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Abstract—Security evaluation of third-party cryptographic IP
(Intellectual Property) cores is often ignored due to several
reasons including, lack of awareness about its adversity, lack
of trust validation methodology otherwise view security as a
byproduct. Particularly, the validation of low latency cipher
IP core on Internet of Things (IoT) devices is crucial as they
may otherwise become vulnerable for information theft. In this
paper, we share an (Un)intentional way of cipher implementa-
tion as IP core(hard) become susceptible against side channel
attack and show how the susceptible implementation can be
experimentally exploited to reveal secret key in FPGA using
power analysis. In this paper our contributions are: First, we
present Look-Up Table (LUT) based unrolled implementation
of PRINCE [1] block cipher with place and route constraints
in FPGA. Second, using power analysis attack we recover 128-
bit key of PRINCE with complexity of 29. Finally, we conclude
the paper with the experimental results.

Keywords—Side channel Attack, Low latency Cipher, Intellec-
tual Property(IP) Core

1. Introduction

As ubiquitous network and constrained devices scaled-
up rapidly for human-being betterment, security concerns
for information protection also multitude. To address these
concerns to an extent, researchers come up with light-
weight ciphers [2]. Though ciphers are secure mathemat-
ically, implementation attack and issues in adaptation for
constrained devices make further exploration on ciphers in-
terms of trade off factors such as low energy (less power
consumption), low latency (operates at high speed), less
area (single circuit for encryption and decryption). From the
beginning to latest design of these ciphers [3] brings many
changes for betterment. However, implementation vulner-
ability prevails continuously in one or other form; unless
proper countermeasures is considered.

First, implementation vulnerability against side channel
attack is exploited by paul kocher [4] in 1999. Later,
countermeasures were proposed such as masking [5] and
hiding to counteract. However, attack on countermeasures
carried out on each counteract [6]. One such counteract
technique [7] as well as better trade-off factor (low latency)
is unrolled (single clock execution) implementation, say as
in PRINCE. Even-then attack on unrolled implementation

is explored using t-test and able to retrieve some part of
key [8]. In t-test, function execution moment is identified to
normalize uneven delay and glitches by appropriate inputs.
This clearly shows unrolled implementation is susceptible
under this technique. In this paper, we studied the possibility
of normalizing the uneven delay and glitches using imple-
mentation constraints, has a kind of susceptible implemen-
tation (loophole) on unrolled architecture of the cipher. We
found that this makes the cipher vulnerable against power
analysis attack and successfully reveals all the key bytes.
Even though susceptible implementation makes vulnerable,
as such every possible is there for this kind of implemen-
tation, (Un)intentional in the third party IP cores [9] to
steal the secret information. This might possible be consider
as a Hardware Trojan(HT) with following characteristics.
First, physical characteristic: Change conventional place and
route to constraints place and route, as a structure change.
Second in activation characteristic, trigger signal is always
high; whenever cipher execution starts. Finally in action
characteristics, leak secret information via side channels.
Therefore strong need has raised to validate the IP core
before usage.

Researchers have been exploring on low latency ciphers
for betterment (resistant against crypt-analysis as well as
efficient trade-off for constraint device), and have come up
with better ciphers such as, PRINCE [1], MIDORI (low en-
ergy) [10], QARMA,MANTIS (Tweakable block cipher) [11],
[12]. On the other hand to counteract partial DPA on
PRINCE, first and last round Threshold Implementation(TI)
is suggested in [13].

Our contributions in this paper are as follows.
First, we show FPGA (LUT) architecture for unrolled ver-
sion of PRINCE block cipher with place and route con-
straints. Then, we demonstrate the power analysis attack
to recover 128-bit key of PRINCE with complexity of
2 ∗ (16 ∗ 24) = 29. Further, we conclude the paper with
the experimental results.

Organization of the Paper. We share susceptible imple-
mentation of low latency cipher, PRINCE in Section 2.
We described, how the implementation is vulnerable against
DPA in Section 3 and 4. Finally, in section 5, paper is
concluded.



2. Implementation of PRINCE

2.1. Brief on PRINCE

PRINCE is a symmetric block cipher based on a SPN
structure. Its alpha reflective property makes single circuit
suitable for both encryption and decryption. Further, the al-
gorithm is proposed for unrolled (computes cipher in single
clock cycle) implementation, that means, where application
needs low latency encryption schemes. PRINCE consists
of following functions such as pre-key whitening, round
functions, and post-key whitening. PRINCE is a 64-bit block
cipher with a 128-bit key. The key is split into two parts
of 64 bits each, represented as K0 and K1. Each round
function consists of four sub-functions: S-Layer (S), M-
Layer (M), AddRound-Constants and AddRoundKey. The
first 5 rounds perform the sub-functions in the forward
(above) order, while the last 5 rounds perform their inverses
in the reverse order. There is an intermediate function block
consisting of S-Layer, M ′ Layer and inverse S-Layer (S−1)
between the first and last 5 rounds.

2.2. FPGA implementation of PRINCE

The design of PRINCE facilitates to be very speed and
compact in terms of resource requirement, especially if
implemented in hardware. In general, ciphers are imple-
mented using logic gates. In this paper, PRINCE cipher is
implemented completely in LUT. All possible combinational
inputs for each function is analyzed and its output could
be precomputed as a LUT. In this implementation, the key
whitening operations are combined with the Key K1 and
appropriate round constant. This has been mapped to single
LUT in the beginning and the end of the cipher.Similarly,
LUT value is calculated for S-box function and M-layer
function which are given in the table Table 1 and Table 2.

TABLE 1. LUT VALUES OF PRINCE FUNCTIONS
(INITIAL-XOR,MIX-COLUMN,ROUND-XOR)

Initial Xor M K1 K0 IX = M ⊕K1⊕K0
Mixcolumn S3 S2 S1 MO = S3⊕ S2⊕ S1

Add Key Constant MO RC K1 R = MO ⊕RC ⊕K1
1 0 0 0 0
2 0 0 1 1
3 0 1 0 1
4 0 1 1 0
5 1 0 0 1
6 1 0 1 0
7 1 1 0 0
8 1 1 1 1

LUT (hex) = 96

The cipher is implemented on FPGA(Virtex2vp7) using
Verilog hardware description language. Each SLICE in
FPGA has two LUTs(G and F); in that, 2245 F-LUT
SLICE is used for implementation. However both LUTs
can be used for optimized implementation. Syntax for LUT

TABLE 2. LUT VALUES OF PRINCE S-BOX FUNCTION

S-BOX
S.No IX4 IX3 IX2 IX1 S4 S3 S2 S1

3 2 F 7
1 0 0 0 0 1 0 1 1
2 0 0 0 1 1 1 1 1
3 0 0 1 0 0 0 1 1
4 0 0 1 1 0 0 1 0

7 2 1 C
5 0 1 0 0 1 0 1 0
6 0 1 0 1 1 1 0 0
7 0 1 1 0 1 0 0 1
8 0 1 1 1 0 0 0 1

4 3 3 2
9 1 0 0 0 0 1 1 0
10 1 0 0 1 0 1 1 1
11 1 0 1 0 1 0 0 0
12 1 0 1 1 0 0 0 0

5 F 1 6
13 1 1 0 0 1 1 1 0
14 1 1 0 1 0 1 0 1
15 1 1 1 0 1 1 0 1
16 1 1 1 1 0 1 0 0

LUT 5473 F322 131F 62C7

initialization and implementation are given as below.

Key whitening(Initial Xor):
Initialization: defparam IX63.INIT = 8’H96;
LUT3:IX63(.O(IX[63]),.I0(M[63]),.I1(K1[63]),.I2(K0[127]));

S-box:
Initialization: defparam R1S63.INIT=16’H5473;
LUT4:R1S63(.O(S[63]),.I3(IX[63]),.I2(IX[62]),.I1(IX[61]),.I0(IX[60]));

Mixcloumn:
Initialization: defparam R1M63.INIT = 8’H96;
LUT3:R1M63(.O(MO[63]),.I0(S[59]),.I1(S[55]),.I2(S[51]));

RC ⊕ K1 ⊕ state:
Initialization: defparam FZ0.INIT=8’H96;
LUT3:R1KRC63(.O(R1O[63]),.I0(MO[63]),.I1(K1[63]),.I2(RC[63]));

2.3. (Un)Constrained Place and Route of the Im-
plementation

Normally, place and route will be taken care by Electronic
Design Automation (EDA) tools. However, tool provides
option for constraints in PAR implementation of the design
as well. In this paper both constrained and unconstrained
implementation of PRINCE are done and compared their
experiments results. First, PRINCE LUT based implemen-
tation with normal PAR is done, which routes LUT functions
in random manner as shown in the Figure 1a. This end-up in
uneven wire-delay between two functions because of some
input(s) to LUT functions could be delayed, while others are
on-time. Glitches are prone in this style of implementation.
This will eventually reflects in power consumption of the
circuit and becomes difficult for DPA as in [8]. On the
other-hand, implementation of LUT based PRINCE cipher



with PAR constraint routes functions (LUTs) in sequential
manner as shown in figure 1b.

(a) Unconstrained Placement of PRINCE

(b) Constrained Placement of PRINCE

Figure 1. (Un)constrained Placement of PRINCE

This will enforce almost even wire-delay between two
functions, since all the LUT inputs arrives on-time. This
reduce the glitches in the circuit. Therefore power consump-
tion of the circuit is almost proportional to data handled
by the function at the moment, which is vulnerable against
DPA. The syntax for implementation constraint on place
and route is follows.//synthesis attribute RLOC of IX63 is
”X0Y 0”.

3. Analysis on Implementation Vulnerability

In round based implementation, register is used to store
and update intermediate values of the algorithms. The spe-
cific register is targeted to reveal the secret information using
DPA attack. In this line of attack round based implemen-
tation of PRINCE is exploited in [14]. However, this will
not work for unrolled implementation of PRINCE. Since
their is no intermediate register, all the functional circuit
values are updated on the fly through interconnects, such as
switch-box and wires.This makes execution of a function on
slightly different note of time and also difficult to interpret
exact execution time of the particular fiunctional unit. But,
the Welch’s t-test [15] is useful to find the point of execution
(function execution time) appropriately to do power analysis
on that point. This is explored in the paper [8]; however,
only partial keys are retrieved.
Reason behind this, implementation functional circuits
(LUTs) are placed in random manner and interconnected
by wires, switches for routing. An intermediate function
as a LUT receive inputs from different LUT output, these
inputs arrives on different note of time, which cause delay
in execution of the function. In meantime glitches propagate
in the LUT and varies power consumption of the circuit,

which makes the Welch’s t-test unsuccessful after certain
extent. Therefore in this paper, PRINCE LUT implementa-
tion with PAR constraint is explored to reduce the random
delay. By PAR constraints subsequent functional LUTs were
placed close to each other (row-wise on FPGA), which in
turn reduce route distance between them. This makes less
glitch propagation into a function(LUT). Consequently, LUT
output will not fluctuates randomly which in turns consumes
data-dependent power consumption.

(a) Unconstrained Route (b) Constrained Route

Figure 2. (Un)constrained Route of PRINCE

In this paragraph how PAR constraints is applied on
PRINCE is described. First, placement of PRINCE func-
tional LUT is elaborated. Initial xor function (Message
⊕K1 ⊕K0) is placed in second row from bottom (marked
in red color) and then first round S-box function is placed
in third row, Mixcolumn and shift-row function in fourth
row, and then xor function (Round constant ⊕K1⊕state
value) in sixth row. The same process is used for each round
functions in sequential manner as shown in the Figure 1b.
Similarly PRINCE functional LUT routing is elaborated as
follow. For instance, delay between 4-bit initial xor function
and 4-bit first round S-box function is almost even wire
length and close to each other as shown in the Figure
2b; whereas delay between same 4-bit initial xor function

and 4-bit first round S-box function in unconstrained PAR
implementation has uneven wire routing, scattered over the
FPGAas shown in the Figure 2a. Therefore, unconstrained
PAR implementation becomes difficult to attack; whereas
constraint PAR implementation is vulnerable against side
channel attack.

4. DPA on PRINCE

A DPA attack can be summarized in the following five
steps:

• Choose an intermediate point of interest of the exe-
cuted algorithm.

• Measure the power consumption.
• Calculate hypothetical intermediate values.
• Map intermediate values to hypothetical power con-

sumption values, (Phyp).



• Statistically compare the hypothetical power values
with the measured power traces.

The above five steps is elaborated on PRINCE as follow.
Step 1: Point of Interest (POI) In PRINCE, S-box is a
nonlinear function, where key and plaintext gets gel together
to achieve confusion property. This makes power consump-
tion random for different inputs, which is vital for power
analysis. Therefore from DPA perspective POI is S-box. The
output of the first round S-box, POI1, is influenced by two
64-bit keys: the whitening key K0 and the round key K1.
Therefore, an attack on POI1 will give an adversary an key
K

′
as,

K
′

= K0 ⊕K1 (1)

The adversary knowing K
′

cannot recover the individual
key parts K0 and K1, and thus another attack is required
on the second round function S-box, POI2, to have K1.
From that arriving K0 is trivial. Thus in PRINCE, two POI
are required to retrieve key completely as shown in the
Figure 3.

Figure 3. PRINCE Attack phases

Step 2: Measure power consumption (Pmsd)
Unrolled PRINCE cipher is implemented on FPGA, which
is built using Complementary Metal Oxide Semiconductor
(CMOS) circuit. The circuit leaks information mostly
through dynamic power consumption on execution, which
is captured and stored for required number of encryption
for analysis. From the Figure 4 it is clear that power
consumption raises abruptly then comes down. Measured
power traces are stored in matrix form Pmsd(i,T), where i
represent ith encryption and T represent total number of
points in a power trace.
Step 3: Calculate hypothetical intermediate values Power
analysis attack works on divide and conquer approach. One
feasible way to divide the cipher for analysis needs to be
same as its S-box size (4-bit). Therefore Chunk of 4-bit
is taken at a time from POI for analysis. All the possible
combination of key values (search space) for those 4-bit
with corresponding 4-bit of plaintext used for encryption
are extracted to generate Hypothetical intermediate value
at POI. Hypothetical intermediate value for first, L1,i

j

and second, L2,i
j POI are given in the equations 2 and 3

Figure 4. PRINCE cipher power consumption

respectively.

L1,i
j = S(pij ⊕K

′

j ⊕RC0j) (2)

L2,i
j = S(SR(M ′(S(pij ⊕K

′

j ⊕RC0j))) ⊕RC1j ⊕K1j) (3)

P i
j is denoted as plaintext of jth nibble of ith encryption.

j ranges from 0 ≤ j ≤ 15, K
′

j = K0j ⊕K1j , all possible
combination of key, K

′

j as follow: 0,1, . . . 15.
Step 4: Compute hypothetical power consumption
In order to arrive hypothetical power consumption, power
model should be realistic to describe power consumption
between each and every intermediate stages of the algorithm
executed in the hardware module. Hamming distance (HD)
model suits very well to describe the power consumption of
unrolled PRINCE. Normally, HD is calculated between two
state values of the register. In this scenario their is no register
concept, since entire cipher is executed in single clock
cycle. Therefore, HD is calculated using state value at the
POI between present and previous encryption. Hypothetical
power consumption at POI1 and POI2 are represented in
the equation 4 and 5 respectively.

P 1,i
hyp = HD(L1,i

j ⊕ L1,i−1
j ) (4)

P 2,i
hyp = HD(L2,i

j ⊕ L2,i−1
j ) (5)

P i
hyp denotes the power consumption of ithencryption

Step 5: Correlation between measured (Pmsd) and hypo-
thetical (Phyp) power consumption Pearson’s Correlation
coefficient is used to correlate between measured power
consumption and hypothetical power consumption. Each
column of the Pmsd is correlated with each column of the
Phyp to obtain rank matrix. On plot this rank matrix, highest
correlation value shows the correct key guess.

r(i, j) =

∑n
i=1(Pmsd,i − ¯Pmsd,i)(Phyp − ¯Phyp)√∑n

i=1(Pmsd,i − ¯Pmsd)2
√∑n

i=1(Phyp,i − ¯Phyp)2

(6)
Here, i and j represent ith row and jth column of the
corresponding power consumption matrix.



4.1. Attack description

Key values used in experiment are tabled as below.

Nibbles 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
K’ B 6 0 0 9 1 9 9 6 4 0 0 1 8 3 A
K1 6 9 8 B 3 1 E 5 F 0 6 B 4 6 2 9
K0 D F 8 B A 0 7 C 9 4 6 B 5 E 1 3

Phase 1 attack at POI1: First, 16th nibble (MSB 4-bit)
of all encryption with all possible combination of 4-bit key
are used to compute hypothetical intermediate value, L1,i

j .
Then HD is calculated between L1,i

16 and L1,i−1
16 to arrive

hypothetical power consumption, P 1
hyp. Which is correlated

with measured power consumption, Pmsd to obtain rank
matrix (r). On plotting the rank matrix, highest correlation
value, 0.01628 gives correct key guess, 13-1 = 12(B) as
shown in the figure subsection 4.1.

Figure 5. Key guess of MSB nibble, Key K
′

The same procedure is repeated for all the remaining key
of K

′
and plotted its correct key guess as shown in Figure 6.

Figure 7. Key guess of MSB nibble Key, K1

Phase 2 attack at POI2: Correct key guess retrieved
at phase 1 is substituted while arriving hypothetical inter-
mediate value at POI2, L2,i

16 . Then compute hypothetical
power consumption, P 2

hyp, which is correlated with Pmsd to
retrieve the nibble of key, K116 as shown in the Figure 7.
The same procedure is repeated for all the remaining key of
K1 and plotted its correct key guess as shown in Figure 8.

(a) 1st nibble (b) 2nd nibble (c) 3rd nibble

(d) 4th nibble (e) 5th nibble (f) 6th nibble

(g) 7th nibble (h) 8th nibble (i) 9th nibble

(j) 10th nibble (k) 11th nibble (l) 12th nibble

(m) 13th nibble (n) 14th nibble (o) 15th nibble

Figure 6. Phase 1 attack of PRINCE : Key, K
′

4.2. Attack complexity

Differential Power analysis(DPA) is divide and conquer
approach. That is, instead of trying brute force approach to
reveal 128 key bits with complexity of 2128; key bits are
attacked with complexity of (24 ∗ 16) ∗ 2 = 29. Description
in detail as follow. To reveal 16th nibble of key, K

′
4-bit key

hypothesis is required for all 16 key possible combination.
Therefore attack complexity to retrieve single nibble is 24.
For 16 nibbles requires 24 * 16 computation. This is to
recovery K

′
alone. However to find K1 and K0 from K’ is

non-trivial. Therefore explored similar attack at the second
round to reveal K1 with attack complexity 24 * 16. Using
K’ and K1 easy to arrive K0. Thus, we requires (24 * 16) *
2 attack complexity. The attack complexity is significantly
reduced from 264 to 29.
From figure 9, it is clear that 200,000 samples are enough
to retrieve 16th nibble of K’ and K1.



(a) 1st nibble (b) 2nd nibble (c) 3rd nibble

(d) 4th nibble (e) 5th nibble (f) 6th nibble

(g) 7th nibble (h) 8th nibble (i) 9th nibble

(j) 10th nibble (k) 11th nibble (l) 12th nibble

(m) 13th nibble (n) 14th nibble (o) 15th nibble

Figure 8. Phase 2 attack of PRINCE : Key, K1

(a) 16th nibble of K’ (b) 16th nibble of K1

Figure 9. Attack on PRINCE

However 700,000 samples are required for other nibbles.
This can be reduced by combining LUT constraint and
Welch’s t-test. We would like to explore in our future
work.

5. Conclusion

In this paper, we studied and explored the possible imple-
mentation vulnerability of low latency crypto-graphic cipher,
PRINCE as an IP core. Likewise, the attack can also be
extent to ciphers MIDORI,QARMA which necessitate proper
verification and validation of IP core in future. Threshold
Implementation (TI) as a countermeasure for first and last
round is proposed in [13] to increase resistant against DPA.
However, its security needs to be validated experimentally
under susceptible implementation before commercial usage.
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