has at most m = 1/4 chance per round to
control the elected leader as he controls at most 25% of all
nodes. Each time an adversary-controlled leader is elected
and runs RandHound the adversary can choose to accept the
random output, and the sharding assignment produced by it,
or to forfeit it and try again in hopes of a more favorable
yet still random assignment. Consequently, the probability that
an adversary controls n consecutive leaders is upper-bounded
by P [X ≥ n] = 1

4n < 10−λ. For λ = 6, the adversary
will control at most 10 consecutive RandHound runs. This
is an upper bound, as we do not include the exclusion of the
previous leader from the consecutive elections.

B. Shard-Size Security

We previously made the assumption that each shard is
collectively honest. This assumption holds as long as each
shard has less than c = ⌊n

3 ⌋ malicious validators, because
ByzCoinX requires n = 3f + 1 to provide BFT consensus.

The security of OmniLedger’s validator assignment mech-
anism is modeled as a random sampling problem with two
possible outcomes (honest or malicious). Assuming an infinite
pool of potential validators, we can use the binomial distribu-
tion (Eq. 1). We can assume random sampling due to Rand-
Hound’s unpredictability property that guarantees that each
selection is completely random; this leads to the adversarial
power of at most m = 0.25.

P
[
X ≤ ⌊n

3
⌋
]
=

n∑
k=0

(
n

k

)
mk (1−m)n−k (1)

Fig. 5: Left: Shard size required for 10−6 system failure prob-
ability under different adversarial models. Right: Security of
an optimistic validation group for 12.5% and 25% adversaries.

To calculate the failure rate of one shard, i.e., the proba-
bility that a shard is controlled by an adversary, we use the
cumulative distributions over the shard size n, where X is the
random variable that represents the number of times we pick a
malicious node. Figure 5 (right) illustrates the proposed shard
size, based on the power of the adversary. In a similar fashion
we calculate the confidence a client can have that an optimistic
validation group is honest (left).

C. Epoch Security

In the last section, we modeled the security of a single
shard as a random selection process that does, however, not
correspond to the system’s failure probability within on epoch.
Instead, the total failure rate can be approximated by the union
bound over the failure rates of individual shards.

We argue that, given an adequately large shard size, the
epoch-failure probability is negligible. We can calculate an
upper bound on the total-failure probability by permitting the
adversary to run RandHound multiple times and select the
output he prefers. This is a stronger assumption than what
RandHound permits, as the adversary cannot go back to a
previously computed output if he chose to re-run RandHound.
An upper bound of the epoch failure event XE is given by

P [XE ] ≤
l∑

k=0

1

4k
· n · P [XS ] (2)

where l is the number of consecutive views the adversary
controls, n is the number of shards and P [XS ] is the failure
probability of one shard as calculated in Section VI-B. For
l → ∞, we get P [XE ] ≤ 4

3 ·n ·P [XS ]. More concretely, the
failure probability, given a 12.5%-adversary and 16 shards, is
4 · 10−5 or one failure in 68.5 years for one-day epochs

D. Group Communication

We now show that OmniLedger’s group-communication
pattern has a high probability of convergence under faults. We
assume that there are N nodes that are split in

√
N groups of√

N nodes each.
1) Setting the Time-Outs: In order to ensure that the shard

leader will have enough time to find honest group leaders,
we need to setup the view-change time-outs accordingly.
OmniLedger achieves this by having two time-outs. The first



timeout T1 is used by the shard leader to retry the request
to non-responsive group members. The second timeout T2 is
used by the group members to identify a potential failure of a
shard leader and to initiate a view-change [13]. To ensure that
the shard leader has enough time to retry his requests, we have
a fixed ratio of T1 = 0.1T2 . However, if the T2 is triggered,
then in the new view T2 doubles (as is typical [13]) in order to
contemplate for increase in the network’s asynchrony, hence
T1 should double to respect the ratio.

2) Reaching Consensus: We calculate the probability for
a group size N = 600 where

√
N = 25: Given a popu-

lation of 600 nodes and a sampling size of 25, we use the
hypergeometric distribution for our calculation which yields
a probability of 99.93% that a given group will have less
than 25 − 10 = 15 malicious nodes. A union bound over
25 groups yields a probability of 98.25% that no group will
have more than 15 malicious nodes. In the worst case, where
there are exactly 1

3 malicious nodes in total, we need all of the
honest validators to reply. For a group that contains exactly 15
malicious nodes, the shard’s leader will find an honest group
leader (for ByzCoinX) after 10 tries with a probability of
1 − ((15/24)10) = 98.6%. As a result, the total probability
of failure is 1− 0.986 ∗ 0.9825 = 0.031.

We remark that this failure does not constitute a compromise
of security of OmniLedger. Rather, it represents the probability
of a failure for the shard leader who is in charge of coordinat-
ing the shard’s operation. If a shard leader indeed fails, then
a new shard leader will be elected having 97% probability of
successfully reaching consensus.

VII. IMPLEMENTATION

We implemented OmniLedger and its subprotocols for
sharding, consensus, and processing of cross-shard transac-
tions in Go [26]. For sharding, we combined RandHound’s
code, available on GitHub, with our implementation of a VRF-
based leader-election mechanism by using a VRF construction
similar to the one of Franklin and Zhang [22]. Similarly, to
implement ByzCoinX, we extended ByzCoin’s code, available
on GitHub as well, by the parallel block commitment mecha-
nism as introduced in Section V-B. We also implemented the
Atomix protocol, see Section IV-C, on top of the shards and a
client that dispatches and verifies cross-shard transactions.

VIII. EVALUATION

In this section, we experimentally evaluate our prototype im-
plementation of OmniLedger. The primary questions we want
to evaluate concern the overall performance of OmniLedger
and whether it truly scales out (Section VIII-B), the cost of
epoch transitions (Section VIII-C), the client-perceived latency
when committing cross-shard transactions (Section VIII-D),
and the performance differences between ByzCoinX and Byz-
Coin with respect to throughput and latency (Section VIII-E).

A. Experimental Setup

We ran all our experiments on DeterLab [18] using 60
physical machines, each equipped with an Intel E5-2420 v2

[4, 1%] [25, 5%] [70, 12.5%] [600, 25%]
[Shard Size, Adversarial Power]

100

101

102

103

104

105

106

107

Tr
an

sa
ct

io
ns

 p
er

 S
ec

on
d

Visa (~4000 tx/sec)

OmniLedger (regular)
OmniLedger (trust-but-verify)

Fig. 6: OmniLedger throughput for 1800 hosts, varying shard
sizes s, and adversarial power f/n.

TABLE I: OmniLedger transaction confirmation latency in
seconds for different configurations with respect to the shard
size s, adversarial power f/n, and validation types.

[s, f/n] [4, 1%] [25, 5%] [70, 12.5%] [600, 25%]

Regular val. 1.38 5.99 8.04 14.52

1st lvl. val. 1.38 1.38 1.38 4.48
2nd lvl. val. 1.38 55.89 41.84 62.96

CPU, 24GB of RAM, and a 10Gbps network link. To simulate
a realistic, globally distributed deployment, we restricted the
bandwidth of all connections between nodes to 20Mbps and
impose a latency of 100ms on all communication links. The
basis for our experiments was a data set consisting of the first
10, 000 blocks of the Bitcoin blockchain.

B. OmniLedger Performance

In this experiment, we evaluate the performance of Om-
niLedger in terms of throughput and latency in different
situations: we distinguish the cases where we have a fixed
shard size and varying adversarial power (in particular 1%,
5%, 12.5%, and 25%) or the other way round. We also
distinguish between configurations with regular or trust-but-
verify validations where we use 1MB blocks in the former
case and 500KB for optimistically validated blocks and 16MB
for final blocks in the latter case. In order to provide enough
transactions for the final blocks, for each shard, there are
32 optimistic validation groups concurrently running; they all
feed to one core shard, enabling low latency for low-risk
transactions (Table I) and high throughput of the total system.

Figure 6 shows OmniLedger’s throughput for 1800 hosts in
different configurations and, for comparison, includes the aver-
age throughput of Visa at ≈ 4000 tx/sec. Additionally, Table I
shows the confirmation latency in the above configuration.

We observe that OmniLedger’s throughput with trust-but-
verify validation is almost an order of magnitude higher than
with regular validation, at the cost of a higher latency for high-
risk transactions that require both validation steps. For low-risk
transactions, OmniLedger provides an optimistic confirmation
in a few seconds after the first validation step, with less than



TABLE II: OmniLedger scale-out throughput in transactions
per second (tps) for a adversarial power of f/n = 12.5% shard
size of s = 70, and a varying number of shards m.

m 1 2 4 8 16

tps 439 869 1674 3240 5850

70 140 280 560 1200 1800
Number of Hosts

100

101

102

103

La
te

nc
y 

(s
ec

)

Identity Block Creation
Leader Election
Randomness Generation
Randomness Verification

Fig. 7: Epoch transition latency.

10% probability that the confirmation was vulnerable to a
double-spending attack due to a higher-than-average number
of malicious validators. For high-risk transactions, the latency
to guarantee finality is still less than one minute.

Table II shows the scale-out throughput of OmniLedger with
a 12.5% adversary, a shard size of 70, and a number of shards
m between 1 and 16. As we can see, the throughput increases
almost linearly in the number of shards.

In Figure 6, with a 12.5% adversary and a total number of
1800 hosts, we distributed the latter across 25 shards for which
we measured a throughput of 13, 000 tps corresponding to 3
times the level of Visa. If we want to maintain OmniLedger’s
security against a 25% adversary and still achieve the same
average throughput of Visa, i.e., 4000 tps, then we estimate that
we need to increase the number of hosts to about 4200 (which
is less than the number of Bitcoin full nodes [4]) and split them
into 7 shards. Unfortunately, our experimental platform could
not handle such a high load, therefore, we mention here only
an estimated value.

C. Epoch-Transition Costs

In this experiment, we evaluate the costs for transitioning
from an epoch e−1 to epoch e. Recall, that at the end of epoch
e − 1 the new membership configuration is first collectively
signed, then used for the VRF-based leader-election. Once
the leader is elected, he runs RandHound with a group-size
of 16 hosts (which is secure for a 25% adversary [44]) and
broadcasts it to all validators, who then verify the result and
connect to their peers. We assume that validators already know
the state of the shard they will be validating. It is important to
mention that this process is not on the critical path, but occurs
concurrently with the previous epoch. Once the new groups
have been setup, the new shard leaders enforce a view-change.

As we can see in Figure 7, the cost of bootstrapping is
mainly due to RandHound that takes up more than 70% of

1 2 3 4 5 6 7
Number of Shards

0

5

10

15

20

25

30

Cl
ie

nt
 E

nd
-to

-E
nd

 L
at

en
cy

 (s
ec

)

Shard Size = 70
Queue
Consensus

1 2 3
Number of Shards

Shard Size = 600
Queue
Consensus

Fig. 8: Client-perceived, end-to-end latency for cross-shard
transactions via Atomix.

the total run time. To estimate the worst-case scenario, we
refer to our security analysis in Section VI-A and see that,
even in the case with 1800 hosts, an honest leader is elected
after 10 RandHound runs with high probability, which takes
approximately 3 hours. Given an epoch duration of one day,
this worst-case overhead is acceptable.

D. Client-Perceived End-to-End Latency with Atomix

In this experiment we evaluate in different shard configu-
rations, the client-perceived, end-to-end latency when using
Atomix. As shown in Figure 8, the client-perceived latency is
almost double the value of the consensus latency as there are
already other blocks waiting to be processed in the common
case. Consequently, the inclusion of the transaction in a
block is delayed. This latency increases slightly further when
multiple shards validate a transaction. The overall end-to-end
latency would be even higher if a client had to wait for output
shards to run consensus that, however, is not required.

If the client wants to directly spend the new funds, he
can batch together the proof-of-acceptance and the expenditure
transaction in order to respect the input-after-output constraint.

Overall, the client-perceived end-to-end latency for cross-
shard transactions is not significantly affected when increasing
the number of shards.

E. ByzCoinX Performance

In this experiment, we measure the performance improve-
ments of ByzCoinX over the original ByzCoin. To have a
fair comparison, each data-series corresponds to the total
size of data concurrently in the network, meaning that if
the concurrency level is 2 then there are 2 blocks of 4MB
concurrently, adding to a total of 8MB, whereas a concurrency
level of 4 means 4 blocks of 2MB each.

In Figures 9 and Table III, we see that there is a 20%
performance increase when moving from one big block to
four smaller concurrently running blocks, with a concurrent
35% decrease in the per-block consensus latency. This can
be attributed to the higher resource utilization of the system,
when blocks arrive more frequently for validation. When
the concurrency further increases, we can see a slight drop



1 (ByzCoin) 2 4 8
Concurrency Level

0

200

400

600

800

1000

1200

1400

Tr
an

sa
ct

io
ns

 p
er

 S
ec

on
d

Data Size
1MB
8MB
32MB

Fig. 9: ByzCoinX throughput in transactions per second for
different levels of concurrency.

TABLE III: ByzCoinX latency in seconds for different con-
currency levels and data sizes.

Concurrency

Data Size 1 2 4 8

1MB 15.4 13.5 12.6 11.4
8MB 32.2 27.7 26.0 23.2

32MB 61.6 58.0 50.1 50.9

in performance, meaning that the overhead of the parallel
consensus outweighs the parallelization benefits, due to the
constant number of cryptographic operations per block.

Figure 10 illustrates the scalability of ByzCoin’s [32] tree
and fall-back flat topology, versus ByzCoinX’s more fault-
tolerant (group-based) topology and its performance when
failures occur. As expected the tree topology scales better, but
only after the consensus is run among more than 600 nodes,
which assumes an adversary stronger than usual (see Figure 5).

For a group size below 600, ByzCoinX’s communication
pattern actually performs better than ByzCoin’s. This is due
to ByzCoinX’s communication pattern that can be seen as a
shallow tree where the roundtrip from root to leaves is faster
than in the tree of ByzCoin. Hence, ByzCoin has a fixed
branching factor and an increasing depth, whereas ByzCoinX
has a fixed depth and an increasing branching factor. The effect
of these two choices leads to better latencies for a few hundred
nodes for fixed depth. The importance of the group topology,
however, is that it is more fault tolerant because when failures
occur the performance is not seriously affected. This is not true
for ByzCoin; it switches to a flat topology in case of failure
that does not scale after a few hundred nodes, due to the huge
branching factor. This experiment was run with 1MB blocks,
the non-visible data point is at 300 seconds.

F. Bandwidth Costs for State Block Bootstrapping

In this experiment, we evaluate the improvements that state
blocks offer to new validators during bootstrapping. Recall,
that during an epoch transition, a new validator first crawls
the identity blockchain, after which he needs to download only
the latest state block instead of replaying the full blockchain

21 23 25 27 29

Size of Consensus Group
0

10

20

30

La
te

nc
y 

(s
ec

)

ByzCoin Tree
ByzCoinX Groups
ByzCoin Partial Failure
ByzCoinX Partial Failure

Fig. 10: ByzCoinX communication pattern latency.

0 20 40 60 80 100
Number of Days Without Update

0

2

4

6

8

10

12

14

Co
ns

um
ed

 B
an

dw
id

th
 (G

B)

No State Blocks (Bitcoin)
Weekly State Blocks (OmniLedger)

Fig. 11: Bootstrap bandwidth consumption with state blocks.

to create the UTXO state. For this experiment, we recon-
structed Bitcoin’s blockchain [5], [41] and created a parallel
OmniLedger blockchain with weekly state blocks.

Figure 11 depicts the bandwidth overhead of a validator that
did not follow the state for the first 100 days. As we can see,
the state block approach is better if the validator is outdated
for more than 19 days or 2736 Bitcoin blocks.

The benefit might not seem substantial for Bitcoin, but in
OmniLedger, 2736 blocks are created in less than 8 hours,
meaning that for one day-long epochs, the state block approach
is significantly better. If a peak throughput is required and
16MB blocks are deployed, we expect reduced bandwidth
consumption close to two orders of magnitude.

IX. RELATED WORK

The growing interests in scaling blockchains have produced
a number of prominent systems that we compare in Table IV.
ByzCoin [32] is a first step to scalable BFT consensus, but
cannot scale-out. Elastico is the first open scale-out DL,
however, it suffers from performance and security challenges
that we have already discussed in Section II. RSCoin [16]
proposes sharding as a scalable approach for centrally banked
cryptocurrencies. RSCoin relies on a trusted source of random-
ness for sharding and auditing, making its usage problematic
in trustless settings. Furthermore, to validate transactions, each
shard has to coordinate with the client and instead of running
BFT, RSCoin uses a simple two-phase commit, assuming that
safety is preserved if the majority of validators is honest. This



TABLE IV: Comparison of Distributed Ledger Systems

System Scale-Out Cross-Shard State Blocks Measured Scalability Estimated Measured
Transaction Atomicity (# of Validators) Time to Fail Latency

RSCoin [16] In Permissioned Partial No 30 N/A 1 sec
Elastico [34] In PoW No No 1600 1 hour 800 sec
ByzCoin [32] No N/A No 1008 19 years 40 sec

Bitcoin-NG [21] No N/A No 1000 N/A 600 sec
PBFT [9], [11] No N/A No 16 N/A 1 sec
Nakamoto [36] No N/A No 4000 N/A 600 sec

OmniLedger Yes Yes Yes 2400 68.5 years 1.5 sec

approach, however, does not protect from double spending
attempts by a malicious client colluding with a validator.

In short, prior solutions [16], [32], [34] achieve only two
out of the three desired properties; decentralization, long-term
security, and scale-out, as illustrated in Figure 1. OmniLedger
overcomes this issue by scaling out, as far as throughput
is concerned, and by maintaining consistency to the level
required for safety, without imposing a total order.

Bitcoin-NG scales Bitcoin without changing the consensus
algorithm by observing that the PoW process does not have to
be the same as the transaction validation process; this results
in two separate timelines: one slow for PoW and one fast
for transaction validation. Although Bitcoin-NG significantly
increases the throughput of Bitcoin, it is still susceptible to
the same attacks as Bitcoin [24], [3].

Other efforts to scale blockchains include: Tendermint [9], a
protocol similar to PBFT for shard-level consensus that does
not scale due to its similarities to PBFT, and the Lightning
Network [40], an off-chain payment protocol for Bitcoin
(also compatible to OmniLedger); it limits the amount of
information committed to the blockchain.

Chainspace [2], enhances RSCoin with a more general
smart-contract capability. Chainspace also recognizes the need
for cross-shard atomic commit but devises a rather complicated
algorithm because it chooses to have the shards run the
protocol without the use of a client, which increases the
cross-shard communication. Our approach is synergistic to
Chainspace, as we focus on an open scalable UTXO style
DL, whereas Chainspace focuses on sharded smart-contracts
and small-scale shards that can be deployed only under weak
adversaries. However, combining OmniLedger and Chainspace
has great potential to create an open, scalable smart-contract
platform that provides scalability and security under strong
adversaries.

X. LIMITATION AND FUTURE WORK

OmniLedger is still a proof of concept and has limita-
tions that we want to address in future work. First, even
if the epoch bootstrap does not interfere with the normal
operation, its cost (in the order of minutes) is significant.
We leave to future work the use of advanced cryptography,
such as BLS [6] for performance improvements. Additionally,
the actual throughput is dependent on the workload (see
Appendix C). If all transactions touch all the shards before
committing, then the system is better off with only one shard.

We leave to future work the exploration of alternative ways
of sharding, e.g.using locality measures. Furthermore, we rely
on the fact that honest validators will detect that transactions
are unfairly censored and change the leader in the case of
censorship. But, further anti-censorship guarantees are needed.
We provide a protocol sketch in Appendix A and leave to
future work its implementation and further combination with
secret sharing techniques for providing stronger guarantees.
Another shortcoming of OmniLedger is that it does not for-
mally reason around incentives of participants and focus on
the usual honest or malicious devide, which can be proven
unrealistic in anonymous open cryptocurrencies. Finally, the
system is not suitable for highly adaptive adversaries, as the
bootstrap time of an epoch is substantial and scales only
moderately, thus leading to the need for day-long epochs.

XI. CONCLUSION

OmniLedger is the first DL that securely scales-out to offer
a Visa-level throughput and a latency of seconds while pre-
serving full decentralization and protecting against a Byzantine
adversary. OmniLedger achieves this through a novel approach
consisting of three steps. First, OmniLedger is designed with
concurrency in mind; both the full system (through sharding)
and each shard separately (through ByzCoinX) validate trans-
actions in parallel, maximizing the resource utilization while
preserving safety. Second, OmniLedger enables any user to
transact safely with any other user, regardless of the shard they
use, by deploying Atomix, an algorithm for cross-shard trans-
actions as well as real-time validation with the introduction
of a trust-but-verify approach. Finally, OmniLedger enables
validators to securely and efficiently switch between shards,
without being bound to a single anti-Sybil attack method and
without stalling between reconfiguration events.

We implemented and evaluated OmniLedger and each of
its sub-components. ByzCoinX improves ByzCoin both in
performance, with 20% more throughput and 35% less latency,
and in robustness against failures. Atomix offers a secure
processing of cross-shard transactions and its overhead is min-
imal compared to intra-shard consensus. Finally, we evaluated
the OmniLedger prototype thoroughly and showed that it can
indeed achieve Visa-level throughput.

REFERENCES

[1] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman.
Solidus: An Incentive-compatible Cryptocurrency Based on Permission-
less Byzantine Consensus. CoRR, abs/1612.02916, 2016.

http://arxiv.org/abs/1612.02916
http://arxiv.org/abs/1612.02916


[2] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis.
Chainspace: A Sharded Smart Contracts Platform. arXiv preprint
arXiv:1708.03778, 2017.

[3] M. Apostolaki, A. Zohar, and L. Vanbever. Hijacking Bitcoin: Large-
scale Network Attacks on Cryptocurrencies. 38th IEEE Symposium on
Security and Privacy, May 2017.

[4] Bitnodes. Bitcoin Network Snapshot, April 2017.
[5] Blockchain.info. Blockchain Size, Feb. 2017.
[6] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil

pairing. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 514–532. Springer, 2001.

[7] J. Bonneau, J. Clark, and S. Goldfeder. On Bitcoin as a public
randomness source. IACR eprint archive, Oct. 2015.

[8] M. Borge, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser,
and B. Ford. Proof-of-Personhood: Redemocratizing Permissionless
Cryptocurrencies. In 1st IEEE Security and Privacy On The Blockchain,
Apr. 2017.

[9] E. Buchman. Tendermint: Byzantine Fault Tolerance in the Age of
Blockchains, 2016.

[10] V. Buterin, J. Coleman, and M. Wampler-Doty. Notes on Scalable
Blockchain Protocols (verson 0.3), 2015.

[11] C. Cachin. Architecture of the Hyperledger blockchain fabric. In
Workshop on Distributed Cryptocurrencies and Consensus Ledgers,
2016.

[12] C. Cachin, K. Kursawe, and V. Shoup. Random Oracles in Constantino-
ple: Practical asynchronous Byzantine agreement using cryptography. In
19th ACM Symposium on Principles of Distributed Computing (PODC),
July 2000.

[13] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In 3rd
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Feb. 1999.

[14] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kan-
thak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford. Spanner: Google’s Globally Distributed
Database. ACM Trans. Comput. Syst., 31(3):8:1–8:22, Aug. 2013.

[15] K. Croman, C. Decke, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. G. Sirer, D. S. an, and R. Wattenhofer. On
Scaling Decentralized Blockchains (A Position Paper). In 3rd Workshop
on Bitcoin and Blockchain Research, 2016.

[16] G. Danezis and S. Meiklejohn. Centrally Banked Cryptocurrencies. 23rd
Annual Network & Distributed System Security Symposium (NDSS), Feb.
2016.

[17] S. Deetman. Bitcoin Could Consume as Much Electricity as Denmark
by 2020, May 2016.

[18] DeterLab Network Security Testbed, September 2012.
[19] J. R. Douceur. The Sybil Attack. In 1st International Workshop on

Peer-to-Peer Systems (IPTPS), Mar. 2002.
[20] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel. The Performance of

Consistent Checkpointing. In 11th Symposium on Reliable Distributed
Systems, pages 39–47. IEEE, 1992.

[21] I. Eyal, A. E. Gencer, E. G. Sirer, and R. van Renesse. Bitcoin-
NG: A Scalable Blockchain Protocol. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16), Santa Clara,
CA, Mar. 2016. USENIX Association.

[22] M. K. Franklin and H. Zhang. A Framework for Unique Ring Signatures.
IACR Cryptology ePrint Archive, 2012:577, 2012.

[23] A. Gervais, G. Karame, S. Capkun, and V. Capkun. Is Bitcoin a
decentralized currency? IEEE security & privacy, 12(3):54–60, 2014.

[24] A. Gervais, H. Ritzdorf, G. O. Karame, and S. Capkun. Tampering
with the Delivery of Blocks and Transactions in Bitcoin. In 22nd ACM
SIGSAC Conference on Computer and Communications Security, pages
692–705. ACM, 2015.

[25] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand:
Scaling Byzantine Agreements for Cryptocurrencies. Cryptology ePrint
Archive, Report 2017/454, 2017.

[26] The Go Programming Language, Sept. 2016.
[27] R. Guerraoui. Non-blocking atomic commit in asynchronous distributed

systems with failure detectors. Distributed Computing, 15(1):17–25,
2002.

[28] T. Hanke and D. Williams. Intoducing Random Beascons Using
Threshold Relay Chains, Sept. 2016.

[29] E. G. S. Ittay Eyal. It’s Time For a Hard Bitcoin Fork, June 2014.

[30] I. Keidar and D. Dolev. Increasing the resilience of atomic commit,
at no additional cost. In Proceedings of the fourteenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems, pages
245–254. ACM, 1995.

[31] A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A
Provably Secure Proof-of-Stake Blockchain Protocol. Cryptology ePrint
Archive, Report 2016/889, 2016.

[32] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and
B. Ford. Enhancing Bitcoin Security and Performance with Strong
Consistency via Collective Signing. In Proceedings of the 25th USENIX
Conference on Security Symposium, 2016.

[33] Y. Lewenberg, Y. Sompolinsky, and A. Zohar. Inclusive block chain
protocols. In International Conference on Financial Cryptography and
Data Security, pages 528–547. Springer, 2015.

[34] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena.
A Secure Sharding Protocol For Open Blockchains. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, pages 17–30, New York, NY, USA, 2016. ACM.

[35] S. Micali, S. Vadhan, and M. Rabin. Verifiable Random Functions. In
Proceedings of the 40th Annual Symposium on Foundations of Computer
Science, FOCS ’99, pages 120–130. IEEE Computer Society, 1999.

[36] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.
[37] K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser,

I. Khoffi, J. Cappos, and B. Ford. CHAINIAC: Proactive Software-
Update Transparency via Collectively Signed Skipchains and Verified
Builds. In 26th USENIX Security Symposium (USENIX Security 17),
pages 1271–1287. USENIX Association, 2017.

[38] R. Pass and E. Shi. Hybrid Consensus: Efficient Consensus in the
Permissionless Model. Cryptology ePrint Archive, Report 2016/917,
2016.

[39] R. Pass, C. Tech, and L. Seeman. Analysis of the Blockchain Protocol
in Asynchronous Networks. Annual International Conference on the
Theory and Applications of Cryptographic Techniques (EUROCRYPT),
2017.

[40] J. Poon and T. Dryja. The Bitcoin Lightning Network: Scalable Off-
Chain Instant Payments, Jan. 2016.

[41] Satoshi.info. Unspent Transaction Output Set, Feb. 2017.
[42] C. P. Schnorr. Efficient signature generation by smart cards. Journal of

Cryptology, 4(3):161–174, 1991.
[43] B. Schoenmakers. A simple publicly verifiable secret sharing scheme

and its application to electronic voting. In IACR International Cryptol-
ogy Conference (CRYPTO), pages 784–784, 1999.

[44] E. Syta, P. Jovanovic, E. Kokoris-Kogias, N. Gailly, L. Gasser, I. Khoffi,
M. J. Fischer, and B. Ford. Scalable Bias-Resistant Distributed Random-
ness. In 38th IEEE Symposium on Security and Privacy, May 2017.

[45] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford. Keeping Authorities “Honest or Bust”
with Decentralized Witness Cosigning. In 37th IEEE Symposium on
Security and Privacy, May 2016.

[46] B. Wiki. Proof of burn , Sept. 2017.
[47] Wikipedia. Atomic commit, Feb. 2017.
[48] G. Wood. Ethereum: A Secure Decentralised Generalised Transaction

Ledger. Ethereum Project Yellow Paper, 2014.

APPENDIX A
CENSORSHIP RESISTANCE PROTOCOL

One issue existing in prior work [32], [34] that OmniLedger
partially addresses is when a malicious shard leader censors
transactions. This attack can be undetectable from the rest
of the shard’s validators. A leader who does not propose a
transaction is acceptable as far as the state is concerned, but
this attack can compromise the fairness of the system or be
used as a coercion tool.

For this reason, we enable the validators to request trans-
actions to be committed, because they think the transactions
are censored. They can either collect those transactions via the
normal gossiping process or receive a request directly from a
client. This protocol can be run periodically (e.g., once every

https://arxiv.org/abs/1708.03778
http://arxiv.org/abs/1605.07524
http://arxiv.org/abs/1605.07524
https://bitnodes.21.co/nodes/
https://blockchain.info/charts/blocks-size
https://www.iacr.org/archive/asiacrypt2001/22480516.pdf
https://www.iacr.org/archive/asiacrypt2001/22480516.pdf
https://eprint.iacr.org/2015/1015.pdf
https://eprint.iacr.org/2015/1015.pdf
https://www.zerobyte.io/publications/2017-BKJGGF-pop.pdf
https://www.zerobyte.io/publications/2017-BKJGGF-pop.pdf
https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/9769/Buchman_Ethan_201606_MAsc.pdf?sequence=7&isAllowed=y
https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/9769/Buchman_Ethan_201606_MAsc.pdf?sequence=7&isAllowed=y
https://pdfs.semanticscholar.org/ae5b/c3aaf0e02a42f4cd41916072c87db0e04ac6.pdf
https://pdfs.semanticscholar.org/ae5b/c3aaf0e02a42f4cd41916072c87db0e04ac6.pdf
https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf
http://link.springer.com/article/10.1007/s00145-005-0318-0
http://link.springer.com/article/10.1007/s00145-005-0318-0
http://css.csail.mit.edu/6.824/2014/papers/castro-practicalbft.pdf
http://doi.acm.org/10.1145/2491245
http://doi.acm.org/10.1145/2491245
http://fc16.ifca.ai/bitcoin/papers/CDE+16.pdf
http://fc16.ifca.ai/bitcoin/papers/CDE+16.pdf
https://eprint.iacr.org/2015/502.pdf
https://motherboard.vice.com/en_us/article/bitcoin-could-consume-as-much-electricity-as-denmark-by-2020 
https://motherboard.vice.com/en_us/article/bitcoin-could-consume-as-much-electricity-as-denmark-by-2020 
http://isi.deterlab.net/
http://research.microsoft.com/pubs/74220/IPTPS2002.pdf
https://infoscience.epfl.ch/record/55787/files/srds92.ps.pdf
https://infoscience.epfl.ch/record/55787/files/srds92.ps.pdf
https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-eyal.pdf
https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-eyal.pdf
https://eprint.iacr.org/2012/577.pdf
https://www.infoq.com/articles/is-bitcoin-a-decentralized-currency
https://www.infoq.com/articles/is-bitcoin-a-decentralized-currency
https://eprint.iacr.org/2015/578.pdf
https://eprint.iacr.org/2015/578.pdf
https://people.csail.mit.edu/nickolai/papers/gilad-algorand-eprint.pdf
https://people.csail.mit.edu/nickolai/papers/gilad-algorand-eprint.pdf
http://golang.org/
https://pdfs.semanticscholar.org/1998/ddf989eb4bb7ba8fe1e678c26f2029e9911f.pdf
https://pdfs.semanticscholar.org/1998/ddf989eb4bb7ba8fe1e678c26f2029e9911f.pdf
http://string.technology/2016/09/14/threshold-relay-random-beacon.en/
http://string.technology/2016/09/14/threshold-relay-random-beacon.en/
http://hackingdistributed.com/2014/06/13/time-for-a-hard-bitcoin-fork/ 
http://eprint.iacr.org/2016/889
http://eprint.iacr.org/2016/889
http://arxiv.org/abs/1602.06997
http://arxiv.org/abs/1602.06997
https://link.springer.com/chapter/10.1007/978-3-662-47854-7_33
https://link.springer.com/chapter/10.1007/978-3-662-47854-7_33
http://doi.acm.org/10.1145/2976749.2978389
https://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Pseudo%20Randomness/Verifiable_Random_Functions.pdf
https://bitcoin.org/bitcoin.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
http://eprint.iacr.org/2016/917
http://eprint.iacr.org/2016/917
https://eprint.iacr.org/2016/454.pdf
https://eprint.iacr.org/2016/454.pdf
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://statoshi.info/dashboard/db/unspent-transaction-output-set
https://www.researchgate.net/profile/Claus_Schnorr/publication/227088517_Efficient_signature_generation_by_smart_cards/links/0046353849579ce09c000000.pdf
https://link.springer.com/chapter/10.1007/3-540-48405-1_10
https://link.springer.com/chapter/10.1007/3-540-48405-1_10
http://eprint.iacr.org/2016/1067
http://eprint.iacr.org/2016/1067
http://dedis.cs.yale.edu/dissent/papers/witness-abs
http://dedis.cs.yale.edu/dissent/papers/witness-abs
https://en.bitcoin.it/wiki/Proof_of_burn
https://en.wikipedia.org/wiki/Atomic_commit 
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper


10 blocks). We denote N = 3f+ validators exist where at
most f are dishonest.

Fig. 12: Anti-censorship mechanism OmniLedger

The workflow (Figure 12), starts 1⃝ with each validator
proposing a few (e.g 100) blinded transactions for anti-
censorship, which initiates a consensus round. The leader
should add in the blocks all the proposals, however he can
censor f of the honest proposers. Nevertheless, he is blind
on the f inputs he has to add from the honest validators he
will reach consensus with. Once the round ends, there is a
list 2⃝ of transactions that are eligible for anti-censorship,
which is a subset of the proposed. As the transactions are
blinded, no other validator knows which ones are proposed
before the end of the consensus. Each validators reveals 3⃝ his
chosen transactions, the validators check that the transactions
are valid and run consensus on which ones they expect the
leader to propose. The leader is then obliged to include 4⃝ the
transactions that are consistent with the state, otherwise the
honest validators will cause a view-change [13].

APPENDIX B
BREAKING THE NETWORK MODEL

Although DL protocols that assume a non-static group
of validators have similar synchrony [34], [36] assumptions,
in this section we discuss what can happen if the adversary
manages to break them [3]. In such a case we can detect the
attack and provide a back-up randomness generation mecha-
nism which is not expected to scale but guarantees safety even
in asynchrony.

Given that RandHound guarantees safety without the need
for synchrony an adversary manipulates the network can at
most slow down any validator he does not control, winning
the leadership all the time. However this does not enable the
adversary to manipulate RandHound, it just gives him the
advantage of being able to restart the protocol if he does not
like the random number. This restart will be visible to the
network, and the participants can suspect a bias-attempt, when
multiple consecutive RandHound rounds start to fail.

OmniLedger can provide a “safety valve” mechanism in
order to mitigate this problem. When 5 RandHound views fail
in a row, which under normal circumstances could happen
with less than 1% probability, the validators switch from
RandHound to running a fully asynchronous coin-tossing
protocol [12] that uses Publicly Verifiable Secret Sharing [43],
in order to produce the epoch’s randomness. This protocol
scales poorly (O(n3)), but it will be run when the network is

anyway under attack and liveness is not guaranteed, in which
case safety is more important.

APPENDIX C
PROBABILITY OF CROSS-SHARD TRANSACTIONS

This section explores the limitations cross-shard transac-
tions pose to the performance of the system. When splitting
the state into disjoint parts, the common practice [16], [34]
is to assign UTXOs to shards, based on the first bits of their
hash. For example, one shard manages all UTXOs whose first
bit is 0, and the second shard all UTXOs whose first bit is
1. Then each shard is managed by a group of validators who
keep the state consistent and commit updates.

For an intrashard transaction we want all the inputs and
outputs of the transaction to be assigned at the shame shard.
The probability of assigning a UTXO in a shard is uniformly
random from the randomness guarantees of cryptographic hash
functions. Let m be the total number of shards, n the sum of
input and output UTXOs and k the number of shards that need
to participate in the cross-shard validation of the transaction.
The probability can be calculated as:

P (n, k,m) =


1, n = 1, k = 1

0, n = 1, k ̸= 1
m−k
m P (n− 1, k − 1,m)+

k
mP (n− 1, k,m), n ̸= 1, k > 0

(3)

For a typical transaction with two inputs and one output and
a three-shard setup, the probability of a transaction being
intra-shard is P (3, 1, 3) = 3.7%, rendering the assumption
that transactions touch only one shard [34] problematic. As a
result if all transactions had this format the expected speed-
up from an 1-shard to a 4-shard configuration would be
4 ∗ (0.015 + 0.328

2 + 0.56
3 + 0.09

4 ) = 1.56 Generalizing this
we should expect that the speed-up will be lower than the
one of experiment VIII, depending on the average amount of
inputs and outputs and the total number of shards.

APPENDIX D
ATOMIX FOR STATE-FULL OBJECTS

The original Atomix protocol in Section IV implements a
state machine as depicted in Figure 13

Fig. 13: State-Machine for state-full objects. Pessimistic lock-
ing is necessary

To enable the use of such an algorithm in smart contracts
we need to account on the fact that a smart-contract object



is mutable and can be accessed concurrently for a legitimate
reason. As a result we need to modify the algorithm in two
ways: a) the Unlock transactions should be send to both Input
and Output shards and b) the state machine should have one
more state as the shards need to wait for confirmation before
unlocking. This is necessary because there is the chance that
the (state-full) object will be accessed again and this could
violate the input-after-output dependency if Atomix decides
to abort.

Fig. 14: State-Machine for state-full objects. Pessimistic lock-
ing is necessary

In Figure 14, we can see that an object will Lock for a
specific transaction (T) and will reject any concurrent T’, until
T is committed and the new state S’ is logged, or aborted and
the old state S is open for change again.


	Introduction
	Background
	Scalable Byzantine Consensus in ByzCoin
	Transaction Processing and the UTXO model
	Secure Distributed Randomness Generation
	Sybil-Resistant Identities
	Prior Sharded Ledgers: Elastico

	System Overview
	System Model
	Network Model
	Threat Model
	System Goals
	Design Roadmap

	OmniLedger: Security Design
	Sharding via Bias-Resistant Distributed Randomness
	Maintaining Operability During Epoch Transitions
	Cross-Shard Transactions

	Design Refinements for Performance
	Fault Tolerance under Byzantine Faults
	Parallelizing Block Commitments
	Shard Ledger Pruning
	Optional Trust-but-Verify Validation

	Security Analysis
	Randomness Creation
	Shard-Size Security
	Epoch Security
	Group Communication
	Setting the Time-Outs
	Reaching Consensus


	Implementation
	Evaluation
	Experimental Setup
	OmniLedger Performance
	Epoch-Transition Costs
	Client-Perceived End-to-End Latency with Atomix
	ByzCoinX Performance
	Bandwidth Costs for State Block Bootstrapping

	Related Work
	Limitation and Future Work
	Conclusion
	References
	Appendix A: Censorship Resistance Protocol
	Appendix B: Breaking the Network Model
	Appendix C: Probability of Cross-Shard Transactions
	Appendix D: Atomix for State-full Objects

