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Abstract. Masking is an effective countermeasure against side-channel attacks. In this paper, we
improve the efficiency of the high-order masking of look-up tables countermeasure introduced at
Eurocrypt 2014, based on a combination of three techniques, and still with a proof of security in the
Ishai-Sahai-Wagner (ISW) probing model. The first technique consists in proving security under the
stronger t-SNI definition, which enables to use n = t+ 1 shares instead of n = 2t+ 1 against t-th order
attacks. The second technique consists in progressively incrementing the number of shares within the
countermeasure, from a single share to n, thereby reducing the complexity of the countermeasure. The
third technique consists in adapting the common shares approach introduced by Coron et al. at CHES
2016, so that half of a randomized look-up table can be pre-computed for multiple SBoxes.
We show that our techniques perform well in practice. In theory, the combination of the three techniques
should lead to a factor 10.7 improvement in efficiency, for a large number of shares. For a practical
implementation with a reasonable number of shares, we get a 4.8 speed-up factor for AES.

1 Introduction

The masking countermeasure. Masking is an effective countermeasure against side-channel
attacks. As first suggested in [CJRR99,GP99], it consists in xoring every internal variable x with a
random r, so that r and the masked variable x′ = x⊕ r are processed separately. This implies that
a first-order attack will reveal no information to the attacker, because the power consumption at a
single point has the same distribution as the power consumption of a random value. However, a
second-order attack can still break such first-order masking, by combining information from two
leakage points; see [OMHT06] for a practical attack.

More generally, Boolean masking can be extended to n shares by letting x = x1 ⊕ · · · ⊕ xn. The
goal is then to process the shares xi separately, so that the implementation is resistant against t-th
order attacks, in which the adversary combines leakage information from at most t < n variables.
High-order masking is a sound approach because as shown in [CJRR99,PR13,DDF14], the number
of noisy samples required to recover a secret x from its shares xi grows exponentially with the
number of shares.

The ISW probing model and t-SNI security. Ishai, Sahai and Wagner [ISW03] initiated the
theoretical study of securing circuits against an adversary who can probe a fraction of its wires.
They showed how to transform any circuit of size |C| into a circuit of size O(|C| · t2) secure against
any adversary who can probe at most t wires. The construction is based on secret-sharing every
variable x into n shares with x = x1 ⊕ · · · ⊕ xn, and processing the shares in a way that prevents a
t-limited adversary from learning any information about the initial variable x, for n ≥ 2t+ 1.

In the ISW model, the approach for proving security is based on simulation, by showing that any
set of t probes can be perfectly simulated without the knowledge of any input variable of the original



circuit (in particular, the secret-key). This demonstrates that the t probes cannot help the attacker,
since he could simulate those t probes by himself, without knowing the secret key. More precisely,
the simulation is usually done by iteratively constructing a subset I of indices of the input shares xi
that are sufficient to simulate the t probes; if we can ensure that |I| < n, then only a proper subset
of the input shares is required for the simulation, and such input shares can be generated without
knowing the original input variable, simply by generating independently and uniformly distributed
bits. In the ISW security proof of the n-shared AND gadget, every probe adds at most two indices
in I, so for t probes we get |I| ≤ 2t and therefore n ≥ 2t+ 1 is sufficient to achieve perfect secrecy
against a t-limited adversary. As shown in [ISW03], the simulation performed at the gadget level
easily extends to the full circuit, by maintaining a global subset of indices I as in a single gate.

Recently, a refined security definition under the ISW probing model was introduced in [BBD+16],
called t-SNI security. This stronger definition enables to prove that a gadget can be used in a full
construction with n ≥ t + 1 shares only, instead of n ≥ 2t + 1 for the weaker definition of t-NI
security (corresponding to the original ISW security proof). The new definition is very practical
as it enables modular security proofs, by first considering the t-SNI security of individual gadgets
and then composing them in a more complex construction. Since in this paper we are interested in
improving the efficiency of a side-channel countermeasure, we will always prove the security of our
algorithms under this stronger t-SNI definition.

The Rivain-Prouff countermeasure. The first provably secure high-order masking scheme
for the AES block-cipher was described by Rivain and Prouff in [RP10], by adapting the ISW
multiplication gadget to the AES finite field F28 instead of F2. More precisely, since the non-linear
part of the AES SBox can be written as S(x) = x254 over F28 , it can be evaluated as a sequence of
non-linear multiplications and linear squarings, moreover with only 4 non-linear multiplications.
In order to achieve resistance against an attack of order t, the Rivain-Prouff algorithm requires
n ≥ 2t + 1 shares, as in the original ISW construction. This was later improved to n ≥ t + 1 by
showing that the ISW multiplication gadget achieves the t-SNI property [BBD+16]. This enables
to use the Rivain-Prouff countermeasure for the full AES with n = t+ 1 shares only (with some
additional mask refreshing; see [BBD+16]).

The Rivain-Prouff countermeasure was later extended to any look-up table by Carlet, Goubin,
Prouff, Quisquater and Rivain (CGPQR) in [CGP+12]. Any given k-bit SBox can be represented by

a polynomial
∑2k−1

i=0 ai x
i over F2k using Lagrange’s interpolation theorem, and can therefore be se-

curely evaluated with a sequence of n-shared additions, squarings and multiplications. Asymptotically,
the running time of the countermeasure is dominated by the number of non-linear multiplications,
where each non-linear multiplication has complexity O(n2) for n shares.

To minimize the number of such non-linear multiplications, the authors described a technique
called Parity-Split, with a proven complexity of O(2k/2) non-linear multiplications for evaluating
any k-bit SBox. This generic technique was later improved by Roy and Vivek [RV13] to further
reduce the number of non-linear multiplications for various concrete SBoxes, for example DES with
7 multiplications (from 10). This was further improved in [CRV14], with a generic technique for fast
polynomial evaluation in F2k , with heuristic complexity O(2k/2/

√
k); for example, using this method,

the DES SBoxes require only 4 multiplications (from 7 in [RV13]). In summary, the asymptotic
running time of the Rivain-Prouff countermeasure for AES is O(n2), and for k-bit generic SBoxes
the running time is O(2k/2 · n2). 1

1or O(2k/2/
√
k · n2) using the heuristic technique from [CRV14].
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The randomized table countermeasure. A completely different high-order countermeasure for
SBox evaluation was described in [Cor14], based on table randomization. The countermeasure is an
extension of the classical first-order randomized table countermeasure, first described in [CJRR99].
The first-order countermeasure consists in re-computing in RAM the original SBox S with inputs
shifted by some random r and with masked outputs. More precisely, one computes the randomized
table

T (u) = S(u⊕ r)⊕ s

for all u ∈ {0, 1}k, where r ∈ {0, 1}k is the input mask and s ∈ {0, 1}k is the output mask. To
evaluate S(x) from the masked value x′ = x ⊕ r, it suffices to compute y′ = T (x′), which gives
y′ = T (x′) = S(x′ ⊕ r)⊕ s = S(x)⊕ s, and therefore y′ is a masked value for S(x).

The first-order countermeasure was generalized to any order in [Cor14] as follows. Every row of the
randomized table T now consists of n shares. Given the n input shares xi such that x = x1⊕· · ·⊕xn,
one starts with an n-encoding of each row of the original SBox S, with:

T (u) = (S(u), 0, . . . , 0) (1)

for all rows u ∈ {0, 1}k, and one progressively shifts the table T by the successive input shares
x1, . . . , xn−1. Between every shift one refreshes the n-encodings on each row of the table. After the
last shift by xn−1 the rows of the table have been shifted by x1 ⊕ · · · ⊕ xn−1 and therefore the table
T satisfies for all u ∈ {0, 1}k:

n⊕
j=1

T (u)[j] = S(u⊕ x1 ⊕ · · · ⊕ xn−1) (2)

Then it suffices to read the table T at the row u = xn to get the n output shares yi corresponding
to y = S(x). More precisely, one lets (y1, . . . , yn)← T (xn), which from (2) gives as required:

y1 ⊕ · · · ⊕ yn = S(xn ⊕ x1 ⊕ · · · ⊕ xn−1) = S(x)

As explained in [Cor14], the intermediate mask refreshing are necessary; for example if only a
single mask refreshing is performed after the initialization of T (u) = (S(u), 0, . . . , 0), the adversary
could probe a table output share at the beginning and after the table shifts, which would leak
information about the accumulated shift x1 ⊕ · · · ⊕ xn−1 and therefore break the countermeasure.

The above countermeasure is proven secure against any attack of order t in the ISW model, with
at least n = 2t + 1 shares [Cor14]. The proof works thanks to the following observation: when a
given shift by xi and subsequent mask refreshing has not been probed, the knowledge of xi is not
required for the simulation of the output shares, because when a mask refreshing is not probed, one
can always simulate any subset of at most n − 1 output shares with randomly generated values.
Hence it is possible to perform the simulation of all probed intermediate variables with only a subset
of the input shares xi, which proves the security of the countermeasure in the ISW model.

The asymptotic complexity of the randomized countermeasure for k-bit SBoxes is O(2k · n2),
while the previous CGPQR countermeasure has complexity O(2k/2 · n2) only. In [Cor14], a variant
countermeasure for processors with large register size is described, with the same time complexity
O(2k/2 · n2) as the CGPQR countermeasure, using a similar approach as in [RDP08]. The variant
consists in packing multiple SBox rows into a single register, so that the table shifts can be performed
more efficiently at the register level first; for example for AES, 4 rows of 8-bit SBox outputs can be
stored on the same 32-bit register.
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The common shares technique. Recently it was shown in [CGPZ16] that two vectors of n
shares used as input of two different gadgets can have n/2 of their shares in common, without
decreasing the security level. This enables to mutualise some part of the computation within the
two gadgets, thereby decreasing the running time of the countermeasure. The authors show how
to apply this technique to the ISW multiplication gadget, and as shown in [CGPZ16] this saves
the equivalent of 1/2 multiplication over 2 ISW multiplications. The technique can be generalized
to multiple gadgets processed in parallel, for example the evaluation of the 16 AES SBoxes in
the Rivain-Prouff countermeasure. The technique can also be applied to other variants of the
Rivain-Prouff countermeasure, such as the quadratic evaluation method described in [CPRR15], and
also to the Threshold Implementations approach to resist glitch attacks. In practice, the authors
obtained a 20% speed-up compared to existing algorithms.

Our Contributions. The goal of our paper is to improve the practical efficiency of the randomized
table countermeasure introduced in [Cor14]. We have the following three contributions:

• We prove the security of the high-order randomized table countermeasure under the stronger
t-SNI security definition; this enables to use n = t+ 1 shares instead of n = 2t+ 1 for resistance
against t-th order attacks, when the countermeasure is integrated inside a larger construction
(such as a full block-cipher). This is actually relatively straightforward, because the proof is
essentially the same as in [Cor14]. Since the original countermeasure has complexity O(2k · n2),
this enables to gain a factor 4 in running time asymptotically.

• We describe a variant of the randomized table countermeasure, in which we progressively increase
the number of output shares in the randomized table T , from 1 to n, instead of always n output
shares. Since on average we are now using n/2 output shares within the countermeasure instead
of n, this saves an additional factor 2 in running time. We prove that our variant countermeasure
achieves the same level of security, that is t-SNI security.

• We adapt the common shares approach introduced in [CGPZ16], so that half of the randomized
look-up table evaluation can be pre-computed for multiple SBoxes. Namely the randomized table
algorithm from [Cor14] works by progressively shifting a randomized table T by the successive
input shares, so if two n-encodings have half of their first input shares r1, . . . , rn/2 in common,
we can mutualise the first half of the table shifts by r1, . . . , rn/2. This again saves a factor 2 in
complexity, when applied to multiple SBoxes. As previously, we provide a security proof under
the t-SNI security definition.

We have also done a partial formal verification of the security proof for the two above variants,
using the CheckMasks verification tool recently introduced in [Cor17b]. For a generic verification the
running time of the formal verification is exponential in the number of shares n, so we could only
verify the security property up to n = 8 shares; still this provides some confidence in the correctness
of the security proof. We refer to Section 5.2 for the details, and to Appendix B for the source code
of the verification tool in Common Lisp.

Finally, we have performed a practical implementation of our new countermeasures for both
AES and DES, using a 32-bit architecture. In theory, the combination of the 3 above techniques
should lead to a factor 10.7 improvement in efficiency, asymptotically for a large number of shares
n. We report the results of a practical implementation in Section 7, for various number of shares.
Our results show that the techniques perform well in practice, as for AES we obtain a speed-up
factor of roughly 4.8, and 2.5 for DES. Our implementation is publicly available [Cor13].
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2 Definitions

In this section we recall the t-NI and t-SNI security notions introduced in [BBD+16]. For simplicity
and more concrete definitions, as in [CGPZ16], we consider a gadget taking as input a single n-uple
(xi)1≤i≤n of shares, and outputting a single n-uple (yi)1≤i≤n. Given a subset I ⊂ [1, n], we denote
by x|I all elements xi such that i ∈ I.

Definition 1 (t-NI security). Let G be a gadget which takes as input n shares (xi)1≤i≤n and
outputs n shares (yi)1≤i≤n. The gadget G is said to be t-NI secure if for any set of t probed
intermediate variables and any subset O ⊂ [1, n] of output indices, such that t + |O| < n, there
exists a subset I ⊂ [1, n] of input indices which satisfies |I| ≤ t+ |O|, such that the t intermediate
variables and the output variables y|O can be perfectly simulated from x|I .

Definition 2 (t-SNI security). Let G be a gadget which takes as input n shares (xi)1≤i≤n and
outputs n shares (yi)1≤i≤n. The gadget G is said to be t-SNI secure if for any set of t probed
intermediate variables and any subset O ⊂ [1, n] of output indices, such that t+ |O| < n, there exists
a subset I ⊂ [1, n] of input indices which satisfies |I| ≤ t, such that the t intermediate variables and
the output variables y|O can be perfectly simulated from x|I .

The difference between the t-NI and t-SNI security notions is that the size of the input subset I
(from which the probed intermediate variables and output shares can be perfectly simulated) does
not depend on the number of output shares |O| that must be simulated. As shown in [BBD+16],
if several gadgets are t-SNI secure, then the composition of those gadgets remains t-SNI secure.
Moreover the t-SNI security notion enables to prove the security of a full construction for n > t+ 1
shares, instead of n > 2t+ 1 for the weaker t-NI security notion.

3 The Original High-Order Look-up Table Algorithm

We recall the algorithm in [Cor14] for securely computing y = S(x), where

S : {0, 1}k → {0, 1}k′

is a look-up table with k-bit input and k′-bit output. The algorithm takes as input x1, . . . , xn such
that x = x1 ⊕ · · · ⊕ xn and must output y1, . . . , yn such that y = S(x) = y1 ⊕ · · · ⊕ yn, without
leaking information about x. The algorithm consists in progressively shifting a randomized table
T , using the input shares x1, . . . , xn−1 for the successive shifts. Each row of the randomized table
T is actually a vector of n shares, which encodes the original table S(x) but progressively shifted
by x1, . . . , xn−1. Eventually the randomized table is read at index xn, which gives an n-sharing of
y = S(x) as required. Between every shift, the n shares of every row are refreshed using the same
RefreshMasks algorithm below as in [RP10].

The procedure is described in Algorithm 1. The algorithm uses two temporary tables T and T ′

in RAM; both have k-bit input and a vector of n elements of k′-bit as output, namely

T, T ′ : {0, 1}k → ({0, 1}k′)n

We denote by T (u)[j] and T ′(u)[j] the j-th component of the vectors T (u) and T ′(u) respectively,
for 1 ≤ j ≤ n. At Line 2 of Algorithm 1 the table T is initialized with:

T (u)←
(
S(u), 0, . . . , 0) ∈ ({0, 1}k′)n
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Algorithm 1 Masked computation of y = S(x)
Input: x1, . . . , xn such that x = x1 ⊕ · · · ⊕ xn
Output: y1, . . . , yn such that y = S(x) = y1 ⊕ · · · ⊕ yn
1: for all u ∈ {0, 1}k do

2: T (u)←
(
S(u), 0, . . . , 0) ∈ ({0, 1}k

′
)n . ⊕

(
T (u)

)
= S(u)

3: end for
4: for i = 1 to n− 1 do
5: for all u ∈ {0, 1}k do
6: for j = 1 to n do T ′(u)[j]← T (u⊕ xi)[j] . T ′(u)← T (u⊕ xi)
7: end for
8: for all u ∈ {0, 1}k do
9: T (u)← RefreshMasks

(
T ′(u)

)
. ⊕

(
T (u)

)
= S(u⊕ x1 ⊕ · · · ⊕ xi)

10: end for
11: end for . ⊕

(
T (u)

)
= S(u⊕ x1 ⊕ · · · ⊕ xn−1)

12: (y1, . . . , yn)← RefreshMasks
(
T (xn)

)
. ⊕

(
T (xn)

)
= S(x)

13: return y1, . . . , yn

Algorithm 2 RefreshMasks
Input: x1, . . . , xn such that x = x1 ⊕ · · · ⊕ xn
Output: y1, . . . , yn such that x = y1 ⊕ · · · ⊕ yn
1: yn ← xn
2: for j = 1 to n− 1 do
3: rj ← {0, 1}k

′

4: yj ← xj ⊕ rj
5: yn ← yn ⊕ rj . yn,j = xn ⊕

⊕j
i=1 rj

6: end for
7: return y1, . . . , yn

Given an encoding v = (v1, . . . , vn) with n shares, we denote by

⊕(v) = v1 ⊕ · · · ⊕ vn

the encoded element. Therefore initially we have ⊕
(
T (u)

)
= S(u). At Line 6 the table is initially

shifted by x1 into T ′, which gives ⊕
(
T ′(u)

)
= S(u⊕x1) for all rows u. The rows are then refreshed at

Line 9, and we still have ⊕
(
T (u)

)
= S(u⊕ x1) at Line 10. More generally, one can show recursively

that at step i of the loop we have at Line 10:

⊕
(
T (u)

)
= S(u⊕ x1 ⊕ · · · ⊕ xi) (3)

for all u ∈ {0, 1}k. Namely after the new shift performed at Line 6 with xi+1 we obtain:

⊕
(
T ′(u)

)
= ⊕

(
T (u⊕ xi+1)

)
= S

(
(u⊕ xi+1)⊕ x1 ⊕ · · · ⊕ xi

)
= S(u⊕ x1 ⊕ · · · ⊕ xi+1)

and therefore the equation still holds at step i+ 1. After all the input shares x1, . . . , xn−1 have been
processed we have:

⊕
(
T (u)

)
= S(u⊕ x1 ⊕ · · · ⊕ xn−1)

Therefore from the final look-up table (y1, . . . , yn) ← RefreshMasks
(
T (xn)

)
we obtain ⊕

(
y
)

=
⊕
(
T (xn)

)
= S(xn ⊕ x1 ⊕ · · · ⊕ xn−1) = S(x) which gives as required:

S(x) = y1 ⊕ · · · ⊕ yn
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Complexity. We assume that randomness generation takes unit time, as well as table read and
write. For n shares the number of operations of RefreshMasks is 3n− 2. The time complexity of the
countermeasure is therefore:

Tn = 2k ·
(
n+ (n− 1) · (1 + 2n+ 3n− 2)

)
+ 3n− 2

which gives Tn ' 5 · 2k · n2 for large n and 2k.

Security. We recall the main theorem from [Cor14], proving the security of the countermeasure
against t-th order attacks, for any t such that n ≥ 2t+ 1.

Theorem 1 (t-NI of [Cor14]). Let (xi)1≤i≤n be the input shares of Algorithm 1 and let t be such
that 2t < n. For any set of t intermediate variables, there exists a subset I ⊂ [1, n] of indices such
that |I| ≤ 2t < n and the distribution of those t variables can be perfectly simulated from the shares
x|I . The output shares y|I can also be perfectly simulated from x|I .

The theorem shows that from any given set of t probed intermediate variables, one can always
define a set I ⊂ [1, n] with |I| < n such that only the knowledge of the input indices x|I := (xi)i∈I is
required to perfectly simulate those t intermediate variables. Then since |I| < n, those input shares
can be perfectly simulated without knowing the original input variable x, simply by generating
independently and uniformly distributed variables. Moreover as shown in [Cor14] the countermeasure
can be integrated in a larger construction (for example a full block-cipher), and one still obtains
security against t-th order attacks with n = 2t+ 1 shares.

Variant with large registers. As shown in [Cor14], the efficiency of the randomized table
countermeasure can be improved by packing multiple SBox rows into a single register, so that the
table shifts can be performed more efficiently at the register level first; for example for AES, 4
rows of the 8-bit SBox output can be stored on the same 32-bit register. We recall this variant in
Appendix A.

4 Improved Security Proof for the High-order Look-up Table Countermeasure

Our first contribution in this paper is to prove the security of the high-order look-up table coun-
termeasure under the stronger t-SNI security definition (Definition 2), instead of the weaker t-NI
notion used in [Cor14]. As shown in [BBD+16], this enables to use n = t + 1 shares instead of
n = 2t+ 1 for resistance against t-th order attacks, when the countermeasure is integrated inside a
larger construction, such as a full block-cipher. This is actually relatively straightforward, because
the proof is essentially the same as in [Cor14]. Since the original countermeasure has complexity
O(2k · n2), this enables to gain a factor 4 in running time asymptotically.

Theorem 2 (t-SNI of [Cor14]). Let (xi)1≤i≤n be the input and let (yi)1≤i≤n be the output of
Algorithm 1. For any set of t intermediate variables and any subset O of output indices such that
t+ |O| < n, there exists a subset I of input indices with |I| ≤ t, such that the t intermediate variables
and the output variables y|O can be perfectly simulated from x|I .

We first prove a simple Lemma on the RefreshMasks procedure, namely that RefreshMasks
achieves the t-NI security property; see Figure 1 for an illustration of RefreshMasks.
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x1 · · · xi · · · xn−1 xn

r1

...

ri

...

rn−1

y1 · · · yi · · · yn−1 yn

Fig. 1. The RefreshMasks algorithm.

Lemma 1 (t-NI of RefreshMasks). Let (xi)1≤i≤n be the input and let (yi)1≤i≤n be the output
of RefreshMasks. For any set of t intermediate variables and any set O of output indices with
t+ |O| < n, there exists a subset I of input indices such that the t intermediate variables and y|O
can be perfectly simulated from x|I , where I = O ∪ J for some set J ⊂ [1, n] with |J | ≤ t.

Proof. The set J is constructed as follows. If for some 1 ≤ i ≤ n− 1, any of the variables xi, ri or
yi is probed, we add i to J . If xn or yn or any intermediate variable yn,j is probed (see Algorithm 2
for the definition of the yn,j variables), we also add n to J . Since we add at most one index to J per
probe, we must have |J | ≤ t.

The simulation of the probed variables is straightforward. We let I = O ∪ J . All the randoms ri
for 1 ≤ i ≤ n− 1 can be simulated as in the real algorithm, by generating a random element from
{0, 1}k′ . If yi is probed or if i ∈ O for some 1 ≤ i ≤ n− 1, then we must have i ∈ I, so it can be
perfectly simulated from yi = xi ⊕ ri. Similarly, if any intermediate variable yn,j is probed, then
n ∈ I, so it can be perfectly simulated from xn. Therefore all probes and all variables y|O can be
perfectly simulated from x|I . ut

The following lemma, whose proof is also straightforward, shows that any subset of n− 1 output
shares yi of RefreshMasks is uniformly and independently distributed, when the algorithm is not
probed.

Lemma 2. Let (xi)1≤i≤n be the input and let (yi)1≤i≤n be the output of RefreshMasks. Any subset
of n− 1 output shares yi is uniformly and independently distributed.

Proof. Let S ( [1, n] be the corresponding subset. We distinguish two cases. If n /∈ S, we have
yi = xi ⊕ ri for all i ∈ S, and therefore those yi’s are uniformly and independently distributed. If
n ∈ S, let i∗ /∈ S. We have yi = xi ⊕ ri for all i ∈ S \ {n}. Moreover:

yn =

xn ⊕ n−1⊕
i=1,i 6=i∗

ri

⊕ ri∗
where ri∗ is not used in another yi for i ∈ S. Therefore the n − 1 output yi’s are uniformly and
independently distributed. ut
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We now proceed with the proof of Theorem 2. We will actually prove the security of a larger
circuit than the original circuit corresponding to Algorithm 1, in order to have a recursive security
proof. Namely we assume that instead of performing a final table-look up at Line 12 of Algorithm 1,
one performs again a final shift of the full table by xn, followed by a RefreshMasks of all the rows,
and eventually the full table T is returned, instead of only a single row. The output (y1, . . . , yn) in
Algorithm 1 then corresponds to the row found at index 0 when the table T has been shifted by
xn. Since we are considering a larger circuit, and moreover the outputs of the smaller circuit are a
subset of the outputs of the larger circuit, the t-SNI security of the larger circuit implies the t-SNI
security of the original circuit; namely we are only giving more power to the adversary. 2

More precisely, we consider an algorithm HTi taking as input x1, . . . , xi and outputting a table
T with n output shares such that for all u ∈ {0, 1}k:

n⊕
j=1

T (u)[j] = S(u⊕ x1 ⊕ · · · ⊕ xi)

The algorithm HTi can be defined recursively as follows. We define HT0 as outputting the table
T with n output shares, with T (u) =

(
S(u), 0, . . . , 0) for all u ∈ {0, 1}k. As illustrated in Figure 2,

the algorithm HTi+1 takes as input x1, . . . , xi+1, and the algorithm HTi is first recursively applied
on x1, . . . , xi. A shift by xi+1 is then applied on the table T returned by HTi, followed by a
RefreshMasks of all the rows of the table T ; we denote by SR the combination of the shift by xi+1

and the subsequent RefreshMasks. We denote by Ii the set of observations made in the gadget HTi,
with ti = |Ii| and I ′ the set of observations made in the gadget SR.

HTi SRx1, . . . , xi+1 T

Ii I′

xi+1

IiIi+1 Oi Oi+1

Fig. 2. Illustration of the recursive HTi+1 algorithm, with observations Ii+1 = Ii ∪ I′.

We prove recursively that the HTi algorithm satisfies the t-SNI property. This means that for
any set of ti = |Ii| intermediate variables and any subset Oi of output indices such that ti+ |Oi| < n,
there exists a subset Ii of input indices with |Ii| ≤ ti, such that the ti intermediate variables and the
output variables T|Oi can be perfectly simulated from x|Ii . We denote by T|Oi the set of variables

T (u)[j] for all j ∈ Oi and all rows u ∈ {0, 1}k.
It is easy to check that HT0 is t-SNI, since it does not take any share as input, and it processes

only public values. Assuming now that HTi is t-SNI, we must prove that HTi+1 is t-SNI. Therefore
letting ti+1 = |Ii+1| be the number of probes in the circuit, we have the condition:

ti+1 + |Oi+1| < n (4)

2Note that this only holds if the outputs of the smaller circuit are a subset of the outputs of the larger circuit.
Consider for example a t-NI gadget G1 and a t-SNI gadget G2, and let C(x) = G2(G1(x)). While the bigger circuit
C is t-SNI, the sub-circuit G1 of C is not necessarily t-SNI.
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and we must show that the ti+1 probed variables and the output variables T|Oi+1
can be perfectly

simulated from x|Ii+1
, for some Ii+1 with |Ii+1| ≤ ti+1.

We first consider the SR gadget corresponding to the shift of the table T by xi+1, followed by a
RefreshMasks of all the rows of the table T ; see Figure 2. We apply Lemma 1 to the RefreshMasks
performed on the rows of the table T . We obtain that all probed intermediate variables and all output
variables corresponding to Oi+1 can be perfectly simulated from the input variables corresponding
to Oi, where Oi = Oi+1 ∪ J with |J | ≤ |I ′|.

We now consider the HTi gadget, for which the output variables corresponding to Oi must be
simulated. We have from ti+1 = |Ii+1| = |Ii|+ |I ′| and (4):

|Ii|+ |Oi| ≤ |Ii|+ |Oi+1|+ |J | ≤ |Ii|+ |Oi+1|+ |I ′| ≤ ti+1 + |Oi+1| < n

Therefore the t-SNI condition is recursively satisfied for Gadget HTi, and all probed intermediate
variables and all output variables corresponding to Oi can be perfectly simulated from x|Ii , with
|Ii| ≤ |Ii|.

It remains to show that the simulation of both gadgets HTi and SR can be performed from some
subset Ii+1 with |Ii+1| ≤ ti+1. We distinguish two cases:

• If |I ′| = 0, then the SR gadget has not been probed and we can apply Lemma 2. Since |Oi+1| < n,
thanks to the RefreshMasks of every row we can simulate all output variables corresponding to
Oi+1 without the knowledge of any input variables. In particular, we don’t need to know xi+1 to
perform that simulation, and we can let Ii+1 = Ii.

• If |I ′| ≥ 1, the knowledge of xi+1 is required to perform the simulation of the SR gadget, so we
let Ii+1 = Ii ∪ {i+ 1}.

In both cases we obtain |Ii+1| ≤ |Ii|+ |I ′|. From |Ii| ≤ |Ii|, we obtain:

|Ii+1| ≤ |Ii|+ |I ′| ≤ |Ii+1| = ti+1

which shows that HTi+1 is t-SNI. This terminates the proof of Theorem 2.

5 High-order Look-up Table with Increasing Number of Shares

Our second contribution in this paper is to describe a variant countermeasure for high-order masking
of look-up tables, in which we progressively increase the number of output shares, from 1 to n.
Namely considering Algorithm 1, we see that at Line 2 we immediately start with n output shares
for the table T . This means that at the beginning of the algorithm we are already using n shares
while only a few xi’s have been processed, which sounds like a waste of ressources. A natural idea is
therefore to start with only a single output share for the table T , and then progressively increase
the number of output shares when more xi’s are processed. We obtain Algorithm 3 below.

Our new algorithm is similar to Algorithm 1, except that at Line 2 we start with a single share
instead of n. Everytime a new input share xi is processed, after the table shift by xi, we add one
more share (initially set to 0) as output of T at Line 9; therefore at the end of the processing of xi,
the table T has i+ 1 shares as output, and the RefreshMasks are now performed on every row of i+ 1
shares of the table T (instead of n in the original countermeasure). After the processing of xn−1 the
table T has therefore n shares as output (Line 12). The last input share xn is then processed by
a look-up table at Line 13 as previously. The soundness of the countermeasure is straightforward;
formally it can be proven recursively as in Section 3, the only difference being that in the main loop
over i the encodings of the rows of T are now over i+ 1 shares instead of n, for all 1 ≤ i ≤ n− 1.
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Algorithm 3 Masked computation of y = S(x), increasing number of shares
Input: x1, . . . , xn such that x = x1 ⊕ · · · ⊕ xn
Output: y1, . . . , yn such that y = S(x) = y1 ⊕ · · · ⊕ yn
1: for all u ∈ {0, 1}k do

2: T (u)←
(
S(u)) ∈ ({0, 1}k

′
)1 . ⊕

(
T (u)

)
= S(u)

3: end for
4: for i = 1 to n− 1 do
5: for all u ∈ {0, 1}k do
6: for j = 1 to i do T ′(u)[j]← T (u⊕ xi)[j] . T ′(u)← T (u⊕ xi)
7: end for
8: for all u ∈ {0, 1}k do
9: T (u)← (T ′(u)[1], . . . , T ′(u)[i], 0)

10: T (u)← RefreshMasksi+1

(
T (u)

)
. ⊕

(
T (u)

)
= S(u⊕ x1 ⊕ · · · ⊕ xi)

11: end for
12: end for . ⊕

(
T (u)

)
= S(u⊕ x1 ⊕ · · · ⊕ xn−1)

13: (y1, . . . , yn)← RefreshMasksn
(
T (xn)

)
. ⊕

(
T (xn)

)
= S(x)

14: return y1, . . . , yn

Complexity. The time complexity of the countermeasure is:

Tn = 2k ·

(
1 +

n−1∑
i=1

(1 + 2i+ 3i− 2)

)
+ 3n− 2

which gives Tn ' 5
2 · 2

k · n2 for large n and 2k. Therefore asymptotically the new countermeasure is
twice as efficient as the original countermeasure from Section 3.

Security. The following theorem shows that the improved algorithm achieves the same level of
security as the original countermeasure.

Theorem 3 (t-SNI of Algorithm 3). Let (xi)1≤i≤n be the input and let (yi)1≤i≤n be the output
of Algorithm 3. For any set of t intermediate variables and any subset O of output indices such
that t+ |O| < n, there exists a subset I of input indices with |I| ≤ t, such that the t intermediate
variables and the output variables y|O can be perfectly simulated from x|I .

The rest of the section is devoted to the proof of Theorem 3. The proof is more complex than
the t-SNI proof of the original algorithm provided in Section 4. Namely, since at step i of the loop
the randomized table has only i+ 1 shares as output (instead of n), the adversary could probe all
i+ 1 shares of a given row, whose simulation would then require the knowledge of all input shares
x1, . . . , xi. This is actually not a problem, because the size of the input subset of shares I would still
be bounded as |I| ≤ i, which is according to the SNI bound for i+ 1 probes. However this makes
the proof more complex, because we cannot necessarily assume that the t-SNI condition will be
recursively satisfied for a subset of the circuit, as it was the case in the proof of Theorem 2.

Another challenge is to handle the simulation of the output variables T (u)[j] for j ∈ O. Since
we have a decreasing number of shares (when starting from the end of the algorithm), we cannot
simply apply Lemma 1 for the RefreshMasks gadget, because otherwise at some point we could have
|O| ≥ i+ 1, and the simulation of all the i+ 1 output shares of the randomized table would then
require the knowledge of all inputs x1, . . . , xi. This time this would contradict the t-SNI bound
|I| ≤ t which can only depend on the number of probes t in the circuit, and not on the size of O.
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Below we prove a more subtle property of RefreshMasks, showing that this in fact does not happen,
because the number of shares in I can actually be decreased by one compared to the original lemma.

5.1 Property of RefreshMasks

The proof of Theorem 3 is based on the following lemma concerning the security of RefreshMasks, as
an improvement over Lemma 1. Namely we show that when the last input share xn of RefreshMasks
is such that xn = 0 (as it is the case in Algorithm 3 at Line 9), then we can get the improved
condition I = (O ∩ [1, n− 1])∪ J with |J | ≤ t− 1, instead of I = O ∪ J with |J | ≤ t as in Lemma 1.

Lemma 3 (RefreshMasks with xn = 0). Let (xi)1≤i≤n be the input and let (yi)1≤i≤n be the output
of RefreshMasks. Assume that xn = 0. For any set of t intermediate variables and any set O of
output indices with t + |O| < n, there exists a subset J ⊂ [1, n] of input indices such that the t
intermediate variables and y|O can be perfectly simulated from x|I , where I = (O ∩ [1, n− 1]) ∪ J
with |J | ≤ t− 1, or I = J with |J | ≤ t.

x1 · · · xi · · · xn−1 0

r1

...

ri

...

rn−1

y1 · · · yi · · · yn−1 yn

x1 · · · xi · · · xn−1 0

r1

...

ri

...

rn−1

y1 · · · yi · · · yn−1 yn

Fig. 3. Illustration of Lemma 3. Case 1 (left): the adversary has spent at least one probe on the last column for which
xn = 0, therefore we can have |J | ≤ t − 1. Case 2 (right): no intermediate variable is probed on the last column;
therefore ri can play the role of a one-time pad for the simulation of the outputs yi for any i ∈ O ∩ [1, n− 1].

Proof. The construction of the set J is performed as follows: for every probed variable xj or rj or
yj , we add j to J for any 1 ≤ j ≤ n − 1. Note that we never add n into J ; namely xn is known,
with xn = 0. As illustrated in Figure 3, we distinguish two cases.

If xn or yn or any intermediate variable yn,j is probed, then we must have |J | ≤ t− 1 since in
that case we have considered at most t− 1 probes in the construction of J . Moreover the simulation
of the t probed variables and y|O is straightforward and proceeds as in the proof of Lemma 1, by
letting I = (O ∩ [1, n− 1]) ∪ J . Namely all intermediate variables ri are simulated by generating
a uniform independent value as in the original algorithm. For any probed variable xi or yi with
1 ≤ i ≤ n − 1, we must have i ∈ J ⊂ I and therefore yi can be perfectly simulated from xi with
yi = xi ⊕ ri. This is also the case for the output variables yi since i ∈ O. From xn = 0, we can also
perfectly simulate all intermediate variables yn,j and the output yn.

We now assume that no variable xn, yn or yn,j is probed. From the construction of J we still
have |J | ≤ t. We show that the t probed variables and y|O can be perfectly simulated from x|I ,
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where I = J . Note that although yn is not among the t probes we can still have n ∈ O and in that
case yn must still be simulated. The simulation of the probed variables xi, ri and yi for 1 ≤ i ≤ n− 1
is straightforward. Namely in that case we have i ∈ J and we can generate ri as in the real circuit;
the variables xi and yi = xi ⊕ ri are also simulated as in the real circuit, from the knowledge of xi.

It remains to simulate the variables yi for i ∈ O \ J . We first exclude the case of yn. Since i /∈ J ,
neither xi nor ri has been probed, and therefore ri does not occur in the computation of any probed
variable or any other output variable in y|O (except possibly yn, which we consider thereafter), and
one can simulate yi = xi ⊕ ri by generating a uniform independent variable, without the knowledge
of xi.

Finally we consider the simulation of yn when n ∈ O. From |J ∪O| ≤ |J |+ |O| ≤ t+ |O| < n
and n ∈ J ∪O, there exists i? /∈ J ∪O with 1 ≤ i∗ ≤ n− 1. Since i? /∈ J and i? /∈ O, we have that
ri? does not occur in the computation of any probed variable or any output variable y|O except yn.
Therefore we can use ri? as a one-time pad for the simulation of yn. Namely we can write:

yn =

 n−1⊕
i=1,i 6=i?

ri

⊕ ri?
and yn can be simulated by generating a uniform independent variable. This terminates the proof
of Lemma 3. ut

5.2 Formal verification of Lemma 3.

We have performed a formal verification of Lemma 3 for small values of n, using the CheckMasks
verification tool introduced in [Cor17b]; the source code of the CheckMasks library is publicly
avalaible at [Cor17a], under the GPL v2.0 license. The approach consists in considering all possible
subsets of n− 1 intermediate variables in the RefreshMasks circuit (including the output variables),
and for each subset computing the subset I of input variables that are necessary for the simulation;
one can then check that the conditions of Lemma 3 are always satisfied. This generic verification
approach of the masking countermeasure had been initiated by Barthe et al. in [BBD+16] based on
the EasyCrypt framework. In this paper we have used the CheckMasks tool [Cor17b] based on the
Common Lisp language, which enables a relatively concise implementation.

For such generic verification the running time is exponential in the number of shares n, so we
could only verify the correctness of Lemma 3 up to n = 8 shares (see Table 1 for the timings); still
this provides some confidence in the correctness of the security proof. We provide the source code in
Appendix B.

n #variables #tuples Security Time

3 8 28 X ε

4 12 220 X ε

5 16 1,820 X 0.02 s

6 20 15,504 X 0.2 s

7 24 134,596 X 2.9 s

8 28 1,184,040 X 33 s

Table 1. Formal verification of Lemma 3 for small values of n.
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5.3 Proof of Theorem 3

HTi SRx1, . . . , xi+1 T

Ii I′

xi+1

IiIi+1 Oi Oi+1

Fig. 4. Illustration of the recursive HTi+1 algorithm, with observations Ii+1 = Ii ∪ I′.

We proceed with the proof of Theorem 3. As in the proof of Theorem 2, we consider an algorithm
HTi taking as input x1, . . . , xi and outputting a table T with rows of i+ 1 shares such that for all
u ∈ {0, 1}k:

i+1⊕
j=1

T (u)[j] = S(u⊕ x1 ⊕ · · · ⊕ xi)

As illustrated in Figure 4, the algorithm HTi+1 takes as input x1, . . . , xi+1, and first recursively
applies HTi on x1, . . . , xi, followed by a shift of the table T by xi+1, and then appends 0 to get i+ 2
shares as output; eventually it applies a (i+ 2)-RefreshMasks on all the table rows. We note that
the 0 is appended in the index corresponding to the accumulated sum in the RefreshMasks, that is
the last index i+ 2. As illustrated in Fig. 4, we denote by SR the gadget corresponding to the shift
by xi+1, the appending of 0, and the (i+ 2)-RefreshMasks.

We prove by induction that HTi is t-SNI. This is trivially satisfied for HT0 which does not take
input shares, and whose output T (u) =

(
S(u)

)
can be computed directly. We now assume that

the recursion hypothesis is satisfied for HTi, and we must show that it is satisfied for HTi+1. Since
HTi+1 has i+ 2 output shares, we must show that if

ti+1 + |Oi+1| < i+ 2 (5)

then the ti+1 probed intermediate variables and the output variables T (u)[j]j∈Oi+1 can be perfectly
simulated from x|Ii+1

with |Ii+1| ≤ ti+1.
We first consider the gadget SR. We can apply Lemma 3 because by definition the last input

share of RefreshMasksi+2 is equal to 0. We denote by t′ the number of probes in the SR gadget, that
is t′ = |I ′|. We hence have ti+1 = ti+ t

′, where ti is the number of probes in HTi and ti+1 the number
of probes in HTi+1. From Lemma 3 we obtain that there exists a subset J ′ of input indices such
that the t′ intermediate variables and the output variables T (u)[j]j∈Oi+1 can be perfectly simulated
from Oi, where Oi = (Oi+1 ∩ [1, i+ 1]) ∪ J ′ with |J ′| ≤ t′ − 1, or Oi = J ′ with |J ′| ≤ t′. Therefore,
we distinguish two cases:

• If Oi = (Oi+1 ∩ [1, i+ 1]) ∪ J ′ with |J ′| ≤ t′ − 1, we obtain from (5):

|Oi|+ ti ≤ |Oi+1|+ t′ − 1 + ti ≤ ti+1 + |Oi+1| − 1 < i+ 1

This implies that the t-SNI condition is satisfied for HTi, and we can therefore apply the recursion
hypothesis. We obtain that the ti probed intermediate variables as well as the output variables
with indices in Oi can be perfectly simulated from x|Ii with |Ii| ≤ ti.

14



• If Oi = J ′ with |J ′| ≤ t′, we obtain from (5):

|Oi|+ ti ≤ t′ + ti ≤ ti+1 < i+ 2

We can therefore distinguish again two cases:
• If |Oi|+ ti = i+ 1, then from the above inequality we must have ti+1 = i+ 1, and we can

take Ii+1 = [1, i+ 1] for the simulation of all variables in HTi+1. This gives |Ii+1| ≤ ti+1 as
required.

• If |Oi|+ ti < i+ 1, then as previously the t-SNI condition is satisfied for Gadget HTi, and
we can apply the recursion hypothesis, which gives |Ii| ≤ ti.

In the analysis above we have either obtained |Ii+1| ≤ ti+1 or |Ii| ≤ ti. When we have |Ii| ≤ ti,
we can distinguish two cases:

• If t′ = 0, then none of the RefreshMasks performed on the table rows at round i+ 1 has been
probed and we can apply Lemma 2. Since there are i+ 2 shares as output and |Oi+1| < i+ 2
from (5), we can can perfectly simulate all output variables corresponding to Oi+1 by generating
uniformly distributed random values . In particular, the last share xi+1 is not required for the
simulation, and we obtain Ii+1 = Ii.
• If t′ ≥ 1, the knowledge of xi is required for the simulation and we let Ii+1 = Ii ∪ {i+ 1}.

Therefore in both cases we obtain:

|Ii+1| ≤ |Ii|+ t′ ≤ ti + t′ ≤ ti+1

which implies that HTi+1 is t-SNI. This proves that HTi is t-SNI for all i.
It remains to consider the table look-up with the last share xn and subsequent RefreshMasks at

Line 13 of Algorithm 3. Applying Lemma 1 and from the t-SNI property of HTn−1, we obtain as in
the proof of Theorem 2 that Algorithm 3 is t-SNI. This terminates the proof of Theorem 3.

6 Improved Evaluation of SBoxes with Common Input Shares

Our third contribution in this paper consists in adapting the common shares approach introduced
in [CGPZ16], so that half of a randomized look-up table can be pre-computed for multiple SBoxes.
The technique works as follows. Assume that two SBox computations must be performed, on inputs
a and b:

c = S(a), d = S(b)

and let (ai)1≤i≤n and (bi)1≤i≤n be the n shares of a and b respectively. The technique in [CGPZ16]
consists in first ensuring that a and b have n/2 of their shares in common. Assuming for simplicity
that n is even, we obtain:

a = r1 ⊕ · · · ⊕ rn/2 ⊕ a′1 ⊕ · · · ⊕ a′n/2
b = r1 ⊕ · · · ⊕ rn/2 ⊕ b′1 ⊕ · · · ⊕ b′n/2

As explained in [CGPZ16], one cannot have more than n/2 shares in common between the inputs a
and b, because otherwise there would be a straightforward attack with fewer than n probes. Namely
assume that k > n/2 of the shares ri are in common between a and b. Then we can probe the
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2(n− k) < n remaining shares a′i and b′i, whose xor gives the secret variable a⊕ b, which gives an
attack with strictly fewer than n probes. Hence having half of the shares in common is optimal.

Since the high-order look-up table algorithm works by progressively shifting a randomized table
T by the successive input shares, if a and b have half of their first shares in common as above,
then we can mutualise the first half of the table shifts by r1, . . . , rn/2. More precisely, we start as in
Algorithm 1 with a table with n shares:

T (u)←
(
S(u), 0, . . . , 0

)
for all u ∈ {0, 1}k, and we progressively shift the table by r1, . . . , rn/2, to obtain for all u ∈ {0, 1}k:

⊕
(
T (u)

)
= S(u⊕ r1 ⊕ · · · ⊕ rn/2)

At this point, we copy the table T into T (1) and T (2), and then as in Algorithm 1 we progressively
shift the tables T (1) and T (2) with the remaining shares of a and b respectively. Eventually we obtain
two tables T (1) and T (2) satisfying for all u ∈ {0, 1}k:

⊕
(
T (1)(u)

)
= S(u⊕ r1 ⊕ · · · ⊕ rn/2 ⊕ a′1 ⊕ · · · ⊕ a′n/2−1)

⊕
(
T (2)(u)

)
= S(u⊕ r1 ⊕ · · · ⊕ rn/2 ⊕ b′1 ⊕ · · · ⊕ b′n/2−1)

and therefore as in Alg. 1 it suffices to perform two table look-up of T (1) and T (2) with the last
shares a′n/2 and b′n/2 respectively.

For simplicity we first consider the original table recomputation algorithm recalled in Section 3,
that is without the progressive increase of the number of shares as in the previous section. With the
above approach, for the mutualised computation of two SBoxes, only 3 shifts on half of the input
shares are performed, instead of 4 with the original algorithm (since the shift with r1, . . . , rn/2 is
mutualized). This gives a speed-up factor of 3/4. More generally, if ` SBoxes must be evaluated in
parallel (for example, ` = 16 for AES), the speed-up factor becomes:

1 + `

2 · `
' 1

2

for large `. In the following, we provide a detailed description of the resulting algorithms, and as
previously a t-SNI security proof. For simplicity we start with the parallel computation of two
SBoxes, and we later generalize to ` SBoxes.

6.1 The CommonShares Algorithm

We start by recalling the CommonShares algorithm from [CGPZ16]. For simplicity we assume that n
is even. As explained previously, the algorithm takes as input the n-sharings (ai)1≤i≤n and (bi)1≤i≤n
of a and b and outputs three vectors of n/2 shares (ri)1≤i≤n/2, (a′i)1≤i≤n/2 and (b′i)1≤i≤n/2 such that:

a = r1 ⊕ · · · ⊕ rn/2 ⊕ a′1 ⊕ · · · ⊕ a′n/2
b = r1 ⊕ · · · ⊕ rn/2 ⊕ b′1 ⊕ · · · ⊕ b′n/2

so that (ri)1≤i≤n/2 is commonly used between a and b.
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Algorithm 4 CommonShares
Require: shares (ai)1≤i≤n and (bi)1≤i≤n, with

⊕n
i=1 ai = a and

⊕n
i=1 bi = b

Ensure: shares (ri)1≤i≤n/2, (a′i)1≤i≤n/2 and (b′i)1≤i≤n/2, such that
⊕n/2

i=1 ri⊕
⊕n/2

i=1 a
′
i = a and

⊕n/2
i=1 ri⊕

⊕n/2
i=1 b

′
i = b

1: for i = 1 to n/2 do
2: ri ←$ F2k

3: a′i ← (an/2+i ⊕ ri)⊕ ai
4: b′i ← (bn/2+i ⊕ ri)⊕ bi
5: end for
6: return (ri)1≤i≤n/2, (a′i)1≤i≤n/2 and (b′i)1≤i≤n/2

It is easy to check the correctness of the algorithm, as we have ri ⊕ a′i = ai ⊕ ai+n/2 for all
1 ≤ i ≤ n/2, and similarly for bi. The following lemma shows that the above CommonShares
algorithm achieves the t-NI property; we recall the proof from [CGPZ16] in Appendix C.

Lemma 4 (t-NI of CommonShares [CGPZ16]). Let (ai)1≤i≤n and (bi)1≤i≤n be the input shares
of the algorithm CommonShares, and let (ri)1≤i≤n/2, (a′i)1≤i≤n/2 and (b′i)1≤i≤n/2 be the output shares.
For any set of t intermediate variables, there exists a subset S ⊂ [1, n] such that those t variables
can be perfectly simulated from a|S and b|S , with |S | ≤ t.

Remark 1. The CommonShares algorithm above works assuming that n is even. For odd n, as
in [CGPZ16] we can adapt the algorithm by having bn/2c shares in common instead of n/2.

6.2 Partial Evaluation of Randomized Table

Since the high-order computation of the randomized table with the common shares r1, . . . , rn/2 will
be mutualised, and the resulting table will be processed separately with the remaining shares, we
must first define an algorithm that takes as input a table T and progressively shifts the table with
input shares x1, . . . , xλ; see Algorithm 5 below.

Algorithm 5 HTable
Input: x1, . . . , xλ and T with n shares.
Output:

⊕
T out(u) =

⊕
T (u⊕ x1 ⊕ · · · ⊕ xλ)

1: for i = 1 to λ do
2: for all u ∈ {0, 1}k do
3: for j = 1 to n do T ′(u)[j]← T (u⊕ xi)[j]
4: end for
5: for all u ∈ {0, 1}k do
6: T (u)← RefreshMasks

(
T ′(u)

)
7: end for
8: end for
9: return T

The following lemma shows that Algorithm 5 achieves the t-SNI property with respect to the
input shares (xi)1≤i≤λ, and the t-NI property with respect to the input table T . We denote by T|I
the set of variables T (u)[i] for all u ∈ {0, 1}k and all i ∈ I. The proof is relatively similar to the
proof of Theorem 2 and is given in Appendix D.
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Lemma 5 (t-SNI of HTable). Let (xi)1≤i≤λ and T be the input of HTable and let T out be the
output table. For any set of t intermediate variables and any subset of indices O, if t + |O| < n,
there exist subsets I ⊂ [1, λ] and J ⊂ [1, n] with |I| ≤ t and |J | ≤ t, such that those t variables as
well as the output shares T out|O can be perfectly simulated from x|I and T|J∪O.

6.3 Evaluation of SBoxes with Common Input Shares

We are now ready to describe our evaluation of SBoxes with common input shares. The common
high-order evaluation of two SBoxes is described in the algorithm below.

Algorithm 6 Common Table: high-order evaluation of y(1) = S(x(1)) and y(2) = S(x(2))

Input: x
(`)
1 , . . . , x

(`)
n for ` ∈ {1, 2}

Output: y
(`)
1 , . . . , y

(`)
n such that y

(`)
1 ⊕ · · · ⊕ y

(`)
n = S(x

(`)
1 ⊕ · · · ⊕ x

(`)
n ) for ` ∈ {1, 2}.

1: (ri)1≤i≤n/2, (a
(1)
i )1≤i≤n/2, (a

(2)
i )1≤i≤n/2 ← CommonShares(x

(1)
i , x

(2)
i )

2: for all u ∈ {0, 1}k do T (u)←
(
S(u), 0, . . . , 0) ∈ ({0, 1}k

′
)n . ⊕

(
T (u)

)
= S(u)

3: T (1) ← Htable(T, r1, . . . , rn/2)

4: T (2) ← T (1)

5: T (1) ← Htable(T (1), a
(1)
1 , . . . , a

(1)

n/2−1)

6: T (2) ← Htable(T (2), a
(2)
1 , . . . , a

(2)

n/2−1)

7: (y
(1)
1 , . . . , y

(1)
n )← RefreshMasks

(
T (1)(a

(1)

n/2)
)

8: (y
(2)
1 , . . . , y

(2)
n )← RefreshMasks

(
T (2)(a

(2)

n/2)
)

9: return y
(`)
1 , . . . , y

(`)
n for ` ∈ {1, 2}

The theorem below shows that the shared evaluation achieves the t-SNI security as in previous
algorithms. We provide the proof in Appendix E.

Theorem 4 (t-SNI of Common Table). Let (x
(`)
i )1≤i≤n for ` ∈ {1, 2} be the input of Common

Table and (y(`))1≤i≤n be the output. For any set of t intermediate variables and any subset of indices
O with t+ |O| < n, there exists a subset I ⊂ [1, n] with |I| ≤ t, such that those t variables as well
as the output shares (y(1))|O and (y(2))|O can be perfectly simulated from x|I and y|I .

6.4 Generalization to Multiple SBoxes

It is easy to generalize the previous construction to multiple SBoxes, following the same approach
as in [CGPZ16]. We describe such generalization in Appendix F. As explained previously, when
evaluating ` SBoxes in parallel, (for example, ` = 16 for AES), the speed-up factor becomes:

1 + `

2 · `
' 1

2

for large `.

6.5 Common input shares and increasing number of output shares

It is natural to try to combine the common input shares approach with the increasing number of
outputs shares technique from Section 5. Namely instead of starting with a table T of already n
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shares at Line 2 of Algorithm 6, one can start with a single output share (as in Line 2 of Algorithm
3). Since the mutualised table evaluation takes as input n/2 shares r1, . . . , rn/2, one would obtain

as output of Line 3 of Algorithm 6 a table T (1) with n/2 + 1 output shares (instead of n), and
eventually n shares as previously after lines 5 and 6.

However when applying the common shares technique to the progressive increase of output
shares, one does not get a factor 2 improvement in speed as previously, because the mutualised part
works with 1 to n/2 + 1 shares (hence with an average of n/4 shares), while the two non-mutualised
parts work with n/2 + 1 to n shares (hence with 3n/4 shares on average); in other words, we
only mutualize the more efficient part of the table evaluation algorithm. The speed-up ratio when
evaluating ` SBoxes is therefore:

n
4 + ` · 3n4

` · n4 + ` · 3n4
=

1 + 3`

4`
' 3

4

for large `, instead of 1/2 in the previous section. Since the progressive increase of output shares from
Section 5 provide a speed-up ratio of 1/2, the combined speed-up ratio is therefore 3/8 compared to
the original countermeasure recalled in Section 3. All in all, when taking into account the improved
t-SNI security proof from Section 4 with n = t+1 shares instead of n = 2t+1 as in [Cor14], we obtain
a speed-up ratio of 1/4 · 3/8 = 3/32. Hence for large n and `, the running-time is asymptotically
decreased by a factor 32/3 = 10.7.

We provide a formal description of the corresponding algorithm in Appendix G, with as previously
a security proof with the t-SNI definition. This corresponds to the combination of the 3 improvements
of the paper: t-SNI security proof (Section 4), increasing number of shares (Section 5), and common
shares (this section). For simplicity we only perform the analysis for the mutualised computation of
` = 2 SBoxes in parallel. We obtain that to get a t-SNI security proof, we must start at Line 2 of
Algorithm 6 with a mutualised table T with 2 shares instead of 1. More generally, when computing
` SBoxes in parallel, one should start with ` shares instead of 1 to get a security proof.3 This makes
the combination of the two techniques less interesting in practice. While the above analysis still
holds asymptotically (because for n� ` the number of initial shares ` can be seen as a constant),
in practice for AES with ` = 16 that would require a number of shares n� 16, which is probably
unrealistic. This is confirmed by our practical implementation described in the next section, showing
that while the two techniques provide a significant speed-up when used separately, the combination
does not really provide any further speed-up.

7 Implementation

We have performed a practical implementation of our new countermeasure for both AES and DES,
using a 32-bit architecture so that we could apply the large register variant recalled in Appendix
A. More precisely we can pack δ = 4 output bytes for AES, and δ = 8 output 4-bit nibbles for
DES. When using this variant, only the first table evaluation can be used with increasing number of
shares (as in Section 5), while the second table evaluation always works with n shares. Similary,
only the first table evaluation can be used with the common shares technique from Section 5.

We have also implemented the Rivain-Prouff countermeasure [RP10] for AES and the Carlet et
al. countermeasure [CGP+12] for DES; for the latter we have used the technique from [RV13], in

3More precisely, one should start with min(`, n) shares up to n shares.
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which the evaluation of a DES SBox requires only 7 non-linear multiplications, and the improved
technique from [CRV14], which requires only 4 non-linear multiplications. The performances of our
implementations are summarized in Table 2, with n = t+ 1 shares for security against t-th order
attacks (except for the original countermeasure from [Cor14] with n = 2t+ 1 shares). We provide
the running time of a full AES and DES computation, in thousands of clock cycles, for various
values of the security order t.

AES computation
Security order t

2 3 4 5 6

Rivain-Prouff [RP10], n = t+ 1 119 185 258 361 485

Randomized table [Cor14], n = 2t+ 1 2 104 4 413 7 724 12 111 17 136

Randomized table (Section 4), n = t+ 1 599 1 227 2 120 3 190 4 421

Randomized table, INC (Section 5) 435 842 1 345 1 965 2 704

Randomized table, CS (Section 6.3) 452 845 1 623 2 298 3 415

Randomized table, CS INC (Section 6.5) 463 771 1 424 1 957 2 767

DES computation
Security order t

2 3 4 5 6

[CGP+12] with [RV13] polynomials 559 754 960 1 206 1 475

[CGP+12] with [CRV14] polynomials 219 290 386 484 602

Randomized table [Cor14], n = 2t+ 1 491 907 1 487 2 210 3 075

Randomized table (Section 4), n = t+ 1 215 340 493 682 912

Randomized table, INC (Section 5) 203 308 434 584 764

Table 2. Running time in thousands of clock cycles of protected implementations of AES and DES, up to security
order t = 6, with n = t + 1 shares (except for the original countermeasure in [Cor14] with n = 2t + 1 shares). The
implementation was done in C on an iMac running a 3.2 GHz Intel processor. The running time of the unprotected
AES implementation is 1.6 · 103 cycles. The running time of the unprotected DES implementation is 9.6 · 103 cycles.

We see that for AES the randomized table algorithms are still less efficient in practice than
Rivain-Prouff, which can take advantage of the special algebraic structure of the AES SBox. However,
considering the increasing number of output shares technique from Section 5, and the common input
shares technique from Section 6.3, both techniques provide a 30% speed-up separately; however
combining the two techniques does not provide any further speed-up, for reasons explained in
Section 6.5. If we take into account the improved t-SNI security proof which enables to use n = t+ 1
shares instead of 2t+ 1, we obtain a cumulative speed-up factor of roughly 4.8 for both techniques,
compared to [Cor14].

For DES, we see that our countermeasure has the same level of efficiency as the Carlet et al.
countermeasure, when using the polynomials from [CRV14]. Moreover with the increasing number
of output shares technique from Section 5, we get up to 20% speed-up compared to the original
algorithm (and a 400 % speed-up factor when taking into account the n = t+ 1 shares instead of
n = 2t+ 1). The source code of our implementations is publicly available [Cor13].
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A Variant with Large Registers

As shown in [Cor14], the efficiency of the randomized table countermeasure can be improved by
packing multiple SBox outputs into a single register, so that the table shifts can be performed more
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efficiently at the register level first; for example for AES, 4 outputs of the 8-bit SBox can be stored
on the same 32-bit register.

More precisely, given an original SBox S : {0, 1}k → {0, 1}k′ , the variant works with registers of
size ω = 2k2 · k′ bits, for some parameter k2 < k. One defines a new SBox S′ with k1 = k − k2 bits
input and ω bits output, with:

S′(a) = S(a ‖ 0k2) ‖ · · · ‖ S(a ‖ 1k2)

for all a ∈ {0, 1}k1 . Given x = a‖b as input, S(x) is computed in two steps:

1. Let z ← S′(a) = S(a‖0k2)‖ · · · ‖S(a‖1k2)

2. Viewing z as a k2-bit input and k′-bit output table, compute y ← z(b) = S(x).

Similarly, the n-shared evaluation of S proceeds in two steps. In the first step, the table S′ is
evaluated using the randomized table countermeasure, working with registers of size 2k2 · k′ bits
instead of only k′; in principle this leads to a 2k2 speed-up factor. The complexity of the first step is
therefore O(2k−k2).

In the second step, the value z is returned in the form of n shares (zi)1≤i≤n, and viewed as a
look-up table. The randomized table countermeasure is again used. The only difference is that the
look-up table already comes in shared form. Therefore in the second step the randomized table is
initialised as follows:

T (u) = (z1(u), . . . , zn(u)) ∈ ({0, 1}k′)n

for all u ∈ {0, 1}k2 . The complexity of the second step is therefore O(2k2). As explained in [Cor14],
the total complexity of the countermeasure is minimized when taking k2 = k/2, which gives a
complexity O(2k/2 · n2), the same complexity as the Carlet et al. countermeasure. We provide a
formal description of the variant in Algorithm 7.

B Source Code of Formal Verification

We provide below the source code to formally verify Lemma 3, based on the CheckMasks library,
which is publicly avalaible at [Cor17a] under the GPL v2.0 license.

(defun check−refreshmasks−zero− imp (n &key reverse )
( init−counter−rand )
( l et ∗ ( ( inp (append ( share s ’ x (− n 1) ) ( l i s t 0 ) ) )

( a ( re f r e shmasks inp : reverse reverse ) )
( l i s t v a r ( h− l i s t−var i ab l e s a ) )
(nu ( nuple (− n 1) l i s t v a r ) )
( f l a g ’ t ) )

( print− info− in−out−var−nuples inp a l i s t v a r nu)
( dol ist ( y nu f l a g )

( l et ∗ ( (O (mapcar ( lambda ( x ) (+ 1 ( position x a ) ) )
( intersection y a ) ) )

( nt (− (− n 1) ( length O) ) )
( s i ( i t e r− s i m p l i f y y ) )
( I ( l i n p u t s i ’ x ) ) )
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Algorithm 7 Evaluation of y = S(x) with registers of size ω = 2k2 · k′ bits.
Input: x1, . . . , xn such that x = x1 ⊕ · · · ⊕ xn
Output: y1, . . . , yn such that y = S(x) = y1 ⊕ · · · ⊕ yn
1: for all u1 ∈ {0, 1}k1 do
2: tmp← S(u1||0k2)‖ · · · ‖S(u1‖1k2)
3: T (u1)←

(
tmp, 0, . . . , 0) ∈ ({0, 1}ω)n . ⊕

(
T (u1)

)
= S′(u1)

4: end for
5: for i = 1 to n− 1 do
6: for all u ∈ {0, 1}k1 do
7: for j = 1 to n do T ′(u)[j]← T (u⊕ (xi � k2))[j]
8: end for
9: for all u ∈ {0, 1}k1 do T (u)← RefreshMasks

(
T ′(u)

)
10: end for
11: (y1, . . . , yn)← RefreshMasks

(
T (xn � k2)

)
. ⊕

(
T (xn � k2)

)
= S′(x� k2)

12: for j = 1 to n do
13: T (0k2)[j], . . . , T (1k2)[j]← yj
14: end for
15: for i = 1 to n− 1 do
16: for all u ∈ {0, 1}k2 do
17: for j = 1 to n do T ′(u)[j]← T (u⊕ (xi mod 2k2))[j]
18: end for
19: for all u ∈ {0, 1}k2 do T (u)← RefreshMasks

(
T ′(u)

)
20: end for
21: (y1, . . . , yn)← RefreshMasks

(
T (xn mod 2k2)

)
. ⊕

(
yi
)

= S(x)
22: return y1, . . . , yn

(when (and (> ( length I ) nt )
(> ( length ( s e t−d i f f e r e n c e I O) )

(− nt 1 ) ) )
( format ’ t ”y=˜Ã % O=˜Ã % nt=˜Ã % I=˜Ã %” y O nt I )
( set f f l a g n i l ) ) ) ) ) )

C Proof of Lemma 4

We first provide the proof intuition. If for a given i with 1 ≤ i ≤ n/2 the adversary requests only one
of the variables ri, an/2+i ⊕ ri, bn/2+i ⊕ ri, a′i or b′i, then such variable can be perfectly simulated
without knowing any of the input shares ai, bi, an/2+i and bn/2+i, thanks to the mask ri. On the
other hand, if two such variables (or more) are requested, then we can provide a perfect simulation
from those 4 input shares, whose knowledge is obtained by adding the two indices i and n/2 + i in
S . Therefore we never have to add more than one index in S per probe, which implies that the size
of the subset S of input shares is upper-bounded by t, as required.

More precisely, we describe hereafter the construction of the set S ⊂ [1, n] of input shares, initially
empty. For every probed input variable ai and bi (for any i), we add i to S . For all 1 ≤ i ≤ n/2, we
let ti be the number of probed variables among ri, an/2+i ⊕ ri, (an/2+i ⊕ ri)⊕ ai, bn/2+i ⊕ ri and
(bn/2+i ⊕ ri)⊕ bi. We then add {i, n/2 + i} to S if ti ≥ 2. This terminates the construction of S . By
construction of S , we must have |S | ≤ t as required.

We now show that the t probed variables can be perfectly simulated from a|S and b|S . This
is clear for the probed input variables ai and bi, for all 1 ≤ i ≤ n since in that case i ∈ S by
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construction. It remains to simulate the variables ri, an/2+i⊕ri, bn/2+i⊕ri, a′i and b′i for 1 ≤ i ≤ n/2.
We distinguish two cases.

• If ti ≥ 2, then {i, n/2 + i} ∈ S , so we can let ri ← F2k as in the real algorithm and simulate all
output and intermediate variables from the knowledge of ai, an/2+i, bi and bn/2+i.

• If ti = 1, then only a single variable among ri, an/2+i⊕ri, bn/2+i⊕ri, a′i and b′i must be simulated.
Since each of those variables is masked by ri, we can simulate this single variable by generating
a random value in F2k .

This terminates the proof of Lemma 4.

D Proof of Lemma 5

HTi SRx1, . . . , xi+1 T

Ii I′

xi+1

IiIi+1 Oi Oi+1

Fig. 5. Illustration of the recursive HTi+1 algorithm, with observations Ii+1 = Ii ∪ I′.

We consider an algorithm HTi that takes as input x1, . . . , xi and a table T and outputs a table
T out with rows of n shares such that for all u:

n⊕
j=1

T out(u)[j] = T (u⊕ x1 ⊕ · · · ⊕ xi)

To build HTi+1 on input x1, . . . , xi+1 and T , we first apply HTi on x1, . . . , xi and T , and then we
apply another shift by xi+1, then an n-RefreshMask on all the rows of the table.

We must show that for all i, the Gadget HTi is t-SNI with respect to the input shares xi, and
t-NI with respect to T , meaning that if ti + |Oi| < n, then the ti probed variables and the output
variables T out(u)[j]j∈Oi can be perfectly simulated from x|Ii and T|Ji∪Oi with |Ii| 6 ti and |Ji| 6 ti.

We proceed by induction on i. As previously, it is easy to see that HT0 satisfies the property
since HT0 is actually the identity function, taking as input T and outputting T . We now assume
that HTi satisfies the property, and we must show that the property holds for HTi+1, under the
condition:

ti+1 + |Oi+1| < n

As previously, we let t′ be the number of probed values in HTi+1 \HTi, and we let ti be the number
of probed variables in HTi. We hence have ti+1 = ti + t′.

We first apply Lemma 1 to the SR gadget which corresponds to the shift of the table T by xi+1,
followed by a RefreshMasks of all the rows of the table T (see Figure 5). We obtain that all probed
intermediate variables and all output variables corresponding to Oi+1 can be perfectly simulated
from the input variables in Oi, where Oi = Oi+1 ∪ J with |J | ≤ t′.
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We now consider the HTi gadget. We have from Oi = Oi+1 ∪ J :

ti + |Oi| ≤ ti + |Oi+1|+ t′ ≤ ti+1 + |Oi+1| < n

Therefore the t-SNI condition is satisfied for Gadget HTi, and all probed intermediate variables
and all output variables corresponding to Oi can be perfectly simulated from x|Ii and T|Ji∪Oi with
|Ii| ≤ ti and |Ji| 6 ti. We can write:

Oi ∪ Ji = (Oi+1 ∪ J) ∪ Ji = Oi+1 ∪ Ji+1

where we let Ji+1 := Ji ∪ J . Therefore the simulation can be performed from T|Ji+1∪Oi+1
, where as

required:

|Ji+1| 6 |Ji|+ |J | 6 ti + t′ 6 ti+1

For the construction of Ii+1, as in the proof of Theorem 2 we distinguish two cases:

• If t′ = 0, this means that the SR gadget has not been probed. Since |Oi+1| < n, thanks to the
RefreshMasks of every row we can simulate all output variables corresponding to Oi+1 without
the knowledge of any input variable. In particular, we don’t need to know xi+1 to perform the
simulation, and we can let Ii+1 = Ii.

• If t′ ≥ 1, the knowledge of xi+1 is required to perform the simulation, so we let Ii+1 = Ii∪{i+1}.

In both cases we obtain |Ii+1| ≤ |Ii|+ t′. From |Ii| ≤ ti, we obtain:

|Ii+1| ≤ |Ii|+ t′ ≤ ti + t′ ≤ ti+1

which shows that HTi+1 is satisfies the property. This terminates the proof of Lemma 5.

E Proof of Theorem 4

We use Lemmas 4 and 5 to prove that the composition of the CommonShares gadget with the three
HTable gadgets allows the entire circuit to be t-SNI. We label the gadgets from 1 to 4 starting from
right to left (see Figure 6).

Let I = I1 ∪ I2 ∪ I3 ∪ I4 be a set of indices such that |I | ≤ t, corresponding to observations of
intermediate variables done by the attacker in the four gadgets, and let O be a set of indices such
that t+ |O| < n, corresponding to observations on the outputs made by the attacker.

Gadget 1 By assumption, we know that
∣∣I1∣∣+ |O| ≤ |I |+ |O| ≤ t+ |O| < n. Since from Lemma

5, the HTable gadget is t-SNI, this means that there exist two sets of indices S11 ,S12 such that∣∣S11 ∣∣ ≤ ∣∣I1∣∣, ∣∣S12 ∣∣ ≤ ∣∣I1∣∣ and the gadget can be perfectly simulated from its input shares
corresponding to indices in S11 and S1 = S12 ∪ O.

Gadget 2 Similarly, since
∣∣I2∣∣+ |O| ≤ |I |+ |O| ≤ t + |O| < n, from Lemma 5, there exist two

sets of indices S21 ,S22 such that
∣∣S21 ∣∣ ≤ ∣∣I2∣∣ and

∣∣S22 ∣∣ ≤ ∣∣I2∣∣, and the gadget can be perfectly
simulated from its input shares corresponding to indices in S22 and S2 = S21 ∪ O.
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Gadget 3 From gadgets 1 and 2, we have
∣∣S1 ∪ S2∣∣ +

∣∣I3∣∣ =
∣∣(S12 ∪ O) ∪ (S21 ∪ O)

∣∣ +
∣∣I3∣∣ =∣∣S12 ∪ S21 ∪ O∣∣ +

∣∣I3∣∣ ≤ ∣∣S12 ∣∣ +
∣∣S21 ∣∣ +

∣∣I3∣∣ + |O| ≤
∣∣I1∣∣ +

∣∣I2∣∣ +
∣∣I3∣∣ + |O| ≤ t + |O| < n.

Therefore, one can apply Lemma 5 which ensures that there exist two sets of indices S31 ,S32 such
that

∣∣S31 ∣∣ ≤ ∣∣I3∣∣, ∣∣S32 ∣∣ ≤ ∣∣I3∣∣ and the gadget can be perfectly simulated from its input shares
corresponding to indices in S31 and S3 = S32 ∪ (S12 ∪ S21 ∪ O). Since Gadget 3 takes as input a
known table T , namely T (u) =

(
S(u), 0, . . . , 0) for all u ∈ {0, 1}k, the input shares of Gadget 3

corresponding to S3 can be perfectly simulated; therefore we omit S3 in Figure 6 and keep only
S31 .

Gadget 4 From Lemma 4 there exists a set of indices S4 such that
∣∣S4∣∣ ≤ ∣∣I4∣∣+ ∣∣S31 ∣∣+ ∣∣S11 ∣∣+ ∣∣S22 ∣∣

and Gadget 4 can be perfectly simulated from its input shares corresponding to indices in S4.
From gadgets 1, 2 and 3, it follows that

∣∣S4∣∣ ≤ ∣∣I4∣∣+
∣∣I3∣∣+

∣∣I2∣∣+
∣∣I1∣∣.

Each of the previous steps ensures the existence of a simulator for each gadget. Let I = S4.
We can then compose these simulators to perfectly simulate the computation of Algorithm 6 from

x
(1)
|I and x

(2)
|I . Furthermore, from Gadget 4 we have |I| =

∣∣S4∣∣ ≤ ∣∣I4∣∣+
∣∣I3∣∣+

∣∣I2∣∣+
∣∣I1∣∣ ≤ t. This

concludes the proof.
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Fig. 6. Illustration of common input table as composition of gadgets. Each variable x(`) and y(`) contains actually n
shares x

(`)
i and y

(`)
i , for ` = {1, 2}.

F Generalization of Common Shares to Multiple SBoxes

Algorithm 8 GeneralizedCommonShares

Input: Shares (a
(j)
i )1≤i≤n for 1 6 j 6 m

Output: Shares (ri)1≤i≤n/2 and (b
(j)
i )1≤i≤n/2 satisfying

⊕n/2
i=1 ri ⊕

⊕n/2
i=1 b

(j)
i =

⊕n
i=1 a

(j)
i for all 1 ≤ j ≤ m.

1: for i = 1 to n/2 do
2: ri ←$ F2k

3: for j = 1 to m do
4: b

(j)
i ← (a

(j)

n/2+i ⊕ ri)⊕ a
(j)
i

5: end for
6: end for
7: return (ri)1≤i≤n/2 and (b

(j)
i )1≤i≤n/2 for all 1 ≤ j ≤ m.
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Lemma 6 (t-NI of GeneralizedCommonShares). Let (a
(j)
i )1≤i≤n for 1 6 j 6 m be the input shares

of the algorithm GeneralizedCommonShares, and let (ri)1≤i≤n/2 and (b
(j)
i )1≤i≤n/2 be the output shares.

For any set of t intermediate variables, there exists a subset S ⊂ [1, n] with |S | ≤ t, such that those

t variables can be perfectly simulated from a
(j)
|S for 1 ≤ j ≤ m.

Proof. As in [CGPZ16], the proof is a straightforward generalization of the proof of Lemma 6 and
is therefore omitted.

Algorithm 9 Generalized Common Table: common masked computation of y(j) = S(x(j)) for
1 ≤ j ≤ m
Input: x

(j)
1 , . . . , x

(j)
n for 1 ≤ j ≤ m

Output: y
(j)
1 , . . . , y

(j)
n such that y

(j)
1 ⊕ · · · ⊕ y

(j)
n = S(x

(j)
1 ⊕ · · · ⊕ x

(j)
n ) for all 1 ≤ j ≤ m.

1: (ri)1≤i≤n/2, (b
(j)
i )1≤i≤n/2 ← GeneralizedCommonShares((x

(j)
i )1≤i≤n)

2: for all u ∈ {0, 1}k do T (u)←
(
S(u), 0, . . . , 0) ∈ ({0, 1}k

′
)n . ⊕

(
T (u)

)
= S(u)

3: T ← Htable(T, r1, . . . , rn/2)
4: for j = 1 to m do
5: T (j) ← Htable(T, b

(j)
1 , . . . , b

(j)

n/2−1)

6: (y
(j)
1 , . . . , y

(j)
n )← RefreshMasks

(
T (j)(b

(j)

n/2)
)

7: end for
8: return y

(j)
1 , . . . , y

(j)
n for 1 ≤ j ≤ m

Theorem 5 (t-SNI of Generalized Common Table). Let (x
(j)
i )1≤i≤n for 1 ≤ j ≤ m be the input of

Generalized Common Table and (y(j))1≤i≤n be the output. For any set of t intermediate variables
and any subset of indices O with t+ |O| < n, there exists a subset I ⊂ [1, n] with |I| ≤ t, such that
those t variables as well as the output shares (y(j))|O for all 1 ≤ j ≤ m can be perfectly simulated

from x
(j)
|I for all 1 ≤ j ≤ m.

Proof. As in [CGPZ16], the proof is a straightforward generalization of the proof of Theorem 4 and
is therefore omitted.

G Common Shares with Increased Number of Shares

We define an algorithm HTableInc that takes as input a table T and shifts it by the input shares
x1, . . . , xλ, that is the first λ shares, instead of the full n shares; see Algorithm 10. The algorithm
also progressively increases the number of shares in the table, from ` shares to `+ λ shares at the
end.

The following Lemma is analogous to Lemma 5 and proves that the HTableInc algorithm is t-SNI
with respect to the input shares xi, and t-NI with respect to the input table T .

Lemma 7 (t-SNI of HTableInc). Let (xi)1≤i≤λ and T be the input of HTableInc and let T out be
the output table, where T has ` shares. For any set of t intermediate variables and any subset of
indices O, if t + |O| < ` + λ, there exist subsets I ⊂ [1, λ] and J ⊂ [1, `] with |I| ≤ t, such that
those t variables as well as the output shares T out|O can be perfectly simulated from x|I and T|S, where

S = (O ∩ [1, `]) ∪ J with |J | ≤ t− λ, or S = J with |I|+ |J | ≤ t+ 1 and |J | ≤ t.
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Algorithm 10 HTableInc
Input: x1, . . . , xλ and T with ` shares.
Output:

⊕
T out(u) =

⊕
T (u⊕ x1 ⊕ · · · ⊕ xλ), with `+ λ shares.

1: for i = 1 to λ do
2: for all u ∈ {0, 1}k do
3: for j = 1 to `+ i− 1 do T ′(u)[j]← T (u⊕ xi)[j]
4: end for
5: for all u ∈ {0, 1}k do
6: T (u)← (T ′(u)[1], . . . , T ′(u)[`+ i− 1], 0)
7: T (u)← RefreshMasks`+i

(
T (u)

)
8: end for
9: end for

10: return T

Proof. We use similar notations as in the recursive proof of Theorem 2. We consider an algorithm
Rλ that takes as input x1, . . . , xλ and a table T with ` shares and outputs a table T outλ with `+ λ
shares such that for all u:

λ+⊕̀
j=1

T out(u)[j] =
⊕̀
j=1

T (u⊕ x1 ⊕ . . .⊕ xλ)[j]

To build Rλ+1 on input x1, . . . , xλ+1 and T , we first apply Rλ on x1, . . . , xλ, and then we apply
another shift S by xλ+1, then a RefreshMasks on every table row of `+λ+ 1 shares. We will proceed
by induction on λ. We assume that the gadget Rλ is tλ-SNI, which means that if tλ + |Oλ| < `+ λ,
then the tλ intermediate variables and the output variables T (u)[j]j∈Oλ can be perfectly simulated
from x|Iλ and T|Sλ where |Iλ| 6 tλ and Sλ = (Oλ ∩ [1, `]) ∪ Jλ with |Jλ| ≤ tλ − λ, or Sλ = Jλ with
|Iλ|+ |Jλ| ≤ tλ + 1 and |Jλ| ≤ tλ. We must show that the gadget Rλ+1 is tλ+1-SNI, which means
that if

tλ+1 + |Oλ+1| < `+ λ+ 1 (6)

then the tλ+1 intermediate variables and the output variables T out(u)[j]j∈Oλ+1
can be perfectly

simulated from x|Iλ+1
and T|Sλ+1

where |Iλ+1| 6 tλ+1 and Sλ+1 = (Oλ+1 ∩ [1, `]) ∪ Jλ+1 with
|Jλ+1| ≤ tλ+1 − (λ+ 1), or Sλ+1 = Jλ+1 with |Iλ+1|+ |Jλ+1| ≤ tλ+1 + 1 and |Jλ+1| ≤ tλ+1.

We start by showing that the gadget R0 satisfies the above property. This is actually straightfor-
ward, because R0 is the identity function, taking as input a table T and outputting T .

We now assume that Rλ satisfies the above property. Let t′ be the number of probed values in
Rλ+1 \Rλ. We hence have tλ+1 = tλ + t′. We apply Lemma 3 on Rλ+1 \Rλ and we distinguish two
cases, depending on the way the set Oλ is built.

◦ Case Oλ = (Oλ+1 ∩ [1, `+ λ]) ∪ S′ with |S′| 6 t′ − 1. In this case, we deduce that

|Oλ|+ tλ 6 |Oλ+1|+ |S′|+ tλ 6 |Oλ+1|+ t′ − 1 + tλ 6 |Oλ+1|+ tλ+1 − 1

From (6) we obtain:
|Oλ|+ tλ < `+ λ+ 1− 1 = `+ λ

Therefore, one can apply the induction step which ensures that |Iλ| 6 tλ and Sλ = (Oλ ∩ [1, `]) ∪ Jλ
with |Jλ| ≤ tλ − λ, or Sλ = Jλ with |Iλ| + |Jλ| ≤ tλ + 1 and |Jλ| ≤ tλ. We first consider the
construction of Iλ+1. We distinguish two cases:
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• If t′ = 0, then the RefreshMasks in Rλ+1 \Rλ are not probed, and from |Oλ+1| < `+ λ+ 1 we
can perfectly simulate all output variables corresponding to Oλ+1 by generating random values,
without the knowledge of any input variable, and therefore xλ+1 is not needed for the simulation
and one can keep Iλ+1 = Iλ.
• If t′ > 1, then the knowledge of xλ+1 is required for the simulation and we take Iλ+1 = Iλ∪{λ+1}.

In both cases we have as required:

|Iλ+1| ≤ |Iλ|+ t′ ≤ tλ + t′ ≤ tλ+1

We now proceed with the construction of Jλ+1. We distinguish two cases from the previous application
of the recursion hypothesis:

• If Sλ = (Oλ ∩ [1, `]) ∪ Jλ with |Jλ| ≤ tλ − λ, then we obtain:

Sλ =
((

(Oλ+1 ∩ [1, `+ λ]) ∪ S′
)
∩ [1, `]

)
∪ Jλ = (Oλ+1 ∩ [1, `]) ∪

(
(S′ ∩ [1, `]) ∪ Jλ

)
.

Therefore, we take Sλ+1 = Sλ and Jλ+1 = (S′∩ [1, `])∪Jλ. We deduce that |Jλ+1| 6 |S′|+ |Jλ| 6
(t′ − 1) + (tλ − λ) 6 tλ+1 − (λ+ 1), which implies that the recursion hypothesis is satisfied for
Rλ+1.

• If Sλ = Jλ with |Iλ|+ |Jλ| ≤ tλ + 1 and |Jλ| ≤ tλ, then we take Sλ+1 = Sλ = Jλ+1 = Jλ. As a
consequence, because |Iλ+1| 6 |Iλ|+ t′, we have |Iλ+1|+ |Jλ+1| 6 t′ + |Iλ|+ |Jλ| 6 t′ + tλ + 1 6
tλ+1 + 1 and |Jλ+1| = |Jλ| 6 tλ 6 tλ+1, which implies that the recursion hypothesis is satisfied
for Rλ+1.

◦ Case Oλ = S′ with |Oλ| 6 t′. In this case, since tλ+1 < ` + λ + 1 from (6), we distinguish two
cases:

• If tλ+1 = `+λ, we can take Iλ+1 = [1, λ+1] and Jλ+1 = [1, `], which gives |Iλ+1|+|Jλ+1| ≤ tλ+1+1
and |Jλ+1| ≤ tλ+1 as required.

• If tλ+1 < `+ λ, then we deduce that:

|Oλ|+ tλ 6 t′ + tλ = tλ+1 < `+ λ

Therefore, one can use as previously the recurrence assumption which ensures that |Iλ| 6 tλ and
Sλ = (Oλ ∩ [1, `]) ∪ Jλ with |Jλ| ≤ tλ − λ, or Sλ = Jλ with |Iλ|+ |Jλ| ≤ tλ + 1 and |Jλ| ≤ tλ. As
in the previous case, we take Iλ+1 = Iλ if t′ = 0 and Iλ+1 = Iλ ∪ {λ+ 1} if t′ > 1, which gives
|Iλ+1| ≤ tλ+1. It remains to build the set Jλ+1. As before, we distinguish two cases:
• If Sλ = (Oλ ∩ [1, `])∪ Jλ with |Jλ| ≤ tλ − λ, then since Oλ = S′, we can take Sλ+1 = Jλ+1 =
Sλ = (S′∩ [1, `])∪Jλ. Therefore we have |Jλ+1| 6 |S′|+ |Jλ| 6 t′+tλ−λ 6 tλ+1. Furthermore,
since we always have |Iλ+1| 6 λ+ 1, we deduce that |Iλ+1|+ |Jλ+1| 6 λ+ 1 + t′ + tλ − λ =
t′ + tλ + 1 6 tλ+1 + 1, which means that the recursion hypothesis is satisfied for Rλ+1.

• If Sλ = Jλ with |Iλ| + |Jλ| ≤ tλ + 1 and |Jλ| ≤ tλ, then we take Sλ+1 = Sλ = Jλ+1 = Jλ.
As a consequence, because |Iλ+1| 6 t′ + |Iλ|, we have |Iλ+1| + |Jλ+1| 6 t′ + |Iλ| + |Jλ| 6
t′ + tλ + 1 6 tλ+1 + 1 and |Jλ+1| = |Jλ| 6 tλ 6 tλ+1, which means that that the recursion
hypothesis is satisfied for Rλ+1.

Hence, we proved that if Rλ is t-SNI then so does Rλ+1. This concludes the proof of Lemma 7.
ut
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We show an extension of Lemma 7 where after the HTableInc we perform the regular Htable
algorithm, where the number of output shares in the table remains constant and equal to `+ λ.

Lemma 8. Let (xi)1≤i≤λ+δ and T be the input, where the table T has ` output shares. Let T ′ ←
HTableInc(T, x1, . . . , xλ), and T out ← HTable(T ′, xλ+1, . . . , xλ+δ). For any set of t intermediate
variables and any subset of indices O, if t + |O| < ` + λ, there exist subsets I ⊂ [1, λ + δ] and
J ⊂ [1, `] with |I| ≤ t, such that those t variables as well as the output shares T out|O can be perfectly

simulated from x|I and T|S , where S = (O∩ [1, `])∪J with |J | ≤ t−λ, or S = J with |I|+ |J | ≤ t+1
and |J | ≤ t.

Proof. We use lemmas 5 and 7 to prove that the composition of the HTable gadget (Gadget 1) with
the HTableInc gadget (Gadget 2) allows the entire circuit to be t-SNI.

Let I = I1∪I2 be a set of indices such that |I | ≤ t, corresponding to observations of intermediate
variables done by the attacker in the two gadgets, and let O be a set of indices such that t+|O| < `+λ,
corresponding to observations on the outputs made by the attacker.

Gadget HTable. By assumption, we know that
∣∣I1∣∣ + |O| ≤ |I | + |O| ≤ t + |O| < ` + λ. Since

from Lemma 5, the HTable gadget is t-SNI, this means that there exist two sets of indices
S11 ⊂ [λ+ 1, λ+ δ] and S12 ⊂ [1, `+ λ] such that

∣∣S11 ∣∣ ≤ ∣∣I1∣∣, ∣∣S12 ∣∣ ≤ ∣∣I1∣∣ and the gadget can be
perfectly simulated from its input shares corresponding to indices in S11 for the xi’s and S12 ∪ O
for the table T ′.

Gadget HTableInc. Since
∣∣I2∣∣+

∣∣S12 ∪ O∣∣ ≤ ∣∣I2∣∣+
∣∣I1∣∣+ |O| ≤ |I |+ |O| ≤ t+ |O| < `+ λ, from

Lemma 7, there exist two sets of indices S2 and S22 such that the gadget can be perfectly
simulated from its input shares corresponding to indices in S22 for the xi’s, with

∣∣S22 ∣∣ ≤ ∣∣I2∣∣, and
indices in S2 for table T , where
• S2 = ((O ∪ S12 ) ∩ [1, `]) ∪ S21 with

∣∣S21 ∣∣ ≤ ∣∣I2∣∣− λ, or
• S2 = S21 with

∣∣S21 ∣∣+
∣∣S22 ∣∣ ≤ ∣∣I2∣∣+ 1 and

∣∣S21 ∣∣ ≤ ∣∣I2∣∣.
Each of the previous steps ensures the existence of a simulator for each gadget. Let I = S11 ∪ S22

and S = S2. We can then compose these simulators to perfectly simulate the computation of
Algorithm 11 from x|I and T|S . Furthermore, from Gadget HTableInc we either have:

• S = (O∩[1, `])∪J with J = (S12∩[1, `])∪S21 and |J | ≤ |S12 |+|S21 | ≤
∣∣I1∣∣+∣∣I2∣∣−λ ≤ |I|−λ ≤ t−λ,

or
• S = J = S21 with |I|+ |J | ≤ |S11 |+ |S22 |+ |S21 | ≤ |S11 |+

∣∣I2∣∣+ 1 ≤
∣∣I1∣∣+ ∣∣I2∣∣+ 1 ≤ |I|+ 1 ≤ t+ 1

and |J | = |S21 | ≤
∣∣I2∣∣ ≤ t.

which proves the lemma. ut

Finally we describe the Common Table Inc algorithm below, which is similar to the Common Table
algorithm described in Section 6.3, but with increasing number of shares. Note that as explained in
Section 6.5, for the evaluation of two SBoxes in parallel, the table T starts with 2 shares instead of
1 at Line 2.

Theorem 6 (t-SNI of Common Table Inc). Let (x
(`)
i )1≤i≤n for ` ∈ {1, 2} be the input of Common

Table Inc and (y(`))1≤i≤n be the output. For any set of t intermediate variables and any subset of
indices O with t+ |O| < n, there exists a subset I ⊂ [1, n] with |I| ≤ t, such that those t variables
as well as the output shares (y(1))|O and (y(2))|O can be perfectly simulated from x|I and y|I .
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Algorithm 11 Common Table Inc: evaluation of of y(1) = S(x(1)) and y(2) = S(x(2))

Input: x
(`)
1 , . . . , x

(`)
n for ` ∈ {1, 2}

Output: y
(`)
1 , . . . , y

(`)
n such that y

(`)
1 ⊕ · · · ⊕ y

(`)
n = S(x

(`)
1 ⊕ · · · ⊕ x

(`)
n ) for ` ∈ {1, 2}.

1: (ri)1≤i≤n/2, (a
(1)
i )1≤i≤n/2, (a

(2)
i )1≤i≤n/2 ← CommonShares(x

(1)
i , x

(2)
i )

2: for all u ∈ {0, 1}k do T (u)←
(
S(u), 0

)
∈ ({0, 1}k

′
)2 . ⊕

(
T (u)

)
= S(u)

3: T (1) ← HTableInc(T, r1, . . . , rn/2)

4: T (2) ← T (1)

5: T (1) ← HTableInc(T (1), a
(1)
1 , . . . , a

(1)

n/2−2)

6: T (2) ← HTableInc(T (2), a
(2)
1 , . . . , a

(2)

n/2−2) . T (1) and T (2) now have n shares.

7: T (1) ← Htable(T (1), a
(1)

n/2−1)

8: T (2) ← Htable(T (2), a
(2)

n/2−1)

9: (y
(1)
1 , . . . , y

(1)
n )← LinearRefreshMasks

(
T (1)(a

(1)

n/2)
)

10: (y
(2)
1 , . . . , y

(2)
n )← LinearRefreshMasks

(
T (2)(a

(2)

n/2)
)

11: return y
(`)
1 , . . . , y

(`)
n for ` ∈ {1, 2}
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Fig. 7. Illustration of common input table as composition of gadgets. Each variable x(`) and y(`) contains actually n
shares x

(`)
i and y

(`)
i , for ` = {1, 2}.

Proof. We use Lemmas 4 and 8 to prove that the composition of the CommonShares gadget with
the three HTable gadgets allows the entire circuit to be t-SNI. We label the gadgets from 1 to 4
starting from right to left (see Figure 7).

Let I = I1 ∪ I2 ∪ I3 ∪ I4 be a set of indices such that |I | ≤ t, corresponding to observations of
intermediate variables done by the attacker in the four gadgets, and let O be a set of indices such
that

t+ |O| < n

corresponding to observations on the outputs made by the attacker.

Gadget 1. By assumption, we know that
∣∣I1∣∣+ |O| ≤ |I |+ |O| ≤ t+ |O| < n. Since from Lemma 8,

the composition of the HTableInc and HTable gadgets is t-SNI, and since the number of output
shares increases by n/2− 2, this means that there exist two sets of indices S11 and S1 such that
the gadget can be perfectly simulated from its input shares corresponding to indices in S11 with∣∣S11 ∣∣ ≤ ∣∣I1∣∣, and indices in S1 where

• Case 1.a: S1 = (O ∩ [1, n2 + 1]) ∪ S12 with
∣∣S12 ∣∣ ≤ ∣∣I1∣∣− (n2 − 2), or

• Case 1.b: S1 = S12 with
∣∣S11 ∣∣+

∣∣S12 ∣∣ ≤ ∣∣I1∣∣+ 1 and
∣∣S12 ∣∣ ≤ ∣∣I1∣∣.
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Gadget 2. Similarly, since
∣∣I2∣∣+ |O| ≤ |I |+ |O| ≤ t+ |O| < n, from Lemma 8, there exist two

sets of indices S2 and S22 such that the gadget can be perfectly simulated from its input shares
corresponding to indices in S22 with

∣∣S22 ∣∣ ≤ ∣∣I2∣∣, and indices in S2 where
• Case 2.a: S2 = (O ∩ [1, n2 + 1]) ∪ S21 with

∣∣S21 ∣∣ ≤ ∣∣I2∣∣− (n2 − 2), or
• Case 2.b: S2 = S21 with

∣∣S21 ∣∣+
∣∣S22 ∣∣ ≤ ∣∣I2∣∣+ 1 and

∣∣S21 ∣∣ ≤ ∣∣I2∣∣.
Gadget 3. From gadgets 1 and 2, we have four possible values for

∣∣S1 ∪ S2∣∣:
• Case 1.a/2.a: We have∣∣S1 ∪ S2∣∣ =

∣∣(O ∩ [1, n/2 + 1]) ∪ S12 ∪ (O ∩ [1, n/2 + 1]) ∪ S21
∣∣

6
∣∣O ∪ S12 ∪ S21 ∣∣ 6 |O|+ ∣∣I1∣∣− n/2 + 2 +

∣∣I2∣∣− n/2 + 2

6 |O|+
∣∣I1∣∣+

∣∣I2∣∣− n+ 4

This gives from |O|+ |I | < n:∣∣S1 ∪ S2∣∣+
∣∣I3∣∣ 6 |O|+ |I | − n+ 4

< n− n+ 4 = 4

For n ≥ 4, this gives: ∣∣S1 ∪ S2∣∣+
∣∣I3∣∣ < n/2 + 2

We note that the inequality is also satisfied for n = 3. Namely in that case, there is only
one common share, and there is no increase in the number of outputs shares in gadgets 1
and 2. Therefore one can apply Lemma 5 to gadgets 1 and 2, and we get

∣∣S12 ∣∣ ≤ ∣∣I1∣∣ and∣∣S21 ∣∣ ≤ ∣∣I2∣∣. As a consequence, we have:∣∣S1 ∪ S2∣∣+
∣∣I3∣∣ 6 ∣∣O ∪ S12 ∪ S21 ∣∣+

∣∣I3∣∣ 6 |O|+ ∣∣I1∣∣+
∣∣I2∣∣+

∣∣I3∣∣
6 |O|+ |I | < n = 3 < n/2 + 2

• Case 1.a/2.b: We have:∣∣S1 ∪ S2∣∣+
∣∣I3∣∣ =

∣∣(O ∩ [1, n/2 + 1]) ∪ S12 ∪ S21
∣∣+
∣∣I3∣∣

6 |O|+
∣∣I1∣∣− n/2 + 2 +

∣∣I2∣∣+
∣∣I3∣∣

6 |O|+ |I | − n/2 + 2 < n− n/2 + 2 = n/2 + 2

• Case 1.b/2.a: Similarly, we have:∣∣S1 ∪ S2∣∣+
∣∣I3∣∣ =

∣∣S12 ∪ (O ∩ [1, n/2 + 1]) ∪ S21
∣∣+
∣∣I3∣∣

6
∣∣I1∣∣+ |O|+

∣∣I2∣∣− n/2 + 2 +
∣∣I3∣∣

6 |O|+ |I | − n/2 + 2 < n− n/2 + 2 = n/2 + 2

• Case 1.b/2.b: We have:∣∣S1 ∪ S2∣∣+
∣∣I3∣∣ =

∣∣S12 ∣∣+
∣∣S21 ∣∣+

∣∣I3∣∣
6
∣∣I1∣∣− ∣∣S11 ∣∣+ 1 +

∣∣I2∣∣− ∣∣S22 ∣∣+ 1 +
∣∣I3∣∣

6
∣∣I1∣∣+

∣∣I2∣∣+
∣∣I3∣∣− ∣∣S11 ∣∣− ∣∣S22 ∣∣+ 2

Note that in this case, we cannot assert that
∣∣S1 ∪ S2∣∣ +

∣∣I3∣∣ < n/2 + 2. Therefore we
distinguish two cases:
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• If
∣∣I1∣∣+

∣∣I2∣∣+
∣∣I3∣∣− ∣∣S11 ∣∣− ∣∣S22 ∣∣ < n/2, then we obtain as in the previous cases:∣∣S1 ∪ S2∣∣+

∣∣I3∣∣ < n/2 + 2

In that case, since the HTableInc algorithm in Gadget 3 has n/2 + 2 output shares (since
it takes as input a table T with 2 output shares and processes n/2 shares ri), as in the
first 3 cases considered above, we can apply Lemma 7 to Gadget 3, which ensures that
there exist two sets of indices S31 and S3 such that

∣∣S31 ∣∣ ≤ ∣∣I3∣∣, and the gadget can be
perfectly simulated from its input shares corresponding to indices in S31 and S3. Since
Gadget 3 takes as input a table T with public values only, we only consider the set of
indices S31 of input shares.

• If
∣∣I1∣∣ +

∣∣I2∣∣ +
∣∣I3∣∣ − ∣∣S11 ∣∣ − ∣∣S22 ∣∣ ≥ n/2, we cannot apply Lemma 7 and we must set

S31 = [1, n/2] to simulate Gadget 3.

Gadget 4. From Lemma 4 there exists a set of indices S4 such that∣∣S4∣∣ ≤ ∣∣I4∣∣+
∣∣S31 ∣∣+

∣∣S11 ∣∣+
∣∣S22 ∣∣

and Gadget 4 can be perfectly simulated from its input shares corresponding to indices in S4.

Each of the previous steps ensures the existence of a simulator for each gadget. Letting I = S4,
we can then compose these simulators to perfectly simulate the computation of Algorithm 11 from
x|I and y|I . It remains to show that |I| 6 t. Two cases arise depending on Gadget 3.

• If
∣∣I1∣∣+

∣∣I2∣∣+
∣∣I3∣∣− ∣∣S11 ∣∣− ∣∣S22 ∣∣ < n/2, we have obtained

∣∣S31 ∣∣ 6 ∣∣I3∣∣. From gadgets 1 and 2,
it follows that

|I| =
∣∣S4∣∣ 6 ∣∣I4∣∣+

∣∣I3∣∣+
∣∣I2∣∣+

∣∣I1∣∣ 6 t

• If
∣∣I1∣∣+

∣∣I2∣∣+
∣∣I3∣∣− ∣∣S11 ∣∣− ∣∣S22 ∣∣ ≥ n/2, we have set

∣∣S31 ∣∣ = n/2, and we still obtain:

|I| =
∣∣S4∣∣ 6 ∣∣I4∣∣+

∣∣S31 ∣∣+
∣∣S11 ∣∣+

∣∣S22 ∣∣
6
∣∣I4∣∣+ n/2 +

(∣∣I1∣∣+
∣∣I2∣∣+

∣∣I3∣∣− n/2) 6 ∣∣I4∣∣+
∣∣I1∣∣+

∣∣I2∣∣+
∣∣I3∣∣ 6 t

Therefore in both cases we obtain |I| ≤ t, which terminates the proof. ut

33


