Minimizing the Complexity of Goldreich’s
Pseudorandom Generator

Alex Lombardi* Vinod Vaikuntanathan'
MIT MIT
March 25, 2017
Abstract

In the study of cryptography in NC', it was previously known that Goldreich’s candidate
pseudorandom generator (PRG) is insecure when instantiated with a predicate P in 4 or fewer
variables, if one wants to achieve polynomial stretch (that is, stretching n bits to n'* bits for
some constant € > 0). The current standard candidate predicate for this setting is the “tri-sum-
and” predicate TSA(z) = XOR3 @ ANDs(z) = 1 ® x2 @ 23 ® x425, yielding a candidate PRG of
locality 5. Moreover, Goldreich’s PRG, when instantiated with TSA as the predicate, is known
to be secure against several families of attacks, including F»-linear attacks and attacks using
SDP hierarchies such as the Lasserre/Parrilo sum-of-squares hierarchy.

However, it was previously unknown if TSA is an “optimal” predicate according to other
complexity measures: in particular, decision tree (DT-)complexity (i.e., the smallest depth of a
binary decision tree computing P) and Q-degree (i.e., the degree of P as a polynomial over Q),
which are important measures of complexity in cryptographic applications such as the con-
struction of an indistinguishability obfuscation scheme. In this work, we ask: Can Goldreich’s
PRG be instantiated with a predicate with DT-complexity or Q-degree less than 5?

We show that this is indeed possible: we give a candidate predicate for Goldreich’s PRG
with DT-complexity 4 and Q-degree 3; in particular, this candidate PRG therefore has the prop-
erty that every output bit is a degree 3 polynomial in its input. Moreover, Goldreich’s PRG in-
stantiated with our predicate has security properties similar to what is known for TSA, namely
security against [Fp-linear attacks and security against attacks from SDP hierarchies such as the
Lasserre/Parrilo sum-of-squares hierarchy.

We also show that all predicates with either DT-complexity less than 4 or Q-degree less
than 3 yield insecure PRGs, so our candidate predicate simultaneously achieves the best possible
locality, DT-complexity, Q-degree, and [F-degree according to all known attacks.

*E-mail: alex3jl@mit.edu. Supported by an Akamai Presidential Fellowship.

"E-mail: vinodv@mit.edu. Research supported in part by NSF Grants CNS-1350619 and CNS-1414119, Alfred
P. Sloan Research Fellowship, Microsoft Faculty Fellowship, the NEC Corporation, a Steven and Renee Finn Career De-
velopment Chair from MIT. This work was also sponsored in part by the Defense Advanced Research Projects Agency
(DARPA) and the U.S. Army Research Office under contracts W911NF-15-C-0226.

Contents

1

Introduction 1
1.1 OurResults e e e 3
12 AnOpenProblem 3
Preliminaries 4
2.1 DPseudorandom generators Lo oo 4
2.2 Analysis of Boolean Functions 0 0L, 4
A Review of Goldreich’s PRG and its Security 6
3.1 The Choice of Predicates in Goldreich’'sPRG 6
New Candidate Predicates for Goldreich’s PRG 7
4.1 A Predicate with Decision Tree-Complexity 4 8
42 A Predicate with Decision-Tree Complexity 4 and Q-degree 3. 8
Predicates with Depth-3 Decision Trees Yield Insecure PRGs 10
Predicates with Q-degree 2 Yield Insecure PRGs 12

Conclusion 14

1 Introduction

While hard problems occur abundantly in nature, useful hard problems are somewhat rare. In par-
ticular, to be useful in cryptography, the (conjuctured) hard problems need several additional
properties: at the minimum, average-case hardness and the ability to sample hard instances with
their solutions (a property that is required for building one-way functions).

It is hard enough to come up with cryptographically useful hard problems, but to make our
life even harder, we also often want the cryptographic constructions to be as simple as possible. For
example, take the case of (cryptographic) pseudorandom generators (PRGs), the object of study
in this work. Here, we ask for a function! G : {0,1}" — {0, 1} which is: (a) expanding, meaning
that m > n and ideally, m is a large polynomial in n; (b) pseudorandom, meaning that G(U,,) is
computationally indistinguishable from U,,,, where U,, and U,,, are uniform distributions on n and
m bits, respectively; and (c) simple, meaning that G is computable by a (uniform) NCP circuit.

In a remarkable tour-de-force, Applebaum, Ishai and Kushilevitz [AIK06] showed how to
“compile” any PRG computable in a large complexity class, say NC1, into one that can be com-
puted in NCP. Their PRGs even had locality as small as 4, meaning that each output bit depends
on only 4 input bits. This gave us candidate PRGs under essentially any standard complexity
assumption, e.g., the hardness of factoring, that of the decisional Diffie-Hellman problem, the
worst-case hardness of approximating shortest vectors in lattices, and so forth. The main defi-
ciency of the AIK work is that even if you start with a PRG with large, polynomial, stretch in
NC!, you only get a PRG with sub-linear (additive) stretch in NC?, that is m = n + o(n). Indeed,
as Mossel, Shpilka and Trevisan [MST06] showed, there are no PRGs in NC° with polynomial
stretch and locality 4, so in a sense, the [AIK06] construction is nearly optimal.

However, we cannot help but ask for more. Polynomial stretch PRGs, also called PPRGs
(where m = n¢ for some ¢ > 1) in NC? have several applications including secure two-party
computation with constant overhead [IKOS08] and more recently, indistinguishability obfusca-
tion (IO) from constant-degree multilinear maps [Linl6a, LV16, AS16, Lin16b]. Jumping ahead,
we note that the IO application cares about reducing parameters of the PRG other than its locality,
in particular its Q-degree, defined as the degree of each output bit when expressed as a polynomial
over the rationals. But more on this later.

PPRGs are much trickier to construct; indeed, our best hope is a candidate construction (actu-
ally, a family of constructions) first proposed by Goldreich [Gol00] in 2000. Goldreich’s generator
and its properties in the polynomial stretch regime are the central themes of this paper.

Goldreich’s Pseudo-random Generator. Goldreich’s candidate pseudorandom generator, first
introduced in [Gol00] (then as a candidate one-way function), can be instantiated with any k-ary
predicate P : {0,1}* — {0,1} and any k-uniform (directed) hypergraph H on n vertices and m
hyperedges. Given H and P, we define a PRG G : {0,1}" — {0,1}" as follows: Identify each
vertex in H with an index in [n] and each hyperedge with an index ¢ € [m]. For each i € [m],
let 'y (i) € [n]* be the sequence of k vertices in the ith hyperedge. Then, Goldreich’s PRG is the
function from {0, 1}" to {0, 1} defined by

GH,P<37) = (P(x‘rH(i)>)i€[m])

To be more precise, we ask for a family of functions {G', },en Where G, maps n bits to m = m(n) > n bits.

That is, the ith bit of G p() is the output of P when given the I'7 (%)-restriction of « as input. For
the rest of this paper, we think of k£ as an absolute constant.

Many predicates P : {0,1}* — {0,1} are known to yield insecure PRGs when plugged into
Goldreich’s generator Gy p. In particular, call a predicate degenerate if it is either affine or not
pairwise-independent, that is it is correlated to some pair of its input bits.> A long sequence of
results [MST06, BQ12, ABR12, OW14, KMOW17] show the following beautiful dichotomy theorem:
every predicate is either (a) degenerate, in which case it can be broken by a Fs-linear attack, or (b)
non-degenerate, in which case it resists a large class of attacks including [Fo-linear attacks [ABR12]
and attacks that can be implemented in the Lasserre/Parrilo sum-of-squares (SOS) hierarchy, a
powerful SDP hierarchy which generalizes the Sherali-Adams (SA.) and Lovasz-Schrijver (LS.)
proof systems [OW14, KMOW?17]. The latter class of attacks is of particular interest in the context
of Goldreich’s generator as the problem of breaking it is closely tied to the problem of refuting ran-
dom instances of CSPs (see [OW14, KMOW17, BS16] for context on SOS and refutation of CSPs).
Moreover, the security result against SOS attacks from [KMOW17] holds even when the stretch of
the PRG is a large polynomial: the stretch achievable by a predicate P is entirely characterized by
its t-wise independence properties.

As a special case of the dichotomy results, any predicate P with locality at most 4 (i.e., & < 4)
is degenerate and therefore Goldreich’s PRG using P is broken. In addition, given these results,
when looking for candidate predicates that could achieve polynomial stretch, one can take the
view that any non-degenerate predicate is a viable candidate. For a more detailed discussion of
Goldreich’s PRG, we refer the reader to Section 3.

Locality, Q-degree and Program Obfuscation. As we already alluded, some applications of
polynomial-stretch “local” PRGs do not necessarily need small locality, but rather they care about
optimizing other parameters of the predicate P. In particular, a sequence of works showed how to
construct program obfuscation schemes from constant-degree cryptographic multi-linear maps [Lin16a,
LV16] assuming that P can be written as a constant-degree polynomial Py over the rationals (which
agrees with P on the Boolean hypercube).

The connection between multi-linearity and Q-degree is precise and quantitative: [Linl6a,
LV16] showed that if Goldreich’s PRG is secure with a predicate P with Q-degree d, and cryp-
tographic multilinear maps with degree D = 3d + 2 (and a secure Diffie-Hellman-like problem)
exist, so does program obfuscation. Indeed, this connection is even sharper, but we will defer a
discussion of the sharper statement to the end of the introduction. Minimizing the “degree of the
cryptographic multilinear maps” is a vital research direction; indeed, achieving multi-linearity 2
will imply a construction of program obfuscation, and indeed nearly all of cryptography, from
hard Diffie-Hellman-like problems on elliptic curves.

This inspires the question:

What is the smallest Q-degree for a predicate P that makes Goldreich’s function a PPRG?

Since Q degree of a predicate can be no more than its locality, the answer is at most 5, but how
small can it be?

*This means that there are input locations i and j such that Pr[P(z) = z; @ z,] # 1.

1.1 Owur Results

We study the complexity of predicates P in Goldreich’s PRG constructions that give us polynomial-
stretch PRGs. In particular, we look at two measures of complexity of a predicate P, namely its Q-
degree and the minimum depth of a decision tree that computes it (we call this the DT-complexity
of P), and show positive and negative results.

On the negative side, we show that no predicates with Q-degree at most 2 or decision tree
depth at most 3 can result in a secure PPRG.? Previously, Mossel, Shpilka and Trevisan [MST06]
who show that locality-4 predicates cannot result in a secure PRG.

Theorem 1.1 (Informal). All predicates computable by a degree-2 polynomial over Q or a depth 3 decision
tree are either affine or fail to be pairwise-independent. Subsequently, Goldreich’s PRG is insecure when
instantiated with such predicates for m = Q(n'*¢).

On the positive side, we construct a predicate P which has locality decision-tree depth 4, Q-
degree 3 and Fy-degree 2 which is “Goldreich-friendly”. That is, Goldreich’s PRG instantiated
with P resists precisely the class of attacks considered in [ABR12, OW14, KMOW17], namely Fa-
linear attacks and attacks that can be implemented in the Lasserre/Parrilo sum-of-squares (SOS)
hierarchy.

Our predicate TSPA (“tri-sum-paired-and”) is defined as follows

f(xl,:cg,azg,x4,w5) =21 Pxro P3P (562 D CL‘4)(:E3 D I5).

and is inspired by work of Ambainis [Amb06] who constructs a similar predicate in the context of
quantum query complexity.

Theorem 1.2. There is a non-degenerate predicate Q : {0,1}> — {0, 1} on 5 variables which is computable
by a degree 3 polynomial over Q as well as by a depth 4 decision tree. When instantiated with (), Goldreich’s
PRG is (subexponentially) secure against Fo-linear attacks for all m = O(n'25=¢) as well as attacks from
the Lasserre/Parrilo sum-of-squares hierarchy for all m = O(n'-57¢),

1.2 An Open Problem

For applications to obfuscation, however, our results are not the end of the story. Lin’s result in
[Lin16b] explicitly proves the “d vs. 3d+-2” tradeoff, but implicit in [Lin16b] is the following result.

Theorem 1.3. Suppose that there exists a PRG with Q-degree d and stretch n**< for some € > 0. Then,
3d

indistinguishability obfuscation can be constructed from cryptographic D-linear maps for any D > Bk

Therefore, what we are interested in optimizing is the ratio of the degree d of a candidate PRG
to the exponent s of its polynomial stretch. In particular, we ask a generalization of our earlier
question:

For a fixed constant d, what is the largest stretch a Q-degree d PRG can attain?

For example, does there exist a degree d PRG obtaining stretch n [Gd]+er 1f so, then Theorem 1.3
implies that IO can be constructed from 4-linear maps. Both of the above questions remain entirely
open.

*This also yields a negative result for secure predicates with F,-degree 2 for p > 2".

3

Organization. In Section 2, we review the definitions and concepts relevant to the paper, and
in Section 3 we formally introduce Goldreich’s PRG and discuss previous results related to its
security. In Section 4, we present new candidate predicates for Goldreich’s PRG achieving Q-
degree and decision tree-complexity less than 5, and in Sections 5 and 6 we prove the negative
results stated in Theorem 1.1.

2 Preliminaries

Notation. We let U,, denote the uniform distribution on n bits, i.e., on the set {0, 1}". Let negl(n) :
N — R denote any function that is smaller than any inverse polynomial in n. That is, we require
that for every polynomial p, there is an n,, € N such that for all n > n,, negl(n) < 1/p(n).

2.1 Pseudorandom generators

We say that a function G : {0, 1}" — {0, 1}™ is a pseudorandom generator (PRG) if it has the follow-
ing properties: (1) G is computable in (uniform) time poly(n), and (2) any probabilistic polynomial
time adversary A : {0,1}"™ — {0, 1} has the property that

E [A(G(2)] - E [Ay)]] = negl(n)
z+Up y<Um

We say that a PRG G : {0,1}" — {0,1}" has stretch m = m(n). In this paper, we focus on the
polynomial stretch regime, namely where m = O(n°) for some constant ¢ > 1.

If G is computable in NC, then we define the locality of G to be the maximum number of input
bits on which any output bit of G depends.

As positive evidence for a particular function G : {0,1}" — {0,1}" to be a PRG, one can
prove that G resists attacks by more specific kinds of adversaries (instead of all polynomial-time
adversaries). We focus on two kinds of attacks here. First, we consider Fs-linear attacks.

Definition 1 (small-bias generator). A polynomial-time computable function G : {0,1}" — {0,1}™
is a small-bias generator if the advantage of every Fo-linear function A : {0,1}"™ — {0,1} in distin-
guishing between the distributions G(U,,) and U, is negl(n). See [NN93] for a general exposition
on small-bias generators.

The other class of attacks we consider are those from the Lasserre/Parrilo sum-of-squares
(SOS) hierarchy, a powerful SDP hierarchy which generalizes the Sherali-Adams (SA) and Lovéasz-
Schrijver (LS,) proof systems. See [BS16] for a general introduction to the SOS hierarchy. As we
will see, SDP-based attacks are of particular interest to us because the security of Goldreich’s PRG
is closely tied to the problem of refuting random instances of CSPs.

2.2 Analysis of Boolean Functions

Let f: {0,1}¥ — {0,1} be a function on k variables.

Definition 2 (bias). f is balanced, or unbiased, if E f(x) = 1; otherwise, we say that f is biased.

x~Uy 2’

Definition 3 (t-wise independence). For ¢t > 0, f is t-wise independent if for all s < ¢ and all sets
of s variables {z;,, ..., z;,}, the function f(x) ® x;; @ ... ® x;, is balanced.

4

Finally, we define two complexity measures of f besides its locality: degree and decision tree
complexity.

Definition 4 (degree). For any field K, the K-degree of f is the degree of the unique multilinear
polynomial over K computing f.

For our purposes, the fields of interest are K = Q and K = F», giving us notions of Q-degree
and Fo-degree.

Definition 5 (decision tree). A decision tree is a directed binary tree 7" in which each non-leaf vertex
is labeled by a variable x; and each leaf is labeled by a bit b € {0,1}. Any v € {0, 1}* defines a path
in T which starts at the root of 7" and traverses from a vertex labeled by z; to its left child if v; = 0
and to its right child if v; = 1. We say that a decision tree 7' computes a function f if the following
holds: for each v € {0, 1}*, the leaf at the end of the path in T defined by v is labeled by f(v).

0 1 1 0

Figure 1: This is a depth 2 decision tree computing the function f(z1,z2) = z1 ® x2. We only consider
nodes labeled by variables when calculating the depth of a decision tree

Definition 6 (decision tree complexity). Let f : {0,1}* — {0, 1} be a boolean function. The decision
tree complexity (DT-complexity) of f is the smallest depth of a decision tree computing f.

Our three main complexity measures — Q-degree, DT-complexity, and locality — are related to
each other in the following way.

Lemma 2.1. Let f : {0,1}* — {0, 1} be a boolean function with Q-degree d and DT-complexity D. Then
d<D<k.

Proof. To see that D < k, note that there exists a (complete) depth & decision tree 7' computing f
in which the ith layer of T" consists only of variables z; and the “k 4 1th layer” of 1" consists of 2k
leaves spelling out the truth table for f. To see that d < D, note that a decision tree with root z;
and children 77, and T'r has the property that 7'(z) = x;Tr(x) + (1 — 2;)T1(z) (Where T'(z) := f(z)
when T computes f); a quick induction allows us to conclude that 7'(x) can be written as a rational
polynomial of degree at most D, as desired.]

3 A Review of Goldreich’s PRG and its Security

Goldreich’s candidate pseudorandom generator, first introduced in [Gol00] (then as a candidate
one-way function), can be instantiated with any k-ary predicate P : {0,1}* — {0,1} and any &-
uniform (directed) hypergraph H on n vertices and m hyperedges. Given H and P, we identify
each vertex in H with an index in [n] and each hyperedge with an index i € [m]. For each i € [m],
let T (i) € [n]* be the sequence of k vertices in the ith hyperedge. Then, Goldreich’s PRG is the
function from {0, 1}" to {0, 1} defined by

Gap(r) = (P(x‘FH(i)))ie[m] '

That is, the ith bit of G p(z) is the output of P when given the I'; (7)-restriction of x as input.

Goldreich’s generator is often instantiated with a uniformly random choice of hypergraph H; in
this setting, we say that “Goldreich’s generator instantiated with P is a PRG” for some predicate
P if for a random k-uniform hypergraph H, Gy p is a PRG with high probability (say, probability
1 — o(1)). Often (see [AL16, OW14, ABR12]) instead of proving results for random hypergraphs
it suffices to use hypergraphs with “good expansion” for varying definitions of expansion. Un-
less otherwise stated, references to “Goldreich’s PRG” assume the uniformly random hypergraph
setting.

It is sometimes useful to think of the hypergraph H and predicate P as defining a constraint
satisfaction problem (CSP) using predicates P and —P as constraints: the task of breaking Goldre-
ich’s PRG can be thought of distinguishing a random planted instance of this CSP from a truly
random instance of the CSP. From this point of view, it is natural to consider SDP-based attacks
and desirable to have security results against such attacks. For a more in-depth survey and dis-
cussion of Goldreich’s PRG, see [App16].

3.1 The Choice of Predicates in Goldreich’s PRG

Many predicates P : {0,1}* — {0,1} are known to yield insecure PRGs when plugged into Gol-
dreich’s generator G p. Define a predicate P to be degenerate if it is either affine or correlated to
some pair of its input bits.

Definition 7. A predicate P : {0, 1}* — {0, 1} is called degenerate if it is either
(a) affine: that is, the Fo-degree of P is at most 1; or

(b) not pairwise-independent: that is, there is a pair of input locations i and j such that Pr[P(z) =
z; @ xj] # 5.

If neither of the above conditions hold, P is called non-degenerate.

There have been many attacks on degenerate predicates [MST06, BQ12, ABR12]. Perhaps most
interestingly, Applebaum, Bogdanov, and Rosen [ABR12] show the following result.

Theorem 3.1 ([ABR12], Theorem 2). If P is degenerate, then Goldreich’s PRG is insecure when instan-

tiated with P as long as m = n + Q(n). In fact, the PRG has Q(@) bias with probability 1 — o(1).

So when using a degenerate predicate, Goldreich’s PRG cannot even pass all Fo-linear tests.
Theorem 3.1 is a result in the “random hypergraph” model, but in some cases (e.g., when P has
locality at most 4), even stronger insecurity results are known. In [MST06], an efficient (but non-
linear) attack is described on Goldreich’s PRG when instantiated with any predicate of locality at
most 4 (which is necessarily degenerate) and any hypergraph H.

On the other hand, the “tri-sum-and” predicate

TSA($1,$2,$3,$4,$5) =1 Dro D I3 D T4Ts

is an oft-cited candidate predicate for Goldreich’s PRG. In [MST06], Mossel, Shpilka, and Tre-
visan show that when instantiated with the TSA predicate, a variant of Goldreich’s PRG is secure
against Fy-linear attacks (that is, the PRG has subexponentially small bias) for m = O(n!?°~¢),
and in [OW14], O'Donnell and Witmer extend this result (again for TSA) to m = O(n!57¢) in the
uniformly random hypergraph setting. Moreover, they show that up to m = O(n!*~¢), the PRG
is subexponentially secure against the SOS hierarchy (in a slightly modified random hypergraph
setting).

There have also been results proving that Goldreich’s PRG is secure against various attacks
as long as the chosen predicate P is non-degenerate. Applebaum, Bogdanov, and Rosen [ABR12]
show the following converse to Theorem 3.1.

Theorem 3.2 ([ABR12], Theorem 1). If P is non-degenerate, then for m = O(n'-?=¢) Goldreich’s PRG
has subexponentially small bias with probability 1 — o(1).

This does not match the stretch of n'®~¢ achieved in [OW14] for the TSA predicate; however,
there are no known attacks against any non-degenerate predicate in this setting for m = o(n!?),
and it remains an open problem to extend Theorem 3.2 to stretch m = O(n!*~¢). However, it
does show that any non-degenerate predicate gives rise to a small bias generator with polynomial
stretch.

As for SOS lower bounds, a recent result of Kothari, Mori, O’'Donnell, and Witmer [KMOW17]
matches the lower bounds in [OW14] for any pairwise-independent predicate (and hence for any
non-degenerate predicate).

Theorem 3.3 ((KMOW17], Theorem 1.2, rephrased). If P is pairwise-independent, then Goldreich’s

PRG instantiated with P is secure against the SOS hierarchy up to degree Q(%). Therefore, against SOS
attacks the PRG has subexponential security up to stretch m = n*57¢,

In summary, given these results, when looking for candidate predicates that could achieve
polynomial stretch (in fact, stretch up to n!-5~¢), we take the view that any non-degenerate predi-
cate is a viable candidate.

4 New Candidate Predicates for Goldreich’s PRG

In this section, we focus on the problem of finding non-degenerate predicates of minimal decision
tree (DT)-complexity and Q-degree, respectively. Previously, no such predicates were known to
have either DT-complexity or Q-degree less than 5, while the commonly used non-degenerate
predicate

TSA(I‘l, ...,.1'5) =x1 D x2 D x3 D X475

has DT-complexity 5 and Q-degree 5.

4.1 A Predicate with Decision Tree-Complexity 4

As a first step, we come up with a predicate that has DT-complexity 4 and Q-degree 4. Indeed,
the TSA predicate can be modified in a simple way to decrease its DT-complexity down to 4 while
maintaining pairwise independence. Consider the predicate

P(.T}l, ...,.7}5) =21 D xo2 D T5x3 D Tr5°4

Theorem 4.1. The predicate P defined above has a decision tree of depth 4, has Q-degree 4, and is non-
degenerate (namely, pairwise independent and not affine).

Proof. We first show that P can be computed by a decision tree of depth 4. First, note that the
functions z1 ® z2 @ x3 and 1 ® z2 ® x4 both have DT-complexity 3, as they are functions of three
variables each. Now P can be computed by a depth-4 decision tree which first queries for x5 and,
depending on whether x5 is 0 or 1, computes the function x; @ x2 ® x3 or 1 © z2 @ x4 respectively.

Since Q-degree is bounded above by DT-complexity, this means that degg(P) < 4 as well. In
fact, P has degree exactly 4, as P can be written as

P(x) =21 ®x2 ® (524 + (1 — z5)x3)

It is easy to see that P has a nonzero zz2z425 term (as well as a nonzero x;x2x375 term) when
written as a multilinear polynomial over Q.
To see that P is pairwise independent, note that P can be written as

P(l‘la ---,1155) =21 DxoDxs @l‘5(3§‘3 &>, :U4).

It suffices to show that all the functions P, P @ z; (i € {1,2,3,4,5}) and P @ z; ® z; (i,j €
{1,2,3,4,5}) are all balanced.

First, note that P is balanced. Secondly, note that P(z) & z; is also balanced because it will have
either an independent x; summand or an independent z; summand remaining. Finally, note that
the same clearly holds for P(x) ® x; @ x; except for the case of P(z) ® x1 @ 2 = x3 ® x5(x3 © x4).
In this last case, choosing (73,24, 75) € {0,1}? independently at random is the same as choosing
(w3, 73 ® 24, 75) € {0,1}) independently at random. With this change of variables, one sees that
P(z) @ x1 @ x2 is balanced as well. Finally, we note that P is clearly not affine. O

4.2 A Predicate with Decision-Tree Complexity 4 and Q-degree 3

One way to try to find a predicate with Q-degree smaller than 4 is to find one with decision trees
of depth smaller than 4. Unfortunately, as we will see in Section 5, there are no non-degenerate pred-
icates with DT-complexity 3, so we cannot achieve Q-degree 3 by looking for shallower decision
trees.

Moreover, the predicate P defined in Section 4.1 has QQ-degree 4. Indeed, at least in low degree,
there are not too many examples of Boolean functions exhibiting a gap between DT-complexity
and Q-degree. One function which does exhibit such a gap, studied by Ambainis [Amb06] for its
applications to quantum query complexity, is the function

f(z1, @2, x3,24) = x1 + T2 + T3Ty — T1T2 — ToXy — T1T4.

The function f, which has Q-degree 2 and DT-complexity 3, is our starting point. In [Amb06], the
sensitivity properties of f were used to obtain nontrivial quantum query complexity lower bounds
for functions obtained as iterated compositions of f with itself, which leads to a gap between
quantum query complexity and Q-degree; see [Amb06] for a longer discussion.

Lemma 4.2 ([Amb06]). The function f defined above has Q-degree 2 and DT-complexity 3.

For our purposes, the key additional insight is that f can be rewritten in the form
f(x1, @, 3, 24) = 21 ® 22 D (x1 D 23) (22 D 24).

This leads to the following result.

Lemma 4.3. The function f defined above is 1-wise independent.

Proof. (of Lemma 4.3.) Note that f can be written as

f(1, 22,23, 24) = 1 + X2 + T3Ty — L1292 — T2X3 — T1T4
=21 +2x2 + (1’1 + .Tg)(xz + 564) (mod 2).

Note also that choosing (1, 72, 23, 24) € {0,1}* independently at random is equivalent to choos-
ing (x1, z2, x1 B3, 2 x4) independently at random, so f(x) is balanced and f(x)® x; is balanced
for any choice of ¢ (for i = 1 and i = 3, we have an “independent” z3 summand, while for i = 2
and 7 = 4, we have an “independent” z; summand). Thus, f is 1-wise independent. O

Since f is 1-wise independent, f(x) @ x5 is a pairwise-independent function of 5 variables.
Renaming variables for convenience, we have our candidate predicate:

TSPA(z) := 21 @ (x2 + 23 + 2425 — ToTg — T3T4 — ToX5)
=z +x2+ 23+ (22 + 24)(x3 +25) (mod 2).

By analogy to the usual TSA predicate, we call this the TSPA predicate, or "tri-sum-paired-and”
predicate, as x4 and x5 are each paired (via XOR) with an earlier variable before being AND-ed
together. TSPA(z) has Fo-degree 2, Q-degree 3, DT-complexity 4, locality 5, where the statements
about the Q-degree and DT-complexity follow immediately from Lemma 4.2. Thus, we have:

Theorem 4.4. There is a predicate TSPA which is non-degenerate and has:
o [Fy-degree 2;
o Q-degree 3;
o DT-complexity 4; and
e locality 5.

We will see in Sections 5 and 6 that TSPA () is optimal according to all four of these complexity
measures.

5 Predicates with Depth-3 Decision Trees Yield Insecure PRGs

To show that predicates with DT-complexity at most 3 lead to insecure PRGs, by [BQ12] and
[ABR12] it suffices to show that any P computable by a depth 3 decision tree is degenerate, i.e.
either (1) affine or (2) not pairwise-independent. In order to do this, we first suppose that P is
an unbiased predicate computable by a depth 3 decision tree and argue that the further condition
of 1-wise independence constrains the number of variables that can appear in the decision tree.
Namely, 1-wise independence constrains the “leaf variables” as defined below.

Definition 8. Let 7" be a decision tree computing a predicate P on variables 1, ..., z, which is
minimal in the sense that both Os and 1s appear as descendants of any variable node in 7. We say
that x; is a leaf variable if all nodes labeled by x; have no variable children.

Figure 2: This is a depth 3 decision tree computing a balanced predicate P on five variables. The
variables x4 and x5 are “leaf variables” in this tree. Note that this predicate P is correlated with the
values of z4 and x5, respectively.

Lemma 5.1. Suppose that P is a balanced predicate on n variables and T is a minimal decision tree (in
the sense of Definition 8) computing P. If z; is a leaf variable which occurs only once in T', then P & x; is
biased.

Proof. Suppose that the variable x; occurs at depth d within the tree and has left child b and right
child 1 — b. Then, we have that

E[P@Zi]:%‘E[P(Sv)’JTZ‘ZO]-‘F%'ED—P(%)’%Z‘:H

_2<26 (1 2)2) 2 2<2 (-5 +0 2)2>
1 loag 1
=371 35? (26 1)7&2'

The evaluation of E[P(z) | x; = 0] follows from further conditioning on the event that the node
containing x; is reached when evaluating the decision tree. We conclude that under the given
hypotheses, P @ z; is biased, as claimed. O

10

As a result, we have the following corollary

Corollary 5.2. Suppose that P is a 1-wise independent predicate on n variables and T' is a minimal decision
tree computing P. Then every leaf variable x; occurs at least twice in T'.

In the particular case we are considering, i.e. when 7" has depth at most 3, this gives an upper
bound on the number of variables occurring in 7" it is not hard to see that if P is 1-wise indepen-
dent, T" can have at most 5 distinct variables. We already know from [MST06] that predicates in at
most 4 variables are degenerate, so all we have to do is analyze the depth 3, locality 5 case. Up to
renaming of variables, there are only three possible tree structures for such a 1-wise independent
predicate, shown below.

Case 1:

b 1-b61-b b c l—-cl-c c

Case 2:

b 1-b1-b b c l-cl-c c

11

Case 3:

b 1-b61-9 b c l—-cl-c¢ c

Figure 3: Locality 5, 1-wise independent predicates computable by depth 3 decision trees.

These are the only possible structures because (1) space constraints tell us that =4 and x5 (the
leaf variables) must each occur exactly twice, and (2) the fact that P & x4 must be unbiased tells
us that if b is the left child of one occurrence of x4, then 1 — b must be the left child of the other
occurrence of x4 (and similarly for z5). We now analyze these three cases to show that none of
these predicates are 2-wise independent.

In Case 1, the predicate P is correlated with x2 @ x4 (the left branch of z; is exactly the function
x2 @ x4 @ b, so the same analysis as in Lemma 5.1 works), so P is never 2-wise independent.

In Case 2 and Case 3, P is also correlated with x9 @ x4. To see this, we compute

1 1
E[P(z) ® x2 ® x4] = iE[P(J:) Gro®ry|x =0+ 1

(as when z; = 1, P(x) is independent of z2 and so P(z) & 2 & x4 is unbiased)

1 3
:ZE[P(ZE)@l‘Q@ZLq|ZL‘1=1‘2:0]+§

(as when 21 = 0 and z3 = 1, P(x) is independent of x4, and so P(x) & z2 & x4 is unbiased)
1 3 1
= Zb + 3 #+ 7

This completes the case analysis, showing that if P is computable by a depth 3 decision tree, then
P is degenerate, in which case Goldreich’s PRG is insecure when instantiated with P.

6 Predicates with Q-degree 2 Yield Insecure PRGs

In this section, we show that all predicates of Q-degree 2 lead to insecure PRGs. We do this by
bounding the locality of a predicate as a function of its Q-degree. In particular, we show that any
predicate P expressible as a rational polynomial of degree 2 has locality at most 4. Our bound
sharpens the best previous result along these lines due to Nisan and Szegedy in [NS94], in which

12

it is shown that a predicate of degree d has locality at most d - 2¢, giving an upper bound of locality
8 in our case. It may be of independent interest to tighten the result of [NS94] for larger values of
d.

Theorem 6.1. Any predicate P expressible as a rational polynomial of degree at most 2 depends on at most
4 input bits.

Theorem 6.1 implies the desired result because we already know that predicates of locality at
most 4 are degenerate (and so yield insecure PRGs — even, by [MSTO06], with an arbitrary hyper-
graph H instead of a random hypergraph), so we proceed directly to the proof of Theorem 6.1.

Proof. Since boolean functions of degree at most 1 are all of the form P(z) =0, P(z) = 1, P(z) =
xi, or P(z) = 1—x; for some i, we restrict to predicates of degree exactly 2. We prove by induction
on k > 5 the following statement: a k-ary predicate P of degree 2 depends on at most 4 variables.
We prove the base case of k = 5 using a computer search and then prove the inductive step by
hand.

The case k = 5:

For 0 < j < 5, let N; denote the numbef of boolean functions on j variables which are also
polynomials of degree at most 2, and let V; denote the number of such boolean functions that
depend on exactly j variables. Then, we see by a counting argument that

i
N=Y" <‘Z>N
=0

We calculate by computer search that IV = 2,Ni = 4, Ny = 16,N3 = 70, Ny = 222, and
Ny = 552. Using these values, we calculate that N5 = 0, proving the base case.

The inductive step:

Suppose that for some k > 5 we know that all k-ary predicates of degree 2 have locality at most
4. We now want to show that the same is true for k 4 1-ary predicates. Consider any k + l-ary
predicate P(xo, ..., zj) of degree 2, which (assuming without loss of generality that P depends on
x0) can be written as a polynomial expression

P(xg,...,xk) = zoP1(x1, ... xp) + Pa(z1, ..., Tk)

where P (z1, ..., z1) is some polynomial of degree at most 1 and P> (x1, ..., xj) is some polynomial
of degree at most 2. Because we have that

P(0,z9,....,x;) = Po(x1, ..., x),

we see that P, —a degree 2 polynomial — computes a boolean function on k variables.
Furthermore, we claim the following about P»: either every present variable in P» occurs in
a degree 2 term of P», or P» is has degree at most 1. This is true for the following reason: if
the variable x; (without loss of generality) occurs only as a degree 1 term in P, then we can
write Py(z) = axy + Pj(xa, ..., 1) where Py(za, ..., x) = P2(0, 22, ..., x1) is a boolean function and

13

ary = P»(x1,0,...,0) — P5(0, ...,0) implies that a = £1. If P; is nonconstant (i.e. if P, has degree 2),
then we obtain a contradiction because we can force P to take either the value —1 or 2 (depending
on whether a = 1 or a = —1) on a suitable choice of . Thus, either P, has degree at most 1 or
every variable in P, occurs in a degree 2 term.

By similar argument to the previous paragraph (applied to P instead of P»), we see that either
P has degree at most 1 (and so depends on at most one variable, so we are done) or xy appears in
a degree 2 term in P, i.e. P has degree exactly 1.

Finally, we use the fact that P (x1,...,x;) + P2(21,...,25) = P(0,21,...,z) is also a boolean
function on k variables, and hence depends on at most 4 variables by the inductive hypothesis.
In the case that P> has degree 2, we note that any variable occurring in the expression for P or
occurring in the expression for P, necessarily occurs in the expression for P; + P», because P; has
degree 1 and all variables occurring in P occur in a degree 2 term, so there can be no cancellation
when adding P; and P,. This allows us to conclude that P(z) = zoP;(z) + P(z) depends on at
most 5 variables (the variables that P; and P, depend on along with zy), implying that P depends
on at most 4 variables by the base case.

On the other hand, if P, has degree exactly 0 then the same argument as above applies, while
if P, has degree exactly 1, then without loss of generality P»(z) = x; (applying a logical negation
to P and changing variable names if necessary). If Pj(x,...,x)) does not contain the exact term
“—x1”, then the argument of the previous paragraph applies, while in this special case we have

P(z) = —xom1 + 21 + 20 P3(22, ..., T

where P3(x2, ...,x;) = P(1,0,x9, ..., x) is a boolean function of degree at most 1. We conclude that
P; depends on at most one variable, and so P depends on at most 3 variables in this degenerate

case. Having covered all cases, this completes the inductive step and hence proves Theorem 6.1.
O

7 Conclusion

We are left with many interesting and unresolved questions. Firstly, we ask,

Question 7.1. What additional security properties can we prove (or disprove) about Goldreich’s PRG when
instantiated with the TSPA predicate and stretch n'-5=¢? What about with stretch n'-91?

More concretely, there remains a gap between the stretch (O(n!2°~¢)) at which we know that
Goldreich’s PRG (instantiated with non-degenerate predicates) has small bias and the stretch
(Q(n'5)) at which we know efficient attacks on the PRG. In particular, small bias guarantees up to
stretch O(n!'-°~¢) would provide stronger evidence that Goldreich’s PRG is secure when instanti-
ated with the TSPA predicate.

Additionally, in [AL16], another class of attacks on local PRGs is studied, namely algebraic at-
tacks (attacks from the Polynomial Calculus proof system). The lower bounds proved in [AL16]
are insufficient to establish the security of Goldreich’s PRG with the TSPA predicate against these
attacks, but the established upper bounds do not rule out the PRG. Closing the gap between up-
per and lower bounds here would be extremely interesting and would also be relevant to higher
degree candidate PRGs, whose security properties are more uncertain.

Furthermore, while this paper focused on achieving any polynomial stretch, it is both intrin-
sically interesting and and potentially useful for cryptographic applications to understand the

14

tradeoff between the Q-degree of a PRG and the maximum stretch it can attain. In particular, a
positive answer to the following question would yield an IO construction from 4-linear maps.

Question 7.2. Can a Q-degree d PRG achieve stretch n [Gd]+ep

This degree-stretch tradeoff is not currently well understood; even the fact that Q-degree 3 is
potentially achievable was not known before this work.

Question 7.3. What is the maximum stretch achievable by a PRG of Q-degree 3?
Question 7.4. Does there exist a 3-wise independent boolean function with Q-degree 3 and Fa-degree 3?
Even an answer to this elementary question would have interesting implications. If f : {0, 1} —
{0, 1} were such a predicate, then the predicate g : {0, 1} — {0, 1} defined by
g(x1, . xp2) = f(f(@1, o 2k), [(Thg1s s Tok)s ooos F(TR2 g1y -oos Th2))

would have Q-degree 9, Fo-degree 9, and would be 15-wise independent. This would be a viable
candidate predicate to achieve stretch n” " in degree 9, which — if secure — would positively answer
Question 7.2. It remains unclear whether or not such a degree 3 predicate should exist, or how to
find one if it does exist.

References

[ABR12] Benny Applebaum, Andrej Bogdanov, and Alon Rosen. A dichotomy for local small-
bias generators. In Theory of Cryptography Conference, pages 600-617. Springer, 2012.

[AIKO6] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC°. SIAM
Journal on Computing, 36(4):845-888, 2006.

[AL16] Benny Applebaum and Shachar Lovett. Algebraic attacks against random local func-
tions and their countermeasures. In Proceedings of the 48th Annual ACM SIGACT Sym-
posium on Theory of Computing, pages 1087-1100. ACM, 2016.

[Amb06] Andris Ambainis. Polynomial degree vs. quantum query complexity. Journal of Com-
puter and System Sciences, 72(2):220-238, 2006.

[Appl6] Benny Applebaum. Cryptographic hardness of random local functions. Computa-
tional complexity, 25(3):667-722, 2016.

[AS16] Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and
indistinguishability obfuscation from degree-5 multilinear maps. IACR Cryptology
ePrint Archive, 2016:1097, 2016.

[BQ12] Andrej Bogdanov and Youming Qiao. On the security of Goldreich’s one-way func-
tion. Computational complexity, 21(1):83-127, 2012.

[BS16] Boaz Barak and David Steurer. Proofs, beliefs, and algorithms through the lens of
sum-of-squares. Course notes: http://www.sumofsquares.org/public/index.html, 2016.

15

[Gol00]

[IKOSO08]

[KMOW17]

[Linl6a]

[Lin16b]

[LV16]

[MSTO06]

[NN93]

[NS94]

[OW14]

Oded Goldreich. Candidate one-way functions based on expander graphs. IACR
Cryptology ePrint Archive, 2000:63, 2000.

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with
constant computational overhead. In Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 433—
442,2008.

Pravesh K. Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer. Sum of
squares lower bounds for refuting any CSP. arXiv preprint arXiv:1701.04521, 2017.

Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding
schemes. In Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria,
May 8-12, 2016, Proceedings, Part I, pages 28-57, 2016.

Huijia Lin. Indistinguishability obfuscation from DDH on 5-linear maps and locality-
5 PRGs. Preprint: http://eprint.iacr.org/2016/1096.pdf, 2016.

Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-
like assumptions on constant-degree graded encodings. In Foundations of Computer
Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages 11-20. IEEE, 2016.

Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On e-biased generators in NCP.
Random Structures & Algorithms, 29(1):56-81, 2006.

Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions
and applications. SIAM journal on computing, 22(4):838-856, 1993.

Noam Nisan and Mario Szegedy. On the degree of boolean functions as real polyno-
mials. Computational complexity, 4(4):301-313, 1994.

Ryan O’Donnell and David Witmer. Goldreich’s PRG: evidence for near-optimal
polynomial stretch. In Computational Complexity (CCC), 2014 IEEE 29th Conference on,
pages 1-12. IEEE, 2014.

16

	Introduction
	Our Results
	An Open Problem

	Preliminaries
	Pseudorandom generators
	Analysis of Boolean Functions

	A Review of Goldreich's PRG and its Security
	The Choice of Predicates in Goldreich's PRG

	New Candidate Predicates for Goldreich's PRG
	A Predicate with Decision Tree-Complexity 4
	A Predicate with Decision-Tree Complexity 4 and Q-degree 3

	Predicates with Depth-3 Decision Trees Yield Insecure PRGs
	Predicates with Q-degree 2 Yield Insecure PRGs
	Conclusion

