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Abstract In present paper, we investigate 4 problems. Firstly, it is known
that, a matrix is MDS if and only if all sub-matrices of this matrix of de-
gree from 1 to n are full rank. In this paper, we propose a theorem that an
orthogonal matrix is MDS if and only if all sub-matrices of this orthogonal
matrix of degree from 1 to bn2 c are full rank. With this theorem, calculation of
constructing orthogonal MDS matrices is reduced largely. Secondly, Although
it has been proven that the 2d× 2d circulant orthogonal matrix does not exist
over the finite field, we discover that it also does not exist over a bigger set.
Thirdly, previous algorithms have to continually change entries of the matrix to
construct a lot of candidates. Unfortunately, in these candidates, only very few
candidates are orthogonal matrices. With the matrix polynomial residue ring
and the minimum polynomials of lightweight element-matrices, we propose an
extremely efficient algorithm for constructing 4× 4 circulant orthogonal MDS
matrices. In this algorithm, every candidate must be an circulant orthogonal
matrix. Finally, we use this algorithm to construct a lot of lightweight results,
and some of them are constructed first time.
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1 Introduction

In block cipher, the linear diffusion layer is a significant component. For the
linear diffusion layer, the branch number is a very important index. The linear
diffusion layer with bigger branch number can more effectively resist linear
and differential cryptanalysis. The linear diffusion layer is often expressed by
a matrix. For a n × n matrix, its branch number is not greater than n +
1. The maximum distance separable (MDS) matrix is a matrix reaching the
optimal branch number and is broadly used in many ciphers like SQUARE
[2], PHOTON [1], AES [4], LED [3].

For the lightweight cryptography, the efficiency of a linear diffusion layer
will influence the efficiency of cryptography largely. Therefore, constructions
of lightweight MDS matrices are meaningful works for designing a lightweight
cryptography. Considering that the sum of XORs [15] is the most important
index for measuring the efficiency of MDS matrices, MDS matrices with fewer
sum of XORs are more efficient.

Most constructions of lightweight MDS matrices are researched over F2m

[18,24,20,21]. At CRYPTO 2016, Beierle et al. [24] investigate the lightest
circulant MDS matrices over F2m . Besides, lightweight MDS matrices are in-
vestigated over GL(m,F2) [19,25]. At FSE 2016, Li et al. [19] construct 4× 4
MDS matrices with 13 XORs over GL(4,F2) and 4× 4 MDS matrices with 10
XORs over GL(8,F2). Li T. et al. [25] construct 4× 4 MDS matrices with 10
XORs over GL(4,F2). Over F2m , the construction is efficient, but the weight of
results is not favorable. Over GL(m,F2), the weight can achieve the minimum
value, but the construction is inefficient.

Motivations. For the symmetric cryptography, if the linear diffusion layer
is an orthogonal matrix, then the decryption is easier. The reason is that the
transposition of the orthogonal matrix is the inverse of such orthogonal matrix.
So the orthogonal matrix is suitable to construct the linear diffusion layer. At
present paper, we mainly focus problems about the lightweight orthogonal
MDS matrix as follows

(I) There is no efficient method to judge whether an orthogonal matrix is
MDS.

(II) When construct lightweight orthogonal MDS matrices over F2m , the
sum of XORs of results is larger. When construct over GL(m,F2), the search
space is too large, and then the construction is inefficient. For efficiently con-
structing lightweight orthogonal MDS matrices with as few XORs as possible,
it is necessary to find an appropriate set, which gets a balance between F2m

and GL(m,F2).

(III) Although it has been proved that the 2d × 2d circulant orthogonal
MDS matrix does not exist over F2m [17], we have no theorem about the
existence of the 2d× 2d circulant orthogonal MDS matrix over the polynomial
residue ring.

(IV) There is no efficient method for constructing lightweight orthogonal
MDS matrices and lightweight circulant orthogonal MDS matrices.
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Contributions. In present paper, we investigate the feasibility of building
lightweight orthogonal MDS matrices over the matrix polynomial residue ring.
Our results can be summarized as follows

– We propose a theorem that an orthogonal matrix is MDS if and only if all
sub-matrices of this orthogonal matrix of degree from 1 to bn2 c are full rank.
With this theorem, calculation of constructing orthogonal MDS matrices
is reduced largely.

– Considering that the finite field is a sub-set of the polynomial residue ring,
we propose a method to judge which polynomial residue ring can be used to
construct 2d×2d circulant orthogonal MDS matrices. Moreover, an efficient
necessary-and-sufficient condition for judging whether a 4 × 4 circulant
matrix is an orthogonal matrix is given. An extremely efficient algorithm
for constructing lightweight 4 × 4 circulant orthogonal MDS matrices is
given.

– We search all the minimum polynomials of non-singular m×m(m=4 or 8)
matrices with few XORs over F2. According to factorizations of these min-
imum polynomials, only a part of them can be used to construct 4× 4 cir-
culant orthogonal MDS matrices. With theorems and methods mentioned
in present paper, new lightweight circulant orthogonal MDS matrices are
constructed first time.

Roadmap. In Section 2, introduce basic preliminaries and theorems. In Section
3, propose a new necessary-and-sufficient condition for judging whether an
orthogonal matrix is MDS. In Section 4, discuss the existence of circulant
orthogonal. An extremely efficient Algorithm 2 for constructing 4×4 circulant
orthogonal MDS matrices is given. In Section 5, by investigating the minimum
polynomials of element-matrices, new lightweight circulant orthogonal MDS
matrices are constructed. A short conclusion is given in Section 6.

2 Preliminaries

In this section, we introduce basic definitions and theorems.

2.1 MDS Matrix

Let R be a ring with identity, x ∈ Rm. The bundle weight of x is defined
as the number of nonzero entries of x and is expressed by ωb(x). Let M be
a n × n matrix over R. The branch number of M is the minimum number
of nonzero components in the input vector v and output vector u = M · v
as we search all nonzero v ∈ Rn, i.e. the branch number of n × n matrix M
is BM = minv 6=0{ωb(v) + ωb(Mv)}, and BM ≤ n + 1. A maximum distance
separable (MDS) n × n matrix is a matrix that has the maximum branch
number n+1. GL(n,F2) denotes the set of all non-singular n×n matrices over
F2.
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Every linear diffusion layer is a linear map and can be represented by a
matrix as follow

L =


L1,1 L1,2 · · · L1,n

L2,1 L2,2 · · · L2,n

...
...

. . .
...

Ln,1 Ln,2 · · · Ln,n


where Li,j ∈ GL(m,F2) (1 ≤ i, j ≤ n). M(n,m) denotes all n × n matrices
with entries in GL(m,F2). For X = (x1, x2, ..., xn)T ∈ (Fm

2 )n,

L(X) =


L1,1 L1,2 · · · L1,n

L2,1 L2,2 · · · L2,n

...
...

. . .
...

Ln,1 Ln,2 · · · Ln,n



x1
x2
...
xn

 =


∑n

i=1 L1,i(xi)∑n
i=1 L2,i(xi)

...∑n
i=1 Ln,i(xi)

 ,

where Li,j(xk) = Li,j · xk, for 1≤ i, j ≤ n, 1 ≤ k ≤ n.

Theorem 1 [19] Let L is a n × n matrix over the commutative ring with
identity, then L is MDS if and only if all square sub-matrices of L are of full
rank.

In present paper, we construct MDS matrices in M(n,m). So the above
theory can be expressed as following two theorems:

Theorem 2 [19] Let L ∈ M(n,m), then L is MDS if and only if all square
sub-matrices of L are of full rank.

Theorem 3 [19] Let L ∈M(n,m), L is MDS if and only if all sub-determinant
of L are non-singular.

2.2 XOR Count

Let a, b ∈ F2, a + b is called a bit XOR operation. Let A ∈ GL(m,F2), x =
(x1, x2, ..., xm)T ∈ F2

m, #A denotes the number of XOR operations required
to evaluate Ax. Let ω(A) is the number of 1 in A. #A denotes the XOR count
of A and #A = ω(A)−m. For L ∈M(n,m), #(L) denotes the sum of XORs
of L and #(L) =

∑n
i,j=1 #(Lij). For example, let x = (a, b, c, d)T ∈ F2

4, and
the following matrix with 3 XOR count.

A =


1 0 1 0
0 1 1 1
0 0 1 0
0 0 0 1

 .

Ax =


1 0 1 0
0 1 1 1
0 0 1 0
0 0 0 1



a
b
c
d

 =


a+ c

b+ c+ d
c
d

 .
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For A ∈ GL(m,F2), a simplified representation of A is given by extracting
the non-zero positions in each of row of A. For example, [4,3,2,[1,2]] is the
representation of the following matrix with 1 XOR count.

0 0 0 1
0 0 1 0
0 1 0 0
1 1 0 0


2.3 Matrix Polynomial Residue Ring

The key contribution of present paper is that construct lightweight orthogonal
MDS matrices over the matrix polynomial residue ring. In this subsection, we
introduce the matrix polynomial residue ring.

Let T be an n × n matrix over F2 and f(x) be the minimum polynomial
of T . Let the order of f(x) be k, then k ≤ n. F2[T ] ∼= F2[x]/(f(x)) since T
satisfies f(T ) = 0, where F2[T ] denotes the matrix polynomial residue ring
generated by T . Therefore the matrix computation in F2[T ] is isomorphic to
the polynomial computation in F2[x]/(f(x)).

For example, let B,C ∈ F2[T ],

B = bk−1T
k−1 + · · ·+ b1T + b0I,

C = ck−1T
k−1 + · · ·+ c1T + c0I,

b(x) = bk−1x
k−1 + · · ·+ b1x+ b0,

c(x) = ck−1x
k−1 + · · ·+ c1x+ c0.

Then B + C = b(x) + c(x)|x=T , BC = b(x)c(x)|x=T .

2.4 Entry Expression

In present paper, we investigate matrices with entries in the m × m matrix
polynomial residue ring. For example as follow

Optimal Matrix =


A I I I
I I A B
I B I A
I A B I

 .

Let T be a non-singular m×m matrix over F2, #T=1, and f(x) is the min-
imum polynomial of T . A,B ∈ F2[T ] and a(x), b(x) ∈ F2[x]/(f(x)) satisfying
A = a(T ) and B = b(T ). In our construction algorithm, x replaces T , 1 re-
places I, a(x) replaces A and b(x) replaces B. Therefore, above Optimal matrix
is replaced as the following matrix in our algorithm

a(x) 1 1 1
1 1 a(x) b(x)
1 b(x) 1 a(x)
1 a(x) b(x) 1

 .
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2.5 MDS Judgment

For judging whether a matrix is MDS, according to Theorem 3, its all minors
should be non-singular. If one of these minors is singular, then this matrix
is not MDS. According to the polynomial residue ring theory, a matrix over
F2[x]/(f(x)) is non-singular if and only if the determinant of this matrix is
relatively prime with f(x).

For instance, T is a non-singular matrix over F2, and f(x) is the minimum
polynomial of T . Let H be a matrix with entries in F2[T ]. Because entries of
H are expressed by polynomials, so H can be expressed as follow

H =


x 1 1 1
1 1 x x2 + 1
1 x2 + 1 1 x
1 x x2 + 1 1

 .

Every minor is calculated according to the determinant complete expansion
formula. For example, a minor of order 3 in H can be calculated as follow∣∣∣∣∣∣

x 1 1
1 1 x
1 x2 + 1 1

∣∣∣∣∣∣ = x+ x+ (x2 + 1) + 1 + (x4 + x2) + 1 = x4 + 1.

If x4 + 1 is relatively prime with f(x), this sub-matrix is non-singular.

2.6 Orthogonal Matrix over The Polynomial Residue Ring

Let T be a m × m non-singular matrix over F2 and f(x) is the minimum
polynomial of T . Let L be a 4× 4 matrix over F2[x]/(f(x)) as follow

L =


l1,1(x) l1,1(x) l1,3(x) l1,1(x)
l2,1(x) l2,2(x) l2,3(x) l2,4(x)
l3,1(x) l3,2(x) l3,3(x) l3,4(x)
l4,1(x) l4,2(x) l4,3(x) l4,4(x)

 =


α1

α2

α3

α4

 .

If L is an orthogonal matrix, L should satisfy following two conditions
(1)αkα

T
k = l2k,1(x) + l2k,2(x) + l2k,3(x) + l2k,4(x) = 1 (mod f(x)) (k =

1, 2, 3 or 4)
(2)αiα

T
j = 0 (i 6= j and 1 ≤ i, j ≤ 4)

3 Orthogonal MDS Matrix

In this section, we propose a new necessary-and-sufficient condition for judging
whether an orthogonal matrix is MDS. Then with this condition, we construct
lightweight orthogonal MDS matrices.
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3.1 Efficient Necessary-And-Sufficient Condition

Theorem 4 A is an orthogonal matrix of degree n over the commutative ring
with identity. |B| is a minor of |A|, and |E| is the complementary minor of
|B|. Then |B| = 0 if and only if |E| = 0.

Proof R is a commutative ring with identity. A is an orthogonal matrix over
R. |B| is a minor of |A|. |E| is the complement minor of |B|. Without loss of
generality, let A be as follow

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n

 =


α1

α2

...
αn

 =

(
B C
D E

)

For proving this theory, we only need to prove that |B| = 0 if and only if
|E| = 0.

First, we prove that if |B| = 0 then |E| = 0.
Let B is as follow

B =


b1,1 b1,2 · · · b1,k
b2,1 b2,2 · · · b2,k

...
...

. . .
...

bk,1 bk,2 · · · bk,k

 =


β1
β2
...
βk


Because |B| = 0, so vectors β1, β2, · · · , βk are linear dependent, so there

exist not all zero k entries m1,m2, · · · ,mk ∈ R satisfying

m1β1 +m2β2 + · · ·+mkβk = (0, 0, · · · , 0)

Then

m1α1 +m2α2 + · · ·+mkαk = (0, 0, · · · , 0, tk+1, tk+2, · · · , tn)

Because vectors α1, α2, · · · , αn are linear independent, so tk+1, tk+2, · · · , tn
not all are zero. Because A is orthogonal, so (0, · · · , 0, tk+1, tk+2, · · · , tn) is
orthogonal with αk+1, αk+2, · · · , αn. Then

(0, 0, · · · , 0, tk+1, tk+2, · · · , tn)


αk+1

αk+2

...
αn


T

= (0, 0, · · · , 0, tk+1, tk+2, · · · , tn)


ak+1,1 ak+1,2 · · · ak+1,n

ak+2,1 ak+2,2 · · · ak+2,n

...
...

. . .
...

an,1 an,2 · · · an,n


T
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= (tk+1, tk+2, · · · , tn)


ak+1,k+1 ak+1,k+2 · · · ak+1,n

ak+2,k+1 ak+2,k+2 · · · ak+2,n

...
...

. . .
...

an,k+1 an,2 · · · an,n


T

= (tk+1, tk+2, · · · , tn)ET = (0, 0, · · · , 0)

According the above equality, row vectors of E are linear independent. Then
|E| = 0.

Second, if |E| = 0 then |B| = 0. The process of proof is similar to the above
process. So |B| = 0 if and only if |E| = 0.

�

Corollary 1 Let A be a n × n orthogonal matrix over the commutative ring
with identity. |B| is a minor of |A|, and |E| is the complementary minor of
|B|. Then |B| 6= 0 if and only if |E| 6= 0.

Theorem 5 Let A be a n × n orthogonal matrix over the commutative ring
with identity. All minors of degree k of |A| are non-zero if and only if all the
complement minors of degree n− k are non-zero.

Proof Every minor of degree k must have a corresponding single complement
minor of degree n − k. The number of all minors of degree k is equal to the
number of all minors of degree n− k. So complement minors of all minors of
degree k just are all minors of degree n − k. According to the Theorem 1, it
is obvious that all minors of degree k are non-zero if and only if all minors of
degree n− k are non-zero.

�

According to Theorem 5, we propose a necessary-and-sufficient condition,
which is more efficient than Theorem 2, for judging whether an orthogonal
matrix is MDS as follow

Theorem 6 Let A be an orthogonal matrix of degree n over the commutative
ring with identity. Then A is MDS if and only if all minors of degree between
from 1 to bn2 c are non-zero.

Proof According to Theory 1, matrix A is MDS if and only if all minors of
degree from 1 to n are non-zero. According to the Theorem 5, for orthogonal
matrices, if minors of degree 1 are non-zero, then minors of degree n− 1 must
be non-zero. Similarly, if minors of degree 2 are non-zero, then minors of
degree n−2 must be non-zero. And so on, an orthogonal matrix is MDS if and
only if all minors of degree between from 1 to bn2 c are non-zero. btc denotes
the greatest integer being not greater than t.

�
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Table 1: Comparison between Theorem 6 and Theorem 2

Degree of the Matrix Degree of Minors Calculated Method of Deciding MDS
4 1,2,3,4 Theorem 2
4 1,2 Theorem 6
5 1,2,3,4,5 Theorem 2
5 1,2 Theorem 6

4 Analyzing Circulant Orthogonal MDS Matrices

In this section, we discuss the existence of the 2d × 2d circulant orthogonal
MDS matrix. We propose an efficient necessary-and-sufficient condition for
judging whether a 4 × 4 circulant matrix is an orthogonal matrix. We give a
method to judge which polynomial residue ring can be used to construct 2d×2d

circulant orthogonal MDS matrices. With this method, an extremely efficient
algorithm for building lightweight 4× 4 circulant orthogonal MDS matrices is
given.

4.1 Existence of The Circulant Orthogonal MDS Matrix

Theorem 7 Let g(x) be an irreducible polynomial over F2, and f(x) = g(x)k

(k ≥ 1). If (a1, a2, · · · , a2d) is a 2d × 2d circulant orthogonal matrix over
F2[x]/(f(x)), then (a1, a2, · · · , a2d) is not MDS.

Proof Let (a1, a2, · · · , a2d) is as follow

(a1, a2, · · · , a2d) =


a1 a2 · · · a2d
a2d a1 · · · a2d−1
...

...
. . .

...
a2 a3 · · · a1

 =


α1

α2

...
α2d−1
α2d


Because (a1, a2, · · · , a2d) is an orthogonal matrix, so

a21 + a22 + · · ·+ a22d = (a1 + a2 + · · · a2d)2 = 1. (1)

Then a1 + a2 + · · · a2d is relatively prime with f(x).
Because (a1, a2, · · · , a2d) is an orthogonal matrix again, so α1α

T
2k = 0 (k =

1, 2, · · · , 2d−2), and these equalities can be expressed as follows

2d∑
i=1

aiai+1 =

2d∑
i=1

aiai+3 = · · · =
2d∑
i=1

aiai+·2d−1−1 = 0,

where corner marks are computed modulo 2d. By adding above equalities, we
get the following equality

(a1 + a3 + · · ·+ a2d−1)(a2 + a4 + · · ·+ ad2) = 0.
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Then

f(x) | (a1 + a3 + · · ·+ a2d−1)(a2 + a4 + · · ·+ ad2). (2)

First of all, we will prove that f(x) - (a1 + a3 + · · · + a2d−1) and f(x) -
(a2 + a4 + · · ·+ ad2).

If f(x) | (a1 + a3 + · · ·+ a2d−1), then a1 + a3 + · · ·+ a2d−1 = 0. This will
result in the following minor equals 0.∣∣∣∣∣∣∣∣∣∣

a1 a3 · · · a2d−1
a2d−1 a1 · · · a2d−3
· · · · · · · · · · · ·
a5 a7 · · · a3
a3 a5 · · · a1

∣∣∣∣∣∣∣∣∣∣
= 0

It goes against the requirement of MDS, so f(x) - (a1+a3+ · · ·+a2d−1). It can
be similar that if f(x) | (a2 +a4 + · · ·+ad2), then the following minor equals 0.∣∣∣∣∣∣∣∣∣∣

a2 a4 · · · a2d
a2d a2 · · · a2d−2
· · · · · · · · · · · ·
a6 a8 · · · a4
a4 a6 · · · a2

∣∣∣∣∣∣∣∣∣∣
= 0

It also goes against the requirement of MDS, so f(x) - (a2 + a4 + · · ·+ a2d).
Next, for f(x) = g(x)k, we prove in following two situations.
First situation, k = 1. According to Equality 2, then f(x) - (a1 + a3 + · · ·+

a2d−1) or f(x) - (a2 + a4 + · · · + ad2). According to above proof, we know that
this goes against the requirement of MDS. So when k = 1, (a1, a2, · · · , a2d) is
not MDS.

Second situation, k ≥ 2. According to Equality 2 and f(x) - (a1 +a3 + · · ·+
a2d−1) and f(x) - (a2+a4+· · ·+ad2), we can get that g(x) | (a1+a3+· · ·+a2d−1)
and g(x) | (a2 +a4 + · · ·+ad2). It result in that a1 +a2 + · · · a2d is not relatively
prime with f(x) But according to Equality 1, a1 + a2 + · · · a2d is relatively
prime with f(x). So when k ≥ 2, (a1, a2, · · · , a2d) is not MDS.

�

Remark 1 For Theorem 7, two aspects should be pointed:
(I) The finite field is a special case in Theorem 7.
Only when k = 1, F2[x]/(f(x)) is a finite field. When k > 1, F2[x]/(f(x))

is a finite ring. Chand Gupta, K. et al.[17] only proved that the 2d × 2d cir-
culant orthogonal matrix over the finite field must not be MDS. We prove the
existence of circulant the orthogonal matrix over a bigger set than [17].

(II) The 2d × 2d circulant orthogonal MDS matrix has the chance to be
constructed.

Let h1(x) 6= 1, h2(x) 6= 1. h1(x) is relatively prime with h2(x). f(x) =
h1(x)h2(x). Then f(x) is not the case of Theorem 7. In this case, we have
a chance to construct the 2d × 2d circulant orthogonal MDS matrix over
F2[x]/(f(x)). With this point, we will efficiently construct lightweight 4 × 4
circulant orthogonal MDS matrices later.
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4.2 Judgement of The 4× 4 Circulant Orthogonal Matrix

Theorem 8 Let f(x) be a polynomial over F2. Let (a, b, c, d) be a 4× 4 circu-
lant matrix over F2[x]/(f(x)). Then (a, b, c, d) is an orthogonal matrix if and
only if (a+ b+ c+ d)2 ≡ 1 (mod f(x)) and (a+ c)(b+ d) ≡ 0 (mod f(x)).

Proof Let (a, b, c, d) be as follow

(a, b, c, d) =


a b c d
d a b c
c d a b
b c d a

 =


α1

α2

α3

α4


(a, b, c, d) is an orthogonal matrix if and only if
(I) |α1| = |α2| = |α3| = |α4| = 1 and
(II) αiα

T
j = 0 (i 6= j, 1 ≤ i, j ≤ 4).

For (I), because (a, b, c, d) is a circulant matrix over F2[x]/(f(x)), so

|α1| = |α2| = |α3| = |α4| = a2+b2+c2+d2 = (a+b+c+d)2 ≡ 1 (mod f(x)).

Then |α1|=|α2|=|α3|=|α4| = 1 is equivalent to (a+ b+ c+ d)2 = 1
For (II), because (a, b, c, d) is a circulant matrix, so

α1α
T
2 = α2α

T
3 = α3α

T
4 = α1α

T
4 and α1α

T
3 = α2α

T
4 .

It is obvious that α1α
T
3 =α2α

T
4 =ac+ bd+ ca+ db=0. Besides, α1α

T
2 =ab+ bc+

cd + da=(a + c)(b + d). So αiα
T
j = 0 (i 6= j, 1 ≤ i, j ≤ 4) is equivalent to

(a+ c)(b+ d) = 0.
�

4.3 Construction of The 4× 4 Circulant Orthogonal MDS Matrix

In this subsection, we introduce how to choose elements to construct 4 × 4
circulant orthogonal MDS matrices.

Theorem 9 Let f(x) be a polynomial over F2. If (a, b, c, d) is a 4 × 4 circu-
lant orthogonal MDS matrix over F2[x]/(f(x)), then there exist g(x) and t(x)
satisfying f(x) = g(x)t(x), g(x) 6= 1, t(x) 6= 1, g(x) | (a+ c), t(x) | (b+d) and
g(x) is relatively prime with t(x).

Proof Let L = (a, b, c, d) be a circulant orthogonal MDS matrix over F2[x]/(f(x))
as follow

L =


a b c d
d a b c
c d a b
b c d a


According to Theorem 8, f(x) | (a + c)(b + d). First, we prove f(x) - (a + c)
and f(x) - (b+ d).
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Assume f(x) | (a + c). Because of a, c ∈ F2[x]/(f(x)), then a = c. This
results in that

L = (a, b, c, d)=(a, b, a, d) be as follow

L =


a b a d
d a b a
a d a b
b a d a


In this matrix, there is a minor

∣∣∣∣ a a
a a

∣∣∣∣ = 0. This does not satisfy the re-

quirement of MDS. But (a, b, c, d) is MDS, so this is a contradiction. This
assumption is wrong. Then f(x) - (a + c). When f(x) | (b + d), the result is
similar. So f(x) - (a+ c) and f(x) - (b+ d). According to f(x) | (a+ c)(b+ d),
there exist g(x) and t(x) satisfying

g(x) 6= 1, t(x) 6= 1, g(x) | (a+ c), t(x) | (b+ d) and f(x) = g(x)t(x).

Let a+ c = g(x)r1(x) and b+ d = t(x)r2(x).
Next we prove that g(x) is relatively prime with t(x).
Assume g(x) is not relatively prime with t(x). It means that there exists

h(x) 6= 1 satisfying

g(x) = g′(x)h(x) and t(x) = t′(x)h(x).

This results in that (a+ b+ c+ d)2 is not relatively with f(x). But according
to Theorem 8, then

(a+ b+ c+ d)2 ≡ 1 (mod f(x)).

This results in that (a+b+c+d)2 is relatively with f(x). Then this assumption
is wrong. So g(x) is relatively prime with t(x).

�

Remark 2 According to Theorem 9,

a+ c = g(x)r1(x) and b+ d = t(x)r2(x).

Next we prove that r1(x) and r2(x) are well-determined.

Proof Because of g(x) being relatively prime with t(x), so there are well-
determined r′1(x) and r′2(x) satisfying

g(x)r′1(x) + t(x)r′2(x) = 1.

According to the proof of Theorem 9,

g(x)r1(x) + t(x)r2(x) = 1.

So r1(x) = r′1(x) and r2(x) = r′2(x). Then r1(x) and r2(x) are well-determined.
�
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4.4 Algorithm for Constructing 4× 4 Circulant Orthogonal MDS Matrices

According to Theorem 9 and Remark 2, we give the Algorithm 1 to efficiently
construct 4× 4 circulant orthogonal MDS matrices.

Algorithm 1 Construct Lightweight 4×4 Circulant Orthogonal MDS matrices
over m×m Matrix Polynomial Residue Rings
1: for Search every non-singular m×m matrix T with a few of XORs over F2. do
2: Find the minimum polynomial f(x) of T .
3: if f(x) = g(x)t(x) satisfying g(x) 6= 1, t(x) 6= 1 and g(x) is relatively prime with

t(x). then
4: Find ri1(x), ri2 satisfying g(x)ri1+t(x)ri2 = 1. Let pi1=g(x)ri1, pi2=t(x)ri2 = 1

. Sore pi1 and pi2.
5: end if
6: end for
7: for i from 1 to k. do
8: for Search a over F2[x]/(fi(x)). do
9: for Search b over F2[x]/(fi(x)). do
10: c = a+ pi1(x), d = b+ pi2.
11: if The circulant orthogonal matrix (a, b, c, d) is MDS. then
12: Store fi(x) and (a, b, c, d).
13: end if
14: end for
15: end for
16: end for
17: for Search every m×m non-singular matrix T with a few of XORs. do
18: for i from 1 to k. do
19: if fi(T ) = 0. then
20: Substitute T into corresponding circulant orthogonal MDS matrix (a, b, c, d).

Compute the sum of XORs of (a, b, c, d).
21: end if
22: end for
23: end for

Algorithm 1 can be summarized as following 3 steps:
Step 1: Factorizing the minimum polynomials
Find all matrices with few XORs in GL(n,F2). Find all minimum polyno-

mials f1(x), f2(x)
, · · · , fk(x) of these matrices. Factorize f1(x), f2(x), · · · , fk(x). Factorizing has
two situations:

– fi(x) = gi(x)k, where gi(x) is a irreducible polynomial over F2. At this
case, ignore this fi(x).

– fi(x) = gi(x)ti(x) satisfying gi(x) 6= 1, ti(x) 6= 1 and gi(x) is relatively
prime with ti(x). At this case, store fi(x), which will be used at Step 2.

Step 2: Constructing 4× 4 circulant orthogonal matrices
Find ri1(x) and ri2(x) satisfying gi(x)ri1(x) + ti(x)ri2(x) = 1. Search a

and b over F2[x]/(fi(x)). c = a + gi(x)ri1(x), d = b + ti(x)ri2. Construct the
circulant matrix (a, b, c, d). (a, b, c, d) must be an orthogonal matrix.

Step 3: Judging MDS
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For every (a, b, c, d), calculate all minors of (a, b, c, d) of degree 2. If these
minors are relatively prime with f(x), then (a, b, c, d) is MDS. Otherwise, it is
not MDS.

Remark 3 With the traditional constructing method, only a few of circulant
matrices are orthogonal matrices in vast candidate matrices. So the tradi-
tional constructing method is inefficient. With the Algorithm 1, all candidate
matrices must be orthogonal circulant matrices.

5 Construct Lightweight 4× 4 Circulant Orthogonal MDS Matrices

In this section, we factorize the minimum polynomials of m × m(m=4 or
8) matrices over F2. According to factorizations, two efficient algorithms for
constructing 4 × 4 lightweight circulant orthogonal MDS matrices are given.
Finally, by using such algorithms, new circulant orthogonal MDS matrices are
constructed first time. The experiment platform is Intel i5-5300, 2.30GHz with
4GB memory, running Windows 10. Programming language is the C language.

5.1 Construct Over The 8× 8 Matrix Polynomial Residue Ring

Let T be a 8×8 matrix over F2. f(x) is the minimum polynomial of T . In F2[T ],
the identity matrix I is the single matrix with 0 XOR count. When construct
a MDS matrix with as few XORs as possible, there should be as many I being
elements as possible in this MDS matrix. Other elements should have as few
XORs as possible. Elements with 1 XOR should be used to construct lightest
MDS matrix. For this purpose, let T with 1 XOR be an element of MDS matrix,
and other elements are chosen from F2[T ].

If T is an element in a lightest MDS matrix, then there generally exists a

minor in this MDS matrix as

∣∣∣∣ I I
I T

∣∣∣∣ = T + I. According to the requirement

of MDS, T and T + I should be non-singular.
Let T be a non-singular 8× 8 matrix with 1 XOR over F2 satisfying T + I

non-singular. By searching all T , factorizations of minimum polynomials of
these matrices are as follows

x8 + x+ 1 = (x2 + x+ 1)(x6 + x5 + x3 + x2 + 1)
x8 + x2 + 1 = (x4 + x+ 1)2

x8 + x3 + 1 = (x3 + +x+ 1)(x5 + x3 + x2 + x+ 1)
x8 + x4 + 1 = (x2 + x+ 1)4

x8 + x5 + 1 = (x3 + x2 + 1)(x5 + x4 + x3 + x2 + 1)
x8 + x6 + 1 = (x4 + x3 + 1)2

x8 + x7 + 1 = (x2 + x+ 1)(x6 + x4 + x3 + x+ 1)

According to Theorem 7, only x8 + x + 1, x8 + x3 + 1, x8 + x5 + 1 and
x8 + x7 + 1 can be used to construct 4× 4 circulant orthogonal MDS matrices
over F2[x]/(f(x)). While x8 + x2 + 1, x8 + x4 + 1 and x8 + x6 + 1 can not.
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According to Remark 2, x8 +x+ 1, x8 +x3 + 1, x8 +x5 + 1 and x8 +x7 + 1
are investigated as follows

f1(x) = x8 + x+ 1 = (x2 + x+ 1)(x6 + x5 + x3 + x2 + 1)
⇒ (x2 + x+ 1)(x4 + x2) + (x6 + x5 + x3 + x2 + 1) · 1 = 1
f2(x) = x8 + x3 + 1 = (x3 + +x+ 1)(x5 + x3 + x2 + x+ 1)
⇒ (x3 + +x+ 1)(x4 + x3 + 1) + (x5 + x3 + x2 + x+ 1)(x2 + x) = 1
f3(x) = x8 + x5 + 1 = (x3 + x2 + 1)(x5 + x4 + x3 + x2 + 1)
⇒ (x3 + x2 + 1)(x3 + x2 + x) + (x5 + x4 + x3 + x2 + 1)(x+ 1) = 1
f4(x) = x8 + x7 + 1 = (x2 + x+ 1)(x6 + x4 + x3 + x+ 1)
⇒ (x2 + x+ 1)(x4 + x3 + x2 + x) + (x6 + x4 + x3 + x+ 1) · 1 = 1

p11(x) = (x2 + x+ 1)(x4 + x2) = x6 + x5 + x3 + x2,
p12(x) = x6 + x5 + x3 + x2 + 1,
p21(x) = (x3 + +x+ 1)(x4 + x3 + 1) = x7 + x6 + x5 + x+ 1,
p22(x) = (x5 + x3 + x2 + x+ 1)(x2 + x) = x7 + x6 + x5 + x,
p31(x) = (x3 + x2 + 1)(x3 + x2 + x) = x6 + x2 + x,
p32(x) = (x5 + x4 + x3 + x2 + 1)(x+ 1) = x6 + x2 + x+ 1,
p41(x) = (x2 + x+ 1)(x4 + x3 + x2 + x) = x6 + x4 + x3 + x,
p42(x) = x6 + x4 + x3 + x+ 1.

(3)

Over 8 × 8 matrix polynomial residue rings, by using Algorithm 1, con-
structing 41328 4× 4 circulant orthogonal MDS matrices with 64 XORs takes
150 minutes. Details will be shown at Table 2.

5.2 Construct Over The 4× 4 Matrix Polynomial Residue Ring

By searching all non-singular 4×4 matrices over F2 with 1 XOR, the minimum
polynomials of these matrices are as follows

x2 + 1 = (x+ 1)2

x3 + 1 = (x+ 1)(x2 + x+ 1)
x3 + x2 + x+ 1 = (x+ 1)3

x4 + 1 = (x+ 1)4

x4 + x+ 1 = x4 + x+ 1
x4 + x2 + 1 = (x2 + x+ 1)2

x4 + x2 + x+ 1 = (x+ 1)(x3 + x2 + 1)
x4 + x3 + 1 = x4 + x3 + 1
x4 + x3 + x+ 1 = (x+ 1)(x2 + x+ 1)
x4 + x3 + x2 + 1 = (x+ 1)(x3 + x+ 1)

According to Theory 7, in above polynomials, only x3 + 1, x4 + x2 + x+ 1,
x4+x3+x+1 and x4+x3+x2+1 can be used to construct circulant orthogonal
matrices, but others can not.

According to Remark 2, x3 + 1, x4 + x2 + x + 1, x4 + x3 + x + 1 and
x4 + x3 + x2 + 1 are investigated as follows
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h1(x) = x3 + 1 = (x+ 1)(x2 + x+ 1)
⇒ (x+ 1) · x+ (x2 + x+ 1) · 1 = 1
h2(x) = x4 + x2 + x+ 1 = (x+ 1)(x3 + x2 + 1)
⇒ (x+ 1) · x2 + (x3 + x2 + 1) · 1 = 1
h3(x) = x4 + x3 + x+ 1 = (x2 + 1)(x2 + x+ 1)
⇒ (x2 + 1)(x+ 1) + (x2 + x+ 1) · x = 1
h4(x) = x4 + x3 + x2 + 1 = (x+ 1)(x3 + x+ 1)
⇒ (x+ 1)(x2 + x) + (x3 + x+ 1) · 1 = 1

q11(x) = (x+ 1) · x = x2 + x,
q12(x) = x2 + x+ 1,
q21(x) = (x+ 1) · x2 = x3 + x2,
q22(x) = x3 + x2 + 1,
q31(x) = (x2 + 1)(x+ 1) = x3 + x2 + x+ 1,
q32(x) = (x2 + x+ 1) · x = x3 + x2 + x,
q41(x) = (x+ 1)(x2 + x) = x3 + x,
q42(x) = x3 + x+ 1.

(4)

Over 4 × 4 matrix polynomial residue rings, by using Algorithm 1, con-
structing 80 4×4 circulant orthogonal MDS matrices with 24 XORs takes less
than 1 second. Details will be shown at Table 2.

Table 2: Number of Lightweight 4× 4 Circulant Orthogonal MDS Matrices

Matrix type Entries Sum of XORs Number Running time
Orthogonal Circ(a, b, c, d) F2[T4×4] 24 80 <1seconds
Orthogonal Circ(a, b, c, d) F2[T8×8] 64 41328 150minutes

Table 3: Comparisons with previous constructions of orthogonal circulant MDS matrices

Matrix type Elements Sum of XORs Ref.

OrthogonalCirc(I, A,B,C) GL(4, F2) ≥ 24 [19]

OrthogonalCirc(A,B,C,D) GL(4, F2) ≥ 24 Ours

OrthogonalCirc(A,B,C,D) GL(8, F2) ≥ 64 Ours

6 Conclutions

In present paper, we mainly investigate constructions of lightweight orthogonal
MDS matrices. Firstly, for judging whether an orthogonal matrix is MDS, we
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propose a more efficient necessary-and-sufficient condition than the traditional
method. Secondly, we prove a theorem that the 2d × 2d circulant orthogonal
matrix does not exist over a bigger set than the finite field. And we show an
efficient method to construct 2d × 2d circulant orthogonal matrices. Thirdly,
With the computation efficiency of the matrix polynomial residue ring and
by analyzing the minimum polynomials of lightweight element-matrices, an
extremely efficient algorithm for constructing 4× 4 circulant orthogonal MDS
matrices is proposed. Finally, new lightweight results are constructed.
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