
Post-Quantum Security of Fiat-Shamir

Dominique Unruh
University of Tartu

May 16, 2018

Abstract. The Fiat-Shamir construction (Crypto 1986) is an efficient transformation in the
random oracle model for creating non-interactive proof systems and signatures from sigma-
protocols. In classical cryptography, Fiat-Shamir is a zero-knowledge proof of knowledge
assuming that the underlying sigma-protocol has the zero-knowledge and special soundness
properties. Unfortunately, Ambainis, Rosmanis, and Unruh (FOCS 2014) ruled out non-
relativizing proofs under those conditions in the quantum setting.

In this paper, we show under which strengthened conditions the Fiat-Shamir proof system is
still post-quantum secure. Namely, we show that if we require the sigma-protocol to have
computational zero-knowledge and statistical soundness, then Fiat-Shamir is a zero-knowledge
simulation-sound proof system (but not a proof of knowledge!). Furthermore, we show that
Fiat-Shamir leads to a post-quantum secure unforgeable signature scheme when additionally
assuming a “dual-mode hard instance generator” for generating key pairs.

Finally, we study the extractability (proof of knowledge) property of Fiat-Shamir. While we
have no proof of the extractability itself, we show that if we can prove extractability, then
other desired properties such as simulation-sound extractability (i.e., non-malleability), and
unforgeable signatures follow.

1 Introduction 2
1.1 Background 2
1.2 Our contribution 5

2 Preliminaries 7

3 Oracle machines 8

4 Sigma protocols 12

5 Non-interactive proof systems
(Definitions) 14
5.1 Extractability 15
5.2 Simulation-sound extractability . 20

6 Auxiliary lemmas 22

7 Fiat-Shamir 22
7.1 Completeness 23
7.2 Zero-knowledge 23
7.3 Soundness 27

7.4 Simulation-soundness 28
7.5 Simulation-sound extractability . 32

8 Signatures 37
8.1 Security proof using simulation-

soundness 41
8.2 Security proof using simulation-

sound extractability 43

9 Concrete security bounds 47
9.1 Proof systems 47
9.2 Signatures 51

A Problems with concurrent execu-
tions of Fiat-Shamir 54

Index 57

Symbol index 59

References 61

1 Introduction

1.1 Background

Fiat-Shamir signatures. Signatures are (next to encryption) probably one of the most impor-
tant constructs in modern cryptography. In search for efficient signature schemes, Fiat-Shamir
[FS87] gave a construction for transforming many three-round identification schemes into sig-
natures, using the random oracle. (The transformation was stated only for a specific case, but
the general construction is an easy generalization. [FS87] also does not contain a complete
security proof, but a proof was later provided by Pointcheval and Stern [PS96b].) The Fiat-
Shamir transform and variations thereof have since been used in a large number of constructions
(signatures [Sch91, PS00], group signatures [BBS04], anonymous credentials [CL01], e-voting
[Adi08], anonymous attestation [BCC04], etc.) The benefit of the Fiat-Shamir transform is that
it combines efficiency with universality: The underlying identification scheme can be any so-called
sigma-protocol (see below), this allows for great flexibility in how public and secret key are related
and enables the construction of more advanced signature schemes and related schemes such as
group signatures, etc.

Non-interactive zero-knowledge proofs. At the first glance unrelated, but upon closer in-
spection intimately connected to signatures are non-interactive zero-knowledge proof of knowledge
(NIZKPoK). In fact, Fiat-Shamir can also be seen as a highly efficient construction for NIZKPoKs
in the random oracle model [FKMV12]. Basically, a NIZKPoK allows a prover to show his
knowledge of a witness sk that stands in a given relation to a publicly known statement pk . From
a NIZKPoK, we can derive a signature scheme: To sign a message m, the signer constructs a proof
that he knows the secret key corresponding to the public key pk . (Of course, the message m needs
to be included in the proof as well, we omit the details for now.) For this construction to work, the
NIZKPoK needs to satisfy certain advanced security notions (“simulation-sound extractability”);1

Fiat-Shamir satisfies this notion in the classical setting [FKMV12]. Thus Fiat-Shamir doubles
both as a signature scheme and as a NIZKPoK, leading to simple and highly efficient constructions
of both.

The construction. In order to understand the rest of this introduction more easily, we sketch
the construction of Fiat-Shamir (the precise definition is given in Definition 17). We will express it
as a NIZKPoK since this makes the analysis more modular. (We study Fiat-Shamir as a signature
scheme in Section 8.)

A sigma-protocol Σ is a three-message protocol: The prover (given a statement x and a
corresponding valid witness w) sends a message com, called “commitment”, to the verifier. The
verifier (who knowns only the statement x) responds with a uniformly random “challenge” ch.
Then the prover answers with his “response” resp, and the verifier checks whether (com, ch, resp)
is a valid interaction. If so, he accepts the proof of the statement x. In the following, we will
assume that ch has superlogarithmic length, i.e., there are superpolynomially many different
challenges. This can always be achieved by parallel-composing the sigma-protocol.

Given the sigma-protocol Σ, the Fiat-Shamir transform yields a non-interactive proof system:
The prover PFS internally executes the prover of the sigma-protocol to get the commitment com.
Then he computes the challenge as ch := H(x‖com) where H is a hash function, modeled as a
random oracle. That is, instead of letting the verifier generate a random challenge, the prover
produces it by hashing. This guarantees, at least on an intuitively level, that the prover does not
have any control over the challenge, it is as if it was chosen randomly. Then the prover internally

1We do not know where this was first shown, a proof in the quantum case can be found in [Unr15].

2

produces the response resp corresponding to com and ch and sends the non-interactive proof
com‖resp to the verifier.

The Fiat-Shamir verifier VFS computes ch := H(x‖com) and checks whether (com, ch, resp)
is a valid interaction of the sigma-protocol.

Note that numerous variants of the Fiat-Shamir are possible. For example, one could compute
ch := H(com) (omitting x). However, this variant of Fiat-Shamir is malleable, see [FKMV12].

Difficulties with Fiat-Shamir. The Fiat-Shamir transform is a deceptively simple construc-
tion, but proving its security turns out to be more involved that one would anticipate. To prove
security (specifically, the unforgeability property in the signature setting, or the extractability in
the NIZKPoK setting), we need simulate the interaction of the adversary with the random oracle,
and then rerun the same interaction with slightly changed random oracle responses (“rewinding”).
The first security proof by Fiat and Shamir [FS87] overlooked that issue.2 Bellare and Rogaway
[BR93, Section 5.2] also prove the security of the Fiat-Shamir transform (as a proof system) but
simply claim the soundness without giving a proof (we assume that they also overlooked the
difficulties involved).3 The first complete security proof of the Fiat-Shamir as a signature scheme
is by Pointcheval and Stern [PS96b] who introduced the so-called “forking lemma”, a central
tool for analyzing the security of Fiat-Shamir (it allows us to analyze the rewinding used in the
security proof). When considering Fiat-Shamir as a NIZKPoK, the first proof was given by Faust,
Kohlweiss, Marson and Venturi [FKMV12]; they showed that Fiat-Shamir is zero-knowledge and
simulation-sound extractable.4 This short history of the security proofs indicates that Fiat-Shamir
is more complicated than it may look at the first glance.

Further difficulties were noticed by Shoup and Gennaro [SG02] who point out that the fact that
the Fiat-Shamir security proof uses rewinding can lead to considerable difficulties in the analysis
of more complex security proofs (namely, it may lead to an exponential blowup in the running
time of a simulator; Pointcheval and Stern [PS96a] experienced similar problems). Fischlin [Fis05]
notes that the rewinding also leads to less tight reductions, which in turn may lead to longer key
sizes etc. for protocols using Fiat-Shamir.

Another example of unexpected behavior: Assume Alice gets a n pairs of public keys
(pk i0, pk i1), and then can ask for one of the secret keys for each pair (i.e., sk i0 or sk i1 is
revealed, never both), and then Alice is supposed to prove using Fiat-Shamir that he knows
both secret keys for one of the pairs. Intuitively, we expect Alice not to be able to do that (if
Fiat-Shamir is indeed a proof of knowledge), but as we show in Appendix A, Fiat-Shamir does
not guarantee that Alice cannot successfully produce a proof in this situation!

To circumvent all those problems, Fischlin [Fis05] gave an alternative construction of
NIZKPoKs and signature schemes in the random oracle model whose security proof does not use
rewinding. However, their construction seems less efficient in terms of the computation performed
by the prover (although this is not fully obvious if the tightness of the reduction is taken into
account), and their construction requires an additional property (unique responses5) from the

2The proof of [FS87, Lemma 6] claims without proof that a successful adversary cannot find a square root mod

n of
∏k

j=1 v
cj
j . In hindsight, this proof step would implicitly use the forking lemma [PS96b] that was developed

only nine years later. [FS87] also mentions a full version of their paper, but to the best of our knowledge no such
full version has ever appeared.

3A “final paper” is also mentioned, but to the best of our knowledge never appeared.
4They only sketch the zero-knowledge property, though. Their proof sketch overlooks one required property of

the sigma-protocol: unpredictable commitments (Definition 4). Without this (easy to achieve) property, at least
the simulator constructed in [FKMV12] will not work correctly. Concurrently and independently, [BPW12] also
claims the same security properties, but the theorems are given without any proof or proof idea.

5Unique responses: It is computationally infeasible to find two valid responses for the same commitment/challenge
pair. See Definition 4 below.

3

underlying sigma-protocol.
We do not claim that those difficulties in proving and using Fiat-Shamir necessarily speak

against Fiat-Shamir. But they show one needs to carefully analyze which precise properties
Fiat-Shamir provably has, and not rely on what Fiat-Shamir intuitively achieves.

Post-quantum security. In this paper we are interested in the post-quantum security of
Fiat-Shamir. That is, under what conditions is Fiat-Shamir secure if the adversary has a quantum
computer? In the post-quantum setting, the random oracle has to be modeled as a random
function that can be queried in superposition6 since a normal hash function can be evaluated
in superposition as well (cf. [BDF+11]). Ambainis, Rosmanis, and Unruh [ARU14] showed that
in this model, Fiat-Shamir is insecure in general. More precisely, they showed that relative to
certain oracles, there are sigma-protocols such that: The sigma-protocol satisfies the usual security
properties. (Such as zero-knowledge and special soundness. These are sufficient for security in
the classical case.) But when applying the Fiat-Shamir transform to it, the resulting NIZKPoK is
not sound (and thus, as a signature, not unforgeable). Since this negative result is relative to
specific oracles, it does not categorically rule out a security proof. However, it shows that no
relativizing security proof exists, and indicates that it is unlikely that Fiat-Shamir can be shown
post-quantum secure in general. Analogous negative results [ARU14] hold for Fischlin’s scheme
[Fis05].

Unruh [Unr15] gave a construction of a NIZKPoK/signature scheme in the random oracle model
that is avoids these problems and is post-quantum secure (strongly simulation-sound extractable
zero-knowledge / strongly unforgeable). However, Unruh’s scheme requires multiple executions of
the underlying sigma-protocol, leading to increased computational and communication complexity
in comparison with Fiat-Shamir which needs only a single execution.7 Furthermore, Fiat-Shamir
is simpler (in terms of the construction, if not the proof), and more established in the crypto
community. In fact, a number of papers have used Fiat-Shamir to construct post-quantum secure
signature schemes (e.g., [GKV10, LNW15, LLM+16b, BK16, LLM+16a, BrOP16]). The negative
results by Ambainis et al. show that the post-quantum security of these schemes is hard to justify.8

Thus the post-quantum security of Fiat-Shamir would be of great interest, both from a practical
and theoretical point of view.

Is there a possibility to show the security of Fiat-Shamir notwithstanding the negative results
from [ARU14]? There are two options (besides non-relativizing proofs): (a) Unruh [Unr12]
introduced an additional condition for sigma-protocols, so-called “perfectly unique responses”.9

Unique responses means that for any commitment and challenge in a sigma-protocol, there
exists at most one valid response. They showed that a sigma-protocol that additionally has
perfect unique responses is a proof of knowledge while [ARU14] showed that without unique
responses, a sigma protocol will not in general be a proof of knowledge (relative to some oracle).
Similarly, [ARU14] does not exclude that Fiat-Shamir is post-quantum secure when the underlying

6E.g., the adversary can produce states such as
∑

x 2−|x|/2|x〉 ⊗ |H(x)〉.
7This assumes that the underlying sigma-protocol has a large challenge space. If the underlying sigma-protocol

has a small challenge space (e.g., the challenge is a bit) then for Fiat-Shamir the sigma-protocol needs to be parallel
composed first to increase its challenge space. In this case, the complexity of Fiat-Shamir and Unruh are more
similar. (See, e.g., [GCZ16] that compares (optimizations of) Fiat-Shamir and Unruh for a specific sigma-protocol
and concludes that Unruh has an overhead in communication complexity of merely 60% compared to Fiat-Shamir.)

8We stress that the classical security of these schemes is not in question. Also, not all these papers explicitly
claim to have post-quantum security. However, they all give constructions that are based on supposedly quantum
hard assumptions. Arguably, one of the main motivations for using such assumptions is post-quantum security.
Thus the papers do not claim wrong results, but they would be considerably strengthened by a proof of the
post-quantum security of Fiat-Shamir.

9It is called “strict soundness” in [Unr12] but we use the term “unique responses” to match the language used
elsewhere in the literature, e.g., [Fis05].

4

sigma-protocol has perfectly unique responses.10 (b) If we do not require extractability, but only
require soundness (i.e., if we only want to prove that there exists a witness, not that we know it),
then [ARU14] does not exclude a proof that Fiat-Shamir is sound based on a sigma-protocol with
perfect special soundness (but (computational) special soundness is not sufficient). In this paper,
we mainly follow approach (b), but we also have some results related to research direction (a).

1.2 Our contribution

Security of Fiat-Shamir as a proof system. We prove that Fiat-Shamir is post-quantum
secure as a proof system. More precisely, we prove that it is zero-knowledge (using random-oracle
programming techniques from [Unr15]), and that it is sound (i.e., a proof of knowledge, using a
reduction to quantum search). More precisely:

Theorem 1 (Post-quantum security of Fiat-Shamir – informal) Assume that Σ has
honest-verifier zero-knowledge and statistical soundness.

Then the Fiat-Shamir proof system (PFS , VFS) is zero-knowledge and sound.11

The assumptions are the same as in the classical setting, except that instead of computational
special soundness (as in in the classical case), we need statistical soundness.12 This is interesting,
because it means that we need one of the properties of the sigma-protocol to hold unconditionally,
even though we only want computational security in the end. However, [ARU14] shows that
this is necessary: when assuming only computational (special) soundness, they construct a
counter-example to the soundness of Fiat-Shamir (relative to some oracle).

Simulation-soundness. In addition to the above, we also show that Fiat-Shamir has strong
simulation-soundness. Strong simulation-soundness is a property that guarantees non-malleability,
i.e., that an adversary cannot take a proof gotten from, say, an honest participant and transform
it into a different proof (potentially for a different but related statement).13 This is particularly
important when using Fiat-Shamir to construct signatures (see below) because we would not
want the adversary to transform one signature into a different signature. Our result is:

Theorem 2 (Strong simulation-soundness of Fiat-Shamir – informal) Assume that Σ
has honest-verifier zero-knowledge, statistical soundness, and unique responses.

Then the Fiat-Shamir proof system (PFS , VFS) has strong simulation-soundness.

Note that unique responses are needed for this result even in the classical case. If we only require
a slightly weaker form of simulation-soundness (“weak” simulation-soundness), then we can omit
that requirement.

Signatures. Normally, the security of Fiat-Shamir signatures is shown by reducing it to the
strong simulation-sound extractability of Fiat-Shamir (implicitly or explicitly). Unfortunately, we
do not know whether Fiat-Shamir is extractable in the quantum setting. Thus, we need a new
proof of the security of Fiat-Shamir signatures that only relies on strong simulation-soundness.
We can do so by making additional assumptions about the way the key generator works: We
call an algorithm G a “dual-mode hard instance generator” if G outputs a key pair (pk , sk) in

10Interestingly, computational unique responses as in footnote 5 are shown not to be sufficient, even when we
want only computational extractability / unforgeability.

11We stress: It is sound in the sense of a proof system, but not known to be a proof of knowledge.
12That is, soundness has to hold against computationally unlimited adversaries.
13Formally, strong simulation-soundness is defined by requiring that soundness holds even when the adversary

has access to a simulator that produces fake proofs.

5

such a way that pk is computationally indistinguishable from an invalid pk (i.e., a pk that has no
corresponding sk). An example of such an instance generator would be: sk is chosen uniformly at
random, and pk := F (sk) for a pseudo-random generator F . Then we have:

Theorem 3 (Fiat-Shamir signatures – informal) Assume that G is a dual-mode hard in-
stance generator. Fix a sigma-protocol Σ (for showing that a given public key has a corresponding
secret key). Assume that Σ has honest-verifier zero-knowledge, statistical soundness.

Then the Fiat-Shamir signature scheme is unforgeable.

Note that classically, we only require that G is a hard instance generator. That is, given pk , it is
hard to find sk . We leave it as an open problem whether this is sufficient in the post-quantum
setting, too.

On extractability. Although we were not able to prove that Fiat-Shamir is extractable, we
make several steps towards a better understanding of the extractability and related questions:

(i) We formalize the definition of extractability of non-interactive zero-knowledge proofs in the
quantum random oracle model. (Unruh [Unr15] already gave a definition of extractability
in the quantum random oracle model, but their definition is only applicable to so-called
online-extractable non-interactive proofs. Fiat-Shamir is not online-extractable, thus Unruh’s
definition cannot be used here.) The definition of extractability poses non-trivial challenges
that do not occur in the classical setting: In the quantum setting, the extractor’s actions
may disturb the adversary’s state (due to its measurements), the definition needs to reflect
this.

(ii) We further define strong simulation-sound extractability in the quantum random oracle
model. (Again, Unruh [Unr15] defined this property, but only for online-extractable proofs.)
Roughly speaking, strong simulation-sound extractability guarantees that extractability even
holds when the adversary has access to a simulator that produces fake proofs. This property
is standard in the classical setting and ensures that proofs are non-malleable. That is, given
a proof for some statement, it is not possible to transform it into a proof for a related
statement. Strong simulation-sound extractability is, among other uses, very important for
constructing signature schemes from Fiat-Shamir (see below).

(iii) Although we do not know how to prove that Fiat-Shamir is extractable (not even for a subclass
of sigma-protocols), we can show: If Fiat-Shamir is extractable (for some sigma-protocol),
then Fiat-Shamir is strongly simulation-sound extractable (for the same sigma-protocol).

(iv) We show that if a non-interactive proof system is zero-knowledge and strongly simulation-
sound extractable, then it can be used as a strongly unforgeable signature scheme, using
only standard assumptions about the key generator (namely, the secret key is hard to guess
given the public key). In particular, this implies that if Fiat-Shamir is extractable, then
Fiat-Shamir is a post-quantum secure signature scheme.

These latter contributions, although all based on the assumption that Fiat-Shamir is extractable,
give us valuable insight into future research: They narrow down what is left to prove to a
single property (extractability), from which then all remaining desired properties follow (such
as simulation-sound extractability or unforgeability). And for existing post-quantum signature
schemes that use Fiat-Shamir whose security does not already follow from Theorem 3, our research
at least rules out some forms of attacks – if those signature schemes are insecure, then the attacks
must be related to the lack of extractability (and not, e.g., to the zero-knowledge property, or to
malleability).

Subsequent work. In subsequent work, Kiltz, Lyubashevsky, and Schaffner [KLS18] presented
a security proof for Fiat-Shamir signatures under a more specific assumption (“lossy identification

6

schemes”), and applied their result to a specific construction, the Dilithium signature scheme, for
which they derive concrete parameter suggestions. Their proof uses techniques similar to ours (but
is performed directly for unforgeability, without going through the properties of non-interactive
proof systems), except for their proof of the implication “UF-NMA =⇒ UF-CMA” (which
corresponds roughly to our proof of the zero-knowledge property). That part of the proof is
proven differently from our setting, using specific properties of the lossy identification schemes
to achieve better parameters. For a comparison of their concrete security bounds with ours, see
[KLS18].

Organization. In Section 2, we fix some simple notation. In Section 3, we formalize oracle
machines, this is important for a precise formalization of extractability but can be skipped
at first reading. In Section 6, we state some auxiliary lemmas needed throughout the paper.
In Section 4, we discuss the (relatively standard) security notions for sigma-protocols used in
this paper. In Section 5, we define security notions for non-interactive proof systems in the
random oracle model. In particular, we give definitions of extractability and simulation-sound
extractability, which are novel. In Section 7 we give out main results, the security properties of
Fiat-Shamir (zero-knowledge, soundness, simulation-soundness, . . .). In Section 8, we show how
to construct signature schemes from non-interactive zero-knowledge proof systems, in particular
from Fiat-Shamir. Concrete security bounds for most results are given in Section 9.

Readers who are interested solely in conditions under which Fiat-Shamir signatures are post-
quantum secure but not in the security proofs may restrict their attention to Sections 4 and 8 (in
particular Corollary 33).

2 Preliminaries

Fun(n,m) is the set of all functions from {0, 1}n to {0, 1}m.
A function f : F → R with F = N,R is negligible iff for all c > 0 such that f(x) ≤ x−c for

sufficiently large x. A function f : F → R with F = N,R is noticeable iff there exist some c > 0
such that f(x) ≥ x−c for sufficiently large x.

a⊕ b denotes the bitwise XOR between bitstrings (of the same length).
A density operator is a positive Hermitian operator of trace ≤ 1 on some Hilbert space. I

denotes the identity matrix/operator.

The fidelity F (ρ, σ) between density operators ρ and σ is defined as F (ρ, σ) := tr
√
ρ1/2σρ1/2.

M always stands for a complete measurement in the computational basis.
If H is a function, we write H(x := y) for the function H ′ with H ′(x) = y and H ′(x′) = H(x′)

for x′ 6= x. We call a list ass = (x1 := y1, . . . , xn := yn) an assignment-list . We then write H(ass)
for H(x1 := y1)(x2 := y2) . . . (xn := yn). (That is, H is updated to return yi on input xi, with
assignments occurring later in ass taking precedence.)

We write x← A(. . .) to denote that the result of the algorithm/measurement A is assigned
to x. We write Q← |Ψ〉 or Q← ρ to denote that the quantum register Q is initialized with the

quantum state |Ψ〉 or ρ, respectively. We write x
$←M to denote that x is assigned a uniformly

randomly chosen element of the set M .
We write Pr[P : G] for the probability that P holds after executing G. Here P is a predicate,

and G is a sequence of instructions that define the free variables of P (i.e., G defines the distribution

of those variables). For example Pr[a = b : a
$← {0, 1}, b $← {0, 1}] = 1

2 denotes the probability
that a = b holds when a and b are uniformly random from {0, 1}.

7

3 Oracle machines

In this section, we introduce our formalism for modeling oracle algorithms. Some of the definitions
are standard, but for defining extractability and simulation-sound extractability, we need some
more advanced concepts, e.g., we need to be able to model an oracle algorithm that has access
to several oracles and then is in turn passed itself as an oracle to another algorithm. These
advanced definitions are only needed for the results related to extractability and simulation-sound
extractability. We mark them with “(extractability only)”, they can be safely skipped for
understanding the concepts in this paper that are unrelated to extractability. And when only an
informal understanding of the results in this paper is required, the definitions can be skipped
altogether.

Oracles. An oracle O consists of a state space HO and a quantum operation EO on C2n ⊗HO
for some n. We call C2n its input/output space.

The intuition is that HO will contain the hidden state of the oracle, while C2n contains the
n-qubit oracle input/output before/after a query.

Functions as oracles. Given a function H : {0, 1}n → {0, 1}m, let UH :
∣∣x‖y〉 7→ ∣∣x‖(y ⊕

H(x))
〉

for x ∈ {0, 1}n, y ∈ {0, 1}m. H then induces an (n+m)-bit oracle with state space H = C
(zero qubit state) and EH(ρ) := UHρ(UH)† We call this oracle the oracle for H and denote it
with H. (That is, we use denote the oracle for a function f with f . Context will always allow to
decide whether we mean the oracle or the function.)

Pure oracle circuits (extractability only). A pure oracle circuit C consists of the following:
• t – the number of oracles that C expects.
• For each j = 1, . . . , t, an integer `oracle

C,j . This indicates that the i-th oracle is expected to be

have an `oracle
C,j -qubit input/output register.

• An integer `output
C . This indicates that the circuit has an `output

C -bit classical output.
• `state

C – the number of qubits in the state of C.
• UC – a unitary operating on registers OC , I1, . . . , It, SC , Here OC has `output

C qubits (and is
supposed to contain the final classical output), Ii has `oracle

C,i qubits (and is used to contain

input/output for oracle queries), SC has `state
C qubits (and contains the internal state of C).

UC specifies the actual computation performed by C between oracle queries.
• opC – the execution schedule of C, that is, a sequence opC = op1, . . . , ops for some s where

each opi is either compute or callj for some j ∈ {1, . . . , t}. opi = compute means that the
i-th action in the circuit is to apply UC , and opi = callj means that the i-th action is to
invoke the j-th oracle.

For oracles O1, . . . ,Ot with state spaces H1, . . . ,Ht, we denote an execution of the or-
acle by x ← CO1(S1),...,Ot(St)(SC). SC is an `state

C -qubit register (the initial state of C).
Si is a quantum register with space Hi (the initial state of the i-th oracle). And x will
contain the classical output after the execution. (And SC will contain a possibly modi-
fied state.) Formally, x ← CO1(S1),...,Ot(St)(SC) is described by the following algorithm:

8

OC ← |0`
output
C 〉

for j = 1, . . . , t do

Ij ← |0`
oracle
C,j 〉

for i = 1 to m do
if opi = callj (for some j) then

apply EOj to the registers Ij , Sj
else if opi = compute then

apply UC to OC , (Ii)i, SC
let x←M(OC) // measure OC in computational basis

We write EO1,...,Ot
C for the superoperator operating on registers OC , (Ij)j , SC , (Sj)j that is

given by the second loop in the above algorithm. With that notation, x← CO1(S1),...,Ot(St)(SC)

denotes the following program: “OC ← |0〉. Ij ← |0〉 for all j. Apply EO1,...,Ot
C . x←M(OC).”

Let
shapeC := (t, (`oracle

C,j)j=1,...,t, `
output
C ,opC)

where all integers are encoded in unary. (This ensure that algorithms that run in polynomial-time
in the length of shapeC will run in polynomial-time in those integers, too.) We call shapeC
the shape of C. The shape contains all information that refers to communication performed by
C (i.e., queries to oracles, input/output), but it does not contain information about the actual
computation (UC or the size `state

C of the state).

Projective measurement circuits (extractability only). A projective measurement circuit
M consists of:
• An integer `outcome

M ≥ 0. The length of the outcome of the measurement.
• An integer `quantum

M ≥ 0. Length of the quantum state that is to be measured.

• An integer `input
M ≥ 0. The length of the classical input of the measurement. (I.e., a classical

parametrization of the measurement.)
• An integer qM . This indicates how many oracle queries M performs.
• Integers `ora,in

M , `ora,out
M ≥ 0. These describe the number of input/output bits of the function

H that is queried by M .

• A family of unitaries UM,x on `quantum
M qubits, parametrized by x ∈ {0, 1}`

input
M . This is the

computation performed by M between oracle queries, given classical input x.
• We assume that `quantum

M ≥ `outcome
M + `ora,in

M + `ora,out
M .

For any H : {0, 1}`
ora,in
M → {0, 1}`

ora,out
M and x ∈ {0, 1}`

input
M , M induces the projective measurement

MH
x on `quantum

M qubits given by the following circuit:

Q Q′

HO

HI

O

UM,x UH UM,x



qM times

M

y

U†M,x U†H U†M,x



qM times

HI

HO

O

Q′ Q

HereM is a measurement in the computational basis. Q is an `quantum
M qubit register. HI ,HO , O

are `ora,in
M , `ora,out

M , `outcome
M qubit registers, respectively. Q′ is a (`quantum

M − `ora,in
M − `ora,out

M −
`outcome
M) qubit register.

We denote this measurement with MH
x and write y ←MH

x (Q) to denote an application of the
measurement on register Q and with outcome y.

9

Oracle algorithms. An oracle algorithm A consists of:
• t – the number of oracles that A expects.
• TA – a probabilistic Turing machine with the special states query and quantum, as well as

a special oracle tape.
For concrete oracles O1, . . . ,Ot with state spaces Hi, and for quantum registers Ri with spaces Hi
(containing the internal states of the oracles) and an quantum register Q (assumed to consist of a
finite number of qubits) and a classical value y, we write x← AO1(R1),...,Ot(Rt)(y,Q) to denote
the following process:
• Let `Q denote the number of qubits in Q.
• The Turing machine is executed with classical input (y, `Q) (according to the usual execution

semantics of probabilistic Turing machines).
• When the Turing machine reaches the state query , then the content of the oracle tape is

interpreted as an index j ∈ {1, . . . , t}. Let nj be the number of qubits of the input/output
space of Oj . Then EOj is applied to Q′, Rj where Q′ denotes the first nj qubits of Q. Then
the Turing machine continues execution (the oracle tape is not modified)

• When the Turing machine reaches the state quantum, then the content of the oracle tape is
parsed as one of the following:

– (gate, G, n1, . . . , nm) where G is an m-qubit gate from some fixed finite universal set
of unitary gates. Then G is applied to qubits n1, . . . , nm of Q.

– (measure, n). Then the n-th qubit of Q is measured in the computational basis, and
the outcome is written on the oracle tape.

– (destroy). Then the last qubit of Q (i.e., the qubit with the highest index) is destroyed
(traced out).

– (create). Then one additional qubit will be created in Q (and given index n+ 1 if Q
had n qubits before).

Then the Turing machine continues execution.
• When a final state is reached, the content of the output tape is assigned to y.
Note that in this definition, the Turing machine TA does not directly get an answer when

performing an oracle query. However, it can, e.g., measure the answer or perform quantum
computations on the answer by entering the quantum state.

Oracle access to pure oracle circuits (extractability only). When studying the rewinding
of adversaries that have access to oracles, we will construct algorithms E that have oracle access
to the adversary A who is in turn a pure oracle circuit that accesses further oracles. And E will in
turn implement those oracles for A. To model this formally, we have to give E oracle access to the
unitary UA that describes the computation performed by A. Then A can repeatedly invoke UA to
simulate the computations performed by A, and in between answer A’s oracle queries. However,
given only UA, E cannot know which of its oracles A is currently calling. So E will need to get the
execution schedule opA of A as classical input (as well as the rest of the information provided in

shapeA). Furthermore, we want E to be able not only to invoke UA, but also U†A. And finally, we
want E to be able to perform a controlled-UA operation (i.e., maintain a superposition between
invoking A and not invoking A). Thus, given UA, we define the unitary Urewind

A operating on
registers R, (Ij)j , SA. Here R is a 2-qubit register (used for controlling whether UA is applied
forward, backward, or not at all), and (Ij)j , SA are as in the description of pure oracle circuits

10

above. Urewind
A is then the following unitary:

Urewind
A :


|00〉R ⊗ |Ψ〉Q 7→ |00〉 ⊗ |Ψ〉,
|01〉R ⊗ |Ψ〉Q 7→ |01〉 ⊗ |Ψ〉,
|10〉R ⊗ |Ψ〉Q 7→ |11〉 ⊗ UA|Ψ〉,
|11〉R ⊗ |Ψ〉Q 7→ |10〉 ⊗ U†A|Ψ〉

where Q stands for the registers (Ij)j , SA together. That is, the first qubit in R controls whether
UA is to be applied at all, and the second qubit in R controls whether UA is supposed to be
applied forward or backward. (For convenience, we flip the second qubit in the last two lines.
This makes Urewind

A self-inverse.)
We define the oracle Arew: Its state space is the space of register SA (i.e., `state

A qubits), and
its input/output space is R, (Ij)j (i.e., 2 +

∑
j `

oracle
C,j qubits). The quantum operation of Arew

is EArew : ρ 7→ Urewind
A ρ(Urewind

A)†. That is, Arew gives access to the unitary Urewind
A defined

above. (Thus the algorithm invoking Arew has access to R, (Ij)j , but not to SC . The invoking
algorithm can control whether UA or its inverse is invoked, and can access the inputs and supply
the outputs of the oracles queried by A, but it cannot access the internal state of A.)

Then, to give E oracle access to the oracle circuit A where A has initial state in register SA,
we invoke E as:

x← EA
rew(SA)(shapeA).

Note that E provides the responses to the oracle queries performed by A. It is important that E
knows shapeA, otherwise it would not know, e.g., how many times to invoke Arew, nor which
oracle to simulate after which invocation, or what the sizes of the registers Ij used by Arew are.

Oracle access to projective measurement circuits (extractability only). Similarly, we
need to give our algorithms oracle access to projective measurement circuits. However, there
is a crucial difference to the case of oracle access to a pure oracle circuit. Namely, a projective
measurement circuit MH is supposed to implement a projective measurement. If we were to
define oracle access to M analogously to oracle access to pure oracle circuits, we would give
the invoking algorithm E access to UM,x, and leave it to E to implement the oracle H for M
whenever M makes an oracle query. However, if we do this, E can invoke MH in ways that do
not guarantee that MH implements a projective measurement. (E.g., if the function H changes
between different invocations of H by M .) To avoid this, we take a different approach: E is given
oracle access to MH as a whole. (I.e., MH will be executed within a single oracle query.) And
E does not simulate the oracle H for M , instead the oracle MH comes with H “built-in”. This
would lead to the following tentative definition: The oracle corresponding to MH is given by the
unitary

U tentative,H
M : |x〉 ⊗ |y′〉 ⊗ |Ψ〉 7→

∑
y

|x〉 ⊗ |y′ ⊕ y〉 ⊗MH,y
x |Ψ〉

where MH,y
x is the projector corresponding to outcome y ∈ {0, 1}`outcome

M of MH
x . Intuitively, this

unitary measures the third register using MH
x and XORs the outcome onto the second register.

However, we will later need to give the invoking algorithm E the possibility to program H.
That is, instead of giving H to the projective measurement circuit M , E will have to give H(ass)
to M . Here ass is an assignment-list, and H(ass) is H updated according to ass (see Section 2).

So we use the following definition: Given an integer ` ≥ 0, let X be an `input
M qubit register,

let Y be an `outcome
M qubit register, let T be a register large enough to contain the encoding of an

11

assignment-list ass of length `. Define the unitary

Uoracle,H,`
M : |x〉X ⊗ |ass〉T ⊗ |y′〉Y ⊗ |Ψ〉Q 7→

∑
y

|x〉 ⊗ |ass〉 ⊗ |y′ ⊕ y〉 ⊗MH(ass),y
x |Ψ〉

where M
H(ass),y
x is the projector corresponding to outcome y ∈ {0, 1}`outcome

M of M
H(ass)
x , and

H(ass) is H updated using assignment-list ass (see Section 2). Intuitively, this unitary measures

the register Q using M
H(ass)
x (where x comes from register X and ass from register T) and XORs

the outcome onto register Y .
We then define the oracle Moracle,H,`: Its state space is the space of register Q, and

its input/output space is X,T, Y . The quantum operation of Arew is EArew : ρ 7→
Uoracle,H,`
M ρ(Uoracle,H,`

M)†.
Note that we have to explicitly specify an upper bound on the length ` of the assignment-list

ass since according to our definition of oracles, an oracle has fixed length input/output.
Two things are worth noting: In the definition of Arew (the oracle corresponding to the pure

oracle circuit A) we explicitly encoded the possibility to control with another qubit whether the

oracle is invoked or not. In the present case this is not necessary: Uoracle,H,`
M is self-inverse, and

when register Y contains |+〉⊗`outcome
M , then Uoracle,H,`

M acts as the identity.

Polynomial-time families (extractability only). We call a family Cη of pure oracle circuits
(parametrized by an integer η) polynomial-time if there exist a deterministic polynomial-time
Turing machine M such that M(1η) = (t, (`oracle

C,j)j , `
output
C , `state

C ,opC, desc) where desc is a
description of UCη . In this context, a description of a unitary is an explicit description of a circuit
D that implements UCη , using only the CNOT, Toffoli, Hadamard, and phase gate (which is a
universal set of gates), and arbitrarily many auxiliary qubits (which are assumed to be initialized
with |0〉, and are required to be in state |0〉 after the execution of the circuit D).

We call a family Mη of projective measurement circuits polynomial-time if there
exist deterministic polynomial-time Turing machines T1, T2 such that T1(1η) =
(`outcome
M , `quantum

M , `input
M , qM , `

ora,in
M , `ora,out

M), and T2(1η, x) is a description of UMη,x.

4 Sigma protocols

In this paper, we will consider only proof systems for fixed-length relations. A fixed-length relation
Rη is a family of relations on bitstrings such that:

For every η, there are values `xη and `wη such that (x,w) ∈ Rη implies |x| = `xη and |w| = `wη ,
and such that `xη , `

w
η can be computed in time polynomial in η. Given x,w, it can be decided in

polynomial-time in η whether (x,w) ∈ Rη.
We now define sigma protocols and related concepts. The notions in this section are standard

in the classical setting, and easy to adapt to the quantum setting. Note that the definitions
are formulated without the random oracle, we only use the random oracle later for constructing
non-interactive proofs out of sigma protocols.

A sigma protocol for a fixed-length relation Rη is a three-message proof system. It is
described by the lengths `com

η , `ch
η , `

resp
η of the “commitments”, “challenges”, and “responses” (those

lengths may depend on η), by a quantum-polynomial-time14 prover (P 1
Σ, P

2
Σ) and a deterministic

polynomial-time verifier VΣ. We will commonly denote statement and witness with x and w (with
(x,w) ∈ R in the honest case). The first message from the prover is com ← P 1

Σ(1η, x, w) and is

14Typically, P 1
Σ and P 2

Σ will be classical, but we do not require this since our results also hold for quantum
P 1

Σ, P
2
Σ. But the inputs and outputs of P 1

Σ, P
2
Σ are classical.

12

called the commitment and satisfies com ∈ {0, 1}`com

, the uniformly random reply from the verifier

is ch
$← {0, 1}`ch

(called challenge), and the prover answers with a message resp ← P 2
Σ(1η, x, w, ch)

(the response) that satisfies resp ∈ {0, 1}`resp

. We assume P 1
Σ, P

2
Σ to share classical or quantum

state. Finally VΣ(1η, x, com, ch, resp) outputs 1 if the verifier accepts, 0 otherwise.

Definition 4 (Properties of sigma protocols) Let (`com
η , `ch

η , `
resp
η , P 1

Σ, P
2
Σ, VΣ) be a sigma

protocol. We define:
• Completeness: For any quantum-polynomial-time algorithm A, there is a negligible µ such

that for all η,

Pr[(x,w) ∈ Rη ∧ VΣ(1η, x, com, ch, resp) = 0 : (x,w)← A(1η),

com ← P 1
Σ(1η, x, w), ch

$← {0, 1}`
ch
η , resp ← P 2

Σ(1η, x, w, ch)] ≤ µ(η).

• Statistical soundness: There is a negligible µ such that for any stateful classical (but not
necessarily polynomial-time) algorithm A and all η, we have that

Pr[ok = 1 ∧ x /∈ LR : (x, com)← A(1η), ch
$← {0, 1}`

ch

,

resp ← A(1η, ch), ok ← VΣ(1η, x, com, ch, resp)] ≤ µ(η).

• Perfect special soundness: There is a quantum-polynomial-time algorithm EΣ such
that for all η, x, com, ch, resp, ch ′, resp′ with ch 6= ch ′ and VΣ(1η, x, com, ch, resp) =
VΣ(1η, x, com, ch ′, resp′) = 1, we have that

Pr[(x,w) ∈ Rη : w ← EΣ(1η, x, com, ch, resp, ch ′, resp′)] = 1.

• Special soundness: There is a quantum-polynomial-time algorithm EΣ such that for any
quantum-polynomial-time A, the following is negligible:

Pr[(x,w) /∈ Rη ∧ ch 6= ch ′ ∧ ok = ok ′ = 1 : (x, com, ch, resp, ch ′, resp′)← A(1η),

ok ← VΣ(1η, x, com, ch, resp), ok ′ ← VΣ(1η, x, com, ch ′, resp′),

w ← EΣ(1η, x, com, ch, resp, ch ′, resp′)].

• Honest-verifier zero-knowledge (HVZK): There is a quantum-polynomial-time algo-
rithm SΣ (the simulator) such that for any stateful quantum-polynomial-time algorithm A
there is a negligible µ such that for all η and (x,w) ∈ Rη,∣∣Pr[b = 1 : (x,w)← A(1η), com ← P 1

Σ(1η, x, w), ch
$← {0, 1}`

ch
η ,

resp ← P 2
Σ(1η, x, w, ch), b← A(1η, com, ch, resp)]

−Pr[b = 1 : (x,w)← A(1η), (com, ch, resp)← S(1η, x),

b← A(1η, com, ch, resp)]
∣∣ ≤ µ(η).

• Perfectly unique responses: There exist no values η, x, com, ch, resp, resp′ with resp 6=
resp′ and VΣ(1η, x, com, ch, resp) = 1 and VΣ(1η, x, com, ch ′, resp′) = 1.
• Unique responses: For any quantum-polynomial-time A, the following is negligible:

Pr
[
resp 6= resp′ ∧ VΣ(1η, x, com, ch, resp) = 1 ∧ VΣ(1η, x, com, ch ′, resp′) = 1 :

(x, com, ch, resp, resp′)← A(1η)
]
.

13

• Unpredictable commitments: The commitment has superlogarithmic collision-entropy.
In other words, there is a negligible µ such that for all η and (x,w) ∈ Rη,

Pr[com1 = com2 : com1 ← P 1
Σ(1η, x, w), com2 ← P 1

Σ(1η, x, w)] ≤ µ(η).

Note: the “unpredictable commitments” property is non-standard, but satisfied by all sigma-
protocols we are aware of. However, any sigma-protocol without unpredictable commitments
can be transformed into one with unpredictable commitments by appending superlogarithmically
many random bits to the commitment (that are then ignored by the verifier).

5 Non-interactive proof systems (Definitions)

In the following, let H always denote a function {0, 1}`
in
η → {0, 1}`

out
η where `inη , `

out
η may depend

on the security parameter η. Let Fun(`inη , `
out
η) denote the set of all such functions.

A non-interactive proof system (P, V) for a relation Rη consists of a quantum-polynomial-
time algorithm P and a deterministic polynomial-time algorithm V , both taking an oracle
H ∈ Fun(`inη , `

out
η). π ← PH(1η, x, w) is expected to output a proof π for the statement x using

witness w. We require that |π| = `πη for some length `πη . (I.e., the length of a proof π depends

only on the security parameter.) And ok ← V H(1η, x, π) is supposed to return ok = 1 if the proof
π is valid for the statement x. Formally, we define:

Definition 5 (Completeness) (P, V) has completeness for a fixed-length relation Rη iff for
any polynomial-time oracle algorithm A there is a negligible µ such that for all η,

Pr[(x,w) ∈ Rη ∧ V H(1η, x, π) = 0 : H
$← Fun(`inη , `

out
η),

(x,w)← AH(1η), π ← PH(1η, x, w)] ≤ µ(η).

For the following definition, a simulator is a classical stateful algorithm S. Upon invocation,
S(1η, x) returns a proof π. Additionally, S may reprogram the random oracle. That is, S may
choose an assignment-list ass, and H will then be replaced by H(ass).

Definition 6 (Zero-knowledge) Given a simulator S, the oracle S′(x,w) runs S(1η, x) and
returns the latter’s output. Given a prover P , the oracle P ′(x,w) runs P (1η, x, w) and returns
the latter’s output.

A non-interactive proof system (P, V) is zero-knowledge iff there is a quantum-polynomial-time
simulator S such that for every quantum-polynomial-time oracle algorithm A there is a negligible
µ such that for all η,∣∣∣Pr[b = 1 : H

$← Fun(`inη , `
out
η), b← AH,P

′
(1η)]

−Pr[b = 1 : H
$← Fun(`inη , `

out
η), b← AH,S

′
(1η)]

∣∣∣ ≤ µ(η). (1)

Here we quantify only over A that never query (x,w) /∈ R from the P ′ or S′-oracle.

Definition 7 (Soundness) A non-interactive proof system (P, V) is sound iff for any quantum-
polynomial-time oracle algorithm A, there is a negligible function µ, such that for all η,

Pr[okV = 1 ∧ x /∈ LR : (x, π)← AH(1η, ρ), okV ← V H(1η, x, π)] ≤ µ(η).

Here LR := {x : ∃w.(x,w) ∈ R}.

14

In some applications, soundness as defined above is not sufficient. Namely, consider a security
proof that goes along the following lines: We start with a game in which the adversary interacts
with an honest prover. We replace the honest prover by a simulator. From the zero-knowledge
property it follows that this leads to an indistinguishable game. And then we try to use soundness
to show that the adversary in the new game cannot prove certain statements.

The last proof step will fail: soundness guarantees nothing when the adversary interacts with
a simulator that constructs fake proofs. Namely, it could be that the adversary can take a fake
proof for some statement and changes it into a fake proof for another statement of its choosing.
(Technically, soundness cannot be used because the simulator programs the random oracle, and
Definition 7 provides no guarantees if the random oracle is modified.)

An example where this problem occurs is the proof of Theorem 30 below (unforgeability of
Fiat-Shamir signatures).

To avoid these problems, we adapt the definition of simulation-soundness [Sah99] to the
quantum setting. Roughly speaking, simulation-soundness requires that the adversary cannot
produce wrong proofs π, even if it has access to a simulator that it can use to produce arbitrary
fake proofs. (Of course, it does not count if the adversary simply outputs one of the fake proofs
it got from the simulator. But we require that the adversary cannot produce any other wrong
proofs.)

Definition 8 (Simulation-soundness) A non-interactive proof system (P, V) is strongly
simulation-sound with respect to the simulator S iff for any quantum-polynomial-time oracle
algorithm A, there is a negligible function µ, such that for all η,

Pr[okV = 1 ∧ x /∈ LR ∧ (x, π) /∈ S-queries :

(x, π)← AH,S
′′
(1η), okV ← V Hfinal (1η, x, π)] ≤ µ(η). (2)

Here the oracle S′′(x) invokes S(1η, x). And Hfinal refers to the value of the random oracle H at
the end of the execution (recall that invocations of S may change H). S-queries is a list containing
all queries made to S′′ by A, as pairs of input/output. (Note that the input and output of S′′ are
classical, so such a list is well-defined.)

We call (P, V) weakly simulation-sound if the above holds with the following instead of (2),
where S-queries contains only the query inputs to S′′:

Pr[okV = 1 ∧ x /∈ LR ∧ x /∈ S-queries :

(x, π)← AH,S
′′
(1η), okV ← V Hfinal (1η, x, π)] ≤ µ(η). (3)

When considering simulation-sound zero-knowledge proof systems, we will always implicitly
assume that the same simulator is used for the simulation-soundness and for the zero-knowledge
property.

5.1 Extractability

The basic idea behind extractability is to model the idea that whenever an adversary manages to
produce a valid proof for a statement x, it also knows a corresponding witness w with (x,w) ∈ R.
This is typically formalized (see, e.g., [BG93]) by requiring that an extractor (with blackbox access
to the adversary) can compute a valid witness for x with high probability when the adversary
can produce a proof.

A very first attempt to formalize this in the quantum setting with random oracle would lead
to, roughly, the following definition:

15

Definition 9 (Extractability, too weak, informal) A non-interactive proof system (P, V) is
extractable iff there is a quantum polynomial-time oracle algorithm E and a constant d > 0, such
that for any polynomial-time adversary A there is a polynomial p > 0 such that for all initial
states in the register SA:

Pr
[
(x,w) ∈ R : Extract

]
≥ 1

p
Pr
[
okV = 1 : Prove

]d − negligible.

Here Prove is the following game:

(x, π)← AH(SA), okV ← V H(x, π)

And Extract is the following game:

(x,w)← EA(SA),H()

Basically, this requires that when the adversary (with oracle access to the random oracle H, and
initial state in SA) produces a valid proof with probability q, then the extractor (with blackbox
access to A) manages to compute a valid witness with probability q/poly−negligible. This ensures
that the success probability of the extractor is non-negligible whenever that of A is. However,
this definition has one very big problem: There is no guarantee that the statement x chosen by
the extractor E is the same as the statement x chosen by A. For example, the definition would
be satisfied if the extractor E always outputs some fixed pair (x0, w0) ∈ R, regardless of what the
adversary does. So, obviously, we need to somehow enforece that the x returned by E is “the
same” as the x returned by A. One way is the following definition sketch where x is fixed (via an
all-quantifier) and given to both A and E:

Definition 10 (Extractability, non-adaptive, too weak, informal) A non-interactive
proof system (P, V) is extractable iff there is a quantum polynomial-time oracle algorithm E and
a constant d > 0, such that for any polynomial-time adversary A there is a polynomial p > 0 such
that for all x and all initial states in the register SA:

Pr
[
(x,w) ∈ R : Extract

]
≥ 1

p
Pr
[
okV = 1 : Prove

]d − negligible.

Here Prove is the following game:

x, π ← AH(x, SA), okV ← V H(x, π)

And Extract is the following game:

x,w ← EA(SA),H(x)

This definition indeed enforces that A and E use the same x. However, it has one big problem:
• It is non-adaptive. That is, it does not capture attacks in which the adversary produces the

statement x depending on, e.g., the results of random oracle queries. Thus, this definition
would only be useful in a context where the statement is used without any adversarial
influence. For example, when we try to use Fiat-Shamir to construct signature schemes
(Section 8), the statement x will contain the public key (which is indeed not under adversarial
influence) and the message m that is to be signed. In case of a chosen message attack, m
would be chosen or influenced by the adversary, and therefore could, e.g., contain outputs
of the random oracle. Thus, also in the case of constructing signatures, Definition 10 is not
suitable.

16

• In addition, we have a phenomenon unique to the quantum setting. Namely, when we
run the extractor with oracle access to the adversary A, this indirectly affects the register
SA that contains the state of A. This means that we cannot simultaneously get access
to the final state of the adversary, and to the extracted x,w. This is very different from
the classical setting: in the classical setting, we can simply copy the adversary’s initial
state before running the extractor (and get the final state by rerunning the adversary). For
example, in our security proof for signatures (Theorem 31), we make use of the fact that
the adversary’s state is available simultaneously with the extracted (x,w).

One solution to both problems is to require “online-extractability” [Fis05, Unr15]. Online-
extractability requires that the extractor can run side-by-side with the adversary, without in any
way disturbing (or even accessing) the adversary’s state. (For example, in the classical setting
this can be achieved by using an extractor that extracts given merely a list of oracle-queries
[Fis05], and in the quantum setting it can be achieved by using an extractor that sets up a fake
random oracle with a trapdoor, and then can extract a witness from any valid proof by using that
trapdoor [Unr15].) Since an online-extractor does not influence the adversary, both problems are
easily solved: Since extractor and adversary are part of the same execution, it makes sense to
require that the extractor uses the same x as was chosen by the adversary. And the adversary’s
state is not modified by the extractor since the extractor never interacts with the adversary
(except for passively receiving x and the proof).

Unfortunately, for proof systems such as Fiat-Shamir, constructing online-extractors does not
seem possible, even in the classical case. This is because to extract a witness from the underlying
sigma-protocol (using the special soundness property), we need to extract two valid sigma-protocol
interactions from the adversary. Although we have no proof of this, it seems unlikely that two such
interactions can be extracted without rewinding the adversary (or doing something comparable
to it). In fact, the difficulty of constructing online-extractors for Fiat-Shamir was what motivated
the construction of the classical online-extractable non-interactive proof system from [Fis05].

One alternative solution to the two problems would be the following definition. In this
definition, we require that there is an extractor that produces a faithful simulation of the
uninfluenced execution of the adversary A, while at the same time extracting a witness. More
precisely, we require that when running the extractor (with oracle access to an adversary A
running with an internal state register SA), the extractor outputs x,w, π such that: x, π, SA are
indistinguishable from the results of a normal execution of the adversary (without extractor).
And whenever π is a valid proof for x, then w is a valid witness for x.

The following definition makes this more precise:

Definition 11 (Extractability, too strong, informal) A non-interactive proof system (P, V)
is extractable iff there is an expected-polynomial-time quantum oracle algorithm E such that for
any polynomial-time adversary A and all initial states in the register SA:

Pr
[
(x,w) /∈ R ∧ okV = 1 : Extract

]
is negligible

and
(x, π, SA) after Prove is indistinguishable from (x, π, SA) after Extract

Here Prove is the following game:

(x, π)← AH(SA), okV ← V H(x, π)

And Extract is the following game:

(x,w, π)← EA(SA),H(), okV ← V H(x, π)

17

We believe that having a proof system that satisfies this definition would be ideal. And indeed,
it is easy to see that online-extractable proof systems (satisfying the definition from [Unr15])
satisfy this definition. However, we believe that in the quantum setting, this definition is too
much to hope for when it comes to the security of Fiat-Shamir. As discussed above, it seems
that the only way to extract a witness from a Fiat-Shamir proof is to rewind the adversary. Even
in the case of extraction from direct executions of sigma-protocols [Unr12] (which can be seen
as a special case of Fiat-Shamir where the adversary can make only a single classical query to
the random oracle) we do not know how to perform such a rewinding without at least partially
disturbing the state. Thus, although we have no proof that Definition 11 cannot be satisfied by
Fiat-Shamir, it would at least require major breakthroughs in quantum rewinding techniques.

To avoid running into this problem, we weaken the Definition 11 somewhat.
In many situations, we would use the extractability property as in Definition 11 in roughly

the following way: We start out with an adversary that produces some statement x and proves
knowledge of a corresponding witness w in a situation S where the adversary cannot produce such
a witness (e.g., x contains the public key of the signature scheme, and w would then have to be the
secret key that is unguessable by assumption). Then we apply extractability and get an extractor
that produces both x and w. Since the output of the extractor (without w) is indistinguishable
from the output of the adversary, we conclude that the extractor is also in situation S. (Of
course, whether this is a valid conclusion depends very much on how S is defined in the specific
proof.) Finally, we conclude that an extractor that find x,w in situation S is a contradiction to
our assumptions (e.g., the extractor would compute the secret key from the public key).

In such a proof, we will usually not need that the extractor’s output is indistinguishable from
the adversary’s output. Instead, it is sufficient to be able to conclude that, if the adversary
produces a valid proof while being in situation S with non-negligible probability, then the
extractor produces a valid witness while being in situation S with (possibly smaller) non-negligible
probability. In the classical setting, a “situation” might be described by a predicate on the
adversaries output and final state. (E.g., the predicate could be “the first part of x is the public
key stored in the adversary’s state”.) Thus, we would require a definition roughly as follows:

For any predicate P and adversary A we have: If with probability p, the adversary produces a
valid proof π for a statement x and has final state SA, such that (x, π, SA) satisfies the predicate
P , then the extractor (with black-box access to A and P) will output x, π, w such that (x,w) ∈ R,
and (x, π, SA) satisfies P (where SA is the final state of the black-box adversary A).15 In the
quantum setting, SA would be a quantum state, so we cannot define a classical predicate P that
is applied to SA. Instead, in the quantum setting we use a projective measurement Π on x,w, SA
instead to define which final states are acceptable.

These ideas lead to the following definition:

Definition 12 (Extractability, informal) A non-interactive proof system (P, V) is extractable
iff there is a quantum polynomial-time oracle algorithm E and a constant d > 0, such that for
any polynomial-time adversary Aη and any polynomial-time measurement ΠH

x,π (that may depend
on the oracle H and on some values x, π), there exist a polynomial p > 0 such that for all initial
states in the register SA:

Pr
[
(x,w) ∈ R ∧ okA = 1 : Extract

]
≥ 1

p(η)
Pr
[
okV = 1 ∧ okA = 1 : Prove

]d − µ(η).

15We give the extractor access to the predicate P . One can also conceive a stronger definition where the
extractor does not get access to P . However, we do not know of a situation where this stronger definition would
be helpful, and we believe that in the quantum case, giving the extractor access to P might help in constructing
an extractor. (For example, some amplitude amplification technique might need to know what property the final
state is supposed to have.)

18

Here Prove is the following game:

(x, π)← AH(SA), okV ← V H(x, π), okA ← ΠH
x,π(SA).

And Extract is the following game:

(x,w, π, ass)← EA(SA),Π(SA),H(), okA ← ΠH(ass)
x,π (SA).

where ass is an assignment-list and H(ass) is the result of assigning ass in H (see Section 2).

In this definition, the game Prove represents a normal execution of the adversary AH . The
Boolean okV represents whether the proof π is valid, and okA represents whether the projective
measurement ΠH

x,π on the state of the adversary succeeded. The projective measurement is
parametrized by x, π, which means that is can check conditions that depend on x and π. (It is
even possible that ΠH

x,π is just a predicate on x, π. To achieve this, we let ΠH
x,π be a measurement

that always succeeds for certain x, π, and always fails for other x, π.) In addition, we allow Π to
depend on the random oracle H. Namely we assume Π to be implemented by a circuit making
a polynomial-number of queries to H. In the game Extract, the extractor tries to mimic the
results from the game Prove, while additionally trying to extract the witness w. The extractor
E has black-box access to A and the family ΠH

x,w. Both black-box oracles operate on the same
register SA (to which E has no direct access). E can provide the original or a reprogrammed
oracle H to the black-box A and Π. E can also provide the values x,w used by the black-box
Π. (The details of these oracle access mechanisms are formalized in Section 3.) Finally, when
the extractor returns x, π, w, we check whether (x,w) ∈ R and whether the final state SA of the
adversary satisfies the measurement Π (represented by the Boolean okA). This final measurement
Π gets the values x, π produced by the extractor, and it gets oracle access to H(ass) instead of
H. H(ass) is the oracle H reprogrammed at a list ass of locations chosen by E. (Because E may
have to reprogram the oracle H during its extraction process.)

We stress that we also do not have a proof that this definition is satisfied by Fiat-Shamir.
However, it seems more likely that we can show that Fiat-Shamir satisfies Definition 12 than
Definition 11. Namely, Definition 11 had the problem that it requires the extractor to perform its
extraction without disturbing the state SA of the adversary in the least. (We require computational
indistinguishability.) This seems to make rewinding very difficult. In contrast, in Definition 12,
the extractor may disturb SA to some degree, as long as the extractor can make sure that there
is a small probability that SA will still satisfy Π.

At the same time, the definition seems still strong enough for non-trivial proofs such as the
security of signatures (when combined with the concept of simulation-soundness, see Theorem 31).

Note that many variations of this definition are possible. For example, we could weaken it
if we only quantify over Πx,π that measure in the computational basis (representing a classical
predicate), or by not giving Πx,π access to H (i.e., the predicate that is checked does not depend
on the random oracle). At least our proof of unforgeability of signatures (Theorem 31 still works
with this weakened definition).

We now state Definition 12 precisely. Definition 13 is essentially the same definition as
Definition 12, except that we use precise notation, and do not elide any arguments to the various
algorithms (e.g., shapeAη which informs E about the number and kind of oracle queries performed
by A, see Section 3).

Definition 13 (Extractability) A non-interactive proof system (P, V) is extractable iff there
is a quantum polynomial-time oracle algorithm E and a constant d > 0, such that for any

19

polynomial-time family of pure oracle circuits Aη (with `output
Aη

= `xη + `πη) there exists a polynomial
` ≥ 0 such that for any polynomial-time family of projective measurement circuits Πη, there exist
a polynomial p > 0 and a negligible function µ such that for all η and all `state

Aη
-qubit density

operators ρ,16 we have that:

Pr
[
(x,w) ∈ R ∧ okA = 1 : Extract

]
≥ 1

p(η)
Pr
[
okV = 1 ∧ okA = 1 : Prove

]d − µ(η). (4)

Here Prove is the following game:

H
$← Fun(`inη , `

out
η),

SA ← ρ,

x‖π ← AHη (SA),

okV ← V H(1η, x, π),

okA ← ΠH
η,x‖π(SA).

Here |x| = `xη , |π| = `πη .
And Extract is the following game:

H
$← Fun(`inη , `

out
η),

SA ← ρ,

(x,w, π, ass)← EA
rew
η (SA),Πoracle,H,`(η)

η (SA),H(1η, `(η), shapeAη),

okA ← Π
H(ass)
η,x‖π (SA).

where ass is an assignment-list and H(ass) is the result of assigning ass in H (see Section 2).

Finally, we would like to stress that showing that Fiat-Shamir satisfies any of the definitions in
this section (except the trivial Definition 9) would constitute a major step forward in understanding
quantum Fiat-Shamir. We leave it as an open problem to prove extractability of Fiat-Shamir
with respect to any of those definitions.

5.2 Simulation-sound extractability

As described above after Definition 8 (simulation-soundness), there are cases where in a proof
one needs to use the soundness property in a situation where the adversary has access to a
simulator that produces fake proofs. Analogously, we may also need the extractability property
in a situation where the adversary has access to a simulator. (For example in the proof of
Theorem 31 (unforgeability of Fiat-Shamir signatures) below.) Otherwise, it would be possible
for the adversary to receive a proof for a statement x from some party which it does not know the
witness of (in the signature setting, an honestly signed signature would constitute such a proof),

16The state ρ is an auxiliary input. The reader may wonder why all other definitions in this paper do not include
an auxiliary input (i.e., are in the uniform setting), while the extractability definition does include an auxiliary
input. This is because in the case of extractability the auxiliary input is needed to model information from prior
protocol steps in a larger context. For example, ρ might contain partial information about the witness of some
statement that A will try to prove. Also, our security proofs of signature schemes (Section 8.2) rely on the auxiliary
input. We could remove the non-uniformity of this definition by including an additional quantum-polynomial-time
algorithm that chooses the auxiliary input, but that would make the definition more lengthy, so to keep things
simple, we opted for switching to the non-uniform setting for the definition of extractability.

20

and transform it into a new proof for a related statement x′ without knowing the witness of the
new statement x′ (in the signature setting, that new proof might constitute a forged signature for
a different message).

We highlight the differences to Definition 13 (extractability) in blue.

Definition 14 (Simulation-sound extractability) A non-interactive proof system (P, V) is
strong simulation-sound extractable with respect to the simulator S iff there is a quantum
polynomial-time oracle algorithm E and a constant d > 0, such that for any polynomial-time
family of pure oracle circuits Aη (with `output

Aη
= `xη + `πη) there is a polynomial ` ≥ 0 such that for

any polynomial-time family of projective measurement circuits Πη, there exists a polynomial p > 0
and a negligible function µ such that for all η and all `state

Aη
-qubit density operators ρ, we have

that:

Pr
[
(x,w) ∈ R ∧ okA = 1 : Extract

]
≥ 1

p(η)
Pr
[
okV = 1 ∧ okA = 1 ∧ (x, π) /∈ S-queries : Prove

]d − µ(η). (5)

Here Prove is the following game:

H
$← Fun(`inη , `

out
η),

SA ← ρ,

x‖π ← AH,S
′′

η (SA),

okV ← V Hfinal (1η, x, π),

okA ← Π
Hfinal

η,x‖π(SA).

Here the oracle S′′(x) invokes S(1η, x). And Hfinal refers to the value of the random oracle H at
the end of the execution (recall that invocations of S may change H). S-queries is a list containing
all queries made to S′′ by A, as pairs of input/output. (Note that the input and output of S′′ are
classical, so such a list is well-defined.) And |x| = `xη , |π| = `πη .

And Extract is the following game:

H
$← Fun(`inη , `

out
η),

SA ← ρ,

(x,w, π, ass)← EA
rew
η (SA),Πoracle,H,`(η)

η (SA),H(1η, `(η), shapeAη),

okA ← Π
H(ass)
η,x‖π (SA).

where ass is an assignment-list and H(ass) is the result of assigning ass in H (see Section 2).

We call (P, V) weakly simulation-sound extractable if the above holds with the following
instead of (5), where S-queries contains only the query inputs to S′′:

Pr
[
(x,w) ∈ R ∧ okA = 1 : Extract

]
≥ 1

p(η)
Pr
[
okV = 1 ∧ okA = 1 ∧ x /∈ S-queries : Prove

]d − µ(η). (6)

When considering simulation-sound extractable zero-knowledge proof systems, we will always
implicitly assume that the same simulator is used for the simulation-sound extractability and for
the zero-knowledge property.

21

6 Auxiliary lemmas

Theorem 15 (Random oracle programming [Unr15]) Let `in , `out ≥ 1 be a integers. Let
AC be an algorithm, and A0, A2 be oracles algorithms, where AH0 makes at most qA queries to H,
AC is classical, and the output of AC has collision-entropy at least k given AC ’s initial state
(which is classical). A0, AC , A2 may share state.

Then∣∣∣Pr[b = 1 : H
$← Fun(`inη , `

out
η), AH0 (), xcom ← AC(), ch := H(xcom), b← AH2 (ch)]

−Pr[b = 1 : H
$← Fun(`inη , `

out
η), AH0 (), xcom ← AC(), ch

$← {0, 1}m, H(xcom) := ch, b← AH2 (ch)]
∣∣∣

≤ (4 +
√

2)
√
qA 2−k/4.

Lemma 16 (Hardness of search [HRS16]) Let H : {0, 1}n → {0, 1}m be a uniformly random
function. For any q-query algorithm A, it holds that Pr[H(x) = 0 : x← AH()] ≤ 32 ·2−m · (q+1)2.

Proof. Let p := Pr[H(x) = 0 : x← AH()].
Let f : {0, 1}n → {0, 1} be a random function such that f(x) = 1 with probability 2−m. (And

all f(x) are independent.) And the algorithm Bf () does the following: It picks a uniformly
random function G : {0, 1}n → {0, 1}m \ {0m}. It defines1 H ′(x) := G(x) if f(x) = 0 and
H ′(x) := 0m otherwise. Then Bf executes x← AH

′
() and returns x.

Notice that given oracle access to f , one can implement H ′ using two queries to f . (We need
two queries because when computing H ′(x) in superposition, the intermediate result f(x) needs
to be uncomputed after computing H ′(x).) Thus B makes ≤ 2q queries. Furthermore, if f is
distributed as described above, then H ′ is uniformly distributed. Thus x← AH

′
() returns x with

H ′(x) = 0m with probability p. Since H ′(x) = 0m iff f(x) = 1, x← Bf () returns x with f(x) = 1
with probability p. [HRS16, Theorem 1] states that any q-query algorithm finds a 1-preimage in
a function distributed like f with probability at most 8(2−m)(q + 1)2. Since B makes 2q queries,
it follows that p ≤ 8 · 2−m · (2q + 1)2 ≤ 32 · 2−m · (q + 1)2. �

7 Fiat-Shamir

For the rest of this paper, fix a sigma-protocol Σ = (`com
η , `ch

η , `
resp
η , P 1

Σ, P
2
Σ, VΣ) for a fixed-length

relation Rη. Let H : {0, 1}`
x
η+`com

η → {0, 1}`
ch
η be a random oracle.

Definition 17 The Fiat-Shamir proof system (PFS , VFS) consists of the algorithms PFS and
VFS defined in Figure 1.

In the remainder of this section, we show the following result, which is an immediate combina-
tion of Theorems 20, 22, 23, and Lemma 19 below.

Theorem 18 If Σ has completeness, unpredictable commitments, honest-verifier zero-knowledge,
statistical soundness, then Fiat-Shamir (PFS , VFS) has completeness, zero-knowledge, and weak
simulation-soundness.

If Σ additionally has unique responses, then Fiat-Shamir has strong simulation-soundness.

22

7.1 Completeness

Lemma 19 If Σ has completeness and unpredictable commitments, then Fiat-Shamir (PFS , VFS)
has completeness.

(Concrete security bounds are given in Corollary 34.)
Interestingly, without unpredictable commitments, the lemma does not hold. Consider the

following example sigma-protocol: Let Rη := {(x,w) : |x| = |w| = η}, `com := `ch := `resp := η.
Let P 1

Σ(1η, x, w) output com := 0η. Let P 2
Σ(1η, x, w, ch) output resp := ch if ch 6= w, and resp :=

ch else (ch is the bitwise negation of ch). Let VΣ(1η, x, com, ch, resp) = 1 iff |x| = η and ch = resp.
This sigma-protocol has all the properties from Definition 4 except unpredictable commitments.
Yet (PFS , VFS) does not have completeness: A can chose x := 0η and w := H(0η‖0η). For those
choices of (x,w), PFS (x,w) will chose com = 0η and ch = H(x‖com) = w and thus resp = ch
and return π = (com, ch). This proof will be rejected by VFS with probability 1.

Proof of Lemma 19. Fix a polynomial-time oracle algorithm A. We need to show that
Pr[win = 1 : Game 1] is negligible for the following game:

Game 1 (Completeness) H
$← Fun(`inη , `

out
η), (x,w) ← AH(1η), π ← PHFS (1η, x, w), okV ←

V HFS (1η, x, π), win := ((x,w) ∈ Rη ∧ okV = 0).

Let P 1,class
Σ , P 2,class

Σ be classical implementations of P 1
Σ, P

2
Σ. (I.e., P 1,class

Σ , P 2,class
Σ have the

same output distribution but do not perform quantum computations or keep a quantum state.
P 1,class

Σ , P 2,class
Σ might not be polynomial-time, and the state they keep might not be polynomial

space.)
We use Theorem 15 to transform Game 1. For a fixed η, let AH0 run (x,w)← AH(1η) (and

return nothing). Let AC() run com ← P 1,class
Σ (1η, x, w) and return x‖com. Let AH2 (ch) run

resp ← P 2,class
Σ (1η, x, w, ch) and okV ← VΣ(1η, x, com, ch, resp) and return b := win := ((x,w) ∈

Rη ∧ okV = 0). (Note: AC and AH2 are not necessarily polynomial-time, we will only use that
AH0 is polynomial-time.)

Let p1, p2 denote the first and second probability in Theorem 15, respectively. By construction,
p1 = Pr[win = 1 : Game 1].

Furthermore, p2 = Pr[win = 1 : Game 2] for the following game:

Game 2 H
$← Fun(`inη , `

out
η), (x,w) ← AH(1η), com ← P 1

Σ(1η, x, w), ch
$← {0, 1}`ch

, resp ←
P 2

Σ(1η, x, w, ch), okV ← VΣ(1η, x, com, ch, resp), win := ((x,w) ∈ Rη ∧ okV = 0).

Then Theorem 15 implies that∣∣Pr[win = 1 : Game 1]− Pr[win = 1 : Game 2]
∣∣ = |p1 − p2| ≤ (4 +

√
2)
√
qA2−k/4 =: µ (7)

where qA is the number of queries performed by AH0 , and k the collision-entropy of x‖com. Since
A is polynomial-time, qA is polynomially bounded. And since Σ has unpredictable commitments,
k is superlogarithmic. Thus µ is negligible.

Since Σ has completeness, Pr[win = 1 : Game 2] is negligible. From (7) it then follows that
Pr[win = 1 : Game 1] is negligible. This shows that (PFS , VFS) has completeness. �

7.2 Zero-knowledge

Theorem 20 (Fiat-Shamir is zero-knowledge) Assume that Σ is honest-verifier zero-
knowledge and has completeness and unpredictable commitments.

Then the Fiat-Shamir proof system (PFS , VFS) is zero-knowledge.

23

PFSPFSPFS :

Input: 1η, x, w
Oracles: Classical queries to H.

com ← P 1
Σ(1η, x, w)

ch := H(x‖com)
resp ← P 2

Σ(1η, x, w, ch)
return π := com‖resp

SFSSFSSFS :

Input: 1η, x
Oracles: Write access to H.

(com, ch, resp)← SΣ(1η, x)
if VΣ(1η, x, com, ch, resp) = 1
then
H(x‖com) := ch

return π := com‖resp

VFSVFSVFS :

Input: 1η, x, π
Oracles: Classical queries to H.

com‖resp := π
ch := H(x‖com)
return VΣ(1η, x, com, ch, resp)

Figure 1: Prover PFS and verifier VFS of the Fiat-Shamir proof system. SFS is the simulator
constructed in the proof of Theorem 20.

(Concrete security bounds are given in Corollary 35.)

Proof. In this proof, we will in many places omit the security parameter η for readability. (E.g.,

we write {0, 1}`ch

instead of {0, 1}`
ch
η and SΣ(x) instead of SΣ(1η, x).) It is to be understood that

this is merely a syntactic omission, the variables and algorithms still depend on η.
To show that Fiat-Shamir is zero-knowledge, we first define a simulator SFS , see Figure 1. In

the definition of SFS we use the honest-verifier simulator SΣ for Σ (see Definition 4) which exists
since Σ is HVZK by assumption. Fix a quantum-polynomial-time adversary A. Let qH and qP
denote polynomial upper bounds on the number of queries performed by A to the random oracle
H and the prover/simulator, respectively. We need to show that (1) is negligible (with P := PFS

and S := SFS). For this, we transform the lhs of (1) into the rhs of (1) using a sequences of
games.

Game 1 (Real world) b← AH,PFS ().

Game 2 (Programming H) b← AH,P
∗
() with the following oracle P ∗:

P ∗(x,w) runs com ← P 1
Σ(x,w), ch

$← {0, 1}`ch

, H(x‖com) := ch, resp ← P 2
Σ(x,w, ch). Then

it returns π := com‖resp.

Notice that P ∗ reprograms the random oracle in a similar way as the simulator does. Thus,
P ∗ is not a valid prover any more, but the game is well-defined nonetheless.

In order to relate Game 1 and Game 2, we define a hybrid game:

Game 3 i (Hybrid) b← AH,P
′
() where P ′ behaves as PFS in the first i invocations, and as P ∗

(see Game 2) in all further invocations.

Fix some i ≥ 0 and some η. We will now bound
∣∣Pr[b = 1 : Game 3i]−Pr[b = 1 : Game 3i+1]

∣∣
by applying Theorem 15. Let AH0 () be an algorithm that executes AH,P

′
() until just before the

i-th query to P ′. Note that at that point, the query input x,w for the (i+ 1)-st P ′-query are

fixed. Let P 1,class
Σ , P 2,class

Σ be classical implementations of P 1
Σ, P

2
Σ. (I.e., P 1,class

Σ , P 2,class
Σ have

24

the same output distribution but do not perform quantum computations or keep a quantum state.
P 1,class

Σ , P 2,class
Σ might not be polynomial-time.) Let AC() compute com ← P 1,class

Σ (x,w) and
return x‖com if (x,w) ∈ R. (If (x,w) /∈ R, AC() instead outputs a η uniformly random bits.) Let

AH2 (ch) compute resp ← P 2,class
Σ (x,w, ch), set π := com‖resp, and then finish the execution of

AH using π as the response of the (i+ 1)-st P ′-query. AH2 outputs the output of AH . Note that
in the execution of AH2 , P ′ will actually behave like P ∗ and thus reprogram the random oracle H.
AH2 does not actually reprogram H (it only has readonly access to it), but instead maintains a
list of all changes performed by P ∗ to simulate queries to H performed by A accordingly.

Since Σ has unpredictable commitments, the output of P 1
Σ has collision-entropy ≥ k(η) for

some superlogarithmic k, assuming (x,w) ∈ R. Hence the output of AC has collision-entropy
≥ k′ := min{η, k}.

Since A makes at most qH queries to H, and at most qP queries to the prover, and since PFS

and P ∗ make one and zero queries to H, respectively, AH0 makes at most qA := qH + qP queries
to H.

Let

Plhs := Pr[b = 1 : H
$← Fun(`x + `com , `ch), AH0 (), x‖com ← AC(),

ch := H(x‖com), b← AH2 (ch)],

Prhs := Pr[b = 1 : H
$← Fun(`x + `com , `ch), AH0 (), x‖com ← AC(),

ch
$← {0, 1}`

ch

, H(x‖com) := ch, b← AH2 (ch)]

Then, by Theorem 15, ∣∣Plhs − Prhs

∣∣ ≤ (4 +
√

2)
√
qA2−k/4 =: µ1. (8)

Since k is superlogarithmic, and qA = qH + qP is polynomially bounded, we have that µ1 is
negligible.

With those definitions, we have that

Plhs = Pr[b = 1 : Game 3i+1] (9)

because x‖com ← AC(), ch := H(x‖com) together with the steps resp ← P 2,class
Σ (x,w, ch) and

π := com‖resp executed by AH2 compute what PFS would compute,17 hence the (i+ 1)-st query
is exactly what it would be in Game 3i+1.

And we have that
Prhs = Pr[b = 1 : Game 3i] (10)

because x‖com ← AC(), ch
$← {0, 1}`ch

, H(x‖com) := ch, together with the steps resp ←
P 2,class

Σ (x,w, ch) and π := com‖resp executed by AH2 compute what P ∗ would compute, hence
the i-st query is exactly what it would be in Game 3i.

From (8)–(10), we have (for all i and η):∣∣Pr[b = 1 : Game 3i+1]− Pr[b = 1 : Game 3i]
∣∣ ≤ µ1 (11)

Furthermore, we have that

Pr[b = 1 : Game 30] = Pr[b = 1 : Game 2]

and Pr[b = 1 : Game 3qP] = Pr[b = 1 : Game 1]
(12)

17The case that AC() outputs η random bits when (x,w) /∈ R does not occur since A queries the prover only
with (x,w) ∈ R by Definition 6, and hence AH

0 only chooses x,w with (x,w) ∈ R.

25

by definition of the involved games. (For the second equality, we use that AH,P
′

makes at most
qP queries to P ′.)

Thus we have ∣∣Pr[b = 1 : Game 1]− Pr[b = 1 : Game 2]
∣∣

(12)
=
∣∣Pr[b = 1 : Game 3qP]− Pr[b = 1 : Game 30]

∣∣
≤
qP−1∑
i=0

∣∣Pr[b = 1 : Game 3i+1]− Pr[b = 1 : Game 3i]
∣∣

(11)

≤
qP−1∑
i=0

µ1 = qPµ1 =: µ2. (13)

Since µ1 is negligible and qP is polynomially bounded, µ2 is negligible.

Game 4 b← AH,P
∗∗

() with the following oracle P ∗∗:

P ∗∗(x,w) runs: com ← P 1
Σ(x,w), ch

$← {0, 1}`ch

, resp ← P 2
Σ(x,w, ch), if

VΣ(x, com, ch, resp) = 1 then H(x‖com) := ch. Then it returns π := com‖resp.

By assumption, Σ has completeness. Furthermore, A never queries (x,w) /∈ R from P ∗∗

(see Definition 6). Thus with overwhelming probability, VΣ(x, com, ch, resp) = 1 holds in each
query to P ∗∗. Thus with overwhelming probability, the condition VΣ(x, com, ch, resp) = 1 in the
if-statement is satisfied in each invocation of P ∗∗, and P ∗∗ performs the same steps as P ∗. Thus
for some negligible µ3 we have∣∣Pr[b = 1 : Game 2]− Pr[b = 1 : Game 4]

∣∣ ≤ µ3. (14)

Let SFS be as in Figure 1.

Game 5 b← AH,S
′
FS . (Here S′FS (x,w) runs SFS (x), analogous to S′ in Definition 6.)

By definition, P ∗∗(x,w) performs the following steps:

• com ← P 1
Σ(x,w), ch ← {0, 1}`ch

, resp ← P 2
Σ(x,w, ch), if VΣ(x, com, ch, resp) = 1 then

H(x‖com) := ch.
In constract, S′FS performs:
• (com, ch, resp)← SΣ(x), if VΣ(x, com, ch, resp) = 1 then H(x‖com) := ch.

By definition of honest-verifier zero-knowledge, (com, ch, resp) as chosen in the first item is
indistinguishable by a quantum-polynomial-time algorithm from (com, ch, resp) as chosen second
item, assuming (x,w) ∈ R. (And (x,w) ∈ R is guaranteed since by Definition 6, A only
queries (x,w) ∈ R from the prover/simulator.) A standard hybrid argument then shows that no
quantum-polynomial-time adversary can distinguish oracle access to P ∗∗ from oracle access to
S′FS . Hence ∣∣Pr[b = 1 : Game 4]− Pr[b = 1 : Game 5]

∣∣ ≤ µ4 (15)

for some negligible µ4.
Altogether, we have∣∣Pr[b = 1 : Game 1]− Pr[b = 1 : Game 5]

∣∣(13)–(15)≤ µ2 + µ3 + µ4.

Since µ2, µ3, and µ4 are negligible, so is µ2 + µ3 + µ4. Thus (1) from Definition 6 is negligible.
This shows that SFS is a simulator as required by Definition 6, thus Fiat-Shamir is zero-knowledge.
�

26

7.3 Soundness

Theorem 21 Assume that Σ has statistical soundness. Then the Fiat-Shamir proof system
(PFS , VFS) is sound.

(Concrete security bounds are given in Corollary 36.)
It may seem surprising that we need an information-theoretical property (statistical soundness

of Σ) to get a computational property (soundness of (PFS , VFS)). Might it not be sufficient to
assume that Σ has computational soundness (or the somewhat stronger, computational special
soundness)? Unfortunately, [ARU14] shows that (relative to certain oracles), there is a sigma-
protocol Σ with computational special soundness such that (PFS , VFS) is not sound. So, we
cannot expect Theorem 21 to hold assuming only computational special soundness, at least not
with a relativizing proof.18

The proof is based on the following observation: To produce a fake Fiat-Shamir proof, the
adversary needs to find an input (x, com) to the random oracle H such that ch := H(x‖com) is a
challenge for which there exists a valid response. We call such a challenge promising. (Additionally,
the adversary needs to also find that response, but we do not make use of that fact.) So, to
show that forging a proof is hard, we need to show that outputs of H that are promising are
hard to find. Since the sigma-protocol has statistical soundness, there cannot be too many
promising challenges (otherwise, an unlimited adversary would receive a promising challenge
with non-negligible probability, compute the corresponding response, and break the statistical
soundness of the sigma-protocol). By reduction to existing bounds on the quantum hardness of
search in a random function, we then show that finding a promising challenge in H is hard.

Proof of Theorem 21. In this proof, we will in most places omit the security parameter η
for readability. (E.g., we write `ch instead of `ch

η and SΣ(x) instead of SΣ(η, x).) It is to be
understood that this is merely a syntactic omission, the variables and algorithms still depend
on η.

Let x ∈ {0, 1}`x , com ∈ {0, 1}com . We call a ch ∈ {0, 1}`ch

promising for (x, com) iff there
exists a resp ∈ {0, 1}`resp

such that VΣ(x, com, ch, resp) = 1.

Claim 1 There is a negligible µ such that for any x ∈ {0, 1}`x \ LR and any com ∈ {0, 1}`com

,

there exist at most µ2`
ch

promising ch.

Since Σ has statistical soundness, by definition (Definition 4) there exists a negligible function µ
such that for all x /∈ LR, all com ∈ {0, 1}`com

, and all A, we have:

Pr[VΣ(x, com, ch, resp) = 1 : ch
$← {0, 1}`

ch

, resp ← A(x, com, ch)] ≤ µ. (16)

Let A be the adversary that, given (x, com, ch) outputs some resp with VΣ(x, com, ch, resp) = 1
if it exists, and an arbitrary output otherwise. That is, whenever ch is promising for (x, com),
A outputs resp such that VΣ(x, com, ch, resp) = 1. For any x, com, let promx,com denote the

number of promising ch. Then for all x /∈ LR and all com ∈ {0, 1}`com

, we have

promx,com = 2`
ch

Pr[ch is promising for (x, com) : ch
$← {0, 1}`

ch

]

≤ 2`
ch

Pr[VΣ(x, com, ch, resp) = 1 : ch
$← {0, 1}`

ch

, resp ← A(x, com, ch)]
(16)

≤ 2`
ch

µ.

18[ARU14] leaves the possibility of a relativizing proof that Fiat-Shamir is secure if Σ has perfectly unique
responses and computational special soundness, though. But then we have another information-theoretical
assumption, namely perfectly unique responses.

27

This shows the claim.
We now define an auxiliary distribution D on functions f : {0, 1}`x+`com → {0, 1}`ch

as follows:
For each x, com, let f(x‖com) be an independently chosen uniformly random promising ch. If

no promising ch exists for (x, com), f(x‖com) := 0`
ch

.
Let A be a quantum-polynomial-time adversary that breaks the soundness of Fiat-Shamir.

That is, δ is non-negligible where

δ := Pr[okV = 1 ∧ x /∈ LR : (x, com‖resp)← AH(), okV ← V HFS (x, com‖resp)].

By definition of VFS , we have that okV = 1 implies that VΣ(x, com, ch, resp) = 1 where ch :=
H(x‖com). In particular, ch = H(x‖com) is promising for (x, com). Thus, if okV = 1 ∧ x /∈ LR
then f(x‖com) = H(x‖com) with probability at least 1/(µ2`

ch

) for f ← D. Hence

Pr[f(x‖com) = H(x‖com) : (x, com‖resp)← AH()] ≥ δ

µ2`ch (17)

for uniformly random H.
Let BH() perform the following steps: It defines H ′(x‖com) := H(x‖com) ⊕ f(x‖com). It

invokes (x, com‖resp)← AH
′
(). It returns x‖com.

Let q be a polynomial upper bound for the number of queries performed by A. Although B
may not be quantum-polynomial-time (f may not be efficiently computable), B performs only q
queries since each query to H ′ can be implemented using one query to H.19

If H is uniformly random, then H ′ is uniformly random. Thus by (17), H ′(x‖com) = f(x‖com)

with probability ≥ 2−`
ch

δ/µ. Thus H(x‖com) = 0`
ch

with probability ≥ 2−`
ch

δ/µ. In other words,

B finds a zero-preimage of H with probability ≥ 2−`
ch

δ/µ. By Lemma 16, this implies that

2−`
ch

δ/µ ≤ 32 · 2−`ch · (q+ 1)2. Hence δ ≤ 32µ · (q+ 1)2. Since q is polynomially bounded (as A is
quantum-polynomial-time) and µ is negligible, we have that δ is negligible.

Since this holds for all quantum-polynomial-time A, it follows that (PFS , VFS) is sound. �

7.4 Simulation-soundness

We give two theorems on simulation-soundness, depending on whether the sigma-protocol has
unique responses or not.

Theorem 22 (Fiat-Shamir is weakly simulation-sound) Assume that Σ has statistical
soundness.

Then the Fiat-Shamir proof system (PFS , VFS) is weakly simulation-sound with respect to the
simulator SFS from Figure 1.

(Concrete security bounds are given in Corollary 37.)

Proof. In this proof, we will in most places omit the security parameter η for readability. (E.g.,
we write `ch instead of `ch

η and SΣ(x) instead of SΣ(η, x).) It is to be understood that this is
merely a syntactic omission, the variables and algorithms still depend on η. For brevity, we will
also omit the choosing of the random oracle H from all games. That is, every game implicitly

starts with H
$← Fun(`in , `out).

Fix a quantum-polynomial-time adversary A. Let qH and qP denote polynomial upper bounds
on the number of queries performed by A to the random oracle H and the prover/simulator,

19To implement the unitary UH′ : |a‖b〉 7→ |a‖(b ⊕H′(a))〉, B first invokes UH : |a‖b〉 7→ |a‖(b ⊕H(a))〉 by
using the oracle H, and then Uf : |a‖b〉 7→ |a‖(b⊕ f(a))〉 which B implements on its own.

28

respectively. We need to show that (3) holds with V := VFS and S := SFS for some negligible µ.
For this, we transform the game from (3) using a sequence of games until we reach a game where
the adversary has a negligible success probability. The following game encodes the game from (3):
(We write com‖resp instead of π to be able to explicitly refer to the two components of π.)

Game 1 (Real world) x‖com‖resp ← AH,SFS (). okV ← V
Hfinal

FS (x, com‖resp). win :=
(
okV =

1 ∧ x /∈ LR ∧ x /∈ S-queries
)
.

Here we use H to refer to the initial value of the random oracle H, and Hfinal to the value
of H after it has been reprogrammed by SFS . (See Definition 8.)

We now show that in Game 1, we have

V
Hfinal

FS (x, com‖resp) = 1 ∧ x /∈ S-queries =⇒ V HFS (x, com‖resp) = 1. (18)

Assume for contradiction that (18) does not hold, i.e., that V
Hfinal

FS (x, com‖resp) = 1 and x /∈
S-queries, but V HFS (x, com‖resp) = 0 in some execution of Game 1. Since V HFS queries H only for
input x‖com, this implies that Hfinal(x‖com) 6= H(x‖com). Since H is only reprogrammed by
invocations of SFS , H(x‖com) must have been reprogrammed by SFS . Consider the last query to
SFS that programmed H(x‖com) (in case there are several). By construction of SFS , that query
had input x, in contradiction to x /∈ S-queries. Thus our assumption that (18) does not hold was
false. Thus (18) follows.

We now consider a variant of Game 1 where the verifier in the end gets access to H instead
of Hfinal . (That is, we can think of H being reset to its original state without the simulator’s
changes.)

(In this and the following games, we will not need to refer to com and resp individually any
more, so we just write π instead of com‖resp.)

Game 2 (Unchanged H) x‖π ← AH,SFS (). okV ← V HFS (x, π). win :=
(
okV = 1∧x /∈ LR∧x /∈

S-queries
)
.

By (18), we get
Pr[win : Game 2] ≥ Pr[win : Game 1]. (19)

Furthermore, we have

Pr[okV = 1 ∧ x /∈ LR : Game 2] ≥ Pr[win : Game 2].

We define an oracle algorithm B. When invoked as BH(SA), it simulates an execution of
AH,SFS (SA). Note that SFS can program the random oracle H. In order to simulate this, BH

keeps track of the assignments assS made by SFS , and then provides A with the oracle H(assS)
(i.e., H reprogrammed according to the assignment-list assS) instead of H. Then BH(SA) will
have the same distribution of outputs as AH,SFS (SA). (But of course, any reprogramming of H
performed by the SFS simulated by B will not have any effect beyond the execution of B. That
is, the function H before and after the invocation of BH will be the same.)

By construction of B (and because VFS gets access to H and not Hfinal in (19)), we then have

Pr[win : Game 3] = Pr[okV = 1 ∧ x /∈ LR : Game 2].

Game 3 (Adversary B) x‖π ← BH(). okV ← V HFS (x, π). win :=
(
okV = 1 ∧ x /∈

LR ∧ x /∈ S-queries
)
.

29

By Theorem 21, (PFS , VFS) is sound. Furthermore, since A and SFS are quantum-polynomial-
time, B is quantum-polynomial-time. Thus by definition of soundness (Definition 7), there is a
negligible µ such that

Pr[win : Game 3] ≤ µ.

Combining the inequalities from this proof, we get

Pr[win : Game 1] ≤ µ.

And µ is negligible. Since Game 1 is the game from the definition of weak simulation soundness
(Definition 8) for (PFS , VFS), and since A was an arbitrarily quantum-polynomial-time oracle
algorithm, it follows that (PFS , VFS) is weakly simulation-sound. �

If we add another assumption about the sigma-protocol, we even can get strong simulation-
soundness:

Theorem 23 (Fiat-Shamir is strongly simulation-sound) Assume that Σ has statistical
soundness and unique responses.

Then the Fiat-Shamir proof system (PFS , VFS) is strongly simulation-sound with respect to
the simulator SFS from Figure 1.

(Concrete security bounds are given in Corollary 38.)
Unique responses are necessary in this theorem. As pointed out in [FKMV12], if Σ does not

have unique responses, it cannot be strongly simulation-sound, even in the classical case. Namely,
if we do not require unique responses, it could be that whenever (com, ch, resp‖0) is a valid proof
in Σ, so is (com, ch, resp‖1), and vice versa. Thus any valid Fiat-Shamir proof com‖(resp‖0)
could be efficiently transformed into another valid Fiat-Shamir proof com‖(resp‖1) for the same
statement. This would contradict the strong simulation-soundness of (PFS , VFS).

Proof. In this proof, we will in most places omit the security parameter η for readability. (E.g.,
we write `ch instead of `ch

η and SΣ(x) instead of SΣ(η, x).) It is to be understood that this is
merely a syntactic omission, the variables and algorithms still depend on η. For brevity, we will
also omit the choosing of the random oracle H from all games. That is, every game implicitly

starts with H
$← Fun(`in , `out).

Fix a quantum-polynomial-time adversary A. Let qH and qP denote polynomial upper bounds
on the number of queries performed by A to the random oracle H and the prover/simulator,
respectively. We need to show that (2) holds with V := VFS and S := SFS for some negligible µ.
For this, we transform the game from (2) using a sequence of games until we reach a game where
the adversary has a negligible success probability. The following game encodes the game from (2):
(We write com‖resp instead of π to be able to explicitly refer to the two components of π.)

Game 1 (Real world) x‖com‖resp ← AH,SFS (). okV ← V
Hfinal

FS (x, com‖resp). win :=
(
okV =

1 ∧ x /∈ LR ∧ (x, com‖resp) /∈ S-queries
)
.

Here we use H to refer to the initial value of the random oracle H, and Hfinal to the value
of H after it has been reprogrammed by SFS . (See Definition 8.)

We define a variant of the random variable S-queries. Let S-queries∗ be the list of all SFS -
queries (x′, com ′‖resp′, ch ′) where x′ was the input to SFS , com ′‖resp′ was the response of SFS ,
and ch ′ was the value of H(x′‖com ′) right after the query to SFS . (Note that H(x′‖com ′) may
change later due to reprogramming.) Notice that the only difference between S-queries and
S-queries∗ is that in the latter, we additionally track the values ch ′ = H(x′‖com ′).

30

Let RespConflict denote the event that VΣ(x, com,Hfinal(x‖com), resp) = 1 and that there is
a query (x′, com ′‖resp′, ch ′) ∈ S-queries∗ with x′ = x, com ′ = com, ch ′ = Hfinal(x‖com), and
resp′ 6= resp and VΣ(x, com ′, ch ′, resp′) = 1.

Since Σ has unique responses, it follows that

Pr[RespConflict : Game 1] ≤ µ′

for some negligible µ′. (Otherwise, we could construct an adversary that simulates Game 1, and
then searches for (x, com‖resp′, ch) ∈ S-queries with VΣ(x, com, ch, resp′) = 1 and resp′ 6= resp.)

Thus ∣∣∣Pr[win : Game 1]− Pr[win ∧ ¬RespConflict : Game 1]
∣∣∣ = µ′.

We now show that in Game 1, we have

V
Hfinal

FS (x, com‖resp) = 1 ∧ (x, com‖resp) /∈ S-queries ∧ ¬RespConflict

=⇒ V HFS (x, com‖resp) = 1. (20)

Assume for contradiction that (20) does not hold, i.e., that V
Hfinal

FS (x, com‖resp) = 1 and
(x, com‖resp) /∈ S-queries and ¬RespConflict, but V HFS (x, com‖resp) = 0 in some execution of
Game 1. Since V HFS queries H only for input x‖com, this implies that Hfinal (x‖com) 6= H(x‖com).
Since H is only reprogrammed by invocations of SFS , H(x‖com) must have been reprogrammed
by SFS . Consider the last query to SFS that programmed H(x‖com) (in case there are several).
By construction of SFS , that query had input x, and returns (com, resp′) for some resp′. In
particular, (x, com‖resp′) ∈ S-queries. Let ch be the challenge chosen by SFS in that query. Then
(x, com‖resp′, ch) ∈ S-queries∗. By construction of SFS , we have VΣ(x, com, ch, resp′) = 1 (else
H would not have been reprogrammed in that query) and Hfinal(x‖com) = ch (because we are
considering the last SFS -query that programmed H(x‖com)). Since (x, com‖resp) /∈ S-queries

and (x, com‖resp′) ∈ S-queries, we have resp 6= resp′. Since V
Hfinal

FS (x, com‖resp) = 1 and
ch = Hfinal(x‖com), we have that VΣ(x, com, ch, resp) = 1 by definition of VFS . Summarizing,
we have VΣ(x, com, ch, resp) = 1 and ch = Hfinal(x‖com) and VΣ(x, com, ch, resp′) = 1 and
(x, com‖resp′, ch) ∈ S-queries∗ and resp 6= resp′. By definition of RespConflict, this contradicts
¬RespConflict. Thus our assumption that (20) does not hold was false. Thus (20) follows.

We now consider a variant of Game 1 where the verifier in the end gets access to H instead
of Hfinal . (That is, we can think of H being reset to its original state without the simulator’s
changes.)

(In this and the following games, we will not need to refer to com and resp individually any
more, so we just write π instead of com‖resp.)

Game 2 (Unchanged H) x‖π ← AH,SFS (). okV ← V HFS (x, π). win :=
(
okV = 1 ∧ x /∈

LR ∧ (x, π) /∈ S-queries
)
.

By (20), we get

Pr[win : Game 2] ≥ Pr[win ∧ ¬RespConflict : Game 1]. (21)

Furthermore, we have

Pr[okV = 1 ∧ x /∈ LR : Game 2] ≥ Pr[win : Game 2].

We define an oracle algorithm B. When invoked as BH(SA), it simulates an execution of
AH,SFS (SA). Note that SFS can program the random oracle H. In order to simulate this, BH

31

keeps track of the assignments assS made by SFS , and then provides A with the oracle H(assS)
(i.e., H reprogrammed according to the assignment-list assS) instead of H. Then BH(SA) will
have the same distribution of outputs as AH,SFS (SA). (But of course, any reprogramming of H
performed by the SFS simulated by B will not have any effect beyond the execution of B. That
is, the function H before and after the invocation of BH will be the same.)

By construction of B (and because VFS gets access to H and not Hfinal in (21)), we then have

Pr[win : Game 3] = Pr[okV = 1 ∧ x /∈ LR : Game 2].

Game 3 (Adversary B) x‖π ← BH(). okV ← V HFS (x, π). win :=
(
okV = 1 ∧ x /∈

LR ∧ (x, π) /∈ S-queries
)
.

By Theorem 21, (PFS , VFS) is sound. Furthermore, since A and SFS are quantum-polynomial-
time, B is quantum-polynomial-time. Thus by definition of soundness (Definition 7), there is a
negligible µ such that

Pr[win : Game 3] ≤ µ.

Combining the inequalities from this proof, we get

Pr[win : Game 1] ≤ µ+ µ′.

And µ+ µ′ is negligible. Since Game 1 is the game from Definition 8 for (PFS , VFS), and since
A was an arbitrarily quantum-polynomial-time oracle algorithm, it follows that (PFS , VFS) is
strongly simulation-sound. �

7.5 Simulation-sound extractability

Theorem 24 (Fiat-Shamir is (conditionally) weakly simulation-sound extractable)
Assume that the Fiat-Shamir proof system (PFS , VFS) based on Σ is extractable.

Then the Fiat-Shamir proof system (PFS , VFS) is weakly simulation-sound extractable with
respect to the simulator SFS from Figure 1.

Proof. In this proof, we will in most places omit the security parameter η for readability. (E.g.,
we write `ch instead of `ch

η and SΣ(x) instead of SΣ(η, x).) It is to be understood that this is
merely a syntactic omission, the variables and algorithms still depend on η. For brevity, we will
also omit the choosing of the random oracle H from all games. That is, every game implicitly

starts with H
$← Fun(`in , `out).

Fix a quantum-polynomial-time adversary A, and a density operator ρ. Let qH and qP denote
polynomial upper bounds on the number of queries performed by A to the random oracle H
and the prover/simulator, respectively. We need to show that (6) holds with V := VFS and
S := SFS for some constant d > 0, some polynomials p, `, and some negligible µ, and for some
quantum-polynomial-time E (where ` is independent of Π, and E is independent of Π, A). For
this, we transform the game Prove from (6) into the game Extract from (6) using a sequence of
games. The following game encodes the game Prove: (We write com‖resp instead of π to be
able to explicitly refer to the two components of π.)

Game 1 (Real world) SA ← ρ. x‖com‖resp ← AH,SFS (SA). okV ← V
Hfinal

FS (x, com‖resp).

okA ← Π
Hfinal

x‖com‖resp(SA). win :=
(
okV = 1 ∧ okA = 1 ∧ x /∈ S-queries

)
.

32

Here we use H to refer to the initial value of the random oracle H, and Hfinal to the value
of H after it has been reprogrammed by SFS . (See Definition 14.)

We now show that in Game 1, we have

V
Hfinal

FS (x, com‖resp) = 1 ∧ x /∈ S-queries =⇒ V HFS (x, com‖resp) = 1. (22)

Assume for contradiction that (22) does not hold, i.e., that V
Hfinal

FS (x, com‖resp) = 1 and x /∈
S-queries, but V HFS (x, com‖resp) = 0 in some execution of Game 1. Since V HFS queries H only for
input x‖com, this implies that Hfinal(x‖com) 6= H(x‖com). Since H is only reprogrammed by
invocations of SFS , H(x‖com) must have been reprogrammed by SFS . Consider the last query to
SFS that programmed H(x‖com) (in case there are several). By construction of SFS , that query
had input x, in contradiction to x /∈ S-queries. Thus our assumption that (22) does not hold was
false. Thus (22) follows.

We now consider a variant of Game 1 where the verifier in the end gets access to H instead
of Hfinal . (That is, we can think of H being reset to its original state without the simulator’s
changes.)

(In this and the following games, we will not need to refer to com and resp individually any
more, so we just write π instead of com‖resp.)

Game 2 (Unchanged H) SA ← ρ. x‖π ← AH,SFS (SA). okV ← V HFS (x, π). okA ← Π
Hfinal

x‖π (SA).

win :=
(
okV = 1 ∧ okA = 1 ∧ x /∈ S-queries

)
.

By (22), we get
Pr[win : Game 2] ≥ Pr[win : Game 1]. (23)

Furthermore, we have

Pr[okV = okA = 1 : Game 2] ≥ Pr[win : Game 2]. (24)

Let assS denote the assignments performed by SFS to H. (These can be obtained by keeping
a log of the classical computations performed by SFS .) Note that Hfinal = H(assS).

Let `ass be a polynomial upper bound on the length of assS (encoded as a bitstring). Such
`ass exists since A performs only polynomially many queries and SFS programs the random oracle
at only one location upon each query.

Let T be an `ass qubit register. For given H, let Π̃H be the projective measurement that does

the following: If T contains |ass〉, then Π̃H
x‖π measures SA using Π

H(ass)
x‖π . (Recall that H(ass)

denotes the function H, updated according to the assignment ass.) Formally: Let ΠH,b
x‖π denote

the projector corresponding to outcome b ∈ {0, 1} of the measurement ΠH
x‖π. Then Π̃H,b

x‖π is the

projector on SA, T defined by:

Π̃H,b
x‖π =

∑
ass∈{0,1}`ass

Π
H(ass),b
x‖π ⊗ |ass〉〈ass|T .

And Π̃H
x‖π is the projective measurement on SA, T defined by the projectors Π̃H,0

x‖π, Π̃
H,1
x‖π. (If ass

is not a valid encoding of an assignment, then we interpret it as the empty assignment. I.e.,
H(ass) = H in that case.)

Note that if we initialize T ← |assS〉, then okA ← Π̃H
x‖π(SA, T) is equivalent to okA ←

Π
H(assS)
x‖π (SA). And okA ← Π

H(assS)
x‖π (SA) is the same as okA ← Π

Hfinal

x‖π (SA) by definition of Hfinal

and assS .
Thus we can rewrite Game 2 as follows:

33

Game 3 SA ← ρ. x‖π ← AH,SFS (SA). T ← |assS〉. okV ← V HFS (x, π). okA ← Π̃H
x‖π(SA, T).

win :=
(
okV = 1 ∧ okA = 1 ∧ (x, π) /∈ S-queries

)
.

We then have
Pr[okV = okA = 1 : Game 2] = Pr[win = 1 : Game 3]. (25)

We define a pure oracle circuit B. This oracle circuit takes an oracle H, and operates on
quantum registers SA, T , and performs the following steps: It maintains an assignment-list assS
that tracks where the random oracle has been reprogrammed. It then executes the oracle circuit A
on register SA. Whenever A performs a query to SFS , B simulates the behavior of SFS , and when
SFS programs the random oracle as H(x‖com) := ch, then B appends (x‖com := ch) to assS .
When A performs a query to H, B instead invokes H(assS). After executing A, B initializes
T ← |assS〉. The final state of B is then in the registers SA, T .

Note that all of this can be done using only unitary operations (i.e., B is a pure oracle
circuit, using a sufficiently large number of auxiliary qubits). Furthermore, given shapeA and a
description of UA (the unitary implemented by A), one can compute shapeB and the description
of UB . Thus B = Bη is a polynomial-time family of pure oracle circuits.

We then have
Pr[win = 1 : Game 4] = Pr[win = 1 : Game 3] (26)

using the following game:

Game 4 (Simulating SFS) SA, T ← ρ⊗ |0〉〈0|. x‖π ← BH(SA, T). okV ← V HFS (x, π). okA ←
Π̃H
x‖π(SA, T). win :=

(
okV = 1 ∧ okA = 1

)
.

By assumption, (PFS , VFS) is extractable. Game 4 is the game Prove from Definition 13
(with PFS , VFS , B, H, Π̃, and (SA, T) in Game 4 being P , V , A, H, Π, and SA in Prove). Thus
there is and extractor E0, a constant d > 0, a negligible function µ, a polynomial `0, and a
polynomial p (where E0, d are independent of B, Π̃, while `0 depends on B, and µ, p depend on
B, Π̃) such that

Pr[win = 1 : Game 5] ≥ 1
p Pr[win = 1 : Game 4]d − µ (27)

for the following game:

Game 5 (Extraction for B) SA, T ← ρ ⊗ |0〉〈0|. (x,w, π, assE) ←
E
Brew(SA,T),Π̃oracle,H,`0 (SA,T),H
0 (`0, shapeB), okA ← Π̃

H(assE)
x‖π (SA, T), win :=

(
(x,w) ∈

R ∧ okA = 1
)
.

Without loss of generality, we can assume d ≥ 1.
By definition of Π̃, we have that “okA ← Π̃f

x‖π(SA, T)” is equivalent to “assS ← M(T),

okA ← Π
f(assS)
x‖π (SA)” for any function f . (As long as the register T is not used afterwards.) Here

M is a measurement in the computational basis. In particular, this holds for f := H(assE), in
which case we have f(assS) = H(assE)(assS) = H(ass) for ass := assE‖assS .

Thus we can rewrite Game 5 as follows:

Game 6 SA ← ρ. T ← |0〉〈0|. (x,w, π, assE) ← E
Brew(SA,T),Π̃oracle,H,`0 (SA,T),H
0 (`0, shapeB),

assS ←M(T). ass := assE‖assS. okA ← Π
H(ass)
x‖π (SA), win :=

(
(x,w) ∈ R ∧ okA = 1

)
.

And we have
Pr[win = 1 : Game 6] = Pr[win = 1 : Game 5] (28)

Let `1 be a polynomial upper bounds the length of assS . (Such a bound exists, since E0 is
polynomial-time.) Let ` := `0 + `1. (Then ` is independent of Π, and `1 depends only on E0.)

34

Let E be a quantum algorithm that, given oracle access to Arew(SA) and
Πoracle,H,`(SA) and input `, executes the steps “T ← |0〉〈0|. (x,w, π, assE) ←
E
Brew(SA,T),Π̃oracle,H,`0 (SA,T),H
0 (`0, shapeB), assS ←M(T). ass := assE‖assS .” from the above

game and returns (x,w, π, ass). (Here E can compute `0 = `− `1, so that E will only depend on
`1, and not on `0. Thus E depends on E0, but not on Π or A.)

Such an algorithm E exists because queries to Brew(SA, T) can be simulated using oracle
access to Arew(SA) (by construction of B), and queries to Π̃oracle,H,`0(SA, T) can be simulated
using oracle access to Πoracle,H,`(SA) (by construction of Π̃ and since ` = `0 + `1 and since T
contains at most `1 assignments). Note also that E is polynomial-time since E0 is.

Then we have
Pr[win : Game 6] = Pr[win : Game 7] (29)

for the following game:

Game 7 (Extraction) SA ← ρ. (x,w, π, ass)← EA
rew(SA),Πoracle,H,`(SA),H(`, shapeA), okA ←

Π
H(ass)
x‖π (SA), win :=

(
(x,w) ∈ R ∧ okA = 1

)
.

And we have

Pr[win : Game 7]
(29),(28)

= Pr[win : Game 5]
(27)

≥ 1
p Pr[win = 1 : Game 4]d − µ

(26),(25)

≥ 1
p Pr[okV = okA = 1 : Game 2]d − µ (30)

(26),(24)

≥ 1
p Pr[win = 1 : Game 1]d − µ

Since Game 7 is the game Extract from (6) in Definition 14, and Game 1 is the game Prove
from (6), and since p is polynomially-bounded and µ is negligible, this shows that (PFS , VFS) is
weakly simulation-sound extractable. �

If we add the assumption that Σ has unique responses, we even get strong simulation-sound
extractability (instead of weak simulation-sound extractability):

Theorem 25 (Fiat-Shamir is (conditionally) strongly simulation-sound extractable)
Assume that Σ has unique responses. Assume that the Fiat-Shamir proof system (PFS , VFS) based
on Σ is extractable.

Then the Fiat-Shamir proof system (PFS , VFS) is strongly simulation-sound extractable with
respect to the simulator SFS from Figure 1.

Proof. In this proof, we will in most places omit the security parameter η for readability. (E.g.,
we write `ch instead of `ch

η and SΣ(x) instead of SΣ(η, x).) It is to be understood that this is
merely a syntactic omission, the variables and algorithms still depend on η. For brevity, we will
also omit the choosing of the random oracle H from all games. That is, every game implicitly

starts with H
$← Fun(`in , `out).

Fix a quantum-polynomial-time adversary A, and a density operator ρ. Let qH and qP denote
polynomial upper bounds on the number of queries performed by A to the random oracle H
and the prover/simulator, respectively. We need to show that (5) holds with V := VFS and
S := SFS for some constant d > 0, some polynomials p, `, and some negligible µ, and for some
quantum-polynomial-time E (where ` is independent of Π, and E is independent of Π, A). For
this, we transform the game Prove from (5) into the game Extract from (5) using a sequence of
games. The following game encodes the game Prove: (We write com‖resp instead of π to be
able to explicitly refer to the two components of π.)

35

Game 1 (Real world) SA ← ρ. x‖com‖resp ← AH,SFS (SA). okV ← V
Hfinal

FS (x, com‖resp).

okA ← Π
Hfinal

x‖com‖resp(SA). win :=
(
okV = 1 ∧ okA = 1 ∧ (x, com‖resp) /∈ S-queries

)
.

Here we use H to refer to the initial value of the random oracle H, and Hfinal to the value
of H after it has been reprogrammed by SFS . (See Definition 14.)

We define a variant of the random variable S-queries. Let S-queries∗ be the list of all SFS -
queries (x′, com ′‖resp′, ch ′) where x′ was the input to SFS , com ′‖resp′ was the response of SFS ,
and ch ′ was the value of H(x′‖com ′) right after the query to SFS . (Note that H(x′‖com ′) may
change later due to reprogramming.) Notice that the only difference between S-queries and
S-queries∗ is that in the latter, we additionally track the values ch ′ = H(x′‖com ′).

Let RespConflict denote the event that VΣ(x, com,Hfinal(x‖com), resp) = 1 and that there is
a query (x′, com ′‖resp′, ch ′) ∈ S-queries∗ with x′ = x, com ′ = com, ch ′ = Hfinal(x‖com), and
resp′ 6= resp and VΣ(x, com, ch ′, resp′) = 1.

Since Σ has unique responses, it follows that

Pr[RespConflict : Game 1] ≤ µ′

for some negligible µ′. (Otherwise, we could construct an adversary that simulates Game 1, and
then searches for (x, com‖resp′, ch) ∈ S-queries with VΣ(x, com, ch, resp′) = 1 and resp′ 6= resp.)

Thus ∣∣∣Pr[win : Game 1]− Pr[win ∧ ¬RespConflict : Game 1]
∣∣∣ ≤ µ′. (31)

We now show that in Game 1, we have

V
Hfinal

FS (x, com‖resp) = 1 ∧ (x, com‖resp) /∈ S-queries ∧ ¬RespConflict

=⇒ V HFS (x, com‖resp) = 1. (32)

Assume for contradiction that (32) does not hold, i.e., that V
Hfinal

FS (x, com‖resp) = 1 and
(x, com‖resp) /∈ S-queries and ¬RespConflict, but V HFS (x, com‖resp) = 0 in some execution of
Game 1. Since V HFS queries H only for input x‖com, this implies that Hfinal (x‖com) 6= H(x‖com).
Since H is only reprogrammed by invocations of SFS , H(x‖com) must have been reprogrammed
by SFS . Consider the last query to SFS that programmed H(x‖com) (in case there are several).
By construction of SFS , that query had input x, and returns (com, resp′) for some resp′. In
particular, (x, com‖resp′) ∈ S-queries. Let ch be the challenge chosen by SFS in that query. Then
(x, com‖resp′, ch) ∈ S-queries∗. By construction of SFS , we have VΣ(x, com, ch, resp′) = 1 (else
H would not have been reprogrammed in that query) and Hfinal(x‖com) = ch (because we are
considering the last SFS -query that programmed H(x‖com)). Since (x, com‖resp) /∈ S-queries

and (x, com‖resp′) ∈ S-queries, we have resp 6= resp′. Since V
Hfinal

FS (x, com‖resp) = 1 and
ch = Hfinal(x‖com), we have that VΣ(x, com, ch, resp) = 1 by definition of VFS . Summarizing,
we have VΣ(x, com, ch, resp) = 1 and ch = Hfinal(x‖com) and VΣ(x, com, ch, resp′) = 1 and
(x, com‖resp′, ch) ∈ S-queries∗ and resp 6= resp′. By definition of RespConflict, this contradicts
¬RespConflict. Thus our assumption that (32) does not hold was false. Thus (32) follows.

We now consider a variant of Game 1 where the verifier in the end gets access to H instead
of Hfinal . (That is, we can think of H being reset to its original state without the simulator’s
changes.)

(In this and the following games, we will not need to refer to com and resp individually any
more, so we just write π instead of com‖resp.)

Game 2 (Unchanged H) SA ← ρ. x‖π ← AH,SFS (SA). okV ← V HFS (x, π). okA ← Π
Hfinal

x‖π (SA).

win :=
(
okV = 1 ∧ okA = 1 ∧ (x, π) /∈ S-queries

)
.

36

By (32), we get

Pr[win : Game 2] ≥ Pr[win ∧ ¬RespConflict : Game 1]. (33)

Furthermore, we have

Pr[okV = okA = 1 : Game 2] ≥ Pr[win : Game 2]. (34)

Consider the following game:

Game 3 (Extraction) SA ← ρ. (x,w, π, ass)← EA
rew(SA),Πoracle,H,`(SA),H(`, shapeA), okA ←

Π
H(ass)
x‖π (SA), win :=

(
(x,w) ∈ R ∧ okA = 1

)
.

Note that Game 2 is the same as Game 2 from the proof of Theorem 24 (except for the definition
of win). And Game 3 is the same as Game 7 from the proof of Theorem 24. Thus, exactly as in
the proof of Theorem 24, we get (see (30) there),

Pr[win : Game 3] ≥ 1
p Pr[okV = okA = 1 : Game 2]d − µ

for constant d > 0, polynomially bounded p, and negligible µ.
Thus we have

Pr[win : Game 3] ≥ 1
p Pr[okV = okA = 1 : Game 2]d − µ

(34),(33)

≥ 1
p Pr[win = 1 ∧ ¬RespConflict : Game 1]d − µ

(31)

≥ 1
p

(
Pr[win = 1 : Game 1]− µ′

)d − µ
(∗)

≥ 1
p

(
Pr[win = 1 : Game 1]d − µ′

)
− µ

= 1
p Pr[win = 1 : Game 1]d − µ′′ for µ′′ := µ′/p+ µ.

Here (∗) holds whenever µ ≤ Pr[win = 1 : Game 1], because xd has a derivative smaller than 1
for x ∈ [0, 1]. (And whenever µ > Pr[win = 1 : Game 1], we trivially have Pr[win : Game 3] ≥
1
p Pr[win = 1 : Game 1]d − µ′′.)

Since Game 3 is the game Extract from Definition 14, and Game 1 is the game Prove from
Definition 14, and since p is polynomially-bounded and µ′′ is negligible, this shows that (PFS , VFS)
is strongly simulation-sound extractable. �

8 Signatures

Originally, Fiat-Shamir was constructed as a signature scheme [FS87]. Only later, [BR93] used the
same idea to construct a non-interactive zero-knowledge proof. The fact that Fiat-Shamir gives
rise to a secure signature scheme can be seen as a special case of its properties as a proof system.
Namely, any non-interactive zero-knowledge proof system with simulation-sound extractability
can be used as a signature scheme. In the quantum setting, [Unr15] showed that their construction
of simulation-sound extractable non-interactive proofs gives rise to a signature scheme in the same
way. In this section, we show that this is also the case for our definition of simulation-sound
extractability. (This is a non-trivial generalization, since their definition assumed online-extractors
and is thus much stronger than ours.) This proof can be seen as a sanity check for our definition of
simulation-sound extractability (i.e., that our definition is not accidentally too weak). (Sometimes

37

a definition is perfectly reasonable in the classical setting while its natural quantum counterpart
is almost useless. An example is the classical definition of “computationally binding commitments”
which was shown to imply almost no security in the quantum setting [ARU14].)

However, this result does not imply that Fiat-Shamir gives rise to a secure signature scheme
because we are not able to prove that Fiat-Shamir is extractable. For analyzing Fiat-Shamir, we
present a second result that shows under which conditions a simulation-sound zero-knowledge
non-interactive proof system gives rise to a signature scheme. Combined with our results from
Section 7, this implies security for Fiat-Shamir based signatures.

The basic idea of the construction of signatures from non-interactive proof systems (e.g.,
Fiat-Shamir) is the following: To sign a message m, one needs to show the knowledge of one’s
secret key. Thus, we need a relation Rη between public and secret keys, and we need an algorithm
G to generate public/secret key pairs such that it is hard to guess the secret key (a “hard
instance generator”). We will formalize two different variants of hard instance generators below
(Definitions 28 and 29).

An example of a hard instance generator would be: Rη := {(x,w) : |w| = η ∧ x = f(w)} for
some quantum-one-way function f , and G picks w uniformly from {0, 1}η, sets x := f(w), and
returns (x,w).

Now a signature is just a proof of knowledge of the secret key. That is, the statement is
the public key, and the witness is the secret key. However, a signature should be bound to a
particular message. For this, we include the message m in the statement that is proven. That is,
the statement that is proven consists of a public key and a message, but the message is ignored
when determining whether a given statement has a witness or not. (In the definition below, this is
formalized by considering an extended relation R′.) The simulation-soundness of the proof system
will then guarantee that a proof/signature with respect to one message cannot be transformed
into a proof/signature with respect to another message because this would mean changing the
statement.

A signature scheme consists of three oracle algorithms: Keys are generated with (pk , sk)←
KeyGenH(1η). The secret key sk is used to sign a message m using the signing algo-
rithm σ ← SignH(1η, sk ,m) to get a signature σ. And the signature is considered valid iff
VerifyH(1η, pk , σ,m) = 1.

An instance generator for a relation Rη is an algorithm G such that G(1η) outputs (x,w) ∈ Rη
with overwhelming probability.

We now describe how to use a simulation-sound zero-knowledge protocol (e.g., Fiat-Shamir)
to construct a signature scheme:

Definition 26 (Signatures from non-interactive proofs) Let G be an instance generator
for a relation Rη. Fix a length `mη . Let R′η := {(x‖m,w) : |m| = `mη ∧ (x,w) ∈ Rη}. Let (P, V)
be a non-interactive proof system for R′η (in the random oracle model). Then we construct the

signature scheme (KeyGen,Sign,Verify) with message space {0, 1}`
m
η as follows:

• KeyGenH(1η): Pick (x,w)← G(1η). Let pk := x, sk := (x,w). Return (pk , sk).
• SignH(1η, sk ,m) with sk = (x,w): Run σ ← PH(1η, x‖m,w). Return σ.
• VerifyH(1η, pk , σ,m) with pk = x: Run ok ← V H(1η, x‖m,σ). Return ok.

Note that we use a proof system for the relation R′η instead of Rη. However, in most cases
(including Fiat-Shamir) it is trivial to construct a proof system for R′η given one for Rη. This is
because any sigma-protocol for Rη is also a sigma-protocol for R′η.20 The only reason why we
need to use R′η is that we want to include the message m inside the statement (without logical

20This is made formal by the construction of Σ′ in the proof of Corollary 33.

38

significance), and R′η allows us to do precisely that. (In the case of Fiat-Shamir, the overall effect
will simply be to include m in the hash, see Definition 32.)

The security property we will prove is unforgeability. Unforgeability comes in two variants:
weak unforgeability that ensures that the adversary cannot forge a signature for a message that
has not been signed before, and strong unforgeability that additionally ensures that the adversary
cannot even produce a different signature for a message that has been signed before. (Weak
unforgeability is often just called unforgeability.) The definitions are standard, we include them
here for completeness:

Definition 27 (Strong/weak unforgeability) A signature scheme (KeyGen,Sign,Verify) is
strongly unforgeable iff for all polynomial-time oracle algorithms A there exists a negligible µ
such that for all η, we have

Pr[ok = 1 ∧ (m∗, σ∗) /∈ Sig-queries : H ← Fun(`inη , `
out
η), (pk , sk)← KeyGenH(1η),

(σ∗,m∗)← AH,Sig(1η, pk), ok ← VerifyH(1η, pk , σ∗,m∗)] ≤ µ(η). (35)

Here Sig is a classical21 oracle that upon classical input m returns SignH(1η, sk ,m). (But
queries to H are quantum.) And Sig-queries is the list of all queries made to Sig. (I.e., when
Sig is queried with m and σ, (m,σ) is added to the list Sig-queries.) And `inη , `

out
η denote the

input/output length of the random oracle used by the signature scheme.
We call (KeyGen,Sign,Verify) weakly unforgeable if the above holds with the following instead

of (35), where Sig-queries contains only the query inputs made to Sig (i.e., m instead of (m,σ)):

Pr[ok = 1 ∧ m∗ /∈ Sig-queries : H ← Fun(`inη , `
out
η), (pk , sk)← KeyGenH(1η),

(σ∗,m∗)← AH,Sig(1η, pk), ok ← VerifyH(1η, pk , σ∗,m∗)] ≤ µ(η).

In the discussion above, we deferred the definition of hard instance generators. In fact, the
definition we have to use depends on the properties of the non-interactive proof system we have. If
the proof system has simulation-sound extractability, we can make use of a weaker property, “hard
instance generator”. But if the proof system has only simulation-soundness, we need a stronger
property, “dual-mode hard instance generator”. A hard instance generator outputs (x,w) ∈ R
such that it is hard to find a witness for x:

Definition 28 (Hard instance generators) We call an algorithm G a hard instance generator
for a fixed-length relation Rη iff
• G is quantum-polynomial-time, and
• there is a negligible µ such that for every η, Pr[(x,w) ∈ Rη : (x,w)← G(1η)] ≥ 1− µ(η),

and
• for any polynomial-time A, there is a negligible µ such that for every η, Pr[(x,w′) ∈ Rη :

(x,w)← G(1η), w′ ← A(1η, x)] ≤ µ(η).

As mentioned above, an example of a hard instance generator is: Let Rη := {(x,w) : |w| =
η ∧ x = f(w)} for some quantum-one-way function f , and G picks w uniformly from {0, 1}η, sets
x := f(w), and returns (x,w).

In contrast, a dual-mode hard instance generator requires more. While a hard instance
generator requires that is it hard to find a witness for x, a dual-mode hard instance generator
requires that it is hard to distinguish whether x even has a witness. In other words, we should not
be able to distinguish x as returned by G from x∗ as returned by an algorithm G∗ that returns
statements that do not have a witness (except with negligible probability). Formally:

21Formally, this means that Sig measures its input at the beginning of the each query.

39

Definition 29 (Dual-mode hard instance generators) We call an algorithm G a dual-
mode hard instance generator for a fixed-length relation Rη iff
• G is quantum-polynomial-time, and
• there is a negligible µ such that for every η, Pr[(x,w) ∈ Rη : (x,w)← G(1η)] ≥ 1− µ(η),

and
• for all quantum-polynomial-time algorithm A, there is a quantum-polynomial-time algorithm
G∗ and negligible µ1, µ2 such that for all η,∣∣∣Pr[b = 1 : (x,w)← G(1η), b← A(1η, x)]−Pr[b = 1 : x← G∗(1η), b← A(1η, x)]

∣∣∣ ≤ µ1(η).

and
Pr[x ∈ LR : x← G∗(1η)] ≤ µ2(η).

Note that we allow G∗ to depend on A. This is a slightly weaker requirement than requiring a
universal G∗. We chose the weaker variant because it is sufficient for our proof below.

An example of a dual-mode hard instance generator is: Let Rη := {(x,w) : |w| = η∧x = F (w)}
for some quantum pseudorandom generator F : {0, 1}η → {0, 1}2η, and G picks w uniformly from
{0, 1}η, sets x := F (w), and returns (x,w). The conditions from Definition 29 are satisfied for G∗

which returns x
$← {0, 1}2η.

With this definition, we can state the two main results of this section, namely the unforgeability
of signatures constructed from non-interactive zero-knowledge proof systems that are simulation-
sound and simulation-sound extractable, respectively:

Theorem 30 (Unforgeability from simulation-soundness) Fix a relation Rη. Let R′η be
defined as in Definition 26. If (P, V) is zero-knowledge and strongly simulation-sound (weakly
simulation-sound) for R′η, and G is a dual-mode hard instance generator for Rη, then the signature
scheme (KeyGen,Sign,Verify) from Definition 26 is strongly unforgeable (weakly unforgeable).

(Concrete security bounds are given in Corollary 39.)

Theorem 31 (Unforgeability from simulation-sound extractability) If (P, V) is zero-
knowledge and has strong simulation-sound extractability (weak simulation-sound extractability) for
R′η, and G is a hard instance generator for Rη, then the signature scheme (KeyGen,Sign,Verify)
from Definition 26 is strongly unforgeable (weakly unforgeable).

The theorems are proven in Section 8.1 and Section 8.2, respectively.

Fiat-Shamir. The two preceding theorems are formulated for generic simulation-sound (ex-
tractable) zero-knowledge proof systems. By specializing Theorem 30 to the case that (P, V) is
the Fiat-Shamir proof system, we get a signature scheme based on a dual-mode hard instance
generator and a zero-knowledge sigma-protocol with statistical soundness. The resulting signature
scheme is the following:

Definition 32 (Fiat-Shamir signatures) Let G be an instance generator for a relation Rη.
Fix a length `mη . Then we construct the signature scheme (KeyGen,Sign,Verify) with message

space {0, 1}`
m
η as follows:

• KeyGenH(1η): Pick (x,w)← G(1η). Let pk := x, sk := (x,w). Return (pk , sk).
• SignH(1η, sk ,m) with sk = (x,w): com ← P 1

Σ(1η, x, w). resp ← P 2
Σ(1η, x, w,H(x‖m‖com)).

Return σ := com‖resp.

40

• VerifyH(1η, pk , σ,m) with pk = x and σ = com‖resp: Run ok ←
VΣ(1η, x, com, H(x‖m‖com), resp). Return ok.

Corollary 33 (Fiat-Shamir signatures) Assume that Σ is honest-verifier zero-knowledge, has
completeness, has unpredictable commitments, and has statistical soundness for Rη, and that `ch

η

is superlogarithmic. Assume that G is a dual-mode hard instance generator for Rη.
Then the signature scheme (KeyGenFS ,SignFS ,VerifyFS) from Definition 32 is weakly un-

forgeable.
If Σ additionally has unique responses, the signature scheme is strongly unforgeable.

(Concrete security bounds are given in Corollary 40.)

Proof. Let Σ′ be the following sigma-protocol for R′: The message lengths `com
η , `ch

η , `
resp
η

are the same as for Σ. For x ∈ {0, 1}`
x
η , m ∈ {0, 1}`

m
η , the prover P 1

Σ′(1
η, (x‖m), w) runs

P 1
Σ(1η, x, w), and P 2

Σ′(1
η, (x‖m), w, ch) runs P 2

Σ(1η, x, w, ch). And VΣ′(1
η, x‖m, com, ch, resp)

runs VΣ(1η, x, com, ch, resp).
It is easy to check that Σ′ is honest-verifier zero-knowledge, has completeness, has unpredictable

commitments, and has statistical soundness for R′η. (Using the fact that Σ has these properties

for Rη.) And `ch is superlogarithmic.
We apply the Fiat-Shamir construction (Definition 17) to Σ′. The resulting proof system

(PFS , VFS) is zero-knowledge and weakly simulation-sound for R′η by Theorems 20 and 22. Then
we apply the construction of signatures (Definition 26) to (PFS , VFS) and G. By Theorem 30, the
resulting signature scheme S is weakly unforgeable.

Finally, notice that this signature scheme S is the signature scheme from Definition 32. (By
explicitly instantiating the constructions from Definition 17 and Definition 26 and the definition
of Σ′.)

If Σ additionally has unique responses, then Σ′ also has unique responses. Thus by Theorem 23,
(PFS , VFS) is strongly simulation-sound. Hence by Theorem 30, S is strongly unforgeable. �

If we can prove that Fiat-Shamir is extractable (under suitable conditions on the underlying
sigma-protocol), then we get a similar result by combining Theorems 20, 24, 25, and 31.

8.1 Security proof using simulation-soundness

Proof of Theorem 30. We prove the case of strong unforgeability (assuming strong simulation-
soundness). The case of weak unforgeability (assuming weak simulation-soundness) is proven
almost identically, we just have to replace all occurrences of (m∗, σ∗) /∈ Sig-queries by m∗ /∈
Sig-queries and (x∗, π∗) /∈ S-queries by x∗ /∈ S-queries.

In this proof, we will in many places omit the security parameter η for readability. (E.g., we
write `m instead of `mη and Sign(sk ,m) instead of Sign(1η, sk ,m).) It is to be understood that
this is merely a syntactic omission, the variables and algorithms still depend on η.

In the following, H will always denote a uniformly random function from Fun(`in , `out). That

is, every game written below implicitly starts with H
$← Fun(`in , `out).

Fix a polynomial-time oracle algorithm A. By definition of strong unforgeability (Definition 27),
we need to show

Pr[win = 1 : Game 1] ≤ µ(η)

for some negligible µ and the following game:

Game 1 (Unforgeability) (pk , sk) ← KeyGenH(), (σ∗,m∗) ← AH,Sig(pk), ok ←
VerifyH(pk , σ∗,m∗). win := (ok = 1 ∧ (m∗, σ∗) /∈ Sig-queries).

41

We will transform this game in several steps. First, we inline the definitions of Sig (Defini-
tion 27) and KeyGen, Sign, and Verify (Definition 26). This leads to the following game:

Game 2 (x,w)← G(). (x∗, π∗)← BH,P
H

(x,w). ok ← V H(x∗, π∗). win := (ok = 1 ∧ (x∗, π∗) /∈
S-queries).

Here B is a polynomial-time oracle algorithm that runs A with input pk := x, and that, whenever
A queries Sig with input m, invokes PH with input (x‖m,w) instead. And when A returns some
(m∗, σ∗), then B returns (x∗, π∗) with x∗ := x‖m∗ and π∗ := σ∗. And S-queries is the list of
queries made to PH . More precisely, when PH is invoked with (x′, w′) and responds with π′,
then (x′, π′) is appended to S-queries.

We then have:
Pr[win = 1 : Game 1] = Pr[win = 1 : Game 2]

We now use the zero-knowledge property of (P, V). Let S be the simulator whose existence is
guaranteed by Definition 6. Let S′ be the oracle that on input (x,w) ∈ R′ runs S(x) and returns
the latter’s output (as in Definition 6).

Then ∣∣∣Pr[win = 1 : Game 2]− Pr[win = 1 : Game 3]
∣∣∣ ≤ µ1

for some negligible µ1, and with the following game:

Game 3 (x,w) ← G(). (x∗, π∗) ← BH,S
′H

(x,w). ok ← V Hfinal (x∗, π∗). win := (ok = 1 ∧
(x∗, π∗) /∈ S-queries).

Here Hfinal is as in Definition 8, i.e., the value of the random oracle H after it has been
reprogrammed by S.

By x ≤ x∗, we mean that x consists of the first `x bits of x∗. (I.e., x∗ = x‖m for some m.)

Game 4 (x,w) ← G(). (x∗, π∗) ← BH,S
′H

(x,w). ok ← V Hfinal (x∗, π∗). win := (ok = 1 ∧
x ≤ x∗ ∧ (x∗, π∗) /∈ S-queries).

Since B by construction always outputs x∗ = x‖m∗, we have

Pr[win = 1 : Game 3] = Pr[win = 1 : Game 4]

Let CH,S
H

(x) be a polynomial-time oracle algorithm that runs A with input pk := x, and
that, whenever A queries Sig with input m, instead invokes SH with input x‖m. And when A
returns some (m∗, σ∗), then C returns (x∗, π∗) with x∗ := x‖m∗ and π∗ := σ∗.

Note that there are two differences between BH,S
′H

and CH,S
H

: First, C does not take w
as input. Second, C invokes SH instead of S′

H
. Since S′(x‖m,w) invokes S(x‖m) whenever

(x‖m,w) ∈ R′, B and C will differ only when (x‖m,w) /∈ R′. By definition of R′, this happens
only when (x,w) /∈ R. And this, in turn, happens with negligible probability since (x,w) are
chosen by G, and G is a dual-mode hard instance generator. Thus there exists a negligible µ2

such that ∣∣∣Pr[win = 1 : Game 4]− Pr[win = 1 : Game 5]
∣∣∣ ≤ µ2

with

Game 5 (x,w)← G(). (x∗, π∗)← CH,S
H

(x,w). ok ← V Hfinal (x∗, π∗). win := (ok = 1 ∧ x ≤
x∗ ∧ (x∗, π∗) /∈ S-queries).

42

Since G is a dual-mode hard instance generator, and since the computation in Game 5 after
(x,w)← G() is quantum-polynomial-time22 and does not use w, we have (by Definition 29) that
there exists a quantum-polynomial-time G∗ and a negligible µ3 such that:∣∣∣Pr[win = 1 : Game 5]− Pr[win = 1 : Game 6]

∣∣∣ ≤ µ3

with

Game 6 x ← G∗(). (x∗, π∗) ← CH,S
H

(x). ok ← V Hfinal (x∗, π∗). win := (ok = 1 ∧ x ≤
x∗ ∧ (x∗, π∗) /∈ S-queries).

Since G∗ was chosen as in Definition 29, we have that x ∈ LR with some negligible probability
µ4 in Game 6. Thus ∣∣∣Pr[win = 1 : Game 6]− Pr[win = 1 : Game 7]

∣∣∣ ≤ µ4

with

Game 7 x ← G∗(). (x∗, π∗) ← CH,S
H

(x). ok ← V Hfinal (x∗, π∗). win := (ok = 1 ∧ x /∈ LR ∧
x ≤ x∗ ∧ (x∗, π∗) /∈ S-queries).

By definition of R′, we have that

x /∈ LR ∧ x ≤ x∗ =⇒ x∗ /∈ LR.

Thus
Pr[win : Game 7] ≤ Pr[ok = 1 ∧ x∗ /∈ LR ∧ (x∗, π∗) /∈ S-queries : Game 7].

Since (P, V) is strongly simulation-sound (Definition 8), and “x← G∗(). (x∗, π∗)← CH,S
H

(x)”
can be executed by a quantum-polynomial-time oracle algorithm with oracle access to H and SH ,
we have that there is a negligible µ5 such that

Pr[ok = 1 ∧ x∗ /∈ LR ∧ (x∗, π∗) /∈ S-queries : Game 7] ≤ µ5.

Combining all inequalities from this proof, we get that

Pr[win : Game 1] ≤ µ1 + · · ·+ µ5 =: µ.

The function µ is negligible since µ1, . . . , µ5 are. Since A was arbitrary and quantum-polynomial-
time, and Game 1 is the game from Definition 27, it follows that (KeyGen,Sign,Verify) is strongly
unforgeable. �

8.2 Security proof using simulation-sound extractability

Proof of Theorem 31. We prove the case of strong unforgeability (assuming strong simulation-
soundness). The case of weak unforgeability is proven almost identically, we just have to
replace all occurrences of (m∗, σ∗) /∈ Sig-queries by m∗ /∈ Sig-queries and (x∗, π∗) /∈ S-queries by
x∗ /∈ S-queries.

22Note: to simulate the oracle H (which is a random function and thus has an exponentially large value-table),
we use the fact from [Zha12] that a 2q-wise hash function cannot be distinguished from random by a q-query
adversary. This allows us to simulate H using a 2q-wise hash function for suitable polynomially-bounded q (that
may depend on A).

43

In this proof, we will in many places omit the security parameter η for readability. (E.g., we
write `m instead of `mη and Sign(sk ,m) instead of Sign(1η, sk ,m).) It is to be understood that
this is merely a syntactic omission, the variables and algorithms still depend on η.

In the following, H will always denote a uniformly random function from Fun(`in , `out). That

is, every game written below implicitly starts with H
$← Fun(`in , `out).

Fix a polynomial-time oracle algorithm A. By definition of strong unforgeability (Definition 27),
we need to show

Pr[win = 1 : Game 1] ≤ µ(η)

for some negligible µ and the following game:

Game 1 (Unforgeability) (pk , sk) ← KeyGenH(), (σ∗,m∗) ← AH,Sig(pk), ok ←
VerifyH(pk , σ∗,m∗). win := (ok = 1 ∧ (m∗, σ∗) /∈ Sig-queries).

We will transform this game in several steps. First, we inline the definitions of Sig (Defini-
tion 27) and KeyGen, Sign, and Verify (Definition 26). This leads to the following game:

Game 2 (x,w)← G(). (x∗, π∗)← BH,P
H

(x,w). ok ← V H(x∗, π∗). win := (ok = 1 ∧ (x∗, π∗) /∈
S-queries).

Here B is a polynomial-time oracle algorithm that runs A with input pk := x, and that, whenever
A queries Sig with input m, invokes PH with input (x‖m,w) instead. And when A returns some
(m∗, σ∗), then B returns (x∗, π∗) with x∗ := x‖m∗ and π∗ := σ∗. And S-queries is the list of
queries made to PH . More precisely, when PH is invoked with (x′, w′) and responds with π′,
then (x′, π′) is appended to S-queries.

We then have:
Pr[win = 1 : Game 1] = Pr[win = 1 : Game 2]

We now use the zero-knowledge property of (P, V). Let S be the simulator whose existence is
guaranteed by Definition 6. Let S′ be the oracle that on input (x,w) ∈ R′ runs S(x) and returns
the latter’s output (as in Definition 6).

Then ∣∣∣Pr[win = 1 : Game 2]− Pr[win = 1 : Game 3]
∣∣∣ ≤ µ1

for some negligible µ1, and with the following game:

Game 3 (x,w) ← G(). (x∗, π∗) ← BH,S
′H

(x,w). ok ← V Hfinal (x∗, π∗). win := (ok = 1 ∧
(x∗, π∗) /∈ S-queries).

Here Hfinal is as in Definition 14, i.e., the value of the random oracle H after it has been
reprogrammed by S.

By x ≤ x∗, we mean that x consists of the first `x bits of x∗. (I.e., x∗ = x‖m for some m.)

Game 4 (x,w) ← G(). (x∗, π∗) ← BH,S
′H

(x,w). ok ← V Hfinal (x∗, π∗). win := (ok = 1 ∧
x ≤ x∗ ∧ (x∗, π∗) /∈ S-queries).

Since B by construction always outputs x∗ = x‖m∗, we have

Pr[win = 1 : Game 3] = Pr[win = 1 : Game 4]

Let CH,S
H

(x) be a polynomial-time oracle algorithm that runs A with input pk := x, and
that, whenever A queries Sig with input m, instead invokes SH with input x‖m. And when A
returns some (m∗, σ∗), then C returns (x∗, π∗) with x∗ := x‖m∗ and π∗ := σ∗.

44

Note that there are two differences between BH,S
′H

and CH,S
H

: First, C does not take w
as input. Second, C invokes SH instead of S′

H
. Since S′(x‖m,w) invokes S(x‖m) whenever

(x‖m,w) ∈ R′, B and C will differ only when (x‖m,w) /∈ R′. By definition of R′, this happens
only when (x,w) /∈ R. And this, in turn, happens with negligible probability since (x,w) are
chosen by G, and G is a hard instance generator. Thus there exists a negligible µ2 such that∣∣∣Pr[win = 1 : Game 4]− Pr[win = 1 : Game 5]

∣∣∣ ≤ µ2

with

Game 5 (x,w)← G(). (x∗, π∗)← CH,S
H

(x,w). ok ← V Hfinal (x∗, π∗). win := (ok = 1 ∧ x ≤
x∗ ∧ (x∗, π∗) /∈ S-queries).

Let X,X ′ be quantum registers of lengths `x. Let

ρ :=
∑
x′

|x′〉〈x′| ⊗ |x′〉〈x′| · Pr[x = x′ : (x,w)← G()].

be a density operator on X,X ′. (Intuitively, ρ represents the state where we picked x using G()
and stored the same x in both X and X ′.) Let D denote the oracle algorithm that behaves like C,
except that it takes two quantum registers X,X ′ as input, and invokes C with the classical value
stored in X as input. (I.e., X is measured and X ′ is not used.) We have:

Pr[win = 1 : Game 5] = Pr[win = 1 : Game 6]

with

Game 6 X,X ′ ← ρ. (x∗, π∗) ← DH,SH (X,X ′). ok ← V Hfinal (x∗, π∗). win := (ok = 1 ∧ x ≤
x∗ ∧ (x∗, π∗) /∈ S-queries).

Let F be a purification of D. That is, let F be a pure oracle circuit, and let Z be a quantum

register (containing the ancillae for F), such that “(x∗, π∗) ← DH,SH (X,X ′)” and “Z ← |0〉,
x∗‖π∗ ← FH,S

H

(Z,X,X ′)” perform the same operation. Then

Pr[win = 1 : Game 6] = Pr[win = 1 : Game 7]

with

Game 7 X,X ′, Z ← ρ⊗|0〉〈0|. x∗‖π∗ ← FH,S
H

(Z,X,X ′). ok ← V Hfinal (x∗, π∗). x ←M(X ′).
win := (ok = 1 ∧ x ≤ x∗ ∧ (x∗, π∗) /∈ S-queries).

Here x ← M(X ′) represents a measurement of X ′ in the computational basis, with outcome
assigned to x. Note that F does not use the register X ′.

Let ΠH be a projective measurement circuit on Z,X,X ′ such that ΠH
x∗‖π∗ measures whether

X ′ contains a prefix of x∗. That is, the projector corresponding to outcome 1 of ΠH
x∗‖π∗ is

IZ ⊗ IX ⊗ |x〉〈x|X′ for the unique x ∈ {0, 1}`x with x ≤ x∗. (ΠH
x∗‖π∗ does not use query H.)

Then we can rewrite Game 7 as:

Game 8 X,X ′, Z ← ρ⊗ |0〉〈0|. x∗‖π∗ ← FH,S
H

(Z,X,X ′). ok ← V Hfinal (x∗, π∗). x←M(X ′).

okA ← Π
Hfinal

x∗‖π∗(Z,X,X
′). win := (ok = 1 ∧ okA = 1 ∧ (x∗, π∗) /∈ S-queries).

45

And we have
Pr[win = 1 : Game 7] = Pr[win = 1 : Game 8].

Now we can use the strong simulation-sound extractability of (P, V) for the relation R′. By
Definition 14, we have

Pr[win = 1 : Game 9] ≥ 1
p Pr[win = 1 : Game 8]d − µ

for some polynomial-time oracle algorithm E, some polynomials p > 0, ` ≤ 0, some negligible µ,
and some constant d > 0 and with the following game:

Game 9 X,X ′, Z ← ρ ⊗ |0〉〈0|. (x∗, w∗, π∗, ass) ←
EF

rew(X,X′,Z),Πoracle,H,`(X,X′,Z),H(`, shapeF). okA ← Π
H(ass)
x∗‖π∗ (X,X ′, Z). win :=

(
(x∗, w∗) ∈

R′ ∧ okA = 1
)
.

From this we get

Pr[win = 1 : Game 8] ≤ d
√
p · Pr[win = 1 : Game 9] + µ3.

By definition of ρ, we can rewrite X,X ′, Z ← ρ⊗ |0〉 as follows:

Game 10 (x,w) ← G(), X ← |x〉, X ′ ← |x〉, Z ← |0〉. (x∗, w∗, π∗, ass) ←
EF

rew(X,X′,Z),Πoracle,H,`(X,X′,Z),H(`, shapeFη). okA ← Π
H(ass)
x∗‖π∗ (X,X ′, Z). win :=

(
(x∗, w∗) ∈

R′ ∧ okA = 1
)
.

We have
Pr[win = 1 : Game 9] = Pr[win = 1 : Game 10].

Note that E cannot directly access the quantum register X ′ (it is part of the state of F rew

and Πrew). F rew does not access X ′. So X ′ is only accessed by applications of Πrew. However, Π
is a measurement in the computational basis. Thus, if X ′ is in state |x〉 before the invocation of

E, it will also be in state |x〉 after the invocation of E. Thus the measurement Π
H(ass)
x∗‖π∗ (X,X ′, Z)

will return 1 iff x ≤ x∗. Thus

Pr[win = 1 : Game 10] = Pr[win = 1 : Game 11]

with

Game 11 (x,w) ← G(), X ← |x〉, X ′ ← |x〉, Z ← |0〉. (x∗, w∗, π∗, ass) ←
EF

rew(X,X′,Z),Πoracle,H,`(X,X′,Z),H(`, shapeF). okA := (x ≤ x∗). win :=
(
(x∗, w∗) ∈ R′ ∧ okA =

1
)
.

If win = 1, then (x∗, w∗) ∈ R′ and x ≤ x∗. By definition of R′, this implies (x,w∗) ∈ R. Thus we
have

Pr[win = 1 : Game 11] ≤ Pr[(x,w∗) ∈ R : Game 11].

And finally, since G is a hard instance generator for R, and all steps in the game (x,w)← G()
can be simulated by a quantum-polynomial-time algorithm,23 we have that

Pr[(x,w∗) ∈ R : Game 11] ≤ µ4

23Note that a naive implementation of the game involves choosing H, which would take exponential space and
time. However, [Zha12] showed that we can use a 2q-wise independent function instead, where q is the number of
H-queries performed by the rest of the game. This leads to a quantum-polynomial-time implementation.

46

for some negligible µ4.
Collecting all inequalities and equalities from this proof, we get:

Pr[win = 1 : Game 1] ≤ d
√
p µ4 + µ3 + µ1 + µ2 =: µ.

Since d > 0 is a constant, p is a polynomial, and µ1, . . . , µ4 are negligible, we have that µ is
negligible. Thus we have showed that the probability of an attack against the strong unforgeability
game is negligible, it follows that (KeyGen,Sign,Verify) is strongly unforgeable (Definition 27).
�

9 Concrete security bounds

Throughout this section, we state the concrete security bounds of the constructions analyzed in
the preceding sections.

In this section, when computing runtimes, we assume that oracle queries take unit time.
Furthermore, we assume that every algorithm (even the ones not getting explicit access to a
random oracle) can simulate additional an random oracle at unit cost. (I.e., if we write “A picks
a random oracle H, and performs q queries to it”, then A will run in O(q)-time.)

Recall that `x, `m, `com , `ch , `resp are the upper bounds for the lengths of statements, messages,
commitments, challenges, and responses, respectively. In the following, let `all be some upper
bound on all of these.

9.1 Proof systems

Completeness. A sigma protocol has ε-completeness if it has completeness (as in Definition 4)
with advantage µ := ε(τ) for all τ -time adversaries A. It has ε-unpredictable commitments if it
has unpredictable commitments (as in Definition 4) with µ := ε. A non-interactive proof system
has ε-completeness if it has completeness (as in Definition 5) with µ := ε(τ, q) for all τ -time
adversaries A performing ≤ q queries to the random oracle H.

Corollary 34 Assume that Σ has εc-completeness and εu-unpredictable commitments.
Then (PFS , VFS) has ε-completeness where

ε(τ, q) := (4 +
√

2)q1/2ε1/4
u + εc(τ).

We stress that in most cases, one would probably not use this bound, but instead prove the
completeness of Fiat-Shamir directly for a specific sigma-protocol, yielding much better bounds
(often ε(τ, q) = 0).

Proof. Consider the proof of Lemma 19. (We will use the notation from that proof.) Consider a
τ -time adversary A against the completeness of (PFS , VFS) making q queries to H.

It was shown in (7) that

ε1 :=
∣∣Pr[win = 1 : Game 1]− Pr[win = 1 : Game 2]

∣∣ ≤ (4 +
√

2)
√
q2−k/4. (36)

Here k is the collision-entropy of x‖com. Since Σ has εu-unpredictable commitments, we have
that com has collision-entropy ≥ − log εu. Thus x‖com also has collision-entropy k ≥ − log εu.

Thus ε1 = (4 +
√

2)q1/2ε
1/4
u .

Furthermore, Game 2 is the game from the definition of completeness (Definition 4), thus
Pr[win = 1 : Game 2] ≤ εc(τ).

Thus we have Pr[win = 1 : Game 1] ≤ ε1 + εc(τ) = ε(τ, q). Since Game 1 is the game from
the definition of completeness (Definition 5), we have that (PFS , VFS) has ε-completeness. �

47

Zero-knowledge. A sigma-protocol is (ε, σ)-HVZK iff it is honest-verifier zero-knowledge (as in
Definition 4) with a σ-time simulator SΣ and with advantage µ := ε(τ, q) for all τ -time adversaries
A.

A non-interactive proof system is (ε, σs, σh)-zero-knowledge iff it is zero-knowledge (as in
Definition 6) where µ := ε(τ, qP , qH) for τ -time adversaries making qP , qH queries to the prover
and the random oracle, respectively, and where σs(qP , qH), σh(qP , qH) are upper bounds on the
(total) runtime of the simulator, and of the random oracle queries.24

Corollary 35 (Fiat-Shamir is Zero-knowledge, concrete security) Assume that Σ is
(εz, σz)-HVZK, has εc-completeness, and εu-unpredictable commitments. Assume that VΣ is
a σv-time algorithm, and that computing an honest proof using Σ takes time ≤ σp.

Then the Fiat-Shamir proof system (PFS , VFS) is (ε, σs, σh)-zero-knowledge where

ε(τ, qP , qH) := (4 +
√

2)qP (qP + qH)1/2ε1/4
u + qP εc(τ) + qP εz(τhyb)

σs(qP , qH) := qPσz + qPσv + qP `
all ,

σh(qP , qH) := O(qHσlook)

τhyb(τ, qP , qH) := τ + qP max{σz + σv +O(`all), σp + σv}+O(qHσlook).

Here σlook depends on the computational model: If we assume access to QRAM,25 σlook = O(`all).
If we assume no access to QRAM, σlook = O(qP `

all).

Proof. Consider the proof of Theorem 20. Fix a τ -time adversary A against the zero-knowledge
property of (PFS , VFS).

First, we analyze the runtime of the simulator SFS from Figure 1. On each invocation, it
invokes the simulator SΣ, this takes time σz. It invokes VΣ. This takes time σv. And finally
it reprograms the random oracle. This means, (x‖com, ch) is inserted into a suitable data
structure D. Let σins denote the time needed for that (we discuss the value of σins later, once
we have discussed the choice of data structure). Thus, the runtime of SFS (per invocation) is
σz + σv + σins . Thus σs(qP , qh) is an upper bound on the total runtime of SFS .

Furthermore, we need to discuss the time needed for random oracle queries. Since the simulator
can reprogram the oracle, a random oracle query performed by A consists of a lookup in D,
and the query to a random function itself. These queries need to be performed in superposition.
The query to the random function takes O(1) time since in our computational model queries to
random functions take unit time. The query to D takes some time σlook (which depends on the
data structure and will be fixed later). Thus, each query by A to the random oracle takes time
O(σlook). Thus σh(qP , qh) is an upper bound on the runtime of all oracle queries.

If we have access to QRAM, the data structure we use is a trie (a trie can be used since the keys
x‖com indexing the data structure are bitstrings). A trie can be accessed (by a RAM machine, and
thus in superposition by a QRAM machine) in time O(`key +`value) where `key , `value are the length
of the stored keys and values. In our case, `key =

∣∣x‖com
∣∣ ≤ 2`all and `value = |ch| = `ch ≤ `all .

Thus in this case, σins , σlook ∈ O(`all).

24Since the simulator reprograms the random oracle, answering the random oracle queries can take more than
unit time since a lookup is needed in a data structure that keeps track of the reprogramming.

25In the QRAM model, an algorithm can have an array A of qubits, and perform queries of the form |a, i, y〉 7→
|a, i, y ⊕ ai〉 in unit time, i.e., access the memory in superposition. For our results, it does not matter whether
there is additionally a unit time write operation in superposition, it will be sufficient that classical write operations
can be performed in unit time.

QRAM is used in some prominent quantum algorithms (e.g., [BHT98]).

48

If we do not have access to QRAM, we use an association list instead (more precisely, a
mutable array of key-value pairs). Then insertion (not in superposition) takes O(`key + `value),
and lookup takes O(qP (`key + `value)) (a scan of the whole list in superposition, which has at
most qP entries of length `key + `value . Thus σins ∈ O(`all) and σlook = O(qP `

all).

In the proof of Theorem 20, it was shown that∣∣Pr[b = 1 : Game 1]− Pr[b = 1 : Game 5]
∣∣(13)–(15)≤ µ2 + µ3 + µ4 =: µ

where µ2, µ3, µ4 were bounds derived in the proof. The ganes in this equation are the games from
(1) in Definition 6.

Thus (PFS , VFS) is (µ, σs, σh)-zero-knowledge.

The bound µ2 was defined as

µ2 := qPµ1 = qP (4 +
√

2)
√
qP + qH2−k/4

(∗)

≤ (4 +
√

2)qP (qP + qH)1/2ε1/4
u

where k was the collision-entropy of x‖com. (∗) holds since k ≥ − log εu (as was already shown
in the proof of Corollary 34).

The bound µ3 was the probability that in some query to the oracle P ∗∗ in Game 4,
VΣ(x, com, ch, resp) = 0 where (com, ch, resp) was an honestly constructed proof for (x,w) ∈ R.
Since Σ is εc-complete, the probability of VΣ(x, com, ch, resp) = 0 is at most εc(τ) in each
invocation. Thus µ3 = qP εc(τ).

Finally, µ4 was defined as the probability of distinguishing between Games 4 and 5 where
Game 5 runs AH,SFS , while Game 4 runs AH,P

∗∗
where P ∗∗ is defined like SFS , except that it

runs the honest prover of Σ instead of SΣ. Thus the distinguishing probability between the
two games is µ4 := qP εz(τhyb) where τhyb is an upper bound on the running time of the hybrid
games between Games 4 and 5. These hybrid games run A, qP invocations of SFS or P ∗∗, qH
invocations of a possibly reprogrammed oracle. The runtime of A is τ . The runtime of each SFS

query is at most σz + σv + σins (see above). The runtime of each P ∗∗ query is at most σp + σv.
And the total runtime of the oracle queries is σh(qP , qH). Hence we can choose τhyb as in the
statement of the lemma.

Altogether we have
µ = µ2 + µ3 + µ4 ≤ ε(τ, qP , qH).

Thus (PFS , VFS) is (ε, σs, σh)-zero-knowledge. �

Soundness. A sigma-protocol is ε-statistically sound iff it is statistically sound (as in Defini-
tion 4) with advantage µ := ε.

A non-interactive proof system is ε-sound iff it is sound (as in Definition 7) where µ := ε(τ, q)
for τ -time adversaries making q queries to the random oracle.

A non-interactive proof system is ε-weakly simulation-sound iff it is weakly simulation-sound
(as in Definition 8) where µ := ε(τ, qP , qH) for τ -time adversaries that make qP , qH queries to the
simulator and the random oracle, respectively.

A non-interactive proof system is ε-strongly simulation-sound iff it is strongly simulation-sound
(as in Definition 8) where µ := ε(τ, qP , qH) for τ -time adversaries that makes qP , qH queries to
the simulator and the random oracle, respectively.

A sigma-protocol has ε-unique responses if it has unique responses (as in Definition 4) where
µ := ε(τ) for τ -time adversaries.

49

Corollary 36 Assume that Σ has εs-statistical soundness. Then the Fiat-Shamir proof system
(PFS , VFS) is ε-sound where

ε(τ, q) := 32εs · (q + 1)2.

Proof. Consider the proof of Theorem 21. There, Claim 1 shows that there are at most µ2`
ch

promising ch. Here µ is the advantage against the statistical soundness of Σ, thus µ = εs.
Then the proof of Theorem 21 continues to show that the success probability of a q-query

adversary A is bounded by 32µ · (q + 1)2 = ε. Thus Fiat-Shamir is ε-sound. �

Corollary 37 Assume that Σ has εs-statistical soundness.
Then the Fiat-Shamir proof system (PFS , VFS) is ε-weakly simulation-sound with respect to

the simulator SFS from Figure 1 where

ε(τ, qP , qH) = 32εs · (qH + 1)2.

Proof. Consider the proof of Theorem 22. Fix a τ -time adversary A that makes qP , qH queries to
the simulator and the random oracle, respectively.

In that proof, the advantage of A against weak simulation-soundness is bounded by µ, where
µ is the advantage of an adversary B against soundness.

That adversary B simulates A and SFS , and answers the H-queries of A with the oracle
H(assS) where assS is the list of assignments performed by SFS . Simulating a query to H(assS)
can be done using a single query to H. Simulating a query to SFS uses no H-queries. Thus B
makes qH queries to H. By Corollary 36, B has advantage µ = 32εs · (qH + 1)2 = ε(τ, qP , qH).
Hence A has advantage ε(τ, qP , qH). Thus Fiat-Shamir has ε-weak simulation-soundness. �

Corollary 38 Assume that Σ has εs-statistical soundness and εur -unique responses, and is
(εz, σz)-HVZK. Let σv be an upper bound on the runtime of VΣ.

Then the Fiat-Shamir proof system (PFS , VFS) is ε-strongly simulation-sound with respect to
the simulator SFS from Figure 1 where

ε(τ, qP , qH) := 32εs · (qH + 1)2 + εur (τC)

τC := τ + qPσz +O(qHσlook) +O(qP `
all) + 2qPσv

Here σlook is defined in Corollary 35.

Proof. Consider the proof of Theorem 23. Fix a τ -time adversary A that makes qP , qH queries to
the simulator and the random oracle, respectively.

In that proof, the advantage of A against strong simulation-soundness is bounded by µ+ µ′,
where µ is the advantage of an adversary B against soundness (Game 3), and µ′ := Pr[RespConflict :
Game 1] (with RespConflict and Game 1 as in the proof of Theorem 23).

That adversary B simulates A and SFS , and answers the H-queries of A with the oracle
H(assS) where assS is the list of assignments performed by SFS . Simulating a query to H(assS)
can be done using a single query to H. Simulating a query to SFS uses no H-queries. Thus B
makes qH queries to H. By Corollary 36, B has advantage µ = 32εs · (qH + 1)2.

Define the adversary C as follows: First, it executes x‖com‖resp ← AH,SFS (). Then it
searches for (x′, com ′‖resp′, ch ′) ∈ S-queries∗ such that x′ = x, com ′ = com, ch ′ = Hfinal (x‖com),
resp′ 6= resp and VΣ(x, com ′, ch ′, resp′) = 1. (S-queries∗ is defined in the proof of Theorem 23.) If
it finds such values, C outputs (x, com, ch ′, resp, resp′), else arbitrary values.

50

By definition of C, RespConflict, and Game 1, we have

µ′ = Pr[RespConflict : Game 1] ≤ Pr[resp 6= resp′ ∧ VΣ(x, com, ch ′, resp) = 1

∧ VΣ(x, com, ch ′, resp′) = 1 : (x, com, ch ′, resp, resp′)← C()] = εur (τC)

if τC is an upper bound on the runtime of C.
We compute an upper bound τC on the runtime of C: Simulating A takes time τ . Simulating

the random oracle and simulator queries of A takes time and σh(qP , qH), σs(qP , qH), respectively,
where σh, σs are defined in Corollary 35. Searching for (x′, com ′, resp′, ch ′) in S-queries∗ takes
O(qP `

all) + qPσv. Thus

τ + σh(qP , qH) + σs(qP , qH) +O(qP `
all) + qPσv = τC

is an upper bound on the runtime of C.
Hence A has advantage µ + µ′ = ε(τ, qP , qH). Thus Fiat-Shamir has ε-strong simulation-

soundness. �

9.2 Signatures

From non-interactive proof systems. G is a (ε0, ε1, ε2, σG∗)-dual-mode hard instance gen-
erator iff G is a dual-mode hard instance generator (in the sense of Definition 29) with µ := ε0,
µ1 := ε1(τ) and µ2 := ε2 for all τ -time adversaries, and G∗ has runtime at most σG∗ , respectively.
(Where G∗ is assumed to be independent of the adversary, different from Definition 29.)

A signature scheme is ε-strongly/weakly unforgeable iff it is strongly/weakly unforgeable (in
the sense of Definition 27) with µ := ε(τ, qP , qH) for all τ -time adversaries performing qP signing
and qH random oracle queries.

Corollary 39 Fix a relation R. Let R′ be defined as in Definition 26. Assume (P, V)
is (εz, σs, σh)-zero-knowledge and εss-strongly/weakly simulation-sound for R′, and G is an
(ε0, ε1, ε2, σG∗)-dual-mode hard instance generator for R.

Let σv and qV H be upper bounds on the runtime and number of random oracle queries of V .
Let σG be an upper bound on the runtime of G.

Then the signature scheme (KeyGen,Sign,Verify) from Definition 26 is ε-strongly/weakly
unforgeable where

ε(τ, qP , qH) := εz
(
τ + σG + σv +O(qP `

all), qP , qH + qVH

)
+ ε0

+ ε1

(
τ + σs(qP , qH + qVH) + σh(qP , qH + qVH) + σv +O(qP `

all)
)

+ ε2 + εss(τ + σG∗ +O(qP `
all)), qP , qH).

Proof. Since the proof for the strong and the weak case is almost identical, we write just a single
proof, with the words “simulation-sound” and “unforgeable” both referring to either their strong
or the weak variant. Whenever we write (x∗, π∗) ∈ S-queries or similar, this refers to the strong
unforgeability case. In the weak unforgeability case, this has to be replaced with x∗ ∈ S-queries.

Consider the proof of Theorem 30 (both the strong and weak unforgeability case) in Section 8.1.
Fix a τ -time adversary A that performs qP signing and qH random oracle queries.

In that proof, we showed Pr[win = 1 : Game 1] ≤ µ where Game 1 is the unforgeability
game, and µ = µ1 + · · ·+ µ5 for values µi defined in the proof. Thus (KeyGen,Sign,Verify) is
µ-unforgeable.

51

The bound µ1 is a bound on the difference between Pr[win = 1 : Game 2] and Pr[win =
1 : Game 3]. Here Game 3 differs from Game 2 by replacing the oracle access to P by oracle
access to S′ where S′ is the simulator that exists since (P, V) is (εz, σs, σh)-zero-knowledge. Thus
µ1 ≤ εz(τ2, qP2, qH2) where τ2 is the runtime of Game 2, and qP2, qH2 are the number of queries
to the prover/simulator and the random oracle, respectively (excluding the runtime of and queries
performed by P). Queries to the simulator are performed only by the adversary B which performs
one prover-query for every signing-oracle query of A, hence qP2 = qP . And random oracle queries
are forwarded by B to the simulated A, so B performs qH queries. Furthermore, the invocation
of V H performs up to qVH queries. So qH2 = qH + qVH .

The runtime of Game 2 can be bounded as follows: The call to G takes time σG. The call to V
takes time σv. B runs A internally, it takes time τ , plus the time needed for converting inputs and
outputs of the oracle queries (stripping and adding the public key pk = x) which takes O(qP `

all)
since O(`all) is an upper bound on the size of the inputs/outputs. Testing whether win = 1 also
takes at most O(qP `

all) steps (a search of S-queries). Thus τ3 := τ + σG + σv +O(qP `
all) upper

bounds the runtime of Game 2.
Thus

µ1 ≤ εz
(
τ + σG + σv +O(qP `

all), qP , qH + qVH

)
.

The bound µ2 bounds the probability that G produces (x,w) with (x,w) /∈ R. Since G is a
(ε0, ε1, ε2, σG∗)-dual-mode hard instance generator, we have µ2 ≤ ε0.

The bound µ3 bounds the difference between Pr[win = 1 : Game 5] and Pr[win = 1 : Game 6]
where the only difference between the games is that G is replaced by G∗. Thus µ3 = ε1(τ5) where
τ5 bound the runtime of Game 5 (excluding the runtime of G). That runtime consists of the
runtime of the adversary C which is bounded by τ +O(qP `

all) (analogous to that of B), of the
runtime of the simulator queries, i.e., σs(qP , qH + qVH), the runtime of the random oracle queries,
i.e., σh(qP , qH + qVH), the time for executing V , i.e., σv, and the time for checking whether
x∗ /∈ S-queries (resp., (x∗, π∗) /∈ S-queries), i.e., O(qP `

all) (assuming S-queries is implemented as
a list). So, in total,

µ3 = ε1(τ5) with τ5 = τ + σs(qP , qH + qVH) + σh(qP , qH + qVH) + σv +O(qP `
all).

The bound µ4 bounds the probability that G∗ outputs x ∈ LR. Thus µ4 ≤ ε2.
The bound µ5 bounds the probability

Pr[ok = 1 ∧ x∗ /∈ LR ∧ (x∗, π∗) /∈ S-queries : Game 7]

which is the advantage of an adversary DH,SH against the simulation-soundness of (P, V), where

DH,SH performs the steps “x← G∗(). (x∗, π∗)← CH,S
H

(x)”. Thus µ5 = εss(τ7, qS7, qH7) where
τ7, qS7, qH7 are the runtime, number of simulator-queries, and number of random oracle queries
performed by D, respectively (not including the runtime and queries performed by S). Since the
runtime of C is bounded by τ +O(qP `

all) (see above), we have τ7 ≤ τ + σG∗ +O(qP `
all). And D

performs the same number of oracle queries as C, thus qS7 = qP and qH7 = qH . Thus

µ5 ≤ εss(τ + σG∗ +O(qP `
all), qP , qH).

Thus µ = µ1 + · · ·+ µ5 ≤ ε(τ, qP , qH) for ε as defined in the statement of this corollary. Since
(KeyGen,Sign,Verify) is µ-unforgeable (see above), this implies that (KeyGen,Sign,Verify) is
ε-unforgeable. �

52

Fiat-Shamir signatures.

Corollary 40 Assume that Σ is εc-complete, has εs-statistical soundness, is (εz, σz)-HVZK, and
has εu-unpredictable commitments for R. JAnd that Σ has εur -unique responses.K

Assume that G is an (ε0, ε1, ε2, σG∗)-dual-mode hard instance generator for R. Let σG be an
upper bound on the runtime of G.

Then the signature scheme (KeyGenFS ,SignFS ,VerifyFS) from Definition 32 is ε-weakly
unforgeable Jε-strongly unforgeableK where

ε(τ, qP , qH) := (4 +
√

2)qP (qP + qH + 1)1/2ε1/4
u + qP εc(τ + σG + σv +O(qP `

all))

+ qP εz

(
τ + σG + σv +O(qP `

all) + qP max{σz + σv, σp + σv}+O(qHσlook)
)

+ ε0 + ε1

(
τ + qPσz + (qP + 1)σv + qPO(`all) +O(qHσlook)

)
+ ε2 + 32εs · (qH + 1)2

q
+ εur (τ + σG∗ + qPσz +O(qHσlook) +O(qP `

all) + 2qPσv)
y
.

and

σlook :=

{
O(`all) (with QRAM)

O(qP `
all) (without QRAM)

This bound is somewhat hard to read because of all the small parameters. To get a
better feeling for the bound, we restate it here assuming that all small values (namely,
`x, `m, `com , `ch , σG, σv, σP , σz, σG∗) are O(1):

ε(τ, qP , qH) = O
(
qP (qP + qH)1/2ε1/4

u

)
+ qP εc

(
τ +O(qP)

)
+ qP εz

(
τ +O(qP) +O(qHσlook)

)
+ ε0 + ε1

(
τ +O(qP) +O(qHσlook)

)
+ ε2 +O(εsq

2
H)

J + εur (τ +O(qHσlook) +O(qP)) K .

where σlook = O(1) with QRAM and σlook = O(qP) without QRAM.

Proof. Let Σ′ be defined as in the proof of Corollary 33. To distinguish the parameters of Σ′ from
those of Σ, we decorate those of Σ′ with a prime. (E.g., `x′ is the length of a statement of the
relation R′ of Σ′, and σ′v the runtime of the verifier V ′Σ of Σ′.) We then have σ′v = σv +O(`all),

σ′z = σz +O(`all), σ′p = σp +O(`all), `ch ′ = `ch ≤ `all , `com ′ = `com ≤ `all , `x′ = `x + `m ≤ 2`all .
Σ′ has εu-unpredictable commitments since Σ has. And Σ′ is ε′c-complete for ε′c(τ) :=

εc(τ +O(`all)). And Σ′ is (ε′z, σ
′
z)-HVZK for ε′z(τ) := εz(τ +O(`all)) and σ′z := σz +O(`all). And

Σ′ has εs-statistical soundness. JAnd Σ′ has ε′ur -unique responses for ε′ur (τ) := εur (τ +O(`all)).K
We apply the Fiat-Shamir construction (Definition 17) to Σ′, and we call the resulting proof

system (PFS , VFS). By Corollary 35, (PFS , VFS) is (εzz , σs, σh)-zero-knowledge where

εzz (τ, qP , qH) := (4 +
√

2)qP (qP + qH)1/2ε1/4
u + qP ε

′
c(τ) + qP ε

′
z(τhyb)

σs(qP , qH) := qPσ
′
z + qPσ

′
v + qPO(`all),

σh(qP , qH) := O(qHσlook)

τhyb(τ, qP , qH) := τ + qP max{σ′z + σ′v +O(`all), σ′p + σ′v}+O(qHσlook)

σlook :=

{
O(`all) (with QRAM)

O(qP `
all) (without QRAM)

53

Inserting the definition of the various primed variables, this becomes:

εzz (τ, qP , qH) := (4 +
√

2)qP (qP + qH)1/2ε1/4
u + qP εc(τ +O(`all)) + qP εz(τhyb +O(`all))

σs(qP , qH) := qPσz + qPσv + qPO(`all),

σh(qP , qH) := O(qHσlook)

τhyb(τ, qP , qH) := τ + qP max{σz + σv +O(`all), σp + σv +O(`all)}+O(qHσlook)

σlook :=

{
O(`all) (with QRAM)

O(qP `
all) (without QRAM)

By Corollary 37 JCorollary 38K, (PFS , VFS) is εss -weakly simulation-sound Jεss -strongly
simulation-soundK where

εss(τ, qP , qH) := 32εs · (qH + 1)2
q

+ ε′ur (τ + qPσ
′
z +O(qHσlook) +O(qP `

all) + 2qPσ
′
v)

y

= 32εs · (qH + 1)2
q

+ εur (τ + qPσz +O(qHσlook) +O(qP `
all) + 2qPσv)

y
.

We then apply the construction of signatures (Definition 26) to (PFS , VFS) and G. By
Corollary 39, the resulting signature scheme S is ε′-weakly unforgeable Jε′-strongly unforgeableK
where

ε′(τ, qP , qH) := εzz

(
τ + σG + σv +O(qP `

all), qP , qH + q′VH

)
+ ε0

+ ε1

(
τ + σs(qP , qH + q′VH) + σh(qP , qH + q′VH) + σ′v +O(qP `

all)
)

+ ε2 + εss(τ + σG∗ +O(qP `
all), qP , qH)

where q′VH is the number of oracle queries performed by V ′Σ, namely q′VH = 1.
By substituting qVH = 1 and the definitions of εzz and εss and σ′v, and simplifying terms

involving O-notation, we get that ε′ = ε where ε is as in the statement of the corollary. Thus S is
ε-weakly unforgeable Jε-strongly unforgeableK.

Finally, as already noticed in the proof of Corollary 33, the signature scheme S is the signature
scheme (KeyGenFS ,SignFS ,VerifyFS) from Definition 32. Thus (KeyGenFS ,SignFS ,VerifyFS)
is ε-weakly unforgeable Jε-strongly unforgeableK. �

Acknowledgments. I thank Andris Ambainis, Ali El Kaafarani, and Eike Kiltz for valuable
discussions, and Alexander Belov for breaking the Quantum Forking Conjecture upon which
earlier versions of this work were based. This work was supported by institutional research
funding IUT2-1 of the Estonian Ministry of Education and Research, the Estonian ICT program
2011-2015 (3.2.1201.13-0022), and by the Estonian Centre of Exellence in IT (EXCITE) funded
by ERDF.

A Problems with concurrent executions of Fiat-Shamir

This section given an example of the intricacies of Fiat-Shamir when used concurrently in a
protocol. Everything in this section applies both to the classical and the quantum case.

54

Construction of the sigma-protocol. Consider a fixed-length relation R0. Assume that for
any pk , there is at most one sk with (pk , sk) ∈ R0.26 Define the fixed-length relation R such that
(pk10‖pk11‖ . . . ‖pkη0‖pkη1, sk0‖sk1) ∈ R iff (pk i0, sk0) ∈ R ∧ (pk i1, sk1) ∈ R for some i.

Let Σ = (`com
η , `ch

η , `
resp
η , P 1

Σ, P
2
Σ, VΣ) be a sigma protocol for R that satisfies all conditions

from Definition 4. We assume for simplicity that `ch = η and `resp ≥ η · |sk i|. We construct a
new sigma-protocol Σ′ := (`com

η , `ch
η , `

resp
η , P 1

Σ, P
2
Σ, V

′
Σ) for R (i.e., everything is the same except

the definition of the verifier) with the following V ′Σ(x, com, ch, resp):
• If com 6= 0`

com

, invoke ok ← VΣ(x, com, ch, resp) and return ok .
• If com = 0`

com

:
– Parse x as x = pk10‖pk11‖ . . . ‖pkη0‖pkη1, and parse resp as resp =

sk1‖ . . . ‖skη‖0`
resp−η|sk1|.

– Check whether (pk ichi , sk i) ∈ R0 for all i = 1, . . . , η.
– If the parsing and the check succeeded, return 1.

Properties of the sigma-protocol. The sigma-protocol Σ′ still has all properties from Defi-
nition 4:
• Completeness: the output of V ′Σ differs from VΣ only when com = 0`

com

. This happens
with negligible probability in the game defining completeness since Σ has unpredictable
commitments. Thus the success probability in the definition of completeness for Σ and for
Σ′ differs only by a negligible amount.
• Perfect special soundness: We define the extractor E′Σ(x, com, ch, resp, ch ′, resp′) as follows:

If com 6= 0`
com

, E′Σ invokes EΣ. If com = 0`
com

: E′Σ parses resp =: sk1‖ . . . ‖skn‖0`
resp−n|sk1|

and resp′ =: sk ′1‖ . . . ‖sk ′η‖0`
resp−η|sk1|. It finds an index i such that chi = 0, ch ′i = 1 or

chi = 1, ch ′i = 0 . Then it returns the witness sk i‖sk ′i or sk ′i‖sk i, respectively. It is easy to
verify that this extractor satisfies the definition of perfect special soundness (since Σ has
perfect special soundness).

• Statistical special soundness: This follows immediately from perfect special soundness and
the fact that `ch = η is superlogarithmic.

• Honest-verifier zero-knowledge and unpredictable commitments: These properties do not
depend on the verifier, so they follow immediately from the corresponding properties of Σ.

• Perfectly unique responses: Perfectly unique responses for the case com 6= 0`
com

follows from
the perfectly unique responses of Σ. Assume that there are x, com, ch, resp, resp′ with com =
0`

com

and V ′Σ(η, x, com, ch, resp) = 1 and V ′Σ(η, x, com, ch, resp′) = 1. By definition of V ′Σ,
this implies that x = pk10‖pk11‖ . . . ‖pkη0‖pkη1 and resp = sk1‖ . . . ‖skn‖0`

resp−n|sk1| and

resp′ = sk ′1‖ . . . ‖sk ′n‖0`
resp−n|sk ′1| and resp 6= resp′ and (pk ichi , sk i) ∈ R0 and (pk ichi , sk ′i) ∈

R0. Since resp 6= resp′, there is an i such that sk i 6= sk ′i. Thus with pk := pk ichi , sk := sk i,
sk ′ := sk ′i, we have (pk , sk), (pk , sk ′) ∈ R0, in contradiction to the assumptions we made
about R0 in the beginning of this section.

Summarizing, Σ′ is a reasonable (in terms of its security properties) if somewhat artificial sigma-
protocol for the relation R′. We would thus assume that Fiat-Shamir based on Σ′ is a good
non-interactive proof system. Yet the following example illustrates that this is not always the
case.

Toy protocol. Consider the following toy protocol Π that uses a non-interactive proof system
(P, V) for the relation R:

26If we drop this requirement, the only change will be that the sigma-protocol Σ′ constructed below does not
have unique responses. And example of a suitable relation would be (x,w) ∈ R0 iff x = f(w) for some injective
quantum-one-way permutation f

55

• Let G be a hard instance generator for R0 (see Definition 28). Bob generates 2η
key pairs (pk ib, sk ib) ← G(1η) with i = 1, . . . , η and b = 0, 1. Then Bob sends
x = pk10‖pk11‖ . . . ‖pkη0‖pkη1 to Alice.

• Alice picks bits b1, . . . , bη ∈ {0, 1} and sends them to Bob.
• Bob sends sk ibi for all i = 1, . . . , η to Alice.
• Then Bob expects a proof π from Alice.27

• Bob checks using P whether π is a valid proof for the statement x with respect to the
relation R. (I.e., π is interpreted as a proof that Alice knows both secret keys (sk i0, sk i1)
for at least one index i.) Formally, Bob runs ok ← V (1η, x, π).

Intuitively, we would expect that for honest Bob (and polynomial-time Alice), we will have
ok = 0 with overwhelming probability, at least if (P, V) is extractable (an argument of knowledge).
This is because an extractable proof of knowledge should (intuitively!) guarantee that Alice can
produce a valid proof π only when she knows (sk i0, sk i1) for at least one index i. But she will
never know such (sk i0, sk i1) because she is given only one sk ib for each i.

Unfortunately, this intuition is not correct (at least in the case of Fiat-Shamir):

Attack. Assume that (P, V) is constructed by applying the Fiat-Shamir construction to the
sigma-protocol Σ′. Then a malicious Alice can perform the following attack against the toy
protocol:
• Alice receives x.
• Alice sets com := 0`

com

and computes ch := H(x‖com).
• Alice sets bi := chi and sends the bits b1, . . . , bη to Bob.
• Bob sends sk ibi = sk ichi to Alice for all i.
• Alice computes resp := sk1ch1

‖ . . . ‖skηchη‖0∗. (Here 0∗ is a zero-string of the expected
length.)

• Alice sends π := com‖resp.
• Bob runs ok ← V (1η, x, π). By definition of V = VFS (Figure 1), this leads to the following

computation:
– V computes com‖resp := π and ch := H(x‖com). That is, V has the same com, ch, resp

as Alice.
– V invokes V ′Σ(1η, x, com, ch, resp). This leads to the following steps by definition of Σ′:
∗ x is parsed as x = pk10‖pk11‖ . . . ‖pkη0‖pkη1. These are the same pk ib as chosen

by Bob. resp is parsed as sk1‖ . . . ‖skη‖0∗. Then sk i = sk ichi by definition of resp.
∗ V ′Σ checks whether (pk ichi , sk i) ∈ R0 for all i = 1, . . . , η. Since sk i = sk ichi , and

all (pk ib, sk ib) pairs were chosen by a hard instance generator for R0 (and are thus
valid key pairs with respect to R0 with overwhelming probability), we have that
(pk ichi , sk i) ∈ R0 with overwhelming probability for all i.
∗ Thus ok = 1 with overwhelming probability.

Note that this attack makes specific use of the design of Fiat-Shamir. For example, it is
easy to see that schemes with online-extractability such as the ones from Fischlin [Fis05] (in the
classical case) and Unruh [Unr15] (in the quantum case) indeed satisfy the intuition that ok = 0
with overwhelming probability in the toy protocol.

27Honest Alice will not send such a proof. However, as we will see, dishonest Alice can send a valid proof here.
One can easily imagine a more realistic protocol in which the proof π also serves an honest purpose (e.g., it may
depend on Alice’s authorization whether she can produce such a proof); in order to keep the example minimal we
opted not to include such extensions.

56

Index

assignment-list, 7

challenge
(in sigma protocol), 13

circuit
projective measurement, 9

circuits
projective measurement, polynomial-time

family of, 12
pure oracle, polynomial-time family of, 12

commitment
(in sigma protocol), 13

commitments
unpredictable, 14

completeness
(non-interactive proof), 14
(of sigma protocol), 13

density operator, 7
description

(of a unitary), 12
dual-mode hard instance generator, 40

execution schedule, 8
extractability

weak simulation-sound, 21
extractable, 19

strongly simulation-sound, 21

Fiat-Shamir proof, 22
fidelity, 7
fixed-length relation, 12

generator
dual-mode hard instance, 40
hard instance, 39

hard instance generator, 39
dual-mode, 40

honest-verifier zero-knowledge
(of sigma protocol), 13

HVZK, see honest-verifier zero-knowledge

input/output space, 8
instance generator

dual-mode hard, 40
hard, 39

measurement circuit

projective, 9
measurement circuits

projective, polynomial-time family of, 12

negligible, 7
noticeable, 7

operator
density, 7

oracle, 8
for a function, 8

oracle circuits
pure, polynomial-time family of, 12

oracle tape, 10

perfect special soundness
(of sigma protocol), 13

perfectly unique responses, 13
polynomial-time family

of projective measurement circuits, 12
of pure oracle circuits, 12

projective measurement circuits
polynomial-time family of, 12

pure oracle circuits
polynomial-time family of, 12

relation
fixed-length, 12

response
(in sigma protocol), 13

responses
perfectly unique, 13
unique, 13

shape
(of pure oracle circuit), 9

sigma protocol, 12
simulation-sound extractability

weak, 21
simulation-sound extractable

strongly, 21
simulation-soundness

strong, 15
weak, 15

simulator, 14
soundness, 14

perfect special (of sigma protocol), 13
special (of sigma protocol), 13

57

statistical, 13
strong simulation-, 15
weak simulation-, 15

space
input/output, 8
state, 8

special soundness
(of sigma protocol), 13
perfect (of sigma protocol), 13

state space, 8
statistical soundness, 13
strong simulation-soundness, 15
strongly simulation-sound extractable, 21
strongly unforgeable, 39

tape
oracle, 10

unforgeable
strongly, 39
weakly, 39

unique responses, 13
perfectly, 13

unpredictable commitments, 14

weak simulation-sound extractability, 21
weak simulation-soundness, 15
weakly unforgeable, 39

zero-knowledge, 14
honest-verifier (of sigma protocol), 13

58

Symbol index

`oracle
C,j Number of qubits in the input/output of the j-th oracle to

pure oracle circuit C
shapeC Shape of the pure oracle circuit C 9
`outcome
M Length of the measurement outcome of projective measure-

ment circuit M

`ora,in
M Length of oracle query inputs of projective measurement

circuit M
noracles
C Number of oracles that the pure oracle circuit C uses

`input
M Length of the classical input of projective measurement

circuit M

`output
C Length of the output register of pure oracle circuit C
`state
C Number of qubits in the state of pure oracle circuit C

`ora,out
M Length of oracle query outputs of projective measurement

circuit M

`quantum
M Length of quantum input of projective measurement cir-

cuit M
trA Trace of A
dxe Rounding up
resp Response (third message in sigma protocol) 13
ch Challenge (second message in sigma protocol) 13
S-queries List of queries made to the simulator
trX ρ Partial trace (tracing out X)
com Commitment (first message in sigma protocol) 12
Hfinal Random oracle after all changes by simulator
|x| Absolute value / cardinality of x
M A measurement in the computational basis 7
qdecpl(A|B) Decoupling accuracy between A and B
‖x‖ Norm of x
Sig(m) Signing oracle, returns a signature for m 39
Sig-queries List of queries made to the signing oracle Sig
VerifyFS (pk , σ,m) Verification algorithm of Fiat-Shamir signature scheme
`mη Length of message to be signed
R′ Extended relation R, containing message in statement 38
`all Joint upper bound for `x, `m, `com , `ch , `resp

LR Language induced by relation R 14
RespConflict Event: two responses for the same commitment
EO Superoperator implementing to oracle O 8
N+ Natural numbers (excluding 0)
Hmin(A|B) Conditional min-entropy
Hmax(A|B) Conditional max-entropy
`out
η Output length of the random oracle H
`inη Input length of the random oracle H
UM,x1,...,xn Unitary performed by projective measurement circuit M

in each step, given inputs x1, . . . , xn
UM,x1,...,xn Unitary performed by projective measurement circuit M

in each step, given inputs x1, . . . , xn

59

`πη Length of proofs 14
`wη Length of witnesses in the relation Rη 12
`xη Length of statements in the relation Rη 12

EO1,...,On
C Superoperator implemented by pure oracle circuit C 9
`resp
η Length of responses resp 12
`ch
η Length of challenges ch 12
`com
η Length of commitments com 12
{0, 1}n Bitstrings of length n
PFS Fiat-Shamir prover 22
VFS Fiat-Shamir verifier 22
SFS Fiat-Shamir simulator 24
η Security parameter
EΣ(x, com, ch, resp, ch ′, resp′) Special soundness extractor for sigma protocol Σ 13
SΣ Honest-verifier simulator extractor for sigma protocol Σ 13
H(ass) H updated with assignment-list ass 7
R Real numbers
E A quantum operation
C Complex numbers
H A Hilbert space
O An oracle
opC Execution schedule of pure oracle circuit C
Hstate State space of a pure oracle circuit
calli Instruction that oracle circuit invokes oracle i in this step
compute Instruction that oracle circuit computes in this step
UH Unitary evaluating the function H, UH |x, y〉 = |x, y⊕H(x)〉 8
UC Unitary performed by circuit C in each step
|Ψ〉 Vector in a Hilbert space (usually a quantum state)
〈Ψ| Conjugate transpose of |Ψ〉
x← A x is assigned the output of algorithm A 7

x
$← S x chosen uniformly from set S/according to distribution S 7

Pr[P : G] Probability of P after G 7
I Identity 7
Arew Pure oracle circuit A as a rewindable oracle
Moracle,H,` Oracle access to projective measurement circuit MH , with

≤ ` assignments to H
12

Fun(n,m) Set of functions {0, 1}n → {0, 1}m 14
Urewind Rewindable version of unitary U 10
F (σ, ρ) Fidelity 7
N Natural numbers (including 0)
imA Image of function/operator A
Verify(pk , σ,m) Verifies a signature σ on message m using public key pk 38
Sign(sk ,m) Produces a signature on m using signing key sk 38
KeyGen() Produces a public/secret key pair 38
sk Secret key
pk Public key
P 2

Σ Second round of prover of sigma protocol Σ 12
P 1

Σ First round of prover of sigma protocol Σ 12
VΣ Verifier of sigma protocol Σ 12
SignFS (sk ,m) Signing algorithm of Fiat-Shamir signature scheme

60

KeyGenFS () Key generation of Fiat-Shamir signature scheme

References

[Adi08] Ben Adida. Helios: Web-based open-audit voting. In USENIX Security Symposium
08, pages 335–348. USENIX, 2008. Online at http://www.usenix.org/events/

sec08/tech/full_papers/adida/adida.pdf.

[ARU14] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum attacks on
classical proof systems (the hardness of quantum rewinding). In FOCS 2014, pages
474–483. IEEE, 2014.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Crypto
2004, volume 3152 of LNCS, pages 41–55. Springer, 2004.

[BCC04] Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation. In
ACM CCS ’04, pages 132–145, New York, NY, USA, 2004. ACM.

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner,
and Mark Zhandry. Random oracles in a quantum world. In ASIACRYPT 2011,
pages 41–69, Berlin, Heidelberg, 2011. Springer-Verlag.

[BG93] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Crypto
’92, number 740 in LNCS, pages 390–420. Springer, 1993. Extended version online
available at http://www-cse.ucsd.edu/users/mihir/papers/pok.ps.

[BHT98] Gilles Brassard, Peter HØyer, and Alain Tapp. Quantum cryptanalysis of hash and
claw-free functions. In Cláudio L. Lucchesi and Arnaldo V. Moura, editors, LATIN’98:
Theoretical Informatics, pages 163–169, Berlin, Heidelberg, 1998. Springer Berlin
Heidelberg.

[BK16] Rachid El Bansarkhani and Ali El Kaafarani. Post-quantum attribute-based signa-
tures from lattice assumptions. IACR ePrint 2016/823, 2016.

[BPW12] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to prove yourself:
Pitfalls of the Fiat-Shamir heuristic and applications to Helios. In Asiacrypt 2012,
volume 7658 of LNCS, pages 626–643. Springer, 2012.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In CCS ’93, pages 62–73. ACM, 1993.

[BrOP16] Carsten Baum, Ivan Damg̊ard, Sabine Oechsner, and Chris Peikert. Efficient commit-
ments and zero-knowledge protocols from ring-SIS with applications to lattice-based
threshold cryptosystems. IACR ePrint https://eprint.iacr.org/2016/997, 2016.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In Eurocrypt 2001, pages
93–118. Springer, 2001.

[Fis05] Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with
online extractors. In Crypto 2005, volume 3621 of LNCS, pages 152–168. Springer,
2005.

61

http://www.usenix.org/events/sec08/tech/full_papers/adida/adida.pdf
http://www.usenix.org/events/sec08/tech/full_papers/adida/adida.pdf
http://www-cse.ucsd.edu/users/mihir/papers/pok.ps
https://eprint.iacr.org/2016/823

[FKMV12] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi.
On the non-malleability of the Fiat-Shamir transform. In Indocrypt 2012, volume
7668 of LNCS, pages 60–79. Springer, 2012. Preprint is IACR ePrint 2012/704.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Crypto ’86, number 263 in Lecture Notes in Computer
Science, pages 186–194. Springer-Verlag, 1987.

[GCZ16] Steven Goldfeder, Melissa Chase, and Greg Zaverucha. Efficient post-quantum
zero-knowledge and signatures. IACR ePrint 2016/1110, 2016.

[GKV10] S. Dov Gordon, Jonathan Katz, and Vinod Vaikuntanathan. A group signature
scheme from lattice assumptions. In Asiacrypt 2010, volume 6477, pages 395–412.
Springer, 2010.

[HRS16] Andreas Hülsing, Joost Rijneveld, and Fang Song. Mitigating Multi-target Attacks in
Hash-Based Signatures, pages 387–416. Springer, 2016.

[KLS18] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment
of fiat-shamir signatures in the quantum random-oracle model. In Eurocrypt 2018,
volume 10822 of LNCS, pages 552–586. Springer, 2018.

[LLM+16a] Benôıt Libert, San Ling, Fabrice Mouhartem, Khoa Nguyen, and Huaxiong Wang.
Signature schemes with efficient protocols and dynamic group signatures from lattice
assumptions. In Asiacrypt 2016, volume 10032 of LNCS, pages 373–403. Springer,
2016. Full version IACR ePrint 2016/101.

[LLM+16b] Benôıt Libert, San Ling, Fabrice Mouhartem, Khoa Nguyen, and Huaxiong Wang.
Zero-knowledge arguments for matrix-vector relations and lattice-based group en-
cryption. In Asiacrypt 2016, volume 10032 of LNCS, pages 101–131. Springer,
2016.

[LNW15] San Ling, Khoa Nguyen, and Huaxiong Wang. Group signatures from lattices:
Simpler, tighter, shorter, ring-based. In PKC 2015, volume 9020, pages 427–449.
Springer, 2015.

[PS96a] David Pointcheval and Jacques Stern. Provably secure blind signature schemes. In
Asiacrypt 1996, volume 1163 of LNCS, pages 252–265. Springer, 1996.

[PS96b] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In
Eurocrypt 96, volume 1070 of LNCS, pages 387–398. Springer, 1996.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and
blind signatures. Journal of Cryptology, 13(3):361–396, 2000.

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In FOCS ’99. IEEE, 1999.

[Sch91] Claus-Peter Schnorr. Efficient Signature Generation by Smart Cards. Journal of
Cryptology, 4(3):161–174, 1991.

[SG02] Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against chosen
ciphertext attack. J Cryptology, 15(2):75–96, 2002.

62

http://eprint.iacr.org/2012/704
https://eprint.iacr.org/2016/1110
https://eprint.iacr.org/2016/101

[Unr12] Dominique Unruh. Quantum proofs of knowledge. In Eurocrypt 2012, volume 7237
of LNCS, pages 135–152. Springer, April 2012. Preprint on IACR ePrint 2010/212.

[Unr15] Dominique Unruh. Non-interactive zero-knowledge proofs in the quantum random
oracle model. In Eurocrypt 2015, volume 9057, pages 755–784. Springer, 2015. Full
version IACR ePrint 2014/587.

[Zha12] Mark Zhandry. Secure identity-based encryption in the quantum random oracle
model. In Crypto 2012, volume 7417 of LNCS, pages 758–775. Springer, 2012.

63

http://eprint.iacr.org/2014/587

	Introduction
	Background
	Our contribution

	Preliminaries
	Oracle machines
	Sigma protocols
	Non-interactive proof systems (Definitions)
	Extractability
	Simulation-sound extractability

	Auxiliary lemmas
	Fiat-Shamir
	Completeness
	Zero-knowledge
	Soundness
	Simulation-soundness
	Simulation-sound extractability

	Signatures
	Security proof using simulation-soundness
	Security proof using simulation-sound extractability

	Concrete security bounds
	Proof systems
	Signatures

	Appendix
	Problems with concurrent executions of Fiat-Shamir
	Index
	Symbol index
	References

