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Abstract

Non-malleable commitments are a fundamental cryptographic tool for preventing (concur-
rent) man-in-the-middle attacks. Since their invention by Dolev, Dwork, and Naor in 1991, the
round-complexity of non-malleable commitments has been extensively studied, leading up to
constant-round concurrent non-malleable commitments based only on one-way functions, and
even 3-round concurrent non-malleable commitments based on subexponential one-way func-
tions, or standard polynomial-time hardness assumptions, such as, DDH and ZAPs.

But constructions of two-round, or non-interactive, non-malleable commitments have so far
remained elusive; the only known construction relied on a strong and non-falsifiable assumption
with a non-malleability flavor. Additionally, a recent result by Pass shows the impossibility of
basing two-round non-malleable commitments on falsifiable assumptions using a polynomial-
time black-box security reduction.

In this work, we show how to overcome this impossibility, using super-polynomial-time hard-
ness assumptions. Our main result demonstrates the existence of a two-round concurrent non-
malleable commitment based on sub-exponential “standard-type” assumptions—notably, as-
suming the existence of all four of the following primitives (all with subexponential security):
(1) non-interactive commitments, (2) ZAPs (i.e., 2-round witness indistinguishable proofs), (3)
collision-resistant hash functions, and (4) a “weak” time-lock puzzle.

Primitives (1),(2),(3) can be based on e.g., the discrete log assumption and the RSA assump-
tion. Time-lock puzzles—puzzles that can be solved by “brute-force” in time 2t, but cannot be
solved significantly faster even using parallel computers—were proposed by Rivest, Shamir, and
Wagner in 1996, and have been quite extensively studied since; the most popular instantiation
relies on the assumption that 2t repeated squarings mod N = pq require “roughly” 2t parallel
time. Our notion of a “weak” time-lock puzzle requires only that the puzzle cannot be solved
in parallel time 2t

ε

(and thus we only need to rely on the relatively mild assumption that there
are no huge improvements in the parallel complexity of repeated squaring algorithms).

We additionally show that if replacing assumption (2) for a non-interactive witness indis-
tinguishable proof (NIWI), and (3) for a uniform collision-resistant hash function, then a non-
interactive (i.e., one-message) version of our protocol satisfies concurrent non-malleability w.r.t.
uniform attackers. Finally, we show that our two-round (and non-interactive) non-malleable
commitments, in fact, satisfy an even stronger notion of Chosen Commitment Attack (CCA)
security (w.r.t. uniform attackers).
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1 Introduction

Commitment schemes are one of the most fundamental cryptographic building blocks. Often de-
scribed as the “digital” analogue of sealed envelopes, commitment schemes enable a sender to
commit itself to a value while keeping it secret from the receiver. This property is called hiding.
Furthermore, the commitment is binding, and thus in a later stage when the commitment is opened,
it is guaranteed that the “opening” can yield only a single value determined in the committing stage.

For many applications, however, the most basic security guarantees of commitments are not
sufficient. For instance, the basic definition of commitments does not rule out an attack where an
adversary, upon seeing a commitment to a specific value v, is able to commit to a related value
(say, v − 1), even though it does not know the actual value of v. To address this concern, Dolev,
Dwork and Naor (DDN) introduced the concept of non-malleable commitments [DDN00]. Loosely
speaking, a commitment scheme is said to be non-malleable if it is infeasible for an adversary to
“maul” a commitment to a value v into a commitment to a related value ṽ. The notion of a
concurrent non-malleable commitment [DDN00, PR05a] further requires non-malleability to hold
even if the adversary receives many commitments and can itself produce many commitments.

The first non-malleable commitment protocol was constructed in the original work of [DDN00]
in 1991, based on the minimal assumption of one-way functions. The first concurrently secure con-
struction was provided by Pass and Rosen in 2005 [PR05a]. Since then, a central question in the
study of non-malleability has been to determine the exact number of communication rounds needed
for achieving (concurrent) non-malleable commitments. Significant progress has been made over the
years [Bar02, PR05a, PR05b, LPV08, LP09, PPV08, PW10, Wee10, Goy11, LP11, GLOV12]. The
current state-of-the-art is that 4-round concurrent non-malleable commitments can be constructed
based on one-way functions [COSV17], 3-round concurrent non-malleable commitments can be
constructed from subexponentially-secure one-way permutations [COSV16, GPR16], and very re-
cently can be based only on the polynomial hardness of either DDH or Quadratic-residousity or
N th-residuosity and ZAPs [Khu17].

On the Existence of Two-Round or Non-Interactive Non-malleable Commitments.
The situation changes drastically when it comes to two-round or non-interactive (i.e., one-message)
protocols: Pandey, Pass and Vaikuntanathan [PPV08] provided a construction of a non-interactive
non-malleable commitment based on a new non-falsifiable hardness assumption, namely, the exis-
tence of an adaptively-secure injective one-way function—roughly speaking, a one-way function f
that is hard to invert on a random point y = f(x) even if you get access to an inversion oracle
that inverts it on every other point y′ 6= y. This assumption is not falsifiable since the inversion
oracle cannot be implemented in “real-life”1; additionally, note that the assumption also has a
strong non-malleability flavor—in particular, the assumption would clearly be false if one could
“maul” y = f(x) to e.g., y′ = f(x + 1). As such, a question that remains open is whether we
can obtain two-round “non-malleability” from “pure scratch” (i.e., from “hardness” alone). In-
deed, a recent work by Pass [Pas13] showed that there are some inherent limitations to reducing
2-round non-malleability to falsifiable assumptions. More precisely, Pass shows that if there exists
a 2-round non-malleable commitment that can be proven secure using a polyomial-time (or even
super-polynomial, but security preserving2) black-box reduction R to a falsifiable assumption, then

1More precisely, an assumption is falsifiable if it can be modeled as a game between an efficient challenger and
an adversary. The adaptive security of injective one-way functions cannot be modeled in such a way as no efficient
challenger can implement the inversion oracle in the game with the adversary.

2Here, by security preserving, it means that the security reduction uses an adversary breaking the security of the
cryptographic scheme under analysis w.r.t. one security parameter n, to break the underlying hardness assumption

1



the reduction R can itself be used to break the assumption. In particular, this rules out basing
2-round non-malleability (using black-box reduction) on falsifiable hardness assumptions against
polynomial time adversaries.

Towards overcoming this barrier, a recent work by Goyal, Khurana and Sahai [GKS16] presents
a two-message protocol in a stronger “synchronous model” of communication (and achieving only
a weaker notion of non-malleability “w.r.t. opening”). In this work, we focus on the standard
communication model (and the standard notion of non-malleability) and explore whether super-
polynomial-time hardness assumptions (and using non-security preserving reductions) can be used
to overcome this barrier:

Can we construct non-interactive or 2-round non-malleable commitment from
super-polynomial hardness assumptions?

1.1 Our Results

Our main result demonstrates the existence of a two-round concurrent non-malleable commitment
scheme based on sub-exponential hardness assumptions—notably, assuming the existence of the
following primitives (all with subexponential security): (1) non-interactive commitments, (2) ZAPs
(i.e., 2-round witness indistinguishable proofs) [DN00], (3) collision-resistant hash functions, and
(4) a “weak” time-lock puzzle [RSW96].

Primitives (1),(2),(3) are all very commonly used and can be based on e.g., the discrete log
assumption and the RSA assumption. Primitive (4) deserves some more discussion: Time-lock
puzzles—roughly speaking, puzzles that can be solved in “brute-force” in time 2t, but cannot
be solved “significantly faster” even using parallel computers—were proposed by Rivest, Shamir,
and Wagner in 1996 [RSW96] (following May’s work on timed-release cryptography [May93]), and
have since been quite extensively used in the area of timed-release cryptography. A bit more
precisely, a (T (·), B(·))-time-lock puzzle enables a “sender” to efficiently generate a puzzle puzz with
a designated “level” of hardness t = t(n) along with its unique solution s, where n is the security
parameter, so that: (i) the puzzle solution can be found in (uniform) time 2t, but (ii) the puzzle
solution cannot be recovered by any attacker of size at most B(n) > 2t with (parallel) running-
time (i.e., circuit depth) at most T = T (t) (where T (t) << 2t determines the “hardness gap” of
the puzzle).3 Typical applications of time-lock puzzles only require security against polynomial-
size attackers, thus it suffices to let B(·) be any slightly super-polynomial function; however, they
require the hardness gap to be very small—namely, T = 2δt or even T = δ2t for some δ < 1 (i.e., the
problem is inherently “sequential” and the honest puzzle solver is essentially optimal, even if you
have access to parallel computers). In this work, we will need security against subexponential-size
attackers, but in contrast, only require the existence of a time-lock puzzle with a relatively “large”
hardness gap—we only need the puzzle to be hard to break for time T = 2t

ε
for some constant

0 < ε < 1.

Theorem 1 (Main Theorem, Informal). Let T and B be two arbitrary subexponential functions.
Assume the existence of non-interactive commitments, a ZAP, a family of collision-resistant hash
functions, all with subexponential-security, and the existence of a (T,B)-time-lock puzzle. Then,
there exists a 2-round concurrent non-malleable commitment.

w.r.t. the same security parameter n′ = n. On the other hand, if n′ is different from, in particular smaller than n,
the reduction is said to be non-security preserving.

3Time-lock puzzles as defined are falsifiable as the challenger can efficiently (in time poly(t, n) = poly(n)) sample
a puzzle puzz together with its unique solution s.

2



The original construction of time-lock puzzles due to Rivest, Shamir, and Wagner [RSW96] is
based on the hardness of a very natural strengthening of the factoring problem referred to as the
repeated squaring problem: given a random RSA-modulus N = pq, and a random (or appropriately
chosen) element g, compute

g22t

mod N

Clearly, this can be done using 2t repeated squarings. The RSW assumption is that this task
cannot be significantly sped up, even using parallel resources, as long as the total resource of the
adversary does not enable factoring N . Given the current state-of the art, the repeated squaring
problem appears to be hard for strongly exponential parallel-time: T (t) = δ2t (that is, basically, no
non-trivial speed-up over repeated squaring is possible); indeed, this strong assumption is typically
used in the literature on timed-release cryptography (in fact, several significantly stronger versions
of this assumption, where additional leakage is given, are also typically considered—see e.g., the
“generalized Blum-Blum-Shub assumption” of Boneh-Naor [BN00].)

Since we only need a “weakly”-secure time-lock puzzle where the hardness gap is large, it suffices
for us to make a significantly weaker, subexponential, repeated squaring assumption, that is,

2t repeated squarings (modulo N = pq) cannot be done in parallel-time 2t
ε

More formally:

Assumption 1 (Subexp. Repeated Squaring Assumption, Informal). There exists subexponential
functions T,B such that for every function t(n) ∈ ω(log n) ∩ nO(1), the following holds: For every
size B(·)-attacker A with (parallel) running-time (i.e,. circuit depth) at most T (t(·)) < B(·), there
exists a negligible function µ such that for every n ∈ N, the probability that A, given g,N where
N is a randomly chosen n-bit RSA-modulus, and g is a randomly chosen (or appropriately fixed)

element in Z∗N , can compute g22t(n)

mod N is bounded by µ(n).

We note that essentially the repeated squaring assumption has two security parameters, n
and t(n), where the former decides the size of the modulus and the maximal size B(n) of the
adversaries (such that factoring the modulus remains hard), and the latter decides the number 2t(n)

of repeated squaring needed to solve the puzzle by brute force, and the maximal depth T (t(n)) of
the adversaries. The assumption says that the puzzle is hard for adversaries of depth up to T (t(n))
and size up to B(n), even if the size of the adversary may be larger than T (t(n)) or even 2t(n) (but
still bounded by B(n)). Note also that the subexponential repeated squaring assumption implies
the subexponential hardness of factoring.4

We remark that comparing with other subexponential assumptions (such as e.g., the subexpo-
nential DDH assumption), the subexponential repeated squaring assumption is milder in the sense
that it is a search assumption instead of a decisional assumption. It also has a strong “win-win”
flavor: Repeated squaring is a problem that arises naturally in the design of algorithms (e.g., any
improvement on repeated squaring would yield improved efficiency for the verification of RSA-
based signatures.) On the other hand, the subexponential repeated squaring assumption has a
non-standard form in that the puzzle is easy to solve in depth 2t(n), but hard to solve in depth
2t(n)ε and size more than 2t(n) and below B(n).

We finally mention that the time-lock puzzle needed for our construction can also be based on the
existence of a parallel-time hard language and indistinguishability obfuscation (with subexponential
security) by the work of Bitansky et al. [BGJ+16].

4The state-of-the-art factoring algorithm runs in 2n
ε

time for some constant ε. The subexponential hardness of
factoring assumes that factoring is hard for 2n

µ

time adversaries for some smaller constant µ < ε.
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Towards Non-interactive Non-malleable Commitments. We also address the question of
whether fully non-interactive (i.e., single-message) non-malleable commitments are possible. We
show that if we replace the assumption of the existence of ZAPs (i.e., two-message witness indistin-
guishability) with non-interactive witness indistinguishable proofs (NIWI) [BOV03, GOS06, BP15],
and the existence of families of collision-resistant hash functions for a single, collision-resistant hash
function secure against uniform adversaries, [BP04, Rog06], then a slightly modified non-interactive
version of our protocol satisfies concurrent non-malleability w.r.t. uniform attackers: Basically, the
first message of our two-round protocol only contains the first message of the ZAP, and the index
of the hash function, so by relying on a NIWI and a single hash function (secure against uniform
subexponential-time attackers), the first message can be skipped.

Theorem 2 (Informal). Let T and B be two arbitrary subexponential functions. Assume the
existence of non-interactive commitments, a NIWI, a uniform collision-resistant function, all with
subexponential-security, and the existence of a (T,B)-time-lock puzzle. Then, there exists a one-
message concurrent non-malleable commitment secure w.r.t. uniform polynomial-time adversaries.

We leave open the question of whether we can get a non-interactive non-malleable commitment
w.r.t. non-uniform attackers.

Achieving Chosen Commitment Attack Security. Canetti, Lin, and Pass [CLP10, LP12]
strengthened the notion of concurrent non-malleability to security against Chosen Commitment
Attacks (CCA) for commitments, analogous to the extensively studied notion of security against
Chosen-Ciphertext Attacks for encryption schemes. Roughly speaking, a commitment scheme is
said to be CCA-secure if commitments remain hiding even against attackers with access to an
inefficient oracle, called the committed-value oracle, that “breaks” each commitment sent by an
attacker using brute force and returns the (unique) committed value as soon as the commitment
is completed. In particular, CCA-security implies that it is infeasible for an attacker to “maul”
commitments to a set of values into commitments to a set of related values, even with the help
of the committed-value oracle—which implies concurrent non-malleability. It was shown in several
works [CLP10, LP12, Kiy14, GLP+15] that CCA-secure commitments are useful for constructing
multi-party computation protocols with concurrent and composable security in the plain model
from polynomial-time hardness assumptions. Furthermore, in a recent work [BHP17], 2-round
CCA-secure commitments are further used for constructing round-optimal, 4-round, multi-party
computation protocols secure in the stand-alone setting. We show that our two-round, and non-
interactive non-malleable commitments, in fact, satisfy the stronger notion of CCA security.

Theorem 3 (Informal). The two-round non-malleable commitment scheme of Theorem 1 satisfies
CCA-security, and the non-interactive non-malleable commitment scheme of Theorem 2 satisfies
CCA-security w.r.t. uniform polynomial-time adversaries.

A Remark on “Sub-subexponential” Security. Let us finally mention that although for the
simplicity of notation we rely on subexponential hardness assumption, our actual proof reveals that
we only need to rely on “sub-subexponential”5 hardness assumption for all the primitives we rely
on: namely, we only require security to hold w.r.t. attackers of size (and depth) 2n

1/log logn
(and in

fact, even slightly less).

5We refer to 2n
o(1)

as a sub-subexponential function.
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Why Time-Lock Puzzles? Our Ideas In a Nut Shell. In cryptography, the power, or
resource, of attackers is usually measured by their running-time when represented as Turing ma-
chines, or equivalently by their circuit-size when represented as circuits. Time-lock puzzles, and
more generally timed-release cryptography [May93, DN93, JJ99, Nak12, BN00], on the other hand,
measure the resource of attackers by their parallel running-time or equivalently by their circuit-
depth. Our 2-round non-malleable commitments crucially rely on the synergy between these two
types of resources. The key idea is, instead of measuring the hardness of commitment schemes
in a single “axis” of resource, measure the hardness in two axes, one refers to circuit-size and the
other to circuit-depth. By doing so, we can construct a pair of commitment schemes Com1,Com2

that are simultaneously harder than the other, in different axes. In particular, Com2 is harder in
the axis of circuit-size, in the sense that Com1 admits an extractor of size S while Com2 is secure
against all circuits of size S; on the other hand, Com1 is harder in the axis of circuit-depth, in the
sense that Com2 admits an extractor of depth D (and some size S’) while Com1 is hiding against
all circuits with depth D (and size S’). Such a pair of commitment schemes that are mutually
harder than each other already has a weak flavor of non-malleability — no adversary can “maul”
a Com2 commitment to v into a Com1 commitment to a related value, say ṽ = v + 1, as otherwise
one can extract ṽ in size S, which violates the hiding of Com2 against S-size circuits. Similarly, no
adversary can “maul” a Com1 commitment into a Com2 commitment, as otherwise, we can find ṽ
in small depth D (and size S’), which violates the hiding of Com1 against depth D circuits (of size
S’). Next, we amplify this weak non-malleability to full-fledged non-malleability. More precisely,
we transform the aforementioned commitment schemes, which are non-malleable w.r.t. short “tags”
to that for much longer “tags” (explained below), while keeping two rounds.

1.2 Concurrent and Independent Work

A concurrent and independent, beautiful, work by Khurana and Sahai (KS) [KS17] also presents
a construction of 2-round non-malleable commitments from subexponential hardness assumptions.
The results, however, are incomparable, both in terms of assumptions, and also in terms of the
achieved results (and use significantly different techniques).

In terms of results, our protocols satisfy full concurrent non-malleability, whereas the KS pro-
tocol only satisfies “bounded-concurrent” non-malleability—which is a weaker notion of concurrent
non-malleability where the number of sessions is a-priori bounded by some pre-determined poly-
nomial in the security parameter; in particular, the communication complexity of their protocol
grows super linearly with the bound on the number of sessions, and the complexity assumptions
they rely on need to be parametrized by it. Additionally, we also present a fully non-interactive
protocol, whereas their technique appears to be inherently limited to two-round protocols.

In terms of assumptions, the key difference is that KS does not rely on time-lock puzzles but
rather on the existence of certain 2-round secure two-party computation protocols (with super-
polynomial-time simulation security); they also claim that such protocols can be constructed based
on the subexponential DDH assumption, or the subexponential QR assumption. These assumptions
are incomparable to the subexponential repeated squaring assumption, which as we mentioned
above is also a very natural computational problem that has been extensively studied over the
years. On a qualitative level, it is also a search assumption (and thus our construction of non-
malleable commitments can be based on search assumptions), whereas the KS construction (due
to the above DDH, or QR, assumption) relies on “decisional assumptions”.
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1.3 A Perspective: Non-Malleability from Hardness in Different Axes

In this work, our foremost idea is deriving non-malleability from hardness in different axes. While
our particular instantiation uses commitments hard in the axis of circuit-size (or time) and commit-
ments hard in the axis of circuit-depth (or parallel time), these are many other types of resources
one can consider. For instance, the concurrent work by Khurana and Sahai [KS17] uses commit-
ments extractable in certain time without rewinding, and rewinding does not help extraction (e.g.
any non-interative commitments), and commitments extractable using rewinding, and is extremely
hard to break without rewinding (they constructed such commitments using special 2-round two-
party computation protocols). We can view the hardness axes involved in their work as 1) time for
extraction without rewinding, and 2) time for extraction with rewinding. In a follow-up work by
Bitansky and Lin [BL18] on constructing one-message zero-knowlege arguments and non-malleable
commitments from keyless multi-collision resistant hash functions and other assumptions, they
considered two axes: 1) time for extraction with probability 1 and 2) the probability of successful
extraction in polynomial time. More precisely, they build Com1,Com2 such that the values commit-
ted using Com2 can be extracted with probability 1 in time T , while Com1 remains hiding in time
T , whereas the probability that a polynomial-time extractor succeeds in extracting values from
Com2 is much smaller than that from Com1. In another follow-up work [BDSK+18] on construct-
ing non-malleable codes against bounded polynomial time tampering, they considered the axis of
“BP-time” corresponding to time for extraction by probablistic Turing machine, and the axis of
non-deterministic “(ND)-size” corresponding to time for extraction by NP circuits. We believe that
there are more hardness axes and considering their synergy may lead to new applications.

1.4 Organization

In Section 2, we give a detailed overview of our approach for constructing 2-round non-malleable
commitments. In Section 3, we provide preliminaries and definitions. Section 4 presents a family of
basic commitment schemes that are mutually harder than each other at different axis, we call them
size-robust, depth-robust and size-and-depth robust commitments. Using these basic commitment
schemes, in Section 5, we construct a commitment scheme for short identities that satisfy a weaker
notion of non-malleability that we formalize as non-malleability w.r.t. extraction. In Section 6, we
present a non-malleability strengthening technique that lifts non-malleability w.r.t. extraction in the
stand-alone setting to both non-malleability w.r.t. extraction and standard non-malleability in the
concurrent setting. In Section 7, we present a transformation that increases the length of identities
exponentially at the cost of loosing concurrent non-malleability. In Section 8, we construct 2-round
non-malleable commitment scheme for n-bit identities, by iteratively applying the amplification
technique in Sections 6 and 7 to the basic scheme in Section 5. Then in Section 9 we discuss
the robust CCA-security of the 2-round non-malleable commitment scheme described in Section 8.
Finally in Section 10, we show how to remove the first-message in our 2-round non-malleable and
robust-CCA secure commitment from Section 8 when the attackers are restricted to be uniform
Turing machines.

2 Overview

Every secure statistically binding commitment scheme is hiding against polynomial-sized circuits,
while extractable by some exponential-sized circuit (such an extractor is guaranteed to exist since
one can always find the committed value by brute force). In this work, we pay special attention to
the gap between the “resources” of attackers and that of extractors. Moreover, we crucially rely on
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the synergy between different resources — in particular, circuit-size and circuit-depth, which are
captured by the following two basic types of commitment schemes:

Size-Robust Commitments are parametrized versions of classical commitments: An (S, S′)-
size-robust commitment is hiding against any size-poly(S) attackers, and extractable by some
size-S′ extractor, for an S′ = Sω(1) denoted as S′ >> S, of shallow polynomial depth where
S and S′ are some function of the security parameter. For instance, such extractors can be
implemented using the näıve brute force strategy of enumerating all possible decommitments,
which is a time-consuming but highly-parallelizable task.

Depth-Robust Commitments are natural analogues of size-robust commitments, but with re-
spect to the resource of circuit-depth. A (D,D′)-depth-robust commitment is hiding against
any depth-poly(D) circuits with size up to a large upper bound B, and extractable by some
size-D′ extractor for B > D′ >> D that necessarily has a depth super-polynomially larger
than D. In this work, we consider a subexponential size upper bound B = 2n

ε
for some

constant ε > 0; for simplicity of exposition, we ignore this upper bound in the rest of this
overview (see Section 4 for more detail).

Size-Robust Commitments from Subexponential Injective OWFs. The size-robust com-
mitments we need (for specific relations between S and S′) can essentially be instantiated using
any off-the-shelf commitment schemes that are subexponentially secure, by appropriately scaling
the security parameter to control the levels of security and hardness for extraction. Take the stan-
dard non-interactive commitment scheme from any injective one-way function f as an example: A
commitment to a bit b is of the form (f(r), h(r) ⊕ b), consisting of the image f(r) of a random
string r of length n, and the committed bit b XORed with the hard-core bit h(r). Assuming that f
is subexponentially hard to invert, the commitment is hiding against all size-2n

ε
circuits for some

constant ε > 0, while extractable in size 2n (ignoring polynomial factors in n) and polynomial
depth. By setting the security parameter n to (logS)1/ε, we immediately obtain a (S, S′)-size

robust commitment for S′ = 2logS1/ε
.

Depth-Robust Commitments from Time-Lock Puzzles. Depth-robust commitments are
naturally connected with cryptographic objects that consider parallel-time complexity, which cor-
responds to circuit-depth. When replacing subexponentially-hard one-way functions in the above
construction with time-lock puzzles, we immediately obtain depth-robust commitments:

- To commit to a bit b, generate a puzzle puzz with a random solution s and a designated level of
hardness t, and hide b using the Goldreich-Levin hard-core bit, producing C = (puzz, r, 〈r, s〉⊕
b) as the commitment.

- To decommit, the committer can simply reveal the puzzle solution s together with the random
coins ρ used for generating the puzzle. The receiver verifies that the puzzle is honestly
generated with solution s, and uses s to recover the committed bit b.

Since the time-lock puzzle solution s is hidden against adversaries in parallel-time T (t) (and overall
time B(n)), the commitments are hiding against depth-T (t) adversaries (with size up to B(n)).
Moreover, since the puzzles can be “forcefully” solved in time 2t, the committed values can be
extracted in size 2t. This gives a (T, 2t)-depth-robust commitment.6

6Binding follows from the injectivity of time-lock puzzles.
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Next, we show how to compose the basic size-robust and depth-robust commitment schemes to
overcome Pass’s impossibility result on 2-round non-malleable commitments.

2.1 Towards Overcoming the Impossibility Result

In the literature, there are two formulations of non-malleable commitments, depending on whether
the commitment scheme uses players’ identities or not. The formulation with identities, adopted
in this work, assumes that the players have identities of certain length `, and that the commitment
protocol depends on the identity of the committer, which is also referred to as the tag of the
interaction. Non-malleability ensures that, as long as the tags of the left and right commitments
are different (that is, the man-in-the-middle does not copy the identity of the left committer), no
man-in-the-middle attacker can “maul” a commitment it receives on the left into a commitment
of a related value it gives on the right. This is formalized by requiring that for any two values
v1, v2, the values the man-in-the-middle commits to after receiving left commitments to v1 or
v2 are indistinguishable. The other formulation without identities requires that, as long as the
transcript of messages in the left and right commitments are not identical, the committed values
must be computationally independent (formulated identically as above). It is known that these two
formulations are equivalent when the length of the identities and that of the committed strings are
polynomial.

The length ` of the tags can be viewed as a quantitative measure of how non-malleable a scheme
is: An `-bit tag non-malleable commitment gives a family of 2` commitment schemes — each with a
hardwired tag — that are “mutually non-malleable” to each other. Therefore, the shorter the tags
are, the easier it is to construct such a family. Full-fledged non-malleable commitments have tags of
length equal to the security parameter ` = n, and hence corresponds to a exponentially sized family.
However, when the number of communication rounds is restricted to 2, Pass [Pas13] showed that
even the weakest non-malleable commitment for just 1-bit tags, corresponding to a size 2 family,
cannot be reduced from falsifiable assumptions, via a polynomial-time black-box reduction.

One-Sided Non-Malleability via Complexity Leveraging. It is well known that one-sided
non-malleability can be achieved easily via complexity leveraging. One-sided non-malleability only
prevents mauling attacks when the tag of the left commitment is “larger than” the tag of the right
commitment.7 In the simple case of 1-bit tags, this requires the commitment for tag 1 (on the left)
to be non-malleable w.r.t. the commitment for tag 0 (on the right), which holds if the tag-1 com-
mitment is “harder” than the tag-0 commitment. For example, if the tag-1 commitment is (S1, S

′
1)-

size-robust while the tag-0 commitment is (S0, S
′
0)-size-robust for some S0 << S′0 << S1 << S′1,

then one can extract the right committed value using a size-S′0 extractor, while the left committed
value still remains hidden. Therefore, the right committed value must be (computationally) inde-
pendent of the left. Similarly, we can also achieve one-sided non-malleability using depth-robust
commitments, by using a (D1, D

′
1)-depth robust commitment scheme for tag 1 and a (D0, D

′
0)-depth

robust commitment scheme for tag 0, for some D0 << D′0 << D1 << D′1.
However, simple complexity leveraging is inherently limited to one-sided non-malleability, since

when only one resource is considered, the tag-1 commitment cannot be both harder and easier than
the tag-0 commitment.

7The choice that the left tag is smaller than the right tag is not important. One could also require the opposite,
that is, the left tag is larger than the right tag. The limitation is that the design of the commitments depends on
this arbitrary decision.
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Figure 1: (left) A 1-bit tag based commitment scheme: The tag-0 (resp., tag-1) commitment scheme is
hiding for circuits of depth below D0 (resp., D1) OR size below S1 (resp., S0), represented by the solid line
joining D0 (resp., D1) and S1 (resp., S0). The tag-0 (resp., tag-1) commitment scheme admits an extractor
of depth at most D′0 (resp., D′1) and size at most S′1 (resp., S′0). (right) This is a generalization of the 1-bit
tag commitment scheme to log l-bits tags, where for tag-i the commitment scheme is hiding for circuits of
depth below Di OR size below Sl−1−i and exhibits an extractor of depth at most D′i and size at most S′l−1−i.

Two Resources for (Two-Sided) Non-Malleability. Therefore, our key idea is using two
resources to create two “axes”, such that, the tag-1 commitment and tag-0 commitment are si-
multaneously “harder” than the other, but, with respect to different resources. This is achieved
by combining the basic size-robust and depth-robust commitment schemes in the following simple
way.

Basic 1-bit Tag Non-Malleable Commitment:
For some D0 << D′0 << D1 << D′1 << S0 << S′0 << S1 << S′1,

- a tag-0 commitment to a value v consists of commitments to two random, xor secret shares
α, β of v, such that, v = α + β, where the first share is committed under a (D0, D

′
0)-depth-

robust commitment scheme and the second under a (S1, S
′
1)-size-robust commitment scheme,

and

- a tag-1 commitment to v, on the other hand, uses a (D1, D
′
1)-depth-robust commitment

scheme to commit to the first share and a (S0, S
′
0)-size-robust commitment scheme to commit

to the second share.

Thus, the tag-1 commitment is harder w.r.t. circuit-depth, while the tag-0 commitment is harder
w.r.t. circuit-size. Leveraging this difference, one can extract from a tag-0 commitment (on the
right) without violating the hiding property of a tag-1 commitment (on the left), and vice versa
— leading to two-sided non-malleability. More specifically, the committed values in a tag-0 com-
mitment can be extracted in depth D′0 and size S′1 by extracting both secret shares from the size-
and depth-robust commitments contained in it. Yet, adversaries with such depth and size cannot
break the (D1, D

′
1)-depth-robust commitment contained in a tag-1 commitment; thus, the value

committed to in the tag-1 commitment remains hidden. On the flip side, the committed value in a
tag-1 commitment can be extracted in depth D′1 and size S′0, and, similarly, adversaries with such
depth and size do not violate the hiding of a tag-0 commitment, due to the fact that the size-robust
commitment contained in it is hiding against size-S1 adversaries.
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In summary, combining the two types of commitment schemes gives us depth-and-size robust
commitment schemes: A (D ∨ S,D′ ∧ S′)-robust commitment is hiding against circuits with depth
below D or size below S, while extractable by some circuit with depth D′ and size S′, as illustrated
in Figure 1 (left). In this language, a tag-0 commitment is (D0 ∨ S1, D

′
0 ∧ S′1)-robust while a tag-1

commitment is (D1 ∨S0, D
′
1 ∧S′0)-robust. They are mutually non-malleable, because the extractor

for one falls into the class of adversaries that the other is hiding against.

The Subtle Issue of Over-Extraction. The above argument captures our key idea, but is
overly-simplified. It implicitly assumes that the size- and depth-robust commitments are extractable
in the perfect manner: 1) Whenever a commitment is valid, in the sense that there exists an
accepting decommitment, the extractor outputs exactly the committed value, otherwise, 2) when
the commitment is invalid, it outputs ⊥. Such strong extractability ensures that to show non-
malleability – the right committed value is independent of the left committed value, it suffices to
show that the right extracted value is independent of the left committed value, as argued above. On
the other hand, suppose that property 2) does not hold, that is, when the commitment is invalid,
the extractor may output arbitrary values – this is known as over-extraction. In this case, we can
no longer argue the independence of the right committed value based on the independence of the
right extracted value. For instance, the extracted value ṽ may not change as the left committed
value changes, but the right committed value may have switched from ṽ to ⊥.

However, our depth-robust commitments from time-lock puzzles do not satisfy such strong ex-
tractability.8 In particular, they are subject to over-extraction. Over-extraction traces back to the
fact that only honestly generated time-lock puzzles (i.e., in the domain of the puzzle generation
algorithm) are guaranteed to be solvable in certain time. There is no guarantee for ill-generated puz-
zles, and no efficient procedure for deciding whether a puzzle is honestly generated or not. Observe
that this is the case for the time-lock puzzles proposed by Rivest, Shamir, and Wagner [RSW96],

since given a puzzle (s + g22t

mod N, N) one can extract s using 2t squaring modular N , but
cannot obtain a proof that N is a valid RSA-modulus; this is also the case for the other puzzle
construction [BGJ+16]. As a result, the extractor of our depth-robust commitments that extracts
committed values via solving time-lock puzzles, provides no guarantees when commitments are
invalid.

This means that our basic 1-bit tag commitment scheme is over-extractable, and the argument
above that reasons about the right extracted value fails to establish non-malleability. Nevertheless,
the basic scheme does satisfy a variant of non-malleability that we call non-malleability w.r.t.
extraction, which ensures that the value extracted from the right commitment is independent of
the left committed value.9 When a commitment scheme is perfectly-extractable, this new notion is
equivalent to standard non-malleability (w.r.t. commitment), but with over-extraction, it becomes
incomparable. The issue of over-extraction has appeared in the literature (e.g., [Wee10, Kiy14]),
standard methods for dealing with over-extraction requires the committer to additionally prove the
validity of the commitment it sends, using for instance zero-knowledge protocols or cut-and-choose
techniques. However, these methods take more than 2 rounds of interaction, and do not apply here.

8Our size-robust commitments from injective one-way functions do satisfy such strong extractability.
9Our notion of non-malleability w.r.t. extraction is inspired from the notion of non-malleability w.r.t. extraction

defined by Wee [Wee10]. Furthermore, our notion can be viewed as a special case of the notion of non-malleability
w.r.t. replacement defined by Goyal [Goy11], in the sense that the replacer in Goyal’s definition is fixed to the over-
extractor of the commitment scheme. The benefit of doing so is that we know exactly the complexity of the extractor,
which is useful in the rest of the construction.
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2.2 Full-Fledged Non-Malleable Commitments

At this point, we face two challenges towards constructing full-fledged non-malleable commitments:

- Challenge 1: We need to go from non-malleability w.r.t. extraction to non-malleability w.r.t.
commitment in 2 rounds. Resolving this challenge would give a 2-round 1-bit tag non-
malleable commitment scheme.

- Challenge 2: The next challenge is going beyond two tags, towards supporting an exponential
2n number of tags.

It is easy to generalize our basic 1-bit tag commitment scheme to handle arbitrary l tags, if
there exists a “ladder” of l commitment schemes with increasing levels of depth-robustness,
and another “ladder” of l schemes with increasing levels of size-robustness. Concretely, the
i’th schemes are respectively (Di, D

′
i)-depth robust and (Si, S

′
i)-size robust, for some

· · · << Di << D′i << · · · << Dl−1 << D′l−1

<< S0 << S′0 << · · · << Si << S′i << · · · .

A commitment with tag i ∈ {0, · · · , l − 1} combines the i’th (Di, D
′
i)-depth-robust scheme

and the (l−i−1)’th (Sl−i−1, S
′
l−i−1)-size-robust scheme to commit to a pair of secret shares of

the committed value. This gives a family of l mutually non-malleable commitment schemes,
as illustrated in Figure 1 (right).

To directly obtain full-fledged non-malleable commitments, we need an exponential number of
levels l = 2n of depth- and size-robustness, which is, however, impossible from the underlying
assumptions. From generic subexponentially hard, say 2n

ε
hard, injective one-way functions,

we can instantiate at most O(log log n) levels of size-robustness. (This is because if we instan-
tiate the i’th size-robust commitment using the one-way functions with security parameter
ni, the commitment is hiding for adversaries of size Si = poly(2n

ε
i ), and can be broken by

adversaries of size S′i = poly(2ni). Then, ensuring S′i−1 << Si entails that n
1/ε
i−1 < ni, and

hence n
1/εi

0 < ni. Since ni also needs to be polynomial in the global securty parameter n, we
have i = O(log log n).) Similarly, from subexponentially parallel-time hard time-lock puzzles,
we can instantiate O(log log n) levels of depth-robustness. Therefore, we need to amplify the
number of tags.

We address both challenges using a single transformation.

2-Round Tag Amplification Technique: We present a transformation that converts a 2-round
l-tag commitment scheme that is non-malleable w.r.t. extraction, into a 2-round 2l−1-tag
commitment scheme that is both non-malleable w.r.t. extraction and w.r.t. commitment.
The output protocol can be further transformed to achieve concurrent non-malleability.

With the above transformation, we can now construct full-fledged non-malleable commitment.
Start from our basic scheme for a constant l0 = O(1) number of tags that is non-malleable w.r.t.
extraction; apply the tag-amplification technique iteratively for m = O(log∗ n) times to obtain a
scheme for lm = 2n tags that is both non-malleable w.r.t. extraction and w.r.t. commitment.

Previously, similar tag-amplification techniques were presented by Lin and Pass in [LP09] and
by Wee in [Wee10]. Our transformation follows the same blueprint, but differ at two important
aspects. First, our transformation starts with and preserves non-malleability w.r.t. extraction,
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which is not considered in their work. Second, their amplification techniques incur a constant
additive overhead in the round complexity of the protocol, whereas our transformation keeps the
number of rounds invariant at 2. To do so, our amplification step combines ideas from previous
works with the new idea of using our depth-and-size robust commitments to create different 2-round
sub-protocols that are mutually “non-malleable” when executed in parallel, in the sense that the
security of one sub-protocol remains intact even when the security of another is violated by force.

Our 2-Round Tag-Amplification Technique in More Detail. Similar to [LP09, Wee10],
the transformation proceeds in two steps:

- First, amplify the security of a scheme from (one-one) non-malleability w.r.t. extraction
to one-many non-malleability w.r.t. extraction and commitment, which, following a proof
in [LPV08], implies concurrent (or many-many) non-malleability w.r.t. extraction and com-
mitment. (This is why our final protocol can be made concurrently non-malleable.) Here,
one-many and concurrent non-malleability w.r.t. extraction or commitment naturally gen-
eralize standard non-malleability to the setting where the man-in-the-middle concurrently
receives one or many commitments on the left and gives many commitments on the right,
and ensures that the joint distribution of the values extracted from or committed in right
commitments is independent of the value(s) committed in the left commitments.

- Next, apply the “log-n trick” by Dolev, Dwork and Naor [DN00] to amplify the number of
tags supported from l to 2l−1 at the price of losing concurrent security, yielding a protocol
that is (one-one) non-malleable w.r.t. extraction and commitment.

The main technical challenges lie in the first step. We briefly review the LP [LP09] approach. At a
high-level, they construct one-many non-malleable commitment following the Fiege-Lapidot-Shamir
paradigm [FLS90]: The receiver starts by setting up a hidden “trapdoor” t. The sender commits
to a value v using an arbitrary (potentially malleable) 2-message commitment scheme, followed by
committing to 0n using a (one-one) non-malleable commitment and proving using many witness-
indistinguishable proofs of knowledge (WIPOK) that either it knows a decommitment to v or it
knows a decommitment of the non-malleable commitment to the trapdoor t; the former, called the
honest witness, is used by the honest committer, while the latter, called the fake witness, is used
for simulation.

The LP protocol arranges all components — the trapdoor-setup, commitment to v, non-
malleable commitment (for trapdoor), and every WIPOK — sequentially. To compress the protocol
into 2 rounds, we run all components in parallel, and replace multiple WIPOK proofs with a single
2-round ZAP proof.

Unfortunately, arranging all components in parallel renders the proof of one-many non-malleability
in LP invalid. They designed a sequence of hybrids in which different components in the (single)
left interaction are gradually switched from being honestly generated to simulated, while maintain-
ing two invariants regarding the (many) right interactions. First, the soundness condition states
that the man-in-the-middle never commits to a trapdoor in any right interaction. Second, in every
right interaction, there is always a WIPOK that can be rewound to extract the value committed
to in this interaction, without rewinding the left component being changed; the value extracted
must be a valid decommitment since the fake witness does not exist by the soundness invariant —
this establishes strong extractability. The second invariant is true because the LP protocol contains
sufficiently many sequential WIPOKs so that there is always a proof that does not interleave with
the left-component being changed. The first invariant, on the other hand, relies not only on the
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non-malleability of the input commitment scheme, but also on its “robustness” to other components
that have a small fixed k number of rounds (such as 2-message commitment and WIPOK). The
robustness captures “non-malleability” w.r.t. other protocols, and is achieved by embedding more
than k rewinding slots in the input commitment scheme.

In our 2-round protocol, we cannot afford to have many rewinding slots for extraction, nor for
establishing non-malleability between different components. Naturally, we resort to our size-and-
depth robust commitments, which can be made mutually non-malleable w.r.t. extraction by setting
the appropriate profiles of size-and-depth robustness. We embed a family of 4 such commitments
in different components of the protocol, and mimic the LP proof in the following (overly-simplified)
manner: In every hybrid, in the left interaction, either a size-and-depth robust commitment or the
non-malleable commitment is changed, while on the right, committed values are extracted from a
different size-and-depth robust commitment or from the non-malleable commitment. (Note that
since we now extract values from commitments instead of from WI proofs, we no longer need many
WIPOKs and a single ZAP suffices.)

To show that the left interaction remains indistinguishable despite the extraction, we rely on
the mutual non-malleability of the size-and-depth robust schemes, but also need the non-malleable
commitment and the size-and-depth robust commitments to be mutually non-malleable, which
unfortunately does not hold.

Let us explain. It turns out that our basic non-malleable commitment schemes for short tags,
and all intermediate schemes produced by the tag-amplification technique are only secure against
circuits with both bounded-size and bounded-depth. In contrast, the depth-and-size robust com-
mitments are secure against circuits with either bounded-size or bounded-depth. This qualitative
difference in adversarial circuit classes prevents them from being mutually non-malleable. To get
around this, we instead rely on a “cycle of non-malleability” that consists of the non-malleable
commitment scheme and two depth-and-size robust commitment schemes, satisfying that the first
scheme is non-malleable to the second, the second non-malleable to the third, and the third to the
first. Such a cycle turns out to be sufficient for our proof to go through.

One final technicality is that in order to create the cycle of non-malleability, the hardness of the
two size-and-depth robust commitments must be set appropriately according to that of the non-
malleable commitment scheme. Furthermore, the non-malleable commitment scheme produced by
the above transformation has weaker security than the input scheme. As a result, to iteratively
apply the tag-amplification technique for O(log∗ n) times, we need O(log∗ n) levels of depth- and
size-robustness. This can be easily instantiated using subexponentially secure non-interactive com-
mitment schemes and time-lock puzzles as stated in Theorem 1. See Section 6 for more details on
our tag amplification and its security proof.

2.3 Extensions

Finally, we briefly mention two extensions. First, our two-round non-malleable commitment scheme
can be made non-interactive, at the price of becoming only concurrent non-malleable against at-
tackers that are uniform Turing machines. Second, we show that our two-round non-malleable
commitment scheme (and its non-interactive version resp.) in fact satisfies the stronger notion of
Chosen Commitment Attack (CCA) security (against uniform Turing machines resp.).

Non-Interactive Non-Malleable Commitments w.r.t. Uniform Attackers. For the first
extension, observe that the only step in our construction that requires 2 rounds is the non-
malleability strengthening step in the tag-amplification technique. (The basic non-malleable scheme
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for a constant number of tags are non-interactive and the log-n trick in the tag-amplification tech-
nique is round-preserving.) The non-malleability strengthening step produces 2-round protocols,
where the first message is from the receiver and consists of i) the first message of a 2-round WI
proof, ii) a randomly sampled function from a family of collision resistant hash functions secure
against non-uniform attackers, and iii) the first message of the input (one-one) non-malleable com-
mitment scheme if it has 2 rounds. To remove the first message we can simply replace 2-round
WI proofs with non-interactive WI proofs (NIWIs), and fix a single hash function (instead of a
family). However, since a single hash function can only be collision resistant to attackers that
are uniform Turing machines, the resulting non-interactive commitment scheme is only concurrent
non-malleable against uniform adversaries. See Section 10 for more details.

CCA-secure Commitments. CCA-security strengthens the notion of concurrent non-malleability
in ways similar to how Chosen Ciphertext Attack secure encryption strengthens non-malleable en-
cryption. Roughly speaking, CCA-security requires that no man-in-the-middle attacker can distin-
guish commitments to different values on the left, even if it has access to a committed-value oracle,
which breaks every commitment the attacker sends on the right (except the left commitment),
and returns the unique committed value as soon as the right interaction ends. Our 2-round con-
current non-malleable commitments are in fact CCA-secure. To see this, it suffices to argue that
the non-malleability strengthening step in the tag-amplification technique produces CCA-secure
commitments, as the final 2-round protocol is produced by this procedure. Recall that to show the
concurrent non-malleability of the resulting 2-round protocol, we built a sequence of hybrids, where
different components in the left commitment are changed one by one, while the right committed
values are extracted by breaking different components in right commitments. The indistinguishabil-
ity of neighboring hybrids follows from the mutual non-malleability of the component being broken
on the right, and the component being changed on the left. We observe that this argument can
be easily changed to prove CCA security. The only modification to the hybrids is simulating the
committed-value oracle for the attacker by sending it the values extracted from the right commit-
ments. The mutual non-malleability of different components still guarantees the indistinguishability
of the hybrids, now with committed-value oracles. There are still some subtleties in the proof; see
Section 9 for more details.

3 Preliminaries

3.1 Basic Notation

We denote the security parameter by n. For n ∈ N, by [n] we denote the set {1, . . . , n}. If v is a
binary string then |v| denotes the length of the string and v[i] is the ith bit of v, for 0 ≤ i ≤ |v|−1.
We use || as the string concatenation operator. We identify strings p ∈ {0, 1}t with an index in [2t].
For any probability distribution D, x ← D denotes sampling an element from the distribution D
and assigning it to x. However, for a finite set Q, x← Q denotes sampling an element from the set
Q uniformly and randomly, and assigning it to x. We model algorithms as uniform TMs. We use
the abbreviation PPT to denote probabilistic-polynomial time. P/poly is the set of all non-uniform
polynomial size circuits. We say that a function ν : N→ R is negligible, if for every constant c > 0
and for all sufficiently large n ∈ N we have ν(n) < n−c. For functions d, S defined over N, we say
that d < S (resp. d ≤ S) if for all sufficiently large n ∈ N, d(n) < S(n) (resp. d(n) ≤ S(n)).
Furthermore, we say that d << S if for every polynomial poly, poly(d) < S.
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3.2 Circuit Classes

We define the following circuit classes which are going to be used throughout this work. For the
following definitions, consider n ∈ N and let d, S and S∗ be some non-decreasing functions defined
on N such that d ≤ S << S∗.

Definition 1 (Depth ∧ size-restricted circuits). C∧d,S is the set of all non-uniform circuits C =
{Cn}n∈N such that there exists a polynomial poly such that for all sufficiently large n ∈ N,

dep(Cn) < poly(d(n))

and size(Cn) < poly(S(n)) ,

where dep(Cn) and size(Cn) denote the depth and the size of the circuit Cn respectively.

Throughout this work, we only consider circuits of sub-exponential size. In particular, all such
circuits have size significantly lesser than 2n

ε
for some 0 < ε < 1. For generality, we let S∗ to denote

some pre-defined upper bound on the size of any circuits considered in this work. Furthermore,
when we are only concerned with restricting the depth of the circuits, whose size can be as large as
the upperbound poly(S∗) for any polynomial poly, we simply refer to the circuit class C∧d,S∗ as Cd.

Definition 2 (Depth-restricted circuits). Cd is the set of all non-uniform circuits C = {Cn}n∈N
such that there exists a polynomial poly such that for all sufficiently large n ∈ N,

dep(Cn) < poly(d(n))

and size(Cn) < poly(S∗(n)) .

Definition 3 (Depth ∨ size-restricted circuits). C∨d,S is the set of all non-uniform circuits C =
{Cn}n∈N such that either C ∈ Cd or C ∈ CS.

Remark 1. The classes of circuits C (namely, Cd,C∨d,S and C∧d,S) considered in this work are such
that S ≥ d >> n, that is, all d’s and S’s are super-polynomials. For such classes C, composing
any circuit C ∈ C with a circuit P ∈ P/poly results in a circuit C ′ which is also in the class C.
Therefore, we say that the circuit class C is closed under composition with P/poly. This fact is
going to be important in the rest of this work.

Below, we define standard cryptographic primitives w.r.t. a general circuit class C, requiring
that any adversary in C has negligible advantage in breaking the security of the primitive. When
C = P/poly, we say that the primitive is computationally secure and when C is the set of non-
uniform circuits whose size is bounded by 2n

ε
for some constant ε < 1, we say that the primitive is

subexponentially secure.

3.3 Indistinguishability and One-wayness

Definition 4 (C-indistinguishability). Two distribution ensembles {An}n∈N and {Bn}n∈N are said
to be C-indistinguishable, if for every non-uniform circuit D = {Dn}n∈N ∈ C, there exists a negligible
function ν(·) such that for every n ∈ N:

|Pr [a← An : Dn(a) = 1]− Pr [b← Bn : Dn(b) = 1]| ≤ ν(n) .

15



Definition 5 (C-unpredictability). Let X = {Xn}n∈N and Y = {Yn}n∈N be two ensembles of
countable sets. Let D = {Dn}n∈N be a distribution ensemble such that for every n ∈ N, Dn is a
distribution over pairs (x, y) ∈ Xn×Yn. We say that D is C-unpredictable w.r.t. (X,Y ) if for every
non-uniform circuit A = {An}n∈N ∈ C there exists a negligible function ν(·) such that for every
n ∈ N,

Pr[(x, y)←$Dn, x
′ ← An(y) : x = x′] ≤ ν(n) .

Definition 6 (One-way functions). A function f : {0, 1}∗ → {0, 1}∗ is called a C∧S,S-secure one-way
function (OWF) if the following hold:

1. There exists a deterministic polynomial-time algorithm that on input s in the domain of f
outputs f(s).

2. For every A = {An}n∈N ∈ C∧S,S there exists a negligible function ν(·) such that for every
n ∈ N,

Pr
[
s← {0, 1}n, s′ ← An(f(s)) : f(s′) = f(s)

]
≤ ν(S(n)) .

As a short-hand, we will sometimes refer to C∧S,S-secure one-way function as S-secure one-way
function. In this work, we will use a one-way function that is injective and is subexponentially
secure. That is, we assume the existence of a C∧S,S-secure injective one-way function where S = 2n

ε

for some 0 < ε < 1.

Definition 7 (Hardcore functions). Let D be a distribution ensemble over pair (X,Y ) of ensembles
of countable sets. A function h : X → {0, 1} is a C-hardcore predicate of D if the following hold:

1. There exists a deterministic polynomial-time algorithm that on input x ∈ X outputs h(x).

2. For every A = {An}n∈N ∈ C there exists a negligible function ν(·) such that for every n ∈ N,

Pr [(x, y)← Dn, b← An(y) : b = h(x)] ≤ 1

2
+ ν(n) .

Theorem 4 (Golreich-Levin Hardcore Bit). Let D be a C-unpredictable distribution ensemble over
(X,Y ) such that there exists a polynomially bounded function r such that for every n ∈ N, Xn ⊆
{0, 1}r(n). Let D′ be the following distribution ensemble,

{((x, z), (y, z)) : (x, y)← Dn, z ← {0, 1}r(n)}n∈N .

And let h : X×{0, 1}r → {0, 1} be the function such that for every (x, z) ∈ X×{0, 1}r, h((x, z)) =
〈x · z〉. Then, D′ is C-unpredictable over (X × {0, 1}r, Y × {0, 1}r) and h is a C-hardcore predicate
of D′.

Remark 2. Goldreich and Levin [GL89] show that for any adversary A ∈ C that breaks the hard-
coreness of h w.r.t. D′ with probability 1/2 + ε(n) there exists an adversary B that breaks unpre-
dictability of D where

size(B) ≤ poly(n/ε2) · size(A) ; dep(B) ≤ poly(n/ε2) · dep(A) .

Since, ε = 1/p(n) for some polynomial p the reduction blows up the size/depth of B over size/depth
of A by only a poly(n) factor. Therefore, if A ∈ C then B ∈ C which then contradicts the C-
unpredictability of D.
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3.4 Witness Relation, ZAP and NIWI

Definition 8 (Witness Relation). A witness relation or relation (for short) for a language L ∈ NP
is a binary relation RL that is polynomially bounded, polynomial time recognizable and characterizes
L by L = {x : ∃w s.t. (x,w) ∈ RL}.

We say that w is a witness for the membership of x ∈ L if (x,w) ∈ RL. We will also let RL(x)
denote the set of witnesses for the membership of x ∈ L; that is, RL(x) = {w : (x,w) ∈ RL}.

ZAPs are two-message public coin witness indistinguishable proofs defined as follows.

Definition 9 (ZAP [DN00]). A pair of algorithms (P,V), where P is PPT and V is (deterministic)
polytime, is a C-ZAP for an NP relation RL if it satisfies:

1. Completeness: There exists a polynomial l(·) such that for every (x,w) ∈ RL,

Pr
[
r ← {0, 1}l(|x|), π ← P(x,w, r) : V(x, π, r) = 1

]
= 1 .

2. Adaptive soundness: There exists a negligible function ν(·) such that for every malicious (po-
tentially unbounded) prover P∗ and every n ∈ N,

Pr
[
r ← {0, 1}l(n), (x, π)← P∗(r) : x ∈ {0, 1}n \ L ∧ V(x, π, r) = 1

]
≤ ν(n).

3. C-witness indistinguishability: For any sequence {(xn, w1
n, w

2
n, rn)}n∈N such that for every n ∈

N, xn ∈ L ∩ {0, 1}n, w1
n, w

2
n ∈ RL(xn) and rn ∈ {0, 1}l(n), the following ensembles are C-

indistinguishable:

{π1 ← P(xn, w
1
n, rn) : (xn, w

1
n, w

2
n, π1, rn)}n∈N ,

{π2 ← P(xn, w
2
n, rn) : (xn, w

1
n, w

2
n, π2, rn)}n∈N .

Throughout this work, we will refer to the first message r of ZAP as aZAP and the second mes-
sage together with the statement (π, x) as bZAP.

Dwork and Naor [DN00] were the first to construct a ZAP from certified trapdoor permuta-
tions [BY96]. They also showed that ZAP for L ∈ NP can be based on the weaker assumption of
the existence of NIZKs for L.

Theorem 5. If there exists a C-secure family of certified trapdoor permutations then there exists a
C-ZAP.

Furthermore, Bitansky and Paneth [BP15] construct ZAP based on the existence of indistin-
guishability obfuscation (iO) for a certain family of polysize circuits and one-way functions.

NIWIs are non-interactive witness-indistinguishable proofs.

Definition 10 (NIWI [BOV03]). A pair of algorithms (P,V) where P is PPT and V is (determin-
istic) polytime, is a C-NIWI for an NP relation RL if it satisfies:

1. Completeness: For every (x,w) ∈ RL,

Pr [π ← P(x,w) : V(x, π) = 1] = 1 .
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2. Soundness: For every x /∈ L and π ∈ {0, 1}poly(|x|):

Pr [V(x, π) = 1] = 0 .

3. C-witness indistinguishability: For any sequence {(xn, w1
n, w

2
n)}n∈N such that for every n ∈ N,

xn ∈ L ∩ {0, 1}n, w1
n, w

2
n ∈ RL(xn), the following ensembles are C-indistinguishable:

{π1 ← P(xn, w
1
n) : (xn, w

1
n, w

2
n, π1)}n∈N ,

{π2 ← P(xn, w
2
n) : (xn, w

1
n, w

2
n, π2)}n∈N .

Dwork and Naor [DN00] showed the existence of a non-uniform non-constructive NIWI which
can be based on their ZAP construction by fixing the first message non-uniformly. Building on
their work, Barak, Ong and Vadhan [BOV03] de-randomize the ZAP verifier in [DN00] to give
the first NIWI construction. They base their de-randomization technique on the existence of a
function in Dtime(2O(n)) with non-deterministic circuit complexity 2Ω(n). The ZAP construction
from [BP15] can also be de-randomized under the same assumption. Furthermore, Groth, Ostrovsky
and Sahai [GOS06] construct a NIWI based on the decisional linear assumption for bilinear groups.

Theorem 6. We base the existence of NIWI on either of the following assumptions:

1. If decisional linear assumption holds for the elliptic curve based bilinear groups in [BF03]
against all circuits in class C then there exists a C-NIWI.

2. If C-ZAPs exist and there exists a function in the class Dtime(2O(n)) with non-deterministic
circuit complexity 2Ω(n) then there exists a C-NIWI.

3.5 Commitment Schemes

Definition 11 (Commitment scheme). A commitment scheme 〈C,R〉 consists of a pair of inter-
active PPT TMs C and R with the following properties:

1. The commitment scheme has two stages: a commit stage and a reveal stage. In both stages,
C and R receive as common inputs 1n and 1α(n) and C additionally receives a private input
v ∈ {0, 1}α(n) where n ∈ N is the security parameter and α(·) is some polynomially bounded
function.10

2. The commit stage results in a joint output c, called the commitment, a private output for C, d,
called the decommitment string. Without loss of generality, c can be the full transcript of the
interaction between C and R including the common input 1n and 1α(n). Let nc = nc(n, α(n))
denote the maximal length of the commitment generated by 〈C,R〉 while committing to an
α(n)-bit value on security parameter n.

3. In the reveal stage, committer C sends the pair (v, d) to the receiver R, and R decides to accept
or reject the decommitment (v, d) deterministically according to an efficiently computable
function Open; that is, R accepts iff Open(c, v, d) = 1.

4. If C and R do not deviate from the protocol, then R should accept with probability 1 in the
reveal stage.

10For notational convenience we will usually drop the length of the value v being committer, that is, 1α(n) from
the common input.
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Furthermore, we say that a commitment c is valid, if there exists a string v ∈ {0, 1}α(n) and a
decommitment string d such that Open(c, v, d) = 1.

Next we define the binding and hiding property of a commitment scheme.

Definition 12 (Statistical binding). A commitment scheme 〈C,R〉 is statistically binding if for
every polynomially bounded function α(·) and for any committer C∗ possibly unbounded, there exists
a negligible function ν(·) such that C∗ succeeds in the following game with probability at most ν(n):

On security parameter 1n, C∗ first interacts with R in the commit stage to produce a commitment
c. Then C∗ outputs two decommitments (v0, d0) and (v1, d1), and succeeds if v0, v1 ∈ {0, 1}α(n),
v0 6= v1 and R accepts both as decommitments of c.

Furthermore, a commitment scheme is perfectly binding if the probability that C∗ succeeds in
the above game is 0.

We define the value of any commitment through a function val, that takes as input an arbitrary
commitment c and outputs v if c is valid and there exists exactly one value v ∈ {0, 1}α such that
Open(c, v, d) = 1 for some d, otherwise it outputs ⊥. Note that such a function val may not be
efficiently computable.

Definition 13 (C-hiding). A commitment scheme 〈C,R〉 is C-hiding if for every polynomially
bounded function α(·) and for every non-uniform circuit A = {An}n∈N ∈ C there exists a negligible
function ν(·) such that A succeeds in the following game with probability at most 1

2 + ν(n):

For security parameter 1n, An outputs a pair of values v0, v1 ∈ {0, 1}α(n). C on input vb, where
b is a randomly chosen bit, interacts with An to produce a commitment of vb. An outputs a bit b′

and wins the game if b′ = b.

Additionally, we consider commitment schemes that are “tag-based”.

Definition 14 (Tag-based commitment scheme). A commitment scheme 〈C,R〉 is a tag-based
scheme with t(n)-bit identities if, in addition to the security parameter 1n, the committer and
receiver also receive a “tag” – a.k.a. identity– id ∈ {0, 1}t(n) as common input.

When the length t(n) of identities is n, we refer to 〈C,R〉 as a tag-based commitment scheme.
We say that a tag-based scheme with t(n)-bit identities is perfectly binding (resp., C-hiding) if
binding (resp., C-hiding) holds for every id ∈ {0, 1}t(n).

Definition 15 (Over-extractable commitment scheme). A perfectly binding commitment scheme
〈C,R〉 is over-extractable w.r.t. extractor oE = {oEn}n∈N if for every polynomially bounded α(·)
and any n ∈ N,

Pr
[
v′ ← oEn(c) : c is valid ∧ val(c) 6= v′

]
= 0 , (1)

where nc = nc(n, α(n)) is the maximal length of the commitment generated by 〈C,R〉 with secu-
rity parameter n and committing to α(n)-bit values. Furthermore, we say 〈C,R〉 is (d, S)-over-
extractable if the extractor oE belongs to the circuit class C∧d,S.

Remark 3. Note that the extractor oE must successfully (with probability 1) extract the correct
value for any valid commitment (i.e., for which there exists a decommitment), even if the valid
commitment is generated by a malicious committer.

Remark 4. In general, extractors oE = {oEn}n∈N (as in Definition 15) can be randomized and one
can relax Equation 1 allowing extractors to fail with some negligible probability. As all extractors
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considered in this work are deterministic, we choose to state the stronger definition. We also note
that our notion of (over)-extraction, commitment scheme differs from the notion of extractable
commitments [Wee10] where the extractors can additionally interact with a malicious committer to
extract the value of the commitment.

In the rest of the paper whenever we say a commitment scheme, we mean a perfectly binding
commitment scheme.

The man-in-the-middle (MIM) execution Let 〈C,R〉 be a tag-based commitment scheme.
Consider a non-uniform circuit family A = {An}n∈N. For security parameter n and challenge
bit b ∈ {0, 1} we refer to MIMA

〈C,R〉(1
n, b) as the man-in-the-middle execution where An participates

in m-left and m-right concurrent interactions committing to values of length α.11 We allow An
complete control over scheduling of messages in all interactions. For every left interaction i ∈ [m],
An adaptively chooses a pair of values (v0

i , v
1
i ) ∈ {0, 1}α and an identity idi at the start of this in-

teraction, interacts with C to receive a commitment to the value vbi using the identity idi. In right
interactions An interacts with R attempting to commit to related values ṽ1, . . . , ṽm, using identities
ĩd1, ĩd2, . . . , ĩdm of its choice. We define the values ṽi committed on the right as ṽi = val(c̃i) where
c̃i is the commitment in the ith right interaction. Recall that val(c) = ⊥, if c is not valid or that
it can be opened to more than one value. Otherwise, val(c) equals the unique value v it can be
opened to. Furthermore, if for any right interaction i, ĩdi = idj for some j, we set ṽi = ⊥.

We define two different flavours of non-malleability. First we recall the standard notion of
non-malleability – a.k.a non-malleability w.r.t. commitment, for (tag-based) commitment schemes.
Then, we introduce a new notion called non-malleability w.r.t. extraction for over-extractable com-
mitment schemes.

Non-malleability w.r.t. commitment. Consider a MIM execution with A. For security pa-

rameter n ∈ N and bit b ∈ {0, 1}, let mimA
〈C,R〉(1

n, b) denote the random variable that describes the

values ṽ1, . . . , ṽm that A commits to on the right and the view of A in MIMA
〈C,R〉(1

n, b) where view
consists of the set of all messages A sends/receives in the MIM execution.

Definition 16 (Non-malleability). A tag-based commitment scheme 〈C,R〉 is said to be concur-
rent C-non-malleable if for every circuit family A = {An}n∈N ∈ C participating in m = poly(n)
concurrent interactions, receiving/sending commitments to α = poly(n)-bit values, the following
ensembles are computationally indistinguishable:{

mimA
〈C,R〉(1

n, 0)
}
n∈N

;
{
mimA

〈C,R〉(1
n, 1)

}
n∈N

.

Non-malleability w.r.t. extraction. Let 〈C,R〉 be a tag-based commitment scheme which is
over-extractable w.r.t. extractor oE . We say that 〈C,R〉 is non-malleable w.r.t. extraction if the
distributions of the random variable emim defined below are indistinguishable. Recall that mim
describes the view of A and the values ṽi that A commits to on the right. However, the random
variable emimA

〈C,R〉,oE(1
n, b)12, instead, describes the view of A and the values ṽi

′ which are obtained

11In standard definitions of non-malleability [DDN00, LPV08], the man-in-the-middle adversary is also given some
auxiliary information z. In this work, we consider non-malleability against non-uniform circuits, which can be thought
of as having z hard-wired in them. This is why we ignore z in our definitions.

12Note that in general the random variable emim should be parametrized by the extractor oE . But in rest of this
work we will drop it from the subscript for notational convenience as the underlying extractor will be clear from the
context

20



by running the extractor oE on input c̃i (the ith right commitment); that is, ṽi
′ ← oEn(c̃i). Note

that, if for any right interaction i, ˜idi = idj , for some j, then we set ṽi
′ = ⊥.

Definition 17 (Non-malleability w.r.t. extraction). A tag-based commitment scheme 〈C,R〉 is said
to be concurrent C-non-malleable w.r.t. extraction by oE if the following hold:

1. 〈C,R〉 is over-extractable by oE.

2. For every circuit A = {An}n∈N ∈ C participating in m = poly(n) concurrent interactions
receiving/sending commitments to α = poly(n)-bit values, the following ensembles are com-
putationally indistinguishable:{

emimA
〈C,R〉,oE(1

n, 0)
}
n∈N

;
{
emimA

〈C,R〉,oE(1
n, 1)

}
n∈N

.

At first glance, it may seem that the new notion — non-malleability w.r.t. extraction, is no
more interesting than the standard notion of non-malleability (w.r.t. commitment). After all,
an extractor that agrees with the function val establishes that the two notions are equivalent.
Most constructions of non-malleable commitment schemes in the literature, in fact, establish non-
malleability by building such an extractor in their security proofs. In this work, however, we
consider extractors that may not always agree with val and have some over-extraction.

Relationship between Non-malleability w.r.t. Commitment and w.r.t. Extraction. Over-
extractability guarantees that for valid commitments, the extractor extracts out the committed
value. However, given an invalid commitment, the value extracted by the extractor can be ar-
bitrary. This inept behaviour of the extractor, on invalid commitments, is what makes the two
notions incomparable (in general). For instance, there might exist an adversary A which depending
on the value committed on the left may choose to send invalid transcripts on the right with different
probabilities. Such an A certainly breaks the non-malleability of the scheme (w.r.t commitment)
but depending on the extractor, A may not violate non-malleability w.r.t. extraction because the
extracted values may still be indistinguishable. Furthermore, there might exist an adversary that
irrespective of the value on the left always sends invalid commitments on the right. Such an A
does not break the non-malleability w.r.t. commitment. But A may violate non-malleability w.r.t.
extraction by establishing a co-relation between the value committed on the left and the value
that will be over-extracted by the extractor on the right. Hence, the two notions are incompa-
rable. However, if one sets up the decommitment condition (which defines the random variable
mim) appropriately then we show that it is possible to base non-malleability w.r.t. commitment on
non-malleability w.r.t. extraction. We believe this reduction as one of the main contributions of
this work.

We also consider relaxed versions of both non-malleability and non-malleability w.r.t. extraction:
one-one, one-many and many-one secure commitment schemes. In one-one (a.k.a. standalone), we
consider an adversary A that participates in one left and one right interaction; in one-many A
participates in one left and many right; and in many-one, A participates in many left and one right
interaction.

Relationship between Non-malleability and Hiding. We note that any commitment scheme
that is C-non-malleable w.r.t. extraction (by extractor oE) is also C-hiding. This is because any
adversary A ∈ C that breaks hiding (say w.r.t. v0, v1 ∈ {0, 1}α) can send valid commitments to bα

on the right when receiving a commitment to vb on the left. Then, due to the over-extraction of oE ,
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A also breaks non-malleability w.r.t. extraction. In fact, this holds irrespective of the complexity
of the extractor oE and also holds for the extractor that computes the function val(c) – the value
of the commitment c.

Theorem 7. Let 〈C,R〉 be a commitment scheme and C be a class of circuits that is closed under
composition with P/poly.

1. If 〈C,R〉 is one-one C-non-malleable w.r.t. commitment then it is C-hiding.

2. If 〈C,R〉 is one-one C-non-malleable w.r.t. extractor oE then it is C-hiding (irrespective of the
complexity of the extractor oE).

3.6 Time-Lock Puzzles

Definition 18 (Time-lock puzzles [BGJ+16]). A (T,B)-time-lock (TL) puzzle is a tuple (Gen,Sol)
satisfying the following requirements:

1. Syntax:

- Z ← Gen(1n, 1t, s) is a probabilistic algorithm that takes as input a security parameter
n, a solution s ∈ {0, 1}n and a difficulty parameter t and outputs a puzzle Z.

- s ← Sol(Z) is a deterministic algorithm that takes as input a puzzle Z and outputs a
solution s.

2. Completeness: For every security parameter n, difficulty parameter t, solution s ∈ {0, 1}n and
puzzle Z in the support of Gen(1n, 1t, s), Sol(Z) outputs s.

3. Efficiency:

- Z ← Gen(1n, 1t, s) is a poly-time algorithm, that is, it runs in time poly(t, n).

- s← Sol(Z) runs in time poly(2t) for Z in the support of Gen(1n, 1t, ·).

4. (T,B)-hardness: (Gen,Sol) is a (T,B)-hard TL puzzle if for every t(n) ∈ ω(log n)∩nO(1) and
every adversary A = {An}n∈N where,

dep(An) ≤ T (t) ; size(An) ≤ B(n) ,

there exists a negligible function ν, such that for every n ∈ N,

Pr
[
s← {0, 1}n; Z ← Gen(1n, 1t(n), s); s′ ← An(Z) : s′ = s

]
≤ ν(n) .

The first candidate construction of TL puzzles was proposed by Rivest, Shamir and Wag-
ner [RSW96] and is based on the “inherently sequential” nature of exponentiation modulo an RSA
integer. Twenty years after their proposal, there still does not exist a (parallelizable) strategy that
can solve the puzzle (of difficulty parameter t) in parallel-time T (t) which is significantly less than
2t. Apart from the variants of RSW puzzles [BN00, GMPY11], the only other construction of TL
puzzles was given by Bitansky et al. [BGJ+16] based on succinct randomized encodings for Turing
machines (which in turn can be built from indistinguishability obfuscation and one-way functions)
and the existence of non-parallelizing languages. These previous works have considered puzzles with
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strong parameters, that is, puzzles that are parallel-time hard for exponential T = 2δt ([BGJ+16])
and even strongly exponential T = δ2t ([BN00, GMPY11]).

However, for our task of constructing 2-round non-malleable commitments, much weaker TL
puzzles are sufficient, that is, puzzles that remain hard for only subexponential T = 2t

δ
parallel-

time. More precisely, we need a (T (t) = 2t
δ
, B(n) = 2n

ε
)-TL puzzle for some 0 < ε, δ < 1. We

present the RSW TL puzzles RSW = (Gen,Sol) as a candidate.

- Algorithm Gen(1n, 1t, s):

1. Select an n-bit RSA modulous N = pq.

2. Compute the mask y = g22t

mod N for some element g ∈ Z∗N . Note that since the

factorization of N is known, Gen can first compute the exponent e = 22t mod φ(N) and
then efficiently compute the mask y = ge mod N .

3. Mask the solution s with y, that is, z = (s+ y) mod N .

4. Return the tuple Z = (z,N) as the puzzle.

- Solver Sol(Z = (z,N)):

1. By 2t repeated squarings, compute y = g22t

mod N .

2. Output (z − y) mod N as the solution.

As discussed in [RSW96], the element g above can either be a fixed element such as 2, or sampled
at random.

Next, we discuss that RSW = (Gen, Sol) is a TL puzzle in the sense of Definition 18. It is
easy to see that for security parameter n and difficulty parameter t, Gen runs in time poly(t, n)
and Sol runs in time poly(2t). Futhermore, we base the (T,B)-hardness of the RSW puzzle on
the subexponential repeated squaring assumption as stated in Assumption 1. Informally, it says
that for some subexponential functions T and B, and any function t ∈ ω(log n)∩nO(1), B(n)-sized

adversaries with depth T (t) cannot compute g22t

mod N . We define the assumption more formally
below.

Assumption 1 (Subexponential Repeated Squaring Assumption). There exists subexponential
functions T,B such that for every function t(·) ∈ ω(log n) ∩ nO(1), the following holds: For every
adversary A = {An}n∈N such that

dep(An) ≤ T (t(n)); size(An) ≤ B(n) ,

there exists a negligible function µ such that for every n ∈ N, 13

Pr
[
N ← RSA(n); g ← Z∗N ; y ← An(g,N) : y = g22t

mod N
]
≤ µ(n) ,

where RSA(n) is the set of all n-bit RSA moduli.

Then, it is easy to see that if the subexponential repeated squaring assumption holds, then the
RSW puzzle as defined above is a (T,B)-hard TL puzzle for some subexponential functions T and
B.

Lemma 1. If the subexponential repeated squaring assumption holds, then there exists subexponen-
tial functions T and B, such that, RSW = (Gen,Sol) is a (T,B)-hard TL puzzle.

13g can also be fixed appropriately instead of sampling it randomly.
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3.7 Collision-resistant Hash Functions

Definition 19. A family of C∧S,S-collision-resistant hash functions (CRH) H = {Hn}n∈N is a

function family ensemble such that for every n ∈ N, Hn = {h : {0, 1}m(n) → {0, 1}n} such that
n < m(n) satisfying,

1. Efficient Sampling: There exists a poly-time TM S such that for every n ∈ N, S(1n) outputs
a uniform element of Hn.

2. Efficient Computation: There exists a poly-time TM M such that for every n ∈ N, h ∈ Hn

and x ∈ {0, 1}m(n), M(h, x) = h(x).

3. S(n)-Collision-resistance: For every non-uniform circuit A = {An}n∈N ∈ C∧S,S there exists a
negligible function ν such that for every n ∈ N,

Pr [h← Hn, (x1, x2)← A(h) : x1 6= x2 ∧ h(x1) = h(x2)] ≤ ν(S(n)) . (2)

We will sometimes refer to C∧S,S-collision resistant hash family as S-collision resistant hash
family. Moreover, a family of uniform collision resistant hash function (CRH) is as defined above,
except that i) the family Hn only consists of a single function hn, and ii) S(n)-collision resistence
only holds against attackers that are poly(S(n))-time uniform Turing machines. We denote such a
family as {hn}n∈N.

In this work, we will use subexp-secure, uniform or non-uniform, collision-resistant hash func-
tions. For n ∈ N and any h ∈ Hn, a collision can be found by a uniform Turing machine in
time 2n/2 with high probability and in time poly(n) · 2n with probability 1. Furthermore, for some
0 < ε < 1/2, we require that it be hard for any poly(2n

ε
)-sized circuit (or a poly(2n

ε
)-time uniform

Turing machine) to find collisons for a randomly chosen hash function h ← Hn (or for hn in the
uniform case) for 0 < ε < 1/2.

4 Basic Commitment Schemes

In this section we construct three basic over-extractable commitment schemes, each one of them
enjoys hiding against different circuit classes. Firstly, we construct a depth-robust commitment
scheme which is (S′, S′)-over-extractable and hiding against any circuit whose depth is sufficiently
smaller than S′. Next, we construct a size-robust commitment scheme which is hiding against any
circuit whose size is at most poly(S) but there exists an extractor of polynomial depth and size larger
than S. Finally, we construct a commitment scheme which is hiding against both depth-restricted
and size-restricted circuits.

4.1 Depth-robust Over-extractable Commitment Scheme from a TL-puzzle

For some subexponential functions T and B, assume the existence of a (T,B)-TL puzzle (Gen,Sol).
For any difficulty parameter t(n) ∈ ω(log n)∩ nO(1), these puzzles are solvable in time poly(2t) but
hard for B(n)-sized circuits having depth at most poly(T (t)).14 Furthermore, consider a difficulty
parameter t(n) that admits the following hierarchy of non-decreasing functions, n << d = T (t) <<

14The definition of TL puzzles presented in Definition 18 defines hardness against circuits with depth at most T but
for ease of description we assume hardness for poly(T ) depth. This is without loss of generality for subexponential

T = 2t
δ′

, that is, hardness against 2t
δ′

implies hardness against poly(2t
δ

) for any δ < δ′ < 1.
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S′ = 2t << S∗ << B. Using the (T,B)-TL puzzles, we construct a commitment scheme which
is over-extractable in time poly(S′) and is hiding against any circuit in Cd (hence the name depth-
robust commitment scheme). We refer to the commitment scheme as (EComd,EOpend) which is
described below. 15

On input a security parameter 1n, the honest committer C runs the algorithm EComd described
below to commit to a value v ∈ {0, 1}α. After the commit stage, the honest receiver R decides
whether to accept the commitment by running the function EOpend as described in the reveal stage.

- Commit stage - Algorithm EComd:

1. On input security parameter 1n and value v ∈ {0, 1}α, for every 0 ≤ i ≤ α − 1, EComd

samples random strings si, ri ∈ {0, 1}n and computes the commitment ci to v[i], the ith
bit of v, as follows,

ci = (Zi = Gen(1n, 1t(n), si ; r), ri, 〈ri · si〉 ⊕ v[i]) ,

where r is the random tape used by Gen and t is the difficulty parameter such that
d = T (t).

2. EComd sets the vector c = {ci}0≤i≤α−1 as the commitment and sets (v, {si}0≤i≤α−1, r)
as the decommitment.

- Reveal stage - Function EOpend:
On input commitment c = {ci}0≤i≤α−1 and decommitment (v, {si}0≤i≤α−1, r), EOpend re-
turns 1 if ci = (Gen(1n, 1t, si ; r), ri, 〈ri · si〉 ⊕ v[i]) for every 0 ≤ i ≤ α − 1. Otherwise,
outputs 0.

Furthermore, the extractor oEd of the scheme proceeds as follows:

- Extraction - Extractor oEd:
On input any commitment c = {ci = (Zi, ri, zi)}0≤i≤α−1, the extractor oEd computes the
solution si of Zi by running Sol(Zi). Then, oEd extracts bit v[i] committed in ci by computing
v[i] = zi ⊕ 〈ri · si〉. oEd returns the string v[0]|| . . . ||v[α− 1] as its output.

Theorem 8. Assume the existence of (T,B)-TL puzzles (Gen, Sol) for some subpexponential func-
tions T and B. Then, for any t(n) ∈ ω(log n)∩nO(1) and any non-decreasing function S∗ satisfying
n << d = T (t) << S′ = 2t << S∗ << B, (EComd,EOpend) is a non-interactive, perfectly binding,
Cd-hiding, (S′, S′)-over-extractable commitment scheme w.r.t. extractor oEd.

Proof. We discuss each of the properties in the following:

- Efficiency: For any n ∈ N, difficulty parameter t = t(n) and length α = α(n) which are upper-
bounded by some polynomial, and 0 ≤ i ≤ α − 1, EComd runs Gen to sample puzzles Zi’s and
rest of computation (i.e., sampling n-bit strings, computing inner-product) takes poly(n) time.
In fact for difficulty parameter t(n), Gen runs in time poly(t, n) which is upper-bounded by some
poly(n) as t is upper-bounded by a polynomial. Hence, EComd runs in time poly(n) for each
0 ≤ i ≤ α− 1. Furthermore, since α is also upper-bounded by a polynomial, EComd is efficient.

15From now on, for notational convenience, we represent a non-interactive commitment scheme by the tuple of
commit and open algorithms; that is (ECom,EOpen), instead of a pair of interactive TMs C and R.
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- Perfect binding: Note that TL-puzzles are injective, that is, any (even arbitrarily generated) Z
belongs to the support of Gen(1n, 1t, s) for at most one solution s ∈ {0, 1}n. Assume towards
a contradiction that there exists a Z that belongs to the support of both Gen(1n, 1t, s0) and
Gen(1n, 1t, s1) for some s0 6= s1. Let s = Sol(Z) be the output of the deterministic algorithm Sol
on input Z. If s 6= s0 then this contradicts the completeness of Sol w.r.t. puzzles in the support of
Gen(1n, 1t, s0). If s = s0 then it contradicts the completeness of Sol w.r.t. puzzles in the support
of Gen(1n, 1t, s1). Therefore, for any puzzle Z there exists at most one solution s and in the case
when a solution s exists we know s = Sol(Z).16

Now, let c = {ci = (Zi, ri, zi)}0≤i≤α(n)−1 be any commitment. From the above observation, we
know that every Zi falls in the support of at most one si. Therefore, for c there exists at most
one sequence (v, {si}0≤i≤α(n)−1) for which EOpend returns 1. This implies perfect binding of
(EComd,EOpend).

- Over-extractable: First, the extractor oEd belongs to the class C∧S′,S′ since Sol runs in time

poly(S′) = poly(2t) and the rest of the computation takes poly(n) time.

Note that for any valid commitment c = {ci = (Zi, ri, zi)}0≤i≤α(n)−1, Zi’s are honestly generated
puzzles and furthermore each Zi belongs to the support of Gen(1n, 1t, si) for exactly one si. These
si’s along with the ri’s (from c) uniquely define val(c), the value of the commitment. Moreover
given (si, ri)’s val(c) is efficiently computable.

Then on any valid commitment c as input, the extractor oEd first runs Sol on each of the Zi’s.
Due to the perfect correctness of Sol, the extractor oEd always extracts the corresponding si’s and
hence also the correct unique committed value, val(c). Therefore, (EComd,EOpend) is (S′, S′)-
over-extractable.

- Hiding: Let t(n) = ω(log n) be some polynomially bounded difficulty parameter. Then by the
definition of (T,B)-hardness of the TL puzzle we know that any adversary A = {An}n∈N, with
dep(An) ≤ poly(T (t)) and size(An) ≤ poly(S∗) < B, solves the puzzle Z ← Gen(1n, 1t, s) only
with negligible probability for some randomly chosen s. Therefore, the distribution

{s← {0, 1}n, Z ← Gen(1n, 1t, s) : (s, Z)} , (3)

is unpredictable for any such adversary A. In our construction of (EComd,EOpend), we sample
the TL puzzles with difficulty t such that T (t) = d. Therefore, the above distribution is Cd-
unpredictable. Then, by a standard argument (see Theorem 4) about the hardcoreness of the
Goldreich Levin bit [GL89] extracted from an Cd-unpredictable distribution, we can conclude that
the function that on input (s, r) outputs 〈s ·r〉 is hardcore for circuits in the class Cd.17 This then
implies that (EComd,EOpend) is Cd-hiding.

4.2 Size-robust Over-extractable Commitment Scheme from Injective OWFs

For a non-decreasing function S(n) (<< S∗(n)), assume that there exists an injective one-way
function (OWF) f that is hard to invert for any poly(S)-sized circuit (for any polynomial poly(·)),

16It can be possible that some Z does not belong to the support of any Gen(1n, 1t, s) for any s, in which case we
say that Z has no solution.

17Here we rely crucially on the fact that the GL reduction only blows up the depth of the adversary by a polynomial
factor (Remark 2). Therefore, allowing us to base the Cd-hardcoreness of the GL-bit 〈s · r〉 on the Cd-hardness of the
TL puzzles.
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but there exists a non-decreasing function S′′(n) (S << S′′ << S∗) such that a circuit of poly(n)
depth and S′′ size can invert it. Such an injective OWF can be instantiated from a subexponentially
secure injective OWF by setting the input length k appropriately. More concretely, consider a
subexponentially secure injective OWF that is hard for circuits of size poly(2k

ε
) (for any polynomial

poly() and some 0 < ε < 1). For any S, we can design the required f which is hard to invert for
poly(S)-sized circuits by setting k = (logS)1/ε, thereby achieving security against circuits of size
poly(2k

ε
) = poly(2(logS)). Furthermore, there exists a circuit which can invert (with probability 1)

by enumerating all the 2k pre-images. Such a circuit has size S′′ = poly(2k) = poly(2(logS)1/ε
) >> S

and polynomial depth.
Using such an injective OWF f , we construct (EComS ,EOpenS) – a commitment scheme which

is hiding against circuits of size poly(S) (hence the name size-robust commitment scheme) and
(poly(n), S′′)-over-extractable. (EComS ,EOpenS) is simply the non-interactive commitment scheme
based on injective OWFs where the hard-core predicate is the Golreich-Levin bit [GL89]. For
completeness, we describe the scheme below.

As before, on input a security parameter 1n, the honest committer C runs the algorithm EComS

described below to commit to a value v ∈ {0, 1}α. After the commit stage, the honest receiver R
decides whether to accept the commitment by running the function EOpenS as described in the
reveal stage.

- Commit stage - Algorithm EComS :

1. On input security parameter 1n and value v ∈ {0, 1}α, for every 0 ≤ i ≤ α − 1, EComS

samples random strings si in the domain of f , random strings ri←$ {0, 1}|si| and com-
putes the commitment ci to v[i], the ith bit of v, as follows,

ci = (f(si), ri, 〈ri · si〉 ⊕ v[i]) .

2. EComS sets the vector c = {ci}0≤i≤α−1 as the commitment and sets (v, {si}0≤i≤α−1) as
the decommitment.

- Reveal stage - Function EOpenS :
On input commitment c = {ci}0≤i≤α−1 and decommitment (v, {si}0≤i≤α−1), EOpenS returns
1 if ci = (f(si), ri, 〈ri · si〉 ⊕ v[i]) for every 0 ≤ i ≤ α− 1. Otherwise, outputs 0.

The extractor oES for the scheme proceeds as follows:

- Extraction - Extractor oES :
On input any commitment c = {ci = (yi, ri, zi)}0≤i≤α−1, the extractor oES computes the
pre-image si of yi under f (by assumption, f can be inverted using a circuit of polynomial
depth and S′′ size). oES extracts bit v[i] committed in ci by computing v[i] = zi ⊕ 〈ri · si〉.
oES returns the string v[0]|| . . . ||v[α− 1] as its output.

Theorem 9. If f is a C∧S,S-secure injective OWF which is invertible by a circuit in C∧poly(n),S′′ for

non-decreasing functions S, S′′ such that n << S << S′′ << S∗ then (EComS ,EOpenS) is a non-
interactive, perfectly binding, C∧S,S-hiding and (poly(n), S′′)-over-extractable commitment scheme
w.r.t. extractor oES.

Proof. We discuss all the properties in the following:
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- Binding and Hiding: The proof of perfect binding follows from the injectivity of f and proof
of C∧S,S-hiding follows from the hard-coreness of the Goldreich-Levin bit with f being C∧S,S
one-way (hence the scheme is C∧S,S-hiding).

- Over-extractable: First, the extractor oES belongs to the class C∧poly(n),S′′ since f can be

inverted by a circuit in C∧poly(n),S′′ and the rest of the computation takes poly(n) time. Fur-
thermore, since oES always inverts OWF images yi’s correctly, it always extracts the correct
unique committed value. Therefore, (EComS ,EOpenS) is (poly(n), S′′)-over-extractable.

4.3 Strong Over-extractable Commitment Scheme

For non-decreasing functions,

n << d(n) << S′(n), S(n) << S′′(n) << S∗(n) << 2n
ε
,

we construct a non-interactive perfectly binding commitment (EComd,S ,EOpend,S) which is C∨d,S-
hiding and (S′, S′′)-over-extractable w.r.t an extractor oEd,S . Note that, unlike the commitment
schemes described in Sections 4.1 and 4.2 which were either hiding against depth-restricted circuits
Cd or hiding against size-restricted circuits C∧S,S , (EComd,S ,EOpend,S) enjoys a stronger security
property of being hiding against circuits in both depth-restricted and size-restricted circuit classes
(i.e., C∨d,S). We describe the construction of the scheme (EComd,S ,EOpend,S) for an honest commit-
ter C and an honest receiver R below. The idea is to commit to a random 2-out-of-2 secret share
of the value v using each of the schemes described in Sections 4.1 and 4.2.

As before, on input a security parameter 1n, the honest committer C runs the algorithm EComd,S

described below to commit to a value v ∈ {0, 1}α. After the commit stage, the honest receiver R
decides whether to accept the commitment by running the function EOpend,S as described in the
reveal stage.

- Commit stage - Algorithm EComd,S :

1. On input security parameter 1n and value v ∈ {0, 1}α, EComd,S samples a random α-bit
string r0.

2. EComd,S computes a commitment c1 to r0 using EComd. Let d1 be the corresponding
decommitment string.

3. EComd,S computes a commitment c2 to v⊕r0 using EComS . Let d2 be the corresponding
decommitment string.

4. EComd,S sets (c1, c2) as the commitment c and sets (v, r0, d1, d2) as the decommitment.

- Reveal stage - Function EOpend,S :

On input a commitment c = (c1, c2) and the decommitment (v, r0, d1, d2), EOpend,S accepts
it if both EOpend and EOpenS accept the corresponding decommitments; that is,

EOpend(c1, r0, d1) = 1 ∧ EOpenS(c2, v ⊕ r0, d2) = 1 .

Otherwise, EOpend,S rejects.

The extractor oEd,S of the scheme proceeds as follows:
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- Extraction - Extractor oEd,S :

The extractor oEd,S on input c = (c1, c2) runs the extractors oEd and oES with inputs c1 and
c2, obtaining outputs r′0 and r′1 respectively. If either r′0 or r′1 is ⊥ then oEd,S outputs ⊥.
Otherwise, oEd,S outputs r′0 ⊕ r′1.

Theorem 10. For the following hierarchy of non-decreasing functions on N

n << d << S′ << S << S′′ << S∗ << B ,

let (EComd,EOpend) be a non-interactive, perfectly binding, Cd-hiding and (S′, S′)-over-extractable
commitment scheme w.r.t. extractor oEd and let (EComS ,EOpenS) be a non-interactive, perfectly
binding, C∧S,S-hiding and (poly(n), S′′)-over-extractable commitment scheme w.r.t. extractor oES.
Then, (EComd,S ,EOpend,S) is non-interactive, perfectly binding, C∨d,S-hiding and (S′, S′′)-over-extractable
commitment scheme w.r.t. extractor oEd,S.

Remark 5. For our final construction of concurrent non-malleable commitment, we require the
existence of (EComd,EOpend) and (EComS ,EOpenS) for some specific functions d, S′, S, S′′. Such
schemes can be based on the existence of subexponentially secure injective OWFs and (T,B)-TL
puzzles for some subexponential functions T,B. We provide concrete instantiations of such depth-
and size-robust schemes in Section 8.2.

Proof. We discuss each of the properties in the following:

- Perfect binding: The perfect binding follows from the perfect binding of EComd and EComS .

- Over-extractable: A valid commitment c = (c1, c2) is such that both c1 and c2 are valid com-
mitments for EComd and EComS respectively. Since EComd and EComS are over-extractable
w.r.t. extractors oEd and oES respectively, oEd,S which runs oEd(c1) and oES(c2) extracts
out the unique committed values and hence outputs val(c) with probability 1. Furthermore,
oEd ∈ C∧S′,S′ and oES ∈ C∧poly(n),S′′ implies that oEd,S belongs to the circuit class C∧S′,S′′ .

- Hiding: Assume towards a contradiction that there exists a polynomially bounded function
α(·), a non-uniform circuit family A = {An}n∈N ∈ C∨d,S and for some polynomial p(·) and
infinitely many n ∈ N, a pair of values v0, v1 ∈ {0, 1}α,

Pr [b← {0, 1}, c← EComd,S(1n, vb) : b = An(c)] ≥ 1

2
+

1

p(n)
. (4)

Using A, we construct a non-uniform circuit family B = {Bn}n∈N that breaks the hiding of
either EComd or EComS depending on the depth and size of A. Since A ∈ C∨d,S , it could either
be that A ∈ Cd or A ∈ C∧S,S . We will consider the two cases separately below.

Case 1 - A ∈ C∧S,S : In this case, we construct a B that violates the hiding of EComS as follows:

Bn with v0 and v1 hard-wired in it, samples a random α(n)-bit string r0 and computes a
commitment c1 to string r0 using EComd. It sends (v0 ⊕ r0) and (v1 ⊕ r0) as challenges
in the hiding game of EComS and receives a commitment c2 to (vb ⊕ r0), for a randomly
chosen bit b. Finally, Bn sends the tuple (c1, c2) as the commitment to An and forwards
the output of An as its output. B perfectly simulates the hiding game of EComd,S for A
while itself participating in the hiding game of EComS and hence succeeds with probability
at least 1

2 + 1
p(n) . Furthermore, since B incurs only polynomial blow-up in size over A (while
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simulating the game for A), we have B ∈ C∧S,S . Therefore, B ∈ C∧S,S succeeds in the hiding

game of EComS with non-negligible probability away from 1
2 , which is a contradiction.

Case 2 - A ∈ Cd: The proof for Case 2 is similar to Case 1 but here we, instead, construct
B ∈ Cd which succeeds in the hiding game of EComd with non-negligible probability away
from 1

2 . The only difference from the previous case is that B commits to r0 using the scheme
EComS and forwards (v0⊕ r0) and (v1⊕ r0) as challenges in the hiding game of EComd. Since
the marginal distribution of both random shares of v (i.e., r and v ⊕ r for a random r) are
identical, B still perfectly simulates the hiding game of EComd,S for A.

5 Non-malleable Commitment Scheme w.r.t. Extraction for Short
Identities

For l = O(1) which is a power of 2, assume that we have the following hierarchy of non-decreasing
functions on N,

n << d0 << d1 << . . . << dl−1 << dl <<

S0 << S1 << . . . << Sl−1 << Sl << S∗ << 2n
ε
,

(5)

such that for every 0 ≤ id ≤ l − 1,

- there exists a depth-robust commitment scheme (EComdid ,EOpendid) that is Cdid-hiding and
(did+1, did+1)-over-extractable w.r.t. an extractor oEdid .

- there exists a size-robust commitment scheme (EComSid
,EOpenSid

) that is C∧Sid,Sid
-hiding and

(poly(n), Sid+1)-over-extractable w.r.t. an extractor oESid
.

By Section 4.3, we can construct a family of l commitments {(EComid,EOpenid)}id such that for
every 0 ≤ id ≤ l − 1,

(EComid,EOpenid) = (EComdid,Sl−id−1
,EOpendid,Sl−id−1

) ,

and by Theorem 10 we have that (EComid,EOpenid) is a non-interactive, perfectly binding, C∨did,Sl−id−1
-

hiding and also (did+1, Sl−id)-over-extractable commitment scheme w.r.t. an extractor oEid (de-
scribed in Section 4.3). We use this family of l commitment schemes to construct a tag-based
commitment scheme (ENMCom,ENMOpen) for identities of length log l-bits which is one-one non-
malleable w.r.t. extraction by an extractor oENM. We describe the scheme (ENMCom,ENMOpen)
and the extractor oENM below.

On input a security parameter 1n, the honest committer C runs the algorithm ENMCom de-
scribed below to commit to a value v ∈ {0, 1}α. After the commit stage, the honest receiver R
decides whether to accept the commitment by running the function ENMOpen as described in the
reveal stage.

- Commit stage - Algorithm ENMCom:

1. On input security parameter 1n, identity 0 ≤ id ≤ l−1 and a value v ∈ {0, 1}α, ENMCom
computes a commitment c to v using EComid. Let d be the corresponding decommitment
string.
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- Reveal stage - Function ENMOpen:
On input a commitment c and the decommitment (v, d) and identity id, ENMOpen computes
ENMOpen(id, c, v, d) which returns 1 if EOpenid(c, v, d) returns 1. Otherwise, returns 0.

The extractor oENM proceeds as follows,

- Extraction - Extractor oENM:
The extractor oENM on input c and identity id outputs the value extracted by oEid from c.

Remark 6. We want ENMCom and ENMOpen to be computable by uniform TMs. This mandates
that {EComid}0≤id≤l−1 and {EOpenid}0≤id≤l−1 be uniformly and efficiently computable; that is, there
must exist uniform PPT TMs Mcom and Mopen that on input id can compute EComid and EOpenid
respectively. If l = O(1) then one can simply hard-code all the algorithms {EComid}0≤id≤l−1 and
{EOpenid}0≤id≤l−1 in Mcom and Mopen respectively. As will see later, l = O(1) is sufficient for
constructing non-malleable commitment scheme for n-bit identities. When l = ω(1) the hard-coding
approach, in fact, does not work. Nevertheless, we note that the algorithms EComid and EOpenid
described in Section 4.3 are still efficiently and uniformly computable. Since, this case does not
occur in our construction, we omit details here.

Theorem 11. (ENMCom,ENMOpen) is a non-interactive, perfectly binding, C∧d0,S0
-hiding and

(dl, Sl)-over-extractable tag-based commitment scheme for identities of length log l. (ENMCom,ENMOpen)
is also one-one C∧d0,S0

-non-malleable w.r.t. extraction by extractor oENM.

We note that both hiding and non-malleability hold only against circuits in the restrictive class
C∧d0,S0

; that is, circuits A whose depth and size are bounded by poly(d0) and poly(S0) respectively,
even though the building blocks EComid’s have the stronger security of being hiding against circuits
in C∨did,Sl−id−1

⊃ C∧d0,S0
; that is, circuits A which are either restricted in their depths or their size but

not both.

Proof. The perfect binding follows readily from the perfect binding of each of the EComid’s. We
discuss over-extractability and non-malleability in the following:

- Over-extractable: A valid commitment c with identity id is a valid commitment for EComid.
Therefore, the extractor oENM which runs oEid on c extracts the correct unique commit-
ted value due to the over-extractability of EComid w.r.t. oEid. Furthermore, EComid’s are
(did+1, Sl−id)-over-extractable and hence the depth of oEid is at most poly(did+1) and size of
oEid is at most poly(Sl−id). Therefore, oENM (which runs oEid) is a circuit with depth bounded
by poly(dl) and size bounded by poly(Sl) (see Inequality (5)). Hence, (ENMCom,ENMOpen)
is (dl, Sl)-over-extractable.

- Non-malleability and Hiding: By Theorem 7 hiding will follow from the proof of non-malleability
which we describe next. For proving one-one non-malleability w.r.t. extraction by oENM, let
us assume for contradiction that there exists a non-uniform attacker A = {An}n∈N ∈ C∧d0,S0

sending/receiving commitments to values of length α = poly(n), a non-uniform distinguisher
D = {Dn}n∈N ∈ P/poly, and a polynomial p(·), such that, for infinitely many n ∈ N,∣∣∣Pr[Dn(emimAn

ENMCom(1n, 0)) = 1]− Pr[Dn(emimAn
ENMCom(1n, 1)) = 1]

∣∣∣ ≥ 1/p(n). (6)

Let id and ĩd be the identities chosen by A in the left and right interactions respectively. Let
v0, v1 ∈ {0, 1}α be the two challenge values chosen by A for the left interaction. Note that
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since the only message A receives in the execution is the left commitment and identity and
the values for the left interaction needs to be chosen before that, we can assume that the left
side identity id and the challenge values v0, v1 are fixed.

Using A and D, we will construct a non-uniform circuit B = {Bn}n∈N ∈ C∨did,Sl−id−1
that

breaks the hiding of EComid with advantage at least 1
p(n) . More concretely, B internally runs

A and acts as an honest committer in the left interaction with A while acts as an honest
receiver in the right interaction. In the hiding game of EComid, B sends (v0, v1) as challenges
and receives a commitment c to vb, for a randomly chosen bit b. B forwards c to A as the
commitment in the left interaction. A sends a commitment c̃ to the honest right receiver
(simulated by B). Then, B runs the extractor oEĩd on c̃ obtaining an extracted value ṽ′.
Depending on the value of b, the over-extracted value ṽ′ along with the view of A is identical
to emimA

ENMCom(1n, b). B runs the distinguisher D with inputs ṽ′ and the view of A. Finally,
B returns the output of D as its output.

By our hypothesis, B succeeds in breaking the hiding of EComid with advantage at least 1
p(n) .

Now to arrive at a contradiction it remains to show that B ∈ C∨did,Sl−id−1
. B runs the extractor

oEĩd ∈ C
∧
dĩd+1,Sl−ĩd

and A ∈ C∧d0,S0
, while the rest of the simulation takes poly(n) time. Therefore

the depth of B is such that,

dep(B) = dep(A) + dep(oEĩd) + poly(n)

≤ poly(d0) + poly(dĩd+1) + poly(n) < poly(dĩd+1) .
(7)

Similarly, the size of B is such that,

size(B) = size(A) + size(oEĩd) + poly(n)

≤ poly(S0) + poly(Sl−ĩd) + poly(n)

< poly(Sl−ĩd) << S∗ .

(8)

We consider two cases for the identities id and ĩd as follows:18

Case 1 - id > ĩd: In this case, did ≥ dĩd+1, we have that dep(B) < poly(did) for some polynomial
poly(·). Therefore, B ∈ Cdid and hence B ∈ C∨did,Sl−id−1

.

Case 2 - id < ĩd: In this case, Sl−ĩd ≤ Sl−id−1 and we have that size(B) < poly(Sl−id−1) for
some polynomial poly(·). Therefore B ∈ C∨did,Sl−id−1

.

Thus, irrespective of the identity ĩd chosen by A for the right interaction, we can construct
B ∈ C∨did,Sl−id−1

which breaks hiding of EComid with non-negligible advantage, which is a
contradiction.

Remark 7. In the above proof, the reduction B which bases the one-one non-malleability w.r.t.
extraction on the hiding of EComid, runs both A and the extractor oEĩd of the commitment scheme
EComĩd. Therefore, B has depth at most dep(A) + poly(dĩd+1) and has size at most size(A) +
poly(Sl−ĩd) respectively. To reach a contradiction, one must argue that the reduction B belongs to

18Note that the case id = ĩd is an invalid execution and hence not considered.
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C∨did,Sl−id
. In other words, either dep(A) + poly(dĩd+1) is at most poly(did) or size(A) + poly(Sl−ĩd)

is at most poly(Sl−id−1). Since A chooses both id and ĩd, this can only hold if dep(A) and size(A)
are both small; that is, o(d1) and o(S1) respectively. As a result, we only show non-malleability of
(ENMCom,ENMOpen) against weak adversaries whose depth and size both are bounded by poly(d0) =
o(d1) and poly(S0) = o(S1) respectively.

Remark 8. Furthermore, we note that even though (ENMCom,ENMOpen) is non-malleable w.r.t.
extraction, we cannot prove that it is non-malleable (w.r.t. commitment). This is because the un-
derlying commitment schemes EComid’s are only over-extractable. Over-extractability guarantees
that for a valid commitment, the value extracted by the extractor is indeed the value commit-
ted. However, when a commitment is invalid, the extracted value can be arbitrary – hence the
name over-extractable. Therefore, there might exist an adversary A that depending on the value
committed on the left sends invalid commitments with different probabilities on the right. Such
an adversary clearly violates the non-malleability (w.r.t. commitment) but may not violate non-
malleability w.r.t. extraction. This is because the over-extracted values may still be indistinguishable.
Hence, we cannot base non-malleability (w.r.t. commitment) on non-malleability w.r.t. extraction
of (ENMCom,ENMOpen).

6 Strengthening Non-malleability

The scheme (ENMCom,ENMOpen) described in Section 5 is only stand-alone (one-one) non-malleable
w.r.t. extraction. However, our final goal is to construct a scheme that is concurrent non-malleable
(w.r.t. commitment). In this section, we describe a transformation that transforms any 2-round
commitment scheme 〈C,R〉 which is one-one non-malleable w.r.t. extraction (against adversaries
of some bounded depth and size) into a 2-round commitment scheme 〈Ĉ, R̂〉 which is concurrent
non-malleable w.r.t. extraction as well as concurrent non-malleable (w.r.t. commitment) (against
adversaries of some other bounded depth and size), while preserving the length of the identities.

We present the transformed protocol 〈Ĉ, R̂〉 in Section 6.3. Before that, we list the building
blocks used in the transformation in Section 6.2, and we give high-level intuition on the design of
the protocol 〈Ĉ, R̂〉 in Section 6.1. In particular, in a step by step fashion, we explain the purpose
of different components in the protocol. If the reader prefers to read the actual protocol directly,
please skip Section 6.1 and start from Section 6.2.

6.1 A Bare-Bone Protocol and Challenges

As discussed in the overview in Section 2, our construction of 〈Ĉ, R̂〉 is inspired by the non-
malleability amplification technique in [LP09]. As a starting point, their technique suggests the
following bare-bone protocol:

A Bare-Bone Protocol 〈Ĉ, R̂〉. The receiver sends a puzzle puzz. Here by puzzle we mean a
computationally problem that i) is hard to solve when generated honestly, and ii) has a unique
solution even when generated maliciously. For instance, a puzzle could be a random image f(x) of
an injective one-way function whose solution is the preimage, or a randomly sampled hash function
whose solution is a collision. (In particular, this puzzle does not refer to time-lock puzzles.) In
addition, the receiver also sends the first message aNM of 〈C,R〉 and the first message aZAP of ZAP.
The committer computes a commitment c1 to v using a non-interactive commitment scheme Com
and sends the second message bNM of 〈C,R〉 committing to a random string r1, and the second
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message bZAP of ZAP proving that either i) c1 commits to v or ii) (aNM, bNM) commits to a solution
s of the puzzle puzz (which is efficiently verifiable).

Ĉ R̂puzz, aNM, aZAP

Com(v), bNM, bZAP

As discussed before, to show the security of such a bare-bone protocol, ideally, we would like
different components — puzz, 〈C,R〉, Com, and ZAP — to be mutually non-malleable. Informally
speaking, we say that a primitive P is more secure than a primitive Q, denoted as P � Q, if the
security of P holds even when security of Q is broken by force; P and Q are mutually non-malleable
if P ≺� Q. The ideal configuration is illustrated in Figure 2 (i). Towards realizing as many
constraints in the ideal configuration as possible, the first idea is using three size-and-depth robust
commitment schemes ECom1,ECom4,ECom3

19 to implement Com and puzz, and augment ZAP so
that they become mutually non-malleable. But, we run into problems with respect to the input
non-malleable commitment 〈C,R〉.

〈C,R〉

Com ZAP

puzz
≺ �

≺

�

≺
�

≺ �

≺

�

≺
�

〈C,R〉

Com/ECom1 ZAP/ECom3
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≺
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≺
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〈C,R〉

Com/ECom1 ZAP/ECom3

puzz/h

ECom2ECom4

≺ �
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≺≺ �
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≺ ≺

�

≺
�
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��

(i) Ideal Configuration (ii) Assume NIWI (iii) Assume CRH

Figure 2: The relation between different primitives. (i): The ideal configuration where all primitives are
mutually non-malleable to each other; however, it cannot be instantiated. (ii) A sufficient configuration; it
can be instantiated assuming NIWI. (iii): A sufficient configuration, which can be instantiated assuming
collision resistant hash functions or one-way permutations. (The dashed line is by transitivity.)

Challenge 1: 〈C,R〉 is only secure against adversaries which have both bounded depth AND
bounded size. (Technically, it is secure against C∧dNM,SNM

, for some dNM and SNM; this is the
case for the basic schemes constructed in Section 5, as well as the schemes produced by the
transformation in this section.) This type of AND security means either a primitive P is more
secure than 〈C,R〉 or less, but cannot be mutually non-malleable. Though through a more
careful analysis, we can remove some constraints w.r.t. the non-malleable commitment, it still
requires 〈C,R〉 ≺� puzz, in order to show the security of the bare-bone protocol.

Challenge 2: In addition, constructing a puzzle from size-and-depth robust commitment ECom4

is not straightforward. If we naively use puzz = ECom4(s) as a puzzle, a malicious man-
in-the-middle can send an invalid commitment, which has no solution; this would make the

19The indexes are as such in order to match the protocol description later.
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security proof stuck. To prevent this, one straightforward approach is asking the receiver to
send two puzzles and prove using NIWI that at least one of them is well-formed. However,
this requires relying on the existence of NIWI.

To resolve Challenge 1, we modify the bare bone protocol using an additional size-and-depth
robust commitment ECom2. The key idea is creating a “buffer” between 〈C,R〉 and puzz, by
setting the following relation: ECom2 � 〈C,R〉, 〈C,R〉 � puzz, and ECom2 ≺� puzz, as illustrated
in Figure 2 (ii). Note that now the non-malleable commitment does not need to satisfy mutual
non-malleability with either ECom2 or puzz. On the other hand, the mutual non-malleability of
ECom2 and puzz helps the security proof to go through.

However, to fulfill the relation ECom2 ≺� puzz, it seems necessary to instantiate puzz using
a size-and-depth robust commitment scheme, which however as mentioned in Challenge 2 above
would involve using NIWI to prevent a malicious receiver from sending an invalid commitment as
a puzzle which has no solution. To avoid this, we would like to set puzz to be, for example, a
randomly chosen collision resistant hash (CRH) function h, or a randomly chosen image y = f(s)
of a one-way permutation (OWP), whose corresponding solutions are respectively a collision of h
and a preimage of y. These puzzles have the advantage that their validity are efficiently verifiable
and hence NIWI can be disposed. But, a problem with using, say, h as the puzzle is that, it cannot
be mutually non-malleable with ECom2. To resolve this, we use a h � ECom2, and to compensate
for the fact that h 6≺ ECom2, we use non-uniformity in the proof as follows: When reducing to the
security of ECom2, the reduction instead of finding a collision of h by force, receives a collision as
a non-uniform advice. This can be done since the puzzle h is sent in the first message completely
before the ECom2 commitment.

Unfortunately, instantiating the puzzles using CRH or OWP creates another problem: Given
that 〈C,R〉 � puzz = h and h � ECom2, it actually implies that 〈C,R〉 � ECom2. This transitivity
holds because h is only secure against attackers with bounded size. (If h were replaced with another
size-and-depth robust commitment ECom′, then transitivity does not hold in general.) But this
means 〈C,R〉 needs to be mutually non-malleable with ECom2 again. To solve this problem, we
again use the idea of creating “buffers”. More specifically, we set the following relation: ECom4 �
〈C,R〉, 〈C,R〉 � puzz, puzz � ECom2, and ECom2 ≺� ECom4, as illustrated in Figure 2 (iii). Now
transitivity implies that 〈C,R〉 � ECom2, but 〈C,R〉 no longer need to be simultanously weaker
than ECom2, and only needs to be weaker than the new “buffer” ECom4. Moreover, the mutual
non-malleability between ECom2 and ECom4 helps the proof to go through.

6.2 Building Blocks

Our transformation will make use of the following building blocks. We note that the parameters
associated with these building blocks are set so as to satisfy the relations as depicted in Figure 2
(iii), where an arrow from primitive X to primitive Y , denoted as X � Y , means that X is harder
than Y .

For some hierarchy of non-decreasing functions on N satisfying,

n << d4 << d3 << d1 << d2 << S2 << S1 << SCRH <<

S′CRH << SNM << S′NM << S3 << S4 << S′4 << S∗ ,
(9)

the transformation relies on the following building blocks,
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1. 〈C,R〉 is a 2-round, tag-based commitment scheme for t(n)-bit identities that is (S′NM, S
′
NM)-

over-extractable by extractor oENM. Furthermore, 〈C,R〉 is one-one C∧SNM,SNM
-non-malleable

w.r.t. extraction by oENM.20

2. (ECom1,EOpen1) is a perfectly binding commitment scheme which is C∨d1,S1
-hiding and (d2, SCRH)-

over-extractable w.r.t. extractor oE1.

3. (ECom2,EOpen2) is a perfectly binding commitment scheme which is C∨d2,S2
-hiding and (S2, S1)-

over-extractable w.r.t. extractor oE2.

4. (ECom3,EOpen3) is a perfectly binding commitment scheme which is C∨d3,S3
-hiding and (d1, S4)-

over-extractable w.r.t. extractor oE3.

5. (ECom4,ECom4) is a perfectly binding commitment scheme which is C∨d4,S4
-hiding and (d3, S

′
4)-

over-extractable w.r.t. extractor oE4.

6. ZAP is a 2-round C∧S∗,S∗-witness-indistinguishable proof.

7. H = {Hn}n∈N is a family of non-uniform C∧SCRH,SCRH
-collision resistant hash functions such

that there exists a circuit in C∧S′CRH,S′CRH which finds collisions for H with probability 1.21

6.3 Commitment Scheme 〈Ĉ, R̂〉

Using building blocks described in the previous subsection, we now describe our construction of
a 2-round, tag-based commitment scheme 〈Ĉ, R̂〉 for t(n)-bit identities that is (d2, SCRH)-over-

extractable w.r.t. an extractor ôENM, and show that it is both concurrent C∧d4,d4
-non-malleable

w.r.t. extraction by ôENM and concurrent C∧d4,d4
-non-malleable (w.r.t. commitment).

The committer Ĉ and the receiver R̂ receive the security parameter 1n and identity id ∈ {0, 1}t(n)

as common input. Furthermore, Ĉ gets a private input v ∈ {0, 1}α which is the value to be
committed.

- Commit stage - First round:

1. R̂ samples a hash function h from Hn uniformly at random.

2. R̂ samples the first message aZAP of ZAP.

3. R̂ generates the first message aNM of 〈C,R〉 using the honest receiver R with identity id.

4. R̂ sends (h, aZAP, aNM) as the first round message to Ĉ.

- Commit stage - Second round:

1. (a) Ĉ computes a commitment c1 to the value v using ECom1. Let d1 be the corre-
sponding decommitment string.

20The non-interactive scheme (ENMCom,ENMOpen) of Section 5 can be viewed as a 2-round scheme 〈C,R〉 where
the first round message from R is the null string. Also, note that (ENMCom,ENMOpen) is stronger than what we
require here – it is non-malleable against circuits in C∧d,S and (S′, S′′) over-extractable for d << S << S′ << S′′

while here 〈Ĉ, R̂〉 is only required to be non-malleable for circuits in C∧d,d and be (S, S)-over-extractable for d << S.
21We obtain the C∧SCRH,SCRH

-collision resistant family H = {Dn}n∈N from the S(λ) = 2λ
ε

-secure CRH family (for

some 0 < ε < 1/2) H′ = {H ′λ}λ∈N (defined in Section 3.7) by setting λ = (logSCRH(n))
1
ε and letting Hn = H ′λ where

λ and n are the security parameters of H′ and H respectively. See Section 8 for a rigorous discussion on instantiations
of the basic building blocks required in this Section.
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(b) Ĉ computes a commitment c3 to the decommitment (v, d1) of c1 using ECom3.

2. (a) Ĉ computes a commitment c2 to a random string r1 using ECom2.

(b) Given aNM, Ĉ computes the second message bNM of 〈C,R〉 using the honest com-
mitter C with identity id to commit to a random string r2.

(c) Ĉ computes a commitment c4 to a random string r3 using ECom4.

3. Given aZAP, Ĉ computes the second message bZAP of ZAP to prove the following OR-
statement:

(a) either there exists a string v̄ such that c1 is a commitment to v̄ and c3 commits to
a decommitment of c1.

(b) or there exists a string s̄ = (x1, x2) such that c2 is a commitment to s̄ and c4
commits to a decommitment of c2 and (aNM, bNM) commit to a decommitment of c4
and h(x1) = h(x2).

Ĉ proves the statement (a) by using a decommitment of c3 to (v, d1) — decommitment
of c1 to v — as the witness.

4. Ĉ sends (c1, c2, c3, c4, bNM, bZAP) as the second message to R̂ and keeps the decommit-
ment (v, d1) private.

- Reveal stage:

On receiving (v, d1) from Ĉ, R̂ accepts the decommitment if the ZAP proof is accepting and
if EOpen1(c1, v, d1) = 1. Otherwise, it rejects.

We refer to the entire transcript of the interaction as the commitment c. Moreover, we say
that an interaction (with transcript c) is accepting if the ZAP proof contained in the commitment
c is accepting. According to the reveal stage, the value of a commitment c, val(c) is the value
committed under c1 (contained in c) if c is accepting. Otherwise, val(c) is ⊥.

Next, we describe the extractor ôENM of the scheme below.

- Extraction - Extractor ôENM:

On receiving a commitment c and identity id, ôENM first verifies the ZAP proof and outputs
⊥ if the proof is not accepting. Otherwise, it runs the extractor oE1 on c1 and outputs the
extracted value v′.

Theorem 12. 〈Ĉ, R̂〉 is a 2-round, perfectly binding, C∧d4,d4
-hiding, (d2, SCRH)-over-extractable com-

mitment scheme for identities of length t(n).

Proof. The perfectly binding property follows from that of the non-interactive commitment scheme
(ECom1,EOpen1). The proof of hiding will follow from the proof of Theorem 13, which we present
later.

- Over-extractability: A valid commitment c to a value v, from the definition of reveal stage

of 〈Ĉ, R̂〉, is such that the ZAP proof contained in c is accepting and c1 (contained in c)

is a valid commitment to v using ECom1. In this case, the extractor ôENM runs oE1 on c1,
which by the over-extractability of ECom1 w.r.t. oE1, outputs v with . Thus, ôENM extracts
outputs val(c) for any valid commitment c. Moreover, ôENM belongs to the class C∧d2,SCRH

,

since oE1 ∈ C∧d2,SCRH
and the rest of computation by ôENM takes poly(n) time. Hence, the

scheme 〈Ĉ, R̂〉 is (d2, SCRH)-over-extractable.
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Next, we establish the non-malleability of the scheme 〈Ĉ, R̂〉.

Theorem 13. 〈Ĉ, R̂〉 is concurrent C∧d4,d4
-non-malleable w.r.t. extraction by extractor ôENM.

Theorem 14. 〈Ĉ, R̂〉 is concurrent C∧d4,d4
-non-malleable (w.r.t. commitment).

In order to prove concurrent non-malleability w.r.t. commitment, Lin, Pass and Venkitasub-
ramaniam [LPV08] showed that it is sufficient to prove non-malleability against adversaries par-
ticipating in one left interaction and many right interactions. We refer to such an adversary as a
one-many adversary. More precisely, they presented a reduction that, given an adversary A and
a distinguisher D that break concurrent non-malleability, builds a one-many adversary Ã and a
distinguisher D̃ that violate one-many non-malleability. Their reduction blows up the size and
the depth of the adversary Ã and the distinguisher D̃ (over A and D respectively) by a poly(n)
factor and thereby incurs a polynomial loss in security. We claim that the same reduction applies
to the new notion of non-malleability w.r.t. extraction, therefore establishing that one-many non-
malleability w.r.t. extraction implies concurrent non-malleability w.r.t. extraction. Moreover, we
consider non-malleability (w.r.t. commitment and extraction) against circuit classes C which are
closed under composition with P/poly, hence their reduction preserves security in terms of the cir-
cuit class against which (concurrent and one-many) non-malleability is considered — a C-one-many
non-malleable commitment scheme is C-concurrent non-malleable. We state the extended version
of their theorem below. The proof follows syntactically from the proof of Proposition 1 in [LPV08]
but for completeness we also include the formal proof in Appendix 11.1.

Theorem 15 (one-many to concurrent [LPV08]). Let 〈Ĉ, R̂〉 be a commitment scheme and C be a
class of circuits that is closed under composition with P/poly.

1. If 〈Ĉ, R̂〉 is one-many C-non-malleable then it is concurrent C-non-malleable.

2. If 〈Ĉ, R̂〉 is one-many C-non-malleable w.r.t. extraction (by extractor ôENM) then it is con-

current C-non-malleable w.r.t. extraction (by ôENM).

Proof of Theorem 13,14. We now proceed to prove Theorem 13, 14. Let us consider a fixed
family of circuits A = {An}n∈N belonging to the class C∧d4,d4

which participates in one left interaction
and m = poly(n) right interactions while sending/receiving commitments to values of length α =
poly(n)-bits. By Theorem 15, to show Theorems 13, 14, it suffices to prove the the following:{

emimA
〈Ĉ,R̂〉(1

n, 0)
}
n
≈c
{
emimA

〈Ĉ,R̂〉(1
n, 1)

}
n

(10){
mimA

〈Ĉ,R̂〉(1
n, 0)

}
n
≈c
{
mimA

〈Ĉ,R̂〉(1
n, 1)

}
n

(11)

We prove the above indistinguishability via a sequence of hybrids {Hj(b)}0≤j≤6 for b ∈ {0, 1},
where H0(b) is identical to an honest man-in-the-middle execution MIM(1n, b) with A, and Hj(b) for
each 1 ≤ j ≤ 6 runs a man-in-the-middle execution with A where the left interaction is gradually
simulated. For notational convenience, we use the convention x to denote a random variable in the
left interaction, and convention x̃i to denote the corresponding random variable in the i’th right
interaction. For example, h denotes the hash function sent by A in the left interaction, while h̃i
denotes that sent by the honest receiver in the i’th right interaction. Moreover, for each hybrid
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Hj(b), we denote by mimA
Hj

(b) (and respectively, emimA
Hj

(b)) the random variables that describe

the view of A and the values {ṽi}i∈[m] committed to in (or respectively, {ṽ′i}i∈[m] extracted from)
the right interactions. Again, for every right interaction i, if the interaction is not accepting or
its identity ĩdi equals to the left identity id, then ṽ′i = ṽi = ⊥; we say that a right interaction is
successful if this case does not happen.

To show indistinguishability as described in Equation (11) and (10), we prove in Lemma 2 that
the view of A and the values extracted from right interactions are indistinguishable in neighboring
hybrids Hj(b) and Hj+1(b) for the same b, and statistically close in H6(1) and H5(0) — this
establishes Equation (10). Furthermore, we show that in every hybrid Hj(b), values extracted from
right interactions are actually identical to the actual values committed in right interactions, except
with negligible probability. This shows that the emim and mim random variables are statistically
close (as stated in Lemma 3) and hence establishes Equation (11).

Lemma 2. For b ∈ {0, 1} and 0 ≤ j ≤ 5, the following are computationally indistinguishable,

emimA
Hj (b) ; emimA

Hj+1
(b) ,

and emimA
H0

(b) = emimA
〈Ĉ,R̂〉(b) and emimA

H6
(b) ≈s emimA

H5
(0).

Lemma 3. For b ∈ {0, 1} and 0 ≤ j ≤ 6, the following are statistically close,

emimA
Hj (b) ; mimA

Hj (b).

Towards proving the above two lemmas, we will maintain a soundness invariant throughout all
hybrids. Recall that the protocol requires a committer to prove using ZAP that one of the following
two statements is true; we refer to the first as the honest statement and the second as the fake
statement.

The honest statement: either it has committed to v in c1 (of ECom1) and to a decommitment
(v, d1) of c1 in c3 (of ECom3),

The fake statement: or it has committed to a collision s = (x1, x2) of the hash function h in
c2 (of ECom2), to a decommitment (s, d2) of c2 in c4 (of ECom4), and to a decommitment
((s, d2), d4) of c4 in (aNM, bNM) (of 〈C,R〉).

No-fake-witness Invariant. We say that A commits to a fake witness in a right interaction i, if
the value committed by A in the non-malleable commitment (ãNMi, b̃NMi) (i.e., val((ãNMi, b̃NMi))) is
a decommitment ((s̃i, d̃2i), d̃4i) of c̃4i such that s̃i is a collision of h̃i and (s̃i, d̃2i) is a decommitment
of ˜c2i.

Invariant 1 (No-fake-witness invariant). In Hj(b), the probability that there exists a right interac-
tion i that is successful and A commits to a fake witness in it is negligible.

We show below that this invariant holds in all hybrids. The reason that we maintain Invariant 1
is that it enforces the man-in-the-middle attacker to always prove the honest statement in every
successful right interaction. When this is the case, we show that the values extracted from the right
interactions are identical to the values committed to in the right interactions except from negligible
probability. Formally,
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Claim 1. In every hybrid Hj(b), if Invariant 1 holds, then emimA
Hj

(b) and mimA
Hj

(b) are statistically
close.

At a high level, Claim 1 follows from the soundness of ZAP and over-extractability of the
commitment scheme (ECom1,EOpen1). Since, Invariant 1, holds, A does not commit to a fake
witness in any successful right interaction. This by the soundness of ZAP implies that A proves
the honest statement which inturn, implies that commitment c̃1i is valid. By over-extractability of
ECom1 it follows that the value extracted from c̃1i (corresponds to emim) is indeed identical to the
val(c̃1i) which, by definition, is the value of the i-th right commitment (corresponds to mim). We
detail a more formal proof in Section 6.4.

Moving ahead, by Claim 1 it is clear that showing Lemma 3 boils down to establishing Invari-
ant 1. Towards this goal we further observe that Invariant 1 follows from the following invariant
which will be easier to prove. Instead of reasoning about A committing to a fake witness, we keep
the invariant that the value extracted from (ãNMi, b̃NMi) is NOT a fake witness.

Invariant 2. In Hj(b), the probability that there exists a right interaction i that is successful and

the value extracted from the non-malleable commitment (ãNMi, b̃NMi) in this interaction is a fake
witness is negligible.

Claim 2. In every hybrid Hj(b), if Invariant 2 holds, then Invariant 1 also holds except with
negligible probability.

Proof. For every right interaction k, consider two cases:

- If the non-malleable commitment (ãNMk, b̃NMk) in this right interaction is valid, by the over-
extractability property of 〈C,R〉 w.r.t. extractor oENM the value extracted from it is exactly
equal to the value committed, . Therefore, if the value extracted is not a fake witness, neither
is the value committed.

- If the non-malleable commitment (ãNMk, b̃NMk) is not valid, the value committed is ⊥ and
cannot be a fake witness.

Hence, Invariant 2 implies Invariant 1.

Combining the above two claims, we have,

Lemma 4. For b ∈ {0, 1} and 0 ≤ j ≤ 6, if Invariant 2 holds in hybrid Hj(b) then emimA
Hj

(b) and

mimA
Hj

(b) are statistically close.

Therefore, to show Theorem 13 and Theorem 14, it boils down to prove Lemma 2 and that
Invariant 2 holds in all hybrids. Next, we describe our hybrids {Hj(b)}0≤j≤6 and show that Lemma 2
and Invariant 2 indeed hold. In this Section, we only give high level proofs of the Claims and direct
the reader to Section 6.4 for formal proofs.

Hybrid H0(b) : Hybrid H0(b) emulates an honest MIM execution MIMA
〈Ĉ,R̂〉(b) with A on the

challenge bit b by honestly committing to the value vb on the left and simulating honest
receivers on the right.22 Therefore,

emimA
H0

(b) = emimA
〈Ĉ,R̂〉(b) .

22Recall that A in the MIM execution MIMA
〈Ĉ,R̂〉(b) sends (v0, v1) on the left and receives a commitment to vb.
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Next, we show that Invariant 2 holds in H0(b). In fact we show that the value extracted from
the ECom2 commitment c̃2k in any right interaction k is not a collision of the hash function
h̃k, which implies Invariant 2. At a high level this readily follows from the fact that the
collision-resistance of the hash function is more secure than ECom2, h � ECom2 (see Figure 2
(iii)). This is because if in some right interaction k, the attack commits to a collision of h̃k
using ECom2, then we can construct a non-uniform circuit that violates the collision-resistance
of h̃k by extracting from c̃2k. A formal proof can be found in Section 6.4.

Claim 3. For b ∈ {0, 1} and for every right interaction i in H0(b), the probability that i is
successful and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

Hybrid H1(b) : Hybrid H1(b) proceeds identically to H0(b) except that the ECom2 commitment
c2 sent to A in the left interaction is generated differently. In H0(b), c2 is a commitment
to a random string r1 whereas in H1(b) c2 is a commitment to the lexicographically first
collision s of the hash function h (received as non-uniform advice). The rest of the execution
is simulated identically to H0(b).

First, we show that Invariant 2 holds in H1(b). In fact we show that the value extracted from
the ECom4 commitment c̃4k in any right interaction k is not a decommitment of c̃2k to a
collision of the hash function h̃k, which implies Invariant 2. At a high level this follows from
the fact that ECom2 is more secure than ECom4, ECom2 � ECom4 (see Figure 2 (iii)), and
the trick that the reduction can receive a collision of h as a non-uniform advice. Suppose
that in H1(b), the value extracted from c̃4k in some right interaction k satisfies the condition
above with 1/poly(n) probability. By Claim 3, this happens with only negligible probability
in H0(b). Then we can construct a non-uniform circuit that violates the hiding of ECom2 by
extracting from c̃4k. We give a formal proof in Section 6.4.

Claim 4. For b ∈ {0, 1} and for every right interaction i in H1(b), the probability that i is
successful and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

Next we show that emimA
H0

(b) and emimA
H1

(b) are indistinguishable, that is, view of A and
the values extracted from ECom1 commitments in every successful right interaction are in-
distinguishable in H0(b) and H1(b). This essentially follows from the same proof as Claim 4,
but now relying on the fact that ECom2 is more secure than ECom1, ECom2 � ECom1 (see
Figure 2 (iii)). We give a formal proof in Section 6.4.

Claim 5. For b ∈ {0, 1}, the following are indistinguishable,

emimA
H0

(b); emimA
H1

(b) .

Hybrid H2(b): Hybrid H2(b) proceeds identically to H1(b) except that the ECom4 commitment
c4 sent to A in the left interaction is generated differently. In H1(b), c4 is a commitment to a
random string r3 whereas in H2(b) c4 is a commitment to a decommitment of c2 to a collision
s of the hash function h. More precisely, H2(b) first finds a collision s for the function h and
then commits to s using ECom2 under c2. Then it commits to the decommitment of c2 under
c4. The rest of the execution is simulated identically to H1(b).

First, we show that Invariant 2 holds in H2(b). At a high level this follows from the fact
that ECom4 is more secure than 〈C,R〉, ECom4 � 〈C,R〉 (see Figure 2 (iii)). Suppose that

41



Invariant 2 does not hold in H2(b). This means that the value extracted from the non-
malleable commitment in some right interaction k is a fake witness with probability 1/poly(n)
in H2(b), but negligible in H1(b) by Claim 4. Then, we can construct a non-uniform circuit
B that violates the hiding of ECom4 by extracting from the non-malleable commitment. One
slight difference from the proof of Claim 4 is that since ECom4 is also more secure than h,
ECom4 � h (see Figure 2 (iii)), the reduction B can afford to find collision of h internally,
instead of receiving it as a non-uniform advice. We give a formal proof in Section 6.4.

Claim 6. For b ∈ {0, 1} and for every right interaction i in H2(b), the probability that i is
successful and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

Next we show that emimA
H1

(b) and emimA
H2

(b) are indistinguishable, that is, view of A and
the values extracted from ECom1 commitments in every successful right interactions are in-
distinguishable in H1(b) and H2(b). The proof is essentially the same as that for Claim 6,
except it now relies on the fact that ECom4 � ECom1 (and ECom4 � h; see Figure 2 (iii)).
We give a formal proof in Section 6.4.

Claim 7. For b ∈ {0, 1}, the following are indistinguishable,

emimA
H1

(b); emimA
H2

(b) .

Hybrid H3(b) : Hybrid H3(b) proceeds identically to H2(b) except that the second message
bNM of 〈C,R〉 sent to A in the left interaction is generated differently. In H2(b), bNM is such
that (aNM, bNM) commits to a random string r2 whereas in H3(b) bNM is such that (aNM, bNM)
commits to a decommitment of c4 to a decommitment of c2 to a collision s of the hash
function h. More precisely, H3(b) generates a commitment c2 to the collision s (obtained
by brute-force search). Let d2 be the corresponding decommitment string. Then, H3(b)
computes the commitment c4 to the decommitment (s, d2) of c2. Let d4 be the corresponding
decommitment string. Then, given aNM, H3(b) computes the second message bNM to commit
to ((s, d2), d4). The rest of the execution is simulated identically to H2(b).

First, we show that Invariant 2 holds in H3(b). At a high-level, this follows from the one-one
non-malleability w.r.t. extraction of 〈C,R〉. Suppose that Invariant 2 does not hold in H3(b)
then there exists a right interaction k such that the probability that it is successful and the
value extracted the non-malleable commitment contained in this interaction is a fake witness
is 1/poly(n) in H3(b) and is negligible in H2(b) (by Claim 6). This violates the one-one non-
malleability w.r.t. extraction of 〈C,R〉 as we formally show below. We give a formal proof in
Section 6.4.

Claim 8. For b ∈ {0, 1} and for every right interaction i in H3(b), the probability that i is
successful and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

Next we show that emimA
H2

(b) and emimA
H3

(b) are indistinguishable, that is, view of A and
the values extracted from ECom1 commitments in every successful right interactions are in-
distinguishable in H2(b) and H3(b). This follows from the fact that 〈C,R〉 is more secure
than ECom1, 〈C,R〉 � ECom1 (see Figure 2 (iii)). Therefore, if the distribution of values
extracted from the ECom1 commitments in the right interactions are distinguishable in H2(b)
and H3(b), one can construct reduction that violates the hiding of 〈C,R〉 by extracting from
the ECom1 commitments on the right. We give a formal proof in Section 6.4.
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Claim 9. For b ∈ {0, 1}, the following are indistinguishable,

emimA
H2

(b); emimA
H3

(b) .

Hybrid H4(b): Hybrid H4(b) proceeds identically to H3(b) except that the second message bZAP
of ZAP sent to A in the left interaction is generated differently. In H3(b), bZAP is computed by
proving that c3 commits to a decommitment (vb, d1) of c1 whereas in H4(b) bZAP is computed
by proving that (aNM, bNM) commits to ((s, d2), d4) which is a decommitment of c4 to a
decommitment (s, d2) of c2 to the collision s of the hash function h.

First, we show that Invariant 2 holds in H4(b). At a high-level, this follows from the witness
indistinguishability of ZAP, which holds against subexp-sized attackers. Since 〈C,R〉 can be
broken in the time that ZAP is secure against, changing the ZAP proof on the left should not
change the distribution of values extracted from the right non-malleable commitments. As
the values extracted from right non-malleable commitments are not fake witnesses in H3(b)
(by Claim 8), the same holds for these values in H4(b). We give a formal proof in Section 6.4.

Claim 10. For b ∈ {0, 1} and for every right interaction i in H4(b), the probability that i is
successful and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

Next we show that emimA
H3

(b) and emimA
H4

(b) are indistinguishable, that is, view of A and
the values extracted from ECom1 commitments in every successful right interactions are in-
distinguishable in H3(b) and H4(b). This follows from essentially the same proof of Claim 10,
except that now we use the fact that ZAP is more secure than ECom1. We give a formal proof
in Section 6.4.

Claim 11. For b ∈ {0, 1}, the following are indistinguishable,

emimA
H3

(b); emimA
H4

(b) .

Hybrid H5(b) : Hybrid H5(b) proceeds identically to H4(b) except that the ECom3 commitment
c3 sent to A in the left interaction is generated differently. In H4(b) c3 is committing to the
decommitment (vb, d1) of c1 whereas in H5(b) c3 is committing to 0l where l is the length
of the decommitment of c1. More precisely, H5(b) computes (c1, c2, c4, bNM) identically to
H4(b). Then, H5(b) computes the ECom3 commitment c3 to commit to 0l. The rest of the
execution is simulated identically to H4(b).

First, we show that Invariant 2 holds in H5(b). This follows from the fact that ECom3 �
〈C,R〉, (see Figure 2 (iii)). Suppose that Invariant 2 does not hold in H5(b) but holds in
H4(b) by Claim 10, then there exists a right interaction k such that the probability that it is
successful and the value extracted from the non-malleable commitment in it is a fake witness
jumps from negligible in H4(b) to 1/poly(n) in H5(b). Then, we can construct a reduction
that violates the hiding of ECom3 by extracting from the non-malleable commitment in the
kth right interaction. We give a formal proof in Section 6.4.

Claim 12. For b ∈ {0, 1} and for every right interaction i in H5(b), the probability that i is
successful and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.
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Next we show that emimA
H4

(b) and emimA
H5

(b) are indistinguishable, that is, view of A and the
values extracted from ECom1 commitments in every successful right interactions are indistin-
guishable in H4(b) and H5(b). This follows from the same proof as that of Claim 12, except
that now it relies on the fact that ECom3 � ECom1. We give a formal proof in Section 6.4.

Claim 13. For b ∈ {0, 1}, the following are indistinguishable,

emimA
H4

(b); emimA
H5

(b) .

Hybrid H6(b) : Hybrid H6(b) proceeds identically to H5(b) except that the ECom1 commitment
c1 sent to A in the left interaction is generated differently. In H5(b), c1 is committing to
the value vb whereas in H6(b) c1 is committing to the value v0 instead where (v0, v1) are the
values sent by A in the left interaction. The rest of the execution is simulated identically to
H5(v).

First, note that for b ∈ {0, 1} H6(b) is in fact identical to H5(0). Therefore by Claim 12 that
Invariant 2 holds in H5(0), we directly have that it holds also in H6(b).

Claim 14. For b ∈ {0, 1} and for every right interaction i in H6(b), the probability that i is
successful and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

Next we show that emimA
H5

(b) and emimA
H6

(b) are indistinguishable. This follows from the
fact that ECom1 is more secure than ECom3, ECom1 � ECom3 (see Figure 2 (iii)), and
the fact that Invariant 2 holds in both H5(b) and H6(b). The latter ensures that in every
successful right interaction k, the attacker must prove the honest statement using ZAP that
˜c3k is valid committing to a valid decommitment of ˜c1k in that right interaction. Therefore,

in every successful right interaction k, the value extracted from ˜c3k and c̃1k are identical.
This implies that if the emim random variables are distinguishable in H5(b) and H6(b), the
values extracted from the right ECom3 commitments are also distinguishable. Then, we can
construct a reduction that violates the hiding of ECom1 by extracting from the right ECom3

commitments. We give a formal proof in Section 6.4.

Claim 15. For b ∈ {0, 1}, the following are indistinguishable,

emimA
H5

(b); emimA
H6

(b) .

This concludes the proof of Theorem 13 and Theorem 14. We direct the reader to Section 6.4
for the formal proofs of Claims in this Section.

6.4 Proofs of Claims from Section 6.3

In this Section, we provide formal proofs of Claims from Section 6.3.
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Proof of Claim 1 To show that emimA
Hj

(b) and mimA
Hj

(b) are statistically close, it suffices to

argue that in Hj(b), in every right interaction i, the values ṽ′i extracted from this right interaction
is identical to the value ṽi committed in this right interaction, except with negligible probability.
Then the claim follows by taking a union bound over all m = poly(n) right interactions.

Firstly, note that if a right interaction i is not successful, then clearly ṽ′i = ṽi = ⊥. For a

successful right interaction i, by the definition of extractor ôENM, ṽ′i is the value extracted by
oE1 from the ECom1 commitment c̃1i. Next, since Invariant 1 holds, we claim (proof presented
shortly) that A proves the honest statement in successful right interactions except with negligible
probability. That is,

Claim 16. In Hj(b) if Invariant 1 holds then the probability that there exists a right interaction i
that is successful and A proves the fake statement in it is negligible.

Since the honest statement is true in this right interaction i except with negligible probability,
this implies that the ECom1 commitment c̃1i is valid. By the over-extractability of ECom1 w.r.t.
extractor oE1, the value extracted from c̃1i (i.e., ṽ′i in this case) is identical to the committed value
ṽi . Or equivalently, ṽ′i = ṽi. Therefore, under Invariant 1, the random variable emimA

Hj
(b) is

identical to mimA
Hj

(b), except with negligible probability. To conclude the proof of Claim 1, we now
discuss the proof of Claim 16 below.

Proof of Claim 16 Let us assume that for Hj(b) there exists a polynomial p(·) such that for
infinitely many n ∈ N there exists some right interaction k that is successful and A proves the fake
statement in this interaction with probability 1/p(n). Since Invariant 1 holds, A does not commit
to the fake witness in this right interaction, except with negligible probability, which implies that
the fake statement is false. Therefore, it must be that with probability at least 1/2p(n), the fake
statement is false yet A proves the fake statement in this successful right interaction k. Given this
we construct a cheating prover P∗ = {P∗n}n∈N that breaks the soundness of ZAP with probability
at least 1/2p(n).
P∗n has k hardwired in it, participates in an interaction with the honest verifier of V of ZAP,

internally runs A and simulates the left interaction with A as a honest committer and all right
interactions except the k-th interaction as a honest receiver. For the k-th interaction, P∗ samples
a random h̃k and the first message ãNMk. It sets ãZAPk = a where a is the first message received by
P∗ from the honest verifier. It sends (h̃k, ãNMk, ãZAPk) as the first message to A for its k-th right
interaction. On receiving the second message from A in the k-th right interaction, P∗ forwards the
second message b̃ZAPk of ZAP in the k-th right interaction as its second message b = b̃ZAPk to the
honest verifer. Then, with probability at least 1/2p(n) the ZAP proof (a, b) is accepting and A
proves the fake statement while not committing to the fake witness. This contradicts the adaptive
soundness of ZAP. �

Proof of Claim 3 We show that in H0(b) the probability that there exists a right interaction k
that is successful and the value extracted from c̃2k is a collision of the hash function h̃k in this right
interaction — refer to this event as bad — is negligible. Then the claim follows, since whenever the
value extracted from the non-malleable commitment in a successful right interaction k is indeed a
fake witness (refer to this event as bad1) then the commitment c̃2k is valid and furthermore c̃2k
commits to a collision s̃k of the hash function h̃k. By the over-extractability of ECom2 the value
extracted from c̃2k is indeed s̃k. In other words, the claim follows because conditioned on event
bad1 occuring, the event bad occurs.

Now suppose for contradiction that there exists b ∈ {0, 1} and a polynomial p such that for
infinitely many n ∈ N event bad occurs with probability 1/p(n) in H0(b). Or equivalently, for all
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such n’s there exists some right interaction k for which k is successful and the value extracted from
c̃2k is a collision of hash function h̃k with probability at least 1/p(n).

Then, using A, we construct a non-uniform circuit B = {Bn}n∈N ∈ CSCRH
that outputs a collision

for a hash function sampled from honestly fromH (using Dn) with probability at least 1/p(n). More
concretely, B with k hard-wired in it, on receiving an honestly sampled hash function h∗, emulates
H0(b) for A except for the kth right interaction. In the kth right interaction, B honestly computes
the first message ãNMk of 〈C,R〉 and the first message ãZAPk of ZAP (as in H0(b)) and sends the
tuple (h̃k = h∗, ãZAPk, ãNMk) as its first round message to A. On receiving the second round message
from A in the kth interaction, B runs the extractor oE2 on c̃2k and returns the extracted value
as its output (irrespective of whether the right interaction k is successful or not). Note that B
perfectly emulates H0(b) for A as the distribution of hash function received by B is identical to the
distribution of the hash function sent by the honest receiver R̂ of 〈Ĉ, R̂〉. Then by our hypothesis,
the extracted value is a collision of the function h̃k = h∗ with probability at least 1/p(n).

Furthermore, we argue that B belongs to the circuit class CSCRH
: B internally runs A and

oE2, and the rest of computation performed by B for emulating H0(b) takes poly(n) time. Since
oE2 ∈ C∧S2,S1

and A ∈ C∧d4,d4
we have,

size(B) = size(A) + size(oE2) + poly(n)

≤ poly(d4) + poly(S1)

< poly(SCRH) (since, SCRH >> d4, S1 from Equation (9))

Thus, B belongs to the class C∧SCRH,SCRH
which contradicts collision-resistance of H. �

Proof of Claim 4 We show that in H1(b) the probability that there exists a right interaction k that
is successful and the value extracted from c̃4k is a decommitment of c̃2k to a collision of the hash
function h̃k in this right interaction — refer to this event as bad — is negligible. Then the claim
follows, since whenever the value extracted from the non-malleable commitment in a successful
right interaction k is indeed a fake witness (refer to this event as bad1) then the commitment c̃4k is
valid and furthermore c̃4k commits to a decommitment of c̃2i to a collision s̃k of the hash function
h̃k. Then, by the over-extractability of ECom4 we know that the value extracted from c̃4k is indeed
a decommitment of c̃2k to a collision s̃k of hash function h̃k. In other words, the claim follows
because conditioned on event bad1 occuring, the event bad occurs.

Towards bounding the probability of bad, first observe that by if bad occurs then for some right
interaction k, c̃2k must be a valid commitment and therefore extractor oE2 finds a collision s̃k.
Then, by Claim 3 we can conclude that the bad occurs in H0(b) only with negligible probability.

Now suppose for contradiction that there exists b ∈ {0, 1} and a polynomial p such that for
infinitely many n ∈ N the event bad occurs with probability 1/p(n) in H1(b). Or equivalently, for
all such n’s there exists some right interaction k such that k is successful and the value extracted
from c̃4k is a decommitment of c̃2k to a collision of hash function h̃k with probability at least
1/p(n). Consider the set Γ of prefixes of transcripts up to the point where the first message in the
left interaction is sent. By a standard averaging argument, there must exist a 1/2p(n) fraction of
prefixes ρ in Γ, such that, conditioned on ρ occurring in H1(b), the probability that bad occurs is
at least 1/2p(n). Therefore, there exist at least a 1/3p(n) fraction of prefixes ρ in Γ, such that,
conditioned on ρ occurring in both H0(b) and H1(b), the probability that bad occurs increases by
at least 1/3p(n) across hybrids. Fix one such prefix ρ; let h be the hash function contained in the
first message in the left interaction in ρ and s = (x1, x2) be the lexicographically first collision of h.

Then, using A, the prefix ρ and its collision s, we construct a non-uniform circuit B ∈ C∨d2,S2

that violates the hiding of (ECom2,EOpen2) with advantage at least 1/3p(n).
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The circuitB with k, ρ, and s hard-wired in it, participates in the hiding game of (ECom2,EOpen2)
and internally emulates an execution of H1(b) with A as follows: 23

- Step 1: Feed A with messages in ρ; let (h, aZAP, aNM) be the left first message.

- Step 2: It samples a random string r1, sends r1 and s = (x1, x2) as challenges in the hiding
game of (ECom2,EOpen2), and receives a commitment c∗ to either r1 or s.

- Step 3: B generates the second message of the left interaction identically to H1(b) except that
it embeds c∗ as the ECom2 commitment in the message. That is, B computes (c1, c3, c4, bNM)
as in H1(b) (and H0(b)) and then computes the second message of ZAP (bZAP) by setting
c2 = c∗ using the honest witness as done in H1(b). It then sends (c1, c2, c3, c4, bNM, bZAP) as
the second round message in the left interaction to A.

- Step 4: Once, B receives the second round message in the kth right interaction, if the inter-
action is not successful then B outputs 0. Otherwise, it runs the extractor oE4 on c̃4k and
outputs 1 iff the extracted value is a decommitment of c̃2k to a collision of the function h̃k in
right interaction k.

It is easy to see that if B receives a commitment to the random string r1, then it is perfectly
emulates H0(b) conditioned on ρ occurring for A and if it receives a commitment to the solution
s which is a collision of h then it perfectly emulates H1(b) conditioned on ρ occurring for A. As
argued before, the probability that bad occurs increases by at least 1/3p(n). Therefore, B has
advantage at least 1/3p(n) in violating the hiding of (ECom2,EOpen2).

Moreover, we show that B ∈ C∨d2,S2
: B internally runs A ∈ C∧d4,d4

, oE4 ∈ C∧d3,S′4
, and the rest of

the computation done by B takes poly(n) time. Thus,

dep(B) ≤ dep(A) + dep(oE4) + poly(n)

≤ poly(d4) + poly(d3)

< poly(d2) (since, d2 >> d4, d3 from Equation (9))

and size(B) = poly(S′4) < poly(S∗). Therefore, B belongs to the circuit class Cd2 (resp., B ∈ C∨d2,S2
)

which contradicts the C∨d2,S2
-hiding of the scheme (ECom2,EOpen2). Hence, the claim holds. �

Proof of Claim 5 Let us assume for contradiction that there exists b ∈ {0, 1}, a polynomial p and
a distinguisher D ∈ P/poly such that for infinitely many n ∈ N D distinguishes emimA

H0
(b) from

emimA
H1

(b) with probability 1/p(n).
Now, consider the set Γ of prefixes of transcripts up to the point where the first message in the

left interaction is sent. By a standard averaging argument, there must exist a 1/2p(n) fraction of
prefixes ρ in Γ, such that, conditioned on ρ occurring in both H0(b) and H1(b), the probability that
D distinguishes the distributions is at least 1/2p(n). Fix one such prefix ρ; let h be the hash function
contained in the first message in the left interaction in ρ and s = (x1, x2) be lexicographically first
collision of h. Then, using A, the prefix ρ and its collision s, we construct a non-uniform circuit
B ∈ C∨d2,S2

that violates the hiding of (ECom2,EOpen2) with advantage at least 1/2p(n).
The circuit B is similar in spirit to the circuit described in the proof of Claim 4. B with ρ

and s hard-wired in it, participates in (ECom2,EOpen2)’s hiding game and internally emulates an
execution of H1(b) with A as follows:

23For right interactions whose messages are not in ρ, B sends the first-round message by running the honest receiver
R̂.
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- Steps 1,2 and 3 are identical to the adversarial circuit described in Claim 4.

- Step 4: After A terminates, for every successful right interaction i, B runs the extractor oE1

on c̃1i to obtain values ṽ′i. For every unsuccessful right interaction i, B sets ṽ′i = ⊥.

- Step 5: B then runs D with the view of A and the values {ṽi′}i∈[m] as inputs, and returns
the output of D as its output.

It is easy to see that if B receives a commitment to the random string r1, then it perfectly
emulates H0(b) conditioned on ρ occurring for A and if it receives a commitment to the solution s
which is a collision of h then it perfectly emulates H1(b) conditioned on ρ occurring for A. Moreover,
for every successful interaction i, B sets ṽ′i to the value extracted by oE1 from c̃1i and for every
unsuccessful interaction, it sets ṽ′i = ⊥. Therefore, the input to D (by B) is identical to emimA

H0
(b)

in the former case and it is identical to emimA
H1

(b) in the latter case. Since D distinguishes the
distributions with probability 1/2p(n), B wins the hiding game with advantage at least 1/2p(n).

Next, we argue that B ∈ C∨d2,S2
: Apart from running A, B runs oE1 onm = poly(n) commitments

c̃1i, and the rest of the computation takes polynomial time (includes running D). Since, A ∈ C∧d4,d4

and oE1 ∈ C∧d2,SCRH
, we have,

dep(B) = dep(A) +m · dep(oE1) + poly(n)

≤ poly(d4) + poly(n) · poly(d2)

< poly(d2) (since, d2 >> d4 from Equation (9))

and size(B) = poly(SCRH) < poly(S∗). Therefore, B belongs to the circuit class Cd2 (resp., B ∈
C∨d2,S2

) which contradicts the C∨d2,S2
-hiding of (ECom2,EOpen2). Hence, the claim holds. �

Proof of Claim 6 Let us assume for contradiction that there exists b ∈ {0, 1} and a polynomial p
such that for infinitely many n ∈ N there exists a right interaction k such that k is successful and
the value extracted from (ãNMk, b̃NMk), is a fake witness with probability at least 1/p(n). Then,
using A we construct a non-uniform circuit B ∈ C∨d4,S4

that violates the hiding of (ECom4,EOpen4)
with advantage at least 1/2p(n).

The circuit B with k hard-wired in it, participates (ECom4,EOpen4)’s hiding game and internally
emulates an execution of H2(b) with A as follows:

- Step 1: On receiving the first message (h, aZAP, aNM) from A, B obtains the lexicographically
first collision s for the hash function h via brute-force.24

- Step 2: It computes commitment c2 to the collision s. Let d2 be the corresponding decom-
mitment string.

- Step 3: It samples a random string r3 and sends r3 and (s, d2) (decommitment of c2 to s)
as challenges in the hiding game of (ECom4,EOpen4), and receives a commitment c∗ to either
r3 or (s, d2).

- Step 4: B generates the second message of the left interaction identically to H2(b) except that
it embeds c∗ as the ECom4 commitment in the message. That is, B computes (c1, c3, bNM)
as in H2(b) (and H1(b)) and then computes the second message of ZAP (bZAP) by setting
c4 = c∗ and using the honest witness. It then sends (c1, c2, c3, c4, bNM, bZAP) as the second
round message in the left interaction to A.

24From now onwards we will, unless specified otherwise, refer to the collision s for the hash function h in the left
interaction as the lexicographically first such collision. We avoid writing it explicitly from now on.
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- Step 5: Once, B receives the second round message in the kth right interaction, if the interac-
tion is not successful then B outputs 0. Otherwise, it runs the extractor oENM on (ãNMk, b̃NMk)
and outputs 1 iff the extracted value is a fake witness (i.e., B outputs 1 iff the extracted value
is a decommitment of c̃4k to a decommitment of c̃2k to a collision s̃k of h̃k).

It is easy to see that if B receives a commitment to the random string r3, then it perfectly
emulates H1(b) for A and if it receives a commitment to the decommitment of c2 to a collision s of
h then it perfectly emulates H2(b) for A. By Claim 4, in the former case, the extracted value is a
fake witness with only negligible probability. Therefore, B outputs 1 with negligible probability. In
the latter case, by our assumption that the right interaction k is successful and the value extracted
is a fake witness with probability 1/p(n); B outputs 1 with probability at least 1/p(n). Therefore,
B has advantage at least 1/2p(n) in violating the hiding of (ECom4,EOpen4).

Moreover, we show that B ∈ C∨d4,S4
: B internally runs A ∈ C∧d4,d4

, oENM ∈ C∧S′NM,S′NM , finds a

collision for h using a circuit in C∧S′CRH,S′CRH the rest of the computation done by B takes poly(n)

time. Thus, we have,

size(B) = size(A) + size(oENM) + poly(S′CRH) + poly(n)

≤ poly(d4) + poly(S′NM) + poly(S′CRH)

< poly(S4) (since, S4 >> S′NM, S
′
CRH, d4 from Equation (9))

Therefore, B belongs to the circuit class C∧S4,S4
(resp., B ∈ C∨d4,S4

) which contradicts the C∨d4,S4
-

hiding of (ECom4,EOpen4). Hence, the claim holds. �

Proof of Claim 7 Let us assume for contradiction that there exists b ∈ {0, 1}, a polynomial p
and a distinguisher D ∈ P/poly such that for infinitely many n ∈ N D distinguishes emimA

H1
(b)

from emimA
H2

(b) with probability 1/p(n). Then using A and D, we construct a non-uniform circuit
B ∈ C∨d4,S4

that violates the hiding of (ECom4,EOpen4) with non-negligible advantage 1/p(n). B is
similar in spirit to the circuit described in the proof of Claim 6.

B participates in the hiding game of ECom4 and internally emulates an execution of H2(b) with
A as follows:

- Steps 1, 2, 3 and 4 are identical to the adversarial circuit described in Claim 6.

- Step 5: After A terminates, for every successful right interaction i, B runs the extractor oE1

on c̃1i to obtain values ṽ′i. For every unsuccessful right interaction i, B sets ṽ′i = ⊥.

- Step 6: B then runs D with the view of A and the values {ṽi′}i∈[m] as inputs, and returns
the output of D as its output.

It is easy to see that if B receives a commitment to the random string r3, then it perfectly
emulates H1(b) for A and if it receives a commitment to the decommitment of c2 to a collision s
of h then it perfectly emulates H2(b) for A. Moreover, for every successful interaction i, B sets
ṽ′i to the value extracted by oE1 from c̃1i and for every unsuccessful interaction, it sets ṽ′i = ⊥.
Therefore, the input to D (by B) is identical to emimA

H1
(b) in the former case and it is identical

to emimA
H2

(b) in the latter case. Since D distinguishes the distributions with probability 1/p(n), B
wins the hiding game with advantage at least 1/p(n).

Next, we argue that B ∈ C∨d4,S4
: Apart from running A and finding a collision for h, B runs oE1

on m = poly(n) commitments c̃1i, and the rest of the computation takes polynomial time (includes
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running D). Since, A ∈ C∧d4,d4
, oE1 ∈ C∧d2,SCRH

and a collision for h can be found by a circuit in
C∧S′CRH,S′CRH , we have,

size(B) = size(A) +m · size(oE1) + poly(S′CRH) + poly(n)

≤ poly(d4) + poly(n) · poly(SCRH) + poly(S′CRH)

< poly(S4) (since, S4 >> SCRH, S
′
CRH, d4 from Equation (9))

Therefore, B belongs to the circuit class CS4 (resp., B ∈ C∨d4,S4
) which contradicts the C∨d4,S4

-
hiding of (ECom4,EOpen4). Hence, the claim holds. �

Proof of Claim 8 Let us assume for contradiction that there exists b ∈ {0, 1} and a polynomial p
such that for infinitely many n ∈ N there exists a right interaction k such that k is successful and

the value ((s̃′k, d̃2
′
k), d̃4

′
k), extracted from (ãNMk, b̃NMk), is a fake witness with probability at least

1/p(n). Then, using A we construct a non-uniform circuit ANM ∈ C∧SNM,SNM
, that participates in

one left interaction with C and one right interaction with R, and a distinguisher DNM that violate
the one-one non-malleability of 〈C,R〉 w.r.t. extraction with advantage at least 1/2p(n). We detail
the circuits ANM and DNM below.

The circuit ANM with k hard-wired in it, participates in one left interaction with C and one
right interaction with R and internally emulates an execution of H3(b) with A as follows:

- Step 1: ANM waits for A to select identities for the left interaction with Ĉ and the kth right
interaction with R̂ while emulating R̂ for all other right interactions. Let id and ĩdk be the
respective identities.

- Step 2: ANM selects identity idl = id for its left interaction and identity idr = ĩdk for its
right interaction r. On receiving the first-round message aNMr from R, ANM samples a hash
function h̃k and the first message of ZAP, ãZAPk. It sends the tuple (h̃k, ãNMk = aNMr, ãZAPk)
as the first-round message to A in the kth right interaction.

- Step 3: On receiving the first message (h, aZAP, aNM) from A, ANM obtains a collision s for h
via brute-force search.

- Step 4: ANM computes commitments (c1, c2, c3, c4) as in H3(b). Let d2 be the decommitment
string of the commitment c2, which commits to the collison s. Furthermore, let d4 be the
decommitment string of c4 which commits to a decommitment of c2.

- Step 5: ANM samples a random string r2 and sends aNMl = aNM as the first message to C
along with the values r2 and ((s, d2), d4) as challenges and receives the second message bNMl

such that (aNMl, bNMl) either commit to r2 or ((s, d2), d4).

- Step 6: ANM computes the second message of ZAP (bZAP) by setting bNM = bNMl using the
honest witness. Then, it sends (c1, c2, c3, c4, bNM, bZAP) as the second round message to A in
the left interaction.

- Step 7: On receiving the second message (c̃1k, c̃2k, c̃3k, c̃4k, b̃NMk, b̃ZAPk) from A in the kth
right interaction, B forwards bNMr = b̃NMk as the second message to R.

The distinguisherDNM with input the view ofANM and the value v′r, extracted from (aNMr, bNMr)
by oENM, runs as follows:

- DNM reconstructs the entire transcript of the kth right interaction of ANM with A from the
view.
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- If the ZAP proof (ãZAPk, b̃ZAPk) in the kth interaction is not accepting then DNM outputs 0.

- Otherwise, DNM outputs 1 iff the extracted value v′r is such that it is a decommitment of c̃4k
to a decommitment of c̃2k to a collision of the hash h̃k.

It is easy to see that if ANM receives bNMl such that (aNMl, bNMl) commit to a random string r2
then it perfectly emulates H2(v) for A and if bNMl is such that (aNMl, bNMl) commit to ((s, d2), d4)
then it perfectly emulates H3(b) for A. By Claim 6, in the former case, the extracted value
v′r is a fake witness with only negligible probability. Therefore, DNM outputs 1 with negligible
probability. In the latter case, by our assumption that the right interaction k is successful and the
value extracted is a fake witness with probability 1/p(n); DNM outputs 1 with probability at least
1/p(n). Therefore, DNM has advantage at least 1/2p(n) in distinguishing the two cases, implying
(ANM, DNM) break the one-one non-malleability w.r.t. extraction of 〈C,R〉.

Moreover, we argue that ANM ∈ C∧SNM,SNM
and DNM ∈ P/poly: Firstly, note that DNM ∈ P/poly

as all the computation done by DNM only takes polynomial time.
Next, for ANM: ANM internally runs A ∈ C∧d4,d4

, finds a collision for h using a circuit in CS′CRH
and the rest of the computation done by ANM takes poly(n) time. Therefore, the size size(ANM) of
ANM satisfies the following,

size(ANM) = size(A) + poly(S′CRH) + poly(n)

≤ poly(d4) + poly(S′CRH)

< poly(SNM) (since, SNM >> d4, S
′
CRH from Equation (9))

(12)

Thus, ANM belongs to the circuit class C∧SNM,SNM
which contradicts the C∧SNM,SNM

-one-one non-
malleability w.r.t. extraction of 〈C,R〉. Hence, the claim holds. �

Proof of Claim 9 Let us assume for contradiction that there exists b ∈ {0, 1}, a distinguisher D ∈
P/poly and a polynomial p such that D distinguishes emimA

H2
(b) from emimA

H3
(b) with probability

1/p(n). Then using A and D, we construct a non-uniform circuit B ∈ C∧SNM,SNM
that violates the

hiding of 〈C,R〉 with non-negligible advantage 1/p(n). B is similar in spirit to the circuit ANM

described in the proof of Claim 8.
B participates in the hiding game of 〈C,R〉 and internally emulates an execution of H3(b) with

A as follows:

- Step 1: On receiving the first message (h, aZAP, aNM) from A, B obtains a collision s for the
hash function h via brute-force.

- Step 2: B computes commitments (c1, c2, c3, c4) as in H3(b). Let d2 be the decommitment
string of the commitment c2, which commits to the collision s. Furthermore, let d4 be the
decommitment string of the commitment c4 to the decommitment c2.

- Step 3: B samples a random string r2 and sends aNM as the first message to C along with
the values r2 and ((s, d2), d4) as challenges and receives the second message bNM such that
(aNM, bNM) either commit to r2 or ((s, d2), d4).

- Step 4: B computes the ZAP proof using the honest witness and sends (c1, c2, c3, c4, bNM, bZAP)
as the second round message to A in the left interaction.

- Step 5: After A terminates, for every successful right interaction i, B runs the extractor oE1

on c̃1i to extract values ṽ′i. For every unsuccessful right interaction i, B sets ṽ′i = ⊥.
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- Step 6: B then runs D with the view of A and the values {ṽi′}i∈[m] as inputs, and returns
the output of D as its output.

It is easy to see that if second message bNM received by B is such that (aNM, bNM) commit to
a random string r2, then B is perfectly emulating H2(b) for A and if bNM is such that (aNM, bNM)
commits to ((s, d2), d4), then it perfectly emulating H3(b) for A. Moreover, for every successful
interaction i, B sets ṽ′i to the value extracted by oE1 from c̃1i and for every unsuccessful interaction
B sets ṽ′i = ⊥. Therefore, the input to D (by B) is identical to emimA

H2
(b) in the former case and it

is identical to emimA
H3

(b) in the latter case. Since D distinguishes the distributions with probability
1/p(n), B wins the hiding game with advantage at least 1/p(n).

Next, we argue that B ∈ C∧SNM,SNM
: Apart from running A and using a circuit in CS′CRH to find

the collision s, B runs oE1 on m = poly(n) commitments c̃1i, and the rest of the computation takes
polynomial time (including running D). Since, A ∈ C∧d4,d4

and oE1 ∈ C∧d2,SCRH
, the size of B satisfies

the following,

size(B) = size(A) +m · size(oE1) + poly(S′CRH) + poly(n)

≤ poly(d4) + poly(n) · poly(SCRH) + poly(S′CRH)

< poly(SNM) (since, SNM >> d4, SCRH, S
′
CRH from Equation (9))

(13)

Therefore, B belongs to the circuit class C∧SNM,SNM
which contradicts C∧SNM,SNM

-hiding of 〈C,R〉.
Hence, the claim holds. �

Proof of Claim 10 Let us assume for contradiction that there exists b ∈ {0, 1} and a polynomial
p such that for infinitely many n ∈ N there exists a right interaction k such that k is successful and
the value extracted from (ãNMk, b̃NMk), is a fake witness with probability at least 1/p(n). Then,
using A we construct a non-uniform circuit B ∈ CS∗ that violates the CS∗-WI of ZAP with advantage
at least 1/2p(n).

The circuit B with k hard-wired in it, participates in the WI game of ZAP and internally
emulates an execution of H4(b) with A as follows:

- Step 1: On receiving the first message (h, aZAP, aNM) from A, B obtains a collision s to the
hash function h. Let (v0, v1) be the values chosen by A for the left interaction.

- Step 2: B computes commitments (c1, c2, c3, c4, bNM) (as in H4(b)). Let d1 be the decommit-
ment string of the commitment c1, which commits to the value vb, d4 be the decommitment
of c4 which commits to (s, d2) where d2 is the decommitment string of the commitment c2,
which commits to the collison s. Furthermore, let d3 and d be the decommitments of c3 and
(aNM, bNM).

- Step 3: B sends aZAP as the first message in the WI game of ZAP with the statement
x = (h, c1, c2, c3, c4, aNM, bNM) and witnesses w0 = (vb, d1, d3) and w1 = (((s, d2), d4), d). B
receives the second message bZAP of ZAP that is either computed by using the witness w0 or
w1.

- Step 4: B sends (c1, c2, c3, c4, bNM, bZAP) as the second message to A on the left.

- Step 5: Once, B receives the second round message in the kth right interaction, if the interac-
tion is not successful then B outputs 0. Otherwise, it runs the extractor oENM on (ãNMk, b̃NMk)
and outputs 1 iff the extracted value is a fake witness.
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It is easy to see that if the second message bZAP of ZAP is computed using the witness w0 =
(vb, d1, d3) then B perfectly emulatesH3(b) for A and if the second message bZAP of ZAP is computed
using the witness w1 = (((s, d2), d4), d) then B perfectly emulates H4(b) for A. By Claim 8, in the
former case, the extracted value is a fake witness with only negligible probability. Therefore, B
outputs 1 with negligible probability. In the latter case, by our assumption that k is successful and
the value extracted is a fake witness with probability 1/p(n); B outputs 1 with probability at least
1/p(n). Therefore, B has advantage at least 1/2p(n) in violating the WI of ZAP.

Moreover, we show that B ∈ CS∗ : B internally runs A ∈ C∧d4,d4
, oENM ∈ C∧S′NM,S

′
NM

, obtains a

collision for h by using a circuit in CS′CRH and the rest of the computation done by B takes poly(n)
time. Thus, we have,

size(B) = size(A) + poly(S′CRH) + size(oENM) + poly(n)

≤ poly(d4) + poly(S′CRH) + poly(S′NM)

< poly(S∗) (since, S∗ >> d4, S
′
CRH, S

′
NM from Equation (9))

Therefore, B belongs to the circuit class CS∗ which contradicts the CS∗-witness-indistinguishability
of ZAP. Hence, the claim holds. �

Proof of Claim 11 Let us assume for contradiction that there exists b ∈ {0, 1}, a polynomial p and
a distinguisher D such that for infinitely many n ∈ N D distinguishes emimA

H3
(b) from emimA

H4
(b)

with probability 1
p(n) . Then using A and D, we construct a non-uniform circuit B ∈ CS∗ that

violates the CS∗-WI of ZAP with advantage at least 1/p(n). B is similar in spirit to the circuit
described in the proof of Claim 10.

B with participates in the WI game of ZAP and internally emulates an execution of H4(b) with
A as follows:

- Steps 1,2,3 and 4 are identical to the circuit described in Claim 10.

- Step 5: After A terminates, for every successful right interaction i, B runs the extractor oE1

on c̃1i to extract values ṽ′i. For every unsuccessful right interaction i, B sets ṽ′i = ⊥.

- Step 6: B then runs D with the view of A and the values {ṽi′}i∈[m] as inputs, and returns
the output of D as its output.

It is easy to see that if the second message bZAP of ZAP is computed using the witness w0 =
(vb, d1, d3) then B perfectly emulatesH3(b) for A and if the second message bZAP of ZAP is computed
using the witness w1 = (((s, d2), d4), d) then B perfectly emulates H4(b) for A. Moreover, for every
successful interaction i, B sets ṽ′i to the value extracted by oE1 from c̃1i and for every unsuccessful
interaction, it sets ṽ′i = ⊥. Therefore, the input to D (by B) is identical to emimA

H3
(b) in the former

case and it is identical to emimA
H4

(b) in the latter case. Since D distinguishes the distributions with
probability 1/p(n), B wins the hiding game with advantage at least 1/p(n).

Next, we argue that B ∈ CS∗ : Apart from running A and finding a collision for h, B runs oE1

on m = poly(n) commitments c̃1i, and the rest of the computation takes polynomial time (includes
running D). Since, A ∈ C∧d4,d4

and oE1 ∈ C∧d2,SCRH
, we have,

size(B) = size(A) + poly(S′CRH) +m · size(oE1) + poly(n)

≤ poly(d4) + poly(S′CRH) + poly(n) · poly(SCRH)

< poly(S∗) (since, S∗ >> d4, SCRH, S
′
CRH from Equation (9))

Therefore, B belongs to the circuit class CS∗ which contradicts the CS∗-WI of ZAP. Hence, the
claim holds. �
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Proof of Claim 12 Let us assume for contradiction that there exists b ∈ {0, 1} and a polynomial
p such that for infinitely many n ∈ N there exists a right interaction k such that k is successful and
the value extracted from (ãNMk, b̃NMk), is a fake witness with probability at least 1/p(n). Then,
using A we construct a non-uniform circuit B ∈ C∨d3,S3

that violates the hiding of (ECom3,EOpen3)
with advantage at least 1/2p(n).

The circuit B with k hard-wired in it, participates in (ECom3,EOpen3)’s hiding game, and
internally emulates an execution of H5(b) with A as follows:

- Step 1: On receiving the first message (h, aZAP, aNM) from A, B obtains a collison s to the
hash function h. Let (v0, v1) be the values chosen by A for the left interaction.

- Step 2: It computes (c1, c2, c4, bNM) as in H5(b). Let d1 be the decommitment string of the
commitment c1 which is a commitment to vb.

- Step 3: Then in the hiding game of (ECom3,EOpen3), B sends (vb, d1) and 0l as challenges
and receives a commitment c∗ to either (vb, d1) or 0l.

- Step 4: B generates the second message of ZAP (bZAP) by setting c3 = c∗. It then sends
(c1, c2, c3, c4, bNM, bZAP) as the second round message in the left interaction to A.

- Step 5: Once, B receives the second round message in the kth right interaction, if the interac-
tion is not successful then B outputs 0. Otherwise, it runs the extractor oENM on (ãNMk, b̃NMk)
and outputs 1 iff the extracted value is a fake witness.

It is easy to see that if B receives a commitment to (vb, d1), then it perfectly emulates H4(b)
for A and if it receives a commitment to 0l then it perfectly emulates H5(b) for A. By Claim 10, in
the former case, the extracted value is a fake witness with only negligible probability. Therefore, B
outputs 1 with negligible probability. In the latter case, by our assumption that the right interaction
k is successful and the value extracted is a fake witness with probability 1/p(n); B outputs 1 with
probability at least 1/p(n). Therefore, B has advantage at least 1/2p(n) in violating the hiding of
ECom3.

Next, we argue that B ∈ C∨d3,S3
: B internally runs A ∈ C∧d4,d4

, oENM ∈ C∧S′NM,S′NM , obtains a

collision for h using a circuit in CS′CRH and the rest of the computation done by B takes poly(n)
time. Thus, we have,

size(B) = size(A) + size(oENM) + poly(S′CRH) + poly(n)

≤ poly(d4) + poly(S′NM) + poly(S′CRH)

< poly(S3) (since, S3 >> d4, S
′
NM, S

′
CRH from Equation (9))

Therefore, B belongs to the circuit class C∧S3,S3
(resp., B ∈ C∨d3,S3

) which contradicts the C∨d3,S3
-

hiding of (ECom3,EOpen3). Hence, the claim holds. �

Proof of Claim 13 Let us assume for contradiction that there exists b ∈ {0, 1}, a polynomial p
and a distinguisher D ∈ P/poly such that for infinitely many n ∈ N D distinguishes emimA

H4
(b)

from emimA
H5

(b) with probability 1/p(n). Then using A and D, we construct a non-uniform circuit
B ∈ C∨d3,S3

that violates the hiding of (ECom3,EOpen3) with non-negligible advantage 1/p(n). B is
similar in spirit to the circuit described in the proof of Claim 10.

B participates in the hiding game of the scheme (ECom3,EOpen3) and internally emulates an
execution of H5(b) with A as follows:

- Steps 1-4 are identical to the adversarial circuit described in Claim 12.
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- Step 5: After A terminates, for every successful right interaction i, B runs the extractor oE1

on c̃1i to extract values ṽ′i. For every unsuccessful right interaction i, B sets ṽ′i = ⊥.

- Step 6: B then runs D with the view of A and the values {ṽi′}i∈[m] as inputs, and returns
the output of D as its output.

It is easy to see that if B receives a commitment to (vb, d1), then it perfectly emulates H4(b)
for A and if it receives a commitment to 0l then it perfectly emulates H5(b) for A. Moreover,
B for every successful interaction i, sets ṽ′i to the value extracted by oE1 from c̃1i and for every
unsuccessful interaction, it sets ṽ′i = ⊥. Therefore, the input to D (by B) is identical to emimA

H4
(b)

in the former case and it is identical to emimA
H5

(b) in the latter case. Since D distinguishes the
distributions with probability 1/p(n), B wins the hiding game with advantage at least 1/p(n).

Next, we argue that B ∈ C∨d3,S3
: Apart from running A and finding a collision for h using a

circuit in CS′CRH , B runs oE1 on m = poly(n) commitments c̃1i, and the rest of the computation
takes polynomial time (includes running D). Since, A ∈ C∧d4,d4

and oE1 ∈ C∧d2,SCRH
, we have,

size(B) = size(A) +m · size(oE1) + poly(S′CRH) + poly(n)

≤ poly(d4) + poly(n) · poly(SCRH) + poly(S′CRH)

< poly(S3) (since, S3 >> SCRH, d4, S
′
CRH from Equation (9))

Therefore, B belongs to the circuit class CS3 (resp., B ∈ C∨d3,S3
) which contradicts the C∨d3,S3

-
hiding of (ECom3,EOpen3). Hence, the claim holds. �

Proof of Claim 15 Let us assume for contradiction that there exists b ∈ {0, 1}, a polynomial p
and a distinguisher D ∈ P/poly such that for infinitely many n ∈ N D distinguishes emimA

H5
(b)

from emimA
H6

(b) with probability 1/p(n).
Now, consider the set Γ of prefixes of transcripts up to the point where the first message in

the left interaction is sent. By a standard averaging argument, there must exist a 1/2p(n) fraction
of prefixes ρ in Γ, such that, conditioned on ρ occurring in both H5(b) and H6(b), the probability
that D distinguishes the distributions is at least 1/2p(n). Fix one such prefix ρ; let h be the
hash function contained in the first message in the left interaction in ρ and s = (x1, x2) be the
lexicographically first collision of h. Then, using A, the prefix ρ and its collision s, we construct a
non-uniform circuit B ∈ Cd1 that violates the hiding of (ECom1,EOpen1) with advantage at least
1/3p(n).

B with ρ and s hard-wired in it, participates in (ECom1,EOpen1)’s hiding game and internally
emulates an execution of H6(b) with A as follows:

- Step 1: Feed A with messages in ρ; let (h, aZAP, aNM) be the left first message. Let (v0, v1)
be the values sent by A in the left interaction.

- Step 2: B sends vb and v0 as challenges in the hiding game of the scheme (ECom1,EOpen1)
and receives a commitment c∗ to either vb or v0.

- Step 3: B generates the second message of the left interaction identically to H6(b) except that
it embeds c∗ as the ECom1 commitment in the message. That is, B computes (c2, c3, c4, bNM)
as in H6(b) (using the collision s received as non-uniform advice) and then computes the
second message of ZAP (bZAP) by setting c1 = c∗. It then sends (c1, c2, c3, c4, bNM, bZAP) as
the second round message in the left interaction to A.
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- Step 4: After A terminates, for every successful right interaction i, B runs the extractor oE3

on c̃3i to extract values (ṽ′i, d̃1
′
i). For every unsuccessful right interaction i, B sets ṽ′i = ⊥.

- Step 4: B then runs D with the view of A and the values {ṽi′}i∈[m] as inputs, and returns
the output of D as its output.

It is easy to see that if B receives a commitment to vb, then it perfectly emulates H5(b) condi-
tioned on ρ occurring for A and if it receives a commitment to v0 then it perfectly emulates H6(b)
conditioned on ρ occurring for A. Moreover, for every successful interaction i, B sets ṽ′i to the value
extracted by oE3 from c̃3i and for every unsuccessful interaction, it sets ṽ′i = ⊥. We claim that
the input to D (by B) is statistically close to emimA

H5
(b) in the former case and it is statistically

close to emimA
H6

(b) in the latter case; the proof of claim is presented shortly. Since D distinguishes

emimA
H5

(b) from emimA
H5

(b) with probability 1/2p(n), we conclude that B wins the hiding game
with advantage at least 1/3p(n).

Next, we argue that B ∈ Cd1 : Apart from running A, B runs oE3 on m = poly(n) commitments
c̃3i, and the rest of the computation takes polynomial time (includes running D). Since, A ∈ C∧d4,d4

and oE3 ∈ C∧d1,S4
,

dep(B) = dep(A) +m · dep(oE3) + poly(n)

≤ poly(d4) + poly(n) · poly(d1)

< poly(d1) (since, d1 >> d4 from Equation (9))

Furthermore, size(B) < poly(S∗). Therefore, B belongs to the circuit class Cd1 (resp., B ∈ C∨d1,S1
)

which contradicts the C∨d1,S1
-hiding of (ECom1,EOpen1).

It remains to show our claim that the input to distinguisher D by adversary B (i.e., view
of A and the values {ṽi′}i∈[m]) is indeed (1) statistically close to emimA

H5
(b) when B receives a

commitment to vb and (2) statistically close to emimA
H6

(0) when it receives a commitment to v0.
We will argue (1) and the proof of (2) follows similarly. Recall that for every successful right

interaction i, B runs oE3 on c̃3i to obtain (ṽ′i, d̃1
′
i). We claim that the value ṽ′i is identical to

the value extracted by oE1 from c̃1i, except with negligible probability. Since i is successful, by
Claim 14 we know that with overwhelming probability the value extracted from (ãNMi, b̃NMi) is
not a fake witness with overwhelming probability. Then by the over-extractability 〈C,R〉 we know
that the value committed in (ãNMi, b̃NMi) is not a fake witness. Furthermore, due to soundness of
ZAP, it must be that with overwhelming probability the commitments c̃1i and c̃3i are valid and c̃3i
commits to a decommitment of c̃1i. Then, by the over-extractability of (ECom3,EOpen3) the value

(ṽ′i, d̃1
′
i) extracted from c̃3i is identical to val(c̃3i) with over-whelming probability, where val(c̃3i)

is a decommitment of c̃1i — (ṽi, d̃1i). Next, due to the over-extractability of ECom1, the value
extracted by oE1 from c̃1i is identical to val(c̃1i) = ṽi with overwhelming probability. Therefore,
the value ṽi obtained by B is identical to the value that oE1 extracts from c̃1i with overwhelming
probability. This is now sufficient to conclude that the input to D is statistically close to emimA

H5
(b)

when B receives a commitment to vb except with negligible probability. This establishes (1) and
(2) follows by the same argument. Hence the claim holds. �

7 Amplifying Length of Identities – Log n trick

The Non-malleability strengthening technique (Section 6.3) applied to the scheme (ENMCom,ENMOpen)
of Section 5, that supports identities of length t(n) = O(1), results in a concurrent non-malleable
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commitment scheme but still only supports identities of length t(n) = O(1). However, our final
goal is to construct a scheme that supports identities of length n. In this section, we provide a
transformation that amplifies the length of identities exponentially.

Given a tag-based commitment scheme 〈Ĉ, R̂〉 for t(n)-bit identities which is concurrent non-
malleable w.r.t. commitment, Dolev, Dwork and Naor [DDN00] construct a tag-based commitment
scheme 〈C̃, R̃〉 for exponentially larger identities, namely identities of length 2t(n)−1-bits. In their
work [DDN00], they show that their transformation results in a commitment scheme that can
accomodate significantly larger length of identities but degrades concurrent non-malleability w.r.t.
commitment to stand-alone non-malleability w.r.t. commitment. Furthermore, their reduction also
incurs a polynomial security loss.

The commitment schemes considered in this work are non-malleable w.r.t. extraction and we
claim that their transformation also works for such schemes. That is, we show that if 〈Ĉ, R̂〉
is concurrent non-malleable w.r.t. extraction then commitment scheme 〈C̃, R̃〉 is standalone non-
malleable w.r.t. extraction. The key idea towards amplifying the length of identities is embedding
a 2t(n)−1-bit identity into 2t(n)−1 number of t(n)-bit identities — we, thereby, refer to this idea as
the “log-n” trick. The protocol from [DDN00] is based on the log-n trick and is described below.

The committer C̃ and receiver R̃ receive the security parameter 1n and identity id ∈ {0, 1}t′(n)

as common input where t′(n) = 2t(n)−1. Furthermore, C̃ gets a private input v ∈ {0, 1}α which is
the value to be committed.

- Commit stage:

1. To commit to a value v ∈ {0, 1}α, C̃ chooses t′ random shares r0, r1, . . . , rt′−1 ∈ {0, 1}α
such that v = r0 ⊕ r1 ⊕ . . .⊕ rt′−1.

2. For each 0 ≤ i ≤ t′ − 1, C̃ and R̃ run 〈Ĉ, R̂〉 to commit to ri (in parallel) using identity
(i, id[i]) where id[i] is the ith bit of id. Let di be the corresponding decommitment string.

Let ci be the transcript of 〈Ĉ, R̂〉 committing to ri with identity (i, id[i]). Then we denote by
c = {ci}0≤i≤t′−1 the entire transcript of the interaction.

- Reveal stage:

On receiving the decommitment (v, {ri}i, {di}i), R̃ verifies (1) for each 0 ≤ i ≤ t′ − 1, ci is
a commitment to ri using 〈Ĉ, R̂〉 and identity (i, id[i]), and (2) v = r0 ⊕ r1 ⊕ . . . ⊕ rt′−1. R̃
accepts the decommitment iff (1) and (2) hold.

Furthermore, let us assume that 〈Ĉ, R̂〉 is over-extractable w.r.t. extractor ôENM then we con-

struct an extractor õENM for 〈C̃, R̃〉 as follows,

- Extraction - Algorithm õENM:

On receiving id ∈ {0, 1}t′ and commitment c = {ci}0≤i≤t′−1, õENM runs ôENM on each ci
obtaining output r′i. If any of the r′i is ⊥ then õENM outputs ⊥. Otherwise, it outputs
v′ = r′0 ⊕ r′2 ⊕ . . .⊕ r′t′−1 as the extracted value.

Theorem 16 (Log-n trick [DDN00]). Let t be such that t′(n) = 2t(n)−1 is a polynomial. Let 〈Ĉ, R̂〉
be a commitment scheme and C be a class of circuits that is closed under composition with P/poly.

1. If 〈Ĉ, R̂〉 is a tag based perfectly binding commitment scheme for t(n)-bit identities then 〈C̃, R̃〉
is a tag based perfectly binding commitment scheme for identities of length t′(n) = 2t(n)−1 bits.
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2. If 〈Ĉ, R̂〉 is concurrent C-non-malleable w.r.t. commitment then 〈C̃, R̃〉 is one-one C-non-
malleable w.r.t. commitment.

3. If 〈Ĉ, R̂〉 is (d, S)-over-extractable by ôENM then 〈C̃, R̃〉 is (d, S)-over-extractable by õENM.

Furthermore, if 〈Ĉ, R̂〉 is concurrent C-non-malleable w.r.t. extraction by ôENM then 〈C̃, R̃〉
is standalone C-non-malleable w.r.t. extraction by õENM.

Proof. We prove each of the above in the following:

- Perfect binding and tag lengths: The perfect binding of 〈C̃, R̃〉 follows from the statistical
binding of 〈Ĉ, R̂〉. Furthermore, 〈C̃, R̃〉 as defined above accomodates identities of length
t′ = 2t(n)−1-bits.

- Non-malleability w.r.t. extraction: Assume for contradiction that there exists a non-uniform
attacker A = {An}n∈N ∈ C that participates in one left with C̃ and one right interaction
with R̃ sending/receiving commitments to values of length α = poly(n)-bits, a non-uniform
distinguisher D = {Dn}n∈N ∈ P/poly and a polynomial p(·) such that for infinitely many
n ∈ N, ∣∣∣Pr[Dn(emimAn

〈C̃,R̃〉
(1n, 0)) = 1]− Pr[Dn(emimAn

〈C̃,R̃〉
(1n, 1)) = 1]

∣∣∣ ≥ 1/p(n) ,

where emimA
〈C̃,R̃〉(1

n, b) describes the view of A, and value ṽ′ extracted from the right com-

mitment c̃ = {c̃i}0≤i≤t′−1 by extractor õENM. Recall that ṽ′ is set to ⊥ when id = ĩd for A’s
choice of left and right identities id and ĩd respectively. When id 6= ĩd, by the definition of
extractor õENM, ṽ′ = ṽ′0 ⊕ . . . ⊕ ṽ′t′−1 where ṽ′i are the values extracted from c̃i by extractor

ôENM.

Next, we construct a one-many non-uniform adversary A′ = {A′n}n∈N, and a non-uniform
distinguisher D′ = {D′n}n∈N such that for infinitely many n ∈ N∣∣∣Pr[D′n(emimA′

〈Ĉ,R̂〉(1
n, 0)) = 1]− Pr[D′n(emimA′

〈Ĉ,R̂〉(1
n, 1)) = 1]

∣∣∣ ≥ 1/(p(n) · t′).

The adversary A′ internally runs A, participates in one left interaction with Ĉ and m = t′(n)
right interactions with R̂ and internally emulates an execution of INDA〈C̃,R̃〉(b) for A as follows:

– Step 1: For the right interaction with A, A′ emulates the honest receiver R̃ using its
t′(n) right interactions with R̂, by simply forwarding messages between A and R̂. A′

waits for A to select identity for its left interaction. Let id be the t′(n)-bit identity and
v0, v1 be the values sent by A for the left interaction. Let si = (i, id[i]) for 0 ≤ i ≤ t′− 1.

– Step 2: To continue with the left interaction, A′ samples a random j←$ {0, . . . , t′ − 1}.
Let I = {0, . . . , t′ − 1} \ {j}. A′ samples random shares ri←$ {0, 1}α for i ∈ I and sets
ub = vb ⊕ r where r = ⊕i∈I ri. Then, A′ begins its left interaction with Ĉ with identity
s = sj and challenges values u0, u1.

– Step 3: A′ interacts with A acting as a honest committer C̃ to compute the commitment
c = {ci}0≤i≤t′−1. More precisely, for all i ∈ I, A acts as the honest committer Ĉ to
generate the commitment ci to value ri under identity si. The commitment cj is the
commitment to value ub under identity s = sj generated by forwarding messages between

A and the external committer Ĉ. It is easy to see that if Ĉ commits to ub then c is a
commitment to vb under 〈C̃, R̃〉 with identity id.
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The distinguisher D′ with input the view of A′ and the values (ṽ′1, . . . , ṽ
′
t′) extracted by

extractor ôENM from the t′ right commitments of A′, runs as follows:

– Step 1: D′ reconstructs the view of A in emulation by A′. Furthermore, let id,ĩd be
the identities chosen by A for its left and right interactions (defined by the view of A)
respectively and let s = (j, id[j]) be the identity chosen by A′ for some 0 ≤ j ≤ t′ − 1.
And let s̃i = (i, ĩd[i]) for all 0 ≤ i ≤ t′ − 1.

– Step 2: If id 6= ĩd but s = s̃j for some j ∈ {0, . . . , t′− 1} then D′ aborts.25 Otherwise, D′

sets ṽ′ = ⊕0≤i≤t′−1 v
′
i.

– Step 2: D′ then runs D on the above reconstructed view of A and ṽ′ and returns whatever
D′ returns.

First, observe that whenever Ĉ commits to ub, A
′ perfectly simulates the MIM experiment

MIMA
〈C̃,R̃〉(b) for A. Conditioned on D′ not aborting, we know that A′ choice of left identity

s is distinct from all right identities s̃j . Therefore, by definition of emimA′

〈Ĉ,R̂〉, D
′’s inputs ṽ′i

are the values extracted by the extractor ôENM from the i-th right commitment c̃i. There-
fore, the value ṽ′ reconstructed by D′ is identical to the value extracted by õENM from A’s
right commitment c̃ = {c̃i}0≤i≤t′−1. Therefore, conditioned on not aborting, D′ perfectly

reconstructs emimA
〈C̃,R̃〉(b) from its input emimA′

〈Ĉ,R̂〉(b). Since D distinguishes emimA
〈C̃,R̃〉(0)

from emimA
〈C̃,R̃〉(1) with advantage at least 1/p(n) and D′ does not abort with probability

1/t′(n), we have (A′, D′) break the one-many non-malleability w.r.t. extraction of 〈Ĉ, R̂〉
with advantage 1/p(n) · t′(n). Furthermore, note that A′ internally runs A and the rest of
the computation takes poly(n)-time. Also, D′ internally runs D and the rest of its computa-
tion also takes poly(n)-time. Therefore, since A ∈ C and C is closed under composition with
P/poly, we have A′ ∈ C. Also, D ∈ P/poly implies that D′ ∈ P/poly. This contradicts the

one-many non-malleability of 〈Ĉ, R̂〉 w.r.t. extraction by ôENM.

Remark 9. We note that the 1/t′ loss in the advantage of the reduction can be avoided if A
sends the identity of the right interaction ĩd before sending id. In this case, whenenver id 6= ĩd
there exists at least one index 0 ≤ j ≤ t′ − 1 such that id[j] 6= ĩd[j] and hence sj = (j, id[j])
is distinct from all s̃i = (i, ĩd[i]). This ensures D′ never aborts. However, since we allow our
MIM adversary A total control over the scheduling of messages (even choosing identities),
given the left identity id we can only guess the special index j thereby inccurring a 1/t′ loss
in the advantage where t′ = |id|.

- Non-malleability w.r.t. commitment: This follows syntactically from the same proof as Non-
malleability w.r.t. extraction by replacing emim random variables with their respective mim
random variables. We skip the formal proof.

- Over-extractability: A valid commitment c = {ci}0≤i≤t′−1 is such that every ci is a valid

commitment for 〈Ĉ, R̂〉. Due to the over-extractability of 〈Ĉ, R̂〉 w.r.t. ôENM, for every 0 ≤
i ≤ t′ − 1, the extractor õENM always extracts the correct value r′i. Therefore, õENM always

extracts the correct value from c. Since, t′ is a polynomial, õENM fails with negligible
probability. Moreover, õENM runs ôENM on t′ commitments and rest of the computation

25This is because, the value ṽ′j given as input to D′ will be replaced with ⊥ disallowing D′ to reconstruct the input
to D.
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takes poly(n) time. Therefore, if ôENM ∈ C∧d,S then õENM ∈ C∧d,S . Therefore, 〈C̃, R̃〉 is (d, S)-

over-extractable w.r.t. õENM.

8 Concurrent Non-malleable Commitment for n-bit Identities

In this section, we construct a concurrent non-malleable commitment scheme 〈C∗, R∗〉 that can
accomodate n-bit identities. This then concludes the proof of Theorem 1 (formally stated in
Theorem 17). The idea is to start with the basic commitment scheme from Section 5 that is
one-one non-malleable w.r.t. extraction for short identities, say t(n)-bits. Then apply the non-
malleability strengthening technique described in Section 6.3 followed by the log-n trick [DDN00]
described in Section 7 repeatedly until the length of the identities reaches n-bits. The resulting
commitment scheme is the commitment scheme 〈C∗, R∗〉. We detail the construction of 〈C∗, R∗〉
more formally in Section 8.1, provide instantiations in Section 8.2, discuss the efficiency of the
scheme 〈C∗, R∗〉 in Section 8.3 and argue about the security 〈C∗, R∗〉 in Section 8.4.

Theorem 17. For some sub-exponential functions T,B assume the existence of C∧B,B-secure in-
jective one-way functions, C∧B,B-WI ZAP, C∧B,B-collison-resistant hash function family and (T,B)-
secure Time-lock puzzles. Then, 〈C∗, R∗〉 is a 2-round, perfectly binding concurrent non-malleable
w.r.t. extraction and w.r.t. commitment against poly-size adversaries.

8.1 Commitment Scheme 〈C∗, R∗〉

We formally describe the construction of 〈C∗, R∗〉 that is concurrent non-malleable w.r.t. commit-
ment (and extraction) for n-bit identities. As mentioned above we initially start with a commitment
scheme 〈C0, R0〉 for t(n)-bit identities and apply the non-malleability strengthening and log-n trick
repeatedly, for say r(n) times, until we reach identities of length n-bits.

- Initial Scheme 〈C0, R0〉:
The initial scheme 〈C0, R0〉 is the basic scheme (ENMCom,ENMOpen), as constructed in
Section 5, that is one-one non-malleable w.r.t. extraction for identities of length id0(n) =
t(n)-bits. Furthermore, let 〈C0, R0〉 be non-malleable against circuits of depth at most
poly(S0) and size at most poly(S0) and extractable by an extractor of depth poly(S′0) and
size poly(S′0).26

- Identity Amplification Step for r(n) Times:

Next, we repeatedly apply the following two steps r(n) number of times. Let 〈Cj−1, Rj−1〉
be the commitment scheme at the end of the j − 1-st iteration for j ∈ [r(n)]. We describe
below the j-th iteration below. Let 〈Cj−1, Rj−1〉 be one-one non-malleable w.r.t. commit-
ment (and extraction) for identities of length idj−1(n)-bits. Furthermore, let 〈Cj−1, Rj−1〉 be
non-malleable against circuits of depth at most poly(Sj−1) and size at most poly(Sj−1) and
extractable by an extractor of depth poly(S′j−1) and size poly(S′j−1).

26Note that the initial scheme as presented in Section 5 is non-malleable against circuits of depth at most poly(d0)
and size at most poly(S0) where d0 << S0. However, note that such a scheme is still non-malleable against circuits
of depth at most poly(d0) and size at most poly(d0).
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1. Non-malleability Strengthening Technique:
First, using an appropriate hierarchy of functions as described in Eq (9), we apply the
non-malleability strengthening technique to the scheme 〈Cj−1, Rj−1〉 to boost its one-
one non-malleability to concurrent non-malleability. The resulting scheme 〈Ĉj , R̂j〉 is
concurrent non-malleable w.r.t. commitment (and extraction) for identities of length
idj−1(n)-bits.

2. Log-n Trick:

Second, we apply the log-n trick to the concurrent non-malleable scheme 〈Ĉj , R̂j〉 to
construct a one-one non-malleable commitment 〈Cj , Rj〉 for identities of length idj(n)

such that idj(n) = 2id
j−1(n)−1.

- Final Scheme 〈C∗, R∗〉:
The commitment scheme 〈Cr(n), Rr(n)〉 constructed at the end of r(n) iterations is one-one
non-malleable for identities of length idr(n). We apply the non-malleability strengthening
technique one more time to 〈Cr(n), Rr(n)〉 to boost its one-one non-malleability to concurrent
non-malleability. The resulting scheme 〈C∗, R∗〉 is concurrent non-malleable for identities of
length idr(n)(n)-bits.

Note that we begin we identities of length id0 = t(n) and identities in successive iterations
satisfy the following,

idj(n) = 2id
j−1(n)−1 .

Then it is easy to see that for idr(n)(n) ≥ n and t(n) > 2, we need to apply the identity amplification
step r(n) = O(log∗ n− log∗ t(n)) times.

8.2 Instantiations

The initial scheme constructed in Section 5 and the identity amplification step described in Sec-
tions 6.3,7 require a family of depth-robust and size-robust commitment schemes, and a family of
non-uniform collision resistant hash functions which are based on some hierarchy of non-decreasing
functions. Below we detail the size of this hierarchy required for constructing 〈C∗, R∗〉 from the
initial scheme 〈C0, R0〉 for t(n)-bit identities and r(n) iterations of the identity amplification step.
Then we give instantiations of this hierarchy firstly from sub-exponential security and then from
the strictly weaker sub-subexponential security.

Initial Scheme 〈C0, R0〉. We start with the basic scheme (ENMCom,ENMOpen) for t(n)-bit
identities. As described in Section 5, the construction of the scheme (ENMCom,ENMOpen) for
t(n)-bit identities requires a family of 2t(n) size-robust and depth-robust commitment schemes
w.r.t. the following hierarchy of non-decreasing functions,

n << d0 << d1 << . . . << dl−1 << dl << S0 << S1 << . . . << Sl−1 << Sl ,

where l = 2t(n) such that for every i ∈ {0, 1}t(n),

- there exists a depth-robust commitment scheme (EComdi ,EOpendi) that is Cdi-hiding and
(di+1, di+1)-over-extractable w.r.t. an extractor oEdi .

- there exists a size-robust commitment scheme (EComSi ,EOpenSi) that is C∧Si,Si-hiding and
(poly(n), Si+1)-over-extractable w.r.t. an extractor oESi .
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Therefore, to construct the initial commitment scheme we need a hierarchy of 2(l+1) = 2(2t(n) +1)
non-decreasing functions.

Identity Amplification Step. Consider the j + 1-st iteration of the identity amplification step
described in the construction of 〈C∗, R∗〉. In the j+1-st iteration, we are applying the strengthening
technique to the commitment scheme 〈Cj , Rj〉 which is C∧

Sj ,Sj
-non-malleable and extractable by a

circuit of size poly(S′j). The strengthening technique requries a family of four depth-robust 27

and four size-robust commitment schemes. Furthermore, it also requires a family of non-uniform
collision-resistant hash functions w.r.t. the following hierarchy of non-decreasing functions,

n << dj4 << dj3 << dj1 << dj2 << Sj2 << Sj1 << SjCRH <<

S′jCRH << Sj << S′j << Sj3 << Sj4 << S′j4 << S∗ ,
(14)

such that,

- (ECom1,EOpen1) is a perfectly binding commitment scheme which is C∨
dj1,S

j
1

-hiding and (dj2, S
j
CRH)-

over-extractable w.r.t. extractor oE1.

- (ECom2,EOpen2) is a perfectly binding commitment scheme which is C∨
dj2,S

j
2

-hiding and (Sj2, S
j
1)-

over-extractable w.r.t. extractor oE2.

- (ECom3,EOpen3) is a perfectly binding commitment scheme which is C∨
dj3,S

j
3

-hiding and (dj1, S
′j
4 )-

over-extractable w.r.t. extractor oE3.

- (ECom4,ECom4) is a perfectly binding commitment scheme which is C∨
dj4,S

j
4

-hiding and (dj3, S
′j
4 )-

over-extractable w.r.t. extractor oE4.

- H = {Hn}n∈N is a C∧
SjCRH,S

j
CRH

-collision-resistant family of hash functions such that a collision

can be found by a circuit of size poly(S′jCRH).

Furthermore, we apply the log-n trick to the resulting commitment scheme. Note that the log-n
trick does not rely on any additional tools. Therefore, in an iteration of the identity amplification
step, we need four depth-robust27, four size-robust commitment schemes and a hash function family.
In other words, we need an additional at most eleven28 non-decreasing functions per iteration.
Therefore, over r(n) iterations, we will need a hierarchy of 11r(n) + 11 functions.29

Therefore, to construct the commitment scheme 〈C∗, R∗〉 from 〈C0, R0〉 for t(n)-bit identities,
we need a hierarchy of L = 2t(n)+1 +11r(n)+13 non-decreasing functions, where r(n) = O(log∗ n−
log∗ t(n)). Furthermore, L is minimized when t(n) = O(1), implying r(n) = O(log∗ n) and L =
O(log∗ n). Next, we show two approaches to instantiate a hierarchy of L = O(log∗ n) non-decreasing
functions, one from sub-exponential security and another from sub-subexponential security.

27Note that the transformation actually requires four depth-and-size robust commitment schemes but as described
in Section 4.3 depth-and-size robust commitment scheme can be constructed from a single depth-robust and a size-
robust commitment scheme.

28nine levels are required for the four depth-and size-robust commitment schemes (see Equation 14) namely
d1, . . . , d4, S1, . . . , S4, S

′
4 and additional two levels namely SCRH and S′CRH for the collision-resistant hash function.

29The additional eleven functions is due an extra application of the non-malleability strengthening to boost the
non-malleability of 〈Cr(n), Rr(n)〉.
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Instantiation from Sub-exponential Security. As mentioned above, we need to instantiate
a hierarchy of L non-decreasing functions for constructing 〈C∗, R∗〉. Let the required hierarchy be
the following,

p1 << p2 << . . . << pL . (15)

Let F(λ) be some non-decreasing, invertible function defined on N such that F(λ) = ω(log λ)
but F(λ) = o(λ). It is easy to see that F(λ) = λε satisfies the requirements for any 0 < ε < 1. First
we will instantiate the hierarchy (Equation 15) based on the existence of 2F(λ)-secure primitives
and then provide concrete parameters for the special case of sub-exponential security, that is, for
F(λ) = λε for some ε < 1.

Towards this, first assume the existence of (T (t) = 2F(t), B(n) = 2F(n))-secure TL puzzle,
2F(k)-secure injective OWF, 2F(θ)-collision-resistant hash family where (n, t), k, θ are security pa-
rameters for the underlying TL puzzle, injective OWF and collision-resistant hash respectively. We
instantiate the above hierarchy, that is, p1 through pL from 2F(λ)-security by varying the security
parameter λ. Let n be the security parameter of the non-malleable commitment scheme we want
to construct. Then, consider the following sequence of security parameters

n0 , n1 , . . . , nL ,

where each ni is some function of n (we specify these shortly). We set i-th level (i.e., pi) in the
required hierarchy as,

pi = 2F(ni) .

We expect the functions in the hierarchy to satisfy certain constraints in order for us to be able
to instantiate the required depth-robust, size-robust commitment schemes, and collision-resistant
hash function from them. We list the properties below.

1. Since we expect all our primitives to be secure against any poly-sized circuit, we require that
the first security parameter n0 be such that 2F(n0) ≥ 2ω(logn) that is,

F(n0) = ω(log n) ,

n0 = F−1(ω(log n)) .

2. For any i, we need to be able to instantiate the following primitives,

(a) (pi, pi+1)-depth-robust commitment scheme: Commitment scheme that is Cpi-hiding but
(pi+1, pi+1)-over-extractable. We instantiate such a scheme from TL puzzles with secu-
rity parameter t(n) = ni(n).30 Then by the 2F(t)-security of TL puzzles combined with
t(n) = ni(n) (or equivalently 2F(t) = 2F(ni) = pi), the resulting puzzles are hard for
adversaries in Cpi. To guarantee that the puzzles can be solved by some circuit of size
poly(pi+1), we require that

2t(n) = 2ni(n) ≤ pi+1 . (16)

If Equation 16 holds then by Theorem 8, we have a (pi, pi+1)-depth-robust-commitment
scheme.

30Recall that TL puzzles have two security parameters n and t. The security parameter n is the security parameter
of the non-malleable commitment scheme. Therefore, we sample puzzles from the support of Gen(1n, 1ni , ·) in the
depth-robust commitment scheme in Section 4.1.
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(b) (pi, pi+1)-size-robust commitment scheme: A commitment scheme that is C∧pi,pi-hiding

but (poly(n), pi+1)-over-extractable. We instantiate such a scheme from 2F(k)-secure
injective OWF on input-length k(n) = ni(n). Then, the 2F(k)-security guarantees that
the resulting OWF (one with security parameter k = ni) is hard to invert for adversaries
in C∧pi,pi . Furthermore, such a function can be inverted by a circuit of size poly(ni) · 2ni
and depth poly(ni). Therefore, to guarantee that function can be inverted by a circuit
of size C∧poly(n),pi+1

, we require that,

ni ≤ poly(n) ; 2ni ≤ pi+1 . (17)

If Equation 17 holds then by Theorem 9, we have a (pi, pi+1)-size-robust-commitment
scheme.

(c) (pi, pi+1)-collision-resistant hash function family: A (pi, pi+1)-collision-resistant hash func-
tion family is a family of hash functions that is C∧pi,pi-collision resistant and for which
there exists a circuit of size poly(pi+1) that finds collisions with probability 1. We in-
stantiate such a family by setting the security parameter θ of H as θ(n) = ni(n), where
H is a family of 2F(θ)-collision-resistant hash functions. As discussed above, the 2F(θ)-
collision resistance of H implies that the resulting function is C∧pi,pi-collision resistant.
To guarantee that a circuit of size poly(pi+1) finds collisions, we require that

2ni ≤ pi+1 . (18)

Setting ni+1 = F−1(ni) implies pi+1 = 2F(ni+1) = 2ni which guarantees that Equations 16,
17, 18 hold. This entails a sequence n1, . . . , nL where the i-th security parameter ni is,

ni =
(
F−1

)i+1
(ω(log n)) .

3. Finally we require that the last security parameter nL be upper-bounded by some poly(n),

nL =
(
F−1

)L+1
(ω(log n)) ≤ poly(n) . (19)

Now let us consider the case of sub-exponential security, that is, let F = λε for some 0 < ε < 1/2.
Then, F−1(y) = y1/ε be the inverse of F . For the last security level nL to be polynomially bounded,
we require that,

(ω(log n))(1/ε)L+1

≤ poly(n) .

It is easy to see that from subexponential security, we can derive L = Θ(log log n) levels. Recall
that to construct 〈C∗, R∗〉 we need O(log∗ n) levels in the hierarchy, hence the above hierarchy finds
an instantiation from subexponential security.

However, for our transformation, we require only L = O(log∗ n) levels which is significantly less
than Θ(log log n) levels that can be extracted from sub-exponential security. Hence, there is hope
to instantiate the hierarchy from weaker than sub-exponential security. In fact, such a hierarchy
can, indeed, be instantiated from strictly weaker security — sub-subexponential security — which
we show below.
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Instantiation from Sub-subexponential Security. First we define the notion of sub-subexponential
security and then provide an instantiation of the hierarchy. Informally, a 2F(λ)-secure primitive is
sub-subexponential -secure if

F(λ) ∈ λo(1) .

A candidate for F for sub-subexponential security is the following,

F(λ) = λ
1
X (λ) ,

where X (λ) = ω(1) be some non-decreasing function on N.
We ask how large (if at all) such an X (λ) = ω(1) can be so that we can still instantiate the

above hierarchy. The only point of concern is bounding the security parameter nL of the last level,

that is, we ask how large X (λ) be such that for F(λ) = λ
1
X (λ) and L = O(log∗ n) the following

holds,

nL =
(
F−1

)L
(ω(log n)) ≤ poly(n) .

However the above closed form is hard to analyse so we restrict the right hand side to be n
instead of a generic poly(n), that is, (

F−1
)L

(ω(log n)) ≤ n (20)

Applying F on both sides we get,(
F−1

)L−1
(ω(log n)) ≤ F(n) , (21)

Let n′ = F(n) = n
1
X (n) < n. We have,

F(n′) =
(
n′
) 1
X (n′) = (F(n))

1
X (n′) .

Since X is a non-decreasing function we have,

F(n′) = (F(n))
1

X (n′) > (F(n))
1
X (n) ,

(22)

Applying again F on both sides of Equation (21),(
F−1

)L−2
(ω(log n)) ≤ F(n′) , (23)

Therefore by Equation (22) we know that as long as the following holds, Equation (23) holds.(
F−1

)L−2
(ω(log n)) ≤ F(n)

1
X (n) = n

1
X (n)

2

.

After repeatedly applying F , it is easy to see that as long as the following holds, Equation (20)
holds.

ω(log n) ≤ n
1

X (n)L .

Furthermore, the if the following holds then the above Equation holds,

X (n)L ≤ log n

ω(log log n)
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X (n) ≤
(

log n

ω(log log n)

) 1
O(log∗ n)

Finally, as long as the following holds for some c > 0 then Equation (20) holds.

X (n) ≤ (logc n)
1

O(log∗ n)

X (n) ≤ (log n)
1

Θ(log∗ n) (24)

For X (n) = log log n, it is easy to see that Equation (24) holds and hence Equation (20) holds.

Therefore we can instantiate the above hierarchy from 2n
1

log logn
-secure OWPs, TL puzzles and

CRHs which is strictly weaker than assuming 2n
ε
-security.

8.3 Efficiency of 〈C∗, R∗〉

As described in Section 8.1, to construct the scheme 〈C∗, R∗〉 we apply the identity amplification
step — non-malleability strengthening technique followed by the log-n trick — O(log∗ n) times.
Suppose that the identity amplification step incurrs a polynomial overhead, that is, on input a
scheme with computational complexity τ(n), it outputs a scheme with computational complexity
p(τ(n)) for some fixed polynomial p. Applying this step for a super-constant number of times leads
to a scheme 〈C∗, R∗〉 with super-polynomial computational complexity.

Unfortunately, our non-malleability strengthening technique presented in Section 6 indeed in-
currs polynomial overhead. Recall that on input a non-malleable commitment 〈C,R〉, the technique
produces an output scheme 〈Ĉ, R̂〉 which uses ZAP to prove a statement that involves verifying the
decommitment to a commitment of 〈C,R〉. Therefore, if the decommiment function Open(c, v, d) of
〈C,R〉 has complexity τOpen(n), the output scheme has complexity at least pZAP(τOpen(n)), where
pZAP is the polynomial overhead induced by ZAP.

We show below that a simple modification can fix the problem. (We chose to present the
strengthening technique in simpler terms earlier for ease of exposition.) Towards this, we introduce
a new property called open-decomposability for commtiment schemes. We say that a scheme 〈C,R〉
is g-open-decomposable, if it is the case that, its decommitment function Open(c, v, d) can be
decomposed into two functions of the following form:

- a “public” function PubOpen(c) that can be verified without the decommitment (v, d), and

- a “private” function PrivOpen(c∗, v, d) that depends on the decommitment and only a small
part c∗ = π(c) of the commitment c, and takes polynomial time g(n).

Open accepts iff both PubOpen and PrivOpen accept. Consider applying the non-malleability
strengthening technique on such a g-open-decomposable commitment scheme. Instead of using
ZAP to verify whether Open accepts, it is equivalent to verify whether PubOpen accepts in the clear
(outside ZAP) and only verifies whether PrivOpen accepts using ZAP. This simple change reduces
the overhead induced by the ZAP proof from pZAP(τOpen(n)) to pZAP(g(n)). Our key observation
is that the initial non-malleable schemes, as well as all intermediate schemes produced throughout
the iterations, are all open-decomposable w.r.t. small polynomials. Based on this, we can show
that the complexity of the final scheme is polynomially bounded.
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Open-decomposability. We formally define the notion of open-decomposability below.

Definition 20 (g-open-decomposability). Let g be a polynomial. We say that a commitment
scheme 〈C,R〉 is g-open-decomposable if there exist efficiently computable functions PubOpen,
PrivOpen, and π, such that, for all n ∈ N, c ∈ {0, 1}m(n), v ∈ {0, 1}α(n), d ∈ {0, 1}l(n) and
c∗ = π(c),

(Open(c, v, d) = 1 ⇐⇒ PubOpen(c) = 1) ∧ (PrivOpen(c∗, v, d) = 1) ,

where PrivOpen runs in time g(n). Above, m(n) and l(n) are respectively the maximal lengths of
commitments and decommitments generated using 〈C,R〉 for values of length α(n) with security
parameter n.

Using the above notion, we next describe the modified non-malleability strengthening technique
and log-n trick. We analyze the open-decomposability property of the schemes produced by itera-
tively applying these two transformations to the initial schemes constructed in Section 5, and show
that the growth of the complexity of these schemes is polynomially bounded.

More specifically, let g be a sufficiently large polynomial that, in particular, is larger than
the complexity of all depth-and-size robust commtiment schemes, ECom’s, used for constructing
the initial schemes and in the transformations. By the analysis in Section 8.2, all the ECom’s
used have polynomial complexity. This implies that the initial non-malleable commitment schemes
(consisting of invokation of two ECom schemes) does satisfy g-open-decomposability (by simply
setting PubOpen to the constant function outputting 1 and PrivOpen = Open itself). Then, we
show that the non-malleability stengthening technique always outputs a scheme that is g-open-
decomposable, and on input such a scheme, the log-n trick produces a scheme that is h(n)-open-
decomposable for h(n) = ng(n).

Modification to the strengthening technique described in Section 6.3. Let 〈C,R〉 be one-
one non-malleable w.r.t. extraction and satisfy h-open-decomposable w.r.t. (PubOpen,PrivOpen, π).
We describe the changes (highlighted in red) to the non-malleability strengthening technique.

- Commit stage - First round: Same as before.

- Commit stage - Second round: Steps 1, 2 and 4 are same as before.

3. Given aZAP and for c∗ = π(aNM, bNM), Ĉ computes the second message bZAP of ZAP to
prove the following OR-statement:

(a) either there exists a string v̄ such that c1 is a commitment to v̄ and c3 commits to
a decommitment of c1.

(b) or there exists a string s̄ = (x1, x2), such that,

– h(x1) = h(x2),

– c2 is a commitment to s̄,

– c4 commits to a decommitment of c2,

– PrivOpen accepts (c∗, d4, v4), and (d4, v4) is a valid decommitment to c4.

Ĉ proves the statement (a) by using a decommitment of c3 to (v, d1) — decommitment
of c1 to v — as the witness.

Denote by (âNM, b̂NM) the produced commitment.
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- Reveal stage - Function Ôpen(((âNM, b̂NM)), d1, v):

Parse (âNM, b̂NM) and let (aZAP, bZAP), (aNM, bNM), and c1 be the ZAP proof, the commitment
of 〈C,R〉, and the ECom1 commitment contained in it. Accept if and only if the following
functions both accept.

– ̂PubOpen(âNM, b̂NM) accepts iff the ZAP proof (aZAP, bZAP) is accepting and PubOpen((aNM, bNM)) =
1.

– π̂(âNM, b̂NM) = c1 and ̂PrivOpen(c1, v, d1) accepts iff EOpen1(c1, v, d1) = 1.

The scheme 〈Ĉ, R̂〉 is open-decomposable w.r.t. ( ̂PubOpen, ̂PrivOpen, π̂). Since ̂PrivOpen only
checks the decommitment of the ECom1 commitment, its runtime is bounded by g(n). Thus, 〈Ĉ, R̂〉
is g(n)-open-decomposable. On the other hand, since PrivOpen has complexity h(n), the ZAP proof
incurrs an additive poly(n, g(n), h(n)) overhead. Then,

ĉc(n) = cc(n) + poly(n, g(n), h(n)) ,

where cc(n) and ĉc(n) are the computational complexities of 〈C,R〉 and 〈Ĉ, R̂〉 respectively.

Modification to log-n trick described in Section 7. Let 〈Ĉ, R̂〉 be concurrent non-malleable
(w.r.t. commitment and extraction) for l(n)-bit identities, and be g(n)-open-decomposable w.r.t.

( ̂PubOpen, ̂PrivOpen, π̂). The log-n trick results in a commitment scheme 〈C̃, R̃〉 which is one-one
non-malleable (w.r.t. commitment and extraction) for identities of length l′(n) = 2l(n)−1 < n. We

show that 〈C̃, R̃〉 is h(n)-open-decomposable w.r.t. ( ˜PubOpen, ˜PrivOpen, π̃) described below.

- Commit stage: Same as before.

Let ãNM, b̃NM be the produced commitment, which contains l′ commitments of 〈Ĉ, R̂〉, denoted

as
{
âiNM, b̂

i
NM

}
i∈[l′]

.

- Reveal stage - Function Õpen(((ãNM, b̃NM)), d, v): Accept if and only if the following functions
both accept.

– ˜PubOpen accepts iff for every i, ̂PubOpen(âiNM, b̂
i
NM) accepts.

– π̃(ãNM, b̃NM) =
{
c∗i = π̂(âiNM, b̂

i
NM)

}
i

and ˜PrivOpen accepts iff for every i, ̂PrivOpen ac-

cpets c∗i w.r.t. d, v.

Note that the running time of ˜PrivOpen is at most l′(n) · g(n) ≤ h(n), and hence 〈C̃, R̃〉 is
h(n)-open-decomposable. Furthermore, if the computational complexity of 〈Ĉ, R̂〉 is ĉc(n), the
computational complexity of 〈C̃, R̃〉 is bounded by l′(n)ĉc(n).

Putting Pieces Together. Every iteration, say the j’th iteration, starts with a commitment
scheme 〈Cj , Rj〉 supporting idj(n) length identities, that is h(n)-open-decomposable (the inital
schemes are g-open-decomposable). Applying the non-malleability strengthening technique pro-
duces a scheme 〈Ĉj , R̂j〉 that is g(n)-open-decomposable. Following that, the log-n trick pro-

duces a scheme 〈Cj+1, Rj+1〉, supporting idj+1(n) = 2id
j(n)−1 length identities, that is h(n)-open-

decomposable for h(n) = ng(n). Furthermore, Let cc(j) denote the computational complexity of
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the scheme 〈Cj , Rj〉. Then we have:

cc(j + 1) = idj+1(n) (cc(j) + poly(n, g(n), h(n)))

= idj+1(n)
(
idj(n)(cc(j − 1) + poly(n)) + poly(n)

)
≤ idj+1(n)idj(n)cc(j − 1) + idj+1(n)idj(n)poly(n) + idj+1(n)poly(n)

Then,

cc(j + 1) ≤ idj+1(n)idj(n)cc(j − 1) + 2idj+1(n)idj(n)poly(n)

≤
∏

1≤k≤j+1

idk(n)cc(0) + (j + 1)

 ∏
1≤k≤j+1

idk(n)

 poly(n)

Since the total number of iterations is O(log∗ n) and the lengths of identities grow exponentially
fast, we have that the running time of the final scheme 〈C∗, R∗〉 is upper-bounded by a polynomial.

8.4 Security of 〈C∗, R∗〉

Recall from Section 8.1 〈C∗, R∗〉 is the commitment scheme obtained by applying the non-malleability
strengthening step to the commitment scheme 〈Cr(n), Rr(n)〉 which inturn was constructed by re-
cursively applying, for r(n) iterations, the non-malleability strengthening step followed by the
log-n trick starting from the basic commitment scheme 〈C0, R0〉. Since, the number of iterations
r(n) = O(log∗ n) (i.e., r(n) = w(1))31, it is not apriori clear whether 〈C∗, R∗〉 is concurrent non-
malleable for poly-size adversaries. Towards establishing the security of 〈C∗, R∗〉, we first focus on
showing 〈Cr(n), Rr(n)〉 is one-one non-malleable against poly-size adversaries. Then the security of
〈C∗, R∗〉 would follow from Theorem 13.

Recall the j-th step of the iteration: Starting from 〈Cj , Rj〉 commitment scheme on idj(n)-bit
identities, first the non-malleability strengthening step is applied to 〈Cj , Rj〉 resulting in a scheme
〈Ĉj+1, R̂j+1〉 on idj(n)-bit identities. Then, the logn trick applied to 〈Ĉj+1, R̂j+1〉 resulting in
the commitment scheme 〈Cj+1, Rj+1〉 on idj+1(n)-bit identities. By Theorems 13, 16 we know
that if 〈Cj , Rj〉 is one-one non-malleable then 〈Cj+1, Rj+1〉. First, let us establish some notation
for the ”advantage” of a certain adversary in breaking the non-malleability of the intermediate
commitment schemes.

Notation For j ∈ [r(n)] consider the commitment scheme 〈Cj , Rj〉. Consider some (A,D) where
A ∈ C∧

Sj ,Sj
and D ∈ P/poly let εjA,D(n) be a function N→ [0, 1] such that for all n ∈ N,

εjA,D(n) = |Pr[Dn(emimA
〈Cj ,Rj〉(1

n, 0))]−Dn(emimA
〈Cj ,Rj〉(1

n, 1))| .

Let εjA(n) be the maximum of εjA,D(n) over all D ∈ P/poly. We refer to εjA(n) as A’s advantage in

breaking one-one non-malleability w.r.t. extraction of 〈Cj+1, Rj+1〉. Furthermore, let εj(n) be the
maximum of εjA(n) over all one-one adversary A ∈ C∧

Sj ,Sj
. Similarly, we define such an advantage

function for the commitment scheme 〈Ĉj , R̂j〉: For A ∈ C∧
Sj ,Sj

participating in one left interaction

with Ĉj and mj(n) = idj(n) right interactions with R̂j , let ε̂jA(n) be the advantage of A in breaking

the one-many non-malleability of 〈Ĉj , R̂j〉.
31Both non-malleability strengthening (Theorem 13) and log-n trick (Theorem 16) incur O(m) = poly(n) loss in the

security where m is the number of concurrent interactions A participates in. Applying the transformation r(n) = O(1)
would have trivially implied security of 〈C∗, R∗〉.
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We are interested in showing that εr(n)(n) is negligible. That is, the scheme 〈Cr(n), Rr(n)〉
is C∧

Sr(n),Sr(n)-one-one non-malleable commitment scheme on idr(n)(n) ≥ n-bit identites. Since

P/poly ⊆ C∧
Sr(n),Sr(n) , this also establishes the security of 〈Cr(n), Rr(n)〉 against poly-size adver-

saries. Towards bounding εr(n), we first bound εj+1(n) as a function of εj(n).
First, recall that by Theorem 16, for any A ∈ C∧

Sj+1,Sj+1 that breaks the one-one non-malleability

of 〈Cj+1, Rj+1〉 with probability δ, there exists A′ ∈ C∧
Sj+1,Sj+1 that participates in one left and

idj+1(n) right interactions and breaks the one-many non-malleability of 〈Ĉj+1, R̂j+1〉 with proba-
bility δ′ such that

δ ≤ idj+1(n) · δ′ . (25)

Therefore, we can upperbound εj+1(n) by,

εj+1(n) ≤ idj+1(n) · ε̂j+1(n) , (26)

Next, recall that in the proof of Theorem 13, we reduce to the security of primitives inccuring
a multiplicative loss in the advantage proportional to m – number of right interactions that the
one-many adversary takes part in. While relating ε̂j+1(n) with εj(n) it suffices to restrict ourselves
to adversaries that participate in one left and mj+1(n) right interactions (like the adversary A′

above). Therefore,
ε̂j+1(n) ≤ c ·mj+1(n) · εj(n) , (27)

for some constant c = O(1) dictated by proof of Theorem 13. More importantly, we note that
ε̂j+1(n) blows up by only a factor of mj+1(n) = idj+1(n) over εj(n).

Combining Equations 27 and 26, we get

εj+1(n) ≤ c ·
(
mj+1(n)

)2 · εj(n) ≤ c ·
(
idj+1(n)

)2 · εj(n) ,

Therefore,

εj+1(n) ≤ cj ·
∏

0≤k≤j+1

(
idk(n)

)2
· ε0(n)

Plugging in j + 1 = r(n), we get

εr(n)(n) ≤ cr(n) ·
∏

0≤k≤r(n)

(
idk(n)

)2
· ε0(n)

Since, r(n) = O(log∗ n), c = O(1) and ε0(n) are negligible functions we conclude that εr(n)(n)
is negligible. This then establishes the security of 〈Ĉ∗, R̂∗〉. This now concludes the proof of
Theorem 17.

9 Two-round Robust CCA-secure Commitment

In this section we consider a stronger notion of security for commitments – security against adaptive
chosen commitment attacks (CCA-security). CCA-security for commitment schemes was defined
in [CLP10, LP12] and is analogous to the extensively studied notion of security under chosen-
ciphertext attacks for encryption schemes. Roughly speaking, a tag based commitment scheme
is CCA-secure if the value committed using an tag id remains hidden even if the receiver has
access to an oracle that “breaks” any commitment using any tag id′ 6= id, and returns the (unique)
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value committed inside the commitment. We call such an oracle the committed-value oracle. CCA-
security can be viewed as a natural strengthening of concurrent non-malleability – roughly speaking,
a commitment scheme is concurrently non-malleable if it is CCA-secure with respect to restricted
classes of adversaries that only make a single parallel (non-adaptive) query to the oracle after
completing all interactions with the honest committer.

In this section, we show that the 2-round concurrent non-malleable commitment scheme de-
scribed in Section 8 is in fact also CCA-secure. Recall that the 2-round scheme is constructed by
iteratively applying the amplification transformation in Section 6 to the basic schemes for short
identities in Section 5. The basic schemes for short identities are only one-one non-malleable which
is amplified to concurrent non-malleability for n-bit identities by a two-step amplification procedure:
first by applying the 2-round strengthening technique in Section 6.3 which strengthens the one-one
non-malleability to concurrent non-malleability while preserving the length of identities; then ap-
plying the DDN log n trick (Section 7) to increase the length of identities while loosing concurrent
non-malleability. The above two-step amplification step is iteratively applied for O(log∗ n) times
resulting in a scheme for n-bit identities but is only one-one non-malleable. To restore concurrent
non-malleability the 2-round strengthening technique is applied once more. Since the strengthen-
ing technique is the final step in the construction, to show that the resulting scheme 〈C∗, R∗〉 is
also CCA-secure, it is sufficient to show that the strengthening technique described in Section 6.3
produces a CCA-secure commitment scheme.

Below we first formally define the notion of CCA-secure commitments and then prove that the
strengthening technique of Section 6.3 produces a CCA-secure scheme.

9.1 CCA-secure Commitment w.r.t. Committed-Value Oracle

Committed-value Oracle. Let 〈C,R〉 be a tag-based perfectly binding commitment scheme
with t(n)-bit identities. Consider a non-uniform circuit family A = {An}n∈N. A committed-value
oracle O of 〈C,R〉 acts as follows in interaction with A: For security parameter n, it participates
with A in m-interactions acting as a honest receiver, using identities of length t(n) which are
adaptively chosen by A. At the end of each interaction, O returns the unique value committed in
the interaction if it exists, otherwise it returns ⊥. More precisely, O at the end of an interaction
say with transcript c, computes the function val on c and returns val(c) to A. Recall that val(c)
equals the (unique) value committed in c when c is a valid commitment, else val(c) is ⊥.

A tag-based commitment scheme 〈C,R〉 is CCA-secure w.r.t. committed-value oracle, if the
hiding property of the commitment scheme holds even with respect to adversaries that have access
to the committed-value oracle O. More precisely, let AO denote the adversary A having access to
the committed-value oracle O. Consider the following probabilistic experiment IND(1n, b), where
b ∈ {0, 1}: For security parameter n, AO adaptively32 chooses a pair of challenge values (v0, v1) ∈
{0, 1}α – the values to be committed to – and an identity id of length t(n), and interacts with
the honest committer C to receive a commitment to vb using identity id. Finally, the experiment
outputs the output y of AO where y is replaced with ⊥ if A queries the oracle O on a commitment
using an identity which is same as the identity id of the commitment it receives. We will denote
the output of the above experiment by INDA〈C,R〉(1

n, b).

Definition 21 (CCA-secure Commitments [LP12]). Let 〈C,R〉 be a tag-based commitment scheme
for t(n)-bit identities, and C a class of circuits. We say that 〈C,R〉 is C-CCA-secure w.r.t. the
committed-value oracle, if for every circuit family A = {An}n∈N ∈ C participating in m = poly(n)

32the choice of values v0, v1 and the identity id can depend on the right interactions of A with the committed value
oracle.
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interactions with the oracle while sending/receiving commitments to α = poly(n)-bit values, the
following ensembles are computationally indistinguishable:{

INDA〈C,R〉(1
n, 0)

}
n∈N

;
{
INDA〈C,R〉(1

n, 1)
}
n∈N

. (28)

As stated before and observed in [CLP10, LP12], CCA-security can be viewed as a natural
strengthening of concurrent non-malleability. The proof is standard and is omitted but for com-
pleteness we state the theorem below.

Theorem 18. Let 〈C,R〉 be a commitment scheme and C be a class of circuits that is closed under
composition with P/poly. Then if 〈C,R〉 is C-CCA-secure w.r.t. the committed-value oracle then
it is C-concurrent non-malleable w.r.t. commitment.

9.2 k-Robustness w.r.t. Committed-value Oracle

In the literature, CCA-security is usually used together with another property – robustness which
captures security against a man-in-the-middle adversary that participates in an arbitrary left inter-
action with a limited number of rounds, while having access to the committed-value oracle. Roughly
speaking, 〈C,R〉 is k-robust if the joint outputs of every k-round interaction, with an adversary
having access to O, can be simulated without the oracle. In other words, having access to the
oracle does not help the adversary in participating in any k-round protocol much.

Definition 22 (Robustness). Let 〈C,R〉 be a tag based commitment scheme with t(n)-bit identities,
and C and C′ two classes of circuits. We say that 〈C,R〉 is (C, C′, k)-robust w.r.t. the committed-
value oracle, if there exists a simulator S ∈ C′, such that, for every adversary A ∈ C that participates
with O in m = poly(n) interactions and for every B ∈ C that participates in a k-round interaction
with A the following ensembles are computationally indistinguishable,{

outputB,AO [B,AO(1n)]
}
n∈N

;
{
outputB,SA [B,SA

OS (1n)]
}
n∈N

, (29)

where outputB,AO [B,AO(1n)] denote the joint outputs of A and B in an interaction between them
with uniformly and independently chosen random inputs to each machine and OS is the oracle
simulated by S for A.

Remark 10. In the standard definition of robustness [LP12], the probabilistic poly-time adversaries
A and B are given auxiliary inputs – private inputs y and z respectively and common input x. Since,
our adversaries our non-uniform we can assume that the values x, y, z are instead hardcoded in A
and B.

9.3 Proof of Robust CCA-security of 〈Ĉ, R̂〉

The commitment scheme 〈Ĉ, R̂〉 is a result of applying the strengthening technique described in
Section 6.3 to a 2-round over-extractable C∧SNM,SNM

one-one non-malleable (w.r.t. extraction) com-
mitment scheme 〈C,R〉. The strengthening technique additionally relies on other basic building
blocks described in Section 6.2. It was shown in Theorems 12,13,14 that 〈Ĉ, R̂〉 is over-extractable

w.r.t. extractor ôENM and is C∧d4,d4
concurrent non-malleable w.r.t. extraction and commitment.

Next, we will show that 〈Ĉ, R̂〉 is also C∧d4,d4
-CCA-secure and (C∧d4,d4

, C∧d2,SCRH
, κ)-robust for any

polynomial κ.
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Theorem 19. 〈Ĉ, R̂〉 is C∧d4,d4
-CCA-secure and is (C∧d4,d4

, C∧d2,SCRH
, κ(n))-robust w.r.t. committed-

value oracle for any polynomial κ.

The proof of Theorem 19 consists of two parts: in Section 9.3.1 we first show that 〈Ĉ, R̂〉 is
CCA-secure and in Section 9.3.2 we show that it is also robust.

9.3.1 Proof of CCA-security

Let us consider a fixed family of circuits A = {An}n∈N belonging to the circuit class C∧d4,d4
that

in the CCA-experiment IND(1n, b) interacts with a honest receiver C and has oracle access to the
committed-value oracle to which it makes m = poly(n) number of queries. For convenience, we
will refer to A’s interaction with C as the left interaction and its interactions with O as right
interactions. Then, to prove CCA-security, we need to show that

{INDA〈Ĉ,R̂〉(1
n, 0)}n∈N ≈c {INDA〈Ĉ,R̂〉(1

n, 1)}n∈N . (30)

Proof Overview. At a very high level: the above indistinguishability follows from similar proof
as that of one-many non-malleability in Section 6.3. The proof goes through similar hybrids {Hj}j
as that for proving non-malleabilty in the proof of Theorems 13 and 14, with the following slight
modification. In the definition of non-malleability, the man-in-the-middle A interacts with the hon-
est receivers on the right, whereas in that for CCA security, A interacts with the committed-value
oracle O on the right, who additionally returns the value val committed in every right interaction
as soon as it ends. Therefore, in the hybrids for proving CCA-security, we need to simulate O for
A. To do so, we rely on the over-extractability of 〈Ĉ, R̂〉 by an extractor ôENM, and simulate the
committed-value oracle for A using the following extracted-value oracle — OE works identically to
the committed-value oracle except that at the end of an interaction, it runs ôENM to extract a value
from the commitment and returns it to A.

With the modified hybrids, to show CCA-security, we need to establish that i) OE indeed sim-
ulates the committed-value oracle correctly, and ii) the indistinguishability of the hybrids remains.
For i), recall that the over-extractability of 〈Ĉ, R̂〉 only guarantees that the value OE extracts is

the correct committed value when a commitment is valid, otherwise, ôENM might return an ar-
bitrary value, instead of ⊥. To show that the latter does not happen, (similar to the proof of
non-malleability in Theorem 13 and 14,) we maintain throughout all hybrids a “no-fake-witness”

invariant, which would guarantee that ôENM indeed returns ⊥ when a right commitment is invalid,
except with negligible probability. Hence, OE perfectly simulates the committed-value oracle with
overwhelming probability.

Next, to show ii) the indistinguishability of the hybrids, recall that the extractor ôENM on a
commitment c works as follows: It returns ⊥ if the ZAP proof (in c) is not accepting, and otherwise,

it return the value v′ extracted from c1 using the extractor oE1 of ECom1 — the complexity of ôENM

is roughly the same as that of oE1. Observe that running the extractor oE1 of ECom1, and hence
ôENM, in the hybrids does not hurt the security of any other components, namely, CRH, 〈C,R〉
and EComi’s for i > 1, since ECom1 ≺ CRH, 〈C,R〉,ECom2,ECom4,ECom3, as depicted in Figure 2
(iii). Therefore, if the indistinguishability of a pair of neighboring hybrids reduces to the security

of components other than ECom1, this indistinguishability remains intact even when running ôENM

inside. This is the case for all but the last two hybrids, whose indistinguishability reduces to
the hiding of ECom1 itself. To show their indistinguishability, (again similar to the proof of non-

malleability,) we simulate ôENM by extracting from the commitment c3 using the extractor oE3 for

73



ECom3, and rely on the hiding of ECom1 against oE3. This concludes the overview of the proof of
CCA-security. Next, we provide a more formal analysis.

Proof Sketch We consider a sequence of hybrids {Gj(b)}0≤j≤6 for b ∈ {0, 1} where for every
0 ≤ j ≤ 6 and b ∈ {0, 1} the hybrid Gj(b) is identical to the hybrid Hj(b) described in the Proof
of Theorem 13 in Section 6.3 except one slight difference. For its right interactions A in Gj(b)
interacts with the extracted-value oracle OE instead of the honest receiver as in Hj(b). Note
that the hybrid G0(b) as described above emulates an execution which is identical to the CCA-
experiment IND(b)33 with A except A is given access to the extracted-value oracle OE instead of
the committed-value oracle. As before, for notational convenience, we use font style x to denote
a random variable in the left interaction, and font style x̃i the corresponding random variable
in the i’th right interaction. Moreover, by INDAGj (1

n, b) we will denote the output of the hybrid
Gj(b). Then to show indistinguishability as described in Equation (30), we prove in Lemma 5 that
the output of the neighbouring hybrids Gj(b) and Gj+1(b) are indistinguishable for the same b.
Furthermore, we show the output is statistically close in G6(1) and G5(0) and the output of G0(b)
is also statistically close to INDA〈Ĉ,R̂〉(b), this then establishes Equation (30).

Lemma 5. For b ∈ {0, 1} and 0 ≤ j ≤ 5, the following are computationally indistinguishable,

INDAGj (b) ; INDAGj+1
(b) ,

and INDAG0
(b) ≈s INDA〈Ĉ,R̂〉(b) and INDAG6

(b) ≈s INDAG5
(0).

Towards proving the above lemma, we will also maintain the following “no-fake-witness” invari-
ant (similar to Invariant 1 in Section 6.3).

Invariant 3 (No-fake-witness invariant). In Gj(b), the probability that there exists a right interac-
tion i that is accepting and A commits to a fake witness in it is negligible.

Showing the no-fake-witness invariant in every hybrid enforces A to prove the honest statement
in every accepting right interaction k. That is, for every accepting right interaction k, A proves
that the underlying commitment c̃1k is valid. Then, due to the over-extraction property of the
extractor oE1, it follows that A in its interaction with the extracted-value oracle in fact receives
the value actually committed inside the right commitment c̃k. Therefore A’s interaction with the
extracted-value oracle is identical to its interaction with the committed-value oracle, except with
negligible probability. This fact will come in handy to show Lemma 5.

In fact, as in the proof of Theorems 13 and 14, we maintain the following, easier to prove, invari-
ant which from an argument similar to the one made in the proof of Claim 2, implies Invariant 3.

Invariant 4. In Gj(b), the probability that there exists a right interaction i that is accepting and

the value extracted from the non-malleable commitment (ãNMi, b̃NMi) in this interaction is a fake
witness is negligible.

Therefore to establish the proof of CCA-security, we will prove Lemma 5 and show that Invari-
ant 4 holds in all hybrids.

First, we show that Invariant 4 holds in G0(b). In fact, as in Claim 3, we show that the value
extracted from the ECom2 commitment c̃2k in any right interaction k is not a collision of the hash
function h̃k where A interacts with OE for its right interactions. This then implies Invariant 4

33We ignore the security parameter for notational convenience
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holds. At a high level this readily follows from the fact that the collision-resistance of the hash
function is more secure than both ECom2 and ECom1, h � ECom2,ECom1 (see Figure 2 (iii)). This
is because if in some right interaction k, A commits to a collision of h̃k using ECom2, then we can
construct a non-uniform circuit B′ that violates the collision-resistance of h̃k by extracting from
c̃2k. More precisely, B′ behaves identically to the adversary B in the proof of Claim 3 except that
for all its m = poly(n) right interactions with A, B′ internally simulates the oracle OE by running
the extractor oE1 whereas B just acts as a honest receiver. Therefore, the size of B′ blows up by
an additive factor of m · size(oE1) over the size of B. Since size of B is at most poly(SCRH) and the
size of oE1 is also at most poly(SCRH), we have that B′ also has size poly(SCRH), that is,

size(B′) ≤ size(B) +m · size(oE1)

≤ size(A) + size(oE2) + poly(n) +m · size(oE1)

≤ poly(d4) + poly(S1) + poly(SCRH)

< poly(SCRH) (since, SCRH >> S1, d4 from Equation (9)).

Therefore, B ∈ C∧SCRH,SCRH
and then due to the CSCRH

-collision-resistance ofH we have that Invariant 4
holds in G0(b) as formalized in the following claim,

Claim 17. For b ∈ {0, 1} and for every right interaction i in G0(b), the probability that i is
accepting and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

We recall that the only difference between showing Invariant 4 holds in G0(b) from the proof
of Claim 3 was that the adversary B′ (defined similarly to adversary B from Claim 3) additionally
runs the extractor oE1 to simulate the extracted value oracle for A for its right interactions. In
fact one can show Invariant 4 holds in hybrids G1(b) through G5(b) via the same modification
to adversary constructed in the proof of Claims 4, 6, 8, 10 and 12 respectively. Since, ECom1 ≺
〈C,R〉,ZAP,EComi (i > 1), it can be observed that running the extractor oE1 of (ECom1,EOpen1)
does not blow up the size or depth of the modified adversary much still allowing us to reach a
contradiction as in the above Claims from Section 6.3. Furthermore, G6(b) is in fact identical to
G5(0) (as H5(0) identical to H6(b)), therefore Invariant 4 also holds in G6(b). Therefore essentially
by the same proofs in Section 6.3, we conclude that Invariant 4 does hold in all hybrids Gj(b). This
is captured in the following Claim and we skip a formal proof.

Claim 18. For b ∈ {0, 1}, 0 ≤ j ≤ 6 and for every right interaction i in Gj(b), the probability that

i is accepting and the value extracted from (ãNMi, b̃NMi) is a fake witness, is negligible.

Next we move onto showing Lemma 5. First, given Claim 17 holds, we show that the output of
hybrid G0(b) is statistically close to the CCA-experiment IND(b) for any b ∈ {0, 1}.

Claim 19. For b ∈ {0, 1}, the following holds

INDAG0
(b) ≈s INDA〈Ĉ,R̂〉(b) .

Note that due to Claim 17 and also because Invariant 4 implies Invariant 3, we know that
A in each of its (accepting) right interactions, with the oracle OE , does not commit to a fake
witness, except with negligible probability. Then by the soundness of ZAP, in every accepting
right interaction k, A proves with overwhelming probability that the underlying commitment c̃1k is
well-formed . Therefore by the over-extractability of ECom1 w.r.t. oE1, we know that the extracted
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value oracle OE (implemented using oE1) in fact returns val(c̃1k) = val(c̃k). For interactions k
that are not accepting, both val and OE return ⊥. Therefore for every right interaction k, the
values returned by the extracted-value oracle OE agree with val(ck), the values returned by the
committed-value oracle O except with negligible probability. Therefore, interaction of A with the
extracted-value oracle OE is statistically close to its interaction with the committed-value oracle
O implying Claim 19.

Next we show that the output of G0(b) is indistinguishable from the output of G1(b), that
is, INDAG0

(b) and INDAG1
(b) are indistinguishable. As in Claim 5, we construct an adversary B′

that violates the hiding of ECom2, that is, B′ works identically to the adversary B in the proof of
Claim 5 except Step 4 and 5. The adversary B (in Claim 5) waits for A to terminate and then in
its Step 4 runs oE1 to obtain ṽi

′ for every successful right interaction i and sets ṽi
′ = ⊥ for every

unsuccessful right interaction i. Then in Step 5, B runs the distinguisher D on the view of A and
right extracted values ṽi

′ and returns the output of D. However, here in the CCA case, A expects
to receive the extracted values and that too as soon as a right interaction ends. Therefore, B′ runs
the extractor oE1 to obtain ṽi

′ as soon as the i-th interaction ends and returns ṽi
′ to A if i is an

accepting right interaction. Otherwise, it returns ⊥. Then it runs the distinguisher D on the output
y of A which is carefully replaced with ⊥ if any of A’s right interactions uses the same identity as
its left interaction. The former change of running the extractor oE1 to obtain ṽi

′ is similar to the
modification made while proving that Invariant 4 holds in Gj(b) (Claim 18) and the later change
is merely a syntactic change required to be consistent with the IND experiment. Note that this
change in the code of B′ does not blow up its depth significantly (over B). Since depth of B is at
most poly(d2) and oE1 ∈ C∧d2,SCRH

, we have that dep(B′) is at most poly(d2). Then the C∨d2,S2
-hiding

of ECom2 implies that the output of G0(b) and G1(b) are indistinguishable as formalized in the
following claim,

Claim 20. For b ∈ {0, 1}, the following are indistinguishable,

INDAG0
(b); INDAG1

(b) .

We recall that the only difference in showing indistinguishability of INDG0(b) and INDG1(b) from
the proof of Claim 5 was that the adversary B′ (defined similarly to adversary B from Claim 5)
additionally runs the extractor oE1 to simulate the extracted value oracle for A for its right inter-
actions and runs the distinguisher D on the output of A instead of running D on the view of A
and the values extracted from its right interactions. In fact one can show that INDG1(b) through
INDG5(b) are all indistinguishable via the same modification to adversary constructed in the proof
of Claims 7, 9, 11, 13 respectively. Since, ECom1 ≺ 〈C,R〉,ZAP,EComi (i > 1), it can be ob-
served that running the extractor oE1 of (ECom1,EOpen1) does not blow up the size or depth of
the modified adversary much still allowing us to reach a contradiction as in the above Claims from
Section 6.3.

Claim 21. For j ∈ [4], b ∈ {0, 1} the following holds

INDAGi(b) ≈c IND
A
Gi+1

(b) .

One would like to extend the above arugment to even argue the indistinguishability of INDG5(b)
and INDG6(b) based on the proof of Claim 15 which reduces to the hiding of ECom1. However,
running oE1 ∈ C∧d2,SCRH

on the right blow up the size and depth of B′ significantly, that is, size(B′) ≥
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size(oE1) = poly(SCRH) >> S1 and similarly dep(B′) >> d1. Since B′ /∈ C∨d1,S1
, it does not violate

the C∨d1,S1
-hiding of ECom1. To fix this issue we consider two intermediate hybrids G′5(b) and G′6(b)

which are statistically close to G5(b) and G6(b) respectively and then argue how proof of Claim 15
can be extended to argue the indistinguishability of INDG5(b) and INDG6(b).

Hybrid G′j(b) for 5 ≤ j ≤ 6: The hybrids G′j(b) are identical to Gj(b) for 5 ≤ j ≤ 6 except the
implementation of the extracted-value oracle. Here, the extracted-value oracle behaves as before
except that for an accepting right interaction i, the extractor oE3 is run on the underlying c̃3i

commitment to extract the value (ṽi
′, d̃1i

′
) and the value ṽi

′ is returned.
Given that Invariant 4 holds in Gj(b) (Claim 18), A in each of its (accepting) interaction with

the oracle OE does not commit to the fake witness, except with negligible probability. Therefore,
by the soundness of ZAP, in every accepting right interaction k, A proves that the underlying
commitments c̃1k and c̃3k are well-formed and c̃3k commits to a decommitment of c̃1k . Then due

to the over-extractability of ECom3 w.r.t. oE3 we know that the value (ṽk
′, d̃1k

′
) extracted by oE3

is in fact the decommitment of c̃1k which implies that ṽk
′ is in fact the value committed inside

˜c1k. Since the commitment ˜c1k is also well-formed (as described above), the over-extractability
of ECom1 w.r.t. oE1 implies that the value extracted from ˜c1k is also equal to val ˜c1k except with
negligible probabilty. Therefore, the value ṽk

′ (extracted by oE3) is equal to the value extracted by
oE1 in every right interaction which implies that the view of A in hybrids Gj(b) and G′j(b) remains
identical except with negligible probability. Therefore the following follow,

Claim 22. For b ∈ {0, 1} and 5 ≤ j ≤ 6, the following holds,

INDAGj (b) ≈s IND
A
G′j

(b) .

Next we show that INDAG′5
(b) and INDAG′6

(b) are indistinguishable. This follows from the fact

that ECom1 is more secure than ECom3, ECom1 � ECom3 (see Figure 2 (iii)). More precisely we
construct an adversary B′ that violates the hiding of ECom1 where B′ works identically to the
adversary B in the proof of Claim 15 except a slight difference. Here, B′ to simulate the extracted-
value oracle runs the extractor oE3 to obtain ṽi

′ as soon as the i-th interaction ends unlike B which
runs the extractor oE3 after all the right interactions end. This change in the code of B′ does not
blow up its size and depth significantly (over B) and therefore B′ (like B) falls in the class C∨d1,S1

.
Then the C∨d1,S1

-hiding of ECom1 implies that the output of G′5(b) and G′6(b) are indistinguishable.

Claim 23. For b ∈ {0, 1}, the following are indistinguishable,

INDAG′5
(b); INDAG′6

(b) .

Then combining Claims 19, 20,21,22 and 23 and observing that INDG5(0) is identical to INDG6(b)
(as G5(0) is identical to G6(b) concludes the proof of Lemma 5 and hence the proof of CCA-security
of 〈Ĉ, R̂〉.

9.3.2 Proof of Robustness

To show that 〈Ĉ, R̂〉 is (C∧d4,d4
, C∧d2,SCRH

, κ(n))-robust, we need to show that for every k ≤ κ(n) there
exists a simulator S ∈ C∧d2,SCRH

such that for any A ∈ C∧d4,d4
and for any B ∈ C∧d4,d4

that participates
in a k-round interaction, interaction between B and A where A has access to the committed value
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oracle O is indistinguishable from that between B and S. In other words, S is able to simulate
the committed value oracle O for A when its interacting with an arbitrary B. The construction
of the simulator S is very similar to the hybrid G0(b) as described in the proof of CCA-security
in Section 9.3.1. More precisely, given k and a circuit A ∈ C∧d4,d4

, S externally interacts with an
arbitrary k-round circuit B and internally simulates an execution between B and A by forwarding
messages from B to A. For the right interactions, S internally simulates the extracted value oracle
OE for A as described in Section 9.3.1.

To conclude the proof of robustness we need to show two things: (1) S ∈ C∧d2,SCRH
and (2) S

indeed is able to simulate the committed-value oracle O for A. First, it is easy to see that S runs
A ∈ C∧d4,d4

and simulates the extracted-value oracle OE for poly(m) right interactions. As OE can
be simulated by a circuit in C∧d2,SCRH

we have that S ∈ C∧d2,SCRH
. Second, by an argument simular to

the one made in the Proof of Claim 17 one can show that due to collision resistance of H A does
not commit to a fake witness in any of its right interactions. Then, as in Claim 19 we can conclude
that the view of A with the committed-value oracle is statistically close to the view of A with the
extracted-value oracle (as simulated by S). This then concludes the proof of robustness and the
proof of Theorem 19.

On the robustness of the scheme 〈C∗, R∗〉. We claim that the final commitment scheme
〈C∗, R∗〉 is (P/poly, C′, κ(n))-robust w.r.t the committed-value oracle where C′ is the set of all
non-uniform circuits whose size is upperbounded by poly(2(logn)c) for a sufficiently large constant
c. In other words, 〈C∗, R∗〉 is robust w.r.t. quasi-polynomial time simulation. Recall that the
commitment 〈C∗, R∗〉 is constructed by repeatedly applying the transformations presented in Sec-
tions 6.3 and 7 relying on a L = O(log∗ n) hierarchy p1 << . . . << pL of non-decreasing functions
as discussed in Section 8.2 where each level pi = 2n

ε
i for an appropriate security parameter ni.

Furthermore recall that the final step in the construction of 〈C∗, R∗〉 is applying the strengthening
technique which relies on a hierarchy of functions as described in Equation (9). For this last step
the corresponding functions d4, . . . , d2, . . . , SCRH are instantiated from the first few functions in the
hierarchy namely p1, . . . , p4, . . . , p7. Setting nis as discussed in Section 8.2 will ensure that d2 and
SCRH are both than poly(2(logn)c)34 for some sufficiently large constant c. Hence, the simulator for
〈C∗, R∗〉 belongs to the class C′ as described above.

10 Non-interactive Concurrent Non-Malleable and CCA-secure
Commitment against Uniform Adversaries

In this section, we show that when restricting attention to uniform attackers, the first message
in our 2-round concurrent non-malleable commitment scheme constructed in Section 8 can be
removed (Theorem 2). Recall that these 2-round protocols are obtained by iteratively applying
the amplification transformation in Section 6 to the basic schemes for short identities in Section 5.
While the basic schemes are in fact non-interactive, the amplification technique, however, produces
schemes with 2 rounds. Our amplification technique involves two steps: Applying the DDN log n
trick, which is actually round preserving, and the security strengthening step that lifts one-one
non-malleability w.r.t. extraction to concurrent non-malleability w.r.t. extraction and commitment,
while preserving the length of identities. In the security strengthening step, the output scheme has
two rounds, where the first message is sent by the receiver and contains the index of a randomly
sampled function h from a family of non-uniform CRHFs, the first message of a ZAP proof, and

34Setting n0 to, say, (logn)2 in Section 8.2.
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the first message of the input non-malleable commitment scheme (if there is any). Therefore, to
remove the first message, our idea is to simply replace h for a fixed uniform CRHF, and replace
ZAP with a NIWI, so that the transformation when applied to a non-interactive input commitment
scheme, produces a non-interactive output scheme. The only drawback is that with the use of
uniform CRHF, the output scheme is only secure against uniform adversaries. We also show that
the output scheme of the modified strengthening technique also satisfies stronger notions of CCA-
security and robustness when adversaries are restricted to be uniform Turning machines.

Below, we first adapt the notions of non-malleability w.r.t. extraction and commitment, and
robust CCA-security to the setting of uniform attackers, and then describe the new amplification
step.

10.1 Non-malleability against Uniform Adversaries

The notion of non-malleability w.r.t. commitment (or w.r.t. extraction) against uniform attackers
is defined identically to that against non-uniform attackers as in Definition 16 (or Definition 17
resp.) in Section 3.5. To make the distinction explict between uniform and non-uniform we let
uMIMA

〈C,R〉(1
n, b) represent the MIM experiment with a uniform adversary A (hence uMIM). We

further denote by umimA
〈C,R〉(1

n, b) (or uemimA
〈C,R〉(1

n, b) resp.) the random variable describing the

view of A together with the values committed in (or extracted from resp.) the right interactions.

Definition 23 (Non-malleability). A tag-based commitment scheme 〈C,R〉 is said to be concur-
rent T -non-malleable against uniform attackers if for every poly(T )-time uniform Turing machine
A participating in m = poly(n) while sending/receiving commitments to α = poly(n)-bit values,
concurrent interactions, the following ensembles are computationally indistinguishable:{

umimA
〈C,R〉(1

n, 0)
}
n∈N

;
{
umimA

〈C,R〉(1
n, 1)

}
n∈N

.

Moreover, it is said to be concurrent T -non-malleable w.r.t. extraction against uniform attackers,
if the above indistinguishability holds between uemimA

〈C,R〉(1
n, 0) and uemimA

〈C,R〉(1
n, 1).

10.2 Robust CCA-security against Uniform Adversaries

Next we define the notions of CCA-security and Robustness against uniform advesaries. The
definition are identical to the non-uniform case as defined in Definitions 21 and 22 except that A
in the CCA definition is a uniform Turing machine and all A, B and S in the robustness definition
are uniform Turing machines. For completness we define them below.

Definition 24. We say that 〈C,R〉 is T -CCA-secure w.r.t. the committed-value oracle against
uniform attackers if Equation (28) holds for all poly(T )-time uniform Turing machines A that
participate in m = poly(n) queries to the oracle O.

Definition 25. We say that 〈C,R〉 is (T, T ′, k)-robust w.r.t. the committed-value oracle against
uniform attackers if there exists poly(T ′)-time uniform Turing machine S such that Equation (29)
holds for all poly(T )-time uniform Turning machines A and B which participates in a k-round
interaction.
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10.3 1-Message Security Strengthening Technique

We now present our one-message transformation for security strengthening. For some hierarchy of
non-decreasing functions on N satisfying,

n << d4 << d3 << d1 << d2 << S2 << S1 << SCRH <<

S′CRH << SNM << S′NM << S3 << S4 << S′4 << S∗ ,
(31)

the transformation relies on the following building blocks:

1. (oNICom, oNIOpen) is a non-interactive, tag-based commitment scheme for t(n)-bit identities
that is S′NM-over-extractable by extractor oENI. Furthermore, 〈C,R〉 is one-one SNM-non-
malleable w.r.t. extraction by oENI against uniform adversaries.

2. {(EComi,EOpeni)}1≤i≤4 are identical to that in Section 6.3.

3. NIWI is a non-interactive CS∗-witness-indistinguishable proof.

4. H = {hn}n is a SCRH-uniform-collision resistant hash function such that there exists a
poly(S′CRH)-time TM which finds collisions for H with probability 1.

Using the above mentioned building blocks, the transformation produces the scheme (cNICom, cNIOpen)
which is non-interactive, tag-based commitment scheme for t(n)-bit identities that is SCRH-over-

extractable w.r.t. an extractor ôENI. Furthermore, (cNICom, cNIOpen) is concurrent d4-non-malleable

w.r.t. extraction by ôENI and concurrent d4-non-malleable (w.r.t. commitment) against uniform at-
tackers.

The committer Ĉ and the receiver R̂ receive the security parameter 1n and identity id ∈ {0, 1}t(n)

as common input. Furthermore, Ĉ gets a private input v ∈ {0, 1}n which is the value to be
committed.

- Commit stage:

1. Ĉ computes a commitment c1 to the value v using ECom1. Let d1 be the corresponding
decommitment string.

2. Ĉ computes a commitment c3 to the decommitment (v, d1) of c1 using ECom3.

3. Ĉ computes a commitment c2 to a random string r1 using ECom2.

4. Ĉ computes a commitment cNM to a random string r3 using oNICom using identity id.

5. Ĉ computes a commitment c4 to a random string r3 using ECom4.

6. Ĉ computes the NIWI proof π to prove the following OR-statement:

(a) either there exists a string v̄ such that c1 is a commitment to v̄ and c3 commits to
a decommitment of c1.

(b) or there exists a string s̄ = (x1, x2) such that c2 is a commitment to s̄, c4 commits
to a decommitment of c2, cNM commits to a decommitment of c4 and Hn(x1) =
Hn(x2).

Ĉ proves the statement (a) by using a decommitment of c3 to (v, d1) — decommitment
of c1 to v — as the witness.

7. Ĉ sends (c1, c2, c3, c4, cNM, π) as commitment to R̂ and keeps the decommitment (v, d1)
private.
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- Reveal stage:

On receiving (v, d1) from Ĉ, R̂ accepts the decommitment if the NIWI proof is accepting and
if EOpen1(c1, v, d1) = 1. Otherwise, it rejects.

- Extraction - Extractor ôENI:
On receiving a commitment c and identity id, ôENI first verifies the NIWI proof and outputs
⊥ if the proof is not accepting. Otherwise, it runs the extractor oE1 on c1 and outputs the
extracted value v′.

Theorem 20. 〈Ĉ, R̂〉 is a non-interactive, (d2, SCRH)-over-extractable, perfectly binding commit-
ment scheme for identities of length t(n). Furthermore, it is concurrent d4-non-malleable (w.r.t.

commitment) and non-malleable w.r.t. extraction by extractor ôENM against uniform adversaries.

It is easy to see that 〈Ĉ, R̂〉 is perfectly binding and (d2, SCRH)-over-extractable. The non-
malleability properties follow syntactically from the same proof as that of Theorem 13 and 14
w.r.t. the 2-round security strengthening technique in Section 6.3. The only slight difference is
that when reducing to the collision resistance of the hash function, and the non-malleability w.r.t.
extraction of the input commitment scheme, we need to ensure that the reduction is a uniform
Turing machine, which can be done easily. More specifically, in Section 6.3,

- we rely on the collision resistance of hash functions in order to show that Invariant 2 holds
in hybrid H0(b) (Claim 3), and

- we rely on the non-malleability w.r.t. extraction of the input commitment scheme in order
to show that Invariant 2 holds in H3(b) (Claim 8) and that the emim random variable is
indistinguishable in H2(b) and H3(b) (Claim 9).

We now observe that the reductions presented in the proof of Claim 3, 8 and 9 can be made
uniform. First, these reductions run internally 1) the adversary, 2) the extractors for different
commitment schemes, 3) possibly a strategy for finding collisions (for the second bullet point),
and some other computations, all of which can be implemented using uniform Turing machines.
Furthermore, these reductions have one value hardwired in — the index k of a “special” right
interaction. When adapting to the uniform setting, since there are only m = poly(n) number of
right interactions, instead of hard-wiring k, the reduction can simply guess k at random, at the
cost of losing a factor of m in its advantage. Therefore, by essentially the same proof, we can show
the same in the uniform setting. We hence omit the complete proof.

Robust CCA-security. We next show that the commitment scheme 〈Ĉ, R̂〉 is also robust-CCA
secure against uniform adversaries.

Theorem 21. 〈Ĉ, R̂〉 is d4-CCA-secure and (d4, SCRH, κ(n))-robust w.r.t. committed value oracle
against uniform adversaries.

The proof of d4-CCA security is identical to the proof of the CCA-security w.r.t. the 2-round
strengthening technique as described in Section 9.3.1, except a slight difference. The difference
is identical as in the above proof of non-malleability against uniform adversaries, that is, to deal
with the uniform collision resistance of hash function and uniform one-one non-malleability w.r.t.
extraction of the input commitment scheme As observed earlier, we need to ensure that the re-
ductions are uniform Turning machines which can be easily done as described above. The proof
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of (d4, SCRH, κ(n))-robustness also follows from the proof of robustness described in Section 9.3.2
except that the simulator S also needs to be a uniform Turing machine which also by the same
argument can be made uniform. Therefore, by essentially the same proof as of Theorem 19, we can
show that 〈Ĉ, R̂〉 is robust-CCA secure and omit a full proof.
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11 Appendix

11.1 Proof of Theorem 15

Proof. Recall that we want to show the following,

1. If 〈Ĉ, R̂〉 is C-one-many non-malleable then it is C-concurrent non-malleable.

2. If 〈Ĉ, R̂〉 is C-one-many non-malleable w.r.t. extraction (by extractor ôENM) then it is C-
concurrent non-malleable w.r.t. extraction (by ôENM).
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We begin by proving the second implication, that is, C-one-many non-malleability w.r.t. extrac-
tion implies C-concurrent non-malleability w.r.t. extraction. Let us assume for contradiction that
there exists a non-uniform adversary A = {An}n∈N ∈ C that participates in m = poly(n) concur-
rent interactions while sending/receiving commitments to α = poly(n)-bit values, a non-uniform
distinugisher D = {Dn}n∈N ∈ P/poly, and a polynomial p(·) such that for infinitely many n ∈ N,∣∣∣Pr[Dn(emimA

〈Ĉ,R̂〉(1
n, 0))]− Pr[Dn(emimA

〈Ĉ,R̂〉(1
n, 1))]

∣∣∣ > 1

p(n)
. (32)

Fix some generic n for which this happens. We next consider a sequence of hybrid MIM exper-
iments {Hi}0≤i≤m−1. In the honest MIM experiment MIMA

〈Ĉ,R̂〉(b) (for b ∈ {0, 1}), A participates

in m right interactions with R̂ and m left interactions with Ĉ. Recall that in all left interactions
i ∈ [m], A first chooses the identity idi and challenge values (v0

i , v
1
i ), and interacts with Ĉ to

receive a commitment to value vbi with identity idi. The hybrids Hi’s we consider are identical
to the MIM experiment MIMA

〈Ĉ,R̂〉(0) except that for all the left interactions j ≤ i in Hi, A re-

ceives a commitment to the value v1
j instead of commitments to v0

j . We let emimA
Hi

denote the
random variable that describes the view of A and the values extracted from the right interactions
in Hi by extractor ôENM. It is easy to see that H0 is identical to MIM experiment MIMA

〈Ĉ,R̂〉(0)

(hence emimA
〈Ĉ,R̂〉(0) = emimA

H0
) and Hm is identical to the MIM experiment MIMA

〈Ĉ,R̂〉(1) (hence

emimA
〈Ĉ,R̂〉(1) = emimA

Hm). By a standard hybrid argument, following Equation 32, there exists

some i ∈ {0, . . . ,m− 1} such that,∣∣∣Pr[Dn(emimA
Hi)]− Pr[Dn(emimA

Hi+1
)]
∣∣∣ > 1

p(n) ·m
. (33)

Given this, we construct a one-many non-uniform adversary Ã = {Ãn}n∈N for 〈Ĉ, R̂〉 and a
distinguisher D̃ = {D̃n}n∈N that violate one-many non-malleability w.r.t. extraction of 〈Ĉ, R̂〉
with advantage 1/(p(n) ·m(n)). For n ∈ N, Ãn with index i (as defined above) hard-wired in it,
participates in one left interaction with Ĉ andm right interactions with R̂ and internally emulates an
execution of Hi for An as follows: all right interactions of An are externally forwarded to R̂, the i-th
left interaction of An is externally forwarded to Ĉ, and for all remaining left interactions Ã internally
acts as a honest committer emulating hybrid Hi. More precisely, for the i-th left interaction, An
forwards the identity idi and values (v0

i , v
1
i ) sent by An to Ĉ and receives a commitment to either

v0
i or v1

i , which Ãn forwards to An as its i-th left commitment. The distinguisher D̃n on input

emimÃ
〈Ĉ,R̂〉(b), that is, the view view of Ãn and the values u′1, . . . , u

′
m extracted from the right

interactions, runs the function reconstruct that reconstructs the view view′ of A in emulation by Ã
and sets ũk = u′k iff A did not copy the identity of any of the m left interactions, and ⊥ otherwise.
reconstruct finally outputs ũ1, . . . , ũm, view

′. By construction it follows that,

reconstruct(emimÃ
〈Ĉ,R̂〉(0)) = emimA

Hi ; reconstruct(emimÃ
〈Ĉ,R̂〉(1)) = emimA

Hi+1
.

The distinguisher D̃n runs the distinguisher Dn on ũ1, . . . , ũm, view
′ and outputs whatever Dn

outputs. Then by Equation 33 it follows that the pair (Ã, D̃) breaks the one-many non-malleability
of 〈Ĉ, R̂〉 w.r.t. extraction with advantage 1/(p(n) ·m(n)). To arrive at a contradiction, we need
to show that Ã and D̃ belong to appropriate circuit classes. Firstly, note that Ã internally runs
A and the rest of the computation can be done in poly(n)-time. Therefore, the size/depth of Ã
blows up only by an additive poly(n) factor over the size/depth of A. Secondly, D̃ computes the
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reconstruct function, runs D and the rest of the computation can be done in poly-time. Note that
the reconstruct function is in fact computable in poly-time. Therefore, the size/depth of Ã blows
up only by an additive poly(n) factor over the size/depth of A. Since A ∈ C and D ∈ P/poly
and both C and P/poly are closed under composition with P/poly, we conclude that Ã ∈ C and
D̃ ∈ P/poly. This contradicts the one-many non-malleability w.r.t. extraction of 〈Ĉ, R̂〉.

The proof of concurrent non-malleability w.r.t. commitment follows syntactically from the proof
of non-malleability w.r.t. extraction except that we consider the random variable mimA

〈Ĉ,R̂〉 instead

of emimA
〈Ĉ,R̂〉. We skip the formal proof.
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